The gravitational wave resonant detectors can be used as detectors of quark nuggets, like nuclearites (nuclear matter with a strange quark). This search has been carried out using data from two 2350 Kg, 2 K cooled, aluminum bar detectors: NAUTILUS, located in Frascati (Italy), and EXPLORER, that was located in CERN Geneva (CH). Both antennas are equipped with cosmic ray shower detectors: signals in the bar due to showers are continuously detected and used to characterize the antenna performances. The bar excitation mechanism is based on the so called thermo-acoustic effect , studied on dedicated experiments that use particle beams. This mechanism predicts that vibrations of bars are induced by the heat deposited in the bar from the particle. The geometrical acceptance of the bar detectors is 19.5 m2 sr, that is smaller than that of other detectors used for similar searches. However, the detection mechanism is completely different and is more straightforward than in other detectors. We will show the results of ten years of data from NAUTILUS (2003-2012) and 7 years from EXPLORER (2003-2009). The experimental limits we obtain are of interest because, for nuclearites of mass less than 10−4 grams, we find a flux smaller than that one predicted considering nuclearites as dark matter candidates.

Quark nuggets search using 2350 Kg gravitational waves aluminum bar detectors

COCCIA, EUGENIO;
2013-01-01

Abstract

The gravitational wave resonant detectors can be used as detectors of quark nuggets, like nuclearites (nuclear matter with a strange quark). This search has been carried out using data from two 2350 Kg, 2 K cooled, aluminum bar detectors: NAUTILUS, located in Frascati (Italy), and EXPLORER, that was located in CERN Geneva (CH). Both antennas are equipped with cosmic ray shower detectors: signals in the bar due to showers are continuously detected and used to characterize the antenna performances. The bar excitation mechanism is based on the so called thermo-acoustic effect , studied on dedicated experiments that use particle beams. This mechanism predicts that vibrations of bars are induced by the heat deposited in the bar from the particle. The geometrical acceptance of the bar detectors is 19.5 m2 sr, that is smaller than that of other detectors used for similar searches. However, the detection mechanism is completely different and is more straightforward than in other detectors. We will show the results of ten years of data from NAUTILUS (2003-2012) and 7 years from EXPLORER (2003-2009). The experimental limits we obtain are of interest because, for nuclearites of mass less than 10−4 grams, we find a flux smaller than that one predicted considering nuclearites as dark matter candidates.
2013
Nuclearites; Cosmic Rays; Gravitational Wave; Cryogenic Detector
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/1239
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact