In this paper we propose a lightweight neural network architecture that is able to learn the binary components of the optimal solution of a class of multiparametric mixed-integer quadratic programming (MIQP) problems, such as those that arise from hybrid model predictive control formulations. The predictor provides a binary warm-start to a specifically designed branch and bound (B&B) algorithm to quickly discover an integer-feasible solution of the given MIQP, with the aim of reducing the overall solution time required to find the global optimal solution on line.

Learning explicit binary warm starts for mixed-integer programming

D. Masti;
2019-01-01

Abstract

In this paper we propose a lightweight neural network architecture that is able to learn the binary components of the optimal solution of a class of multiparametric mixed-integer quadratic programming (MIQP) problems, such as those that arise from hybrid model predictive control formulations. The predictor provides a binary warm-start to a specifically designed branch and bound (B&B) algorithm to quickly discover an integer-feasible solution of the given MIQP, with the aim of reducing the overall solution time required to find the global optimal solution on line.
2019
978-3-907144-00-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/36948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? ND
social impact