Diffusive shock acceleration is considered as the main mechanism for particle energization in supernova remnants, as well as in other classes of sources. The existence of some remnants that show a bilateral morphology in the X-rays and gamma-rays suggests that this process occurs with an efficiency that depends upon the inclination angle between the shock normal and the large-scale magnetic field in which the shock propagates. This interpretation is additionally supported by recent particle-in-cell simulations that show how ions are not injected if the shock is more oblique than similar to 45 degrees. These shocks provide an excellent test bench for the process of reacceleration at the same shock: non-thermal seed particles that are reached by the shock front are automatically injected and accelerated. This process was recently discussed as a possible reason for some anomalous behaviour of the spectra of secondary cosmic ray nuclei. Here, we discuss how gamma-ray observations of selected supernova remnants can provide us with precious information about this process and lead us to a better assessment of particle diffusive shock reacceleration for other observables in cosmic ray physics.

Gamma-rays from reaccelerated particles at supernova remnant shocks

Blasi P
2019-01-01

Abstract

Diffusive shock acceleration is considered as the main mechanism for particle energization in supernova remnants, as well as in other classes of sources. The existence of some remnants that show a bilateral morphology in the X-rays and gamma-rays suggests that this process occurs with an efficiency that depends upon the inclination angle between the shock normal and the large-scale magnetic field in which the shock propagates. This interpretation is additionally supported by recent particle-in-cell simulations that show how ions are not injected if the shock is more oblique than similar to 45 degrees. These shocks provide an excellent test bench for the process of reacceleration at the same shock: non-thermal seed particles that are reached by the shock front are automatically injected and accelerated. This process was recently discussed as a possible reason for some anomalous behaviour of the spectra of secondary cosmic ray nuclei. Here, we discuss how gamma-ray observations of selected supernova remnants can provide us with precious information about this process and lead us to a better assessment of particle diffusive shock reacceleration for other observables in cosmic ray physics.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/1284
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 10
social impact