Input parameters of dependability models are often not known accurately. Two principal methods of dealing with such parametric uncertainty are: sensitivity analysis and uncertainty propagation. This paper is an initial attempt to link the two approaches. The case-study used here (i.e., the multi-voltage propulsion system for the Italian High Speed Railway) also enhances the model presented in [6].

Parametric sensitivity and uncertainty propagation in dependability models

Pinciroli, R.;
2017-01-01

Abstract

Input parameters of dependability models are often not known accurately. Two principal methods of dealing with such parametric uncertainty are: sensitivity analysis and uncertainty propagation. This paper is an initial attempt to link the two approaches. The case-study used here (i.e., the multi-voltage propulsion system for the Italian High Speed Railway) also enhances the model presented in [6].
2017
978-1-63190-141-6
Epistemic uncertainty propagation, Parametric sensitivity analysis, Homogeneous and Non-Homogeneous Markov models, Hierarchical models, Railway system dependability
File in questo prodotto:
File Dimensione Formato  
2016_Valuetools_44_Pinciroli.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 516.16 kB
Formato Adobe PDF
516.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/27426
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact