In the near future the ground-based gravitational wave detectors will reach sensitivities that should make it possible for the first time to directly observe gravitational waves. The simultaneous availability of gravitational wave detectors observing together with space and ground-based electromagnetic telescopes will offer a great opportunity to explore the Universe in a new multi-messenger perspective. Promising sources of gravitational waves are the most energetic astrophysical events such as the merger of neutron stars and/or stellar-mass black holes and the core collapse of massive stars. These events are believed to produce electromagnetic transients in the sky, like gamma-ray bursts and supernovae. An overview of the expected electromagnetic counterparts of the gravitational wave sources is presented, focusing on the challenges, opportunities and strategies for starting transient gravitational wave astronomy.

Electromagnetic counterparts of gravitational wave transients

BRANCHESI, MARICA
2015-01-01

Abstract

In the near future the ground-based gravitational wave detectors will reach sensitivities that should make it possible for the first time to directly observe gravitational waves. The simultaneous availability of gravitational wave detectors observing together with space and ground-based electromagnetic telescopes will offer a great opportunity to explore the Universe in a new multi-messenger perspective. Promising sources of gravitational waves are the most energetic astrophysical events such as the merger of neutron stars and/or stellar-mass black holes and the core collapse of massive stars. These events are believed to produce electromagnetic transients in the sky, like gamma-ray bursts and supernovae. An overview of the expected electromagnetic counterparts of the gravitational wave sources is presented, focusing on the challenges, opportunities and strategies for starting transient gravitational wave astronomy.
2015
978-981-4663-60-1
File in questo prodotto:
File Dimensione Formato  
2015_16thLomonosovConfElemPartPhys_Branchesi.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 516.88 kB
Formato Adobe PDF
516.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/7236
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact