The development of tools for a fully automatic segmentation of the relevant brain structures, such as the hippocampus, is potentially very useful for pathologies detection. In this paper, a method for the automated hippocampal segmentation, based on virtual ant colonies, is proposed. The algorithm used, the Channeler Ant Model (CAM), represents an effective way to segment 3D objects with a complex shape in a noisy background. The CAM was modified by inserting a shape knowledge that is crucial to face the hippocampus segmentation. The algorithm was trained and tested using a database of 56 T1 weighted MRI images with a known manual segmentation of the hippocampus volume. The results are comparable to other methods: an average Dice Index of 0.74 and 0.72 is obtained over the left and right hippocampi, respectively. The lack of a heavy training procedure, because all the model parameters are fixed, and the speed make this approach very effective.

Fully automated hippocampus segmentation with virtual ant colonies

DE MITRI, IVAN
2012

Abstract

The development of tools for a fully automatic segmentation of the relevant brain structures, such as the hippocampus, is potentially very useful for pathologies detection. In this paper, a method for the automated hippocampal segmentation, based on virtual ant colonies, is proposed. The algorithm used, the Channeler Ant Model (CAM), represents an effective way to segment 3D objects with a complex shape in a noisy background. The CAM was modified by inserting a shape knowledge that is crucial to face the hippocampus segmentation. The algorithm was trained and tested using a database of 56 T1 weighted MRI images with a known manual segmentation of the hippocampus volume. The results are comparable to other methods: an average Dice Index of 0.74 and 0.72 is obtained over the left and right hippocampi, respectively. The lack of a heavy training procedure, because all the model parameters are fixed, and the speed make this approach very effective.
9781467320498
Medical Imaging
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12571/3335
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact