The Sun blocks cosmic-ray particles from outside the solar system, forming a detectable shadow in the sky map of cosmic rays detected by the ARGO-YBJ experiment in Tibet. Because the cosmic-ray particles are positively charged, the magnetic field between the Sun and the Earth deflects them from straight trajectories and results in a shift of the shadow from the true location of the Sun. Here, we show that the shift measures the intensity of the field that is transported by the solar wind from the Sun to the Earth.

Mean Interplanetary Magnetic Field Measurement Using the ARGO-YBJ Experiment

DE MITRI, IVAN
2011

Abstract

The Sun blocks cosmic-ray particles from outside the solar system, forming a detectable shadow in the sky map of cosmic rays detected by the ARGO-YBJ experiment in Tibet. Because the cosmic-ray particles are positively charged, the magnetic field between the Sun and the Earth deflects them from straight trajectories and results in a shift of the shadow from the true location of the Sun. Here, we show that the shift measures the intensity of the field that is transported by the solar wind from the Sun to the Earth.
cosmic rays; magnetic fields; solar wind
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12571/1030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 24
social impact