Robin Milner (1984) gave a sound proof system for bisimilarity of regular expressions interpreted as processes: Basic Process Algebra with unary Kleene star iteration, deadlock 0, successful termination 1, and a fixed-point rule. He asked whether this system is complete. Despite intensive research over the last 35 years, the problem is still open.This paper gives a partial positive answer to Milner's problem. We prove that the adaptation of Milner's system over the subclass of regular expressions that arises by dropping the constant 1, and by changing to binary Kleene star iteration is complete. The crucial tool we use is a graph structure property that guarantees expressibility of a process graph by a regular expression, and that is preserved when going over from a process graph to its bisimulation collapse.
A Complete Proof System for 1-Free Regular Expressions Modulo Bisimilarity
Grabmayer, C.;Fokkink, W.
2020-01-01
Abstract
Robin Milner (1984) gave a sound proof system for bisimilarity of regular expressions interpreted as processes: Basic Process Algebra with unary Kleene star iteration, deadlock 0, successful termination 1, and a fixed-point rule. He asked whether this system is complete. Despite intensive research over the last 35 years, the problem is still open.This paper gives a partial positive answer to Milner's problem. We prove that the adaptation of Milner's system over the subclass of regular expressions that arises by dropping the constant 1, and by changing to binary Kleene star iteration is complete. The crucial tool we use is a graph structure property that guarantees expressibility of a process graph by a regular expression, and that is preserved when going over from a process graph to its bisimulation collapse.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.