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Abstract

This thesis focuses on the study of the statistical properties of chaotic dynamical
systems, especially in the area of partially hyperbolic systems. The general aim
of this field is attempting to predict the behaviour of the system for long times.
Ruelle in the 1970s has shown that, instead of considering individual trajectories,
it is much more natural to consider the evolution of densities under the study of a
linear operator, called Transfer Operator (or Ruelle-Perron-Frobenius). Following
this idea, in the last years, an extremely powerful method has been developed:
the functional approach. It consists in the study of the spectral properties of the
transfer operator on suitable Banach spaces. In this work we apply this approach
to partially hyperbolic systems in two dimensions, establishing the germ of a
general theory. To illustrate the scope of the theory, the results are used in the
case of fast-slow partially hyperbolic systems, pointing out how to pursue the
arguments for further progresses.
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Notations

Rd,R The d-dimensional Euclidean space for d ≥ 2 and d = 1 respectively.

T2,T The d-dimensional flat torus Rd/Zd ford ≥ 2 and d = 1 respectively.

B(x, r) The open ball of radius r centered at x.

C0(Ω,Rd) The space of Rd-valued continuous functions on Ω ⊆ T2.

Ck(Ω,Rd) The space of Rd-valued continuous functions on Ω ⊆ T2 with con-
tinuous derivatives of order j, j = 1, . . . , k.

∂xiu, ∇u Partial derivatives with respect to the xi-th variable and gradient
vector of u.

∂tu,
d
dt
u, u′ Differentiation with respect to the variable t .

Du Jacobian matrix of u ∈ Cr.
D2f Hessian matrix of u.
1A(x) The characteristic function of A defined by 1A(x) = 1 if x ∈ A and

1A(x) = 0 if x /∈ A.
L(X, Y ) Banach space of linear continuous operators from the Banach space

X to the Banach space Y equipped with the norm topology. When
X = Y we only write L(X).

X ↪→ Y X ⊂ Y with continuous injection.

F Fourier transform Fu(ξ) =
∫
Rd e

−2πix·ξu(x)dx.

Hs The completion of C∞(T2) with respect to the norm induced by the
inner product 〈u, v〉s =

∑
ξ∈Z2(1 + ‖ξ‖2)sFu(ξ)Fv(ξ).

{A,B}+ The maximum between the quantities A and B.
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Some useful inequalities

• Generalized Young’s inequality : For p ∈ (1,∞) and p′ = p/(p− 1) and any
positive ε > 0 we have

ab ≤ εp
ap

p
+

1

εp′
bp
′

p′
∀a, b > 0 .

• Logarithmic mean: For each x, y > 0, x 6= y

√
xy ≤

(√
x+
√
y

2

)
(xy)

1
4 ≤ x− y

ln(x)− ln(y)
≤
(√

x+
√
y

2

)2

≤ x+ y

2
.
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Chapter 1

Introduction

The general purpose of this thesis is to give a contribution in the area of dynamical
systems, in particular in the branch concerning partially hyperbolic systems. In
this introductory chapter we will briefly outline the motivations behind the study
and the main questions and issues we would like to address, discussing the results
we obtained.

1.1 Motivation

A dynamical system can be described by the (discrete or continuous) time evo-
lution of a map over some set. For our discussion it is enough to consider a map
F : M →M which is a diffeomorphism, or a local diffeormorphism, on a compact
Riemannian smooth manifold M . It is well known at least since the works of H.
Poincaré that studying the topological discrete dynamical system (F,M) to make
long time predictions may lead to unsatisfying results, due to either a rather com-
plicated behaviour of the orbits, or the sensibility to the initial conditions. We
therefore change the point of view, studying instead the measurable dynamical
system (F∗,M(M)), whereM(M) is the space of Borel probability measures on
M and

F∗µ(A) = µ(F−1(A)), for each measurable set A.

The first problem is to select the relevant invariant measures. In this setting
it can be shown that the measures belonging to the class of a finite, smooth
Riemannian volume on M are globally preserved by F . By Morse theory, any
Riemannian volume is locally equal to the Lebesgue measure, up to a smooth
change of coordinates. Therefore a good choice is to look at measures which
are absolutely continuous with respect to the Lebesgue measure. 1 If F is a
conservative system, it is well known that there is a natural invariant measure
in the class of the volume measures (for example, in the Hamiltonian case, such
a measure is the Liouville one). On the other hand, there is no distinguished
invariant measure in the dissipative case. For instance, if F has periodic points,
we can take the average along the orbit of each such a point and construct an
associated invariant measure, which is of course not included in the volume class.

1We will show this fact in a concrete simple example in Section 2.
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1.2 Physical measures

It is the work of Sinai, Ruelle and Bowen (1960-1970) on hyperbolic attractors
that rigorously established the existence of invariant measures which are ”physi-
cally observable”.2

Definition 1.2.1. A physical measure (or SRB measure) is an F -invariant prob-
ability measure µ such that the set

B(µ) :=
{
x ∈M :

1

n

n−1∑
k=0

δFk(x) → µ weakly as n→∞
}

has positive Lebesgue measure.

By weak convergence we mean that

lim
n→∞

1

n

n∑
k=1

ϕ
(
F k(x)

)
=

∫
M

ϕdµ, ∀ϕ ∈ C0(M,R).

Since then, many progresses have been made concerning the existence, unique-
ness and statistical properties of SRB measures in the case of hyperbolic maps,
in which the tangent bundle splits into contracting and expanding invariant sub-
spaces. On the other hand, a need to study cases beyond hyperbolicity, such
as non-uniform hyperbolic systems and partially hyperbolic systems, has clearly
emerged. This work focuses on the second type of systems, the partially hyper-
bolic ones, which allow central directions at each point, in which the expansion
and contraction is dominated by the behaviour in the hyperbolic directions. In
the case of volume preserving diffeomorphisms substantial progresses have been
made in the study of ergodicity starting with [44, 50, 57] to the point of estab-
lishing very general results, e.g. [15]. For the dissipative case, if the invariant
measure is not a priori known, then establishing the existence of SRB measures
is a serious problem in itself, see [14, 1, 53] for some important partial results.
Moreover, it is well known, at least since the work of Krylov [41], that for many
applications ergodicity does not suffice and mixing (usually in the form of effective
quantitative estimates on the decay of correlations) is of paramount importance.
By mixing we mean that, if µ is an invariant measure for F , then

lim
n→∞

∫
M

ϕ1 · ϕ2 ◦ F ndµ =

∫
M

ϕ1dµ

∫
M

ϕ2dµ, (1.2.1)

for suitable observables ϕ1, ϕ2 : M → R. Of course it is desirable to have infor-
mation on the speed of convergence in the above limit. If the limit in (1.2.1)

2Since in this work we deal only with partially hyperbolic endomorphisms, we will follow
common practice (see for instance [28, Corollary 2]) and choose to use the terms physical
measure or SRB measure to indicate the same object in Definition 1.2.1 . Nonetheless, the
reader must be aware that in many situations SRB measures and physical measures are defined
in different ways, as they do not coincide in general (see [59] for an exhaustive discussion).
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occurs exponentially fast we talk about exponential decay of correlations. Some
results in this direction exist in the case of mostly expanding central direction [2],
and mostly contracting central direction [25, 18]. For central direction with zero
Lyapunov exponents (or close to zero) there exist quantitative results on exponen-
tial decay of correlations only for group extensions of Anosov maps and Anosov
flows [26, 19, 24, 46, 55], but none of them apply to an open class (with notable
exceptions of [17, 56]; also, some form of rapid mixing is known to be typical
for large classes of flows [32, 47]). Such results, albeit important, are often not
easy to apply since it is very difficult to estimate the central Lyapunov exponent.
Hence, the problem of effectively studying the quantitative mixing properties of
partially hyperbolic systems is wide open.

1.3 A functional approach

In the last years, starting with [13, 43, 7], an extremely powerful method to
investigate the statistical properties of hyperbolic systems has been developed:
the functional approach. It consists in the study of the spectral properties of the
transfer operator on appropriate Banach spaces. Although the basic idea can
be traced back, at least, to Von Neumann ergodic theorem, the new ingredient
consists in the understanding that non standard functional spaces must be used,
and in the insight of how to embed the key geometrical properties of the system
in the topology of the Banach space. See [6] for a recent review of this approach.

This point of view has produced many important results, e.g. see [46, 40, 33,
31, 29, 8] just to cite a few. It is then natural to investigate if the functional
approach can be extended to partially hyperbolic systems. Some results that
hint at this possibility already exist (e.g. [4, 30]), however, a general approach is
totally missing. Nonetheless, the idea that some quantitative form of accessibility
should play a fundamental role has slowly emerged ([51, 48, 16]).

1.4 Main results

In this work we combine ideas from [4] and [43] to advance the functional analytic
point of view to a large class of two dimensional partially hyperbolic endomor-
phisms. In Theorem 4.3.2 we find checkable conditions that imply the existence
of finitely many physical measures for such a class, and we prove that they all be-
long to some Sobolev space of function. We also show (Theorem 4.5.2) that such
conditions are fulfilled for an open set of physically relevant systems, motivated
by [27, 20, 21, 22, 23]. Moreover, for such systems, we are able to obtain some
quantitative information on the regularity of the eigenvectors of the transfer oper-
ator (Theorem 4.5.4), which hopefully should allow further progress. In addition,
we show how the results obtained here can be combined with averaging results to
provide a very detailed description of the physical measures, see Theorem 4.5.3.
We believe that this approach can be further refined and extended to produce
results in a much more general class of systems. The attempt to obtain precise
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quantitative information is responsible for much of the length of the work, as it
entails a strenuous effort to keep track of many constants. Indeed, it is customary
to think that the constants appearing in Lasota-Yorke type inequalities are largely
irrelevant. This is certainly not the case in the context discussed in section 10, as
the possibility to consider the class of maps discussed there as a perturbation of a
limiting case depends crucially of the size of such constants. It was then essential
to push the estimates to their extreme in order to find out if perturbative ideas
could be applied or identify the source of a possible obstruction.

1.5 Structure of the thesis

The thesis is structured in Chapters organized in three parts: the first is a brief
overview of the background, the second is the core of the work, in which we prove
the main theorems in a general setting, and in the third part we apply our results
in a concrete case.

• Part I

– Chapter 2. We briefly show the necessary background concerning the
functional approach, recalling some important abstract results about
the spectrum of bounded operators. To present such results in a simple
fashion, we apply them to the case of expanding maps on the circle.

– Chapter 3. Using a simple example, we present the concept of
transversality between unstable cones introduced by Tsujii, which is
central in our discussion.

• Part II

– Chapter 4. We describe the systems we consider and we state our
results.

– Chapter 5. We introduce the necessary notation and prove several
facts needed to define the Banach spaces we are interested in. In
particular we provided several preliminary estimates that we will use
in the rest of the manuscript.

– Chapter 6. We define the main Banach spaces and we prove a first
Lasota-Yorke inequality (Theorem 6.0.1). Unfortunately, the spaces
considered in this section do not embed compactly in each other and
hence one cannot deduce the quasi-compactness of the operator from
such inequalities.

– Chapter 7. In this Chapter we prepare some results needed in the
next Chapter: we prove a Lasota-Yorke inequality in the Sobolev
spaces Hs (Lemma 7.1.1), and we give some results on the transver-
sality of unstable cones.

– Chapter 8. This Chapter is the core of the thesis where some inequal-
ities relating the previous geometric norms to the Sobolev norms Hs
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are obtained ( Theorem 8.0.2), solving the compactness problem men-
tioned in Chapter 6. The key result to prove the Theorem is contained
in Proposition 8.1.3.

– Chapter 9. We collect the work done and we prove Theorem 9.0.1,
which will allow us to prove Theorem 4.3.2.

• Part III

– Chapter 10. In this final Chapter we show that fast-slow systems sat-
isfy our conditions. We prove that Theorem 9.0.1 applies in this case,
which allows us to prove Theorem 4.5.2. We then conclude showing
some implications, proving Theorem 4.5.4 and Theorem 4.5.3.
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Part I

Background: a functional
analytic approach to dynamical

systems
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Chapter 2

Expanding maps on T1

2.1 Invariant measures

In this chapter we present the main tools in the simplest possible case,1 which
is a map F ∈ Cr(T1,T1), r ≥ 2, such that infx∈T1 F ′(x) ≥ λ > 1. As explained
in the introduction, studying the topological dynamical system (F,T1) to make
long time predictions may lead to unsatisfying results, due to the sensibility to
the initial conditions. We then change the point of view studying instead the
measurable dynamical system (F∗,M(T1)), whereM(T1) is the space of measures
on T1 and

F∗µ(ϕ) = µ(ϕ ◦ F ), ∀ϕ ∈ C0(T1,R).

We want now to select the initial measures which are pushed forward by the
dynamics. As one can imagine, a reasonable choice is to take µ absolutely con-
tinuous with respect to Lebesgue. We then let h ∈ L1(T1) be the density of µ.
As we are interested in the invariant measures, we need to select the ones such
that

µ(ϕ ◦ F ) = µ(ϕ), ∀ϕ ∈ C0(T1,R),

namely we look for the fixed points of the linear operator F∗. In the case at hand
we know by Riesz-Markov Theorem that M(T1) = C0(T1)′, and each measure µ
is characterized by

µ(ϕ) =

∫
T1

ϕ(x)µ(dx).

According to Krylov-Bogoliubov Theorem if µ is a probability measure onM(T1),
then the sequence {

1

n

n−1∑
k=0

F k
∗ µ

}
n∈N

has accumulation points which are fixed points of F∗. Instead of studying directly
the composition operators, it is more convenient to look at its dual version which,
as we will see in Section 2.2.1, has some smoothing properties. Let Ii ⊂ T1 be an

1See [45] for a more detailed exposition.
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interval such that F|Ii is invertible. We partition T1 =
⋃
i Ii and we set hi := F−1

|Ii
.

Then, if m is the Lebesgue measure on T1, by changing the variables

F∗µ(ϕ) =
∑
i

m (h1Iiϕ ◦ F ) =
∑
i

m (1Ii (h ◦ hiϕ) ◦ F )

=

∫
T1

ϕ

 ∑
y∈F−1x

h(y)

F ′(y)

 dx.

If we then define the operator

LFh(x) =
∑

y∈F−1x

h(y)

F ′(y)
, (2.1.1)

it has the fundamental properties that, for each µ such that dµ = hdm

dF∗µ

dm
= LFh.

The operator LF is called Perron-Frobenius-Ruelle operator, or more simply
transfer operator and it is the main object of our studies. The first thing that can
be noticed is that LF : L1(T1)→ L1(T1), and it is a contraction on L1, indeed∫

|LFh|dm ≤
∫
LF |h|dm =

∫
1 ◦ F |h|dm =

∫
|h|dm. (2.1.2)

Moreover if dµ = hdm, then µ is an invariant measure of F if and only if LFh = h,
i.e. the densities of the invariant measures correspond to the eigenfunctions of L
associated to the eigenvalues of modulus one. We then want to study the spectral
properties of L, which of course will depend on the functional space on which the
operator acts. Unfortunately, it turns out that the spectrum of L in L1 is the full
unitary disk, which does not give enough information for our purposes.
To continue, in the next section we recall some basic facts about the spectrum of
an operator acting on Banch spaces.

2.2 Spectral picture

In this section we give a briefly refresh of the main definitions about the spec-
tral properties of bounded operators, highlighting only the tools and the results
needed in this work. We essentially follow [5] and [45].
During the course of this section L will denote a bounded linear operator acting
on a Banach space B endowed with a norm ‖ · ‖. In particular there exists a
constant C > 0 such that

‖Lu‖ ≤ C‖u‖, ∀u ∈ B,

and we denote by L(B,B) the set of bounded linear operators from B to B endowed
with the norm

‖L‖op := sup
u∈B
‖u‖=1

‖Lu‖.
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Notice that for the transfer operator of the previous section this corresponds to
equation (2.1.2) with C = 1.

Definition 2.2.1. Given L ∈ L(B,B) we define the following quantities

• The resolvent set of L is

RB(L) :=
{
λ ∈ C : ∃ (L − λ Id)−1 ∈ L(B,B)

}
.

• The set σB(L) := C \ R(L) is the spectrum of L.2

• λ ∈ C is called an eigenvalue of L if the operator L − λ Id is not injective.

• The algebraic multiplicity of λ ∈ C is ma(λ) = dim Ker(L − λ Id) ≤ ∞.

• The geometric multiplicity of λ ∈ C is

mg(λ) = dim{u ∈ B : ∃m ≥ 1 : (L − λ Id)mu = 0} ≤ ∞.

• ρ(L) = sup{|λ| : λ ∈ σB(L)} is the spectral radius of L.

• We call ρess := ρess(L) the essential spectral radius of L and it is the small-
est number ρess ≥ 0 such that any λ ∈ σ(L) with |λ| > ρess is an isolated
eigenvalue with finite multiplicity.

It is important to remark that, if L is a compact operator, it is well known that
its spectrum is made of countably many eigenvalues which may accumulates in
zero. Hence in this case the essential spectral radius would be zero. On the other
hand it could also happens that ρess(L) = ρ(L), which gives poor information
in terms of the dynamics. We then come up naturally with the idea of defining
a quasi-compact operator, that is, roughly speaking, an operator which satisfies
ρess(L) < ρ(L).

Definition 2.2.2. The operator L ∈ L(B,B) is quasi-compact if there exist B1,B2

closed subsets of B, and 0 < ρ0 < ρ(L) such that

• B = B1 ⊕ B2, with L(B1) ⊂ B1 and L(B2) ⊂ B2,

• dimB1 <∞ and if λ is an eigenvalue of L|B1 , then |λ| > ρ0,

• ρ(L|B2) < ρ0.

Remark 2.2.3. In terms of the transfer operator L introduced in the previous sec-
tion, we gain important information if we are able to prove the quasi-compactness
in some space B ⊂ L1. In fact it can be proved that the eigenvalues on the pe-
ripheral spectrum σph(L) = {z ∈ C : |z| = ρ(L) = 1} have equal algebraic and
geometric multiplicity, which essentially follows from (2.1.2) which implies that
there are no Jordan blocks associated to eigenvalues on σph(L). It follows that,
since one is an eigenvalue, the dimension of the eigenspace associated to the
eigenvalue one corresponds to the number of SRB measures.

2We will simply use the notation R(L) as well as σ(L) when the Banach space B is clear
from the context.
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Figure 2.1: Spectral picture.

We thus have a criterion to prove the existence of finitely many physical
measures: find a Banach space B ⊂ L1 on which the transfer operator L acts
as a quasi-compact operator. In this direction an abstract result in functional
analysis is available due to Hennion-Nussbaum ([37]), that we state here in the
following form

Theorem 2.2.4. Let (B, ‖·‖) ⊂ (Bw, ‖·‖w) be two Banach spaces and L : B → B
a linear operator such that, for some M > η > 0, A,B,C > 0 and for each n ∈ N,
u ∈ B

(1) ‖Lnu‖w ≤ CMn‖u‖w

(2) ‖Lnu‖ ≤ Aηn‖u‖+BMn‖u‖w

(3) B ↪→ Bw is compact,

then L : B → B is quasi-compact with ρ(L) ≤M and ρess(L) ≤ η.

Remark 2.2.5. The first two items are called Lasota-Yorke (or Doeblin-Fortet)
inequalities.

To conclude let us recall also the definition of spectral gap, which is stronger
than the one of quasi-compactness and provides an abstract criterion to prove
the existence and uniqueness of the invariant measure of the system.

Definition 2.2.6. An operator L ∈ L(B,B) has a spectral gap in B if L = λP+Q
where

10



• P 2 = P and dim(Range(P )) = 1,

• PQ = QP = 0,

• Q ∈ L(B,B) such that ρ(Q) < |λ|.

It can be proved that if L has a spectral gap then λ is a simple eigenvalue
and there exists ν < 1 such that the spectrum is decomposed into

σB(L) = {λ} ∪ K,

where K ⊂ {z ∈ C : |z| < ν|λ|}.

Remark 2.2.7. Again, in terms of the transfer operator, this results can be
extremely helpful in the understanding of the statistical properties of the systems.
For example, if there exists a unique SRB measure, then either the map is not
mixing (there are other eigenvalues, besides one, on the unit circle) or it mixes
exponentially fast (one is the only eigenvalue on the peripheral spectrum and hence
the operator has a spectral gap).

2.2.1 A simple application

As an example we wish to show that the assumptions of Theorem 2.2.4 are satis-
fied in the case of a one dimensional C2 expanding map on the circle, to conclude
the argument introduced in the previous Section. We have the following

Theorem 2.2.8. Let F : T1 → T1 be a C2 expanding map with

inf
x∈T1

F ′(x) ≥ λ > 1, (2.2.1)

and L := LF the transfer operator defined in (2.1.1). Then L satisfies the assump-
tions of Theorem 2.2.4 with B = L2(T1), Bw = H1(T1),3 M = 1 and η = λ−1.

Remark 2.2.9. It would be easier to consider L1 as the weak space in the above
theorem, nevertheless we wish to prove the quasi-compactness in this setting as it
is instructive for our future computations.

Proof. We need to prove assumptions (1),..,(3) of Theorem 2.2.4. First of all, by
the definition of L in (2.1.1), it is easy to see that, for each n ∈ N, x ∈ T1 and
u ∈ L2,

Lnu(x) =
∑

y∈F−n(x)

u(y)

(F n)′(y)
,

where F n = F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
n times

and, by the chain rule,

(F n)′(x) =
n−1∏
k=0

F ′(F k(x)) =: Γn(x). (2.2.2)

3See Appendix C for the precise definition of H1.
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Next

(Lnu)′(x) =
∑

y∈F−n(x)

(
u′(y)

(F n)′(y)2
− u(y)

(F n)′′(y)

(F n)′(y)3

)

= Ln
(

u′

(F n)′

)
(x)− Ln

(
u · (F n)′′

[(F n)′]2

)
(x).

(2.2.3)

We set for each n ∈ N and x ∈ T1, Dn(x) := (Fn)′′(x)
[(Fn)′(x)]2

.4 We then have, by (2.2.2),

(F n)′′(x) =
(
elog Γn(x)

)′
= Γn(x)

n−1∑
k=0

(
F ′′

F ′

)
◦ F k(x)Γk(x).

Setting CF = supx∈T1
F ′′(x)
F (x)

, equations (2.2.1) and (2.2.3) yield

|Dn(x)| =

∣∣∣∣∣
∑n−1

k=0
F ′′

F
◦ F k(x)Γk(x)

Γn(x)

∣∣∣∣∣ ≤ CF

n−1∑
k=0

λk−n ≤ D ∀x ∈ T1, (2.2.4)

where D = CF (λ− 1)−1. By (2.1.2), (2.2.4) and (2.2.3) it follows that

‖Lnu‖W 1,1 = ‖(Lnu)′‖L1 + ‖Lnu‖L1

≤ λ−n‖u′‖L1 + ‖Dn‖L∞‖u‖L1 + ‖u‖L1

≤ λ−n‖u‖W 1,1 + (D + 1)‖u‖L1 ,

which gives for each n ∈ N

‖Ln1‖L∞(T1) ≤ ‖Ln1‖W 1,1 ≤ C, (2.2.5)

with C > 0 depending only on F . We use the above facts to prove items (1) and
(2). First

‖Lnu‖2
L2 =

∫
T1

u (Lnu) ◦ F n ≤ ‖u‖L2

(∫
T1

(Lnu)2 ◦ F n

) 1
2

= ‖u‖L2

(∫
T1

(Lnu)2 Ln1

) 1
2

≤ C
1
2‖u‖L2 ‖Lnu‖L2 .

Hence, again by (2.2.3)

‖Lnu‖H1 = ‖(Lnu)′‖L2 + ‖Lnu‖L2 ≤ C
1
2λ−n‖u‖H1 + C

1
2 (D + 1)‖u‖L2 ,

from which we deduce item (2). Finally, by standard Sobolev embedding, the
inclusion H1(T1) ↪→ L2(T1) is compact (this is essentially Rellich-Kondrachov
Theorem applied in the case of T1), hence item (3).

4This term is usually called distortion and it measures how much the map deviate from
being linear.
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Chapter 3

Transversality: a simple example

We present the transversality condition introduced by Tsujii in a simple setting,
which is a modification of an example given in [53] (see also [11, Section 11.4]).
Let us fix ε > 0 small and set µε = 1 − ε. Let X = T1 × [−1, 1], λ ∈ N, λ ≥ 2,
setting Qi = [ i−1

λ
, i
λ
]× [−1, 1], for i ∈ {1, · · · , λ} =: I, we define the maps

Fi,ε(x, z) = (λx, µεz + βix+ γi)

Fε(x, z) =
λ∑
i=1

Fi,ε(x, z)1Qi(x, z),

where the parameters βi, γi are chosen such that the image of F is well defined.
Notice that each Fi,ε is a diffeomorphism and for every p ∈ T1× [−1, 1] and i ∈ I,

DpFi,ε =

(
λ 0
βi µε

)
.

Next we assume that λµε > 1, which implies detDFε > 1. For χu > 0 let us now
consider the cone

Cχu = {(ξ, η) ∈ R2 : |η| ≤ χu|ξ|}.

We want to show that there exists χu such that DFεCχu ⊂ Cχu . If we take (1, u)
with |u| ≤ χu, then

DpFi,ε

(
1
u

)
= (λ, βi + µεu).

Hence, if

χu ≥
maxi |βi|
λ− µε

,

then the image of (1, u) belongs to the cone Cχu , whereby proving the claim.
Henceforth we set β = maxi |βi|, χu = β(λ− µε)−1 and Cu := Cχu .
We are now ready to introduce the notion of transversality between unstable
cones in this context.

13



Figure 3.1: Transversality of unstable cones.

Definition 3.0.1. Given i, j ∈ I with i 6= j, we say that i is transversal to j if

|βi − βj| > 3µεχu, (3.0.1)

and we write i t j. Notice in particular that this implies

DFi,εCu ∩DFj,εCu = {0},

and we say that the cones are transversal. We write j��ti if condition (3.0.1) is
violated.

To quantify the number of non-transversal cones we define

NFε := sup
i∈I

]{j : j��ti}. (3.0.2)

3.1 Existence of invariant measures

To study the invariant measures of the system we consider the transfer operator
Lε := LFε associated to the map. In this particular case we can see that, if
u ∈ L2(X)

Lu(x) =
∑

y∈F−1(x)

1

λµε
u(y) =

λ∑
i=1

Lε,iu(y) (3.1.1)

where

Lε,iu(x) =
1

λµε

(
u ◦ F−1

i

)
(x)1Fi(Qi)(x).

14



Let us define the following set:

B =

{
u ∈ L2 : u(x, z) =

∑
α∈A

uα(0, x− αz), ∃uα ∈ L2, ∃A finite , |α| ≤ χu

}
,

namely u ∈ B if it is the sum of functions in L2 which are constants on the line
segments of slope α. We are going to prove the following

Lemma 3.1.1. The space B is Lε-invariant, namely Lε(B) ⊂ B. Moreover, if F
satisfies the following condition

νε :=
NFε
λµε

< 1, (3.1.2)

then, for each n ≥ 1 and u ∈ B,

‖Lnεu‖2
L2 ≤ νnε ‖u‖2

L2 + Cε‖u‖L1 , (3.1.3)

where Cε = λ2(λ−1)
χuµε(1−νε) .

We will prove Lemma 3.1.1 in several steps. Notice that if u = uα(0, y−αx) then

Lε,iu(x, z) =
1

λµε
u ◦ F−1

i (x)1Fi(Qi) = uαi(0, y − αix), (3.1.4)

where αi are the slopes of the line segments obtained as images under Fi of the
line segments {y = αx}α. In other words, by the invariance of Cu, Lε(B) ⊂ B.
The main characterization of the functions uα is that, if ui = uαi(0, x − αiz),
i ∈ {1, 2}, for α1 6= α2

〈u1, u2〉L2 ≤ 1

|α1 − α2|
‖u1‖L1 ‖u2‖L1 , (3.1.5)

which follows by a simple change of variables in the integrals. Next, by (3.1.1)
we write for u ∈ B

‖Lεu‖2
L2 =

∑
(i,j)∈I×I

〈Lε,iu,Lε,ju〉L2

=
∑

(i,j):itj

〈Lε,iu,Lε,ju〉L2 +
∑

(i,j):i�tj

〈Lε,iu,Lε,ju〉L2 .

We are going to estimate the two sums above separately.
i t j In this case, if u =

∑
α∈A uα, where uα is constant along the segments

z = αx, we have

〈Lε,iu,Lε,ju〉L2 =
∑
α,α′

〈Lε,iuα,Lε,juα′〉L2 .

By (3.1.4) Lε,iuα and Lε,juα′ are constant along the segments of slopes αi =
λ−1(βi + αµε) and α′j = λ−1(βj + α′µε). Since i t j, condition (3.0.1) and the
fact that |α| ≤ χu, |α′| ≤ χu imply

|αi − α′j| ≥ λ−1
∣∣|βi − βj| − |α|µε − |α′|µε∣∣ ≥ χu

µε
λ
. (3.1.6)
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By the above discussion and by (3.1.5) we conclude that∑
α,α′

〈Lε,iuα,Lε,juα′〉L2 ≤
∑
α,α′

1

|αi − α′j|

∫
Lε,iuα

∫
Lε,juα′

≤ λ

χuµε

∫ ∑
α

uα

∫ ∑
α′

uα′ ≤
λ

χuµε
‖u‖2

L1 .

We then sum over i t j and obtain∑
(i,j):itj

〈Lε,iu,Lε,ju〉L2 ≤ λ2(λ− 1)

χuµε
‖u‖2

L1 . (3.1.7)

i��tj By the Cauchy-Schwarz inequality

∑
(i,j):i�tj

〈Lε,iu,Lε,ju〉L2 ≤
∑

(i,j):i�tj

‖Lε,iu‖2
L2 + ‖Lε,ju‖2

L2

2

≤ NFε
∑
i∈I

‖Lε,iu‖2
L2 .

(3.1.8)

It remains to bound the last sum. By the definition of the transfer operator

‖Lε,iu‖2
L2 =

∫
Fi(Qi)

1

(λµε)2
u2 ◦ F−1

i =

∫
Qi

1

λµε
u2,

hence
λ∑
i=1

‖Lε,iu‖2
L2 =

1

λµε

λ∑
i=1

∫
Qi

u2 =
1

λµε
‖u‖2

L2 . (3.1.9)

To sum up, by (3.1.7), (3.1.8) and (3.1.9)

‖Lεu‖2
L2 ≤

NFε
λµε
‖u‖2

L2 +
λ2(λ− 1)

χuµε
‖u‖2

L1 . (3.1.10)

We are now ready to prove inequality (3.1.3). Let us set νε =
NFε
λµε

and Aε =
λ2(λ−1)
χuµε

, then iterating inequality (3.1.10)

‖Lnεu‖2
L2 ≤ νnε ‖u‖2

L2 + Aε

n−1∑
k=0

νkε ‖u‖2
L1 .

As νε < 1 by assumption, we obtain inequality (3.1.3) setting Cε = Aε
1−νε .

An important consequence of Lemma 3.1.1 is the following

Corollary 3.1.2. There exists an invariant probability measure for F which is
absolutely continuous with respect to the Lebesgue measure on X.
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Proof. The proof corresponds essentially to an adaptation of Krylov-Bogoliubov
theorem in this setting. Let dm = dxdz be the Lebesgue measure on X, and
consider the sequence of measures

µn(dm) =
1

n

n−1∑
k=0

F k
∗ (dm).

Then each µn is absolutely continuous with respect to Lebesgue with density

hn =
1

n

n−1∑
k=0

Lk1.

By Lemma 3.1.1 the sequence Lk1 is uniformly bounded in L2, hence according
to Banach-Alaoglu theorem, there exists a subsequence hnk and h∗ ∈ L2 such
that

lim
k→∞
〈hnk , h〉L2 = 〈h∗, h〉L2 , ∀h ∈ L2.

Consequently, the measure dµ = h∗dm is an accumulation point of µnk . We
now prove that µ is F -invariant. It is well known that the claim is equivalent to
showing that

µ(φ ◦ F ) = µ(φ), ∀φ ∈ C0(X).

We have

µ(φ ◦ F ) = lim
k→∞

1

nk

nk−1∑
i=0

F i
∗m(φ ◦ F ) = lim

k→∞

1

nk

nk−1∑
i=0

m
(
φ ◦ F i+1

)
= lim

k→∞

1

nk

{
nk−1∑
i=0

F i
∗m(φ) +m (φ ◦ F nk)−m(φ)

}
= µ(φ).

The above example is merely explicative, and gives just an idea of the role of
the transversality in a simple case. In particular it shows that the quantity NFε
enters directly into inequality (3.1.3) and, if one can check condition (3.1.2) for
the given system, we have a quantitative estimate of the essential spectral radius
of Lε. Furthermore it is important to remark that the Lasota-Yorke inequality in
(3.1.3) still holds as ε→ 0. In terms of F this case corresponds to a two dimen-
sional map with two Lyapunov exponents, one is positive (due to the expansion
in the horizontal direction) and the other indefinite. In this case F is a simple
example of a so called partially hyperbolic system. An interesting model related
to the above one is given by the following skew-product :

Fε :T2 −→ T2 (3.1.11)

(x, z) 7−→ Fε(x, z) = (f(x), z + εω(x)) (3.1.12)

where f is an expanding map on T1. The ergodic properties of this kind of model
have been extensively studied (varying also the conditions on f and ω), from
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the qualitative point of view, as in [58], to more quantitative results ([16], [30]
[26], [42], [60]), just to mention a few. Especially in [16], [30] and [60] already
emerges in this case the key role of quantities similar to (3.0.1). It is then natural
wondering if a strategy similar to the one used to prove Lemma 3.1.1 can be
developed in the non-skew product case. In other words, it is possible to say
something about the quantitative statistical properties when f and ω depend on
both x and z? Which conditions do they need to satisfy to get information on
the spectral properties of the transfer operator associated? These are the kind of
questions we are attempting to answer in the rest of this work.
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Part II

Vertical Partially Hyperbolic
Systems
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Chapter 4

The systems and the results

In this section we introduce the class of systems we are interested in, the main
assumptions and some definitions necessary to present the results. In this work
T2 and T represent the quotients R2/Z2 and R/Z respectively. For a local dif-
feomorphism F : T2 → T2 we define the functions m∗F ,mF : T2 × R2 \ {0} → R+

as 1

mF (z, v) =
‖DzFv‖
‖v‖

; m∗F (z, v) =
‖(DzF )−1v‖
‖v‖

.

Notation. As we would like to apply our results to open sets of maps F , all
the constants appearing in the text are really functions of F . We will call a
constant uniform if it depends continuously only on the Cr norm of the map F ,
on (λ− − µ+)−1, χ−1

c , (1 − ι?)−1 and C? (see hypothesis (H1) for the definition
of λ−, µ+, χc, ι? and C?) . In order to make the reading more fluid, we will use
the notation f . g to mean that there exists a uniform constant C] > 0, such
that f ≤ C]g. The values of the constants C] can change from one occurrence
to the next. Moreover, in the following we will use Ca,b,..., ca,b,... to designate
constants that depend also on the quantities a, b, . . . , but they are uniform when
the quantities in the subscripts are fixed, since no confusion can arise we will call
such constants uniform as well.

Note that χc, χu, which determines the size of the central and unstable cone,
respectively, are not uniquely determined by the map. Given our convention, we
must keep track of how the constants depend on χ−1

u and we cannot hide such a
dependency inside a constant C]. Indeed, in the next sections it will be apparent
that it may be convenient to choose χu as small as possible while it is convenient
to choose χc as large as possible.
Finally, to simplify notations, we use {a, b, . . . }+ to designate the maximum be-
tween the quantities a, b, . . .

1By ‖ · ‖ we mean the Riemannian metric in T2 induced by the Euclidean norm in R2.
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4.1 Partially hyperbolic systems

Let r ≥ 4 and F : T2 7→ T2 be a surjective Cr local diffeomorphism. We call F a
partially hyperbolic system 2 if there exist a continuous splitting, not necessarily
invariant, of the tangent bundle into subspaces T T2 = Ec⊕Eu, σ > 1 and c > 0
such that for each n ∈ N

‖DF n
|Eu‖ > cσn

‖DF n
|Ec‖ < cσ−n‖DF n

|Eu‖.
(4.1.1)

Notice that for non-invertible map the unstable direction is not necessarily unique,
nor invariant. It is then more convenient to work with cones instead than distribu-
tions. Indeed, it is well known (see e.g [36]) that the above conditions are equiv-
alent to the existence of smooth invariant transversal cone fields Cu(z),Cc(z),
which satisfy conditions equivalent to (4.1.1). To simplify the following argu-
ments we will restrict ourselves to maps without critical points. We can thus
assume, without further loss of generality.

(H0) for all p ∈ T2 we have det(DpF ) > 0.

In addition, to simplify notations, we make the assumption that the cone fields
can be chosen constant since this hypothesis applies to all the examples we have
in mind. Hence we assume:

(H1) There exist χu, χc ∈ (0, 1) and 0 < µ− < 1 < µ+ < λ− ≤ λ+ such that,
setting

Cu := {(ξ, η) ∈ TzT2 : |η| ≤ χu|ξ|}
Cc := {(ξ, η) ∈ TzT2 : |ξ| ≤ χc|η|},

(4.1.2)

defining

λ−n (z) := inf
v∈R2\Cc

mFn(z, v) λ+
n (z) := sup

v∈R2\Cc
mFn(z, v),

µ−n (z) := inf
v∈Cc\{0}

m∗Fn(z, v) µ+
n (z) := sup

v∈Cc\{0}
m∗Fn(z, v),

(4.1.3)

and letting λ−n = infz λ
−
n (z) and λ+

n = supz λ
+
n (z) we have the following:

There exist uniform C? ≥ 1 and ι? ∈ (0, 1) such that, for all z ∈ T2 and n ∈ N,3

DzFCu ⊂ {(ξ, η) : |η| ≤ ι?χu|ξ|} b Cu; DzF
−1Cc b Cc, (4.1.4)

C−1
? µn− ≤ µ−n (z) ≤ µ+

n (z) ≤ C?µ
n
+ ; C−1

? λn− ≤ λ−n ≤ λ+
n ≤ C?λ

n
+ (4.1.5)

From now on we set µ := {µ+, µ
−1
− }

+
> 1. Note that the above conditions

imply, in particular, det(DF ) 6= 0.

2In the present case the term partially expanding would be more appropriate, as there is
only an expanding direction which is dominant.

3A b B means A ⊂ int(B) ∪ {0}.
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(H2) Let Υ be the family of closed curve γ ∈ Cr(T,T2) such that 4

c0) γ′ 6= 0,

c1) γ has homotopy class (0, 1),

c2) γ′(t) ∈ Cc, for each t ∈ T,

then F−1(γ) is the disjoint union of closed curves and Υ ⊃ F−1(Υ).

(H3) Let

ζ̃r :=
1

3
[(r + 1)!(6r − 1) + 1] . (4.1.6)

Then we say that F satisfies the pinching condition if

µζ̃r < λ−. (4.1.7)

Remark 4.1.1. Notice that condition (4.1.7) implies in particular that µ < λ−.
The presence of the factorials in (4.1.6) is probably not optimal. This is a condi-
tion we did not try to optimise since it is irrelevant for our main application in
which µ is very close to one.

A partially hyperbolic system satisfying (4.1.7) will be called strongly domi-
nated.

Remark 4.1.2. Note that, since F is a local diffeomorphism, then it can be
lifted to a diffeomorphism F of R2 with the projection π map being mod 1,
so that π(0, 0) = 0. Then we can define G(x, θ) = F(x, θ) − (0, θ) and write
F ◦ π(x, θ) = π(G(x, θ) + (0, θ)). Thus in the following, with a slight abuse of
notation, we will often confuse the map with his covering and write

F (x, θ) = (f(x, θ), θ + ω(x, θ)). (4.1.8)

In addition, note that if the map satisfies condition (H2) then for each x ∈ R2

the curve γx(t) = (x, t), t ∈ T has a preimage ν ∈ Υ homotopic to the curve
γ̄p(t) = p + (0, t), p ∈ ν, F (p) = (x, 0). This implies that F (γ̄p(t)) is a curve
homotopic to γx. Thus for each (x, θ) ∈ R2 the lift has the property F(x, θ+ 1) =
F(x, θ) + (0, 1), which implies that ω lifts to a periodic function in the second
variable.

In the following we will need some quantitative information on the Lipschitz
constant of the graphs associated to “unstable manifolds.” To simplify matters,
we prove the needed results in Lemma D.0.1. We require then that our maps sat-
isfy the hypotheses of such a Lemma. However, be aware that such hypotheses are
not optimal and the following condition is used only in Lemma D.0.1, hence it be-
comes superfluous if in a given system one can prove Lemma D.0.1 independently.

(H4) With the notation (4.1.8) we require, for each p ∈ T2,

∂xf(p) > {2(1 + ‖∂xω‖∞), |∂θf(p)|}+ .
4As usual we consider equivalent two curves that differ only by a Cr reparametrization. In

the following we will mostly use curves that are parametrized by vertical length.
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Definition 4.1.3. We call a map F a strongly dominated vertical partially hy-
perbolic system (SVPH for simplicity) if it satisfies assumptions (H0),.., (H4).

Remark 4.1.4. Note that if F satisfies (H1) and (H2), then so does F n, n ∈ N.
Thus it may be convenient to consider F n, instead of F , to check (H3) and (H4).

From now on we will write a SVPH in the form (4.1.8) when convenient.

4.2 Transversality of unstable cones

In [51] Tsujii introduces the following notion of transversality.

Definition 4.2.1. Given n ∈ N, y ∈ T2 and z1, z2 ∈ F−n(y) , we say that z1 is
transversal to z2 (at time n) if Dz1F

nCu∩Dz2F
nCu = {0}, and we write z1 t z2.

For each y ∈ T2 and z1 ∈ F−n(y), we define

NF (n, y, z1) :=
∑
z2�tz1

z2∈F−n(y)

| detDz2F
n|−1 (4.2.1)

and set NF (n) = supy∈T2 supz1∈F−n(y)NF (n, y, z1).

Remark 4.2.2. Note that if all the preimages are non-transversal, then the sum
in (4.2.1) corresponds to the classical transfer operator applied to one (LF1).

In essence, LF1 − NF (n) provides a quantitative version of the notion of
accessibility in our systems.

As NF is difficult to estimate we also introduce a related quantity, inspired
by [51]. Given y ∈ T2 and a line L in R2 passing through the origin, define

ÑF (n, y, L) :=
∑

z∈F−n(y)
DFn(z)Cu⊃L

| detDF n(z)|−1. (4.2.2)

As before we set ÑF (n) = supy∈T2 supL ÑF (n, y, L). Section 7.2 provides the

properties of ÑF and Lemma 7.2.3 explains the relation between NF and ÑF .

4.3 Result for SVPH

A physical measure is an F -invariant probability measure ν such that the set

B(ν) :=
{
p ∈ T2 :

1

n

n−1∑
k=0

δFk(p) → ν weakly as n→∞
}

has positive Lebesgue measure. One way to obtain information on the physical
measures of the system is to study the spectral properties of the Transfer operator.
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Definition 4.3.1. Given a map F : T2 → T2, we define LF : L1(T2)→ L1(T2),
the transfer operator associated to F , as

LFu(z) =
∑

y∈F−1(z)

u(y)

| det(DyF )|
. (4.3.1)

Iterating (4.3.1) yields

LnFu(z) =
∑

y∈F−n(z)

u(y)

| det(DyF n)|
, n ∈ N. (4.3.2)

It is a well known fact that ‖LFu‖L1 ≤ ‖u‖L1 .
For each integer 1 ≤ s ≤ r − 1 we define5

α =
log(λ−µ

−2)

log(λ+)

αs := 2(2 + s− α) ; βs := 2(s+ 2) ; ζs :=
1

3
+ (s+ 2)!

(
2s+

5

6

)
.

(4.3.3)

We are now ready to state the main result for SVPH, whose proof is given in
Section 9.

Theorem 4.3.2. Let F ∈ Cr(T2,T2) be SVPH, and let α, αs, βs, ζs, as in (4.3.3).
We assume that there exist n1 ∈ N and νs < 1 such that, for some 1 ≤ s ≤ r− 3,{

µζsλ
− 1

2
− ,

√
ÑF (dαn1e)µαsn1+βsmχu

}+

< νs < 1, (4.3.4)

where mχu is defined in (8.1.24). Then there exists Banach spaces Bs,∗, Cr−1(T2) ⊂
Bs,∗ ⊂ Hs(T2) such that LF (Bs,∗) ⊂ Bs,∗. The restriction of LF to Bs,∗ is a
bounded quasi-compact operator, with spectral radius one and essential spectral
radius smaller than νs.

Remark 4.3.3. By standard arguments, Theorem 4.3.2 has the following conse-
quences: there exist finitely many physical measures absolutely continuous with
densities in the Hilbert space Hs, for some 1 ≤ s ≤ r − 3. Moreover, for each
mixing physical measure we have exponential decay of correlations for Hölder ob-
servables.

Remark 4.3.4. By the definition of ÑF , it can be noticed that, under the as-
sumption (H3), condition (4.3.4) is automatically satisfied if ÑF grows sub-
exponentially for n large. According to [53], this latter fact holds generically for
partially hyperbolic systems in two dimensions. In this sense, the result and all
the consequences of Theorem 4.3.2 hold generically. For more details see Remark
8.0.1.

5Note that in (4.3.3) 0 < α<1, thanks to hypothesis (4.1.6).
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In particular, Theorem 4.3.2 implies that the map has finitely many physical
measures and that if it is topologically mixing, then it mixes exponentially fast for
all Hölder observables. Note that the condition involves only a finite power of the
map and it is, at least in principle, checkable for a given map. Of course checking
it may be quite laborious and may entail some computer assisted strategy. It is
then interesting to consider less general models in which the previous condition
can be explicitly verified.

4.4 A general class of models

It is natural to ask when a map of the form (4.1.8) satisfies (H0),.., (H4). Here
we provide checkable conditions implying (H0),.., (H4).

Lemma 4.4.1. Let λ := infT2 ∂xf,Λ := supT2 ∂xf and suppose that:

1. ∂xf(p) > {2(1 + ‖∂xω‖∞), |∂θf(p)|}+ ∀p ∈ T2,

2. ‖∂xω‖∞ + ‖∂θω‖∞ < 1,

3. ‖∂θω‖∞ < 1+‖∂xω‖∞
λ−1

4. 1 + ‖∂θf‖∞ + ‖∂θω‖∞ + ‖∂xω‖∞ < λ,

5. ‖∂θf‖∞ < 1
2

(
−1 +

√
1 + 2λ2Λ−1

)
,

6. χc‖∂xω‖∞ + ‖∂θω‖∞ < lnλ
2 ζ̃r
,

with ζ̃r as in (4.1.6). Then F satisfies assumptions (H0),..,(H4) with χu given
by (4.4.5), (4.4.13), χc given by (4.4.7) and

µ := {(1− χc‖∂xω‖∞ − ‖∂θω‖∞)−1, eχc‖∂xω‖∞+‖∂θω‖∞)}+. (4.4.1)

Proof. To start, note that (1) coincides with (H4), which implies in particular
that λ > 2. We have thus to prove only (H0) up to (H3).

We start with (H0). First we show that ∂xf(p) > [∂θf∂xω − ∂xf∂θω](p), for
each p ∈ T2. The latter, by (2) and (3), is implied by λ(1 − |∂θω|) > λ − 1 −
‖∂θω‖∞ − ‖∂xω‖∞ which, in turn, is implied by (3).
Next we prove (H1). Following [20] we start by proving that DpF (Cu) b Cu and
DpF

−1(Cc) b Cc. We consider a vector (1, u) ∈ Cu and we write a formula for
the unstable slope field

DpF (1, u) = (∂xf + u∂θf)(1,Ξ(p, u)), Ξ(p, u) =
∂xω(p) + u∂θω(p) + u

∂xf(p) + u∂θf(p)
.

(4.4.2)

Notice that

d

du
Ξ(p, ·) =

∂xf + (∂θω∂xf − ∂θf∂xω)

(∂xf + u∂θf)2
=

detDF (x, θ)

(∂xf + u∂θf)2
> 0, (4.4.3)
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since detDF > 0 by (1). Hence, checking the invariance of Cu under DF is
equivalent to showing that, for each p ∈ T2, |Ξ(p,±χu)| ≤ χu. That is

‖∂θf‖∞χ2
u − (λ− ‖∂θω‖∞ − 1)χu + ‖∂xω‖ ≤ 0. (4.4.4)

Setting φ = λ− ‖∂θω‖∞ − 1, inequality (4.4.4) has positive solutions since φ > 0
by (4), which also implies

φ2 − 4‖∂θf‖∞‖∂xω‖∞ ≥ (‖∂θf‖∞ − ‖∂xω‖∞)2 > 0.

Setting Φ± = φ±
√
φ2 − 4‖∂θf‖∞‖∂xω‖∞, we can then choose

χu ∈
(

Φ−
2‖∂θf‖∞

, 1

)
. (4.4.5)

Note that the interval it is not empty due to (4).
On the other hand, if (c, 1) ∈ Cc we consider the center slope field

Ξ−(p, c) =
(1 + ∂θω(p)) c− ∂θf(p)

∂xf(p)− ∂xω(p)c
, (4.4.6)

and by an analogous computation we obtain |Ξ−(p,±χc)| ≤ χc if

χc ∈
(

Φ−
2‖∂xω‖∞

, 1

)
. (4.4.7)

Again, the interval it is not empty due to (4), we have thus proved (4.1.4).
Next, by the invariance of the cones we can define real quantities λn, µn, un and
cn such that, for each p ∈ T2,6

DpF
n(1, 0) = λn(p) (1, un(p)) ; DpF

n (cn(p), 1) = µn(p)(0, 1),

with ‖un‖∞ ≤ χu, ‖cn‖∞ ≤ χc. Moreover, by definition

DpF (cn(p), 1) =
µn(p)

µn−1 (F (p))
(cn−1 (F (p)) , 1) ,

from which it follows, by (4.1.8),

µn(p) = µn−1 (F (p))(1 + ∂θω(p) + cn(p)∂xω(p)).

Since ‖cn‖∞ ≤ χc, setting b := ‖∂θω‖∞ + χc‖∂xω‖∞, we have

(1− b)n ≤ µn(p) ≤ (1 + b)n. (4.4.8)

Note in particular that, by (4.4.8), we can make the choice (4.4.1) which imme-
diately implies (H3) by (6). Similarly,

λn(p) = λn−1(F (p))(∂xf(p) + ∂θf(p)un(p))

=
n−1∏
k=0

∂xf(F kp)

(
∂xf(F kp) +

∂θf(F k)

∂xf(F kp)
un−k(F

kp)

)
,

6 Note that the definition of λn differs from the one of λ±n in (4.1.5), since we are considering
iteration of vectors inside the unstable cone. Nevertheless, they are related since there exists
an integer m such that Fm(R2 \Cc) b Cu.
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which, setting a := χu‖ ∂θf∂xf
‖∞, implies

(1− a)n
n−1∏
k=0

∂xf(F k(p)) ≤ λn(p) ≤ (1 + a)n
n−1∏
k=0

∂xf(F k(p)), (4.4.9)

which yields (4.1.5) with C? = 1,

λ+ = (1 + a)λ and λ− = (1− a)λ, (4.4.10)

since, by the definition of χu in (4.4.5), we can check that λ− > 1. By (4.4.8)
and (4.4.9) we have, for each n ∈ N and p ∈ T2,

‖DpF
n(cn, 1)‖

‖DpF n(1, 0)‖
=

|µn(p)|
|λn(p)|

√
1 + u2

n

≤ (1 + b)n

(1− a)nλn
. (4.4.11)

To conclude, we need to check that (1+b)
(1−a)λ

< 1, form which we deduce (H1). This
is implied by

1 + ‖∂θω‖∞ + ‖∂xω‖∞ + ‖∂θf‖∞ < λ

which correspond to equation (4).
It remains to prove (H2). Since λ > 2, F has rank at least two at each point,
hence it is a covering map and each point has the same number of preimages, says
d. Let then γ : [0, 1]→ T2 be a smooth closed curve γ(t) = (c(t), t) such that γ′ ∈
Cc with homotopy class (0, 1). If p = (x, θ) ∈ γ(t) then F−1(p) = {q1, · · · , qd}.
Note that, by the implicit function theorem, locally F−1γ is a curve, also, due to
the above discussion, it belongs to the central cone. If we call η the local curve
in F−1γ such that η(0) = qi we can extend it uniquely to a curve ν : [0, 1]→ T2.
We will prove that ν(1) = qi = ν(0). In turn this implies that F−1γ is the union
of d closed curves ν1, · · · , νd with ν ′i ∈ Cc, each one with homotopy class (0, 1),
by the lifting property of covering maps (see [34, Proposition 1.30]). We argue
by contradiction: assume that ν(1) = qj 6= qi. Let qk = (xk, θk), k ∈ {1, . . . d},
then

θi + ω(xi, θi) = θj + ω(xj, θj)

implies

|θi − θj| ≤
‖∂xω‖∞

1− ‖∂θω‖∞
|xi − xj|. (4.4.12)

Hence the segment joining qi and qj belong to the unstable cone if

χu ≥
‖∂xω‖∞

1− ‖∂θω‖∞
(4.4.13)

which is possible since (2) implies that this condition is compatible with (4.4.5).
It follows that the image of the segment ` = {tqi + (1 − t)qj} is an unstable
curve and hence it cannot join p to itself without wrapping around the torus. In
particular, if qi 6= qj, then the horizontal length of F (`) must be larger than one.
Then, setting δ = |xi − xj|,

1 ≤
∫ 1

0

∣∣〈e1, D`(t)F`
′(t)〉

∣∣ ≤ ‖∂xf‖∞(1 + χu
‖∂θf‖∞
‖∂xf‖∞

)
|xi − xj| ≤ (1 + a)Λδ.

(4.4.14)
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To conclude we must show that ν cannot move horizontally by δ whereby obtain-
ing the wanted contradiction. Let ν(t) = (α(t), β(t)), then(

c′(t)
1

)
= γ′(t) = DFν ′ =

(
α′∂xf + β′∂θf

α′∂xω + (1 + ∂θω)β′

)
.

Since we know that |c′| ≤ χc and |α′| ≤ χc|β′| we have

|β′| ≤ (1− χc‖∂xω‖∞ − ‖∂θω‖∞)−1

|α′| ≤ χc
λ

+
‖∂θf‖∞

λ(1− χc‖∂xω‖∞ − ‖∂θω‖∞)
.

I follows that it must be

1

(1 + a)Λ
≤ δ ≤

∫ 1

0

|α′(t)|dt ≤ χc
λ

+
‖∂θf‖∞

λ(1− χc‖∂xω‖∞ − ‖∂θω‖∞)
.

We thus have a contradiction if we can choose χc such that(
1 +
‖∂θf‖∞

λ

)
Λ

[
χc
λ

+
‖∂θf‖∞

λ(1− ‖∂xω‖∞ − ‖∂θω‖∞)

]
< 1

which, by (4.4.7), is possible only if

Φ−
2‖∂xω‖∞

<

(
1 +
‖∂θf‖∞

λ

)−1
λ

Λ
− ‖∂θf‖∞

1− ‖∂xω‖∞ − ‖∂θω‖∞
=: A.

Note that if A ≥ 1, then the inequality is trivially satisfied. We must consider
then only the case A < 1. A direct computation shows that the above inequality
is implied by

‖∂θf‖∞ < A [φ− A‖∂xω‖∞] = A [λ− ‖∂θω‖∞ − 1− A‖∂xω‖∞] (4.4.15)

Let us set for simplicity $ := ‖∂θω‖∞+‖∂xω‖∞. Since A < 1 the above equation
is in turn implied by the following inequality

‖∂θf‖∞ <

[(
1 +
‖∂θf‖∞

λ

)−1
λ

Λ
− ‖∂θf‖∞

1−$

]
(λ− (1 +$)) . (4.4.16)

By elementary algebra (4.4.16) is equivalent to

‖∂θf‖∞(‖∂θf‖∞ + 1) <
λ2

Λ

(
1− 1

λ+$

)
. (4.4.17)

Since λ > 2, (4.4.17) is implied by ‖∂θf‖∞(‖∂θf‖∞ + 1) < 1
2
λ2Λ−1, which is true

if
‖∂θf‖∞ < 1

2

(
−1 +

√
1 + 2λ2Λ−1

)
. Hence the conclusion by condition (5).

We have thus explicit conditions that imply (H0),..,(H4). It remains to in-
vestigate how to check condition (4.3.4), which is, by far, the hardest to verify.
One can directly investigate (4.3.4) in any concrete example (possibly via a com-
puter assisted strategy), however to verify it for an explicit open set of maps we
further restrict the class of systems under consideration. Note however that the
endomorphisms we are going to consider still include a large class of physically
relevant systems.
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4.5 Fast slow systems

We consider a class of systems given by the following model introduced in [22]
(and inspired by the more physically relevant model introduced in [27]). Let
F0(x, θ) = (f(x, θ), θ) be Cr(T2,T2), for r ≥ 4, such that inf(x,θ)∈T2 ∂xf(x, θ) ≥
λ > 2. For any ω ∈ Cr(R2,R), periodic of period one, and ε > 0, we define

Fε(x, θ) = (f(x, θ), θ + εω(x, θ)). (4.5.1)

Before stating our result we need the following definition.

Definition 4.5.1. The function ω ∈ C0(T2,R) is called x-constant with respect
to F0 if there exist θ ∈ T, Φθ ∈ C0(T,R) and a constant c ∈ R such that, for each
x ∈ T,

ω(x, θ) = Φθ(f(x, θ))− Φθ(x) + c.

Note that it is fairly easy to check that a function is not x-constant by looking
at the periodic orbits. Hence, the condition that ω is not x-constant is consider-
ably easier to check than (4.3.4).
The following theorem is proven in section 10.3.

Theorem 4.5.2. Under condition (5) of Lemma 4.4.1, there exists ε∗ such that
the map Fε is SVPH for any ε ∈ (0, ε∗). In addition, if ω is not x-constant, then,
for each s ≥ 1, there exists νs ∈ (0, 1) such that, for each ε ∈ (0, ε∗), the transfer
operator LFε is quasi compact on the spaces Bs,∗, with spectral radius one and
essential spectral radius bounded by νs.

The above result imply the following Theorem which is proved in section 10.5.

Theorem 4.5.3. In the hypothesis of Theorem 4.5.2, the eigenvectors of LFε
associated to the eigenvalue one are the physical measures of Fε. Moreover, we
have the decomposition LFε = Π0 + Q where Π0Q = QΠ0 = 0, Π0 is the finite
rank projector on the eigenspace associated to the eigenvalue 1, and Q has spectral
radius strictly smaller than one. Moreover, let h∗(·, θ) be the unique invariant
probability density of f(·, θ) and consider the operator P : L1 → (C1)′ defined by∫

T2

ϕ(x, θ)[Ph](dx, dθ) =

∫
T1

dxϕ(x, θ)h∗(x, θ)

∫
T1

dyh(y, θ), ∀ϕ ∈ C1.

Then
‖Π0 − PΠ0‖L1→(C1)′ ≤ C]ε[ln ε

−1]2. (4.5.2)

Finally, for each τ > 0 let hν be the eigenfunction associated to the eigenvalue ν
with |ν| ≥ e−ε

τ
. Then we have∥∥∥∥hν − h∗ ∫ hν(y, ·)dy

∥∥∥∥
(C1)′
≤ C]ε(ln ε

−1)2. (4.5.3)

The above Theorem is much stronger than the results in [53] (where only the
existence of the physical measure is discussed and the results hold only gener-
ically) or [14, 1] (where the existence of SRB measures is obtained under an
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additional condition on the contraction or the expansion in the center foliation,
even though for more general systems). However, the papers [21, 22] show that,
using the standard pair technology and investigating limit theorems, it is possible
to obtain considerably more detailed information on the system. Unfortunately,
on the one hand the arguments in [21] are rather involved and, on the other hand,
the conclusions concerning the physical measure in [20] hold only for mostly con-
tracting systems (contrary to the present ones). It is then very important to
investigate if the present strategy can provide further information.

First of all we have an explicit bound on the regularity of the eigenfunctions.
The reader can find the proof of the following theorem at the end of section 10.4.

Theorem 4.5.4. If ω is not x−constant, then there exist c? > 0 such that,
for each ε > 0 small enough, and r ∈ (0, 1), if ν ∈ σB1,∗(LFε) ∩ {z ∈ C :
1−rc?[ln ε−1]−1 ≤ |z|}, and u is an eigenvector with eigenvalue ν with ‖u‖B0 = 1,7

then for all α > 11
2

,

‖u‖H1 ≤ Cαε
−(1+r)α.

Remark 4.5.5. It is not clear if the above Theorem is sharp. Certainly some
form of blow-up is inevitable. For example: let fθ(·) = f(x, θ) and call h∗(·, θ) the
unique invariant probability density of fθ. Let ω̄(θ) =

∫
T ω(x, θ)h∗(x, θ)dx. If ω̄

has non degenerate zeroes {θi}Ni=1 such that ω̄′(θi) < 0, then [23] (see also the dis-
cussion below below) implies that there must exist an eigenfunction u essentially

concentrated in the
√
ε neighborhood of each θi. This implies that ‖u‖H1 ≥ C]ε

− 1
4 .

However, there is a large gap between such a lower bound and the upper bound
provided by Theorem 4.5.4. In particular, much more information on the spec-
trum could be obtained if one could establish an upper bound of the type ε−β with
β < 1.

Finally, in the setting of Remark 4.5.5, let P̂ : L1 → (C1)′ be the finite rank
operator defined by: for all ϕ ∈ C1∫

T2

ϕ(x, θ)[P̂ h](dx, dθ) =
∑
j

∫
T1

dxϕ(x, θj)h∗(x, θj)

∫
T1×Uj

dy dsh(y, s),

where Uj is the basin of attraction of the stable equilibrium point {θj} of the
averaged dynamics

˙̄θ = ω̄(θ̄)

θ̄(0, θ) = θ.
(4.5.4)

Then, an immediate consequence of Theorem 4.5.2 and [23, Proposition 4] is that
the eigenfunctions h for the eigenvalue 1 satisfy, for γ ∈ (0, 1

4
),

‖h− P̂ h‖L1→(C1)′ ≤
(
C]ε

1/2−2γ + C]ε ln ε−1
)
. (4.5.5)

7See Section 6 for the definition of the space B0.
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Remark 4.5.6. Note that the results of [23] are conditional to the existence of
the physical measure which has been previously proven only for the generic case
[51] (and hence may not apply to the present concrete situation) or in the case in
which the central Lyapunov exponent is negative, see [20]. On the contrary here
the existence of the physical measures is ensured by Theorems 4.5.2, 4.5.3, and
the central Lyapunov exponent might be slightly positive. This leaves open the
very exciting possibility to obtain the results in [21] using a simplified argument
which relies on some improved version of the present results.
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Chapter 5

Preliminary Estimates

In this Chapter we provide several basic definitions and we prove many estimates
that will be extensively used in the following..

5.1 Cr-norm

Since we will need to work with high order derivatives, it is convenient to choose
a norm ‖ · ‖Cr equivalent to the standard one, which ensures our spaces to be
Banach Algebras. We thus define the weighted norm in Cr(T2,M(m,n)), where
M(m,n) are the m× n matrices,1

‖ϕ‖C0 = sup
x∈T2

sup
i∈{1,..,n}

m∑
j=i

|ϕi,j(x)|

‖ϕ‖Cρ+1 = 2ρ+1‖ϕ‖C0 + sup
i
‖∂xiϕ‖Cρ .

(5.1.1)

where, for a multi-index α = (α1, ..., αk) with αk ∈ {1, 2}, and we will use the
notation |α| = k and ∂α = ∂xα1

· · · ∂xαk .
2 The above definition implies

‖ϕ‖Cρ ≤
ρ∑

k=0

2ρ−k sup
|α|=k
‖∂αϕ‖C0 . (5.1.2)

We will often need to compute the Cρ norm of ϕ along a curve ν ∈ Cr(T,T2). In
this case we use the notation ‖ϕ‖Cρν := ‖ϕ ◦ ν‖Cρ .
The following Lemma is proven in Appendix A. Note that the estimate in the
Lemma are not sharp, however they try to optimize the balance between simplic-
ity and usefulness.3

Lemma 5.1.1. For each ρ, n,m, s ∈ N0, ψ ∈ Cρ(T2,M(n,m)), ϕ ∈ Cρ(T2,M(m, s))
we have

‖ϕψ‖Cρ ≤ ‖ϕ‖Cρ‖ψ‖Cρ .
1According with the previous notations we set x1 = x and x2 = θ.
2Notice that this is at odd with the usual multi-index definition in PDE, however we prefer

it for homogeneity with the case, treated later, of non-commutative vector fields.
3 See [10, 35] for precise, but much more cumbersome, formulae.
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Moreover, there exists C?
j > 0 such that, if ϕ ∈ Cρ(T2,M(n,m)) and ψ ∈

Cρ(T2,T2),

‖ϕ ◦ ψ‖Cρ ≤ C?
ρ

ρ∑
s=0

‖ϕ‖Cs
∑
k∈Kρ,s

∏
l∈N

‖Dψ‖klCl−1 (5.1.3)

where Kρ,s = {k ∈ NN
0 :

∑∞
l=1 kl ≤ s,

∑∞
l=1 lkl ≤ ρ}.

Using the above Lemma it follows that there exists a constant Λ > 1 such
that

‖DF n‖Cr + ‖(DF n)−1‖Cr ≤ Λn, ∀n ∈ N. (5.1.4)

5.2 Admissible curves

In this section we introduce the notion of admissible curve in order to define
important auxiliary spaces and norms in the next section. We start by fixing
some notations and defining exactly what we mean by inverse branch.

Lemma 5.2.1. Let γ be a differentiable closed curve in the homotopy class (0, 1)
such that γ′(t) 6∈ Cu for each t ∈ T and F−1γ =

⋃d
k=1 νk, where the νk are

disjoint closed curves in the homotopy class (0, 1). Then, there exist open sets
Ωγ,Ωνk , with Ω̄γ = T2, and diffeomorphisms (the inverse branches) hνk : Ωγ →
Ωνk satisfying,

• F ◦ hνk = Id|Ωγ ,

• If νk, νj ∈ F−1γ, k 6= j, then Ωνk ∩ Ωνj = ∅,

•
⋃
νk∈F−1γ Ωνk = T2.

Remark 5.2.2. Note that if γ ∈ Υ, then the hypotheses of the Lemma are satis-
fied thanks to hypothesis (H2).

Proof of Lemma 5.2.1. The circle q = {(a, 0)}a∈T intersects each νk in only
one point pk = νk ∩ q. Indeed, by the backward invariance of the complement of
Cu, νk is locally monotone so it can meet twice q only if it wraps around the torus
more than once, which cannot happen since νk belongs to the homotopy class
(0, 1). We can then label the νk so that the map k → pk is orientation preserving
( mod d ), let us call it positively oriented.4 Also, calling γ̃ the curve obtained
by translating γ by 1

2
in the horizontal direction, we consider A := F−1(γ̃) ∩ q.

Since F is a local diffeomorphism, if p̃ ∈ A, in a neighborhood of p̃ the set F−1(γ̃)
consists of a curve with derivative outside Cu, hence transversal to q. Accordingly
A is a finite collection of points. Suppose that p̃k ∈ A is between pk and pk+1,
then T2 \ νk is a cylinder and νk+1 separates the cylinder in two disjoint regions
(by Jordan curve theorem), thus p̃k belongs to a cylinder defined by the curves
νk, νk+1. We can then follow the curve in F−1γ̃ starting from p̃k, such curve
cannot exit the cylinder (since γ and γ̃ are disjoint). If it intersects again q at
a point p′ then the image, under F , of the segment of q between p̃k and p′ is

4This definition is ambiguous if d = 2, but in such a case the ambiguity is irrelevant.
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an unstable curve that starts and ends at γ̃, hence it must cross γ, contrary to
the hypothesis. It follows that p′ = p̃k, that is F−1γ̃ =

⋃d
k=1 ν̃k, where the ν̃k

are disjoint closed curves, of homotopy type (0, 1), and p̃k = ν̃k ∩ q. As before,
we can label the curves so that the p̃k are positively oriented and p̃k−1, pk, p̃k,
where the indexes are mod d. Next, for i ∈ {1, · · · , d} and q ∈ νi, we define the
horizontal segment {ξq(t)}t∈(−δ−(q),δ+(q)) where ξq(t) = q + e1t, ξ(δ+(q)) ∈ ν̃i and

ξ(−δ−(q)) ∈ ν̃i−1. We then define the regions

Ωνi =
⋃
q∈νi

ξq. (5.2.1)

Clearly, Ωνi∩Ωνj = ∅ if i 6= j, and
⋃
i Ωνi = T2. Note that F : Ωνi∪ ν̃i−1 → T2 is a

bijection, although the inverse is not continuous. However, if we restrict the map
to the set Ωνi then it is an diffeomorphism between Ωνi and Ωγ = T2 \ {γ̃}. Thus
it is well defined the diffeomorphism hνi : Ωγ → Ωνi such that F ◦hνi = Id|Ωγ .

We call hν the inverse branch of F associated to ν and simply h when the
curve ν is clear from the context. We denote by H the set of inverse branches of
F . Likewise, for each n ∈ N we denote with Hn the set of inverse branches of F n.
As usual, we wish to identify the elements of Hn as compositions of elements of
H. Unfortunately, Lemma 5.2.1 tells us that each h ∈ H is defined on a domain
obtained by removing a curve in Υ from T2. Therefore the composition of two
inverse branches in H may not be well defined. We can however consider the
following sets: denoting as Dh and Rh the domain and the range of h respectively.
For a curve γ ∈ Υ and n ∈ N we define5

Hγ,n := {h ∈ Hn : Dh = T2 \ {γ}},

Hn
∗,γ :=

{
hn = (h∗1, · · · , h∗n) ∈ Hn : Dh∗j

⊂ Rh∗j−1
, j ∈ {2, .., n},Dh∗1

∩ {γ} 6= ∅
}
.

(5.2.2)

In Hn
∗,γ there exists the obvious equivalence relation hn ∼ h′n if h∗n ◦ · · · ◦ h∗1 =

h
′∗
n ◦ · · · ◦ h

′∗
1 and the quotient of Hn

∗,γ is naturally isomorphic to Hγ,n. In the
following we will use the two notations interchangeably. Finally, we define

H∞γ =
{
h = (h∗1, · · · ) ∈ HN : Dh∗j+1

⊂ Rh∗j
, j ∈ N ;Dh∗1

∩ {γ} 6= ∅
}
.

For h ∈ H∞γ , the symbol hn will denote the restriction of h to Hn
∗,γ and we will

say that h ∼ h′ iff their restrictions are equivalent for each n ∈ N.6

In the following we will often suppress the subsripts γ, ν if it does not create
confusion.

5Here we are using the notation Hn = H× · · · × H︸ ︷︷ ︸
n-times

.

6 As it is not obvious how to make sense of infinite compositions, we define the equivalence
relation indirectly.
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Some further notation

For technical reason it is convenient to work with cones which are slightly smaller
than Cu and Cc. Take ε > 0 arbitrarily small but fixed7 and, setting ε∗ = 1− ε,
let us consider the cone

Cε,u = {(x, y) ∈ R2 : |y| ≤ χuε
∗|x|}, (5.2.3)

which is strictly contained in Cu. Moreover the difference between the angle of
Cu and the angle of Cu,ε is smaller than ε. In the same way it is defined Cε,c.
For each p ∈ T2 let Hn

p := {h ∈ Hn : p ∈ Dh}. By the expansion of the unstable
cone under backward dynamics and the backward invariance of the central cone
we can define mχu(p, h) : T2 × H∞p → N and mχu ∈ N as

mχu(p, h) = min{n ∈ N : Dphn(R2 \Cu) ⊂ Cε,c}
mχu(p) = sup

h∈H∞
mχu(p, h)

mχu = sup
p∈T2

sup
h∈H∞

mχu(p, h).

(5.2.4)

To guarantee that the above quantities are finite, we choose ε such that Cε,c ⊃
DphCc, where h ◦ F (p) = p. Note that the latter condition is possible because of
(4.1.4), the continuity of DphCc and the compactness of T2.
By a direct computation (see Sub-Lemma 5.4.5 for the details) equation (5.2.4)
implies

λ−mχu (p,h)(p)
−1µmχu < ε∗χcχu, ∀p ∈ T2, h ∈ H∞, (5.2.5)

mχu < c̄2 logχ−1
u , (5.2.6)

for some uniform constant c̄2 > 0 to be chosen later on (see Lemma 5.4.2).
Next, consider a vector v = (1, u0) ∈ Cu, so that |u0| ∈ [−χu, χu]. By forward
invariance of the unstable cone, there exist continuous functions Υn,Ξn : N ×
T2 × [−χu, χu]→ R such that

DpF
nv = Υn(p, u0)(1,Ξn(p, u0)),

where ‖Ξn‖∞ ≤ χu. We are interested in the evolution of the slope field Ξn. For
this purpose it is convenient to introduce the dynamics Φ(p, u0) = (F (p),Ξ(p, u0)),
for p ∈ T2, u0 ∈ [−χu, χu] and where we use the notation Ξ = Ξ1. The map Φ
will describe how the slopes of the cones change while iterating F . Note that

Φn(p, u0) = (F n(p),Ξn(p, u0)) . (5.2.7)

Finally, for n ∈ N and h ∈ H∞, let us define the function

uh,n(p, u0) = π2 ◦ Φn(hn(p), u0) : T2 × [−χu, χu]→ [−χu, χu], (5.2.8)

where π2 is the projection on the second coordinate. By Lemma D.0.1, applied
with u = u′ = u0 and ε0 = 1, we see that uh,n(p, u0) is Lipschitz and the Lipschitz
constant can be computed using (D.0.2).

7During the following sections ε will have to satisfies different conditions. However, it is
important to note that, once the conditions are satisfied, the value of ε is fixed once and for all.
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Admissible central and unstable curves

In the following πk : T2 → T will denote the projection on the kth component,
for k = 1, 2. Also, for ϕ ∈ Cr(T,C) we use the notation (ϕ)(j)(t) = dj

dtj
ϕ(t) and

ϕ′ in the case j = 1.

Definition 5.2.3. Let c be a positive constant, then Γj(c) is the set of the Cr
closed curves γ : T → T2 which are parametrized by vertical length, i.e. γ(t) =
(γ1(t), t), satisfy conditions c1) and c2) of assumption (H2), and:

c3) for every 2 ≤ ` ≤ j: |(π1 ◦ γ(t))(`)| ≤ c(`−1)!.

Given c > 0 and j ≤ r we will call γ ∈ Γj(c) a (j, c)-admissible central curve (or
simply admissible curve if the context is clear). We will choose c in Corollary
5.4.3.
Similarly, a curve η ∈ Cr(I,T2) of length δ defined on a compact interval I = [0, δ]
of T is called an admissible unstable curve if η′(t) ∈ Cu, it is parametrized by
horizontal length and its j-derivative is bounded by c(j−1)!.

The basic objects used in the paper are integrals along admissible (or pre-
admissible) curves. To estimate precisely such objects are necessary several tech-
nical estimates that are developed in the next subsections.

5.3 Preliminary estimates on derivatives

We start with the following simple, but very helpful, propositions.

Proposition 5.3.1. There exists a uniform constant C∗ ≥ 1 such that, for every
z ∈ T2, any n ∈ N, any vectors vu ∈ Cu and vc ∈ Cc such that (a, b) := DzF

nvc 6∈
Cu, we have :

C−1
∗
‖DzF

nvu‖
‖vu‖

|b|
‖vc‖

≤ | detDzF
n| ≤ C∗

‖DzF
n
z v

u‖
‖vu‖

|b|
‖vc‖

.

Proof. Recall that for a matrix D ∈ GL(2,R) and vectors v1, v2 ∈ R2 linearly
independent

| detD| = |Dv1 ∧Dv2|
|v1 ∧ v2|

=
‖Dv1‖
‖v1‖

‖Dv2‖
‖v2‖

sin(](Dv1, Dv2))

sin(](v1, v2))
. (5.3.1)

Let θ = ](DF nvu, DF nvc), θ1 = ](DF nvu, e1), θ2 = ](DF nvc, e1) and θu =
arctanχu. Since DzF

nvu ∈ DFCu we have |θ1| ≤ cθu, for some fixed c ∈ (0, 1).
On the other hand, by hypothesis, |θ2| ≥ θu. Thus

|θ|
|θ2|

=
|θ2 − θ1|
|θ2|

≤ |θ2|+ |θ1|
|θ2|

≤ 1 + c

|θ|
|θ2|
≥ |θ2| − |θ1|

|θ2|
≥ 1− c.

The Lemma follows since ‖DF nvc‖ sin θ2 = b.
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We introduce the following quantities for each n ∈ N,m ≤ n, p ∈ T2 and some
constant C] > 0:

Cµ,n := C]
1− µ−n

µ− 1
≤ C] min{n, (µ− 1)−1}; Cµ,0 = 0, (5.3.2)

ς̄n,m(p) := {Cµ,n−m, λ+
m(p)}+ (5.3.3)

ςn,m(p) := {1, Cµ,n + (χu + ‖ω‖C2)ς̄n,m(p)}+; ςn,n := ςn, (5.3.4)

and we will use the notation ς̄n,m := ‖ς̄n,m‖∞ and ςn,m = ‖ςn,m‖∞.

Remark 5.3.2. Note that we can always estimate Cµ,n with (µ− 1)−1, which is
independent on n, and we will do it in the general case (SVPH) if we need esti-
mates uniform in n. However, such a bound will deteriorate when µ approaches
one, a case we want to investigate explicitly in Section 10, and for which (5.3.2)
is more convenient.

Next, we provide sharper estimates of various quantities relevant in the next
sections.

Proposition 5.3.3. For any n ∈ N and p ∈ T2, we have:

λ+
n (p) ≤ C]λ

−
n (p)

‖(DF n)−1‖C0(T2) ≤ C]µ
n.

(5.3.5)

In addition, for each c > 0, m ≤ n and ν ∈ Γ2(c) such that DF n−mν ′ ∈ Cc,
8

‖DF n‖C0
ν
≤ C]λ

+
n

‖DF n‖C1
ν
≤ C]λ

+
n ς̄n,mµ

n−m

‖DF n‖C2
ν
≤ C]λ

+
n (ς̄n,mµ

n−m)2 + C](λ
+
m)2

c

‖ d
dt

(Dν(t)F
n)−1‖ ≤ C]µ

2n−mςn,m ◦ ν(t)

‖ d
2

dt2
(Dν(t)F

n)−1‖ ≤ C]µ
nς2
n ◦ ν(t)λ+

m(ν(t)) + C]ςn ◦ ν(t)(ς̄n,m(ν(t))µn−m + c).

(5.3.6)

Proof. Let vc ∈ TFn(p)T2 with vc ∈ Cc unitary, and wu ∈ Cu. Define

w̃u =
DpF

nwu
‖DpF nwu‖

∈ Cu.

For each v ∈ TFn(p)T2 we can write v = αvc + βw̃u, then

‖(DFnpF
n)−1v‖ ≤ |α|‖(DFnpF

n)−1vc‖+ |β|‖(DFnpF
n)−1w̃u‖

By (4.1.3) and (4.1.5) we have the following

1. ‖(DFnpF
n)−1w̃u‖ ≤ C?λ

−n
− ,

8Recall Section 5.1 for the definition of ‖ · ‖Crν and (5.3.4) for the notations used.
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2. ‖(DFnpF
n)−1vc‖ ≤ C?µ

n.

Hence,
‖(DFnpF

n)−1v‖ ≤ C?µ
n|α|+ C?λ

−n
− |β|,

A direct computation shows

{|α|, |β|}+ ≤ 1 + |〈vc, w̃u〉|
1− 〈vc, w̃u〉2

‖v‖ ≤ 1 + cosϑ

1− (cosϑ)2
‖v‖

where

cosϑ := cos

[
inf

v∈Cu,w∈Cc
{|](v, w)|}

]
≤ 1√

1 + χ2
c

< 1.

From the above the second statement of (5.3.5) follows. The strategy for proving
the first of (5.3.5) is similar. We take w1, w2 6∈ Cc unitary and vc = (0, 1) ∈
Cc, and we set ṽc =

(DFnpF
n)−1vc

‖(DFnpFn)−1vc‖ ∈ Cc. Notice that ‖DpF
nṽc‖ ≤ Cµn. Let

w2 = αw1 + βṽc. By (4.1.4) it follows that there exists a minimal angle between
w1 6∈ Cc and ṽc ∈ (DF )−1Cc, thus |α| + |β| ≤ C for some constant C] > 0.
Hence,

‖DpF
nw1 −DpF

nw2‖ ≤ |1− α|‖DpF
nw1‖+ C]µ

n ≤ (1 + C])‖DpF
nw1‖+ C]µ

n.

Since ‖DpF
nw1‖ ≥ Cλ−n (p), it follows that∣∣∣∣1− ‖DpF

nw2‖
‖DpF nw1‖

∣∣∣∣ ≤ ∣∣∣∣ DpF
nw1

‖DpF nw1‖
− DpF

nw2

‖DpF nw1‖

∣∣∣∣ ≤ (1 + C]) + C]
µn

λ−n (p)
.

Equation (5.3.5) follows by the arbitrariness of w1, w2 and since µ < λ−. To
conclude we must compute the derivatives of DF n, (DF n)−1. By (4.1.3), we have

‖DxF
k‖ ≤ C]λ

+
k (x). (5.3.7)

Moreover, for each n, k ∈ N, we have

d

dt
Dν(t)F

n =
2∑
s=1

n−1∑
k=0

DFk+1(ν(t))F
n−k−1∂xs(DFk(ν(t))F )Dν(t)F

k(Dν(t)F
kν ′)s

d

dt
(Dν(t)F

n)−1 =
2∑
s=1

n−1∑
k=0

(Dν(t)F
k)−1

[
∂xs(DF )−1(DF (·)F

n−k−1)−1
]
◦ F k(ν(t))

· (Dν(t)F
kν ′)s.

(5.3.8)

The above, also differentiating once more, implies that

‖ d
dt

(Dν(t)F
n)‖ ≤ C]λ

+
nµ

n−m{Cµ,n−m, λ+
m}+ = C]λ

+
n ς̄n,mµ

n−m,

‖ d
2

dt2
(Dν(t)F

n)‖ = ‖
∑
`,s

(∂x`∂xsDxF
n)ν ′`ν

′
s +
∑
s

∂xsDxF
nν ′′s ‖

≤ C]λ
+
n (µn−mς̄n,m)2 + C](λ

+
m)2

c.

(5.3.9)
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To estimate the second of (5.3.8), note that for each p ∈ T2, there exists ξ ∈
Cr−2(T2,R2), ‖ξ‖Cr−2 ≤ C], such that, for all w ∈ R2, and |α| ≤ r − 2,∥∥∂α(DF )−1w − e1〈∂αξ, w〉

∥∥ ≤ C]‖w‖‖ω‖C|α|+2 . (5.3.10)

Thus, setting ηk(p) = DpF
ke1‖DpF

ke1‖−1, we have ‖ηk − e1‖ ≤ C]χu and, for all
w ∈ R2,∥∥(DxF

k)−1∂xi(DpF )−1w
∥∥ ≤ ∥∥(DxF

k)−1ηk(x)〈∂xiξ, w〉
∥∥

+
∥∥(DxF

k)−1∂xi(DpF )−1w − (DxF
k)−1ηk(x)〈∂xiξ, w〉

∥∥
≤ C]

‖w‖
λ−k (x)

+ C]µ
k‖w‖(χu + ‖ω‖C2).

For simplicity we set CF := χu + ‖ω‖Cr . Hence, using the above and (5.3.5),

‖ d
dt

((DνF
n)−1)‖ ≤ C]

n−m−1∑
k=0

µn−1{(λ−k ◦ ν)−1 + CFµ
k}

+ C]

n−1∑
k=n−m

µn−k−1{(λ−k ◦ ν)−1 + CFµ
k}µn−mλ+

m−n+k ◦ ν

≤ µ2n−m [Cµ,m + CF{Cµ,n−m, λ+
m ◦ ν}+

]
.

Therefore

‖ d
dt

((Dν(t)F
n)−1)‖ ≤ C]µ

2n−mςn,m ◦ ν(t), (5.3.11)

which yields the statement for the first derivative. Next, differentiating once more
the second of (5.3.8),

d2

dt2
(DνF

n)−1 =
2∑
s=1

n−1∑
k=0

[
d

dt
(Dν(t)F

k)−1

] [
∂xs(DF )−1(DF (·)F

n−k−1)−1
]
◦ F k(ν)

· (Dν(t)F
kν ′)s +

2∑
s,`=1

n−1∑
k=0

(DνF
k)−1

{
∂x`
[
∂xs(DF )−1(DF (·)F

n−k−1)−1
]}
◦ F k(ν)

· (DνF
kν ′)`(DνF

kν ′)s +
2∑
s=1

n−1∑
k=0

(DνF
k)−1

[
∂xs(DF )−1(DF (·)F

n−k−1)−1
]
◦ F k(ν)

·
{[

d

dt
DνF

k

]
ν ′ +DνF

kν ′′
}
.

We estimate the three sums above separately. By (5.3.10) and (5.3.11), the first
one is bounded by

C]

n−m−1∑
k=0

µ2kςk,0 ◦ νµn−k−1µk + C]

n−1∑
k=n−m

µn−k−1µkςk,k ◦ νµn−k−1µn−mλ+
m−n+k ◦ ν

≤ C]µ
2nCµ,n−mςn−m,0 ◦ ν + µ2n−mςn,nλ

+
m ◦ ν ≤ µ2nςn,n ◦ νλ+

m ◦ ν.
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The second one is equal to

n−1∑
k=0

(DνF
k)−1

{
∂2
x`,xs

(DF )−1 · (DF (·)F
n−k−1)−1

}
◦ F k(ν) · (DνF

kν ′)`(DνF
kν ′)s

+ (DνF
k)−1

{
∂x`(DF )−1∂x`(DF (·)F

n−k−1)−1
}
◦ F k(ν) · (DνF

kν ′)`(DνF
kν ′)s,

so we can use again (5.3.10) to get the bound

C]

n−1∑
k=0

[
(λ+

k ◦ ν(t))−1 + CFµ
k
]
µn−k

{
1 +

[
Cµ,n−k + CFλ

+
n−k ◦ ν

]}
· µ2 min{k,n−m}(λ+

{0,k−n+m}+ ◦ ν(t))2 ≤ C]µ
nς2
n,n ◦ νλ+

m ◦ ν.

For the last term we use the estimates above and, recalling (5.3.9), we obtain the
bound{

Cµ,n + CFλ
+
n (ν(t))

}
(ς̄n,mµ

n−m + c) ≤ C]ςn,n ◦ ν(t)(ς̄n,m(ν(t))µn−m + c).

Collecting the above estimates, the last of the (5.3.6) readily follows.

5.4 Iteration of curves

We first check how the above curves behave under iteration. The following is a
more quantitative version of [53, Lemma 3.2] adapted to our case.

Lemma 5.4.1. Let F be SVPH. There exist uniform constants n̄ ∈ N, C[ > 1
and η < 1 such that, if c > 9

4
C3
[ µ

3n̄, for each c? > c/2, γ ∈ Γ`(c?), 1 ≤ ` ≤ r,
and n ≥ n̄, setting νn ∈ F−nγ, there exist diffeomorphisms hn,ν =: hn ∈ Cr(T)
such that:
(a) The curve ν̂n = νn ◦ hn is in Γ`(η

nc? + c/2) and

‖hn‖C` ≤


C[µ

n if ` = 1

C3
[ c?Cµ,nµ

2n if ` = 2

(C2
[ c?)

`!
Ca`
µ,nµ

`!n if ` > 2,

(5.4.1)

where a` = (`− 1)!
∑`−1

k=0
1
k!

, and Cµ,n as in (5.3.2).

Proof. Fix γ ∈ Γj(c?) and n ∈ N. Let νn be a pre-image of γ under F n and
consider h ∈ H∞ such that νn = hn ◦ γ. Let hn : T → T be the diffeomorphism
such that ν̂n = νn ◦hn is parametrized by vertical length. We then want to check
properties c1), ..., c3) for ν̂n. The first two follow immediately by assumption
(H2), thus we only have to check property c3). By definition we have

F nν̂n = γ ◦ hn. (5.4.2)

Differentiating equation (5.4.2) twice we obtain

(∂tDν̂nF
n)ν̂ ′n +Dν̂nF

nν̂ ′′n = γ′′ ◦ hn(h′n)2 + γ′ ◦ hnh′′n. (5.4.3)

40



Similarly, if we differentiate equation (5.4.2) j-th times,

Rj(F
n, ν̂n) +Dν̂nF

nν̂(j)
n = γ(j) ◦ hn(h′n)j +Qj(hn, γ) + γ′ ◦ hn · h(j)

n , (5.4.4)

where Rj is the sum of monomials, with coefficients depending only of (∂αF n)◦ ν̂n
with |α| ≤ j, in the variables ν̂

(s)
n , s ∈ {0, . . . j − 1}, where if ks is the degree of

ν̂(s) we have
∑j−1

s=1 sks = j. Likewise the Qj are the sum of monomials that are

linear in γ(σ), σ ∈ {2, . . . j−1}, and of degree ps in h
(s)
n , s ∈ {1, . . . j−σ+1}, such

that
∑j−σ+1

s=1 s ps = j.9 In order to obtain an estimate for ‖ν̂(j)
n ‖ it is convenient

to introduce the vectors ηn,j = Dν̂nF
nν̂

(j)
n . We then define the unitary vectors

η⊥n,j, η̂n,j such that 〈η⊥n,j, ηn,j〉 = 0 and η̂n,j =
ηn,j
‖ηn,j‖ . Multiplying equation (5.4.4)

by η⊥n,j and η̂n,j respectively, we obtain the system of equations

〈η⊥n,j, Rj(F
n, ν̂n)〉 =

〈
η⊥n,j, γ

(j) ◦ hn(h′n)j +Qj(hn, γ) + γ′ ◦ hn · h(j)
n

〉
〈η̂n,j, Rj(F

n, ν̂n)〉+ ‖ηn,j‖ =
〈
η̂n,j, γ

(j) ◦ hn(h′n)j +Qj(hn, γ) + γ′ ◦ hn · h(j)
n

〉
.

(5.4.5)

Notice that, since ν̂
(j)
n , j > 1, is a horizontal vector, by the invariance of the

unstable cone ηn,j ∈ Cu. Moreover γ′ ∈ Cc by assumption and ‖η⊥n,j‖ = 1, thus
there exists ϑ ∈ (0, 1) such that

|〈η⊥n,j, γ′ ◦ hn〉| ≥ ϑ‖γ′ ◦ hn‖ ≥ ϑ. (5.4.6)

Using (5.4.6) and setting Rj,n := ‖Rj(F
n, ν̂n)‖ + ‖Qj(hn, γ)‖, equation (5.4.5)

yields

|h(j)
n | ≤

|h′n|j‖γ(j) ◦ hn‖+Rj,n

ϑ‖γ′ ◦ hn‖
,

‖ηn,j‖ ≤ ‖γ(j) ◦ hn‖|h′n|j + ‖γ′ ◦ hn‖|h(j)
n |+Rj,n.

(5.4.7)

By equation (5.4.2) it follows that

‖ν̂ ′n‖ = |h′n|‖(Dν̂nF
n)−1γ′ ◦ hn‖, (5.4.8)

which yields, by (4.1.5) and the fact that ν̂ ′n = ((π1 ◦ ν̂n)′, 1) ∈ Cc,

µ−n

C?
√

1 + χ2
c

≤|h′n| ≤
C?µ

n‖ν̂ ′n‖
‖γ′ ◦ hn‖

≤
√

1 + χ2
cC?µ

n =: C̄?µ
n. (5.4.9)

9 The reader can check this by induction (equation (5.4.3) gives the case j = 2). E.g., if

a term Q in Rj has the form P =
∏j−1
s=0 αs(ν̂

(s)
n ) where αs(x) is homogeneous of degree ks in

x, then ∂tQ will be a sum of terms of the same type with homogeneity degrees k′s. Let us

compute such homogeneity degrees: if the derivative does not hit a ν̂
(s)
n , s > 0, then, by the

chain rule, we will get a monomial with k′1 = k1 + 1 while all the other homogeneity degree are

unchanged: k′s = ks for s > 0. Hence,
∑j
s=0 k

′
s = j + 1. If the derivative hits one ν̂

(i)
n , then

it produces a monomial with k′s = ks for s 6∈ {i, i + 1} while k′i = ki − 1 and k′i+1 = ki+1 + 1.

Then
∑j
s=0 k

′
s = j − iki − (i+ 1)ki+1 + i(ki − 1) + (i+ 1)(ki+1 + 1) = j + 1.
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Using this in (5.4.7) and observing that ‖ηn,j‖ = ‖Dν̂nF
nν̂

(j)
n ‖ ≥ λ−n ‖ν̂

(j)
n ‖, we

obtain
‖ν̂(j)

n ‖ ≤ ‖γ(j) ◦ hn‖(λ−n )−1(C̄?µ
n)jA+R?

j,n, (5.4.10)

where A = (1 + ϑ−1) and R?
j,n = (λ−n )−1ARj,n. We choose n̄ and η < 1 such that

3r!(1 + ϑ)(C̄?µ
n̄)r(λ−n̄ )−1 < 1,

η :=
(
3r!(1 + ϑ)(C̄?µ

n̄)r(λ−n̄ )−1
) 1

2n̄r! .
(5.4.11)

Therefore we have

3j!A(C̄?µ
n̄)j(λ−n̄ )−1 ≤ 3r!A(C̄?µ

n̄)r(λ−n̄ )−1 ≤ η2n̄r! < 1. (5.4.12)

Note in particular that, as C̄? and ϑ are uniform constants, so are both n̄ and η.
We are ready to conclude. For j = 1 the Lemma is trivial since ‖ν̂ ′n̄‖ ≤

√
1 + χ2

c

and h′n̄ can by bounded by (5.4.9), provided C[ ≥ C̄?. Equation (5.4.2) implies
that ‖R2(F 2n̄, ν̂2n̄)‖ ≤ C] and Q2 = 0, thus R2,2n̄ ≤ C]. Then the first of (5.4.7),
remembering (5.4.3), and (5.4.8), together with equation (5.4.10) imply

‖h(2)
n ‖ ≤ C]C̄

2
?c?µ

2n ∀n ≤ 2n̄

‖ν̂(2)
n ‖ ≤ A(λ−n )−1

{
‖γ(2) ◦ hn‖(C̄?µn)2 + C]

}
.

(5.4.13)

Next, we proceed by induction on j < ` to prove that for each n̄ ≤ n ≤ 2n̄

‖h(j)
n ‖ ≤ C]c

(j−1)!
? µj!n

‖ν̂(j)
n ‖ ≤ (ηnc? + c/2)(j−1)!.

(5.4.14)

By (5.4.13) we have the case j = 2, let us assume it for all s ≤ j > 2. Recalling
the structure of Rj, Qj, see after (5.4.4), and setting cn := ηnc?+2−1(1−ηn)c ≤ c?
we have

Rj+1,n ≤ C]

{∑
k

c
∑j
s=1 (s−1)!ks

n̄ + Cj+1
[

j∑
σ=2

∑
p

c
(σ−1)!+

∑j+1−σ
s=1 pss!

? µn
∑j+2−σ
s=0 pss!

}
.

Note that
∑j

s=0(s− 1)!ks ≤ (j − 2)!
∑j

s=1 sks = (j − 2)!(j + 1). If σ = j, then

(σ − 1)! +

j+1−σ∑
s=1

pss! = (j − 1)! + j.

On the other hand if σ < j, then we have

(σ − 1)! +

j+1−σ∑
s=1

pss! ≤ (j − 2)! + (j − σ)!j ≤ (j − 2)!(j + 1).

Accordingly, since the sums in k and p have at most jj terms, setting τj =
{(j − 1)! + j, (j − 2)!(j + 1)},

Rj+1,n ≤ C]

{
jjc

(j−2)!(j+1)
n̄ + jj+1Cj+1

[ c
τj
? µ

n(j−1)!(j+1)
}

R?
j+1,n ≤ 3−j!η2n̄r!(C̄?µ

n)−j−1Rj+1,n̄.
(5.4.15)
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Let us show the first of (5.4.14). Substituting the above in the first of (5.4.7) and
using (5.4.9) we have

‖h(j+1)
n ‖ ≤ (C̄?µ

n)j+1

ϑ
cj!? + C]j

j+1
{
c(j−2)!(j+1)
? + Cj+1

[ c
τj
? µ

n(j−1)!(j+1)
}
.

We can finally choose C[ ≥ C]{2 C̄
r
?

ϑ
, 1}+ and write

‖h(j+1)
n ‖ ≤ C[c

j!
?

{
1

2
+ jj+1Cj

[ c
τj−(j+1)!
?

}
µn(j+1)!.

Note that for j = 3 we have τ3 = 5, which yields the wanted estimate if c ≥ 25C2
[ .

If j > 3, then τj = (j − 2)!(j + 1) and the first of (5.4.14) follows. Next, we
substitute (5.4.15) in (5.4.10) and, using (5.4.12), write

‖ν̂(j+1)
n ‖ ≤ 3−j!ηnj!

{
cj!? + C]r

r+1c
2
3
j!

n̄ + (C̄?µ
n̄)−j−1Cj+1

[ c
τj
? µ

n 3
2
j!
}

≤
{
ηn3−1

(
c? + [C]r

r+1]1/j!c
2
3
n̄ + C

2/3
[ c

j+1
j(j−1)
? µ3n̄

)}j!
.

Observing that c
2/3
n̄ ≤ (ηn̄c?+2c)2/3 ≤ η3n̄/2c

2
3
? +(2c)2/3 we have, for each j > 2,10

‖ν̂(j+1)
n ‖ ≤

{
ηn
[
c?

(
1

3
+ C]η

3n̄/2c
− 1

3
? + c

− 1
3

? µ3n̄C
2/3
[

)
+ C]

√
c

]}j!
Hence the second of (5.4.14) will follows if the term in the brace is smaller than
ηnc? + c/2. Choosing C[ greater than all the constants C] appearing in the
above equation, it will be enough to check that

1

3
+ C[η

3n̄/2c
− 1

3
? + c

− 1
3

? µ3n̄C
2/3
[ ≤ 1;

ηnC2
[

√
c ≤ c/2.

Since c? > c/2 by assumption, the first equation is satisfied if c ≥ 9
4
C3
[ µ

3n̄ while
the second one if c ≥ 4C2

[ , as η2n < 1 for each n ≥ n̄. Collecting all the conditions
on c, we see that it must be

c ≥ {25C[, 4C
2
[ ,

9

4
C3
[ µ

3n̄}+ =
9

4
C3
[ µ

3n̄, (5.4.16)

eventually enlarging C[. Hence the second of (5.4.14) is satisfied.
In particular ν̂n ∈ Γ`(cn) for each ` ≤ r and n̄ ≤ n ≤ 2n̄. Next, let c?,1 = cn̄ ≤ c?,
we have, for each integer k ≥ 2,

c

2
≤ c?,k = ηn̄c?,k−1 +

c

2
≤ ηn̄kc? +

c

2(1− ηn̄)
.

It follows that ν̂kn̄ ∈ Γ`(c?,k) where, for all m ∈ {n̄, . . . 2n̄},11

ν̂kn̄+m = h∗kn̄+m−1 ◦ · · · ◦ h∗kn̄+1 ◦ ν̂kn̄ ◦ h∗m,k+1,

10Note that here we are including rr+1 into C] and using that j+1
j(j−1) ≤

2
3

11Recall the definition of h∗n in (5.2.2).
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h∗n̄,1 = hn̄, and

‖h∗m,(k+1)‖Cj ≤ 2C[c
(j−1)!
?,k µj!m. (5.4.17)

Hence, applying iteratively the above argument to ν̂n for kn̄ ≤ n ≤ (k + 1)n̄, we
obtain the second of (5.4.14) for each n ≥ n̄. It remains to prove the estimate
for hn, n ≥ n̄. We write n = m+ kn̄, m ∈ {n̄, . . . , 2n̄} and

hn = h∗m,k+1 ◦ h∗n̄,k ◦ · · · ◦ h∗n̄,1 = h∗m,k+1 ◦ hkn̄. (5.4.18)

Note that (5.4.9) yields ‖hn‖C1 ≤ C[µ
n, provided we choose C[ ≥ 3C̄?. It is then

natural to start by investigating the second derivative. In fact, it turns out to be
more convenient to study the following ratio

h′′n
h′n

=
(
log[(h∗m,k+1)′ ◦ hkn̄]

)′
+
h′′kn̄
h′kn̄

=: Q1 +Q2. (5.4.19)

Since (5.3.5) and (5.4.8) imply |h′n̄,i| ≥ c0µ
−n for each i, for some constant c0,

formula (5.1.3) and (5.4.17) yield ‖ log h∗′m,k‖C` ≤ C`+1
[ c

(`−1)!
?,k µ(`+1)!m, provided

C[ has been chosen large enough. It then follows immediately that ‖Q1‖C0 ≤
C]C

2
[ c?,kµ

2mµkn̄ ≤ C]C
2
[ c?µ

n. To estimate ‖Q2‖C0 we write

h′′kn̄
h′kn̄

=

(∏k
i=1 h

∗′
n̄,i ◦ hin̄

)′
∏k

i=1 h
∗′
n̄,i ◦ hin̄

=

(
log

k∏
i=1

h∗′n̄,i ◦ hin̄

)′
=

k∑
i=1

(
log h∗′n̄,i ◦ hin̄

)′
. (5.4.20)

Using formulae (5.4.9), (5.4.13) and (5.4.19) we have, since n̄ ≤ m,

‖Q1‖C0 ≤ C]

∥∥∥∥∥
k∑
i=1

log h∗′n̄,i ◦ hin̄

∥∥∥∥∥
C1

≤ C]

k∑
i=1

‖ log h∗′n̄,i‖C1‖h′in̄‖C0

≤ C]C
3
[ c?,1µ

2n̄

k∑
i=1

µin̄ ≤ C]C
3
[ c?,1µ

2n̄1− µ−kn̄

µ− 1
µkn̄

≤ µ2n̄C3
[ c?,1Cµ,kn̄µ

kn̄ ≤ C3
[ c?,1Cµ,nµ

n,

(5.4.21)

Hence, using the above and (5.4.9), it follows by (5.4.20)

‖hn‖C2 ≤ C]

∥∥∥∥h′′nh′n
∥∥∥∥
C0

‖h′n‖C0 ≤ C]µ
n

∥∥∥∥h′′nh′n
∥∥∥∥
C0

≤ C3
[ c?Cµ,nµ

2n + C2
[ c?µ

2n ≤ C3
[ c?Cµ,nµ

2n.

(5.4.22)

This proves the second of (5.4.1). Next we prove the general case by induction
on j ≤ `. Assume it true for all i ≤ j. Using again (5.1.3), by the inductive
assumption we have

‖Q1‖Cj−1 = ‖ log[(h∗m,k+1)′ ◦ hkn̄]‖Cj ≤ Cj+1
[ cj!?,1µ

m(j+1)!Caj
µ,nµ

n̄kj!. (5.4.23)

On the other hand, by formulae (5.4.20), (5.1.3) and the inductive assumption

‖Q2‖Cj−1 ≤ C]

k∑
i=1

‖ log h∗′n̄,i‖Cj
j−1∑
q=0

‖hin̄‖qCj

≤ C]C
j+1+2(j+1)!j
[ cj!?,iµ

(j+1)!n̄

k∑
i=1

j−1∑
q=0

(C
aj
µ,in̄µ

j!in̄)q

(5.4.24)
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To estimate the last sum, notice that by definition

i 1 ≤Cµ,n̄i ≤ Cµ,n̄k, ∀i ≤ k,

ii Cµa,n ≤ Cµ,n, ∀a > 1,

Hence,

k∑
i=1

j−1∑
q=0

(C
aj
µ,n̄iµ

j!in̄)q ≤ C
ajj
µ,n̄k

k∑
i=1

µj!(j−1)n̄i ≤ C
aj(j−1)+1
µ,n̄k µj!(j−1)n̄k.

Using this in (5.4.24) we obtain

‖Q2‖Cj−1 ≤ C]C
j+1+2(j+1)!j
[ cj!?,iµ

(j+1)!n̄C
aj(j−1)+1
µ,n̄k µj!(j−1)n̄k. (5.4.25)

Therefore, by the inductive assumption, equations (5.4.23), (5.4.25) and (5.4.19),
and provided we choose C[ large enough, we finally have12

‖hn‖Cj+1 ≤ C]‖h′′n‖Cj−1 ≤ C]

∥∥∥∥h′′nh′n
∥∥∥∥
Cj−1

‖hn‖Cj

≤ C
2(j+2)!
[ c

(j+1)!
?,1 Caj+1

µ,n µ(j+1)!n.

In Section 10 we will need much sharper estimates (but limited to the first
derivatives) than the ones provided by Lemma 5.4.1; we prove them next.

Lemma 5.4.2. Under the hypothesis of Lemma 5.4.1, we choose c̄2 in (5.2.6),
depending on n̄, such that the set {n̄, . . . , c̄2 lnχ−1

u } is not empty. Then there
exist C3, C4, c̄1, c̄3, c[ ≥ 1 uniform such that, for all n? ∈ {n̄, . . . , c̄2 lnχ−1

u },
setting an? = (c̄3)n

−1
? , cn? = (c̄1)n

−1
? and13

bn? := (C4c[c̄
2
1ςn?)

1
n?

sn? = {µ2n?ς2
n? , C[ςn?Cµ,n?µ

4n? , C2
µ,n?µ

6n?}+,
(5.4.26)

we have, for all n ≥ n̄,

‖ν̂ ′′n(t)‖ ≤ c[c
n
n?µ

2nλ−n (γ ◦ hn(t))−1c? + Cµ,n?µ
3n?C3

‖ν̂ ′′′n ‖ ≤ c[a
n
n?µ

3n(λ−n (γ ◦ hn))−1c2
? + c[b

n
n?µ

3n(λ−n (γ ◦ hn))−1c? + sn? .
(5.4.27)

12Here we are using the following elementary facts:

• (j + 1)! + 2(j + 1)!(j − 1) + 2(j + 1)! ≤ 2(j + 2)!

• j(j + 1)! + (j + 1)! ≤ (j + 2)!

• aj(j − 1) + aj + 1 = aj+1.

13Recall (5.3.4) for the definition of ςn.
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Proof. To prove the first of (5.4.27) it is convenient to go back to equation (5.4.3)
and, recalling (5.3.8), for each v ∈ R2, ‖v‖ = 1, we have∣∣∣∣〈v, ν̂ ′′n〉 − 〈v, ν̂ ′n〉h′′nh′n

∣∣∣∣ ≤ |〈v, (Dν̂nF
n)−1γ′′ ◦ hn(h′n)2〉|

+
n−1∑
k=0

2∑
i=1

∣∣〈v, (Dν̂nF
k+1)−1

[
∂xiDFk(ν̂n)F

]
Dν̂nF

kν̂ ′n〉
∣∣ ‖(Dν̂nF

k)ν̂ ′n‖

≤ |〈v, (Dν̂nF
n)−1γ′′ ◦ hn(h′n)2〉|+ C]

n−1∑
k=0

‖(Dν̂nF
k+1)−1‖‖F‖C2‖(Dν̂nF

k)ν̂ ′n‖2.

(5.4.28)

Note that, recalling (5.2.6), for each n ≤ n? ≤ c̄2 logχ−1
u we have (Dν̂n(t)F

n)−1e1 /∈
Cc. Consequently

|〈v, (Dν̂nF
n)−1γ′′ ◦ hn〉| ≤ (λ−n (ν̂n(t)))−1‖γ′′ ◦ hn(t)‖, ∀n ≤ n?. (5.4.29)

Next, if v is perpendicular to ν̂ ′n, then it must be |v2| ≤ χc|v1|, hence

|〈v, ν̂ ′′n〉| = |v1|‖ν̂ ′′n‖ ≥ (1 + χ2
c)
− 1

2‖ν̂ ′′n‖. (5.4.30)

On the other hand, if v is perpendicular to ν̂ ′′n, then v = e2 and |〈v, ν̂ ′n〉| = 1.
Accordingly, recalling Proposition 5.3.3 and equations (4.1.5), (5.4.9) we have for
n ≤ n?

‖ν̂ ′′n(t)‖ ≤ (1 + χ2
c)

1
2 (λ−n (ν̂n(t)))−1C2

[ µ
2n‖γ′′ ◦ hn(t)‖+

n−1∑
k=0

C3
?µ

3kC],

‖h′′n/h′n‖ ≤ (λ−n (ν̂n(t)))−1C2
[ µ

2n‖γ′′ ◦ hn(t)‖+
n−1∑
k=0

C3
?µ

3kC].

(5.4.31)

Setting cn? =
[
(1 + χ2

c)
1
2C2

[

] 1
n?

we obtain

‖ν̂ ′′n?(t)‖ ≤ cn?n?µ
2n?(λ−n?(ν̂n?(t)))

−1‖γ′′ ◦ hn?(t)‖+
n?−1∑
k=0

C3
?µ

3kC] (5.4.32)

We can now proceed by induction since, setting h∗l,m = hln?+m◦h−1
ln?

, if n = ln?+m,
m ≤ n?, then

‖ν̂ ′′n(t)‖ ≤ cmn?µ
2m(λ−m(ν̂n(t)))−1‖ν̂ ′′ln? ◦ h

∗
l,m(t)‖+

n?−1∑
k=0

C3
?µ

3kC]

≤ cnn?µ
2n(λ−m(ν̂n(t)))−1(λ−n?(ν̂ln? ◦ h

∗
l,m(t)))−1 . . . (λ−n?(γ ◦ hn(t)))−1c?

+
l∑

s=1

csn?n? µ
2sn?λ−sn?−

n?−1∑
k=0

C3
?µ

3kC]

≤ cnn?µ
2nc[c

n
n?

[ (λ+
n (γ ◦ hn(t)))−1c? + Cµ,n?µ

3n?

(5.4.33)
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where we have called c[ the constant in (5.3.5). It remains to bound the third
derivative of ν̂n. The strategy is basically the same. Recalling that ν̂ ′n =
(Dν̂nF

n)−1γ′ ◦ hnh′n, we differentiate this expression twice and multiply by a
unitary vector v orthogonal to ν̂ ′n:

〈ν̂ ′′′n , v〉 =
〈

[(Dν̂nF
n)−1]′′γ′ ◦ hnh′n + 2[(Dν̂nF

n)−1]′(γ′′ ◦ hn(h′n)2 + γ′ ◦ hnh′′n)

+ [(Dν̂nF
n)−1]

(
γ′′′ ◦ hn(h′n)3 + 3γ′′ ◦ hnh′nh′′n

)
, v
〉
.

(5.4.34)

We will estimate the norms of the terms in the first line of the above equation one
at a time, for each n ≤ n?. First, using (5.3.6) with m = 0 and c = ‖ν̂ ′′n‖ (where
the latter is estimated using (5.4.31)), and (5.4.1) we have, for some uniform
A1 > 0

‖[(Dν̂nF
n)−1]′′γ′ ◦ hnh′n‖ ≤ µ2nς2

n + A1C[ςnc
n?
n?µ

3n(λ−n (ν̂n(t)))−1‖γ′′ ◦ hn(t)‖
+ C]C[ςnµ

nCµ,n?µ
3n? .

Next, notice that (Dν̂n?F
n?)−1γ′′ /∈ Cc, hence by the second of (5.3.8) and sub-

sequent, there is uniform A2 > 0 such that

‖[(Dν̂nF
n)−1]′γ′′ ◦ hn(h′n)2‖ ≤ A2C

2
[ µ

3n(λ−n (ν̂n(t)))−1ςn‖γ′′ ◦ hn(t)‖. (5.4.35)

It is convenient to write the third term as

[Dν̂nF
n)−1]′γ′ ◦ hnh′′n =

h′′n
h′n

[Dν̂nF
n)−1]′γ′ ◦ hnh′n

=
h′′n
h′n

(
ν̂ ′′n − [(Dν̂nF

n)−1]γ′′ ◦ hn(h′n)2 − ν̂ ′n
h′′n
h′n

)
.

The last term vanishes when we multiplied by v; hence, by (5.4.29) and (5.4.31),
we have14∣∣〈[Dν̂nF

n)−1]′γ′ ◦ hnh′′n, v〉
∣∣ ≤ ∣∣∣∣h′′nh′n

∣∣∣∣ {‖ν̂ ′′n‖+ ‖[Dν̂nF
n)−1]γ′′ ◦ hn(h′n)2‖

}
≤ cn?n?C

2
[ µ

4n(λ−n (ν̂n(t)))−2‖γ′′ ◦ hn(t)‖2

+ cn?n?Cµ,nµ
5n(λ−n (ν̂n(t)))−1‖γ′′ ◦ hn(t)‖+ C2

µ,nµ
6n.

For the two terms in the second line of (5.4.34), when the matrix hits γ′′ or γ′′′, we
can use (5.4.29) for n ≤ n? and (5.4.1) with ‖γ′ ◦ hn(t)‖ instead of c?. Collecting
all the above estimates in (5.4.34) we finally have, recalling also (5.4.30),

(1 + χ2
c)
− 1

2‖ν̂ ′′′n ‖ ≤ C]µ
2nς2

n + A1C[ςnc
n?
n?µ

3n(λ−n (ν̂n(t)))−1‖γ′′ ◦ hn(t)‖
+ C[ςnµ

nCµ,nµ
3n

+ A2C
2
[ µ

3nςn(λ−n (ν̂n(t)))−1‖γ′′ ◦ hn(t)‖
+ cn?n?C

2
[ µ

4n(λ−n (ν̂n(t)))−2‖γ′′ ◦ hn(t)‖2

+ cn?n?Cµ,nµ
5n(λ−n (ν̂n(t)))−1‖γ′′ ◦ hn(t)‖+ C2

µ,nµ
6n

+ C3
[ µ

3n(λ−n (ν̂n(t)))−1‖γ′′′ ◦ hn(t)‖
+ (λ−n (ν̂n(t)))−1C2

[ µ
3nCµ,n‖γ′ ◦ hn(t)‖.

14Recall also the lower bound for |h′n| in (5.4.9).
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Hence, setting ãn? = [(1 + χ2
c)

1/2C3
[ ]1/n? , b̃n? = [{A1, A2}+(1 + χ2

c)
1/2C[ςn? ]

1/n?cn?
and recalling the second of (5.4.26) we

‖ν̂ ′′′n ‖ ≤ ãn?n?µ
3n(λ−n (ν̂n(t)))−1‖γ′′′ ◦ hn(t)‖+ c2n?

n? µ
4n(λ−n (ν̂n(t)))−2‖γ′′ ◦ hn(t)‖2

+ b̃n?n?(λ
−
n (ν̂n))−1µ5n‖γ′′ ◦ hn(t)‖+ λ−n (ν̂n(t)))−1cn?n?µ

3nCµ,n‖γ′ ◦ hn(t)‖+ sn? .

We can now iterate as in (5.4.33), using the latter to estimate the terms involving
γ′′ and γ′ and, proceeding by induction, we obtain15

‖ν̂ ′′′n ‖ ≤ c
n
n?

+1

[ ãnn?µ
3n(λ−n (γ ◦ hn))−1c2

? + c
n
n?

+1

[ b̃nn?µ
3n(λ−n (γ ◦ hn))−1c? + sn? ,

from which the third of (5.4.27) follows setting C4 = {A1, A2}+, c̄1 = c[(1 +

χ2
c)

1
2C2

[ , c̄3 = c[(1 + χ2
c)

1
2C3

[ , and the Lemma is proved.

Lemmata 5.4.1 and 5.4.2 imply immediately the following important result.

Corollary 5.4.3. Let n? ∈ {n̄, . . . , c̄2 lnχ−1
u } and ` ∈ {2, · · · , r}. We define a

constant c which depend on ` and n? as follows: if ` ∈ {2, 3} we set

c = 2sn? = 2{µ2n?ς2
n? , C[ςn?Cµ,n?µ

4n? , C2
µ,n?µ

6n?}+, (5.4.36)

if ` > 3 we set c = χ
−$n̄,χu
u , for some $n̄,χu ≥ 1. 16 Then for all n ≥ n? and such

that ηn ≤ 1
2
, and for each ` ∈ {2, · · · , r}, we have the inclusion F−nΓ`(c) ⊂ Γ`(c).

Proof. The case ` > 3 follows directly by Lemma 5.4.1 choosing $n̄,χu and c?
such that

c? = c = χ−$n̄,χu =
9

2
C3
[ µ

3n̄. (5.4.37)

The result then follows since ηn ≤ 1
2
. For ` = 3, first we note that, recalling

(5.3.4), c given in (5.4.36) is greater than 9
2
C3
[ µ

3n̄, eventually enlarging n̄ ≤ n?.
On the other hand, recalling (5.4.27) and since c? ≥ c/2, for each n? ≤ n ≤ 2n?
we have

c[a
n
n?µ

3n(λ−n (γ ◦ hn))−1c2
? + c[b

n
n?µ

3n(λ−n (γ ◦ hn))−1c?

≤ c2
?

{
c[a

2n?
n? µ

6n?λ−n?− + c[b
2n?
n? µ

6n?λ−n?− s
−1
n?

}
.

(5.4.38)

Since λ−1
− µ

6 < 1 and a2n?
n? = c̄2

3, the first addend in the brace is strictly smaller
than 2−(n?+1) provided n̄ has been chosen large enough at the beginning. For
the other term, recall the definition of bn? in (5.4.26). We then have b2n?

n? =
(C4c[c̄

2
1)2ς2

n? . Moreover, an easy computation shows that

ς2
n?

sn?

≤
{
µ−2
n? ,

Cµ,n?
C[σn?

}+

Hence, the second addend in the brace in (5.4.38) can be made smaller than
2−(n?+1) as well, for n̄ large enough. Iterating the above argument we obtain, for
each n ≥ n?,

‖ν̂ ′′′n ‖ ≤
1

2
c2
? + sn? ,

form which we conclude the proof for ` = 3 choosing c2
? = c = 2sn? . The case

` = 2 is made in a similar but easier manner.
15Here we use again that µrλ−1 < 1.
16 Unfortunately, this yields worst estimates, this is why we make such a choice only for ` > 3.

48



From now until the end of this section we fix n̄ as in Lemma 5.4.1.
The above results tell us that the space of admissible central curves is stable

under backward iteration of the map. Arguing as above, but forward in time, we
can prove that the space of admissible unstable curves is stable under the iteration
of F n, for n greater than n̄. In particular, if η : I → T2 is an admissible unstable
curve, and ηn is the image of η under F n, then there exists a diffeomorphism
pn,η =: pn such that

p′n(t) =
‖DηF

n · η′(t)‖
‖η′(t)‖

, (5.4.39)

and ηn ◦ pn = F n ◦ η is an admissible unstable curve. Moreover, as F acts as
an expanding map along those curves, we have the following standard distortion
estimate for each n ≥ 1 :

p′n(t)

p′n(s)
. 1, ∀t, s ∈ I. (5.4.40)

In the following we will need to control the evolution also of curves not in the
center cone. To this end it is convenient to introduce a further quantity. Given
a smooth curve γ such that π1 ◦ γ′(t) 6= 0 for each t ∈ T, let

ϑγ(t) =

{
|π2 ◦ γ′(t)|
|π1 ◦ γ′(t)|

, χu

}+

ϑγ = inf
t
{ϑγ(t))}.

(5.4.41)

Lemma 5.4.4. Let F be a SVPH and ∆γ ∈ L∞(T1, [1,+∞]) and consider any
closed curve γ ∈ Cr, homotopic to (0, 1), such that ‖γ′(t)‖ = 1 and ‖γ(j+1)(t)‖ ≤
∆γ(t)

j,17 for all j ∈ {1, . . . , r} and t ∈ T. For h ∈ H∞ let n0 ≥ 0 and m >
{n̄, n0}+ be the smallest integers such that, for all t ∈ T,

Dγ(t)hn0γ
′(t) 6∈ Cu and Dγ(t)hmγ

′(t) ∈ Int (Cc) . (5.4.42)

Let νk = hk(γ), k ∈ N. Note that for k ≥ n0 then there exists a reparametrization
hk such that, setting ν̂k = νk ◦ hk, π2 ◦ ν̂k(t) = t.

If, for some h, we have m <∞, then:
a) For η < 1, given in Lemma 5.4.1,18 Λ as in (5.1.4), m = σm, where

σ =

⌈
ln(µ‖∆γ‖∞Λ)−1

ln η

⌉
, (5.4.43)

and c as in Corollary 5.4.3, we have ν̂m ∈ Γj(c) for each j ≥ 3, and the Cj-norm
of hm satisfies (5.4.1) with c? = χ−1

u ‖∆γ‖∞(µΛ)m.
In the case j ∈ {1, 2} we have the following sharper version:
b) For each p ∈ γ and n? ∈ {n̄, · · · , c̄2 logχ−1

u }, let m(p, h, n?) ≡ m be the
minimum integer such that

ηn?(m,m; t)Mn0(m, t) ≤ Cµ,n?µ
3n? ,

η̄n?(m,m; t)Mn0(m, t) ≤ sn? ,
(5.4.44)

17We will apply this Lemma with ∆γ(t) given by (E.0.1).
18See (5.4.11) for a precise definition of η.
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where

ηn?(m,m; t) := c[{bmn? , c
m
n?}

+µ3mλ+
m(ν̂m ◦ hm−m(t))−1,

η̄n?(m,m; t) := c[a
m
n?µ

3mλ+
m(ν̂m ◦ hm−m(t))−1,

Mn0(m; t) :=
{

Λ2n0µm∆γ(t), (1 + µ2mϑ−1
ν̂n0
‖ω‖C2)λ+

m−n0
(ν̂m(t))

}+

Mn0(m, t) :=
{
µ4mΛ3n0∆2

γ(t),Mn0(m, t)ϑ−1
ν̂n0
, ϑ−2

ν̂n0
, λ+

m(ν̂m(t))ϑ−1
νn0

}+

.

(5.4.45)

and an? , bn? , cn?, sn? are defined in Lemma 5.4.2. Then ν̂m ∈ Γ3(c) and

C]Λ
−n0ϑν̂n0

(t)−1µ−m ≤ |h′m(t)| ≤C]Λn0ϑν̂n0
(t)−1µm

|h′′m(t)| ≤ C]Mn0(m, t).
(5.4.46)

Proof. Let us start proving item a) first. Let h ∈ H∞ such that νm = hmγ.
Recalling (5.1.4), we can apply (5.1.3) and we have for each j ≤ r

‖νm‖Cj+1 = ‖hm ◦ γ‖Cj+1 ≤ C](‖∆γ‖∞Λm)j. (5.4.47)

We set φ(t) := (π2 ◦ νm)(t). By (5.4.42) there exists cu,γ ≥ χuµ
−m such that we

have |φ′| > cu,γ > 0, so it is well defined the diffeomorphism hm(t) = φ−1(t), so
that ν̂m = νm ◦ hm is parametrized by vertical length. We want to estimate the
higher order derivatives of hm using a formula for inverse functions given in [39].
For the reader convenience we write it down here for our case:

h(j+1)
m (t) =

dj+1φ−1(t)

dtj+1
=

j∑
k=0

[φ′(t)]−j−k−1
∑

b1+···+bk=j+k
bl≥2

Bj,k,{bl}kl=1

k∏
l=1

φ(bl)(t),

(5.4.48)

where Bj,k,{bl}kl=1
= (j+k)!

k!b1!···bk!
. It follows by (5.4.47) and (5.4.48) that for each t

|h(j+1)
m (t)| ≤ C]

(
c−2
u,γ‖∆γ‖∞Λm

)j
. (5.4.49)

By (5.4.47), (5.4.49) and formula (5.1.3) for the composition,

‖ν̂m‖Cj+1 = ‖νm ◦ hm‖Cj+1 ≤ C]

j+1∑
s=0

‖ν̂m‖Cs
∑
k∈Kρ,s

∏
l∈N

‖hm‖klCl

≤ C](c̄u,γ‖∆γ‖∞Λc]m)2j ≤ (c̄u,γ‖∆γ‖∞Λc]m)(j+1)!,

(5.4.50)

where c̄u,γ = {c−2
u,γ, 1}+. Hence, setting c?(m) = c̄u,γ‖∆γ‖∞Λm we have that

ν̂m ∈ Γj(c?(m)). Since m > m > n̄ we can apply Lemma 5.4.1 and we have that
the curve ν̂m = νm ◦ hm belongs to Γj(η

mc?(m) + c

2
). By definition, c?(m) ≤

χ−2
u ‖∆γ‖∞(µΛ)m and by Corollary 5.4.3, c ≥ c̄u,γ (since j ≥ 3), having chosen $

large enough. The statement then follows choosing m = σm, with σ defined in
(5.4.43).

Let us prove item b). Let νn = hn ◦ γ for each n ∈ N. Then, C]ϑγ(t)|π1 ◦
ν ′n0

(t)| ≥ |π2 ◦ ν ′n0
(t)| ≥ ϑγ(t)|π1 ◦ ν ′n0

(t)| > 0, and we can reparametrize νn,
n ≥ n0, by vertical length ν̂n(t) = νn(hn(t)). Note that ‖ν̂ ′n0

(t)‖ ≤ C]ϑγ(t)
−1.
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If n0 = 0, then C]ϑν̂0(t)−1 = C]ϑγ ◦ h0(t)−1 ≤|h′0(t)| ≤ C]ϑν̂0(t)−1 and (5.4.28)
yields19

|h′′n0
(t)| ≤

‖γ′′ ◦ hn0(t)‖|h′n0
(t)|3

|〈e1, ν̂ ′n0
(t)〉|

≤ C]∆γ ◦ hn0(t)ϑν̂n0
(t)−2

‖ν̂ ′′n0
(t)‖ ≤ C]∆γ ◦ hn0(t)ϑν̂n0

(t)−1.

If n0 > 0, then C]Λ
−n0ϑν̂n0

(t)−1 ≤|h′n0
(t)| ≤ C]Λ

n0ϑν̂n0
(t)−1 and ‖ν ′′n0

(t)‖ ≤
C]Λ

2n0‖γ′′(t)‖. Moreover

|h′′n0
(t)| ≤ C]Λ

3n0∆γ ◦ hn0(t)ϑν̂n0
(t)−2

‖ν̂ ′′n0
(t)‖ ≤ C]Λ

2n0∆γ ◦ hn0(t)ϑν̂n0
(t)−1

‖ν̂ ′′′n0
(t)‖ ≤ C]Λ

3n0∆2
γ ◦ hn0(t)ϑν̂n0

(t)−2.

(5.4.51)

Remark that
‖(Dν̂m(t)F

k)ν̂ ′m(t)‖ ≤
√

1 + χ2
cC?λ

+
k (ν̂m(t)),

and, setting Fm−n0 ν̂m = ν̂n0 ◦ h̄m−n0 , we have

|h̄′m−n0
(t)| = |〈e2, Dν̂m(t)F

m−n0 ν̂ ′m(t)〉| ≤ C]λ
+
m−n0

(ν̂m(t))ϑν̂n0
(h̄m−n0(t))

|h̄′m−n0
(t)|≥ C]λ

−
m−n0

(ν̂m(t))ϑν̂n0
(h̄m−n0(t)).

(5.4.52)

Next, we want to use equation (5.4.28), with γ replaced by ν̂n0 . Note that there
exists ξi ∈ Cr−2, ‖ξi‖Cr−2 ≤ C], such that, for all w ∈ R2,∥∥∥∂xi(Dν̂nj

F )w − e1〈ξi, w〉
∥∥∥ ≤ C]‖w‖‖ω‖C2 . (5.4.53)

In addition, it must be (Dν̂mF
k)−1e1 6∈ Cc, for all k < m− n0, otherwise, by the

monotonicity of the dynamics in the tangent bundle, it would be that ν̂m−1 ∈ Cc

contrary to the hypothesis. Accordingly, recalling (4.1.3), (5.3.6), (5.3.5) and
setting m0 = m− n0,

‖(Dν̂mF
k+1)−1

[
∂xiDFk(ν̂m)F

]
Dν̂mF

kν̂ ′m‖ ≤
λ+
k (ν̂m)

λ−k+1(ν̂m)
+ C]µ

k+1‖ω‖C2λ+
k (ν̂m)

≤ C]
(
1 + µk+1λ+

k (ν̂m)‖ω‖C2

)
.

(5.4.54)

Arguing as in the proof of Lemma 5.4.1, just after (5.4.28), the above and (5.4.51)
yields,

‖ν̂ ′′m(t)‖ ≤ C]λ
+
m0

(ν̂m(t))ϑν̂n0
(h̄m0(t))Λ2n0∆γ ◦ hn0(t)

+

m0−1∑
k=0

C]
{

1 + µkλ+
k (ν̂m(t))‖ω‖C2

}
λ+
k (ν̂m(t))

|h̄′′m0
(t)| ≤ C](λ

+
m0

(ν̂m(t)))2ϑν̂n0
(h̄m0(t))2Λ2n0∆γ ◦ hn0(t)

+

m0−1∑
k=0

C]
{

1 + µkλ+
k (ν̂m(t))‖ω‖C2

}
λ+
k (ν̂m(t))2ϑν̂n0

(h̄m0(t)).

To continue we need the following

19 Note that (5.4.28) holds also if γ is not parametrized vertically.
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Sublemma 5.4.5. If m0 is the smallest integer for which ν̂ ′m0
(t) 6∈ Cc for each

t, then
χuλ

+
m0

(ν̂m0(t)) ≤ C]χ
−1
c µm0 , ∀t ∈ T2. (5.4.55)

Proof. If we define w, ‖w‖ = 1, such that DFm0w = ‖DFm0w‖e2, then ν̂ ′m0
=

αe1 + βw, with c] ≤ |α|, |β| ≤ C]. Then, since Dν̂m0
Fm0e1 ∈ Cu, w ∈ Cc and

using (4.1.3) again,

C]λ
+
m0
◦ ν̂m0 ≥ |〈e1, Dν̂m0

Fm0 ν̂ ′m0
〉| ≥ C]λ

−
m0
◦ ν̂m0

|〈e2, Dν̂m0
Fm0 ν̂ ′m0

〉| ≤ C](µ
m0 + λ+

m0
◦ ν̂m0χu).

(5.4.56)

Next, let v ∈ R2, ‖v‖ = 1 such that DFm0v = ‖DFm0v‖(1, χu). Note it must be
v 6∈ Cc, otherwise we would have ν̂ ′m0

∈ Cc, contrary to the hypothesis. We can
then write again v = ae1 + bw. Note that w ∈ (DF )−1Cc, moreover the uniform
cone contraction implies that there exists ϑ∗ ∈ (0, 1) such that, for all p ∈ T2,
DpFCu ⊂ {(x, y) ∈ R2 : |y| ≤ ϑ∗χu|x|} and (DpF )−1Cc ⊂ {(x, y) ∈ R2 : |x| ≤
ϑ∗χc|y|}. It follows |w1| ≤ ϑ∗χc|w2| while |v1| ≥ χc|v2|, thus v2 = bw2 and

|a| ≥ χc|v2| − |bw1| ≥ χc(1− ϑ∗)|b||w2| ≥ χc(1− ϑ∗)(1 + χ2
cϑ

2
∗)
− 1

2 |b|

which implies |b||a| ≤ C]χ
−1
c . Finally, by equations (4.1.3) and (5.3.5), we can write

χu =
|〈e2, DF

m0v〉|
|〈e1, DFm0v〉|

≤ |b|µ
m0 + |a| |〈e2, DF

m0e1〉|
|a| |〈e1, DFm0e1〉|

≤ C]
|b|
|a|
µm0(λ+

m0
◦ν̂m0)−1+ϑ∗χu,

that is (5.4.55).

By the above Sub-Lemma it follows that

χc ≥ ϑν̂m(t) ≥ µ−m0λ+
m0
◦ ν̂m0ϑν̂n0

(t). (5.4.57)

Thus

‖ν̂ ′′m(t)‖ ≤ C]Λ
2n0µm∆γ ◦ hn0(t) + C]

{
1 + µ2mϑ−1

ν̂n0
‖ω‖C2

}
λ+
m0

(ν̂m(t)),

|h̄′′m0
(t)| ≤ C]Λ

2n0µ2m∆γ ◦ hn0(t) + C]

{
1 + µ2mϑ−1

ν̂n0
‖ω‖C2

}
λ+
m0

(ν̂m(t))µm

|h̄′m0
(t)| ≤ C]χ

−1
c µm0 .

(5.4.58)

To estimate ν̂ ′′′m we use (5.4.34) where ν̂n, γ, hn are replaced by ν̂m, ν̂n0 , h̄m0 . In this
case the curve ν̂n0 /∈ Cc, and so is hk(ν̂n0) for each k < m0, hk ∈ Hk. Therefore,
using Proposition 5.3.3, we have the following estimates

‖
[
(Dν̂mF

m0)−1
]′′
ν̂ ′n0

h̄′m0
‖ . {µmςmλ+

m(ν̂m(t)) + ςm‖ν̂ ′′m‖}‖ν̂ ′n0
‖|h̄′m0

|
‖
[
(Dν̂mF

m0)−1
]′
ν̂ ′n0

h̄′′m0
‖ . λ−m(ν̂m(t))−1µmςm|h̄′′m0

|,

Additionally, again by Proposition 5.3.3,

‖
[
(Dν̂mF

m0)−1
]′
ν̂ ′′n0

(h̄′m0
)2‖ . ςmµ

mϑ−1
ν̂n0
|h̄′m0
|2,

‖
[
(Dν̂mF

m0)−1
]
ν̂ ′′′n0

(h̄′m0
)3‖ . µm‖ν̂ ′′′n0

‖|h̄′m0
|3

‖
[
(Dν̂mF

m0)−1
]
ν̂ ′′n0

h̄′m0
h̄′′m0
‖ . µm‖ν̂ ′′n0

‖|h̄′m0
||h̄′′m0

|.
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Using the above estimates in (5.4.34) and recalling (5.4.52), (5.4.58), and (5.4.51)
we conclude

‖ν̂ ′′′m‖ ≤ C]Mn0(m, t)ϑ−1
ν̂n0

[µmςm + µ2mΛ3n0∆2
γ ◦ h̄m0(t)]

+ C]ϑ
−2
ν̂n0
µ4mΛ3n0∆2

γ ◦ h̄m0(t) + C]µ
2mςmλ

+
m(ν̂m(t))ϑ−1

νn0
≤ A0Mn0(m, t),

for some A0 > 0. Next we set m ≡ m(h, p) and Fm−mν̂m = ν̂m ◦ h̄m−m. First,

|h̄′m−m(t)| = |〈e2, Dν̂m(t)F
m−mν̂ ′m(t)〉| ≤ C]χ

−1
c µm−m

|h̄′m−m(t)| ≥ C]χ
−1
c µ−m+m.

(5.4.59)

We can now apply Lemma 5.4.1, in particular (5.4.27), to ν̂m and hm−m with γ
replaced by ν̂m, and c? and c2

? replaced by Mn0(m, t) and Mn0(m, t) respectively,
defined in (5.4.45). We thus obtain

‖ν̂ ′′m‖ ≤ c[c
m
n?µ

2mλ+
m(ν̂m ◦ h̄m−m)−1Mn0(m, ·) + Cµ,n?µ

3n?

‖ν̂ ′′′m‖ ≤ amn?µ
3mc[λ

+
m(ν̂m ◦ h̄m−m)−1Mn0(m, ·) + bmn?µ

3mc[λ
+
m(γ ◦ hn?)−1Mn0(m, ·) + sn?

|h̄′′m−m| ≤ C]Mn0(m, ·)µ2mCµ,m.

(5.4.60)

We are ready to conclude. Recalling Corollary 5.4.3, the first two of the above
equations plus condition (5.4.44) give ν̂m ∈ Γ3(c). Next we set m1 = m −m. If
Fmν̂m = γ ◦ hm, by definition we have

hm = hn0 ◦ h̄m0 ◦ h̄m1 . (5.4.61)

Hence, differentiating (5.4.61) and recalling (5.4.52), (5.4.59) and

C]Λ
−n0ϑν̂n0

(t)−1|h′n0
(t)| ≤ C]Λ

n0ϑν̂n0
(t)−1,

we have the first of (5.4.46). Taking two derivatives of (5.4.61) and using the
second lines of (5.4.51), (5.4.58) and the third of (5.4.60), we have20

|h′′m| ≤ |h′′n0
◦ h̄m0 ◦ h̄m1 · h̄′m0

◦ hm1 · h̄′m1
|

+ |h̄′n0
◦ h̄m0 · h̄m1

(
h′′m0
◦ h̄m1 · h̄′m1

+ h̄′′m1
· h̄′m0

◦ h̄m1

)
|

≤ C]
(
ϑ−2
ν0
µm + ϑ−1

ν0
µmMn0(m) + ϑ−1

ν0
Cµ,mµ

2mMn0(m)
)
,

form which the second of (5.4.46) follows and the Lemma is proven.

Remark 5.4.6. From now on we will use Γ to denote Γr(c) where c is defined
in Lemma 5.4.1 and has thus the invariance property stated in Corollary 5.4.3.

5.5 Distortion

We conclude this section with some technical distortion results needed in the
following.

20Here we drop the dependence on t to ease notations.
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Lemma 5.5.1. For all n ∈ N, ν ∈ F−n(Γ(c)) and x, y ∈ ν, we have

e−µ
nCµ,n‖x−y‖ ≤ λ+

n (x)

λ+
n (y)

≤ eµ
nCµ,n‖x−y‖. (5.5.1)

Proof. We prove it by induction. To start with, let x = ν(t1), y = ν(t2) such that
‖x − y‖ ≤ τn for some τn to be chosen shortly. For n = 1 we have, for all unit
vector v 6∈ Cc,

‖DxFv‖
‖DyFv‖

≤ e
ln
[
1+
‖DxFv−DyFv‖
‖DyFv‖

]
≤ e

‖DxFv−DyFv‖
‖DyFv‖ .

‖DxFv −DyFv‖ ≤
∫ t2

t1

‖ d
ds
Dν(s)Fv‖ds ≤ C]|t2 − t1| ≤ C]‖x− y‖, (5.5.2)

the case n = 1 follows. Assume it is true for each k < n, then, by the triangular
inequality

‖DyF
nv −DxF

nv‖ ≤
n−1∑
k=0

‖DFk+1yF
n−k−1(DFkyF −DFkxF )DxF

kv‖

≤ C]

n−1∑
k=0

λ+
n−k−1(F ky)λ+

k (x)‖DFkyF −DFkxF‖ ≤ C]

n−1∑
k=0

λ+
n−k−1(F ky)λ+

k (x)µk‖x− y‖.

Since ν ∈ F−n(Γ(c)), ‖DFkyF −DFkxF‖ ≤ C]µ
k‖x−y‖. Also remark that (5.3.5)

and the induction hypothesis imply

λ+
n−k(F

ky)λ+
k (x) ≤ eµ

kCµ,k‖x−y‖λ+
n−k(F

ky)λ+
k (y) ≤ C]λ

−
n (y),

provided we have chosen τn small enough. Accordingly, since ‖DyF
nv‖ ≥ λ−n (y),

‖DxF
nv‖

‖DyF nv‖
≤ e

‖DxFnv−DyFnv‖
‖DyFnv‖ ≤ eC]

∑n−1
k=0 µ

k‖x−y‖.

We can now choose v such that ‖DxF
nv‖ = λ+

n (x) so

λ+
n (x)

λ+
n (y)

≤ ‖DxF
nv‖

‖DyF nv‖
≤ eC]

∑n−1
k=0 µ

k‖x−y‖,

which proves the upper bound, for points close enough. Next, for all x, y ∈ ν
we can consider close intermediate points {xi}li=0, x0 = x, xl = y, to which the
above applies, hence

λ+
n (x)

λ+
n (y)

≤ ‖DxF
nv‖

‖DyF nv‖
=

l−1∏
i=0

‖DxiF
nv‖

‖Dxi+1
F nv‖

≤ eC]
∑n−1
k=0 µ

k
∑l−1
i=0 ‖xi+1−xi‖.

Taking the limit for l → ∞ we have the distance, along the curve, between x
and y which is bounded by C]‖x− y‖. This proves the upper bound. The lower
bound is proven similarly.
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Next, we prove two more distortion Lemmata, inspired by Lemma 6.2 in [43].
Even though the basic idea of the proof is the same, the presence of the central
direction creates some difficulties.

Lemma 5.5.2. For each γ ∈ Γ(c), n > n̄ and 0 ≤ ρ ≤ r − 1, we have∑
νn∈F−nγ

∥∥∥∥ h′n
detDν̂nF

n

∥∥∥∥
Cρ(T)

≤ C]c
aρC ãρ

µ,nµ
b̃ρn

∑
νn∈F−nγ

∥∥∥∥ 1

detDν̂nF
n

∥∥∥∥
Cρ(T)

≤ C]c
aρC ãρ

µ,nµ
(b̃ρ+1)n

(5.5.3)

where21 ãρ = aρρ(ρ+ 1)/2 + 1 and b̃ρ = ρ!ρ(ρ+ 1)/2 + 1.

Proof. For every ν ∈ F−nγ define

Ψνn(t) =
h′n(t)

detDν̂n(t)F n
,

and recall that in dimension one holds ‖Ψνm‖C0 ≤ ‖Ψνm‖L1 + ‖Ψ′νm‖L1 . We then
first look for a bound of the W 1,1(T)-norm of Ψνm . Since e1 = (1, 0) ∈ Cu,
Dν̂nF

nν̂ ′n 6∈ Cu and recalling that F nν̂n = γ ◦ hn, we have

h′nDν̂nF
ne1 ∧ γ′ ◦ hn = Dν̂nF

ne1 ∧Dν̂nF
nν̂ ′n = det(Dν̂nF

n)e1 ∧ ν̂ ′n.

Thus we have the equation

h′n(t)

detDν̂n(t)F n
=

e1 ∧ ν̂ ′n(t)

Dν̂n(t)F ne1 ∧ γ′ ◦ hn(t)
(5.5.4)

Arguing as in Proposition 5.3.1 and since ‖γ′‖ ≥ 1 we have, recalling definition
(5.4.41),

|Dν̂nF
ne1 ∧ γ′ ◦ hn| ≥ C]ϑγ ◦ hn‖Dν̂nF

ne1‖. (5.5.5)

Therefore, since ‖ν̂ ′n‖2 ≤ 1 + χ2
c , we have∑

νn∈F−nγ

‖Ψνn‖L1 .
∑

νn∈F−nγ

∥∥∥∥ 1

ϑγ ◦ hn‖Dν̂nF
n · e1‖

∥∥∥∥
L1

. (5.5.6)

Recall that, by Lemma 5.2.1, for each ν̂n we have an inverse branch hν̂n : Ωγ → Ων̂n

such that F n ◦ hν̂n = IdΩγ . More precisely, the domain Ων̂n =
⋃
t∈T ξt,ν̂n , where

ξt,ν̂n(s) = ν̂n(t) + se1 are horizontal segments defined on an interval It of length

δν̂n(t) whose images are unstable curves ξ]t,γ with length(ξ]t,γ) = δ]t,γ ≥ 1. Let
pn,ξt,νn be the diffeomorphism associated to ξt,νn , see formula (5.4.39). By equation
(5.4.40) p′n,ξt,νn (s) . p′n,ξt,νn (0) = ‖Dν̂n(t)F

ne1‖. It follows

1 ≤ δ]t,γ =

∫
It

∥∥∥∥ ddsF n(ξt,ν̂n(s))

∥∥∥∥ ds ≤ C]δν̂n(t)p
′
n,ξt,νn

(0),

21Recall the definition of aρ in Lemma 5.4.1

55



from which

‖Dν̂n(t)F
ne1‖ &

1

δν̂n(t)

. (5.5.7)

Since by Lemma 5.2.1 the Ωνn are all disjoints and the νn are parametrized
vertically, by (5.5.7) we have22∑
νm∈Fmγ

∥∥∥∥ 1

‖Dν̂m(t)F ne1‖

∥∥∥∥
L1

.
∑

ν̂m∈Fmγ

∫
T1

δν̂m(t) .
∑

νm∈Fmγ

m(Ων̂m) . m(T2) . 1.

Using this in (5.5.6) yields∑
νn∈Fnγ

‖Ψνn‖L1 ≤ C]ϑ
−1
γ ≤ C], (5.5.8)

since |π1 ◦ γ′(t)|−1 ≥ χ−1
c > 1 > χu implies ϑ−1

γ ≤ 1. To bound the L1 norm of
the derivative we can notice that:

‖Ψ′νn‖L1 ≤
∥∥∥∥Ψ′νn

Ψνn

∥∥∥∥
C0

‖Ψνn‖L1 . (5.5.9)

To continue it is useful to see ν̂n = νn ◦ hn as the time evolution of curves
parametrized by vertical length. For each 0 ≤ i ≤ n, let νn−i = F iνn and hi the
diffeomorphism such that ν̂i = νi ◦ hi is parametrized by vertical length. Define
the diffeomorphisms h∗i by

ν̂i = F ◦ ν̂i+1 ◦ (h∗i+1)−1, (5.5.10)

where ν0 = γ and h∗0 = h0. It is immediate to check that hi = h∗1 ◦ · · · ◦ h∗i . We
can then write

Ψνn(t) =
d
dt
hn(t)

detDν̂n(t)F n
=

∏n
i=1(h∗i )

′ ◦ h∗i+1 ◦ · · · ◦ h∗n∏n
i=1(detDν̂iF ) ◦ h∗i+1 ◦ · · · ◦ h∗n

(t)

=
n∏
i=1

(ψi ◦ h∗i+1 ◦ · · · ◦ h∗n)(t),

where ψi(t) = (h∗i )
′(t) · (detDν̂i(t)F )−1. Hence,∣∣∣∣Ψ′νnΨνn

∣∣∣∣ ≤ n∑
i=1

∣∣∣∣(ψ′iψi ◦ h∗i+1 ◦ · · · ◦ h∗n
)

(h∗i+1 ◦ · · · ◦ h∗n)′
∣∣∣∣ . (5.5.11)

By (5.5.10), since ν̂n ∈ Γ(c), it follows by (5.1.3) that ‖ψi‖C` ≤ C]c
(`−1)! for each

` ≤ ρ. Thus, setting b` := `! and hi,n = h∗i+1 ◦ · · · ◦ h∗n, by (5.1.3) and (5.4.1) we
have ∥∥∥∥Ψ′νn

Ψνn

∥∥∥∥
C`−1

.
n−1∑
i=0

∥∥(logψi ◦ hi,n)′
∥∥
C`−1 .

n−1∑
i=0

‖logψi ◦ hi,n‖C`

.
n−1∑
i=0

‖ logψi‖C`
`−1∑
j=0

‖h′i,n‖
j
C`−1

. c
(`−1)!

n−1∑
i=0

`−1∑
j=0

‖hi,n‖jC` . c
(`−1)!C`a`

µ,nµ
n`b` ,

22Here m(A) is the Lebesgue measure of a set A.
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In particular the above estimates in the case ` = 1 and (5.5.9) gives∑
νn∈Fnγ

‖Ψ′νn‖L1 ≤ C]Cµ,nµ
n
∑

νn∈Fnγ

‖Ψνn‖L1 ≤ C]Cµ,nµ
n,

which gives the result for ρ = 0. Once we have the bound of the C0−norm, we
can obtain the general case ρ ∈ [1, r − 1] as follows:∑

νn∈F−nγ

‖Ψνn‖Cρ .
∑

νn∈F−nγ

‖Ψ′νn‖Cρ−1 .
∑

νn∈F−nγ

∥∥∥∥Ψ′νn
Ψνn

∥∥∥∥
Cρ−1

‖Ψνn‖Cρ−1

. c
(ρ−1)!Cρaρ

µ,nµ
nρbρ

∑
νn∈F−nγ

‖Ψνn‖Cρ−1

. c
aρC

aρ
∑ρ
k=0 k

µ,n µnbρ
∑ρ
k=0 k

∑
νn∈F−nγ

‖Ψνn‖C0

. c
aρC

aρ
ρ(ρ+1)

2
+1

µ,n µ(bρ
ρ(ρ+1)

2
+1)n.

The procedure to prove the second of (5.5.3) is analogous, with the difference
that, by (5.5.4) and (5.4.9), the estimate for ρ = 0 gives another C]µ

n, while
the computation for ρ ≥ 1 is exactly the same, but using ψi = (detDν̂i(t)F )−1

instead.

The next result is a refinement of the previous Lemma in the more general
case in which the curve γ is simply not contained in Cu. To state the result it is
convenient to define the following quantities

Jγ,n =

∫
T1

1

{1− n‖ω‖∞ϑν̂n0
(s)−1, χuϑν̂n0

(s)−1}+
ds,

Iγ,n,m =
[
ςm + χuµ

n∆γϑ
−1
γ

] (5.5.12)

Lemma 5.5.3. In the same hypothesis of Lemma 5.4.4 with n0 = 0, we have∑
νm∈F−mγ

∥∥∥∥ h′m
detDν̂mF

m

∥∥∥∥
C0(T)

≤ C]
(
c + Iγ,n,mϑ−1

γ

)
µmJγ,m

∑
νm∈F−mγ

∥∥∥∥ h′m
detDν̂mF

m

∥∥∥∥
C1(T)

≤ (Cµ,mµ)2m
(
c + Iγ,n,mϑ−1

γ

)2
µmJγ,m

∑
νm∈F−mγ

∥∥∥∥ h′m
detDν̂mF

m

∥∥∥∥
C2(T)

≤ O?M0(m){ϑ−2
γ ,M0(m), (λ+

m)2}+

∑
νm∈F−mγ

∥∥∥∥ h′m
detDν̂mF

m

∥∥∥∥
Cρ(T)

≤ C]Λ
c]m, ρ > 2,

(5.5.13)

where, recalling (5.4.45), M0(m) = ‖M0(m, ·)‖∞, and

O? = O?(m,m) : = C4
µ,mµ

7m
(
c + Iγ,m,mϑ−1

γ

)
Jγ,m·

·
{

(λ+
mϑ
−1
γ )−1µm, [c + Iγ,m,m]2 , ςmµ

3m∆2
γ{ςm, (λ+

mϑγ)
−1}+

}+
.

(5.5.14)
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Proof. . We use the same notations of the proof of Lemma 5.5.2. In the case
ρ > 2 we content ourselves with a rough estimate, so we can proceed exactly as
in the proof of the above Lemma and, using (5.4.47) and (5.4.49), the estimate
is immediate. In the other cases we need to be more careful in the estimation of
(5.5.6). Setting J∗k (x) = detDxF

k, we write, recalling (5.4.61) and m1 = m−m,∑
νm∈F−mγ

∥∥∥∥ h′m
J∗m(ν̂m)

∥∥∥∥
Cρ
≤

∑
νm∈F−mγ

∑
νm1∈F−m1 ν̂m

∥∥∥∥ h̄′m ◦ h̄m1 · h̄′m1

J∗m1
(ν̂m1)J∗m(ν̂m ◦ h̄m1)

∥∥∥∥
Cρ

=
∑

νm∈F−mγ

∥∥∥∥ h̄′m ◦ h̄m1

J∗m(ν̂m ◦ h̄m1)

∥∥∥∥
Cρ

∑
νm1∈F−m1 ν̂m

∥∥∥∥ h̄′m1

J∗m1
(ν̂m1)

∥∥∥∥
Cρ

=
∑

νm∈F−mγ

∥∥Ψν̂m ◦ h̄m1

∥∥
Cρ

∑
νm1∈F−m1 ν̂m

∥∥Ψν̂m1

∥∥
Cρ .

(5.5.15)

First we are going to estimate the last sum, for ρ = 2. By the results of Lemma
5.4.4, ν̂m is an admissible central curve and, by equation (5.4.58), ‖ν̂ ′′m(t)‖ ≤
M0(t,m). Therefore we can apply Lemma 5.5.2 with c

a2 replaced by M0(t,m)
and we have ∑

νm1∈F−m1νm

∥∥Ψν̂m1

∥∥
C2 ≤ ‖M0(·,m)‖∞C ã2

µ,m1
µb̃2m1 . (5.5.16)

Next, arguing as in (5.5.4) we have

h̄′m ◦ h̄m1

J∗m(ν̂m ◦ h̄m1)
=

e1 ∧ ν̂ ′m(t)

Dν̂m(t)Fme1 ∧ γ′ ◦ hm(t)
=: Ψ̃ν̂m (5.5.17)

By (5.5.7) we have∑
νm∈F−mγ

‖Ψ̃νm‖L1 ≤ C]
∑

νm∈F−mγ

∫
T1

δν̂m(s)

ϑγ ◦ hm(s)
|h̄′m1

(s)|ds

≤ C]µ
m1

∑
νm∈F−mγ

∫
T1

δν̂m(s)

ϑγ ◦ hm(s)
ds.

Since |π2(Fm(x, θ)) − θ| ≤ m‖ω‖∞ it follows that, given ν̂∗,m ∈ F−mγ, for each
ν̂m ∈ F−mγ

|π2(Fm(ν̂∗,m(t)))− π2(Fm(ν̂m(t)))| ≤ m‖ω‖∞,
accordingly, since γ′ 6∈ Cu, we have, calling hν̂m the reparametrizartion associated
to ν̂m,

ϑγ ◦ hν̂m(t) ≥ {ϑγ ◦ hν̂∗,m(t)−m‖ω‖∞, χu}+.

Hence, ∑
νm∈F−mγ

‖Ψ̃νm‖L1 ≤ C]

∫
T1

∑
νm∈F−mγ δν̂m(t)

{ϑγ ◦ hν̂∗,m(t)−m‖ω‖∞, χu}+
dt

≤ C]

∫
T1

1

|h′ν̂∗,m(h−1
ν̂∗,m

(s))|{ϑγ(s)−m‖ω‖∞, χu}+
dt.
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Recalling (5.4.46) we obtain∑
νm∈F−mγ

‖Ψ̃νm‖L1 ≤ µm1C]

∫
T1

µm

{1− n‖ω‖∞ϑγ(s)−1, χuϑγ(s)−1}+
dt = C]µ

mJγ,m.

(5.5.18)
Next, we want to compute, using (5.5.17),

Ψ̃′νm
Ψ̃νm

=
e1 ∧ ν̂ ′′m
e1 ∧ ν̂ ′m

− ∂t (Dν̂mF
me1) ∧ γ′ ◦ hm +Dν̂mF

me1 ∧ γ′′ ◦ hm · h′m
Dν̂mF

me1 ∧ γ′ ◦ hm

= − [(Dν̂mF
m)−1∂t (Dν̂mF

m)] e1 ∧ ν̂ ′m + e1 ∧ (Dν̂mF
m)−1γ′′ ◦ hm · (h′m)2

e1 ∧ ν̂ ′m

+
e1 ∧ ν̂ ′′m
e1 ∧ ν̂ ′m

(5.5.19)

where we have used equation (5.5.4). Next, note that γ′′(s) = αe1 wiht |α| ≤ ∆γ

and e1 = aη + be2 with |b| ≤ χu and (DFm)−1η ∧ e1 = 0. Using (5.3.8), arguing
as in (5.4.54), we have

‖
[
(Dν̂mF

m)−1∂t (Dν̂mF
m)
]
e1‖ ≤

m−1∑
k=0

‖(Dν̂mF
k+1)−1

[
∂xiDFk(ν̂m)F

]
Dν̂mF

ke1‖

· ‖Dν̂mF
kν̂ ′m‖ ≤

m−1∑
k=0

C](1 + µk(‖ω‖C2 + χu)λ
+
k )‖Dν̂mF

kν̂ ′m‖

≤ C]ςm|h′m|
Thus, using (5.4.46),∣∣∣∣∣Ψ̃′νmΨ̃νm

◦ h̄m1

∣∣∣∣∣ ≤C] (c + ςm|h′m|+ χuµ
m∆γ|h′m|2

)
≤ C]

(
c +

[
ςm + χuµ

m∆γϑ
−1
γ

]
ϑ−1
γ

)
.

The first of (5.5.13) follows by (5.5.9) and (5.5.18). While,

‖Ψ̃′νm‖C0 ≤

∥∥∥∥∥Ψ̃′νm
Ψ̃νm

∥∥∥∥∥
C0

‖Ψ̃νm‖C0 . (5.5.20)

leads immediately to the second of (5.5.13). To conclude the lemma we must
compute Ψ̃′′νm , which can be obtained by (5.5.19):

Ψ̃′′νm
Ψ̃νm

=
e1 ∧ ν̂ ′′′m
e1 ∧ ν̂ ′m

− (e1 ∧ ν̂ ′′m)2

(e1 ∧ ν̂ ′m)2
+

[
e1 ∧ ν̂ ′′m
e1 ∧ ν̂ ′m

−
Ψ̃′νm
Ψ̃νm

]
e1 ∧ ν̂ ′′m
e1 ∧ ν̂ ′m

− ∂t [(Dν̂mF
m)−1∂t (Dν̂mF

m)] e1 ∧ ν̂ ′m + [(Dν̂mF
m)−1∂t (Dν̂mF

m)] e1 ∧ ν̂ ′′m
e1 ∧ ν̂ ′m

− e1 ∧ [∂t(Dν̂mF
m)−1] γ′′ ◦ hm · (h′m)2 + e1 ∧ (Dν̂mF

m)−1γ′′′ ◦ hm · (h′m)3

e1 ∧ ν̂ ′m

− 2e1 ∧ (Dν̂mF
m)−1γ′′ ◦ hm · h′mh′′m
e1 ∧ ν̂ ′m

+

[
Ψ̃′νm
Ψ̃νm

]2

.

(5.5.21)
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We estimate the lines of (5.5.21) one at a time. The first line is bounded by

C]
{
c

2 + c
[
ςm + χuµ

m∆γϑ
−1
γ

]
ϑ−1
γ

}
(5.5.22)

To estimate the second line we firt note that

(Dν̂mF
m)−1∂t(Dν̂mF

m) ≤
2∑
s=1

n−1∑
k=0

(Dν̂mF
k+1)−1∂xs(DFk(ν(t))F )Dν(t)F

k(Dν(t)F
kν ′)s.

We can thus use the fourth (5.3.6) and (5.4.54) to bound the second line of
(5.5.21) with

C]ςm ◦ ν̂m
[
(λ+

m ◦ ν̂m)2 + (λ+
m ◦ ν̂m)2 + λ+

m ◦ ν̂mc
]
≤ C]ςm(λ+

m ◦ ν̂m)2µ2m−m.
(5.5.23)

To estimate the third line we use the second line of (5.3.8), arguing as above, and
(5.4.46)

C]

[
ς2
mµ

m−m∆γ

(
ϑγ(t)

−1µm
)2

+ ςm(λ+
m)−1

(
ϑγ(t)

−1µm
)3

∆2
γ

]
≤ C][ς

2
mµ

3m · {∆γ, ςm(λ+
mϑγ)

−1∆2
γ}+]ϑ−2

γ .
(5.5.24)

Finally, again by (5.4.46), the last line is estimated by

C](λ
+
m)−1µmϑ−1

γ M0(m, t) + C]
(
c +

[
ςm + χuµ

m∆γϑ
−1
γ

]
ϑ−1
γ

)2

≤ C]{M0(m, t), ϑ−2
γ }+ ·

{
(λ+

mϑγ)
−1µm,

[
c + ςm + χuµ

m∆γϑ
−1
γ

]2}+

.
(5.5.25)

Collecting the above estimates we obtain∣∣∣∣∣Ψ̃′′νmΨ̃νm

∣∣∣∣∣ . {(λ+
mϑγ)

−1µm,
[
c + ςm + χuµ

m∆γϑ
−1
γ

]2
, ςmµ

3m∆2
γ{ςm, (λ+

mϑγ)
−1}+

}+

· {ϑ−2
γ , ‖M0(m, ·)‖∞, (λ+

m)2}+.

We finally have, setting M0(m) := ‖M0(m, ·)‖∞,

∑
νm∈Fmγ

‖Ψ̃νm‖C2 ≤ C]

∥∥∥∥∥Ψ̃′′νm
Ψ̃νm

∥∥∥∥∥
C0

∑
νm∈Fmγ

‖Ψ̃νm‖C0 ≤ C]O? · {ϑ−2
γ ,M0(m), (λ+

m)2}.

By the above equation and (5.5.16) we then obtain the statement.

Corollary 5.5.4. For each n ∈ N

‖Ln1‖L∞(T2) ≤ Cµ,nµ
2n. (5.5.26)

Proof. For any x ∈ T2 we want to estimate the quantity

Ln1(x) =
∑

y∈F−nx

1

| detDyF n|
. (5.5.27)
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Recall the notation in Section 5.2 and take y ∈ γ, where γ ∈ Γ is an admissible
central curve. Then, for every x ∈ F−n(y), there exist t ∈ T and ν ∈ F−nγ such
that x = ν(hn(t)) = ν̂(t). Hence

sup
y∈γ

∑
x∈F−n(y)

∣∣∣∣ 1

detDxF n

∣∣∣∣ ≤ ∑
ν∈F−nγ

∥∥∥∥ h′ν,n
detDν̂F n

∥∥∥∥
C0

‖(h′n)−1‖C0 .

By equations (5.4.9) and (4.1.5) we know that ‖(h′n)−1‖C0 ≤ C]µ
n, for every ν

and n. Moreover, Lemma 5.5.2 gives the bound∑
ν∈F−nγ

∥∥∥∥ h′ν
detDν̂F n

∥∥∥∥
C0

≤ Cµ,nµ
2n.

Remark 5.5.5. With some extra work the estimate (5.5.26) can be made sharper,
however the above bound is good enough for our current purposes. We will need
an improvement, provided in Lemma 10.2.5, in Section 10.

61



Chapter 6

A first Lasota-Yorke inequality

We define a class of geometric norms inspired by [43] and [4]. Given u ∈ Cr(T2,R)
and an integer ρ < r, we denote by Bρ the completion of Cr(T2,R) with respect
to the norm:

‖u‖ρ := max
|α|≤ρ

sup
γ∈Γ

sup
φ∈C|α|(T)
‖φ‖C|α|=1

∫
T
φ(t)(∂αu)(γ(t))dt. (6.0.1)

This defines a decreasing sequence of Banach spaces continuously embedded in
L1, namely

‖u‖L1 ≤ C‖u‖ρ1 ≤ C‖u‖ρ2 , for every 0 ≤ ρ1 ≤ ρ2 ≤ r − 1. (6.0.2)

To see this we observe that, since σx(t) = (x, t) ∈ Γ,

‖u‖L1 = sup
‖φ‖C0(T2)≤1

∫
T
dx

∫
T
dyφ(x, y)u(x, y) ≤

∫
T
dx sup
‖φ‖C0(T2)

∫
T
dyφ(x, y)u(x, y)

≤
∫
T
dx sup
‖φ‖C0(T)

∫
T
dt φ(t)u(σx(t)) ≤

∫
T
dx‖u‖0 = ‖u‖0.

The above proves the first inequality of (6.0.2), the others being trivial. We start
with a Lasota-Yorke type inequality between the spaces Bρ and Bρ−1.

Theorem 6.0.1. Let F ∈ Cr(T2,T2) be a SVPH. Let L := LF be the transfer
operator defined in (4.3.1), and n̄ be the integer given in Lemma 5.4.1. For each
ρ ∈ [1, r − 1] and n > n̄, there exists Cn,ρ such that

‖Lnu‖0 ≤ Cµ,nµ
n‖u‖0 (6.0.3)

‖Lnu‖ρ ≤
C
āρ
µ,nµb̄ρn

λρn−
‖u‖ρ + Cn,ρ‖u‖ρ−1 (6.0.4)

where āρ = 1 + aρ(ρ
2 + ρ(ρ+ 1)/2 + 1) and b̄ρ = 1 + ρ!(2ρ2 + ρ/2 + 1).

We postpone the proof of Theorem 6.0.1 to section 6.2. First we need to develop
several results on the commutators between differential operators and transfer
operators which will be needed throughout the paper.
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6.1 Differential Operators

For s, ρ ∈ N we denote by Ps,ρ a differential operator of order at most ρ defined
as a finite linear combination of compositions of at most ρ vector fields, and we
write

Ps,ρu =
s∑
j=0

∑
α∈A⊂Nj

vj,α1 · · · vj,αju, (6.1.1)

where A is a finite set and for every i ≤ j, vj,αi are vector fields in Cρ+j−s, with
the convention that vj,α1 · · · vj,αju = u if j = 0. We denote by Ψs,ρ the set of
differential operators Ps,ρ. For a function u ∈ Cr(T2,R) and a smooth vector field
v, we denote ∂vu(x) = 〈∇xu, v(x)〉.

We start by studying the structure of the commutator between L and the
differential operators. Next, we will estimate the coefficients of the commutator.

Proposition 6.1.1. Given smooth vector fields v1, · · · , vs ∈ Cρ, we have

∂vs · · · ∂v1Ln = Ln∂Fn∗vs · · · ∂Fn∗v1
+ LnPs−1,ρ,

where F ∗v(x) := (DxF )−1v(F (x)) is the pullback of v by the map F and Ps−1,ρ ∈
Ψs−1,ρ whose coefficients may depend on n.

Proof. Let us start with s = 1. Let v1 ∈ Cρ(T2,T2) and define

Jn(p) = (detDpF
n)−1; φn(p) = log | detDpF

n|. (6.1.2)

For each h ∈ Hn we have

〈∇ [Jn ◦ h · u ◦ h] , v1〉 = 〈Jn ◦ h(Dh)∗∇u ◦ h, v1〉 − 〈(Dh)∗∇(detDF n) ◦ hJ2
n ◦ hu ◦ h, v1〉

= Jn ◦ h〈(Dh)∗∇u ◦ h, v1〉 − Jn ◦ h〈(Dh)∗∇φn ◦ hu ◦ h, v1〉.

Then, since DF n ◦ hDh = IdRh
, for each h ∈ Hn and x ∈ Dh

1

〈∇ [Jn ◦ h · u ◦ h] (x), v1(x)〉 = Jn ◦ h(x) [∂Fn∗v1u− ∂Fn∗v1φnu] ◦ h(x). (6.1.3)

Observing that

Lnu =
∑
h∈Hn

u ◦ hJn ◦ h1Rh
◦ h, (6.1.4)

it follows

〈∇xLnu, v1(x)〉 = Ln
(
∂Fn∗v1

u
)

(x)− Ln(∂Fn∗v1
φn · u)(x), (6.1.5)

which prove the result since the multiplication operator P0,ρ := −∂Fn∗v1
φn ∈ Ψ0,ρ.

Next, we argue by induction on s:

∂vs+1 · · · ∂v1Lnu = ∂vs+1

[
Ln∂Fn∗vs · · · ∂Fn∗v1

u+ LnPs−1,ρu
]

= Ln∂Fn∗vs+1
· · · ∂Fn∗v1

u+ Ln(∂Fn∗vs+1
φn · ∂Fn∗vs · · · ∂Fn∗v1

u)

+ Ln∂Fn∗vs+1
Ps−1,ρu+ Ln(∂Fn∗vs+1

φn · Ps−1,ρu),

(6.1.6)

1Recall that Dh,Rh indicate respectively the domain and the range of h.
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which yields the Lemma with

Ps,ρ = ∂Fn∗vs+1
Ps−1,ρ + ∂Fn∗vs+1

φn ·
[
∂Fn∗vs · · · ∂Fn∗v1

+ Ps−1,ρ

]
+ ∂Fn∗vs+1

Ps−1,ρ.
(6.1.7)

In the case vj ∈ {e1, e2} for each j, we have the following Corollary as an imme-
diate iterative application of formulae (6.1.3) and (6.1.5).

Corollary 6.1.2. For each t ≥ 1, n ∈ N α = (α1, .., αt) ∈ {1, 2}t and h ∈ Hn,

∂α[Jn ◦ h · u ◦ h] = Jn ◦ h · [Pα
n,tu] ◦ h, (6.1.8)

in particular
∂αLnu = LnPα

n,tu, (6.1.9)

the operators Pα
n,t being defined by the following relations, for each u ∈ Ct,

Pα
n,0u = u,

Pα
n,1u = Aα1

n u− Aα1
n φn · u,

Pα
n,tu = Aαn,1u−

∑t
k=1A

α
n,k+1((Aαkn φn) · Pα

n,k−1u) for t ≥ 2,

(6.1.10)

where Aαin = ∂Fn∗eαi , A
α
n,k := Aαtn · · ·Aαkn , Aαn,t+1 = Id and φn is defined in (6.1.2).

Proposition 6.1.3. For each n ∈ N let Pα
n,t ∈ Ψt,t given by (6.1.10). For any

1 ≤ t < r, ψ ∈ Cr(T2,C) with suppψ ⊂ U = Ů ⊂ T2, ν ∈ Γ(c) such that
DF n−mν ′ ∈ Cc, ϕ ∈ Ct(T,C) with ‖ϕ‖Ct ≤ 1, multi-index α, |α| = t and u ∈
Cr(T2) we have∫

T
ϕ(τ)Pα

n,t(ψu)(ν(τ))dτ ≤ C̃(t, n,m)‖ψ‖Ct(U)‖u‖t, (6.1.11)

where 2

C̃(t, n,m) ≤

{
C]µ

2n supt∈suppϕ{ς2
n ◦ ν(t)ς̄n,m ◦ ν(t) + µnςn ◦ ν(t)c} t = 2,

C]Λ
c]n t > 2.

(6.1.12)

Proof. For simplicity we set ∂k = ∂xk for k ∈ {1, 2}. First of all notice that, if
we set dk,i = 〈(DF n)−1ek, ei〉, then A

αj
n =

∑2
i=1 dαj ,i∂xi . Furthermore, by formula

(5.1.4), ‖dj,i‖Ct ≤ ‖(DF n)−1‖Ct ≤ Λn, for each 2 ≤ t ≤ r. We are going to prove
(6.1.11) by induction on t. For t = 0 it is obvious, let us assume it for any
k ≤ t− 1. By (6.1.10) the integral in (6.1.11) splits into3∫

ϕ(τ)Pα
n,t(ψu)(ν(τ))dτ

=

∫
ϕ [Aαtn · · ·Aα1

n (ψu)] ◦ ν −
∫
ϕ

t∑
k=1

[
Aαn,k+1((Aαkn φn) · Pα

n,k−1(ψu))
]
◦ ν.

(6.1.13)

2Recall equations (5.3.3) and (5.3.4) for the notations.
3Unless differently specified, in the following all the integrals are on T.
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The first integral is equal to∑
i1,··· ,it
il∈{1,2}

∑
J,J0,J1,..,Jt

∫
ϕ ·
(∏
j∈J

∂ju
)( ∏

j∈J0

∂jψ
)( ∏

j∈J1

∂jdα1,i1

)
· · ·
(∏
j∈Jt

∂jdαt,it
)
,

(6.1.14)

where the second sum is made over all the partitions J, J0, J1, .., Jt of {1, .., t} such

that Jj ⊂ {j + 1, .., t}, j ≥ 1.4 Note that
∥∥(
∏t

k=1 Πj∈Jk∂j)dαk,ik
∥∥
Ctν
≤ Λn

∑t
k=1 ]Jk

and ‖Πj∈J0∂jψ‖C]Jν . ‖ψ‖C]J+]J0 ≤ ‖ψ‖Ct . Consequently, from (6.1.14) and the
definition (6.0.1), we have∣∣∣∣∫ ϕ(τ)Aαn,1(ψu)(ν(τ))dτ

∣∣∣∣ ≤ C]Λ
c]n‖ψ‖Ct‖u‖t. (6.1.15)

To bound the second integral in (6.1.13) we first note that

Aαkn φn(x) =
n−1∑
j=0

〈(DxF
j)∗∇φ1 ◦ F j(x), (DxF

n)−1eαk〉

=
n−1∑
j=0

〈∇φ1, (DF
n−j)−1eαk〉 ◦ F j(x),

(6.1.16)

thus (5.1.3) implies

‖Aαkn φn‖Cl ≤ C]

n−1∑
j=0

‖(DF n−j)−1‖ClΛnl ≤ C]

n−1∑
j=0

Λc](n−j+l) ≤ C]Λ
c]n. (6.1.17)

We can then use (6.1.15) to estimate∣∣∣∣∫ ϕAαn,k+1((Aαkn φn) · Pα
n,k−1(ψu))

∣∣∣∣ ≤C]Λc]n‖Aαkn φn‖Ct−k−1
ν
‖Pα

n,k−1(ψu))‖t−k−1

≤ C]Λ
c]n‖Pα

n,k−1(ψu))‖t−k−1.

(6.1.18)

To bound the last term we take φ ∈ Ct−k−1, ‖φ‖Ct−k−1 = 1, γ ∈ Γ, and we consider∫
φ∂t−k−1[Pα

n,k−1(ψu)] ◦ γ.

We can then split the integral as in (6.1.13), although this time α = (α1, · · · , αk−1).
For the first term we take t− k− 1 derivatives in (6.1.14) and, arguing as we did
to prove (6.1.15), we have∣∣∣∣∫ φ(τ)∂t−k−1Aαn,1(ψu)(γ(τ))dτ

∣∣∣∣ ≤ C]Λ
c]n‖ψ‖Ct‖u‖t.

4We use the conventions
∏
j∈∅ ∂jA = A and ]B denote the cardinality of the set B.
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The second term is estimated in the same way, using the inductive assumption.
The first statement of the Lemma then follows using this in (6.1.18).
In the special case t = 2, for α = (α1, α2),5

Pα
n,2(ψu) = Aαn,1(ψu)− Aα2

n (φn)Aα1
n (ψu)− Aαn,1(φn)ψu− Aα1

n φnA
α2
n (ψu)

− Aα1
n φnA

α2
n φn · ψu

=
{
Aαn,1ψ − Aα2

n φnA
α1
n ψ − (Aα1

n φnA
α2
n φn + Aαn,1φn)ψ

}
u

− {Aα2
n ψ + ψAα2

n φn}Aα1
n u− {Aα1

n ψ + ψAα1
n φn}Aα2

n u+ ψAαn,1u

=: Φ1 + Φ2 + Φ3 + Φ4.

We then want to integrate the above terms along the curve ν against a test
function ϕ ∈ C2. Recalling that the coefficients of the differential operators A

αj
n

have Cr norm bounded by ‖(DF n)−1‖Cr , we thus have∫
ϕΦ1 ◦ ν ≤ C] max

i,j
{‖Aαn,1ψ‖C0

ν
, ‖ψAαn,1φn‖C0

ν
,

(1 + ‖Aαin φn‖C0
ν
)2‖ψ‖C0 , ‖Aαin φnAαjn ψ‖C0

ν
}‖u‖0.

The bounds for Φ2 and Φ3 are similar:∫
ϕΦ2 ◦ ν ≤ C]‖(DF n)−1‖C1

ν
max
i
{‖Aαin ψ‖C1

ν
, ‖Aαin φn‖C1

ν
‖ψ‖C1}‖u‖1.

Next, for any two vector v, w ∈ R2, i, j ∈ {1, 2} and x = (x1, x2) ∈ T2,6

∂F ∗v(∂F ∗wu) = ∂F ∗v(〈∇u, (DF )−1w〉) = 〈∇(〈∇u, (DF )−1w〉), (DF )−1v〉

=
∑
j,k

∂2
xjxk

u ·
[
(DF )−1v

]
k

[(DF )−1w]j +
∑
j,k

∂xku ∂xj [(DF )−1w]k · [(DF )−1v]j.

Recalling the properties of the ‖ · ‖ρ norm and (5.3.6) we have∫
ϕΦ4 ◦ ν ≤ C]{µ2n‖ψ‖C2 , µn‖(DF n)−1‖C2

ν
‖ψ‖C1 , ‖(DF n)−1‖2

C1
ν
‖ψ‖C1}‖u‖2.

It follows by the property of the Cr norm and (6.0.2) that

∫
ϕPα

2,n(ψu) ◦ ν ≤ C]{‖Aαn,1φn‖C0
ν
‖ψ‖C0 , ‖Aαin φn‖2

C0
ν
‖ψ‖C0 ,

‖(DF n)−1‖C1
ν
‖Aα1

n φn‖C1
ν
‖ψ‖C1 , µn‖(DF n)−1‖C2

ν
‖ψ‖C2 , ‖(DF n)−1‖2

C1
ν
‖ψ‖C2}‖u‖2.

We have thus proved that

C̃(2, n) = C]
{
‖Aαn,1φn‖C0

ν
, max
i∈{1,2}

‖Aαin φn‖2
C0
ν
, ‖(DF n)−1‖C1

ν
‖Aα1

n φn‖C1
ν
,

µn‖(DF n)−1‖C2
ν
, ‖(DF n)−1‖2

C1
ν

}+
.

5 We use the following notation: Φ1 equals the third line from the bottom, the other Φi are,
ordered, the terms in the second line from the bottom.

6Here we denote
[
(DF )−1w

]
k

:= 〈(DF )−1w, ek〉.
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To conclude we give a bound of the above quantity. By Proposition 5.3.3 it is
enough to find estimates for ‖(Aαn,1φn)‖C0

ν
and ‖Aα1

n φn‖C1
ν
· ‖(DF n)−1‖C1

ν
. First we

can use formulae (6.1.16) and (5.3.6),

|∂Fn∗e`φn(x)| ≤ C]

n−1∑
j=0

µn−j ≤ Cµ,nµ
n. (6.1.19)

In particular ‖Aα1
n φn‖C0

ν
≤ Cµ,nµ

n. Next we take another derivative of (6.1.19) in
the direction of F n∗eq and, setting g`,n,j(x) = 〈∇φ1, (DF

n−j)−1e`〉(x), we have

∂Fn∗eq(∂Fn∗e`φn(x)) =
n−1∑
j=0

〈∇(g`,n,j ◦ F j(x)), (DxF
n)−1eq〉

=
n−1∑
j=0

〈(DxF
j)∗∇g`,n,j ◦ F j(x), (DxF

n)−1eq〉

=
n−1∑
j=0

〈∇g`,n,j ◦ F j(x), (DxF
n−j)−1eq〉.

(6.1.20)

By a direct computation we see that, recalling (5.3.10),

‖∇g`,n,j‖ ≤ C] max
i
{‖∂xi(DF n−j)−1‖} ≤ C]ςn−j(x)µn−j.

We use this in (6.1.20) obtaining

|∂Fn∗eq(∂Fn∗e`φn(x))| ≤ C]µ
2nςn(x).

Hence, ‖Aαn,1φn‖C0
ν
≤ C]µ

2nςn. Finally, we compute∣∣∣∣ ddt(Aα1
n φn ◦ ν)

∣∣∣∣ ≤ n−1∑
j=0

|〈(DνF
j)∗D(∇φ1) ◦ F jν ′, (DνF

n)−1eα1〉|

+ |〈∇φ1 ◦ F j(ν), [(DνF
n)−1]′eα1〉|

≤ Cµ,nµ
n + C]ςn,m ◦ ν,

so that, using (5.3.6) and the definition of ςn,m in (5.3.2), we obtain

‖Aα1
n φn‖C1

ν
· ‖(DF n)−1‖C1

ν
≤ C]µ

2n−mς2
n,m.

The Lemma follows collecting all the above estimates and recalling again (5.3.6)
for the estimate of µn‖(DF n)−1‖C2

ν
.

6.2 Proof of Theorem 6.0.1

Proof. Given Lemma 5.5.2 the proof of Theorem 6.0.1 is almost exactly the same
as in [43], hence we provide the full proof for ρ = 0, 1 and give a sketched proof
for the case 1 < ρ ≤ r − 1.
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Let us prove (6.0.3) first, since it is an immediate consequence of Lemma 5.5.2
and Definition 6.0.1 in the case ρ = 0. Indeed, by changing the variables and
recalling the notation of Section 5.2 and Lemma 5.5.2, we have∫

T
φ(t)Lnu(γ(t))dt =

∑
ν∈F−nγ

∫
T
| detDν(t)F

n|−1 · (u ◦ ν)(t) · φ(t)dt

=
∑

ν∈F−nγ

∫
T
| detDν̂F

n|−1 · (u ◦ ν̂)(t) · (φ ◦ hn)(t)h′n(t)dt

≤
∑

ν∈F−nγ

∥∥h′n |detDν̂F
n|−1

∥∥
C0 ‖u‖0 . Cµ,nµ

n‖u‖0.

Let us now proceed with the case ρ = 1, from which we deduce the general case
by similar computations. We must bound the quantity∫

T
φ(t)(∂vLnu)(γ(t))dt =

∫
T
φ(t)〈∇(Lnu)(γ(t)), v〉dt,

where now φ ∈ C1(T) with norm one and v is a unitary Cr vector field. From
Proposition 6.1.1 the above quantity is equal to the sum over ν ∈ F−nγ of∫

1

| detDνF n|
φ · ∂Fn∗vu(ν) +

∫
Ln(P0u)φ, (6.2.1)

where P0 is an operator of multiplication by a Cρ function.
By Proposition 6.1.3 applied with ψ = 1, plus the result for ρ = 0, the last term
is then bounded by Cn‖u‖1. In order to bound the first term of (6.2.1) we need
an analogous of Lemma 6.5 in [43]. The idea is to decompose the vector field
v into a vector tangent to the central curve γ and a vector field approximately
in the unstable direction so that the first one can be integrated by parts, while
for the other we can exploit the expansion. The proof of the following Lemma
follows that of the aforementioned paper, since the key point is the splitting of the
tangent space in two directions, one of which is expanding. Once more, however,
the presence of the central direction creates difficulties. For completeness we give
the proof adapted to our case in Appendix B.

Lemma 6.2.1. Let n̄ be the integer provided by Lemma 5.4.1. For every n > n̄,
γ ∈ Γ(c), ν ∈ F−nγ, and any vector field v ∈ Cr, with ‖v‖Cr ≤ 1, defined
in some neighborhood M(γ) of γ, there exist a neighborhood M ′(γ) of γ and a
decomposition

v = v̂c + v̂u, (6.2.2)

where v̂c and v̂u are Cr(M ′(γ)) vector fields such that, setting F n(N(ν)) = M ′(γ),

• v̂c(γ(t)) = g(t)γ′(t), where g ∈ Cr and ‖g‖Cρ ≤ C]c
ρ!C

aρ
µ,nµρ!n,

• ‖(F n)∗v̂u‖Cρ(N(ν)) ≤ λ−n− C
ρaρ
µ,nµρρ!n,

• ‖(F n)∗v̂c‖Cρ(N(ν)) ≤ C
2ρaρ+1
µ,n µ(ρ+1)(2ρ!+1)n,

• ‖v̂u‖Cρ(M ′(γ)) + ‖v̂c‖Cρ(M ′(γ)) ≤ Cn.
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By the above decomposition, the first term in (6.2.1) becomes∫
1

| detDνF n|
φ · ∂Fn∗ v̂cu(ν) +

∫
1

| detDνF n|
φ · ∂Fn∗ v̂uu(ν). (6.2.3)

Since γ(t) = F nν(t) we have g(t)Dν(t)F
n · ν ′(t) = v̂c(F nν(t)), hence:

g(t)ν ′(t) = (Dν(t)F
n)−1 · v̂c(F nν(t)) = F n∗ v̂c(ν(t)).

Accordingly,∫
φ(t)

| detDν(t)F n|
∂Fn∗ v̂cu(ν(t))dt =

∫
g(t)φ(t)

| detDν(t)F n|
d

dt
(u(ν(t)))dt

=

∫
g(t)φ(t)

| detDν̂◦h−1
n (t)F

n|

[
d

dt
(u ◦ ν̂)

]
◦ h−1

n (t)
[
h−1
n (t)

]′
dt

=

∫
[gφ] ◦ hn(t)

| detDν̂(t)F n|
(u ◦ ν̂)′(t)dt = −

∫
d

dt

(
[gφ] ◦ hn(t)

| detDν̂(t)F n|

)
u(ν̂(t))dt

≤
∥∥∥∥ [gφ] ◦ hn

detDν̂F n

∥∥∥∥
C1

‖u‖0.

Summing over ν ∈ F−nγ and using Lemma 5.5.2 we obtain∑
ν∈F−nγ

∫
φ(t)∂Fn∗ v̂cu(ν(t))dt . c

2C2
µ,nµ

3n‖u‖0. (6.2.4)

The second term of (6.2.3) is∫
φ

| detDνF n|
∂Fn∗ v̂uu(ν) =

∫
φ

| detDνF n|
〈∇u, F n∗ v̂u〉 ◦ ν

≤ C]

∥∥∥∥ φ ◦ hnh′ndetDν̂F n

∥∥∥∥
C1

‖F n∗ v̂u ◦ ν̂‖C1‖u‖1

≤ C]‖hn‖C1

∥∥∥∥ h′n
detDν̂F n

∥∥∥∥
C1

λ−n− Cµ,nµ
n‖u‖1,

(6.2.5)

where we made the usual change of variables t = hn(s) and used Lemma 6.2.1.
Finally, using (6.2.4) and (6.2.5) in (6.2.3), and recalling (5.4.1), we have by
Lemma 5.5.2, with ρ = 1,

‖Lnu‖1 ≤ λ−n− Cµ,nµ
2n‖u‖1 + Cn‖u‖0. (6.2.6)

For the general case 1 ≤ ρ ≤ r − 1 one has to control the term∫
T
φ(t)∂vs · · · ∂v1Lnu(ν(t))dt,

for vector fields vj ∈ Cρ, j = 1, ..., s and s ≤ ρ. Using again Propositions 6.1.1
and 6.1.3, the latter is bounded by∑

ν∈F−nγ

∫
1

| detDνF n|
φ · ∂Fn∗vs···Fn∗v1

u(ν) + Cn,ρ‖u‖ρ−1. (6.2.7)
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Now the strategy is exactly the same as before. We use Lemma 6.2.1 to decompose
each vj = v̂uj + v̂cj . We take σ ∈ {u, c}s, k = # {i|σi = c} and let π be a
permutation of {1, . . . , s} such that π{1, . . . , k} = {i|σi = c}. Using integration
by parts, we can write the integral in (6.2.7) as∫

φ

detDνF n
∂Fn∗vs . . . ∂Fn∗v1

u(ν) =
∑

σ∈{u,c}s

∫
φ

detDνF n

(
1∏
s=1

∂Fn∗ v̂σii

)
u(ν)

=
∑

σ∈{u,c}s

∫
φ

detDνF s

k∏
i=s

∂Fn∗ v̂c
π(i)

1∏
i=k+1

∂Fn∗ v̂u
π(i)
u(ν) + Cn,ρ‖u‖ρ−1

=
∑

σ∈{u,c}s
(−1)k

∫ s∏
i=k+1

∂Fn∗ v̂u
π(i)
u(ν)

1∏
i=k

∂Fn∗ v̂c
π(i)

(
φ

detDν(t)F n

)
+ Cn,ρ‖u‖ρ−1.

By Lemma 6.2.1,

‖F n∗ v̂cπ(i)‖Cρ(ν) ≤ C2ρaρ+1
µ,n µ(ρ+1)(2ρ!+1)n

while

‖
s∏

i=k+1

F n∗ v̂uπ(i)‖Cρ(ν) ≤ Cλ
−(s−k)n
− (Cρaρ

µ,nµ
ρρ!n)s−k.

It follows by Lemma 5.5.2, equation (5.4.1) and the fact that ‖φ‖Cr ≤ 1, that7

∑
ν∈F−nγ

∫
φ

detDF n
∂Fn∗v1

. . . ∂Fn∗vρu ◦ ν

≤ λ−ρn− Cρ2aρ
µ,n µρ

2ρ!n‖hn‖Cρ
∑

ν∈F−nγ

∥∥∥∥ h′n
detDν̂F n

∥∥∥∥
Cρ
‖u‖ρ + Cn,ρ‖u‖ρ−1

. λ−ρn− Cρ2aρ+aρ+ãρ
µ,n µn(ρ2ρ!+ρ!+b̃ρ)‖u‖ρ + Cn,ρ‖u‖ρ−1,

hence (6.0.4) with āρ = 1+aρ(ρ
2+ρ(ρ+1)/2+1) and b̄ρ = 1+ρ!(2ρ2+ρ/2+1).

The last result of this section is a Corollary of Theorem 6.0.1 which provides
the inequality we are truly interested in.

Corollary 6.2.2. Let us assume that, for every integer 1 ≤ ρ ≤ r − 1,

µb̄ρλ
− ρ

2
− < 1, (6.2.8)

where b̄ρ given in Theorem 6.0.1. Let δ∗ ∈ (λ
− 1

2
− , 1). Then, for each n ∈ N,

‖Lnu‖ρ ≤ C]δ
n
∗ ‖u‖ρ + Cµ.nµ

n‖u‖0. (6.2.9)

7Notice that the coefficient in front of the strong norm is obtained in the case s = ρ and
k = 0, while all the other terms are bounded again by Cn,ρ‖u‖ρ−1.
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Proof. Let us set δ := λ
− 1

2
− and take n̄ ∈ N large enough to guarantee that

C
āρ
µ,nµb̄ρn̄λ

−ρn̄
− < δρn̄ for every ρ ∈ [1, r − 1]. Notice that this is possible by the

definition of Cµ,n and (6.2.8). Let us proceed by induction on ρ. For ρ = 1 the
statement is simply (6.0.3). Let us assume it true for each integer smaller then
or equal to ρ− 1. By Theorem 6.0.1 and (6.2.8), we have

‖Ln̄u‖ρ ≤ C]δ
ρn̄‖u‖ρ + Cn̄‖u‖ρ−1. (6.2.10)

For every m ∈ N we write m = n̄q + r, 0 ≤ r < n̄, and iterate (6.2.10) to have

‖Lmu‖ρ = ‖Ln̄(Lm−n̄u)‖ρ ≤ C]δ
ρn̄‖Lm−n̄u‖ρ + Cn̄‖Lm−n̄u‖ρ−1 ≤ · · ·

· · · ≤ C]δ
qρn̄‖Lru‖ρ + C]

q−1∑
k=0

δkρn̄‖Lm−(k+1)n̄u‖ρ−1 ≤ C]δ
ρm‖u‖ρ + Cµ,mµ

m‖u‖ρ−1,

where we used ‖Lm−(k+1)n̄u‖ρ−1 ≤ Cµ,mµ
m−(k+1)‖u‖ρ−1 by the inductive assump-

tion. We iterate the last inequality ρ times and obtain

‖Lρmu‖ρ ≤ Cρ−1
µ,m (µρ−1δρ)m‖u‖ρ + Cρ

µ,mµ
ρm‖u‖0

≤ Cρ
µ,m(µρδρ)m‖u‖ρ + Cρ

µ,mµ
ρm‖u‖0.

We then consider the above inequality for m such that ρm = n̄, so that

Cρ
µ,m(µρδρ)m < δn̄,

as µρδρ ≤ µb̄ρλ
− ρ

2
− < 1 by assumption. Hence,

‖Ln̄u‖ρ ≤ δn̄‖u‖ρ + Cµ,n̄µ
n̄‖u‖0. (6.2.11)

Finally, we iterate once again (6.2.11) and we obtain the result for some δ∗ ∈
(δ, 1) = (λ

− 1
2
− , 1).

Remark 6.2.3. Although Corollary 6.2.2 provides a Lasota-Yorke inequality, a
fundamental ingredient is missing. Indeed the embedding of Bρ in B0 is not com-
pact.
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Chapter 7

A second Lasota-Yorke type
inequality: preliminaries

The main result of the following two sections is the second step towards the proof
of Theorem 4.3.2, namely a Lasota-Yorke type inequality between the Hilbert
space Hs and Bρ.1 We will see in Corollary 9.0.2 that this solves the compactness
problem mentioned in Remark 6.2.3. First we state some result on the Hs-norm
of the transfer operator.

7.1 Hs-norm of L
Lemma 7.1.1. Let F ∈ Cr(T2,T2) satisfying (H1). For each n ∈ N and 1 ≤
s ≤ r, there exist As, Q(n, s) > 0 such that, for every u ∈ Hs(T2,R),

‖Lnu‖L2 ≤ ‖Ln1‖
1
2∞‖u‖L2 (7.1.1)

‖Lnu‖2
Hs ≤ Asµ

2sn‖Ln1‖∞‖u‖2
Hs +Q(n, s)‖u‖2

Hs−1 , (7.1.2)

where Q(n, 1) ≤ C
3
2
µ,nµ2n.

Proof. First of all notice that

‖Lnu‖2
L2 ≤ ‖u‖L2

(∫
(Lnu ◦ F n)2

) 1
2

≤ ‖u‖L2

(∫
(Lnu)2Ln1

) 1
2

≤ ‖u‖L2‖Ln1‖
1
2∞‖Lnu‖L2 ,

(7.1.3)

hence (7.1.1). Next, by (6.1.9) and (6.1.10) we have, for each vi ∈ {e1, e2},

‖∂vs · · · ∂v1Lnu‖2
L2 ≤ ‖Ln(∂Fn∗vs · · · ∂Fn∗v1)u‖2

L2

+
s∑

k=1

‖Ln(Aαn,k((A
αk
n φn) · Pα

k−1u))‖2
L2 .

(7.1.4)

1See Appendix C for definitions and properties of Hs(T2).
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Let us analyse the first term above when s = 2. Notice that

∂Fn∗v2(∂Fn∗v1u) = 〈∇
(
〈∇u, (DF n)−1v1〉

)
, (DF n)−1v2〉

= 〈(DF n)−1v1D
2u, (DF n)−1v2〉+ 〈D((DF n)−1v1)∇u, (DF n)−1v2〉.

where D2f indicates the Hessian of a function f and D(V ) is the Jacobian of the
vector field V . The term with higher derivatives of u has coefficients bounded by
‖(DF n)−1‖2, while the other term is a differential operator of order one applied
to u. In the general case we can find some Ps−1,ρ such that

|Ln(∂Fn∗vs · · · ∂Fn∗v1)u| ≤ ‖(DF n)−1‖sLn(|∂vs · · · ∂v1u|) + |LnPs−1,ρu|. (7.1.5)

Hence, by (7.1.1), (C.0.4) and (5.3.5), there exists a constant C1(n, s) such that

‖∂vs · · · ∂v1Lnu‖2
L2 ≤ C]‖Ln1‖∞µ2sn‖u‖2

Hs + C1(n, s)‖u‖2
Hs−1 . (7.1.6)

Similarly there exists C2(s, n) such that

t∑
k=1

‖Ln(Aαn,k((A
αk
n φn) · Pα

n,k−1u))‖2
L2 ≤ C2(n, s)‖u‖2

Hs−1 . (7.1.7)

By (7.1.4), (7.1.6) and (7.1.7) we obtain

‖Ln(∂Fn∗v1 · · · ∂Fn∗vs)u‖2
L2 ≤ C]‖Ln1‖∞µ2sn‖u‖2

Hs +Q(n, s)‖u‖2
Hs−1 .

It remains to prove that in the case s = 1 we have an explicit bound on Q(n, 1).
Recall that by (6.1.5) and (7.1.1) we have, for any v ∈ {e1, e2},

‖〈∇Lnu, v〉‖L2 ≤ ‖Ln〈∇u, (DF n)−1 v〉‖L2 + ‖Ln(〈∇φn, (DF n)−1v〉u)‖L2 ,

≤ ‖Ln1‖
1
2∞
(
‖〈∇u, (DF n)−1 v〉)‖L2 + ‖(〈∇φn, (DF n)−1v〉u)‖L2

)
.

(7.1.8)

A bound for the first term is straightforward, since by (5.3.5)

‖〈∇u, (DF n)−1 v〉)‖L2 ≤ C]µ
n‖∇u‖L2 . (7.1.9)

For the second term we use formula (6.1.16) and we have

‖(〈∇φn, (DF n)−1v〉u)‖L2 ≤
n−1∑
j=0

‖〈∇φ1 ◦ F j(x), (DF jxF
n−j)−1v〉‖∞‖u‖L2

≤ C]

n−1∑
j=0

µn−j‖u‖L2 ≤ Cµ,nµ
n‖u‖L2 ,

(7.1.10)

By (7.1.8), (7.1.9), (7.1.10) and (5.5.26) we obtain (7.1.2) for s = 1.
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7.2 Transversality

In this Section we give some useful definitions and results related to the quantities
NF , ÑF defined in section 4.2. Recall that

NF (n) = sup
y∈T2

sup
z1∈F−n(y)

NF (n, y, z1)

ÑF (n) = sup
y∈T2

sup
L
ÑF (n, y, L).

(7.2.1)

Both NF and ÑF depend on the map F , however in the following we will drop
the F dependence to ease notation. An important advantage of Ñ over N is the
following

Proposition 7.2.1. Ñ (n) is sub-multiplicative, i.e Ñ (n+m) ≤ Ñ (n)Ñ (m), for
every n,m ∈ N.

Proof. For any z ∈ T2, let us call L′ the line obtained applying (DF n(z))−1

to L. Then

Ñ (y, L, n+m) =
∑

z∈F−n−m(y)
DFn+m(z)Cu⊃L

| detDF n+m(z)|−1

=
∑

ẑ∈F−n(y)
DFn(ẑ)Cu⊃L

∑
z∈F−m(ẑ)

DFm(z)Cu⊃(DFn(ẑ))−1L

1

| detDFm(z) detDF n(ẑ)|

≤
∑

ẑ∈F−n(y)
DFn(ẑ)Cu⊃L

1

| detDF n(ẑ)|
sup
z̃

sup
L′

∑
z̃∈F−m(ẑ)

DFm(z)Cu⊃L′

1

| detDFm(z)|
,

taking the sup over y ∈ T2 and L we get the claim.

Remark 7.2.2. The above Proposition, in spite of its simplicity, turns out to
be pivotal. The sub-multiplicativity of the sequence Ñ (n) implies the existence of

limn→∞ Ñ (n)
1
n . Also, an estimate of Ñ (n0) for some n0 ∈ N yields an estimate

for all n ∈ N.

The result below, inspired by [16], provides the relation between N and Ñ .

Lemma 7.2.3. Let α = log(λ−µ−2)
log(λ+)

∈ (0, 1) and m0 = m0(n) = dαne we have, for
all n ∈ N

N (n)
1
n ≤ ‖Ln−m01‖

1
n∞

(
Ñ (m0)

1
m0

)α
.

Proof. Given y ∈ T2, we consider z1, z2 ∈ F−n(y) such thatDz1F
nCu∩Dz2F

nCu 6=
{0} and the line L := L(z1) := Dz1F

n (R× {0}). Let v± = (1,±χu) ∈ Cu and
θn := ] (Dz1F

ne1, Dz1F
nv±). Clearly, for each n ∈ N, | cos θn|−1 ≤ a0, for some

74



uniform a0 ≥ 1.2 On the other hand, by formula (5.3.1), Proposition 5.3.1 and
condition (4.1.5) we have

| tan θn| ≤ a0| sin θn| = a0| sin](e1, v±)| | detDz1F
n|‖v±‖

‖Dz1F
ne1‖‖Dz1F

nv±‖
≤ | sin(arctanχu)|a0C∗C

2
?µ

n
+λ
−n
−

= a0C∗C
2
?χuµ

n
+λ
−n
− ,

(7.2.2)

where we have used that sin(arctanx) = x(
√

1 + x2)−1. Next, note that in
the projective space RP2 the cones are canonically identified with two intervals
I1 = [a1, b1] and I2 = [a2, b2], while the line is a point that we also denote by
L. From the assumption on the cones, and (7.2.2), we have that the projective
distance between L and each one of the extremal points of I2 is bounded by

min{dist(L, a2), dist(L, b2)} ≤ a0C∗C
2
?χuλ

−n
− µn+. (7.2.3)

Let us now take m < n to be chosen later and, for z̃ = F n−m(z2), consider the cone
Dz̃F

mCu corresponding to the interval I3 in the projective space. By the forward
invariance of the unstable cone it is clear that Dz̃F

mCu ⊃ Dz2F
nCu, meaning

that I3 ⊃ I2. We are going to prove that L ∈ I3. Let wn,m := Dz2F
n−mv±.

Arguing as before, but remembering also condition (4.1.4), we have

| sin] (Dz̃F
mwn,m, Dz̃F

mv±) | = | sin](wn,m, v±)| | detDz̃F
m|‖v±‖‖wn,m‖

‖Dz̃Fmwn,m‖‖Dz̃Fmv±‖
≥ C−1

∗ C−2
? | sin(arctan(ι?χu))λ

−m
+ µn−

= C−1
∗ C−2

?

ι?χu√
1 + (ι?χu)2

λ−m+ µn−.

(7.2.4)

It follows that, setting Bι? := a0C
2
∗C

4
? ι
−1
? ≥ 1, if λ−m+ µn− ≥ Bι?λ

−n
− µn+, then

L ∈ I3. By a direct computation, and recalling that µ := {µ+, µ
−1
− }+, we see that

the choice m = dαn− βι?e, with α := log(λ−µ−2)
log(λ+)

> 0 and βι? := logBι?
log λ+

≥ 0 yields

the wanted inequality. Also, note that α < 1 since λ− < λ+µ
2 .

The above computation shows that, given z1 ∈ F−n(y), for every z2 ∈ F−n(y)
which is non-transversal to z1, the line L is contained in the cone Dz̃F

mCu, for
z̃ = F n−m(z2). In particular, for every y ∈ T2, one has

sup
z1∈F−n(y)

∑
z2∈F−n(y)

z2�tz1

| detDz2F
n|−1 ≤ sup

L⊂RP2

∑
z2∈F−n(y)
Dz̃F

mCu⊃L

| detDz2F
n|−1

≤ sup
L⊂RP2

∑
z∈F−m(y)
DzFmCu⊃L

| detDzF
m|−1

∑
z2∈F−n+m(z)

| detDz2F
n−m|−1

≤ Ln−m1(z) sup
L⊂RP2

∑
z∈F−m(y)
DzFmCu⊃L

| detDzF
m|−1,

2Notice that, for n = 0, | cos θ0|−1 = | cos(arctan(χu))|−1 =
√

1 + χ2
u ≤ 2.
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where we have used (4.3.2). The above inequality then implies

N (n) ≤ ‖Ln−m1‖∞Ñ (m) ≤ ‖Ldn(1−α)e1‖∞Ñ (dαne).
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Chapter 8

A second Lasota-Yorke
inequality: Results

To state the main result we need a few definitions. From Appendix C we recall
that, for positive integers N ∈ N and s ≥ 1, and for u ∈ Cr(T2),

‖LNu‖2
Hs =

∑
ξ∈Z2

|〈ξ〉sFLNu(ξ)|2, (8.0.1)

where 〈ξ〉 =
√

1 + ‖ξ‖2. Since we will work in Fourier space, it is convenient to
introduce the notion of the dual of a cone in R2 by:

C⊥ = {v ∈ R2 s.t ∃u ∈ C : 〈v, u〉 = 0}, (8.0.2)

and if ξ ∈ Z2 we define ξ∗ := (ξ∗1 , ξ
∗
2) to be the unit vector normal to ξ with

the usual orientation. In addition, we define ρ(ξ∗) = |ξ∗2 |/|ξ∗1 |, for ξ∗1 6= 0, and
ρ(±e2) =∞, and

ϑ(ξ∗) := {ρ(ξ∗), χu}+. (8.0.3)

Let us also define the sequence

Ln := ‖Ln1‖∞. (8.0.4)

Finally, to state the main result one last key assumption is needed. Let us define

n0(F ) := min{n ∈ N : ∀p ∈ T2 ∃z1, z2 ∈ F−np : z1 t z2}. (8.0.5)

We will always assume that the map F satisfies

n0(F ) <∞. (8.0.6)

For simplicity, in the following we will just use the notation n0 instead of n0(F ).

Remark 8.0.1. In [53] it is proven that assumption (8.0.6) is generic. More
precisely, the author proves that for surface partially hyperbolic systems F , the
quantity NF (n) is generically strictly smaller than 1, for n large. Nevertheless,
in Section 10 we will introduce an open set of systems for which (8.0.5) is always
satisfied.
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The scope of this Section is to prove the following Theorem.

Theorem 8.0.2. Let mχu and n0 be the integers given in (5.2.4) and (8.0.5)
respectively. There exist uniform constants C1, c] > 0, Λ > 2 and σ > 1 such
that, for each q0 ≥ n0 and any 1 ≤ s < r, if M = σmχu and N = M + q0,

‖LNu‖Hs ≤ C1

(√
[LMN (q0)]

1
N µ2s

)N
‖u‖Hs + Θχu(M, s)‖u‖s+2. (8.0.7)

where Θχu(N, s) . Cq0Q(M, s)Cµ,MΛc]M and Q(M, s) is the constant given in
Lemma 7.1.1. In addition, if the map F satisfies the following condition

χ−1
u ‖ω‖Cr ≤ C5, (8.0.8)

for some uniform C5 > 0, then there exist β3, β4 ∈ R+ which depend only on C5

such that
Θχu(M, 1) ≤ C]Cq0χ

− 11
2
c] lnµ

u Cβ3

µ,Mµ
β4MM

1
2 . (8.0.9)

We will prove Theorem 8.0.2 in Section 8.4, after several steps.

8.1 Partitions of unity

We will use notations and definitions given in Section 5.2. First of all we want
to decompose the transfer operator using suitable partitions of unity. For each
point z ∈ T2, and q0 ≥ n0, let us set δq0(z) := µ−q0(z)λ+

q0
(z)−1,1 and define

Uz,q0 = {y ∈ T2 : ‖y − z‖ ≤ dεδq0(z)}, (8.1.1)

where2

d = d(χu) = L?(q0, χu)
−1C0χu, (8.1.2)

for some uniform constant C0 to be chosen later. By Besicovitch covering theorem
there exists a finite subset A and points {zα}α∈A such that T2 ⊂

⋃
α Uα where

Uα = 5Uzα,q0 , and such that the number of intersections is bounded by some fixed
constant C]. We then define a family of smooth function {ψα}α supported on Uα
such that

∑
α ψα = 1. Next we construct a refinement of the above partition using

the inverse branches introduced in Section 5.2. For α ∈ A we pick two curves
γα, γ̃α ∈ Υ such that Uα∩γα = {∅} and, recalling Hγα,1 = {h ∈ H : Dh = T2 \γα},
for each h ∈ Hγα,1 ∪Hγ̃α,1 either h(T2) ∩ γα = ∅ or h(T2) ∩ γ̃α = ∅. Note that the
cardinality of Hα,0 := Hγα,1 and Hγ̃α,1 is exactly d.

We can then consider the set Hn
α = {(h1, · · · , hn) ∈ Hn : hj ∈ Hγj−1,α, j ∈

{1, · · · , n}} where γj = γα if hj−1(T2) ∩ γα = ∅ and γj = γ̃α if hj−1(T2) ∩ γα 6= ∅.
Note that the Hn

α has an element for each equivalence class of Hn
∗,γα , defined in

equation (5.2.2), hence it is isomorphic to Hγα,n and has exactly dn elements.
To simplify notation, given α ∈ A and q0 ∈ N, in the following we will denote
Hq0 := Hq0

∗,γα which is then a set with finite cardinality.

1The functions µ−n and λ+n are defined in (4.1.3).
2Recall that L? is the Lipschitz constant of the unstable cone field given in (E.0.2).
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Next, let

ψα,h(z) = ψα ◦ F q0(z)1h,α(z), ∀h ∈ Hq0 , z ∈ T2, (8.1.3)

where 1h,α := 1Uα,h , and Uα,h := h(Uα). Notice that (8.1.3) defines again a C∞
partition of unity, supported on {Uα,h}h∈Hq0 , which have intersection multiplicity
bounded by C]. We have the following result from [4, Lemma 9], whose proof is
adapted to our case.

Lemma 8.1.1. For each u ∈ Cr(T2)

‖u‖2
Hs ≤ C]

∑
α∈A

‖uψα‖2
Hs (8.1.4)∑

α∈A

∑
h∈Hq0

‖uψα,h‖2
Hs ≤ C]‖u‖2

Hs + Cψ(s)‖u‖2
L1 , (8.1.5)

where Cψ(s) depends on ψα. However, Cψ(1) . Cq0(dε)−2.

Proof. For the first inequality note that

‖u‖2
Hs =

∥∥∑
α∈A

uψα
∥∥2

Hs =
∑

(α,α′)∈A×A

〈ψαu, ψα′u〉s.

By the definition of the 〈·, ·〉s the above sum is zero if the supports of ψα and ψα′
do not intersect. For the other terms, denoting with A∗ the set of elements in
A×A for which the above supports intersect, we have:∑

A∗
〈ψαu, ψα′u〉s ≤

∑
A∗

‖ψαu‖2
Hs + ‖ψα′u‖2

Hs

2
≤ C]

∑
α∈A

‖ψαu‖2
Hs .

We now prove (8.1.5). By formula (C.0.4) we have∑
α,h

‖uψα,h‖2
Hs .

∑
α,h

∑
|β|≤s

‖∂β(uψα,h)‖2
L2

.
∑
α,h

∑
|β|≤s

∫
T2

|∂βu|2|ψα,h|2 +
∑
α,h

∑
|β|≤s

∑
|γ|<|β|

Cβ,γ

∫
T2

|∂γu|2|∂|β|−|γ|ψα,h|2

≤ C]‖u‖2
Hs + Cψ(s)

1
2‖u‖2

Hs−1 ≤ C]‖u‖2
Hs + Cψ(s)‖u‖2

L1 ,

where in the last line we used the fact that the ψα,h are partitions of unity and
Lemma C.0.1. This proves (8.1.5) in the general case s ≥ 1. Next we compute
explicitly the second summation in the second line above for s = 1, which is
bounded by:∑

α,h

∫
T2

|u|2|∇(ψα,h)|2 ≤
∑
α,h

∫
T2

|u|2|(DF q0)t∇ψα ◦ F q01h,α|2

≤ ‖(DF q0)t‖2
∞

∑
α

∫
T2

∑
h∈Hq0

|∇ψα|2 ◦ F q01h,α|u|2 ≤ Cq0 sup
α
‖ψα‖2

C1‖u‖2
L2 .
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Finally, since ψα is supported on Uα which has diameter bounded by dεµ−q0λ−q0+ ,
it is easy to see that there exists Cq0 such that

‖ψα‖C1 . Cq0 (dε)−1 ,

hence Cψ(1)
1
2 . Cq0 (dε)−1, from which we conclude.

Remark 8.1.2. Note that, under condition (8.0.8), recalling (E.0.2), we have

L?(q0, χu) = C]Cq0χ
1−c] lnµ
u ,

which implies that, by (8.1.2), Cψ(1) ≤ ε−2Cq0χ
−c] lnµ
u .

The next Proposition is the main ingredient for the proof of Theorem 8.0.2.

Proposition 8.1.3. Let σ as in (5.4.43) and n0 as in (8.0.5). For each ξ ∈ Z2,
m ∈ N, q0 ≥ n0, h̃ ∈ H∞, α ∈ A and h ∈ Hq0 such that h̄ =h̃ ◦ h is well-
defined, Dph̄mξ

∗ ∈ Cε,c for each p ∈ suppψα,h and Dph̄n0ξ
∗ /∈ Cu, there exists Mξ,

depending only on ξ and m, such that σm ≤ Mξ < ∞, supξ:ξ∗ /∈CuMξ < ∞ and,
for each t ≥ 2,

〈ξ〉t|FLq0(ψα,hLMξu)(ξ)| ≤ K1(t,Mξ,m)‖u‖t, (8.1.6)

where K1(t,Mξ,m) ≤ C]Cψ,q0Λc]Mξ , with Cψ,q0 a constant which depends on ψα,h.
In addition, if the map satisfies condition (8.0.8), then there exist Cε,q0 , β1, β2 > 0
such that3

K1(2,Mξ,m) ≤ C]Cε,q0χ
−c] lnµ
u Cβ1

µ,Mξ
µβ2Mξϑ(ξ∗)−6. (8.1.7)

Proof. Let ξ = (ξ1, ξ2), let j ∈ {1, 2} such that ‖ξ‖ ≤ 2|ξj|, and Mξ > 0 to be
chosen later. Since ξjFu = −iF∂xju, ‖Fu‖∞ . ‖u‖L1 and using (6.0.1) we have,

for each t ≥ 1 and setting u
Mξ

α,h = ψα,hLMξu,

〈ξ〉t|FLq0(ψα,hLMξu)(ξ)| . ‖Lq0(u
Mξ

α,h)‖L1 + |ξj|t|FLq0(u
Mξ

α,h)|

. ‖u‖t + |F∂txjL
q0(u

Mξ

α,h)|.
(8.1.8)

Let us estimate the last term. Letting Jk(p) = (detDpF
k)−1 we have[

F∂txjL
q0(u

Mξ

α,h)
]

(ξ) =

∫
Uα
dz e−2πi〈z,ξ〉∂tzj

[
Jq0ψα,hLMξu

]
◦ h(z)

=
∑

|η1|+|η2|=t

Cη1,η2

∫
Uα
dz e−2πi〈z,ξ〉∂η1 [ψα,h] ◦ h(z) · ∂η2

[
Jq0LMξu

]
◦ h(z).

(8.1.9)

Operating the change of variables γ`(τ) = z + `ξ + τξ⊥, where ξ⊥ is the unit
vector perpendicular to ξ and `, τ ∈ Iq0 = [−dεδq0(zα),dεδq0(zα)],4 we have∣∣∣F∂txjLq0(u

Mξ

α,h)
∣∣∣ ≤ C] sup

|η1|+|η2|=t

∫
Iq0

d`

∣∣∣∣∣
∫
Iq0

dτ
{
∂η1ψα · ∂η2

[
Jq0LMξu

]
◦ h
}

(γ`(τ))

∣∣∣∣∣ .
3Recall the definition of ϑ(ξ∗) in (8.0.3).
4This is because γ` is supported in some 5Uzα,q0 given in (8.1.1), i.e. the integrand is

supported on an interval depending on q0.
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Let m(z, h̃ ◦ h) satisfies (5.4.44) with n? = min{m, c̄2 logχ−1
u }, and set m(h̃) =

sup` supz∈γ`m(z, h̃ ◦ h).5 We then define

Mξ = sup
h̃∈H∞

m(h̃), (8.1.10)

and we observe that, by Lemma (5.4.4), Mξ ≥ σm, where σ is defined in (5.4.43).
Moreover, the assumption Dph̄n0ξ

∗ /∈ Cu and condition (4.1.4) imply that Mξ <
∞. At the end of the proof we will show that supξ∗ /∈fCuMξ <∞.
Next, we define Ĥ∗α = {hmα(h̄)}h̄∈H∞ , Ĥα = {ĥ : ĥ ◦ h ∈ Ĥ∗α}, vα,ĥ = LMξ−m(ĥ)+q0u
and write

HMξ =
⋃
ĥ∈Ĥα

{
h′ ◦ ĥ : h′ ∈ HMξ−m(ĥ)+q0

}
(8.1.11)

which allows to define the decomposition

LMξu =
∑
ĥ∈Ĥα

Jm(ĥ)−q0 ◦ ĥ ·
[
LMξ−m(ĥ)+q0u

]
◦ ĥ =

∑
ĥ∈Ĥα

Jm(ĥ)−q0 ◦ ĥ · vα,ĥ ◦ ĥ.

Thus, recalling (6.1.8),∣∣∣F∂txjLq0(u
Mξ

α,h)
∣∣∣

≤ C] sup
|η1|+|η2|=t

∑
ĥ∈Ĥα

∫
Iq0

d`

∣∣∣∣∣
∫
Iq0

dτ
{
∂η1ψα · Jm(ĥ) ◦ ĥ ◦ h

[
P η2

m(ĥ),|η2|
vα,ĥ

]
◦ ĥ ◦ h

}
(γ`(τ))

∣∣∣∣∣
Next, we apply Lemma E.0.1 to γ` with δ = dεδq0(zα), note that the hypotheses
of the Lemma are satisfied thanks to the assumptions on ξ. We thus obtain closed
curves γ̃` with j + 1 derivative bounded by Cq0,j∆

j
γ̃. It follows∣∣∣F∂txjLq0(u

Mξ

α,h)
∣∣∣

≤ C] sup
|η1|+|η2|=t

∑
ĥ∈Ĥα

∫
Iq0

d`

∣∣∣∣∫
T
dτ
{
∂η1ψα · Jm(ĥ) ◦ ĥ ◦ h

[
P η2

m(ĥ),|η2|
vα,ĥ

]
◦ ĥ ◦ h

}
(γ̃`(τ))

∣∣∣∣
Next, we apply, for each inverse branch ĥ ◦ h, Lemma 5.4.4 to the curves γ̃` and
obtain admissible central curves ν̂` = ν`◦h`,m.6 Thus, we can rewrite the integrals
in the right hand side of the above equation as follows∫

T
dτ
{
∂η1ψα · Jm(ĥ) ◦ ĥ ◦ h

[
P η2

m(ĥ),|η2|
vα,ĥ

]
◦ ĥ ◦ h

}
(γ̃`(τ))

=

∫
T
dτΨν̂`(τ)

{
(∂η1ψα) ◦ Fm(ĥ) ·

[
P η2

m(ĥ),|η2|
vα,ĥ

]}
(ν̂`(τ)),

5Notice that m depends on ξ through γ`. Also, it would be more precise to call it m(h̃ ◦ h),
but we keep the notation as simple as possible.

6Notice that ν` depends on ĥ, but we drop this dependence for simplicity.
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where Ψν̂`(τ) = h′`,m[detDν̂`(τ)F
m(ĥ)]−1. By Proposition 6.1.3 applied with n =

m(ĥ), ϕ = Ψν̂`(∂
η1ψα) ◦ Fm(ĥ) ◦ ν̂`‖Ψν̂`(∂

η1ψα) ◦ Fm(ĥ)‖−1
Ctν̂`

, ψ = 1, u = vα,ĥ and

U = T2, the above integral is bounded by

C̃(t,m(ĥ),m)‖Ψν̂`(∂
η1ψα) ◦ Fm(ĥ)‖Ctν̂`‖vα,ĥ‖t|Iq0|, (8.1.12)

where |Iq0 | ≤ 2dεδq0(zα) ≤ 2dελ−q0+ µq0 . Accordingly,∣∣∣F∂txjLq0(u
Mξ

α,h)
∣∣∣

≤ C] sup
|η1|+|η2|=t

∑
ĥ∈Ĥα

C̃(t,m(ĥ),m)‖Ψν̂`(∂
η1ψα) ◦ Fm(ĥ)‖Ctν̂`‖vα,ĥ‖t|Iq0|.

(8.1.13)

By (6.1.12), C̃(t,m(ĥ),m) ≤ C]Λ
c]Mξ and

C̃(2,m(ĥ),m) ≤ C]µ
2Mξ sup

s∈suppϕ
[λ+
m ◦ ν̂`(s)ς2

m(ĥ)
◦ ν̂`(s) + ςm(h) ◦ ν̂`Cq0∆γ̃]. (8.1.14)

Note that, by Corollary 6.2.2

‖vα,h‖t = ‖LMξ−mα(h)+q0u‖t ≤ Cµ,Mξ
µMξ‖u‖t (8.1.15)

and, by Lemma 5.5.3, for each α ∈ A∑
ĥ∈Ĥα

‖Ψν̂(ĥ)‖Ct ≤
∑

ĥ∈HMξ

‖Ψν̂`(ĥ)‖Ct ≤ Au(t,Mξ,m), (8.1.16)

where

Au(τ,Mξ,m) :=


C]

(
∆γ̃ + Iγ,m(ĥ),mϑ

−1
γ̃

)
µmJγ,m τ = 0

(Cµ,m(ĥ)µ)2m(ĥ)
(

∆γ̃ + Iγ,m(ĥ),mϑ
−1
γ

)2

µmJγ,m τ = 1

O?(Mξ,m) · {ϑ−2
γ , ‖M0(m, ·)‖∞, (λ+

m)2}+ τ = 2

C]Λ
c]Mξ τ > 2.

(8.1.17)

Since ‖(∂η1ψα) ◦ Fm(ĥ)‖Ctν̂` ≤ C]Cψ,q0Λc]Mξ , this concludes the case t > 2.

It remains to prove (8.1.7). In this case we assume (8.0.8) and we estimate the
terms in (8.1.12) for t = 2. Arguing as in Remark 8.1.2 we first have ‖ψα‖Cr ≤
C]Cε,q0χ

−c] lnµ
u .

Next, setting temporarily m = m(ĥ), gα = ∂η1ψα, and Gα(s) = gα ◦ γ̃` ◦ h`,m(s),
and recalling that Fmν̂` = γ̃` ◦ h`,m,

G′α = 〈∇gα ◦ γ̃` ◦ h`,m, γ̃′` ◦ h`,mh′`,m〉
G′′α = 〈(D∇gα)γ̃′` ◦ h`,m, γ̃′` ◦ h`,m〉(h′`,m)2

+ 〈∇gα ◦ γ̃` ◦ h`,m, γ̃′′` ◦ h`,m(h′`,m)2 + γ̃′` ◦ h`,mh′′`,m〉.
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Then, by (5.4.46) (with hm = hm,`) and since (E.0.1), (E.0.2) imply ∆γ̃ ≤
Cq0,εχ

−c] lnµ
u µm,

‖(∂η1ψα) ◦ Fm(ĥ)‖C1
ν̂`
≤ Cq0,εϑ

−1
γ̃ µMξ

‖(∂η1ψα) ◦ Fm(ĥ)‖C2
ν̂`
≤ Cε,q0‖M q0(m, ·)‖∞ + Cε,q0µ

2Mξχ
−c] lnµ
u ϑ−2

γ̃ .
(8.1.18)

Since (Ψν̂`Gα)′′ = Ψ′′ν̂`Gα+2Ψ′ν̂`G
′
α+Ψν̂`G

′′
α, by Lemma 5.5.3, (8.1.16) and (8.1.18)

∑
ĥ∈Ĥα

‖Ψν̂`(∂
η1ψα) ◦ Fm(ĥ)‖C2

ν̂`

≤ C]Cε,q0χ
−c] lnµ
u Au(2,Mξ,m) + Au(1,Mξ,m)Cq0,εϑ

−1
γ̃ µMξ

+ Au(0,Mξ,m)Cε,q0

[
‖M q0(m, ·)‖∞ + µ2Mξχ

−c] lnµ
u ϑ−2

γ̃

]
.

(8.1.19)

To conclude, we need to relate all the quantities to ϑ(ξ∗). First we notice that, by
(5.4.41) and Lemma E.0.1, ϑ−1

γ̃ ≤ ϑγ
−1 = [{ρ(ξ∗), χu}+]

−1
=: ϑ(ξ∗)−1. Therefore,

recalling (5.4.57), it follows that λ+
m◦ ν̂`(s) ≤ C]ϑ(ξ∗)−1µm, for each s ∈ T2. Next,

choosing n? = min{c̄2 logχ−1
u ,m} in Lemma 5.4.2, we can check that

amn? + cmn? ≤ C] ; bmn? ≤ Cµ,n? = Cµ,Mξ
; sn? = Cµ,n?µ

6n?

since, by (5.3.2), ςn? ≤ [Cµ,n? + C]χuϑ(ξ∗)−1] ≤ Cµ,n? . Similarly ςm ≤ Cµ,m. We
can use this to compute, in (5.4.45),7

‖Mn0(m, ·)‖∞ ≤ {Cq0,εχ
−c] lnµ
u µ2m, (1 + C]µ

2m)ϑ(ξ∗)−1µm}+

≤ {Cq0,εϑ(ξ∗)−c] lnµµ2m, (1 + C]µ
2m)ϑ(ξ∗)−1µm}+

≤ Cq0,εµ
3mϑ(ξ∗)−{1,c] lnµ}+ .

Consequently, we can also compute

‖Mn0(m, ·)‖∞ ≤ {µ6mCq0,εχ
−c] lnµ
u , Cq0,εµ

3mϑ(ξ∗)−{1,c] lnµ}+ , ϑ(ξ∗)−2, C]ϑ(ξ∗)−2µm}+

≤ Cq0,εµ
3mϑ(ξ∗)−1−{1,c] lnµ}+ .

Finally, by the above estimates and condition (5.4.44),8

λ+
m ◦ ν̂`(s) ≤ C]

c[a
m
n?µ

3mMn0(m, t)

sn?

≤ C]
µ3(Mξ+m)

C2
µ,n?µ

6n?
ϑ(ξ∗)−1−{1,c] lnµ}+

≤ C]µ
3Mξϑ(ξ∗)−1−{1,c] lnµ}+ ,

(8.1.20)

so that ςMξ
≤ C]µ

3Mξϑ(ξ)−1−{1,c] lnµ}+ , and we immediately have by (6.1.12)

C̃(2,m(h),m) ≤ C]µ
9Mξϑ(ξ∗)−3−{1,c] lnµ}. (8.1.21)

7Recall that q0 ≥ n0.
8Note that, since m is the smaller integer such that the second of (5.4.44) holds, there exists

C] such that η̄n?(m+ 1,m; t)Mn0(m, t) ≥ C]sn?
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We can now conclude. Using the above estimates it follows that there are a, b > 0
such that

Jγ,m ≤ C],

Iγ̃,m,m ≤ Cq0,ε{Cµ,m, µMξχ
−c] lnµ
u }+

O?(Mξ,m) ≤ C]Cq0,εC
a
µ,Mξ

µbMξ ,

which imply

Au(0,Mξ,m) ≤ Cq0,εµ
2Mξχ

−c] lnµ
u ϑ(ξ∗)−1,

Au(1,Mξ,m) ≤ Cq0,εCµ,Mξ
µ7Mξχ

−c] lnµ
u ϑ(ξ∗)−2

Au(2,Mξ,m) ≤ Cq0,εC]C
a
µ,Mξ

µbMξϑ(ξ∗)−1−{1,c] lnµ}+ .

(8.1.22)

Using this in (8.1.19) we find β1, β2 > 0 such that∑
ĥ∈Ĥα

‖Ψν̂`(∂
β1ψα) ◦ Fm(ĥ)‖C2

ν̂`
≤ Cq0,εC

β1

µ,Mξ
µβ2Mξϑ(ξ∗)−3χ

−c] lnµ
u . (8.1.23)

Hence, by (8.1.13), (8.1.21), and (8.1.23), we have∣∣∣F∂2
xj
Lq0(u

Mξ

α,h)
∣∣∣ ≤ Cq0,εC

β1

µ,Mξ
µβ2Mξϑ(ξ∗)−6χ

−c] lnµ
u ,

which concludes the proof of (8.1.7), recalling equation (8.1.8).
We still ow the reader the proof that supξ∗ /∈CuMξ < ∞. We notice that, by
equations (8.1.20), (8.1.10) and (4.1.5), for each ξ∗ /∈ Cu,

λ
Mξ

− ≤ C?C]µ
3Mξϑ(ξ∗)−1−{1,c] lnµ}+ ,

which yields Mξ ≤ log(λ−µ
−3)−1 log(C?C]ϑ(ξ∗)−1−{1,c] lnµ}+), which is finite for

each ξ∗ /∈ Cu, by the definition of ϑ(ξ∗) in (8.0.3).

We henceforth consider σ > 1 as in (5.4.43) and mχu as in (5.2.4), and we define

mχu = σmχu . (8.1.24)

8.2 Decomposition in Fourier space

Let Zu = {ξ : ξ∗ ∈ Cu} and Zcu = Z2\Zu. Recalling that ρ(ξ∗) = |ξ∗2 ||ξ∗1 |−1, ρ(e2) =
∞,

Zu = {ξ : ρ(ξ∗) ≤ χu} ; Zcu = {ξ : ρ(ξ∗) > χu}.

Next, take N = q0 +M , for some M ∈ N to be chosen shortly. For simplicity, it
is convenient to introduce the following notation for A ⊂ Z2, h, h′ ∈ Hq0 :

Sαq0,M(A, h, h′) =
∑
ξ∈Z2

1A(ξ)〈ξ〉2s[FLq0(uMα,h)](ξ)[FLq0(uMα,h′)](ξ), (8.2.1)
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where uMα,h = ψα,hLMu. Then, by equation (8.1.4) we have

‖LNu‖2
Hs ≤ C]

∑
α

∥∥ ∑
h∈Hq0

Lq0(uMα,h)
∥∥2

Hs

= C]
∑
α

∑
(h,h′)∈Hq0×Hq0

〈Lq0(uMα,h),Lq0(uMα,h′)〉s

= C]
∑
α

∑
(h,h′)∈Hq0×Hq0

∑
ξ∈Z2

〈ξ〉2s[FLq0(uMα,h)](ξ)[FLq0(uMα,h′)](ξ)

= C]
∑
α

∑
(h,h′)∈Hq0×Hq0

Sαq0,M(Zu, h, h′) + C]
∑
α

∑
(h,h′)∈Hq0×Hq0

Sαq0,M(Zcu, h, h′).

(8.2.2)

We start estimating the second term in the above equation, in the next section
we will treat the term with ξ ∈ Zu.

Lemma 8.2.1 (Bound on Zcu). Let M := supξ∈ZcuMξ.
9 For each M ≥ M ,

1 ≤ s ≤ r − 1, h ∈ Hq0 and N = q0 +M,∑
ξ∈Z2

|〈ξ〉s1Zcu(ξ)[FLq0(uMα,h)](ξ)|2 . Θs‖u‖2
s+2, (8.2.3)

where Θs = (Cψ,q0Cµ,Mµ
MΛc]M)2 and, under condition (8.0.8),

Θ1 := (Cε,q0C
β1

µ,Mµ
β2M)2χ

−11−c] log µ
u M. (8.2.4)

Proof. Since ξ∗ /∈ Cu, by the definition of mχu in (5.2.4), for each p ∈ T2, h ∈
H∞

Dphmχuξ
∗ ∈ Cc,ε

Dphn0ξ
∗ /∈ Cu,

(8.2.5)

so the hypothesis of Proposition 8.1.3 are satisfied with m = mχu . We will treat
the case s > 1 first. For each M ≥M , we have∑

ξ∈Z2

|〈ξ〉s1ZcuFL
q0(uMα,h′)|2 =

∑
ξ∈Z2

〈ξ〉−4|〈ξ〉s+21ZcuFL
q0(ψα,h′LMξ(LM−Mξu))|2

. (Cψ,q0Λc]M)2‖LM−Mu‖2
s+2.

(8.2.6)

where we used the fact that Λ > 2 and the convergence of the series. The
statement (8.2.3) for s > 1 then follows since, by Corollary 6.2.2,

‖LM−Mu‖2
t ≤ C2

µ,Mµ
2M‖u‖2

t , ∀t ≥ 1.

9Recall that thisi is finite by Proposition 8.1.3.
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Let us move on the s = 1 case. For any R > 0 let BR = {ξ ∈ Z2 : ‖ξ‖ ≤ R} and
Bc
R = Z2 \BR. Then∑

ξ∈Z2

|〈ξ〉s1ZcuFL
q0(uMα,h′)|2

=
∑

ξ∈Zcu∩BR

〈ξ〉−2|〈ξ〉s+1FLq0(uMα,h′)|2 +
∑

ξ∈Zcu∩BcR

〈ξ〉−3|〈ξ〉s+1FLq0(uMα,h′)〈ξ〉s+2FLq0(uMα,h′)|.

For each ξ ∈ Zcu we can apply Proposition 8.1.3 to have∑
ξ∈Zcu∩BR

|〈ξ〉FLq0(uMα,h′)|2 ≤ C2
µ,Mµ

2M‖u‖2
2

∑
ξ∈Zcu∩BR

〈ξ〉−2K1(2,Mξ,mχu)2 (8.2.7)

and ∑
ξ∈Zcu∩BcR

|〈ξ〉FLq0(uMα,h′)|2

≤ C2
µ,Mµ

2M‖u‖2‖u‖3

∑
ξ∈Zcu∩BcR

〈ξ〉−3K1(2,Mξ,mχu)K1(3,Mξ,mχu).
(8.2.8)

We use the estimate of K1(2,Mξ,mχu) in (8.1.7) for the sum in (8.2.7), with
ϑ(ξ∗) = ρ(ξ∗), since ξ ∈ Zcu, and we have∑

ξ∈Zcu∩BR

〈ξ〉−2K1(Mξ, 2)2 . (Cε,q0χ
−c] lnµ
u Cβ1

µ,Mµ
β2M)2

∑
ξ∈Zcu∩BR

〈ξ〉−2ρ(ξ∗)−12

. (Cε,q0C
β1

µ,Mµ
β2M)2χ

−11−c] lnµ
u logR,

(8.2.9)

since ∑
ξ∈Zcu∩BR

〈ξ〉−2ρ(ξ∗)−12 .
∫ R

0

∫
{tan θ>χu}

1

1 + ρ2

1

(tan θ)12
ρdρdθ . χ−11

u logR.

(8.2.10)
Similarly, for the sum in (8.2.8), we have∑

ξ∈Zcu∩BcR

〈ξ〉−3K1(2,Mξ,mχu)K1(3,Mξ,mχu)

. Cε,q0χ
−c] lnµ
u Cβ1

µ,Mµ
β2M

∑
ξ∈Zcu∩BcR

〈ξ〉−3ρ(ξ∗)−6Λc]Mξ

. Cε,q0C
β1

µ,Mµ
β2Mχ

−5−c] lnµ
u R−1Λc]M .

(8.2.11)

Choosing R = Λc]M by (8.2.7) and (8.2.8) we have the following estimate:∑
ξ∈Z2

|〈ξ〉1ZcuFL
q0(uMα,h′)|2 . (Cε,q0C

β1

µ,Mµ
β2M)2χ

−11−c] lnµ
u M‖u‖2

3, (8.2.12)

from which we conclude the proof of (8.2.3) also for the case s = 1.
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8.3 The case ξ∗ ∈ Cu

In this case we cannot apply Proposition 8.1.3 directly as we did in the previous
section. The main reason is that there could be “bad” vectors ξ∗ which are in an
unstable direction, so (8.2.5) may fail. Here transversality plays a major role.

Lemma 8.3.1 (Bound on Zu). If there exists q0 ∈ N such that for each ξ ∈ Z
the hypothesis of Proposition 8.1.3 are satisfieded, then there exist Cq0 such that,
for each M ≥ mχu ,∑
α

∑
(h,h′)∈Hq0×Hq0

∑
ξ∈Z2

1Zu(ξ)〈ξ〉2s[FLq0(uMα,h)](ξ)[FLq0(uMα,h′)](ξ)

≤ N (q0)µ2sq0
∑
h∈Hq0

‖uMα,h‖2
Hs + Cq0

∑
h∈Hq0

‖uMα,h‖2
Hs−1 + Cq0Q(M, s)

√
Θs‖u‖s+2‖u‖Hs ,

where Q(M, s) is given in (7.1.2) and Θs in Lemma 8.2.1.

The rest of this Section is devoted to the proof of the above Lemma. We
divide the argument in three Steps.

Step I (Local transversality)

We need a definition of transversality uniform on the elements the partition of
unity (8.1.3):

Definition 8.3.2. Given n ∈ N and h, h′ ∈ Hn we say that h tnα h′ (h is transver-
sal to h′ on α at time n) if for every z ∈ h(Uα) and w ∈ h′(Uα) such that
F n(z) = F n(w) ∈ Uα :

DzF
nCε,u ∩DwF

nCε,u = {0}. (8.3.1)

Next, we relate the (pointwise) Definition 4.2.1 to the (local) Definition 8.3.2.

Lemma 8.3.3. The constant C0 in (8.1.2) can be chosen such that: for all α ∈ A,
p ∈ Uα ⊂ T2 and h, h′ ∈ Hq0, if z1 = h(p) and z2 = h′(p), then z1 t z2 implies
h tq0α h′.

Proof. Recall that z1 t z2 means

Dz1F
q0Cu ∩Dz2F

q0Cu = {0}. (8.3.2)

As Cu,ε b Cu, clearly Dz1F
q0Cu,ε b Dz1F

q0Cu. So the above implies also

Dz1F
q0Cu,ε ∩Dz2F

q0Cu,ε = {0}.

Let p̃ ∈ Uα, p̃ 6= p, and define z̃1 = h(p̃) and z̃1 = h′(p̃). We claim that, for each
v ∈ Cu,ε, the difference between Dz1F

q0v and Dz̃1F
q0v is smaller than the opening

of Dz1F
q0Cu, provided we choose Uα small enough. This suffices to conclude the

argument.
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We compute a lower bound for the opening of the connected components of
Dz1F

q0Cu \Dz1F
q0Cu,ε. By Proposition 5.3.1, and by formula (5.3.1), we deduce

that, for each unitary vectors v ∈ Cu,ε and w 6∈ Cu ∪Cc,

](Dz1F
q0v,Dz1F

q0w) =
| detDz1F

q0|](v, w)

‖Dz1F
q0v‖‖Dz1F

q0w‖
≥ C∗χuε

µ−q0(z)λ+
q0

(z)
= C∗χuεδq0(z1).

On the other hand let us recall that uh,q0(p) defined in (5.2.8) gives the slope of
the boundary of the cone Dhα(p)F

q0Cu, and it is a Lipschitz function of p. In
particular Lemma E.0.1 provides an estimate for the Lipschitz constant L?(q0)
given in (E.0.2). Then, by the definition of Uz,q0 in (8.1.1) and (8.1.2), we have
the claim, since

‖Dz1F
q0v −Dz̃1F

q0v‖ ≤ L?(q0)‖z1 − z̃1‖ ≤ L?(q0)L?(χu, q0)−1C0χuεδq0(z1)

≤ C]C0χuεδq0(z1).

Clearly the same is true replacing z1, z̃1, h with z2, z̃2, h
′, and the result follows.

Lemma 8.3.4. Let mχu given in (5.2.4). For every p ∈ Uα, M > mχu and
z̃, w̃ ∈ F−q0(p) such that z̃ t w̃ we have

R2 =
(
(DzF

M+q0)∗
)−1

C⊥ε,c ∪
(
(DwF

M+q0)⊥
)−1

C⊥ε,c, (8.3.3)

for every z ∈ h(z̃) and w ∈ h′(w̃), h, h′ ∈ HM .

Proof. By assumption Dz̃F
q0Cu ∩ Dw̃F

q0Cu = {0} which, together with
condition (5.2.4) implies that for every z1 ∈ F−M(z̃) and z2 ∈ F−M(w̃)

Dz̃F
q0(Dz1F

M(R2 \Cc)) ∩Dw̃F
q0(Dz2F

M(R2 \Cc)) = {0}. (8.3.4)

Therefore, setting N = q0 +M , there are z, w ∈ F−N(p) such that

DzF
N(R2 \Cc) ∩DwF

N(R2 \Cc) = {0}. (8.3.5)

Now we can conclude the argument showing that the above implies the statement.
Indeed, equation (8.3.5) obviously implies(

DzF
N(R2 \Cc)

)⊥ ∩ (DwF
N(R2 \Cc)

)⊥
= {0}.

For any cone K ⊂ R2 and any z ∈ T2, one has (DzF
NK)∗ =

(
(DzF

N)∗
)−1K⊥

and (R2 \ K)⊥ = R2 \ K⊥. We then have(
(DzF

N)∗
)−1

(R2 \C⊥c ) ∩
(
(DwF

N)∗
)−1

(R2 \C⊥c ) = {0},

which in turn implies that R2 =
(
(DzF

N)∗
)−1

C⊥c ∪
(
(DwF

N)∗
)−1

C⊥c . The
conclusion then follows using Lemma 8.3.3 and obtaining the statement for the
smaller cones Cε,c.
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Using Definition 8.3.2, and recalling notation (8.2.1), we have the following
decomposition into transversal and non transversal terms:∑

(h,h′)∈Hq0×Hq0

Sαq0,M(Zu, h, h′)

=
∑
ht
q0
α h′

Sαq0,M(Zu, h, h′) +
∑
h�t
q0
α h′

Sαq0,M(Zu, h, h′).
(8.3.6)

Step II (Estimate of transversal terms)

In this step we will prove that∑
ht
q0
α h′

Sαq0,M(Zu, h, h′) ≤ C]Cq0Q(M, s)
√

Θs‖u‖s+2‖u‖Hs , (8.3.7)

where Θs is given in Lemma 8.2.1.
If M > mχu , for h tq0α h′, Lemma 8.3.3 and Lemma 8.3.4 imply that, for any ξ ∈
Z2, either (DzF

N)∗ξ ∈ (Cε,c)
⊥ for every z ∈ supp(ψα,h), or (DzF

N)∗ξ ∈ (Cε,c)
⊥

for every z ∈ supp(ψα,h′). We then decompose Zu = Z1 ∪ Z2, where

Z1 = {ξ ∈ Zu : (DzF
N)∗ξ ∈ C∗ε,c ∀z ∈ suppψα,h}, Z2 = Zu \ Z1,

and we write

Sαq0,M(Zu, h, h′) = Sαq0,M(Zu ∩ Z1, h, h
′) + Sαq0,M(Zu ∩ Z2, h, h

′). (8.3.8)

It is enough to estimate the first addend, the second being analogous. Notice
that for each ξ ∈ Zi, i ∈ {1, 2} we can apply Proposition (8.1.3) with m = mχu .
By the Cauchy-Schwartz inequality we have

|Sαq0,M(Zu ∩ Z1, h, h
′)| .

∑
ξ∈Z2

|〈ξ〉s1Zu∩Z1FLq0(uMα,h)|2
 1

2

‖Lq0(uMα,h′)‖Hs .

(8.3.9)

Moreover, by (7.1.2), ‖Lq0(uMα,h′)‖Hs ≤ CQ(M, s)‖u‖Hs . On the other hand, we
can bound the sum inside the square root using the same argument of the proof
of Lemma 8.2.1, since the key condition (8.2.5) is now replaced by ξ ∈ Z1, with
the difference that this time ϑ(ξ∗) = χu, since ξ ∈ Zu, so we use the estimate∑

ξ∈Zu∩Z1∩BR

〈ξ〉−2 ≤ C]χu logR

instead of (8.2.10). We thus have

|Sαq0,M(Zu ∩ Z1, h, h
′)| . Q(M, s)

√
Θs‖u‖s+2‖u‖Hs .

Of course the same computation is valid for the second term of (8.3.8) from which,
summing over h��tq0α h

′, we conclude the proof of (8.3.7).
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Step III (Estimate of non-transversal terms).

We now want to estimate the sum in (8.3.6) for h��tq0α h
′. We are going to prove

that, for N = q0 +M ,∑
h�t
q0
α h′

〈Lq0(uMα,h),Lq0(uMα,h′)〉s .N (q0)µ2sq0
∑
h∈Hq0

‖uMα,h‖2
Hs

+ Cq0
∑
h∈Hq0

‖uMα,h‖2
Hs−1 .

(8.3.10)

Keeping the same notation used previously, we write∑
h�t
q0
α h′

〈Lq0(uMα,h),Lq0(uMα,h′)〉s =
∑
h∈Hq0

∑
h′:h′�t

q0
α h

〈Lq0(uMα,h),Lq0(uMα,h′)〉s. (8.3.11)

By equation (C.0.4) and the definition of the inner product (C.0.3), there are
Cγ,β such that

〈Lq0(uMα,h),Lq0(uMα,h′)〉s =
∑
γ+β=s

Cγ,β〈∂γx1
∂βx2

(Lq0(uMα,h), ∂
γ
x1
∂βx2
Lq0(uMα,h′)〉L2 .

(8.3.12)
We then use equation (7.1.5) and we have, for every γ, β such that γ + β = s

|∂γx1
∂βx2

(Lq0uMα,h)| ≤ ‖(DF q0)−1‖s∞Lq0(|∂γx1
∂βx2

uMα,h|) + Lq0(P q0
s−1u

M
α,h)

where P q0
s−1 is a differential operator of order s − 1. By (5.3.5) ‖(DF q0)−1‖s∞ ≤

Cµsq0 . Clearly the same inequality holds for h′ and we use this in (8.3.12) to
obtain ∑

γ+β=s

Cγ,β〈∂γx1
∂βx2

(Lq0(uMα,h), ∂
γ
x1
∂βx2
Lq0(uMα,h′)〉L2

. µ2sq0
∑
γ+β=s

Cγ,β〈Lq0(|∂γx1
∂βx2

uMα,h|),Lq0(|∂γx1
∂βx2

uα,h′ |)〉L2

+ Cq0‖uMα,h‖Hs−1‖uMα,h′‖Hs−1 .

(8.3.13)

Since uMα,h and uMα,h′ are supported on invertibility domains of F q0 ,

Lq0|(∂γx1
∂βx2

uMα,τ |) =
|∂γx1

∂βx2
uMα,τ | ◦ τ

| detDF q0| ◦ τ
, τ ∈ {h, h′}. (8.3.14)

We define χτ := |∂γx1
∂βx2

uMα,τ | ◦ τ and gτ := | detDFN | ◦ τ and we have

〈Lq0(|∂γx1
∂βx2

uMα,h|),Lq0(|∂γx1
∂βx2

uMα,h′ |)〉L2 =

∫
T2

χhχh′√
ghgh′
√
ghgh′

≤ 1

2

∫
T2

χ2
h

gh′gh
+

1

2

∫
T2

χ2
h′

gh′gh
,

(8.3.15)

where we used the elementary inequality ab ≤ 1
2
(a2 + b2) with a =

χh√
ghgh′

, b =
χh′√
ghgh′

. In order to obtain (8.3.10), we need to sum equation (8.3.13) over h ∈ Hq0
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and h′��tq0α h. Let us begin with the first term. Consider one of the integrals in
(8.3.15), for example the first one. By Definition 7.2.1 of N (q0) and Lemma 8.3.3
it follows that∑

h

∑
h′:h′�t

q0
α h

∫
T2

χ2
h

gh′gh
≤
∑
h

∫
T2

χ2
h

gh

∑
h′:h′�tNα h

1

gh′
≤ N (q0)

∑
h

∫
T2

|∂γx1
∂βx2

uMα,h|2 ◦ h
| detDFN | ◦ h

= N (q0)
∑
h

‖Lq0|∂γx1
∂βx2

uMα,h|2‖L1 ≤ N (q0)
∑
h

‖∂γx1
∂βx2

uMα,h‖2
L2 .

(8.3.16)

By symmetry we have

µ2sq0
∑
h�t
q0
α h′

∑
γ+β=s

Cγ,β〈Lq0(|∂γx1
∂βx2

uMα,h|),Lq0(|∂γx1
∂βx2

uα,h′ |)〉L2

. µ2sq0N (q0)
∑
h∈Hq0

∑
γ+β=s

‖∂γx1
∂βx2

uMα,h‖2
L2 ≤ C]µ

2sq0N (q0)
∑
h∈Hq0

‖uMα,h‖2
Hs ,

(8.3.17)

which corresponds to the first addend of the r.h.s. of (8.3.10).
Finally we sum the second term of (8.3.13) over h ∈ Hq0 , and we write

Cq0
∑
h′�t

q0
α h

‖uMα,h‖Hs−1‖uMα,h′‖Hs−1 ≤ Cq0
∑
h′�t

q0
α h

‖uMα,h‖2
Hs−1 + ‖uMα,h′‖2

Hs−1

2

. Cq0
∑
h∈Hq0

‖uMα,h‖2
Hs−1 ,

(8.3.18)

which yields the second addend of (8.3.10) and, together with (8.3.7), conclude
the proof of Lemma 8.3.1.

We are finally ready to prove Theorem 8.0.2.

8.4 Proof of Theorem 8.0.2

By (8.2.2) and Lemmata 8.2.1 and 8.3.1,10 we have

‖LNu‖2
Hs . Θs‖u‖2

s+2 + Cq0Q(M, s)
√

Θs‖u‖s+2‖u‖Hs

+N (q0)µ2sq0
∑
α

∑
h∈Hq0

‖uMα,h‖2
Hs + Cq0

∑
α

∑
h∈Hq0

‖uMα,h‖2
Hs−1 . (8.4.1)

Recalling that uMα,h = ψα,hLMu, we can use equations (8.1.5) and (7.1.2) to write,11

∑
α

∑
h∈Hq0

‖uMα,h‖2
Hs =

∑
α

∑
h∈Hq0

‖ψα,hLMu‖2
Hs ≤ C‖LMu‖2

Hs + Cψ‖LMu‖2
L1

≤ CAs‖LM1‖∞µ2sM‖u‖2
Hs +Q(M, s)‖u‖2

Hs−1 + Cψ‖u‖2
L1

(8.4.2)

10Note that, to use (8.2.3) in (8.2.2), we just use an inequality analogous to (8.3.18).
11We also use repeatedly ‖Lnu‖L1 ≤ ‖u‖L1 .
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and ∑
α

∑
h∈Hq0

‖uMα,h‖2
Hs−1

≤ C‖LMu‖2
Hs−1 + Cψ‖LMu‖2

L1 ≤ CQ(M, s)‖u‖2
Hs−1 + Cψ‖u‖2

L1 .

(8.4.3)

Next, by Lemma C.0.1

‖u‖2
Hs−1 ≤ ς‖u‖2

Hs + ς−1C‖u‖2
L1 , ∀ς > 0. (8.4.4)

If we chose ς = N (q0)µ2sq0Q(M, s)−1C−1
q0

, using (8.4.2) and (8.4.3) in (8.4.1),

setting Q(M, s) = {Q(M, s), Cψ}+, and recalling (8.0.4) for the definition of LM ,
we obtain

‖LNu‖2
Hs ≤ C]LMN (q0)µ2sN‖u‖2

Hs

+ Θs‖u‖2
s+2 + Cq0Q(M, s)

√
Θs‖u‖s+2‖u‖Hs + Cq0Q(M, s)‖u‖2

L1 .

(8.4.5)

Finally we note that ‖u‖2
L1 . ‖u‖Hs‖u‖s+2 and, as

√
ab ≤

√
ε̄
2
a +

√
1
2ε̄
b for each

a, b, ε̄ > 0, we have
√
‖u‖Hs‖u‖s+2 ≤

√
ε̄
2
‖u‖Hs +

√
1
2ε̄
‖u‖s+2. We apply this with

ε̄ := Θ
− 1

2
s Q(M, s)−1ς, for ς arbitrarily small so that, taking the square root of

(8.4.5), there exist a uniform constant C1 > 0 and Cq0 > 0 such that12

‖LNu‖Hs ≤ C1

(√
[LMN (q0)]

1
N µ2s

)N
‖u‖Hs + Cq0Q(M, s)

√
Θs‖u‖s+2,

from which we obtain (8.0.7) in the case s > 1.

The case s = 1

It remains to prove (8.0.9) for s = 1. First, by Lemma 7.1.1, Q(M, 1) . C
3
2
µ,Mµ

2M .

Recalling Remark 8.1.2, Cψ(1) ≤ C]Cq0χ
−c] lnµ
u . Finally, using also (8.2.4), we can

find β3, β4 > 0 such that

Q(M, 1)
√

Θ1 ≤ Cβ3

µ,Mµ
β4Mχ

−11
2
−c] lnµ

u M
1
2 ,

which concludes the proof of Theorem 8.0.2.

12Here we use ‖u‖L1 . ‖u‖s+2.
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Chapter 9

The final Lasota-Yorke Inequality

In this section we state and prove our main technical Theorem which implies the
Theorems stated in section 4. For each integer 1 ≤ s ≤ r − 1 we define the
following norm

‖ · ‖s,∗ := ‖ · ‖Hs + ‖ · ‖s+2.

Theorem 9.0.1. Let F ∈ Cr(T2,T2) be an SVPH an and α = log(λ−µ−2)
log(λ+)

. Let

mχu be as in (8.1.24), n0 as in (8.0.5) and C1 > 0 provided in Theorem (8.0.2).
We assume that there exist: a constant K > 0, an integer n1 ≥ n0, and uniform
constants τ0 ≥ 1, c ≥ 0, κ1, κ0 ∈ N such that, for some 1 ≤ s+ 2 ≤ r − 1,1

sup
m≤n
‖Lm1‖∞ ≤ Kµcn

τ0 , ∀n < κ1n1 +mχu , (9.0.1){
µζsλ

− 1
2
− ,

√
ÑF (dαn1e)µαsn

τ0
1 +βsm

τ0
χu )
}+

≤ ν0 < 1, (9.0.2)

(KC1)
1

κ0n1+mχu ν
κ
τ0
0

κ0n1+mχu
0 < 1, (9.0.3)

where ÑF is given in (4.2.2), αs = c[(1 − α)τ0 + 1] + 2s, βs = 2(s + c) and ζs
given in (4.3.3). Moreover, for κ ∈ (κ0, κ1), choose

σκ ∈ ({λ−
1
4
− , (C1K)

1
κ0n1+mχu ν

κτ0
κn1+mχu
0 }, 1). (9.0.4)

Then, for each n ∈ N and σ̄κ ∈ (σκ, 1) we have

‖Lnu‖s,∗ ≤ C]A(κ, n1,mχu , s)σ
n
κ‖u‖s,∗ + C]A(κ, n1,mχu , s)µ

n‖u‖0 (9.0.5)

‖Lnu‖s,∗ ≤ C]A(κ, n1,mχu , s)σ
n
κ‖u‖s,∗ + Cσ̄κA(κ, n1,mχu , s)

3µ3n‖u‖L1 , (9.0.6)

where A(κ, n1,mχu , s) = Θχu(κn1 +mχu , s), Θχu as in (8.0.9) with Cκ,n1 instead
of Cq0 .

Proof. We will use Theorem 8.0.2 with N = q0 + mχu , where q0 = κn1 ≥ n0

and κ ∈ (κ0, κ1). First, by conditions (9.0.1) and (9.0.2) and Lemma 7.2.3 , we

1Notice that (9.0.1) defines κ1, (9.0.2) defines n1 and (9.0.3) defines κ0.
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observe that

[LmχuN (q0)]
1
N µ2s ≤ [Kµcm

τ0
χuN (q0)]

1
N µ2s ≤

≤
(
Kµcm

τ0
χuLq0−dαq0eÑ (dαq0e)

) 1
N
µ2s

≤
(
K2µq

τ0
0 (1−α)τ0+cm

τ0
χu Ñ (dαq0e)

) 1
N
µ2s

≤ (K2Ñ (dαq0e)µq
τ0
0 αs+βsm

τ0
χu ))

1
N .

(9.0.7)

Therefore, by equation (8.0.7),

‖LNu‖Hs ≤ C1K
(

(Ñ (dαq0e)µq
τ0
0 αs+βsm

τ0
χu ))

1
N

)N
2 ‖u‖Hs + Cq0Θχu(N, s)‖u‖s+2.

(9.0.8)

Moreover by the sub-multiplicativity of Ñ

Ñ (dαq0e) = Ñ (dακn1e) ≤ Ñ (dαn1e)κ.

It follows by the definition of ν0 that√
(Ñ (dαq0e)µq

τ0
0 αs+βsm

τ0
χu )

1
N ≤

√
[(Ñ (dαn1e)µ

αsq
τ0
0 +βsm

τ0
χu

κ ]κ
τ0 )

1
N ≤ ν

κτ0
κn1+mχu
0 .

Accordingly
‖LNu‖Hs ≤ σNκ ‖u‖Hs + Cq0Θχu(N, s)‖u‖s+2. (9.0.9)

On the other hand, the assumption µζsλ
− 1

2
− ≤ ν0 implies (6.2.8), so that we can

choose δ∗ in (6.2.9) such that, for all n ∈ N,

‖Lnu‖s+2 ≤ Cσ2n
κ ‖u‖s+2 + CCµ,nµ

n‖u‖0, (9.0.10)

where Cµ,n is defined in (5.3.2). Iterating (9.0.9) by multiple of N and using
(9.0.10) yields

‖Lnu‖s,∗ ≤ C]σ
n
κ (‖u‖Hs + A(κ, n1,mχu , s)‖u‖s+2) + C]A(κ, n1,mχu , s)µ

n‖u‖0,
(9.0.11)

from which we deduce (9.0.5).
Next, we want to compare the norm ‖·‖0 with the L1-norm. Let us fix ` > 0. Take
an admissible central curve γ and notice that, for any φ ∈ C0(T) with ‖φ‖∞ = 1,
we have∣∣∣∣∫

T
φ(t)(u)(γ(t) + `e1)dt−

∫
T
φ(t)(u)(γ(t))dt

∣∣∣∣ =

∣∣∣∣∫ `

0

ds

∫
T
φ(t)∂zu(γ(t) + se1)dt

∣∣∣∣ .
Writing γ(t) = (σ(t), t) we can make the change of variables ψ(s, t) = γ(t)+se1 =
(σ(t) + s, t). Since det(Dψ) = −1 and setting D` = {ψ(s, t) ; t ∈ T, s ∈ [0, `]},
we have∣∣∣∣∫

T
φ(t)(u)(γ(t) + `e1)dt−

∫
T
φ(t)(u)(γ(t))dt

∣∣∣∣ =

∣∣∣∣∫
D`

φ(z)∂zu(x, z)dxdz

∣∣∣∣
≤ ‖φ‖L∞

√
`‖u‖H1 .
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Hence ∫
T
φ(t)(u)(γ(t) + se1)dt ≥

∫
T
φ(t)(u)(γ(t))dt−

√
s‖u‖H1 .

Integrating in s ∈ [0, `] and taking the sup on γ and φ yields

‖u‖0 ≤ `−1‖u‖L1 +
2`

1
2

3
‖u‖H1 . (9.0.12)

Applying the above formula to (9.0.5) with ` = C]σ
2
κµ
−2n yields

‖Lnu‖s,∗ ≤ C]A(κ, n1,mχu , s)σ
n
κ‖u‖s,∗ + C]A(κ, n1,mχu , s)σ

−2n
κ µ3n‖u‖L1

Next, for each σ̄κ ∈ (σκ, 1), let nκ be the smallest integer such that

C]A(κ, n1,mχu , s)σ
nκ
κ ≤ σ̄nκκ .

For each n ∈ N, write n = knκ+m with m < κ, then iterating the above equation
yields

‖Lnu‖s,∗ ≤ σ̄knκκ ‖Lmu‖s,∗ + C]A(κ, n1,mχu , s)µ
3knκσ−2nκ

κ

k−1∑
j=0

σ̄nκκ ‖u‖L1

≤ C]A(κ, n1,mχu , s)σ̄
n
κ‖u‖s,∗ + C]

A(κ, n1,mχu , s)
3µ3n

σ̄2nκ
κ (1− σ̄nκκ )

‖u‖L1

which implies (9.0.6).

Corollary 9.0.2. Under the assumptions of Theorem 9.0.1 there exists a Banach
space Bs,∗ such that Cr−1(T2) ⊂ Bs,∗ ⊂ Hs(T2) on which the operator L : Bs,∗ →
Bs,∗ has spectral radius one and is quasi compact with essential spectral radius
bounded by σκ.

Proof. We call Bs,∗ the completion of Cr−1(T2) with respect to the norm ‖ · ‖s,∗,
then Cr−1(T2) ⊂ Bs,∗ ⊂ Hs(T2). Iterating (9.0.6), and since L is a L1 contraction,
implies that the spectral radius is bounded by one, but since the adjoint of L has
eigenvalue one, so does L, hence the spectral radius is one.

To bound the essential spectral radius note that the immersion Bs,∗ ↪→ Hs

is continuous by definition of the norm. Moreover the immersion Hs ↪→ L1

is compact for every s by Sobolev embeddings theorems, hence Bs,∗ ↪→ L1 is
compact. Hence by (9.0.6) and Hennion theorem [37] follows that the essential
spectral radius is bounded by σ̄κ and hence the claim by the arbitrariness of
σ̄κ.

Proof of Theorem 4.3.2. According to Corollary 9.0.2, it is enough to
check the conditions of Theorem 9.0.1. Since µ > 1, Corollary 5.5.4 implies
supk≤n ‖Lk1‖∞ ≤ Kµ2n for each n ∈ N, with K = (µ − 1)−1,2 hence (9.0.1)

is satisfied with c = 2 and τ0 = 1 and arbitrary κ1 ∈ N. Next, µζsλ
1
2
− < 1 is

2Recall that Cµ,n ≤ (µ− 1)−1 (see also Remark 5.3.2).
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implied by hypothesis (H3). Therefore, condition (4.3.4) coincides with (9.0.2)
with αs, βs, ζs given in (4.3.3). Finally, choosing any κ0 such that

κ0 > −
ln(C1K

1
2 )

ln ν0

, (9.0.13)

we have also (9.0.3), whereby we conclude.
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Part III

Application to Fast Slow Systems
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Chapter 10

The map Fε

In this section we check that we can apply Theorem 9.0.1 to the family of maps
Fε given in (4.5.1) and we prove Theorems 4.5.2 and 4.5.4.

10.1 The Fε are SVPH

Let (1, εu) ∈ Cu
ε , for p = (x, θ) ∈ T2. In this case equation (4.4.2) yields

DpFε(1, εu) = (∂xf + εu∂θf)(1, εΞε(p, u)), (10.1.1)

where

Ξε(p, u) =
∂xω + εu∂θω + u

∂xf + εu∂θf
. (10.1.2)

We have also a more explicit formula for iteration of the map Ξε. For any k ≥ 0
and p ∈ T2, let us denote pk = F k

ε (p). Then we have the recursive formula:

Ξ(n)
ε (p, u) = Ξε(pn−1,Ξ

(n−1)(p, u)). (10.1.3)

On the other hand, recalling (4.4.3):

∂uΞε(p, u) =
∂xf + ε(∂θω∂xf − ∂θf∂xω)

(∂xf + εu∂θf)2
. (10.1.4)

Now we use Lemma 4.4.1, applied with ω replaced by ωε, to check that the
maps given in (4.5.1) are SVPHS for ε small enough. Conditions (2) and (3) are
immediate. In particular, Cu

ε = {(ξ, η) ∈ R2 : |η| ≤ εu?|ξ|}1 and Cc = {(ξ, η) ∈
R2 : |ξ| ≤ χc|η|} satisfy DpFε(C

u
ε ) b Cu

ε and DpF
−1
ε (Cc) b Cc if

u? = 2‖∂xω‖∞ =: ε−1χu and χc :=
1

2
. (10.1.5)

In fact, with the above choice of u? and using (10.1.2), for ε small enough,

DpFε(C
u
ε ) ⊂ {(η, ξ) : |ξ| ≤ 3

2
λ−1χu|η|},

1Observe that in this special case χu(ε) = εu?, thus we have an unstable cone of size ε.
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hence condition (4.1.4) with ι? = 3
2
λ−1 < 1.2 Next, we note that condition (5) of

Lemma 4.4.1 implies conditions (1) and (4) for each ε small enough. Moreover,
in (4.4.8) it is shown that for some c̄ > 0, µ± = e±c̄ε, which implies (6) for suffi-
ciently small ε. In particular, by (4.4.10), it follows that condition (4.1.5) holds
with C? = 1, λ+ = 2 supT2 ∂xf and λ− = 2λ/3.
The above discussion shows that all the quantities χc, ι? and C? are indepen-
dent of ε, and µ+ and (λ− − µ+)−1 are bounded uniformly in ε. Therefore, a
constant which depends on these quantities, will be uniform according to the
notation given at the beginning. Finally, it is useful to note that, if we set
ψ(p) = 〈∇ω, (− ∂θf

∂xf
, 1)〉(p), for every p ∈ T2 and n ∈ N we have

detDpF
n
ε =

n−1∏
k=0

detDFkε p
Fε =

n−1∏
k=0

[
∂xf(F k

ε p)(1 + εψ(F k
ε p))

]
,

hence
e−c̄εnλn ≤ detDpF

n
ε ≤ ec̄εnΛn, ∀p ∈ T2, ∀n ∈ N. (10.1.6)

10.2 A non-transversality argument

The aim is to prove the following theorem which guarantees that, after some fix
time which does not depend on ε, for each point we have at least one couple of
pre-images with transversal unstable cones, provided ω satisfies some checkable
conditions. We will see that this corresponds to proving the existence of the in-
teger n1 required by Theorem 9.0.1.

In the following we denote as Hε the set of the inverse branches of Fε.
3 More-

over, Hn
ε will be the set of elements of the form h1 ◦ · · · hn, for hj ∈ Hε and

H∞ε := HN
ε , in particular, for h ∈ H∞ε the symbol hn will denote the restriction of

h on Hn
ε .

Remark 10.2.1. Since F0 and Fε are homotopic coverings they are isomorphic,
that is there exist Iε : T2 → T2 such that Fε = F0 ◦ Iε. This induces an isomor-
phism Iε : H0 → Hε defined by Iεh = I−1

ε ◦ h. Hence the same is true for the sets
Hn
ε = Hn and H∞ε . In the following we will then identify inverse branches of F n

ε

and F n
0 by these isomorphisms, and drop the script ε from the notation when it

is not necessary.

The main result of this section is the following.

Proposition 10.2.2. If ω is not x−constant with respect to F0 (see Definition
4.5.1), then there exist ε0 > 0 and n1 ∈ N such that, for every ε ≤ ε0, p ∈ T2

and vector v ∈ R2, there exists q ∈ F−n1
ε (p) such that v 6∈ DqF

n1
ε Cu

ε .

2Recall that λ = inf ∂xf > 2.
3 Accordingly H0 is the set of inverse branches of F0.
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Proof. We argue by contradiction and suppose that for every ε0 > 0 and ` ∈ N
there exist ε` ∈ [0, ε0], p` ∈ T2 and v` = (1, ε`u`) with |u`| ≤ u? such that4

DqF
`
ε`

Cu
ε`
⊃ v`, ∀q ∈ F−`ε` (p`), (10.2.1)

namely, all the above cones have a common direction. Since the sequence {p`, u`} ⊂
T2 × [−u?, u?], it has an accumulation point (p∗, u∗). In analogy with (5.2.7), for
p ∈ T2 and u ∈ [−u?, u?] we define

Φn
ε (p, u) =

(
F n
ε (p),Ξ(n)

ε (p, u)
)
, (10.2.2)

where Ξ
(n)
ε is given by formula (10.1.3). Condition (10.2.1) in terms of this dy-

namics says that the slope u` is contained in the interval Ξ
(`)
ε` (q, [−u?, u?]) for

every ` ∈ N and q ∈ Fε`(p`). Hence, it can be written as:

∀` ∈ N, ∃(p`, u`) : π2 ◦ Φ`
ε`

(q, [−u?, u?]) ⊃ {u`}, ∀q ∈ F−`ε` (p`), (10.2.3)

where π2 : T2 × [−u?, u?]→ [−u?, u?] is the projection on the second coordinate.
Now, for m ∈ N, ε ∈ [0, ε0], u0 ∈ [−u?, u?] and h ∈ H∞, let us define

uεh,m(p) = π2 ◦ Φm
ε (hm(p), u0) : T2 → [−u?, u?]. (10.2.4)

Next, we prove the following result, which will allow us to conclude the proof.

Sublemma 10.2.3. The sequence of functions defined in (10.2.4) satisfies:

(i) For every ε ∈ [0, ε0] and h ∈ H∞, there exists uεh,∞(q) := limm→∞ u
ε
h,m(q),

and the limit is uniform in q ∈ T2.

(ii) For every h ∈ H∞, the sequence {uεh,∞}ε converges to uh,∞ uniformly.

(iii) The functions uh,∞ are independent of h, we call them ũ. In addition, ũ
satisfies

ũ(F0(q)) = Ξ0(q, ũ(q)), ∀q ∈ T× {θ∗}. (10.2.5)

Proof. Applying Lemma D.0.1 with u = u′ ≡ u0 ∈ [−u?, u?], ε0 = 1, A = 2χcu?
and B = 0 we have that there exists ν ∈ (0, 1) such that, for each h ∈ H∞, q ∈ T2,
ε, ε′ ∈ [0, 1), m ∈ N and n > m,5

|uεh,m(q)− uε′h,m(q)| ≤ C]µ
3m|ε− ε′|

|uεh,n(q)− uεh,m(q)| ≤ C]ν
m.

(10.2.6)

It follows that there exists uεh,∞(q) := limm→∞ u
ε
h,m(q), and the limit is uniform in

q. Next, for each δ > 0, we choose ε∗ and m such that C]µ
3mε∗ ≤ δ

4
and νm ≤ δ

4
,

then, for each ε, ε′ ≤ ε∗ and q ∈ T2

|uεh,∞(q)− uε′h,∞(q)| ≤ |uεh,∞(q)− uε′h,m(q)|+ |uεh,m(q)− uε′h,m(q)|+ |uε′h,m(q)− uε′h,∞(q)|
≤ 2νm + C]µ

3n|ε− ε′| ≤ δ.

4 We use the notation with subscript ` for a generic object that depends on ` through ε`,
but we keep the notation as simple as possible when there is no need to specify.

5The second equation of (10.2.6) is a direct consequence of (D.0.5) which implies that Ξε(p, ·)
is a contraction.
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The above proves the first two items. Let us proceed with the third one.
First we claim that, for q ∈ T2, if hq is such that q = hq(Fε(q)), then

uεh◦hq ,∞(Fε(q)) = Ξε(q, u
ε
h,∞(q)), ∀q ∈ T2. (10.2.7)

Indeed, since uεh,∞ belongs to the unstable cone, by (10.2.4), for every h ∈ H∞

and q ∈ T2,(
Fε(q),Ξε(q, u

ε
h,∞(q))

)
= Φε(q, u

ε
h,∞(q)) =

(
Fε(q), u

ε
h◦hq ,∞(Fε(q))

)
,

which implies the claim taking the projection on the second coordinate.
For every ` ∈ N, let us now consider ε`, p` and u` as given in (10.2.3) and let

`j so that (p`j , u`j) is a convergent sequence. Equation (10.2.1) implies

|u`j − u
ε`j
h,n`j

(p`j)| ≤ C]ν
n`j . (10.2.8)

Taking the limit for j →∞ in the above inequality yields6

u∗ = lim
j→∞

u`j = lim
j→∞

u
ε`j
h,n`j

(p`j) = uh,∞(p∗), (10.2.9)

regardless of the choice of the inverse branch h ∈ H∞. Let hq be the inverse branch
such that q = hq(Fε(q)), and set q` = hq(p`) in equation (10.2.7) to obtain:

uε`h◦hq ,∞(p`) = Ξε`(q`, u
ε`
h,∞(q`)). (10.2.10)

By item (ii) above, and by the continuity of the map Fε, we can take the limit
as `j →∞ in the last equation and obtain

uh◦hq ,∞(p∗) = Ξ0(q∗, uh,∞(q∗)),

where q∗ is such that F0(q∗) = p∗. By (10.2.9), the above equation becomes
u∗ = Ξ0(q∗, uh,∞(q∗)), and, since Ξ0(q∗, ·) is invertible, this implies that there
exists u∗(q∗) independent of h ∈ H∞ such that

u∗(q∗) = ūh(q∗) = lim
j→∞

u
ε`j
h,∞(q`j).

Hence, by induction, uh,∞(q) is independent on h for each q ∈
⋃
k∈N F

−k
0 (p∗) =:

Λθ∗ , let us call it u∗(q). Taking the limit in equation (10.2.7) we have, for each
q ∈ Λθ∗ ,

u∗(F0(q)) = Ξ0(q, u∗(q)). (10.2.11)

Note that the uh,∞ are uniform limits of continuous functions and hence are
continuous functions such that uh,∞|Λθ∗ = u∗. Since Λθ∗ is dense in T× {θ∗}.7 It
follows that the uh,∞ equal some continuous function ũ defined on T× {θ∗} and
independently of h. In addition, ũ satisfies (10.2.5).8

6 Recall that (p∗, u∗) is an accumulation point of the sequence (p`, u`) given in (10.2.3)
7 It follows from the expansivity of f(·, θ∗) that the preimmages of any point form a dense

set.
8 Just approximate any point with a sequence {qj} ⊂ Λθ∗ and take the limit in (10.2.11).
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We can now conclude the proof of Proposition 10.2.2. By Sub-Lemma 10.2.3 we
can find a function ũ : T2 → R and θ∗ ∈ T1 such that (10.2.5) holds, namely:

ũ(F0(q)) =
∂xω(q) + ũ(q)

∂xf(q)
, q ∈ T1 × {θ∗} (10.2.12)

Let us use the notation gθ(x) for a function g(x, θ) and observe that, integrating
(10.2.12) and recalling that ω is periodic by hypothesis, we have∫ 1

0

ũθ∗(x)dx =

∫ 1

0

f ′θ∗(x)ũθ∗(fθ∗(x))dx−
∫ 1

0

∂xω(x, θ∗)dx

=
d−1∑
i=0

∫
Ui

f ′θ∗(x)ũθ∗(fθ∗(x))dx = d

∫ 1

0

ũθ∗(t)dt,

where Ui are the invertibility domains of fθ∗ , and d > 1 its topological degree.
Hence

∫
T ũθ∗(x)dx = 0. So there is a potential given by Ψθ∗(x) =

∫ x
0
ũθ∗(z)dz.

Finally, integrating equation (10.2.12) from 0 to x, there exists c > 0 such that

ωθ∗(x) = Ψθ∗(fθ∗(x))−Ψθ∗(x) + c,

which contradicts the assumption on ω whereby proving the Proposition.

For reasons which will be clear in a moment, we introduce a further quantity
related to NFε and ÑFε which can be interpreted as a kind of normalization of
the latter one. The following definition is inspired by [16].

Definition 10.2.4. For each p = (x, θ) ∈ T2, v ∈ R2, n ∈ N and ε > 0 we define

Ñ(x, θ, v, n) :=
1

h∗(x, θ)

∑
(y,η)∈F−nε (x,θ)
DFnε (y,η)Cuε⊃v

h∗(y, θ)

| detDF n
ε (y, η)|

, (10.2.13)

where, for every θ ∈ T, h∗(·, θ) =: h∗θ(·) is the density of the unique invariant

measure of f(·, θ). As before we will denote Ñ(n) := supp supv Ñ(p, v, n).

The motivation to introduce this quantity is twofold. One reason lies in
Lemma 10.2.5 below in which, using a shadowing argument similar to [21, Ap-
pendix B], we exploit the following fact: for each θ ∈ T, setting fθ(·) = f(·, θ),
we have

1

h∗θ(x)

∑
y∈fθ(x)

h∗θ(y)

(fnθ )′(y)
= 1, ∀x ∈ T. (10.2.14)

On the other hand it is easy to see that Ñ has the same properties of ÑFε . In
particular, arguing exactly in the same way as in Proposition 7.2.1 and Lemma
7.2.3, one can show that

Ñ(n) is submultiplicative, (10.2.15)

NFε(n)
1
n ≤ C]‖Lnb1−αcFε

1‖
1
n∞

(
Ñ(bαnc)

1
bαnc

)α
, for some α ∈ (0, 1) (10.2.16)

Ñ(n) ≤ sup
(x,θ)∈T2

1

h∗(x, θ)
(LnFεh∗)(x, θ). (10.2.17)
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This implies that we can check condition (9.0.2) of Theorem (9.0.1) with Ñ
replaced by Ñ.
To ease notation in the following we set LFε =: Lε.

Lemma 10.2.5. There are constants C, c∗ > 0 such that, for each n < Cε−
1
2 ,

sup
(x,θ)∈T2

1

h∗(x, θ)
(Lnεh∗)(x, θ) ≤ ec∗n

2ε. (10.2.18)

Proof. Let F n
ε (q) = (x, θ) and define qk = (xk, θk) = F k

ε (q), for every 0 ≤ k ≤ n.
Then,

|θ − θk| ≤
n−1∑
j=k

ε‖ω‖∞ ≤ C](n− k)ε. (10.2.19)

Let us set fθ(y) = f(y, θ). Since fθ is homotopic to fθk , for each k, there
is a correspondence between inverse branches, hence there exists x∗ such that
|fkθ (x∗) − xk| ≤ λ−1. Moreover, let ξk = fkθ (x∗) − xk. Since f is expanding, by
the mean value theorem and (10.2.19), there is (x̄, θ̄) such that

|ξk+1| = |〈∇f(x̄, θ̄), (ξk, θk − θ)〉| ≥ λ|ξk| − C]nε.

Since ξn = 0, we find by induction |ξk| ≤
∑n−1

j=k λ
−j+kC]εn ≤ C]εn. Moreover,

since h∗ is differentiable9 we also have

|h∗(xk, θk)− h∗θ(fkθ (x∗))| ≤ C]εn.

Next, since | detDqFε − ∂xf(q)| ≤ C]ε,

(fnθ )′(x∗)

detDF n
ε (x0, θ0)

=
n−1∏
k=0

f ′θ(f
k
θ (x∗))

detDFε(xk, θk)
≤

n−1∏
k=0

f ′θ(f
k
θ (x∗))

detDFε(fkθ (x∗), θ)
[1 + C]nε] ≤ ec]n

2ε.

It follows that,

1

h∗(x, θ)

∑
(y,ϑ)∈F−nε (x,θ)

(
h∗(y, ϑ)

| detDF n
ε (y, ϑ)|

)
≤ ec]n

2ε

h∗θ(x)

∑
x∗∈f−nθ (x)

h∗θ(x∗)

(fnθ )′(x∗)
= ec]n

2ε,

where we have used (10.2.14).

10.3 Proof of Theorem 4.5.2.

By the results of section 10.1 Fε is SVPH for ε small enough. We now prove
conditions of Theorem 9.0.1 for Fε, under the assumption that ω is not x-constant.
In this case the existence of n1 independent of ε is guaranteed by Proposition
10.2.2. Notice that χu = u?ε, i.e the unstable cone Cu

ε is of order ε while the
center cone Cc is of order one. Hence, by (5.2.5), there exist c0 > 0 such that

9See [20] for the details.
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mχu ≤bc0 log ε−1c. 10 We then take any κ1 ≤ c1 log ε−1, for some c1 > 0 and, by
Lemma 10.2.5, we have

sup
m≤n
‖Lmε 1‖∞ ≤

1

| inf h∗|
sup
m≤n
‖Lmε h∗‖∞ ≤

1

| inf h∗|
ec∗εn

2

, ∀n ≤ {c0, c1}+ log ε−1,

hence condition (9.0.1) with K = 1
| inf h∗| , τ0 = 2 and c = c∗/c̄. Next, let n1 be the

integer as in Proposition 10.2.2. We prove that there exists a uniform constant
ν0 such that {

ec̄εζsλ−
1
2 , Ñ(dαn1e)ecε(αsn

2
1+βsm2

χu)
}+

≤ ν0 < 1, (10.3.1)

i.e condition (9.0.1) with ÑF replaced by Ñ which, as we already observed, implies
(9.0.2) for Fε. Obviously there exists ε1 > 0 such that, for each 1 ≤ s ≤ r − 1

µζsλ−
1
2 = ec̄εζsλ−

1
2 < 1, ∀ε ∈ (0, ε1). (10.3.2)

Let n1 and ε0 be as in Proposition 10.2.2. Accordingly, for every p = (x, θ) ∈ T2

and v ∈ R2, there exists q∗ ∈ F−n1(p) such that

1

h∗(x, θ)

∑
(y,θ)∈F−n1

ε (p)

DF
n1
ε (y,η)Cuε⊃v

h∗(y, θ)

| detDqF
n1
ε |
≤ 1

h∗(x, θ)
(Ln1

ε h∗)(x, θ)−
k

| detDq∗F
n1
ε |

,

where k = inf h∗
suph∗

. By Lemma 10.2.5 and equation (10.1.6), the last expression

is bounded by ecn
2
1ε − C

Λn1
. Choosing ε2 < min

(
ε0,

1
cn2

1
log(1 + CΛ−n1)

)
, we have

that Ñ(n1) ≤ σ̄ < 1 for every ε ∈ [0, ε2]. Consequently there exists ε3 such that

Ñ(dαn1e)ec̄ε(αsn
2
1+βsmχu)

2

≤ σ̄ec̄ε(αsn
2
1+βsm2

χu) < 1, ∀ε ∈ (0, ε3). (10.3.3)

By (10.3.2) and (10.3.3) we deduce (10.3.1) taking ε∗ = min{ε1, ε3}. Finally,
condition (9.0.3) is satisfied choosing κ0 as in (9.0.13), since C1, ν0 and K are
all uniform. Thus Theorem 9.0.1 applies and Theorem 4.5.2 follows by Corollary
9.0.2.

10.4 Eigenfunctions regularity (quantitative)

As we have already seen in 9.0.2, the main consequence of Theorem 8.0.2 is that
there exists a Banach space Bs,∗ ⊂ Hs on which the transfer operator Lε is quasi
compact for each ε < ε∗. In addition, using inequality (9.0.5), we can say much
more about the constants, paying the price of having a bigger essential spectral
radius. Indeed for each n, κ ∈ N

‖Lnεu‖s,∗ ≤ C]A(κ, n1,mχu , s)σκ
n‖u‖s,∗ +B]A(κ, n1,mχu , s)µ

n‖u‖0,

10For simplicity in the following we drop the b·c notation.
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where mχu = c0 log ε−1 and σκ given in (9.0.4). The choice κ = C] log ε−1

yields a spectral radius uniform in ε, but we have no control on the constant
A(κ, n1,mχu , s). On the contrary, the choice κ = 2κ0 ∈ N (independent of ε)
implies, for some c? > 0,

σκ0 ∈ (1−
(
c? log ε−1

)−1
, 1),

hence a lesser information on the size of the essential spectrum but allows a
control of the constants, especially in the case s = 1. Indeed, observe that by
(5.3.2)

Cµ,n1+mχu ≤ C] min{log ε−1, ε−1} = C] log ε−1.

In addition, since κ = 2κ0 and n1 do not depend on ε, in this case the constant
Cκ,n1 in Theorem 9.0.1 is independent on ε. Hence, it follows by (8.0.9) that we
can find β3, β3, C] > 0 and ε > 0 such that

Θuε(n1 + uε, 1) ≤ C]ε
− 11

2 (log ε−1)β1eβ2ε log ε−1

. (10.4.1)

Thus, for s = 1 and for each α > 11
2

and provided ε is chosen small enough, we
have, for all n ∈ N,

‖Lεu‖0 ≤ Cec̄nε‖u‖0

‖Lnεu‖1,∗ ≤ Cαε
−αe−

c̄n
ln ε−1 ‖u‖1,∗ +Bαε

−α‖u‖0.
(10.4.2)

Proof of Theorem 4.5.4. Let c? = c̄ and Lεu = νu with νn > e−r
c̄n

ln ε−1 , r < 1,
then

‖u‖1,∗ = ν−n‖Lnεu‖1,∗ ≤ Cαε
−αν−ne−

c̄n
ln ε−1 ‖u‖1,∗ +Bαν

−nε−α‖u‖0.

We choose n to be the smallest integer such that Cαε
−αe−

(1−r)c̄n

ln ε−1 ≤ 1
2
, which yields

‖u‖H1 ≤ ‖u‖1,∗ ≤ Cαε
−(1+r)α‖u‖0

which concludes the proof.

10.5 Proof of Theorem 4.5.3

Let σph(LFε) = {z ∈ C : |z| = 1} be the peripheral spectrum. If eiϑ ∈ σph(LFε),
then by Theorem 4.5.2 it is point spectrum of finite multiplicity. In addition,
since the operator is power bounded, there cannot exists Jordan blocks, thus the
algebraic and geometric multiplicity are equal.

In fact, see [9, Section 5] for a proof which applies verbatim to the present
context, the eigenvectors associated to the eigenvalue one are the physical mea-
sure.

Hence there is N ∈ N and {ϑj, hj, `j}Nj=1 such that ϑ0 = 1, `0(ϕ) =
∫
T2 ϕ,

ϑj ∈ [0, 2π), hj ∈ B∗,s, `j ∈ B′∗,s and LFεhj = eiϑjhj, `j(LFεϕ) = eiϑj`j(ϕ) for all
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ϕ ∈ B∗,s. On the other hand, for each j let ϕj ∈ C∞ be such that
∫
T2 hkϕj = δkj,

then

|`j(h)| =

∣∣∣∣∣ lim
n→∞

1

n

n−1∑
k=0

e−iϑjk
∫
T2

ϕjLkFεh

∣∣∣∣∣ ≤ lim
n→∞

1

n

n−1∑
k=0

∫
T2

|ϕj◦F k
ε | |h| ≤ ‖ϕj‖∞‖h‖L1 .

Which implies that there exists ˜̀
j ∈ L∞ such that

`j(h) =

∫
T2

˜̀
jh.

Note that the above also implies ˜̀
j ◦ Fε = eiϑj ˜̀j. The above means that, for all

l ∈ N, ∫
T2

˜̀l
jLFεh =

∫
T2

˜̀l
j ◦ Fεh = eiϑj l

∫
T2

˜̀l
jh.

This implies that eiϑj l belongs to the spectrum of (LFε)′, hence of LFε . Since
there can be only finitely many elements of σph(LFε), it must be ϑj = 2πp

q
for

some p, q ∈ N, that is the {ϑj} form a finite group.
It follows that we have the following spectral decomposition

LFε =
∑
j

eiϑjΠj +Q (10.5.1)

where Πjh = hj`j(h), ΠjΠk = δjkΠj and Q has spectral radius strictly smaller
than one.

In addition,
|hj| ≤ LFε|hj|.

Since hj ∈ H3 it follows that hj ∈ C1, so |hj| is Lipschitz, hence h∗j = |hj| ∈
H1 ∩ C0. Hence,

0 =

∫
T2

LFεh∗j − h∗j

which implies h∗j = LFεh∗j . It follows that h∗j is an eigenvector of LFε associated
to the eigenvalue one. Next, we prove that 1 is the only eigenvalue on the unit
circle or, in other words, that in the decomposition (10.5.1) the ϑj are all null.
Setting Vj := {z ∈ T2 : h∗j(z) = 0} and Aj := T2 \ Vj, we observe that Aj is an
Fε-invariant set Lebesgue almost surely. Indeed, if z ∈ T2 \ Aj, then

0 = h∗j(z) = LFεh∗j(z) =
∑

y∈F−1
ε (z)

(detDFε)
−1 · h∗j)(y),

which implies h∗j(y) = 0, for each y ∈ F−1
ε (z), by the positivity of LFε . Hence,

F−1
ε (T2\Aj) ⊂ T2\Aj which implies in turn Fε(Aj) ⊂ Aj Lebesgue almost surely.

By the previous discussion we can have hj = h∗je
iβj , where βj ∈ C0(Aj), as both

hj, and h∗j are continuous. Next, since LFεhj = eiϑjhj, we have

LFεei(βj−ϑj−βj◦Fε)h∗j − h∗j = 0.
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Taking the real part and integrating we get∫
T2

(1− cos(ϑj + βj − βj ◦ Fε))h∗j = 0. (10.5.2)

Equation (10.5.2) implies that there exists a function k : Aj → N such that

2πk(z) = ϑj + βj(z)− βj ◦ Fε(z), (10.5.3)

Lebesgue almost surely in Aj. But βj ∈ C0, hence k must be a constant function.
Therefore, multiplying (10.5.3) by h∗j and integrating over Aj, we obtain ϑj =

2πk, which implies ϑj = 0, since θj ∈ [0, 2π). We conclude that LFεhj = hj and
Π0 is the projector associated to the eigenvalue 1. In particular

Π0g =
∑
j

hj

∫
˜̀
jg, ˜̀

j ∈ L∞, hj ∈ B1,∗, (10.5.4)

and Π0 = LFεΠ0. We claim that ˜̀
j = 1B̃j for some set B̃j. Let us assume,

without loss of generality, that
∫

˜̀
j = 1. Equation (10.5.4) implies that, for each

g ∈ B1,∗, ∑
j

hj

∫
˜̀
jg =

∑
j

hj

∫
(˜̀
j ◦ Fε)g.

Therefore ˜̀
j = ˜̀

j ◦ Fε, Leb-a.s. This implies that, for each set Bi,∫
1Bi ◦ Fε ˜̀jhi =

∫
1Bi ◦ Fε ˜̀j ◦ Fεhi =

∫
1BiLFεhi.

Hence, if Bi is the basin of the measure with density hi, the above equation
implies

∫
˜̀
i
˜̀
j =

∫
1Bihi`j = δi,j. For i = j it follows that

∫
˜̀2
j =

∫
`j, therefore `j

can have only two values {0, 1}, from which the claim follows.
Next we would like to better understand the structure of the peripheral spec-

trum, and prove equations (4.5.2) and (4.5.3).
Let (xk, θk) = F k

ε (x, θ) and fθ(x
′) = f(x′, θ). By [21, Lemma 4.2] there exists

Yn such that π2(F n
ε (x, θ)) = fnθ (Yn(x)) and, for all k ≤ n,

‖xk − fkθ ◦ Yn‖∞ ≤ C]εk

|θk − θ| ≤ C]kε

‖1− ∂xYn‖∞ ≤ C]εn
2.

Let Lθ be the transfer operator associated to fθ and h∗(·, θ) the associated unique
invariant probability density. The operator Lθ has a uniform spectral gap 1− σ
in H1(R), hence we have, for each n ∈ {C] ln ε−1, . . . , C]ε

− 1
2},∫

T2

ϕLnFεh =

∫
T2

ϕ ◦ F n
ε h =

∫
T2

ϕ(fnθ (Yn(x)), θ)h(x, θ) +O(εn‖ϕ‖C1‖h‖L1)

=

∫
T2

ϕ(fnθ (x, θ)h ◦ Y −1
n (x, θ) +O(εn2‖ϕ‖C1‖h‖L1)

=

∫
T2

ϕ(x, θ)[Lnθ (h ◦ Y −1
n )](x, θ) +O(εn2‖ϕ‖C1‖h‖L1).
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Let Lθ be the transfer operator associated to fθ and h∗(·, θ) the associated unique
invariant density. Then, for each θ ∈ T, Lθ has a uniform spectral gap σ ∈ (0, 1)
on the Sobolev space W 1,1(T) with norm ‖g‖W 1,1 = ‖g‖L1 + ‖g′‖L1 . Thus∫

T

∣∣∣∣[Lnθ (h ◦ Y −1
n )](x, θ)− h∗(x, θ)

∫
T
(h ◦ Y −1

n )(y, θ)dy

∣∣∣∣ dx ≤ C]σ
n‖h ◦ Y −1

n ‖W 1,1 .

Since ‖h◦Y −1
n (·, θ)‖W 1,1 ≤ C]‖h(·, θ)‖W 1,1 , we have, setting ‖h‖† =

∫
T dθ‖h(·, θ)‖W 1,1 ,

∫
T2

ϕLnFεh =

∫
T2

dxϕ(x, θ)h∗(x, θ)

∫
T
dyh(y, θ) +O(εn2‖ϕ‖C1‖h‖L1)

+ O (σn‖ϕ‖C0‖h‖†)

=

∫
T2

ϕ̄h+O(εn2‖ϕ‖C1‖h‖L1 + σn‖ϕ‖C0‖h‖†)

(10.5.5)

where ϕ̄(θ) :=
∫
T ϕ(x, θ)h∗(x, θ)dx. Let

Ph(x, θ) = h∗(x, θ)

∫
T
h(y, θ)dy. (10.5.6)

We can then choose n = c ln ε−1, for c large enough, and obtain

‖Lc] ln ε−1

Fε
h− Ph‖(C1)′ ≤ C]ε[ln ε

−1]2‖h‖L1 + C]ε
1000‖h‖H1 (10.5.7)

Equation (9.0.6) yields

‖LkFεh‖H1 ≤ Cαε
−αe−

c]k

ln ε−1 ‖h‖B1,∗ + Cαε
−3α ln ε−1‖h‖L1 . (10.5.8)

Hence, by equation (10.5.7) we have that, for each ϕ ∈ C1 and h ∈ B1,∗,∫
T2

ϕΠ0h = lim
n→∞

1

n

n−1∑
k=0

∫
T2

ϕLkFεh

= lim
n→∞

1

n

n−c] ln ε−1∑
k=0

∫
T2

ϕLc] ln ε−1

Fε
LkFεh

= lim
n→∞

1

n

n−c] ln ε−1∑
k=0

∫
T2

ϕPLkFεh+O(ε[ln ε−1]2‖ϕ‖C1‖h‖L1 + ε50‖h‖L1)

=

∫
T2

ϕPΠ0h+O(ε[ln ε−1]2‖ϕ‖C1 + ε50)‖h‖L1 .

(10.5.9)

Hence, by the density of B1,∗ in L1 and since Π0 extends naturally to a bounded
operator on L1, we have

‖Π0 − PΠ0‖L1→(C1)′ ≤ C]ε[ln ε
−1]2. (10.5.10)
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It remains to prove equation (4.5.3). For each τ > 0 consider h ∈ B∗,1 such that
LFεh = νh with |ν| ≥ e−ε

τ
. Then, for all ϕ ∈ C1 and n ∈ N, we have∫

T2

ϕh = ν−n
∫
T2

ϕLnFεh = ν−n
∫
T2

ϕ ◦ F n
ε h

= ν−n
∫
T2

ϕ(fnθ ◦ Yn(x), θ)h(x, θ) +O
(
ν−nnε‖ϕ‖C1‖h‖L1

)
= ν−n

∫
T2

ϕ(fnθ (x), θ)h(Y −1
n (x), θ) +O

(
ν−nn2ε‖ϕ‖C1‖h‖L1

)
= ν−n

∫
T2

ϕ(x, θ)(Lnθ [hθ ◦ Y −1
n ])(x) +O

(
ν−nn2ε‖ϕ‖C1‖h‖L1

)
where hθ(x) = h(x, θ). Note that ‖hθ ◦ Yn‖W 1,1 = ‖hθ‖W 1,1 and

∫
T1 dθ‖hθ‖W 1,1 ≤

‖h‖H1 and, by inequality (10.5.8), we have ‖h‖H1 ≤ C]ε
−3α ln ε−1‖h‖L1 . Thus∫

T2

ϕ(x, θ)(Lnθ [hθ ◦ Y −1
n ])(x) =

=

∫
T2

dxdθϕ(x, θ)h∗(x, θ)

∫
T
dyh(Y −1

n (y), θ) +O(σn‖ϕ‖C0‖h‖H1)

=

∫
T2

ϕPh+O(
[
σnε−3α ln ε−1 + n2ε

]
‖ϕ‖C0‖h‖L1).

To conclude we choose n = c ln ε−1, with c large enough, and obtain∫
T2

ϕh =

∫
T2

ϕPh+O
(
ε(ln ε−1)2‖ϕ‖C1‖h‖L1

)
.

It follows that there exists a βh ∈ H1(T), βh(θ) =
∫
T1 dyh(y, θ), such that

‖h− h∗βh‖(C1)′ ≤ C]ε(ln ε
−1)2‖h‖L1 .
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Appendix A

Proof of Lemma 5.1.1

We start considering ϕ, ψ ∈ Cρ(T2,R). First we prove, by induction on ρ, that

sup
|α|=ρ
‖∂α(ϕψ)‖C0 ≤

ρ∑
k=0

(
ρ

k

)
2ρ−k sup

|β|=ρ−k
‖∂βϕ‖C0 sup

|γ|=k
‖∂γψ‖C0 . (A.0.1)

Indeed, it is trivial for ρ = 0 and

‖∂xi∂α(ϕψ)‖C0 = ‖∂α(ψ∂xiϕ+ ϕ∂xiψ)‖

≤
ρ∑

k=0

(
ρ

k

)
sup
|β|=ρ−k

‖∂β∂xiϕ‖C0 sup
|γ|=k
‖∂γψ‖C0

+

ρ∑
k=0

(
ρ

k

)
sup
|β|=ρ−k

‖∂β∂xiψ‖C0 sup
|γ|=k
‖∂γϕ‖C0

≤
ρ∑

k=0

(
ρ

k

)
sup
|β|=ρ−k

‖∂βϕ‖C0 sup
|γ|=k
‖∂γψ‖C0

+

ρ+1∑
k=0

(
ρ

ρ+ 1− k

)
sup
|β|=ρ−k

‖∂βϕ‖C0 sup
|γ|=k
‖∂γψ‖C0 ,

from which (A.0.1) follows taking the sup on α, i and since
(
ρ
k

)
+
(

ρ
ρ+1−k

)
=
(
ρ+1
k

)
.

We then have the first statement of the Lemma, indeed

‖ϕψ‖Cr ≤
ρ∑

k=0

2ρ−k
k∑
j=0

(
k

j

)
sup
|β|=k−j

‖∂βϕ‖C0 sup
|γ|=j
‖∂γψ‖C0

≤
ρ∑
j=0

ρ−j∑
l=0

(
ρ

j

)
2ρ−j−l sup

|β|=l
‖∂βϕ‖C0 sup

|γ|=j
‖∂γψ‖C0 ≤ ‖ϕ‖Cr‖ψ‖Cr

since
(
ρ
j

)
≤ 2ρ. The extension to function with values in the matrices follows

trivially since we have chosen a norm in which the matrices form a norm algebra.
To prove the second statement we proceed again by induction on ρ. The case
ρ = 0 is immediate since K0,0 contains only the zero string. Let us assume that
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the statement is true for every k ≤ ρ and prove it for ρ+ 1. By equation (A.0.1)
and the inductive hypothesis (5.1.3), we have, for each |α| = ρ+ 1,

|∂α(ϕ ◦ ψ)| ≤ C] sup
|β|=ρ

sup
|τ1|,|τ2|=1

∣∣∂β [(∂τ1ϕ) ◦ ψ · ∂τ2ψ]
∣∣

≤ Cρ sup
|τ1|,|τ2|=1

sup
|α0|+|α1|=ρ

‖∂α0 [(∂τ1ϕ) ◦ ψ] ‖C0‖∂α1∂τ2ψ‖C0

≤ Cρ sup
|τ1|=1

sup
α0≤ρ
‖(∂τ1ϕ) ◦ ψ‖Cα0‖Dψ‖Cρ−α0

≤ CρC
?
ρ sup
α0≤ρ

α0∑
s=0

‖ϕ‖Cs+1

∑
k∈Kα0,s

∏
l∈N

‖Dψ‖klCl−1 · ‖Dψ‖Cρ−α0

≤ CρC
?
ρ sup
α0≤ρ

α0∑
s=0

‖ϕ‖Cs+1

∑
k∈Kρ+1,s+1

∏
l∈N

‖Dψ‖klCl−1

≤ CρC
?
ρ

ρ+1∑
s=0

‖ϕ‖Cs
∑

k∈Kρ+1,s

∏
l∈N

‖Dψ‖klCl−1 .

The result follows by choosing C?
ρ+1 large enough.
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Appendix B

Proof of Lemma 6.2.1

This appendix is devoted to the proof of Lemma 6.2.1.
As usual we use the notation F kν̂k = γ ◦ hk, F kνk = γ . As the computation

is local it suffices to consider pn ∈ ν̂n and p0 ∈ γ such that F n(pn) = p0. Let
pk = F n−kpn. To ease notation we use a translation to reparmetrize the curves
so that νk(0) = ν̂k(0) = pk, note that hk(0) = 0. Before discussing the splitting
of the vector field we need some notations and few estimates.

It is convenient to perform the changes of variables φ−1
k (x, y) = (x, 0) + ν̂k(y)

and set
F̃ k = φ0 ◦ F k ◦ φ−1

k ; F̃k = φk−1 ◦ F ◦ φ−1
k

Note that F̃ k = F̃k ◦ · · · ◦ F̃1 and F̃ n(0, y) = φ0 ◦ F n(ν̂n(y)) = φ0(γ ◦ hn(y)) =
(0, hn(y)), this implies that

D(0,y)F̃
n =

(
an(y) 0
cn(y) dn(y)

)
; D(0,y)F̃k =

(
ak(y) 0
ck(y) dk(y)

)
; Dφ−1

k =

(
1 (ν̂ ′k)1

0 1

)
,

with dn(y) = h′n(y) and dk(y) = h∗k(y). Thus, we have the estimates on the Cρ
norms of dk by Lemma 5.4.1, also the changes of coordinates φk have uniformly
bounded Cρ norms. From the above we easily get the formulae:

ak+1(y) = ak(y)ak+1(hk(y)) (B.0.1)

dk+1(y) = dk+1(hk(y))dk(y) (B.0.2)

ck(y) =
k∑
j=1

dk(hk−1(y)) · · · dj+1(hj(y))cj(hj−1(y))aj−1(hj−2(y)) · · · a1(y).

(B.0.3)

Moreover,

DF k =

(
ak + (ν̂ ′0)1c

k (ν̂ ′0)1d
k − (ν̂ ′k)1

[
ak + (ν̂ ′0)1c

k
]

ck dk − (ν̂ ′k)1c
k

)
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which, setting yk = hk(y), yields the alternative representations and estimates

ck(yk−1) = 〈e2, D(0,yk−1)Fe1〉
ak(yk−1) = 〈e1, D(0,yk−1)Fe1〉 − ν ′k−1(yk−1)1〈e2, D(0,yk−1)Fe1〉
|ck(y)| = |〈e2, D(0,y)F

ke1〉| ≤ λ+
k χu

λ−k√
1 + χ2

u

− χcχuλ+
k ≤ |a

k(y)| ≤ λ+
k + χcχuλ

+
k

(B.0.4)

Also, for further use,(
DF̃ k

)−1

=

(
ak(y)−1 0

−dk(y)−1ak(y)−1ck(y) dk(y)−1

)
. (B.0.5)

We are now ready to describe the splitting of the vector field. We do it in
the new coordinates. Consider the subspace En(y) = {(η, un(y)η)}η∈R, where
un(y) = an(y)−1cn(y), which is a Cr approximation of the unstable direction.
Given a vector v ∈ R2 let us call ṽ = Dφ0v the vector in the new coordinates.
Next, we decompose a vector ṽ as

ṽ = (1, un ◦ hn)ṽ1 + (ṽ2 − ṽ1un ◦ hn)e2

where hn ◦ F̃ n(0, y) = (0, y). Thus, setting V (t) = v1(γ(t)) − γ′(t)1v2(γ(t)), we
have the decomposition (6.2.2) with

vu(γ(t)) = V (t)(1 + γ′(t)1un ◦ hn(0, t), un ◦ hn(0, t))

vc(γ(t)) = [v2(γ(t))− un ◦ hn(0, t)V (t)]γ′(t),
(B.0.6)

which gives, in particular, vc(γ(t)) = g(t)γ′(t) with g(t) = v2(γ(t)) − un ◦
hn(0, t)V (t).
To extend the above decomposition in a neighborhood of γ we will proceed as in
[43, Lemma 6.5].1 First, we compute the derivatives along the curve, to this end
note that in the new coordinates t = yn. Differentiating (B.0.1) we have

∂ya
k(y)−1 =

[
∂ya

k−1(y)−1
]
ak(yk−1)−1 + ak−1(y)−1∂yk−1

ak(yk−1)−1d̃k−1, (B.0.7)

and, by (B.0.4) and and Lemma 5.4.1,

|∂yk−1
ak(yk−1)| ≤ C](1 + ‖ν ′′k−1‖) ≤ C](1 + c)

‖∂yak‖Cρ ≤ C]‖νk−1‖Cρ+1 ≤ C]c
ρ!.

Next, using (B.0.7), we prove by induction that ‖(an)−1‖Cρ ≤ C]λ
−n
− c

ρρ!C
ρaρ
µ,nµρρ!n :2

‖[an]−1‖Cρ ≤ C]λ
−n
− + λ−1‖[an−1]−1‖Cρ + C]‖[an−1]−1‖Cρ−1c

ρ!C
aρ
µ,n−1µ

ρ!(n−1)

≤ C]λ
−n
− + c

ρ!C]

n−1∑
j=0

λj−n− ‖[aj]−1‖Cρ−1C
aρ
µ,jµ

ρ!j

≤ C]λ
−n
− c

ρρ!Cρaρ
µ,nµ

ρρ!n.

(B.0.8)

1In the mentioned paper the authors need more regularity for the extended vector field.
Here it is enough to obtain a vector field which is Cρ.

2Here aρ is the one given by Lemma 5.4.1.
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To compute ‖(dn)−1‖Cρ we can use formula (5.1.3) and recall (5.4.1) and (5.4.9):

‖(dn)−1‖Cρ = ‖(h′n)−1‖Cρ ≤ C]µ
(ρ+1)nCaρ+1

µ,n µ(ρ+1)!n = C]C
aρ+1
µ,n µ(ρ+1)(ρ!+1)n.

(B.0.9)
Next, by (B.0.1), (B.0.2) and (B.0.3) we have

[an(y)]−1cn(y) =
n∑
j=1

dn(hn−1(y)) · · · dj+1(hj(y))cj(hj−1(y))·

[an(hn−1(y)) · · · aj(hj−1(y))]−1,

[dn(y)an(y)]−1cn(y) =
n∑
j=1

[dj−1(hj−2(y)) · · · d1(y))]−1cj(hj−1(y))·

[an(hn−1(y)) · · · aj(hj−1(y))]−1.

Hence, by (B.0.8), (B.0.9) and the first of (B.0.4), we obtain, using (A.0.1),

‖[dnan]−1cn‖Cρ ≤ C]c
ρρ!C2ρaρ+1

µ,n µ(ρ+1)(2ρ!+1)n

‖[an]−1cn‖Cρ ≤ C]c
ρ!Caρ

µ,nµ
ρ!n.

(B.0.10)

We are ready to conclude. Since

(Dν̂n(y)F
n)−1 = D(0,y)φ

−1
n (D(0,y)F̃

n)−1Dγ◦hn(y)φ0,

by (B.0.6) and (B.0.5) it follows

(Dν̂n(y)F
n)−1vu(γ ◦ hn(y)) = V (hn(y))

(
an(y)−1, 0

)
,

(Dν̂n(y)F
n)−1vc(γ ◦ hn(y)) = dn(y)−1 · [v2 − unv1] ◦ γ(hn(y))

(
(ν̂ ′n)1(y), 1

)
.

Recalling that un(y) = an(y)−1cn(y), by (B.0.8), (B.0.9), (B.0.10), and since
γ ∈ Γ(c) and ‖v‖Cr ≤ 1, we have the result for the vector field along the curve.
Finally, we extend vu to a neighborhood of γ. It turns out the be more convenient
to define first the extension

w(x, y) = F n∗vu(ν̂n(y))

then v̂u = h∗nw and F n∗ v̂u = w. By these definitions it follows

‖F n∗ v̂u‖Cρ(N(ν)) = ‖F n∗vu‖Cρν ≤ λ−n− Cρaρ
µ,nµ

ρρ!n

‖v̂u‖Cρ(M ′(γ)) ≤ Cn.

The definition of v̂c and relative estimates are analogous.
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Appendix C

The space Hs

Let u ∈ C∞(T2). The Fourier Transform of u and its inverse are

Fu(ξ) =

∫
T2

e−i2πxξu(x)dx, ξ ∈ Z2, (C.0.1)

u(x) =
∑
ξ∈Z2

Fu(ξ)ei2πxξ, x ∈ T2. (C.0.2)

Then Hs is the completion of C∞(T2) with respect to the inner product

〈u, v〉s =
∑
ξ∈Z2

〈ξ〉2sFu(ξ)Fv(ξ), 〈ξ〉 :=
√

1 + ‖ξ‖2. (C.0.3)

Notice that, by formula (7.9.2) of [38], there is C > 0 such that

C−1
∑
γ+β=s

Cγ,β‖∂γx1
∂βx2

u‖2
L2 ≤ ‖u‖2

Hs ≤ C
∑
γ+β=s

Cγ,β‖∂γx1
∂βx2

u‖2
L2 . (C.0.4)

Below we recall some standard important results about the space Hs :1

• C∞ (T2) ⊂ Hs (T2) ⊂ C∞ (T2)
′

• H0 (T2) = L2 (T2) ;

• Hs (T2) =
{
u ∈ L2(T2) : ∂βϕ ∈ L2 (T2) , for any |β| 6 s

}
;

• Hs (T2) ⊂ Hs′ (T2) if s > s′;

• Cs (T2) ⊂ Hs (T2) , and if s > 1, then Hs (T2) ⊂ Cs−1−γ (T2), for each
γ > 0.

1We denote with C∞(T2)′ the dual space of C∞(T2).
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Lemma C.0.1. For every ς ∈ (0, 1) and 1 ≤ s < r there exists constants Cs such
that

‖u‖2
Hs−1 ≤ ς‖u‖2

Hs +
Cs
ς
‖u‖2

L1 , u ∈ Cr(T2).

Proof. By definition of the norm we have, for all τ ∈ (1, 2),

‖u‖2
Hs−1 =

∑
ξ∈Z2

|Fu(ξ)|2〈ξ〉2(s−1) =
∑
ξ∈Z2

|Fu(ξ)|2〈ξ〉2s−2+τ 〈ξ〉−τ (C.0.5)

By Young inequality ab ≤ ςap

p
+ ς

− pq bq

q
, for every ς > 0 and 1

p
+ 1

q
= 1. We apply

this with a = 〈ξ〉2s−2+τ , b = 〈ξ〉−τ and p = 2s
(2s−2+τ)

, q = 2s
2−τ to obtain:

〈ξ〉2s−2+τ 〈ξ〉−τ ≤
(

1− 2− τ
2s

)
ς〈ξ〉2s + ς−1 (2− τ)〈ξ〉−

2sτ
2−τ

2s
.

Using this fact in (C.0.5) and recalling that ‖Fu‖∞ ≤ C‖u‖L1 , we get

‖u‖2
Hs−1 ≤ ς

∑
ξ∈Z2

|Fu(ξ)|2〈ξ〉2s +
Cs
ς
‖Fu‖2

∞ ≤ ς‖u‖2
Hs +

Cs
ς
‖u‖2

L1 .
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Appendix D

Vector Field regularity

This appendix is devoted to proving the following regularity results on the itera-
tion of a vector field.

Lemma D.0.1. Let ε0 ∈ (0, 1], A ∈ [0, 1/2], B > 0 and u, u′ ∈ C1(T2,R) such
that ‖u‖∞, ‖u′‖∞ ≤ Aε−1

0 and ‖∇u‖∞, ‖∇u′‖∞ ≤ Bε−1
0 . Consider a family of

vertically partially hyperbolic map Fε, ε ≤ ε0 such that∥∥∥∥∂θf(p)

∂xf(p)

∥∥∥∥
∞
≤ 1

∂xf(p)

[
1− A

∥∥∥∥∂θf(p)

∂xf(p)

∥∥∥∥
∞

]
≥ 2(1 + ε0‖∂xω‖∞).

(D.0.1)

For each h ∈ H∞ and k ≤ n ∈ N, we define the sequence of functions1

ū0(p, ε) = u(hn(p))

ūk(p, ε) = π2 ◦ Φk
ε(hn(p), u(hn(p))),

and similarly for ū′k. Then, for each p, p′ ∈ T2 and ε, ε′ < ε0,

|ūn(p, ε)− ūn(p′, ε′)| ≤ C]e
4Aµ3n

{
λ+
n (hn(p))−1‖u− u′‖∞

+ (‖ω‖C2 + µ2nλ+
n (hn(p))−1Cµ,n|u′|)‖p− p′‖

+
[
1 + λ+

n (hn(p))−1|u′|2
]
|ε− ε′|

}
.

(D.0.2)

Proof. Let pk(p, ε) = hk(p), for h ∈ H∞, p ∈ T2. By (5.3.6) (or see [20] for
details) we have

‖∂ppk‖ ≤ ‖(Dhk(p)F
k
ε )−1‖ ≤ C]µ

k ≤ C]e
c]εk. (D.0.3)

For each u > 0 and for k ≤ n let

λ(p, ε) =
|∂xf(p)|

1 + ε (‖∂θω‖∞ + ‖∂xω‖∞)
≥ |∂xf(p)|µ−1

uk(p, ε, u) = Ξε(pn−k+1(p, ε), uk−1(p, ε, u)),

(D.0.4)

1See (10.2.2) for the definition of Φnε .
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where in the first line we have used Remark 4.4.1. Note that ūn(p, ε) = un(p, ε, u0(p, ε)).
Using (10.1.2) and (10.1.4) a direct computation yields, for |u| ≤ Aε−1

0 ,

|Ξε(p, u)| ≤ |u| (1 + ε‖∂θω‖∞)

|∂xf(p)|
[
1− ε|u|‖ ∂θf(p)

∂xf(p)
‖∞
] +

‖∂xω‖∞
∂xf(p)

[
1− A‖ ∂θf(p)

∂xf(p)
‖∞
]

≤ 1

|∂xf(p)|
µe2ε0|u||u|+ 1

2
‖∂xω‖∞

|∂uΞε(p, u)| ≤ 1

λ(p, ε)

[
1− ε

∣∣∣∣u∂θf(p)

∂xf(p)

∣∣∣∣]−2

‖∂pΞε(p, u)‖ ≤ C](‖ω‖C2 + |u|)
|∂εΞε(p, u)| ≤ C](1 + |u|)|u|.

(D.0.5)

The first line of the (D.0.5) and the second of (D.0.1) imply

|uk(p, ε, u)| ≤ 2−k|u|+ ‖∂xω‖∞.

We can get a sharper bound defining

Λk,j(p) :=

j∏
i=k+1

λ(pi, ε) ; Λk,j(p) :=

j∏
i=k+1

|∂xf(pi)|

∆ := ‖∂xω‖∞
∥∥∥∥∂θf(p)

∂xf(p)

∥∥∥∥
∞
,

then
|uk(p, ε, u)| ≤ Λn−k,n(p)−1|u|+ ‖∂xω‖∞. (D.0.6)

Moreover, setting uj = uj(p, u, ε), u
′
j = uj(p

′, u′, ε′), with |u|, |u′| ≤ A
ε0

, and
recalling (D.0.3), (D.0.4), (D.0.6), we have

|uk+1(p, ε, u)− uk+1(p′, ε′, u′)| = |Ξε(pn−k, uk)− Ξε′(p
′
n−k, u

′
k)|

≤ C](‖ω‖C2 + |u′k|)‖pn−k − p′n−k‖+ C](1 + |u′k|)|u′k||ε− ε′|
+ Λn−k−1,n−k(p)

−1e2−k+1A+2ε0∆|uk − u′k|
≤ C](‖ω‖C2 + Λn−k,n(p′)−1µk|u′|)

[
µn−k‖p− p′‖

+ (1 + Λn−k,n(p′)−1µk|u′|)|ε− ε′|
]

+ Λn−k−1,n−k(p)e
2−k+1A+2ε0∆|uk − u′k|.

(D.0.7)

We can then iterate the above equation and obtain

|un(p, ε, u)− un(p′, ε′, u′)| = Λ0,n(p)−1µne4A+2nε0∆|u− u′|

+ C]

n−1∑
k=0

Λ0,n−k(p)
−1µn−ke4A+2ε0(n−k)∆(‖ω‖C2 + Λn−k,n(p′)−1µk|u′|)µn−k‖p− p′‖

+ C]

n−1∑
k=0

Λ0,n−k(p)
−1µn−ke4A+2ε0(n−k)∆(1 + Λn−k,n(p′)−2µk|u′|2)|ε− ε′|.
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In addition equations (10.1.1) and (5.3.5) imply

Λj,n(p) ≥ C]λ
+
n−j(pn)

|∂pΛj,n(p)| ≤
n∑

j=l+1

∣∣∣∣Λl,n(p)
∂2
xf(pl)

[∂xf(pl)]2
Λj,l−1(p)

∣∣∣∣ ‖∂ppl‖ ≤ C]Cµ,nµ
nΛj,n(p).

Thus,

|un(p, ε, u)− un(p′, ε′, u′)| ≤ C]e
4A+2nε0∆µn

{
λ+
n (pn)−1|u− u′|

+ (‖ω‖C2 + µ2nλ+
n (pn)−1Cµ,n|u′|)‖p− p′‖+

[
1 + λ+

n (pn)−1|u′|2
]
|ε− ε′|

}
.

The Lemma follows since, by Remark 4.4.1 and our hypotheses, eε0∆ ≤ µ.
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Appendix E

Extension of curves

In this section we explain how to extend a segment to a close curve of homo-
topy class (0, 1) with precise dynamical properties and explicit bounds on the
derivatives.

Lemma E.0.1. There exist constants δ0, Cn0,j > 0 and L? ≥ 1 such that for
each line segment γ(t) = γ(0) + (1, v)t of length δ ≤ δ0 and n0 ∈ N such that
γ′(t) 6∈ ∪z∈Fn0 (γ(t))DzF

n0Cu we can extend γ to a closed curve γ̃, parametrized by
arclength, of homotopy class (0, 1) with the following properties:

• let γ−(t) = γ(0) + 1
2
e1 + e2t, then for each h ∈ H∞γ− and k ∈ N we have

γ̃ ∈ Dom(hk) and hk ◦ γ̃ is a closed curve in the homotopy class (0, 1).

• ϑγ ≤ ϑγ̃.

• For all p ∈ T2 and m ≥ n0 ∈ N ∪ {0}, if Dphn0γ
′ 6∈ Cu and Dphmγ

′ ∈ Cε,c,
then Dphn0 γ̃

′ 6∈ CC]ε,u and Dphmγ̃
′ ∈ Cc.

• For each j ∈ {1, . . . , r − 1} and t ∈ R,

‖γ̃(j+1)(t)‖ ≤ Cn0,j
(L?{L?, 1}+ε−1µm)j

(χu + |π2(γ̃′(t))|)j
:= Cn0,j∆

j
γ̃. (E.0.1)

Moreover, if the conditions of Lemma D.0.1 are satisfied, then (E.0.1) holds true
with

L?(n) = sup
|v|≤1

L?(n, v),

L?(n, v) = C]κ̄
−c] lnµCµ,n0(‖ω‖C2 + κ̄1−c] lnµ) ; κ̄ = |v|+ χu.

(E.0.2)

Proof. By an isometric change of variables we can assume, without loss of gener-
ality, that γ(0) = 0. Hence γ(t) = (1, v)t for t ∈ [−δ, δ] and γ′(t) = (1, v) =: v̄.
Note that we can assume |v| ≤ 1 since otherwise the Lemma is trivial.

Before getting to the extension per se, we need some results on the dynam-
ics of the tangent vectors seen as elements of a projective space. We write a
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vector outside the central cone as (1, ζ), so ζ can be interpreted as a projective
coordinate. Then, in analogy with (4.4.2), we have, for each p ∈ T2 and ζ ∈ R,

DpF (1, ζ) = (∂xF1 + ∂θF1ζ)(1,Ξ(p, ζ))

Ξ(p, ζ) =
∂xF2 + ∂θF2ζ

∂xF1 + ∂θF1ζ
.

Also, computing as in (4.4.3),

∂ζΞ(p, ζ) =
det(DpF )

(∂xF1 + ∂θF1ζ)2 .

Next, for each q ∈ T2, let qn = F n0(q), z0(ζ) = ζ, z1(q, ζ) = Ξ(q, z0(ζ)) and,
for j ≥ 1, zj+1(qj, ζ) = Ξ(qj, zj(qj−1, ζ)). In particular, if h ∈ H∞, p ∈ T2 and
Γj(p) = Dhj(p)F

jCc, then Γj(p) = {(1, z̄j(p, ζ)) : |ζ| ≤ χc} where z̄j(p, ζ) :=
zj(hj(p), ζ). Note that for all j such that z̄j 6∈ Cu we have

|z̄j(p, χc)| ≤ C]λ
−
j (hj(p))

−1χc.

In the following we need an estimate of |z̄j(p,±χc)− z̄j(p,±χc(1− ε))|. Since

∂ζ z̄j(p, ζ) = ∂z̄Ξ(hj(p), z̄j−1(p, ζ))∂ζ z̄j−1(p, ζ)

iterating the above identities and recalling Propositions 5.3.1, 5.3.3 we have

C]
µ−j

λ−j (hj(p))
≤ |∂ζ z̄j(p, ζ)| ≤ C]

λ+
j (hj(p))µ

j

λ−j (hj(p))2
≤ C]µ

n0λ−n0
− .

It follows that |z̄j(p,±χc)− z̄j(p,±χc(1− ε))| ≥ C]εµ
−j|z̄j(p,±χc)|.

If, for some v0 > 0, v0 ≥ z̄j(p, χc(1−ε)) ≥ z̄j(p, χc) ≥ 0, then either z̄j(p, χc) ≤
1
2
v0, then |z̄j(p, χc)− v0| ≥ 1

2
v0; otherwise

|z̄j(p, χc)− v0| ≥ |z̄j(p, χc)− z̄j(p, χc(1− ε))| ≥ C]εµ
−j|z̄j(p, χc)| ≥ C]εµ

−jv0.

Accordingly, |z̄j(p,±χc) − v0| ≥ C]εµ
−jv0. Let L? be the maximal Lipschitz

constant of the z̄j(p,±χc) for m−n0 ≤ C]. If the hypotheses of Lemma D.0.1 are
satisfied, then we can provide and explicit estimate for L?: in a finite number of
steps n1 (depending only on the derivatives of F ) we can have z̄n1 ≤ 1/2, we can
thus apply Lemma D.0.1 ε0 = ε = ε′ = 1, A = 1/2, B ≤ C] and u = u′ = z̄n1(p),
we have

|z̄m−n0(p, χc)− z̄m−n0(p′, χc)| ≤ Lm−n0‖p− p′‖
Lj = C]µ

3j(‖ω‖C2 + µ2jλ+
j (p)−1Cµ,j/2).

Since Dhn0v 6∈ Cu we have, for n0 = 0,

| |z̄m(p,±χc)| − v| ≥ C]εµ
−mv,

while, for n0 > 0, applying the above considerations to v0 = Dhn0 v̄ yields∣∣∣∣ |z̄m−n0(hn0(p),±χc)| −
π2(Dhn0 v̄)

π1(Dhn0 v̄)

∣∣∣∣ ≥ C]εµ
m−n0χu.
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Hence,
| |z̄m(γ(t),±χc)| − v| ≥ C−1

n εµ−mκ̄. (E.0.3)

Next, note that, by usual distortion arguments, it must be λ+
m−n0

≥ C]µ
n0(χcκ̄)−1

and m− n ≤ C] ln κ̄−1, thus

Lm−n0 ≤ C]µ
c] ln κ̄−1

(‖ω‖C2 + Cµ,n0µ
c] ln κ̄−1

κ̄) = L?(v).

We are finally ready to extend our segment. We discuss only the case v ≥
z̄m(γ(δ), χc) and t ≥ 0 since the other cases can be treated similarly.

For ϕ ∈ R, let w(ϕ) = (cosϕ, sinϕ), θ = tan v and a =
√

1 + v2. Then
v̄ = aw(θ). We start by extending the curve to the interval (δ, δ + A), with
A = 1

2a
C−1
n εµ−mκ̄L−1

? < 1.
Next, let b ∈ C∞(R, [0, 1]) be a bump function with b(t) = 0 for t ≤ 0 and

b(t) = 1 for t ≥ 1. Also, let B = {aL?, 16θc,k}, for some k ≥ 1 to be chosen
later, and where θc := arctan(2χ−1

c ), and define

γ̂′(t) = aw
(
θ + b((t− δ)A−1)B(t− δ)

)
=: aw(θ̃(t)). (E.0.4)

Note that, by construction, θ̃(t) ≥ θ. Moreover, for t ∈ [δ, δ + A], we have

‖γ̂(t)− γ̂(δ)‖ ≤
∫ δ+A

δ

‖aw(θ̃(ts))‖ds ≤ Aa.

Thus, recalling (E.0.3),

arctan z̄m(γ̂(t), χc) ≤ arctan z̄m(γ̂(δ), χc)+L?aA ≤ θ− εκ̄

2Cn
µ−m+L?Aa < θ ≤ θ̃(t),

which implies that Dγ̃(t)hmγ̂
′(t) ∈ Cc. In addition, for t ≥ δ + A, we have

| d
dt

tan θ̃(t)| ≥ B ≥ aL? ≥ |
d

dt
z̄m(γ̃(t)|.

Next, let T > 0 be such that θ̃(T ) = θc so that γ̂′(T ) is well inside the central
cone. This implies T ≤ δ + θcB

−1 and

|π1(γ̂)| ≤ C]T ≤ C]δ +B−1 ≤ C](δ0 + k
−1) < 1/2,

provided δ0 and k
−1 are small enough. It is then a simple exercise to construct

an extension γ̂ : [0, S] → T2 such that γ̂′(t) ∈ Cc, ‖γ̂′‖ = a, for all t ∈ [T, S]
and γ̂(S) = (0, 1/2), |π1(γ̂)| ≤ C](δ0 + k

−1), γ̂′(S) = (−χc/2, 1), γ̂(j)(S) = 0
for all j > 1 and supt∈[T,S] ‖γ̂(j)(t)‖ ≤ C]. By symmetry we have a closed curve

γ̂ of homotopy class (0, 1). It suffices to ask C](δ0 + k
−1) ≤ 1

4
, to insure that

γ̂ ∈ Dom(hk) for each h ∈ H∞γ− and k ∈ N. Then Lemma 5.2.1 implies that

there exists inverse branches {hk,i}d
k

i=1, where d is the degree of F , such that

F−kγ̂ =
⋃dk

i=1 hk,i ◦ γ̂. Since hk,i is a diffeomorphism, hk,i ◦ γ̂ is a closed curve.
In addition it must be of homotopy type (0, 1), otherwise it would intersect an
horizontal segment in more than one point and the image, under F k, of the
interval between two intersection points would be an unstable curve going from
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γ̂ to itself. Since such a curve would be transversal to γ̂ by hypothesis, it follows
that it would have to wrap around the torus horizontally an hence intersect γ−
contradicting the fact that it is in the domain of hk,i.

Recalling (E.0.4), formula (5.1.3) gives, for all j ≥ 2, 1

‖γ̂‖Cj+1 ≤ C]‖w ◦ θ̃‖Cj ≤ C]

j∑
s=0

‖w‖Cs
∑
k∈Kj,s

j∏
l∈N

‖θ̃‖klCl

≤ C]

j∑
s=0

∑
k∈Kj,s

∏
l∈N

(
A−lB

)kl ≤ A−j
j∑
s=0

Bs.

Thus, since ‖γ̂′‖ = a, we can reparametrize the curve by arc-length. Calling γ̃
the reparametrized curve we obtain

‖γ̃(j)(t)‖ ≤


0 if |t| ≤ δ

C]A
−j+1Bj−1 if δ ≤ |t| ≤ δ + A

C]B
j−1 if |t| ≥ δ + A,

which yields (E.0.1) since

|π2(γ̃′(t))| ≥

{
|v| if |t| ≤ δ + A

C](|v|+B(t− δ)) if |t| ≥ δ + A.

1Notice that, as ‖θ̃‖Cl ≤ C]A−lB, recalling the definition of Kj,s we have∑
k∈Kj,s

∏
l∈N

(A−lB)kl .
∑
k∈Kj,s

A−
∑∞
l=1 lklB

∑∞
l=1 kl . A−jBs.
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