As increasing concern for environmental sustainability urges to bring attention to green-aware multi-agent systems, we put for- ward a game-theoretic model in which agents compete for the usage of power-consuming resources and are charged a cost pro- portional to their fair share of the power consumption. Using the widely adopted cube-root rule for CMOS-based devices, our model becomes a congestion game in which two distinct parts coexist, namely, congestion games with polynomial latency functions and fair cost-sharing games. The interplay between these two compo- nents is governed by two resource-specific constants regulating the static and dynamic power consumption of each resource. Our findings show that, despite these games being highly inefficient in the general case (a super-constant price of stability), performance at equilibrium significantly improves (a constant price of anarchy) when the ratio between the static and dynamic power consumption of each resource remains bounded by a constant. This suggests that, in uncoordinated green-aware multi-agent systems, technol- ogy plays a fundamental role in shaping the efficiency of stable solutions.

On Green Sustainability of Resource Selection Games with Equitable Cost-Sharing

Vittorio Bilo
;
Michele Flammini
;
Gianpiero Monaco
;
Luca Moscardelli
;
Cosimo Vinci
2024-01-01

Abstract

As increasing concern for environmental sustainability urges to bring attention to green-aware multi-agent systems, we put for- ward a game-theoretic model in which agents compete for the usage of power-consuming resources and are charged a cost pro- portional to their fair share of the power consumption. Using the widely adopted cube-root rule for CMOS-based devices, our model becomes a congestion game in which two distinct parts coexist, namely, congestion games with polynomial latency functions and fair cost-sharing games. The interplay between these two compo- nents is governed by two resource-specific constants regulating the static and dynamic power consumption of each resource. Our findings show that, despite these games being highly inefficient in the general case (a super-constant price of stability), performance at equilibrium significantly improves (a constant price of anarchy) when the ratio between the static and dynamic power consumption of each resource remains bounded by a constant. This suggests that, in uncoordinated green-aware multi-agent systems, technol- ogy plays a fundamental role in shaping the efficiency of stable solutions.
2024
Green Sustainability, Nash Equilibria, Congestion Games, Price of Anarchy and Price of Stability
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/30246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact