We consider a one-dimensional unpinned chain of harmonic oscillators with random masses. We prove that after hyperbolic scaling of space and time the distributions of the elongation, momentum, and energy converge to the solution of the Euler equations. Anderson localization decouples the mechanical modes from the thermal modes, allowing the closure of the energy conservation equation even out of thermal equilibrium. This example shows that the derivation of Euler equations rests primarily on scales separation and not on ergodicity. Furthermore, it follows from our proof that the temperature profile does not evolve in any space-time scale.

Hydrodynamic Limit for a Disordered Harmonic Chain

Olla S
2019

Abstract

We consider a one-dimensional unpinned chain of harmonic oscillators with random masses. We prove that after hyperbolic scaling of space and time the distributions of the elongation, momentum, and energy converge to the solution of the Euler equations. Anderson localization decouples the mechanical modes from the thermal modes, allowing the closure of the energy conservation equation even out of thermal equilibrium. This example shows that the derivation of Euler equations rests primarily on scales separation and not on ergodicity. Furthermore, it follows from our proof that the temperature profile does not evolve in any space-time scale.
File in questo prodotto:
File Dimensione Formato  
2019_CommunMathPhys_365_Bernardin.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 587.97 kB
Formato Adobe PDF
587.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/1291
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact