Many efforts have been done in the last years to model public transport timetables in order to find optimal routes. The proposed models can be classified into two types: those representing the timetable as an array, and those representing it as a graph. The array-based models have been shown to be very effective in terms of query time, while the graph-based models usually answer queries by computing shortest paths, and hence they are suitable to be used in combination with speed-up techniques developed for road networks. In this paper, we focus on the dynamic behavior of graph-based models considering the case where transportation systems are subject to delays with respect to the given timetable. We make three contributions: (i) we give a simplified and optimized update routine for the well-known time-expanded model along with an engineered query algorithm; (ii) we propose a new graph-based model tailored for handling dynamic updates; (iii) we assess the effectiveness of the proposed models and algorithms by an experimental study, which shows that both models require negligible update time and a query time which is comparable to that required by some array-based models.

Engineering graph-based models for dynamic timetable information systems

D'Angelo G;
2014-01-01

Abstract

Many efforts have been done in the last years to model public transport timetables in order to find optimal routes. The proposed models can be classified into two types: those representing the timetable as an array, and those representing it as a graph. The array-based models have been shown to be very effective in terms of query time, while the graph-based models usually answer queries by computing shortest paths, and hence they are suitable to be used in combination with speed-up techniques developed for road networks. In this paper, we focus on the dynamic behavior of graph-based models considering the case where transportation systems are subject to delays with respect to the given timetable. We make three contributions: (i) we give a simplified and optimized update routine for the well-known time-expanded model along with an engineered query algorithm; (ii) we propose a new graph-based model tailored for handling dynamic updates; (iii) we assess the effectiveness of the proposed models and algorithms by an experimental study, which shows that both models require negligible update time and a query time which is comparable to that required by some array-based models.
978-3-939897-75-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/3193
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact