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Abstract

This thesis focuses on the study of the statistical properties of chaotic dynamical
systems, especially in the area of partially hyperbolic systems. The general aim
of this field is attempting to predict the behaviour of the system for long times.
Ruelle in the 1970s has shown that, instead of considering individual trajectories,
it is much more natural to consider the evolution of densities under the study of a
linear operator, called Transfer Operator (or Ruelle-Perron-Frobenius). Following
this idea, in the last years, an extremely powerful method has been developed:
the functional approach. It consists in the study of the spectral properties of the
transfer operator on suitable Banach spaces. In this work we apply this approach
to partially hyperbolic systems in two dimensions, establishing the germ of a
general theory. To illustrate the scope of the theory, the results are used in the
case of fast-slow partially hyperbolic systems, pointing out how to pursue the
arguments for further progresses.
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Notations

R4 R

T2, T
B(z,r)
CY(Q,RY)
Ck(Q,RY)
O, u, VU
o, %u, u’
Du

D%f
La(z)

L(X,Y)

X =Y
HS

{A, B}"

The d-dimensional Euclidean space for d > 2 and d = 1 respectively.
The d-dimensional flat torus R?/Z? ford > 2 and d = 1 respectively.
The open ball of radius r centered at z.

The space of R%valued continuous functions on  C T?2.

The space of R%valued continuous functions on € C T? with con-
tinuous derivatives of order 7, 7 =1,... k.

Partial derivatives with respect to the x;-th variable and gradient
vector of w.

Differentiation with respect to the variable ¢ .

Jacobian matrix of u € C".

Hessian matrix of w.

The characteristic function of A defined by 14(z) = 1if x € A and
Ta(z)=0if z ¢ A.

Banach space of linear continuous operators from the Banach space
X to the Banach space Y equipped with the norm topology. When
X =Y we only write £(X).

X C Y with continuous injection.
Fourier transform Fu(§) = [p. e 2™ u(z)dz.

The completion of C>(T?) with respect to the norm induced by the
inner product (u,v)s = 3 ¢eze (1 + [[€]1)* Fu(§) Fo(§).

The maximum between the quantities A and B.




Some useful inequalities

e Generalized Young’s inequality: For p € (1,00) and p’ = p/(p — 1) and any
positive € > 0 we have

/

10
ab< e—+ —— Va,b>0.
p e’ p

e Logarithmic mean: For each x,y > 0,2 # y

M) (wy)i<—2"Y < (M)2 <Y

mﬁ( 2 2
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Chapter 1

Introduction

The general purpose of this thesis is to give a contribution in the area of dynamical
systems, in particular in the branch concerning partially hyperbolic systems. In
this introductory chapter we will briefly outline the motivations behind the study
and the main questions and issues we would like to address, discussing the results
we obtained.

1.1 Motivation

A dynamical system can be described by the (discrete or continuous) time evo-
lution of a map over some set. For our discussion it is enough to consider a map
F : M — M which is a diffeomorphism, or a local diffeormorphism, on a compact
Riemannian smooth manifold M. It is well known at least since the works of H.
Poincaré that studying the topological discrete dynamical system (F, M) to make
long time predictions may lead to unsatisfying results, due to either a rather com-
plicated behaviour of the orbits, or the sensibility to the initial conditions. We
therefore change the point of view, studying instead the measurable dynamical
system (F,, M(M)), where M (M) is the space of Borel probability measures on
M and
F.u(A) = p(F~1(4)), for each measurable set A.

The first problem is to select the relevant invariant measures. In this setting
it can be shown that the measures belonging to the class of a finite, smooth
Riemannian volume on M are globally preserved by F'. By Morse theory, any
Riemannian volume is locally equal to the Lebesgue measure, up to a smooth
change of coordinates. Therefore a good choice is to look at measures which
are absolutely continuous with respect to the Lebesgue measure. [[| If F is a
conservative system, it is well known that there is a natural invariant measure
in the class of the volume measures (for example, in the Hamiltonian case, such
a measure is the Liouville one). On the other hand, there is no distinguished
invariant measure in the dissipative case. For instance, if F' has periodic points,
we can take the average along the orbit of each such a point and construct an
associated invariant measure, which is of course not included in the volume class.

'We will show this fact in a concrete simple example in Section



1.2 Physical measures

It is the work of Sinai, Ruelle and Bowen (1960-1970) on hyperbolic attractors
that rigorously established the existence of invariant measures which are ”physi-
cally observable”

Definition 1.2.1. A physical measure (or SRB measure) is an F-invariant prob-
ability measure p such that the set

n—1
1
B(p) == {x eM: " Z(SFI@(I) — pu weakly as n — oo}
k=0

has positive Lebesque measure.

By weak convergence we mean that
1 n
lim — F¥(z)) = dp, Yy € C'(M,R).
nggon;@( (z)) /Mso p, Vo€ C'(MR)

Since then, many progresses have been made concerning the existence, unique-
ness and statistical properties of SRB measures in the case of hyperbolic maps,
in which the tangent bundle splits into contracting and expanding invariant sub-
spaces. On the other hand, a need to study cases beyond hyperbolicity, such
as non-uniform hyperbolic systems and partially hyperbolic systems, has clearly
emerged. This work focuses on the second type of systems, the partially hyper-
bolic ones, which allow central directions at each point, in which the expansion
and contraction is dominated by the behaviour in the hyperbolic directions. In
the case of volume preserving diffeomorphisms substantial progresses have been
made in the study of ergodicity starting with [44], 50} [57] to the point of estab-
lishing very general results, e.g. [I5]. For the dissipative case, if the invariant
measure is not a priori known, then establishing the existence of SRB measures
is a serious problem in itself, see [14], [I, 53] for some important partial results.
Moreover, it is well known, at least since the work of Krylov [41], that for many
applications ergodicity does not suffice and mixing (usually in the form of effective
quantitative estimates on the decay of correlations) is of paramount importance.
By mixing we mean that, if ;4 is an invariant measure for F', then

n—o0

lim wl'sozoF”duz/ wldu/ Padp, (1.2.1)
M M M

for suitable observables o1, s : M — R. Of course it is desirable to have infor-
mation on the speed of convergence in the above limit. If the limit in (|1.2.1])

2Since in this work we deal only with partially hyperbolic endomorphisms, we will follow
common practice (see for instance [28, Corollary 2]) and choose to use the terms physical
measure or SRB measure to indicate the same object in Definition [I.2.1] . Nonetheless, the
reader must be aware that in many situations SRB measures and physical measures are defined
in different ways, as they do not coincide in general (see [59] for an exhaustive discussion).



occurs exponentially fast we talk about exponential decay of correlations. Some
results in this direction exist in the case of mostly expanding central direction [2],
and mostly contracting central direction [25] I§]. For central direction with zero
Lyapunov exponents (or close to zero) there exist quantitative results on exponen-
tial decay of correlations only for group extensions of Anosov maps and Anosov
flows [26], 19, 24), 46], [55], but none of them apply to an open class (with notable
exceptions of [I7, 56]; also, some form of rapid mixing is known to be typical
for large classes of flows [32, [47]). Such results, albeit important, are often not
easy to apply since it is very difficult to estimate the central Lyapunov exponent.
Hence, the problem of effectively studying the quantitative mixing properties of
partially hyperbolic systems is wide open.

1.3 A functional approach

In the last years, starting with [13, 43| [7], an extremely powerful method to
investigate the statistical properties of hyperbolic systems has been developed:
the functional approach. It consists in the study of the spectral properties of the
transfer operator on appropriate Banach spaces. Although the basic idea can
be traced back, at least, to Von Neumann ergodic theorem, the new ingredient
consists in the understanding that non standard functional spaces must be used,
and in the insight of how to embed the key geometrical properties of the system
in the topology of the Banach space. See [6] for a recent review of this approach.

This point of view has produced many important results, e.g. see [40] 40, [33,
31, 29, ] just to cite a few. It is then natural to investigate if the functional
approach can be extended to partially hyperbolic systems. Some results that
hint at this possibility already exist (e.g. [4, 30]), however, a general approach is
totally missing. Nonetheless, the idea that some quantitative form of accessibility
should play a fundamental role has slowly emerged ([51], 48], [16]).

1.4 Main results

In this work we combine ideas from [4] and [43] to advance the functional analytic
point of view to a large class of two dimensional partially hyperbolic endomor-
phisms. In Theorem we find checkable conditions that imply the existence
of finitely many physical measures for such a class, and we prove that they all be-
long to some Sobolev space of function. We also show (Theorem that such
conditions are fulfilled for an open set of physically relevant systems, motivated
by [27, 20, 21], 22 23]. Moreover, for such systems, we are able to obtain some
quantitative information on the regularity of the eigenvectors of the transfer oper-
ator (Theorem , which hopefully should allow further progress. In addition,
we show how the results obtained here can be combined with averaging results to
provide a very detailed description of the physical measures, see Theorem [£.5.3]
We believe that this approach can be further refined and extended to produce
results in a much more general class of systems. The attempt to obtain precise



quantitative information is responsible for much of the length of the work, as it
entails a strenuous effort to keep track of many constants. Indeed, it is customary
to think that the constants appearing in Lasota-Yorke type inequalities are largely
irrelevant. This is certainly not the case in the context discussed in section [10] as
the possibility to consider the class of maps discussed there as a perturbation of a
limiting case depends crucially of the size of such constants. It was then essential
to push the estimates to their extreme in order to find out if perturbative ideas
could be applied or identify the source of a possible obstruction.

1.5 Structure of the thesis

The thesis is structured in Chapters organized in three parts: the first is a brief
overview of the background, the second is the core of the work, in which we prove
the main theorems in a general setting, and in the third part we apply our results
in a concrete case.

e Part 1

— Chapter 2. We briefly show the necessary background concerning the
functional approach, recalling some important abstract results about
the spectrum of bounded operators. To present such results in a simple
fashion, we apply them to the case of expanding maps on the circle.

— Chapter 3. Using a simple example, we present the concept of
transversality between unstable cones introduced by Tsujii, which is
central in our discussion.

o Part 11

— Chapter 4. We describe the systems we consider and we state our
results.

— Chapter 5. We introduce the necessary notation and prove several
facts needed to define the Banach spaces we are interested in. In
particular we provided several preliminary estimates that we will use
in the rest of the manuscript.

— Chapter 6. We define the main Banach spaces and we prove a first
Lasota-Yorke inequality (Theorem . Unfortunately, the spaces
considered in this section do not embed compactly in each other and
hence one cannot deduce the quasi-compactness of the operator from
such inequalities.

— Chapter 7. In this Chapter we prepare some results needed in the
next Chapter: we prove a Lasota-Yorke inequality in the Sobolev
spaces H® (Lemma , and we give some results on the transver-
sality of unstable cones.

— Chapter 8. This Chapter is the core of the thesis where some inequal-
ities relating the previous geometric norms to the Sobolev norms H?*



are obtained ( Theorem 8.0.2)), solving the compactness problem men-
tioned in Chapter 6. The key result to prove the Theorem is contained
in Proposition [8.1.3]

— Chapter 9. We collect the work done and we prove Theorem [9.0.1),
which will allow us to prove Theorem [4.3.2]

e Part III

— Chapter 10. In this final Chapter we show that fast-slow systems sat-
isfy our conditions. We prove that Theorem applies in this case,
which allows us to prove Theorem [.5.2] We then conclude showing
some implications, proving Theorem and Theorem [4.5.3



Part 1

Background: a functional
analytic approach to dynamical
systems



Chapter 2

Expanding maps on Tl

2.1 Invariant measures

In this chapter we present the main tools in the simplest possible case,E] which
is a map F € C"(T, TY), r > 2, such that inf,ep F'(x) > X\ > 1. As explained
in the introduction, studying the topological dynamical system (F,T!) to make
long time predictions may lead to unsatisfying results, due to the sensibility to
the initial conditions. We then change the point of view studying instead the
measurable dynamical system (F,, M(T')), where M (T") is the space of measures
on T! and
Fupu(p) = ulpo F), VYo C(T,R).

We want now to select the initial measures which are pushed forward by the
dynamics. As one can imagine, a reasonable choice is to take p absolutely con-
tinuous with respect to Lebesgue. We then let h € L'(T!) be the density of pu.
As we are interested in the invariant measures, we need to select the ones such
that

uleoF)=pu(p), Veel(T'R),

namely we look for the fixed points of the linear operator F,. In the case at hand
we know by Riesz-Markov Theorem that M(T') = C°(T')’, and each measure p
is characterized by

) = [ elantda).

According to Krylov-Bogoliubov Theorem if y is a probability measure on M(T?),

then the sequence
n—1
1
n
k=0

has accumulation points which are fixed points of F. Instead of studying directly
the composition operators, it is more convenient to look at its dual version which,
as we will see in Section [2.2.1] has some smoothing properties. Let I; C T! be an

neN

1See [45] for a more detailed exposition.



interval such that F), is invertible. We partition T' = U, I; and we set b, := F‘Zl

Then, if m is the Lebesgue measure on T!, by changing the variables

Failg) = Y m(htypo F) = 3 m (L, (hobip) o F)

h(y)
= /Tl © Z F’(y) dx.

yeF—1x

If we then define the operator

Lrh(z)= Y My) (2.1.1)

12 )
yeF 1z F (y)

it has the fundamental properties that, for each p such that du = hdm

dF.p
dm

= Lrh.

The operator Lp is called Perron-Frobenius-Ruelle operator, or more simply
transfer operator and it is the main object of our studies. The first thing that can
be noticed is that L : L*(T') — L'(T'), and it is a contraction on L', indeed

/|£Fh|dm§/£F|h|dm:/10F|h|dm:/|h|dm. (2.1.2)

Moreover if dp = hdm, then p is an invariant measure of F'if and only if Lph = h,
i.e. the densities of the invariant measures correspond to the eigenfunctions of £
associated to the eigenvalues of modulus one. We then want to study the spectral
properties of £, which of course will depend on the functional space on which the
operator acts. Unfortunately, it turns out that the spectrum of £ in L' is the full
unitary disk, which does not give enough information for our purposes.

To continue, in the next section we recall some basic facts about the spectrum of
an operator acting on Banch spaces.

2.2 Spectral picture

In this section we give a briefly refresh of the main definitions about the spec-
tral properties of bounded operators, highlighting only the tools and the results
needed in this work. We essentially follow [5] and [45].

During the course of this section £ will denote a bounded linear operator acting
on a Banach space B endowed with a norm || - ||. In particular there exists a
constant C' > 0 such that

[Lull < Cllull,  Vu e B,

and we denote by L(B, B) the set of bounded linear operators from B to B endowed
with the norm
1£llop = sup [|£u]l

ue
flull=1

8



Notice that for the transfer operator of the previous section this corresponds to

equation (2.1.2) with C' = 1.
Definition 2.2.1. Given £ € L(B,B) we define the following quantities

e The resolvent set of L is
Rs(L) :={ e C:3(L-N1d)"" € L(B,B)}.
e The set (L) := C\ R(L) is the spectrum of £E|
o )\ € C is called an eigenvalue of L if the operator L — \1d is not injective.

e The algebraic multiplicity of A € C is my(N) = dim Ker(£ — A 1d) < oo.

o The geometric multiplicity of A € C is

mg(A) =dim{u e B:3Im >1: (L - A1d)"u =0} < oo.

o p(L) =sup{|A|: A € og(L)} is the spectral radius of L.

o We call pess := pess(L) the essential spectral radius of L and it is the small-
est number pess > 0 such that any X\ € (L) with || > pess is an isolated
eigenvalue with finite multiplicity.

It is important to remark that, if £ is a compact operator, it is well known that
its spectrum is made of countably many eigenvalues which may accumulates in
zero. Hence in this case the essential spectral radius would be zero. On the other
hand it could also happens that pes(L) = p(L£), which gives poor information
in terms of the dynamics. We then come up naturally with the idea of defining
a quasi-compact operator, that is, roughly speaking, an operator which satisfies

pess(L) < p(L).

Definition 2.2.2. The operator L € L(B, B) is quasi-compact if there exist By, Bs
closed subsets of B, and 0 < py < p(L) such that

o B=DB® By, with L(By) C By and L(By) C Ba,
e dim By < oo and if A is an eigenvalue of L|p,, then |A| > po,

* p(Ls,) < po.

Remark 2.2.3. In terms of the transfer operator L introduced in the previous sec-
tion, we gain important information if we are able to prove the quasi-compactness
in some space B C L'. In fact it can be proved that the eigenvalues on the pe-
ripheral spectrum op (L) = {2z € C : |z| = p(L) = 1} have equal algebraic and
geometric multiplicity, which essentially follows from which implies that
there are no Jordan blocks associated to eigenvalues on o, (L). It follows that,
since one is an eigenvalue, the dimension of the eigenspace associated to the
eigenvalue one corresponds to the number of SRB measures.

2We will simply use the notation R(L) as well as o(£) when the Banach space B is clear
from the context.
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Figure 2.1: Spectral picture.

We thus have a criterion to prove the existence of finitely many physical
measures: find a Banach space B C L! on which the transfer operator £ acts
as a quasi-compact operator. In this direction an abstract result in functional
analysis is available due to Hennion-Nussbaum ([37]), that we state here in the
following form

Theorem 2.2.4. Let (B, ||-||) C (B, ||-||w) be two Banach spaces and L : B — B
a linear operator such that, for some M >n >0, A, B,C > 0 and for eachn € N,
uebB

(1) [|1£%u]lw < CM™|[ulfw
(2) €]l < An*||ull + BM" |[ull.,
(8) B < B, is compact,
then L : B — B is quasi-compact with p(L) < M and pess(L) < 1.

Remark 2.2.5. The first two items are called Lasota-Yorke (or Doeblin-Fortet)
inequalities.

To conclude let us recall also the definition of spectral gap, which is stronger
than the one of quasi-compactness and provides an abstract criterion to prove
the existence and uniqueness of the invariant measure of the system.

Definition 2.2.6. An operator L € L(B,B) has a spectral gap in B if L = AP+Q
where

10



e P? = P gnd dim(Range(P)) = 1,
e PQ=QP=0,
o () € L(B,B) such that p(Q) < |A|.

It can be proved that if £ has a spectral gap then ) is a simple eigenvalue
and there exists v < 1 such that the spectrum is decomposed into

os(L) = {ALUK,
where K C {z € C: |z] < v|A|}.

Remark 2.2.7. Again, in terms of the transfer operator, this results can be
extremely helpful in the understanding of the statistical properties of the systems.
For example, if there exists a unique SRB measure, then either the map is not
mizing (there are other eigenvalues, besides one, on the unit circle) or it mizes
exponentially fast (one is the only eigenvalue on the peripheral spectrum and hence
the operator has a spectral gap).

2.2.1 A simple application

As an example we wish to show that the assumptions of Theorem are satis-
fied in the case of a one dimensional C? expanding map on the circle, to conclude
the argument introduced in the previous Section. We have the following

Theorem 2.2.8. Let F': T — T! be a C? expanding map with

inf F'(z) > XA> 1, (2.2.1)

zeT!

and L := L the transfer operator defined in (2.1.]1 . Then L satisfies the assump-
tions of Theorem with B = L*(TY), B, = HYTHF| M =1 and n = A~1.

Remark 2.2.9. It would be easier to consider L' as the weak space in the above
theorem, nevertheless we wish to prove the quasi-compactness in this setting as it
is instructive for our future computations.

Proof. We need to prove assumptions (1),..,(3) of Theorem [2.2.4] First of all, by
the definition of £ in (2.1.1)), it is easy to see that, for each n € N, z € T' and
u € L?,
u(y)
L'u(x) = ;
Fn /
YW

where F" = F'o Fo---0 F and, by the chain rule,

n times

(F™)(x) = 1:[ F'(FF(z)) =: Ty(x). (2.2.2)

3See Appendix |C| for the precise definition of H!.

11



Next

. @ ()
e G;(m)(wmﬁ )
v (2.2.3)

& () e )

We set for each n € Nand z € T', D, (x) := [((5: /E(”;PI We then have, by ([2.2.2)),

(F"Y'(x) = (M)’ nzl ( ) o F*(z)Ty(x).

k=0

1/

Setting Cr = sup, e Z;T(;C)), equations ([2.2.1)) and (2.2.3)) yield

n—1 " k n—1
= oF r
D,y ()| = | 220 FFO (x)(x) (@) CrY A<D WreT!, (224)
" k=0

where D = Cp (A By and ( D it follows that

L%l = [[(£"w) |1+ [ £ ul| 1
<A [ A+ (| Dl zoe |l 21 =+ [Jul| g0
S )\7n||'U/||W1,1 + (D + 1)H’U,HL17

which gives for each n € N
| L1 ooy < ([ L1 |wrn < C, (2.2.5)

with C' > 0 depending only on F. We use the above facts to prove items (1) and

(2). First
%
||£"u|]iz :/ w (L) o F™ < ||ullze (/ (L™u)? o F”)
T T1
%
s ([ @ e) < Gl €7l
T1
Hence, again by ([2.2.3)
[L%ull30 = 1(L™0) (|22 + [[£ul[r2 < C2A[|ullzn + C2(D + 1)|lullre,

from which we deduce item (2). Finally, by standard Sobolev embedding, the

inclusion H'(T') < L*(T!) is compact (this is essentially Rellich-Kondrachov
Theorem applied in the case of T'), hence item (3). O

4This term is usually called distortion and it measures how much the map deviate from
being linear.

12



Chapter 3

Transversality: a simple example

We present the transversality condition introduced by Tsujii in a simple setting,
which is a modification of an example given in [53] (see also [11, Section 11.4]).
Let us fix e > 0 small and set u. =1 —¢. Let X = T! x [-1,1], A € N, A > 2,
setting Q; = [%, %] x [=1,1], for i € {1,--- A} =: I, we define the maps

-Fi,a(xa 2) = (/\(L', Hez + ﬁzx + /Y’L)
A

Fa(l’, Z) = Z Fi,a(x7 Z)]lQi<x7 Z)’

1=1

where the parameters f3;,~; are chosen such that the image of F' is well defined.
Notice that each F;. is a diffeomorphism and for every p € T* x [—-1,1] and i € I,

A0
D,F;. = .
P <5z ,us)

Next we assume that Ay > 1, which implies det DF. > 1. For x, > 0 let us now
consider the cone

Cy. ={(&m) € Rt n] < xul¢]}-

We want to show that there exists x, such that DF.C,, C C,,. If we take (1, u)
with |u| <y, then

1
DpE,a (U) = ()\7 5% + “au)
Hence, if
max; |6,|
u —_— )\ _ ILLE 9

then the image of (1,u) belongs to the cone C,,, whereby proving the claim.
Henceforth we set 8 = max; |5i], xu = (A — pe) ™ and C,, := C,,.

We are now ready to introduce the notion of transversality between unstable
cones in this context.

13
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Figure 3.1: Transversality of unstable cones.

Definition 3.0.1. Given i,j € I with i # j, we say that i is transversal to j if

|8 = B5] > 3pieXu, (3.0.1)

and we write i th j. Notice in particular that this implies
DF,.C,NDF;.C, = {0},

and we say that the cones are transversal. We write jihi if condition (3.0.1) is
violated.

To quantify the number of non-transversal cones we define

Np :=sup#{j: jfli}. (3.0.2)

i€l

3.1 Existence of invariant measures

To study the invariant measures of the system we consider the transfer operator

L. = Lp. associated to the map. In this particular case we can see that, if
u € L*(X)
A
1
Lu(z) = Z )\Iusu(y) = Zﬁmu(y) (3.1.1)
yer—1(z) =1
where
£E,iu(x) = M\ (u © Fz‘il) (x)]lFi(Qi)(‘r)'
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Let us define the following set:

B = {u€L2 Zua 2),Ju, € L? 3 A finite , | <XU},
acA

namely u € B if it is the sum of functions in L? which are constants on the line
segments of slope a. We are going to prove the following

Lemma 3.1.1. The space B is L.-invariant, namely L.(B) C B. Moreover, if F
satisfies the following condition

N
=<1 3.1.2
Ve e ’ ( )
then, for eachn > 1 and u € B,
I£2ullZ < v2ullz2 + Cellull s, (3.1.3)
_ 201
where CS o Xuﬂs(l_Vs) ’

We will prove Lemma in several steps. Notice that if u = u,(0, y — az) then

1
O F (@) 1p ) = ta; (0,y — ayz), (3.1.4)
He

where «; are the slopes of the line segments obtained as images under F; of the
line segments {y = az},. In other words, by the invariance of C,, L.(B) C B.

The main characterization of the functions w, is that, if u; = u,, (0,2 — a;2),
1€ {1,2}, for (071 # (6%}

L.u(zr,z)=

1
(ur,ug) e < W HU1“L1 HUZHLl ; (3.1.5)

which follows by a simple change of variables in the integrals. Next, by (3.1.1])
we write for u € B

1Ceullfe =Y (Logu, Loju)e

(4,5)EIXT
= Z (E&iu, Es,ju>L2 -+ Z <£57Z'U, £€’ju>L2 .
(4,9):4mhj (i,5):igfs

We are going to estimate the two sums above separately.
In this case, if u = ) ., ua, Where u, is constant along the segments
2z = ax, we have

(Lo, Lojure =Y (Lo gtia, Lojtiar) 2.

a,a!

By (3.1.4) £.;u, and L. ju, are constant along the segments of slopes a; =

AN Bi + ape) and oy = X7H(B; + /). Since i M j, condition (3.0.I)) and the
fact that |a| < xu, |@/] < X, imply

e

i = @l = A7H18; = Byl = lalpe — la'le| > xu=r- (3.1.6)

15



By the above discussion and by (3.1.5) we conclude that

1
2 ey
= it /Zua / Zua' : —HUHLI

We then sum over i M 7 and obtain

A2\ — 1)

2
ul|51. 3.1.7
Yufle [Jul| 71 ( )

Z (Leiu, Lo ju)p2 <

(4,5):1hj

ifij | By the Cauchy-Schwarz inequality

]2 112
Z <£57iu, ‘CSJU>L2 < Z ||‘C€,zu||L2 + ”E&JUHH

2
(i.5):ifj (i.5)cifhs (3.1.8)
< Ne Yl Leulze:
i€l

It remains to bound the last sum. By the definition of the transfer operator

1 1
L. ull7 :/ u?o F1 :/ —u?
” B HL2 Fi(Qq) ()\NEP Qi Alte

hence

Z el = 5 Z [t = gl (319)

To sum up, by (3.1.7] , and -

N A2(A—1)
H£5UH%2 < >\,u HuHiz THuHLl (3.1.10)

We are now ready to prove inequality (3.1.3). Let us set v. = J;Cﬁ and A, =

A2(A—1)
Xulbe

, then iterating inequality (3.1.10

n—1

1C2ullfe < w2 ullfe + Ay vEllullz.
k=0

]

As v. < 1 by assumption, we obtain inequality (3.1.3)) setting C. =
An important consequence of Lemma [3.1.1]is the following

1—ve”

Corollary 3.1.2. There exists an invariant probability measure for F which is
absolutely continuous with respect to the Lebesgue measure on X.
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Proof. The proof corresponds essentially to an adaptation of Krylov-Bogoliubov
theorem in this setting. Let dm = dxdz be the Lebesgue measure on X, and
consider the sequence of measures

poldm) = £ 3 P (am).

By Lemma the sequence £*1 is uniformly bounded in L?, hence according
to Banach-Alaoglu theorem, there exists a subsequence h,, and h, € L? such
that

lim (hp,,h)z2 = (he,h)r2, Yh € L2

k—o0
Consequently, the measure du = h.dm is an accumulation point of f,, . We

now prove that p is F-invariant. It is well known that the claim is equivalent to
showing that

oo F) = u(g), Vo eC(X).

We have
nkl 17’Lk—1
7 : 1+1
(o F) = ]}Lrilon—k;F m(¢o F) = kh_)nolon—k;m(gboF)

:hmi{iF’ (¢) +m (po F) — (¢)}=u(¢)-

k—oo TLk

]

The above example is merely explicative, and gives just an idea of the role of
the transversality in a simple case. In particular it shows that the quantity Np.
enters directly into inequality and, if one can check condition for
the given system, we have a quantitative estimate of the essential spectral radius
of L.. Furthermore it is important to remark that the Lasota-Yorke inequality in
still holds as € — 0. In terms of F' this case corresponds to a two dimen-
sional map with two Lyapunov exponents, one is positive (due to the expansion
in the horizontal direction) and the other indefinite. In this case F' is a simple
example of a so called partially hyperbolic system. An interesting model related
to the above one is given by the following skew-product:

F.:T? — T? (3.1.11)
(x,2) — F.(x,2) = (f(x), 2 + ew(x)) (3.1.12)

where f is an expanding map on T*. The ergodic properties of this kind of model
have been extensively studied (varying also the conditions on f and w), from

17



the qualitative point of view, as in [58], to more quantitative results ([16], [30]
[26], [42], [60]), just to mention a few. Especially in [16], [30] and [60] already
emerges in this case the key role of quantities similar to (3.0.1f). It is then natural
wondering if a strategy similar to the one used to prove Lemma [3.1.1] can be
developed in the non-skew product case. In other words, it is possible to say
something about the quantitative statistical properties when f and w depend on
both z and z? Which conditions do they need to satisfy to get information on
the spectral properties of the transfer operator associated? These are the kind of
questions we are attempting to answer in the rest of this work.

18



Part 11

Vertical Partially Hyperbolic
Systems
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Chapter 4

The systems and the results

In this section we introduce the class of systems we are interested in, the main
assumptions and some definitions necessary to present the results. In this work
T? and T represent the quotients R?/Z? and R/Z respectively. For a local dif-
feomorphism F : T? — T? we define the functions mj, mp : T? x R?\ {0} — R,

st D.F D,F)™!
SR 1 R (€28 |

o] o]

Notation. As we would like to apply our results to open sets of maps F', all
the constants appearing in the text are really functions of F. We will call a
constant uniform if it depends continuously only on the C" norm of the map I,
on (A —py)™h X2t (1 —w)™ and C, (see hypothesis (H1) for the definition
of A=, ls, Xe, tx and Cy) . In order to make the reading more fluid, we will use
the notation f < g to mean that there exists a uniform constant Cy > 0, such
that f < Cyg. The values of the constants Cy can change from one occurrence
to the next. Moreover, in the following we will use Coy, ., Cap... to designate
constants that depend also on the quantities a,b, ..., but they are uniform when
the quantities in the subscripts are fized, since no confusion can arise we will call
such constants uniform as well.

Note that Xe, Xu, which determines the size of the central and unstable cone,
respectively, are not uniquely determined by the map. Given our convention, we
must keep track of how the constants depend on x,;' and we cannot hide such a
dependency inside a constant Cy. Indeed, in the next sections it will be apparent
that it may be convenient to choose x, as small as possible while it is convenient
to choose x. as large as possible.

Finally, to simplify notations, we use {a,b,...}" to designate the mazimum be-
tween the quantities a,b, . ..

!By || - || we mean the Riemannian metric in T? induced by the Euclidean norm in R2.
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4.1 Partially hyperbolic systems

Let r > 4 and F : T? — T? be a surjective C" local diffeomorphism. We call F a
partially hyperbolic system [ if there exist a continuous splitting, not necessarily
invariant, of the tangent bundle into subspaces TT? = EC® E*, o > 1l and ¢ > 0
such that for each n € N

1D Fgull > co™

DB | pgm (4.1.1)
‘E‘c ‘E‘u .
I | <co™

Notice that for non-invertible map the unstable direction is not necessarily unique,
nor invariant. It is then more convenient to work with cones instead than distribu-
tions. Indeed, it is well known (see e.g [36]) that the above conditions are equiv-
alent to the existence of smooth invariant transversal cone fields C,(z), C.(z),
which satisfy conditions equivalent to . To simplify the following argu-
ments we will restrict ourselves to maps without critical points. We can thus
assume, without further loss of generality.

(HO) for all p € T? we have det(D,F) > 0.

In addition, to simplify notations, we make the assumption that the cone fields
can be chosen constant since this hypothesis applies to all the examples we have
in mind. Hence we assume:

(H1) There exist xu, Xe € (0,1) and 0 < p_ < 1 < py < A < Ay such that,
setting

Cu:={(&m) € .T*: [n] < xulé]} (4.12)
Cc:={(&mn) € T.T : [¢] < xelnl}
defining
A, (2) = inf mpa(z,v) A (2) == sup mpa(z,v),
’UERQ\CC UERZ\CC
) ' (4.1.3)
pi(2) = it i (z,0) W) = sup m(z,0),
veC:\{0} vEC\{0}

and letting A\, = inf, A\~ (2) and A} = sup, A\ (2) we have the following:
There exist uniform C, > 1 and ¢, € (0,1) such that, for all z € T? and n € N E]

D.FC, Cc {(&n): In| < uxué]} € Cy; D.F'C. e C,, (4.1.4)
OOl < pp(2) Spp(2) SCult s OO <AL S AT <O (415)

From now on we set p := {u+,u:1}+ > 1. Note that the above conditions
imply, in particular, det(DF') # 0.

2In the present case the term partially expanding would be more appropriate, as there is
only an expanding direction which is dominant.
3A € B means A C int(B) U {0}.
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(H2) Let Y be the family of closed curve v € C'(T, T?) such that [}
c0) 7' #0,
cl) ~ has homotopy class (0, 1),
) v

c2) +'(t) € C,, for each t € T,

then F~'(v) is the disjoint union of closed curves and T D F~}(T).

(H3) Let

@ ::%[(r+1)!(6r— 1)+ 1]. (4.1.6)

Then we say that F' satisfies the pinching condition if
1o < A (4.1.7)

Remark 4.1.1. Notice that condition implies in particular that p < A_.
The presence of the factorials in 15 probably not optimal. This is a condi-
tion we did not try to optimise since it is irrelevant for our main application in
which p s very close to one.

A partially hyperbolic system satisfying (4.1.7)) will be called strongly domi-
nated.

Remark 4.1.2. Note that, since F' is a local diffeomorphism, then it can be
lifted to a diffeomorphism F of R? with the projection ® map being mod 1,
so that m(0,0) = 0. Then we can define G(z,0) = F(z,0) — (0,0) and write
Fomn(z,0) = n(G(x,0) + (0,0)). Thus in the following, with a slight abuse of
notation, we will often confuse the map with his covering and write

F(z,0) = (f(x,0),0 + w(x,0)). (4.1.8)

In addition, note that if the map satisfies condition (H2) then for each v € R?
the curve v,(t) = (x,t), t € T has a preimage v € T homotopic to the curve
() =p+(0,t), p € v, F(p) = (2,0). This implies that F(%,(t)) is a curve
homotopic to v,. Thus for each (x,0) € R? the lift has the property F(x,0+1) =
F(z,0) 4+ (0,1), which implies that w lifts to a periodic function in the second
variable.

In the following we will need some quantitative information on the Lipschitz
constant of the graphs associated to “unstable manifolds.” To simplify matters,
we prove the needed results in Lemma [D.0.1 We require then that our maps sat-
isfy the hypotheses of such a Lemma. However, be aware that such hypotheses are
not optimal and the following condition is used only in Lemma [D.0.T] hence it be-
comes superfluous if in a given system one can prove Lemma independently.

(H4) With the notation (4.1.8)) we require, for each p € T?
0:f (p) > {2(1 + [10:l00), 190.f (0) 1} -

4As usual we consider equivalent two curves that differ only by a C" reparametrization. In
the following we will mostly use curves that are parametrized by vertical length.
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Definition 4.1.3. We call a map F a strongly dominated vertical partially hy-
perbolic system (SVPH for simplicity) if it satisfies assumptions (HO),.., (H4).

Remark 4.1.4. Note that if F' satisfies (H1) and (H2), then so does F™, n € N.
Thus it may be convenient to consider F™, instead of F, to check (H3) and (H4).

From now on we will write a SVPH in the form (4.1.8)) when convenient.

4.2 Transversality of unstable cones

In [51] Tsujii introduces the following notion of transversality.

Definition 4.2.1. Givenn € N, y € T? and 21,20 € F7"(y) , we say that z, is
transversal to zo (at time n) if D,, F"C,ND,,F"C, = {0}, and we write z; M z,.

For each y € T? and 2, € F~"(y), we define

Ne(n,y,z1) == Z |det D, F™|™! (4.2.1)
22%21

22€F " (y)
and set Np(n) = sup, ez SUp,, ¢ p-n () Nr(n, y, 21)-

Remark 4.2.2. Note that if all the preimages are non-transversal, then the sum
m corresponds to the classical transfer operator applied to one (Lpl).

In essence, Lrpl — Np(n) provides a quantitative version of the notion of
accessibility in our systems.

As N is difficult to estimate we also introduce a related quantity, inspired
by [51]. Given y € T? and a line L in R? passing through the origin, define

Np(n,y, L) == > |det DF"(z)| ™. (4.2.2)

zeF"(y)
DF"™(2)Cy>L

As before we set Np(n) = Sup,cre supL./VF(n,y, L). Section provides the
properties of Ny and Lemma m explains the relation between Nz and Nr.

4.3 Result for SVPH

A physical measure is an F-invariant probability measure v such that the set

n—1

1
B(v) = {p e T?: EZ(SF;C(I,) — v weakly as n — oo}
k=0

has positive Lebesgue measure. One way to obtain information on the physical
measures of the system is to study the spectral properties of the Transfer operator.
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Definition 4.3.1. Given a map F : T? — T?, we define Lr : L*(T?) — L*(T?),
the transfer operator associated to F', as

_ u(y)
Lpu(z) = Z [det(D, F)| (4.3.1)
yeF~—1(2)
Iterating (4.3.1)) yields
u(y)
L = N.
= 2 T, F " (432)
y z

It is a well known fact that |Lpul|pr < [Jul|L:.
For each integer 1 < s <r — 1 we defin

_ log(A_p™?)
log(A+)

as:=22+s—a) ; Bs:=2(s+2) ; Cs::%+(s+2)!<25+g).
(4.3.3)

We are now ready to state the main result for SVPH, whose proof is given in
Section [Ql

Theorem 4.3.2. Let F € C"(T? T?) be SVPH, and let o, o, B, (s, as in (4.3.3)).
We assume that there exist ny € N and vy < 1 such that, for some 1 < s <r—3,

IR~ o+
{/LCSA_2, \/./\/'F(Mnﬂ)uasnﬁﬁsmm} <ws <1, (4.3.4)

where My, is defined in (8.1.24). Then there exists Banach spaces Bs ., C""*(T?) C
Bs. C H*(T?) such that Lp(Bs.) C Bs.. The restriction of Lp to Bs. is a
bounded quasi-compact operator, with spectral radius one and essential spectral
radius smaller than v,.

Remark 4.3.3. By standard arguments, Theorem[{.3.9 has the following conse-
quences: there exist finitely many physical measures absolutely continuous with
densities in the Hilbert space H?®, for some 1 < s < r — 3. Moreover, for each
mizing physical measure we have exponential decay of correlations for Holder ob-
servables.

Remark 4.3.4. By the definition of f\?p, it can be noticed that, under the as-
sumption (H3), condition is automatically satisfied if Ny grows sub-
exponentially for n large. According to [53], this latter fact holds generically for
partially hyperbolic systems in two dimensions. In this sense, the result and all
the consequences of Theorem[4.53.4 hold generically. For more details see Remark
A}

SNote that in (4.3.3)) 0 < a<1, thanks to hypothesis (4.1.6)).
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In particular, Theorem [4.3.2] implies that the map has finitely many physical
measures and that if it is topologically mixing, then it mixes exponentially fast for
all Holder observables. Note that the condition involves only a finite power of the
map and it is, at least in principle, checkable for a given map. Of course checking
it may be quite laborious and may entail some computer assisted strategy. It is
then interesting to consider less general models in which the previous condition
can be explicitly verified.

4.4 A general class of models

It is natural to ask when a map of the form (4.1.8)) satisfies (HO),.., (H4). Here
we provide checkable conditions implying (HO),.., (H4).

Lemma 4.4.1. Let X :=infp2 O, f, A := sup 0. f and suppose that:
1. 0uf(p) > {2(1 + [0uwlloc), 106 f(P) [} Vp € T?,
2. [|0pw]| 00 + [|Opw]]00 < 1,
3. |1p]oe < T
4. 1+ (195 flloc + [10swllco + [0swlloc < A,

5. |0afloo < 3 (=14 V14 2X2A7T),

In A

0. Xel|Oawlloo + l[lloo < 52

with & as in [@.1.6). Then F satisfies assumptions (HO),..,(H4) with x, given
by (4.4.5), (4.4.13)), x. given by (4.4.7) and

1= {(1 = Xc]|0sw]| o0 — [|Opw|| oo ), eXelOxloetlIOowlloc)y + (4.4.1)

Proof. To start, note that (1) coincides with (H4), which implies in particular
that A > 2. We have thus to prove only (HO) up to (H3).

We start with (HO). First we show that 0, f(p) > [0pfO0rw — 0, fOpw](p), for
each p € T?. The latter, by (2) and (3), is implied by A(1 — |Opw]) > A — 1 —
|0pw]| oo — ||Osw]|oe Which, in turn, is implied by (3).

Next we prove (H1). Following [20] we start by proving that D,F(C,) € C, and
D,F~(C,) € C.. We consider a vector (1,u) € C, and we write a formula for
the unstable slope field

0,w(p) + udgw(p) + u

DpyF(1,u) = (0o f +udpf)(1,E(p,u)), E(p,u) = 02 f(p) +uy f (p)

(4.4.2)
Notice that
d_ N Ouf + (Opw0, f — OpfO,w)  det DF(x,0)
P T R % S SR
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since det DF' > 0 by (1). Hence, checking the invariance of C, under DF is
equivalent to showing that, for each p € T2, |Z(p, xu)| < Xu. That is

16.fllooxs — (A = 10wl — 1) xu + [| 0] < 0. (4.4.4)

Setting ¢ = A — ||Opw||c — 1, inequality (4.4.4) has positive solutions since ¢ > 0
by , which also implies

¢* = 4[10s fllocl|Oawllsc > (106 flloc — l|0stw]|)* > 0.
Setting @+ = ¢ £ \/¢? — 4|05 |0 [| 02w ]| 0, We can then choose

d_

Note that the interval it is not empty due to .
On the other hand, if (¢,1) € C. we consider the center slope field

(1+Jpw(p))c — Oaf(p)
0. f(p) — Ozw(p)c

and by an analogous computation we obtain |=7(p, x.)| < xe if

o_
Xc € <—, 1) . 4.4.7
2”635‘*}”00 ( )

Again, the interval it is not empty due to (4, we have thus proved (4.1.4)).
Next, by the invariance of the cones we can define real quantities \,, p,, u, and
¢n such that, for each p € T2[f]

DPFn(lvO) = )\n(p) (1>un<p)) ) DpFn (CN(p)v 1) = MN(p)(()? 1)7

with [|tn|lse < Xus [|€nlloe < Xe- Moreover, by definition

E_(pa C) =

(4.4.6)

DyF (ca(p), 1) = % (car (F(p)) . 1),

from which it follows, by (4.1.8)),
fin(P) = pn—1 (F(p))(1 4 Opw(p) + cn(p)Opw(p))-
Since [|cnlloo < Xe setting b := [|0pw]|oo + Xel||Oww|| 0o, We have
(1=0)" < pn(p) < (1+0b)" (4.4.8)

Note in particular that, by (4.4.8), we can make the choice (4.4.1)) which imme-
diately implies (H3) by (6). Similarly,

An(p) = A—1(F(0) (02 f () + 0o f (p)un(p))

- ga””f(m : (a“f (Fp) %“n-mkm),

6 Note that the definition of \,, differs from the one of A} in ({.1.5), since we are considering
iteration of vectors inside the unstable cone. Nevertheless, they are related since there exists
an integer m such that F™(R?\ C,) € C,,.
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which, setting a := x4 8—;2”00, implies

E
1= [0 FE @) < Mlp) < A+ [[0FE w). (4.49)
k=0 k=0

which yields (4.1.5) with C, =1,
A =(1+a)d and A= (1—a)}, (4.4.10)

since, by the definition of y, in (4.4.5), we can check that A_ > 1. By (4.4.8))
and (4.4.9) we have, for each n € N and p € T?,

[DpF" (e, DI |pn2)l (14 0)"
1D F(LO)| Aa(p)|y/T+u2 — (L—a)"A™

To conclude, we need to check that ((11:;1))& < 1, form which we deduce (H1). This
is implied by

(4.4.11)

L+ [[0wllo + |0ewllco + 1|00 llo0 < A

which correspond to equation .
It remains to prove (H2). Since A > 2, F has rank at least two at each point,
hence it is a covering map and each point has the same number of preimages, says
d. Let then ~ : [0, 1] — T? be a smooth closed curve (¢) = (c(t), t) such that 7' €
C. with homotopy class (0,1). If p = (z,0) € y(t) then F~*(p) = {q1, - ,qa}-
Note that, by the implicit function theorem, locally F~!v is a curve, also, due to
the above discussion, it belongs to the central cone. If we call n the local curve
in F~'v such that 7(0) = ¢; we can extend it uniquely to a curve v : [0,1] — T2
We will prove that v(1) = ¢; = v(0). In turn this implies that F'~1v is the union
of d closed curves vy, --- vy with v/ € C,., each one with homotopy class (0, 1),
by the lifting property of covering maps (see [34, Proposition 1.30]). We argue
by contradiction: assume that v(1) = ¢; # ¢;. Let qx = (v, 0k), k € {1,...d},
then

92‘ + CU(:EZ‘, Qz) = 9j + W(l‘j, Hj)
implies
%m _— (4.4.12)
Hence the segment joining ¢; and ¢; belong to the unstable cone if

|0; — 6] <

Y > ”achHOO
C T = 19w

which is possible since implies that this condition is compatible with .
It follows that the image of the segment ¢ = {tq; + (1 — t)g;} is an unstable
curve and hence it cannot join p to itself without wrapping around the torus. In
particular, if ¢; # ¢;, then the horizontal length of F'(¢) must be larger than one.
Then, setting 0 = |z; — x|,

(4.4.13)

v 19 flloc
1102 flloo

1
1§/ |(e1, Doy U ()| < 1100 f (1+ )lmi—xﬂ < (1+ a)AS.
0

(4.4.14)
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To conclude we must show that v cannot move horizontally by § whereby obtain-
ing the wanted contradiction. Let v(t) = (a(t), 5(t)), then

N\ ;L O, f + B0y f
< 1 )_7<t>_DFV N (o/ xw+(1+82w)ﬁ’)'

Since we know that |/| < x. and |&/| < x.|f’| we have

181 < (1 = XellOawlloo — [|9pw]lo) ™

Ye 10l
o < Xe .
X TN el — N0ll)

I follows that it must be
1 ! X 106 ]
—gég/ o (t)]dt < =5+ = :
T A S [ Ny F ]
We thus have a contradiction if we can choose x. such that

Haefl\oo) {xc 196 f |0
1+ A==+ <1
( A A AL = 10zwlloo — [|0pw]loo)

which, by (4.4.7)), is possible only if
P H59J'7H<><>>1 A 106.f ] oo
< {1+ o = A
20,000 ( A A 1= [[0:w]leo — [[0pw][ 0

Note that if A > 1, then the inequality is trivially satisfied. We must consider
then only the case A < 1. A direct computation shows that the above inequality
is implied by

100 flloc < Alp = AllOzwlloc] = AN = |Opwllcc =1 = Al|Osw]loc] (4415

Let us set for simplicity @ := ||Opw/||oo + || 02w ||0o. Since A < 1 the above equation
is in turn implied by the following inequality

(1 + —"aef““)l A —“(%f”“’] A= (1+w)). (4.4.16)

00 < e} 2 L/l

By elementary algebra (4.4.16)) is equivalent to

A2 1
A flloollOpflloe +1) < = (1= ——) . 4.4.17
Jon bl + 1) < 5 (1- 535 (1.4.17
Since A > 2, (4.4.17)) is implied by [|0sf|so(||0a ]l + 1) < 3A*A™L, which is true
if
105 f]loc < 5 (—1++1+2X2A~1) . Hence the conclusion by condition 1} O

We have thus explicit conditions that imply (HO),..,(H4). It remains to in-
vestigate how to check condition (4.3.4]), which is, by far, the hardest to verify.
One can directly investigate in any concrete example (possibly via a com-
puter assisted strategy), however to verify it for an explicit open set of maps we
further restrict the class of systems under consideration. Note however that the
endomorphisms we are going to consider still include a large class of physically
relevant systems.
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4.5 Fast slow systems

We consider a class of systems given by the following model introduced in [22]
(and inspired by the more physically relevant model introduced in [27]). Let
Fy(z,0) = (f(x,0),0) be C"(T?,T?), for r > 4, such that inf, g)er2 0, f(2,6) >
A > 2. For any w € C"(R? R), periodic of period one, and ¢ > 0, we define

F.(z,0) = (f(z,0),0 + cw(x,0)). (4.5.1)
Before stating our result we need the following definition.

Definition 4.5.1. The function w € C°(T? R) is called x-constant with respect
to Fy if there exist 0 € T, ®y € C°(T,R) and a constant ¢ € R such that, for each
rxeT,

w(z, ) = @y(f(x,0)) — Py(z) + c.

Note that it is fairly easy to check that a function is not z-constant by looking
at the periodic orbits. Hence, the condition that w is not z-constant is consider-

ably easier to check than (4.3.4]).
The following theorem is proven in section [10.3]

Theorem 4.5.2. Under condition of Lemma there exists €, such that
the map F. is SVPH for any € € (0,¢e,). In addition, if w is not x-constant, then,
for each s > 1, there exists vs € (0,1) such that, for each e € (0,¢,), the transfer
operator Lp. is quasi compact on the spaces Bs ., with spectral radius one and
essential spectral radius bounded by v,.

The above result imply the following Theorem which is proved in section [10.5]

Theorem 4.5.3. In the hypothesis of Theorem the eigenvectors of L.
associated to the eigenvalue one are the physical measures of F.. Moreover, we
have the decomposition Lr, = Ilg + Q where 11,QQ = Qlly = 0, Ily is the finite
rank projector on the eigenspace associated to the eigenvalue 1, and ) has spectral
radius strictly smaller than one. Moreover, let h.(-,0) be the unique invariant
probability density of f(-,0) and consider the operator P : L' — (C') defined by

/ o(x,0)[Ph](dx,do) :/ dxgo(x,G)h*(x,G)/ dyh(y,0), Yo eC'.
T2 T1 T1
Then
||H0 — PH0||L1—>(C1)’ S Cﬁ&[ln 5_1]2. (452)

Finally, for each T > 0 let h, be the eigenfunction associated to the eigenvalue v
with |v| > e=¢". Then we have

The above Theorem is much stronger than the results in [53] (where only the
existence of the physical measure is discussed and the results hold only gener-
ically) or [I4 ] (where the existence of SRB measures is obtained under an

< Cye(lne™)2 (4.5.3)
cy

h, — h*/hl,(y, dy
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additional condition on the contraction or the expansion in the center foliation,
even though for more general systems). However, the papers [21, 22] show that,
using the standard pair technology and investigating limit theorems, it is possible
to obtain considerably more detailed information on the system. Unfortunately,
on the one hand the arguments in [21] are rather involved and, on the other hand,
the conclusions concerning the physical measure in [20] hold only for mostly con-
tracting systems (contrary to the present ones). It is then very important to
investigate if the present strategy can provide further information.

First of all we have an explicit bound on the regularity of the eigenfunctions.
The reader can find the proof of the following theorem at the end of section [10.4]

Theorem 4.5.4. If w is not x—constant, then there exist ¢, > 0 such that,
for each ¢ > 0 small enough, and v € (0,1), if v € o, (Lr)N{z € C
1-re[Ine ! < 2|}, and u is an eigenvector with eigenvalue v with ||ul|z, = 1]
then for all o > 171,

[ullpp < Cpe™0F,

Remark 4.5.5. It is not clear if the above Theorem is sharp. Certainly some
form of blow-up is inevitable. For example: let fo(-) = f(x,0) and call h.(-,0) the
unique invariant probability density of fo. Let ©(0) = [ w(x,0)h.(x,0)dz. If ©
has non degenerate zeroes {0;}., such that &'(6;) < 0, then [23] (see also the dis-
cussion below below) implies that there must exist an eigenfunction u essentially
concentrated in the v/ neighborhood of each 6;. This implies that ||u||y > Cﬁsfi.
However, there is a large gap between such a lower bound and the upper bound
provided by Theorem [{.5.4 In particular, much more information on the spec-
trum could be obtained if one could establish an upper bound of the type e=° with
b <1.

Finally, in the setting of Remark [4.5.5] let P : L' — (C')’ be the finite rank
operator defined by: for all ¢ € C!

/T 290(3:,9)[13h](dx,d9) :Z /T 1 dzp(x,0;)h.(x, 0;) /T dy dsh(y, s),

1y U,
xUj

where U; is the basin of attraction of the stable equilibrium point {6;} of the
averaged dynamics

.
)

(0

&l

(0)
N (4.5.4)

sy
>

Then, an immediate consequence of Theorem and [23, Proposition 4] is that

the eigenfunctions & for the eigenvalue 1 satisfy, for v € (0, 1),

Ih = Philisey < (Cee'*™* + Crelne™) . (4.5.5)

"See Section |§| for the definition of the space By.
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Remark 4.5.6. Note that the results of [23] are conditional to the existence of
the physical measure which has been previously proven only for the generic case
[51] (and hence may not apply to the present concrete situation) or in the case in
which the central Lyapunov exponent is negative, see [20]. On the contrary here
the existence of the physical measures is ensured by Theorems and
the central Lyapunov exponent maight be slightly positive. This leaves open the
very exciting possibility to obtain the results in [21)] using a simplified argument
which relies on some improved version of the present results.
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Chapter 5

Preliminary Estimates

In this Chapter we provide several basic definitions and we prove many estimates
that will be extensively used in the following..

5.1 C"-norm

Since we will need to work with high order derivatives, it is convenient to choose
a norm || - ||cr equivalent to the standard one, which ensures our spaces to be
Banach Algebras. We thus define the weighted norm in C"(T?, M(m,n)), where
M(m,n) are the m x n matrices]]]

lplleo = sup sup > [0y 5(x))|
zeT? ie{l,..,n} =i (5_1.1)

lelless = 27"l plleo + sup (105, ce-

where, for a multi-index a = (ayq, ..., ax) with oy € {1,2}, and we will use the
notation |a| =k and 0% = 0, -+ Os,, E| The above definition implies

P
lpllee <D 277" sup 18°¢]|co. (5.1.2)
k=0 o=

We will often need to compute the C” norm of ¢ along a curve v € C"(T,T?). In
this case we use the notation ||¢l|ce 1= ||¢ o v||co.

The following Lemma is proven in Appendix [A] Note that the estimate in the
Lemma are not sharp, however they try to optimize the balance between simplic-
ity and usefulness[]

Lemma 5.1.1. For each p,n,m,s € Ng,¢ € C°(T?, M(n,m)), ¢ € C*(T?, M(m, s))
we have
lellee < llelleell¥lleo-

! According with the previous notations we set r; = z and x5 = 6.

2Notice that this is at odd with the usual multi-index definition in PDE, however we prefer
it for homogeneity with the case, treated later, of non-commutative vector fields.

3 See [10, 35] for precise, but much more cumbersome, formulae.
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Moreover, there exists C; > 0 such that, if ¢ € CP(T?*, M(n,m)) and ¢ €

CP(T? T?),
14
leowller <C3 Y lilles D> TTIPYIE- (5.1.3)

s=0 kel ,,s lEN

where K, s = {k € N + Y70 ki < 8,52, Uk < p}.

Using the above Lemma it follows that there exists a constant A > 1 such
that
IDF™||lcr + [[(DFE™)"|er <A™, Vn €N. (5.1.4)

5.2 Admissible curves

In this section we introduce the notion of admissible curve in order to define
important auxiliary spaces and norms in the next section. We start by fixing
some notations and defining exactly what we mean by inverse branch.

Lemma 5.2.1. Let v be a differentiable closed curve in the homotopy class (0,1)
such that +'(t) ¢ C, for each t € T and F~ly = UZ:1 Vg, where the vy are
disjoint closed curves in the homotopy class (0,1). Then, there exist open sets
Qy, Qs with Q, = T2, and diffeomorphisms (the inverse branches) Y, : Q., —
), satisfying,

L Fohuk :Idlﬂfw
o Ifup,v; € F7ly, k# 4, then Q,, NQ,, =0,

O T2
i UVkEF*Ly QVk =T

Remark 5.2.2. Note that if v € T, then the hypotheses of the Lemma are satis-
fied thanks to hypothesis (H2).

Proof of Lemma [5.2.1. The circle ¢ = {(a,0)},er intersects each v in only
one point py = v, N q. Indeed, by the backward invariance of the complement of
C., v is locally monotone so it can meet twice q only if it wraps around the torus
more than once, which cannot happen since v, belongs to the homotopy class
(0,1). We can then label the v} so that the map k — py is orientation preserving
(mod d), let us call it positively oriented[] Also, calling 4 the curve obtained
by translating v by % in the horizontal direction, we consider A := F~1(¥) N g.
Since F is a local diffeomorphism, if p € A, in a neighborhood of p the set F~1(¥)
consists of a curve with derivative outside C,,, hence transversal to q. Accordingly
A is a finite collection of points. Suppose that p, € A is between p, and pg1,
then T? \ v, is a cylinder and vy, separates the cylinder in two disjoint regions
(by Jordan curve theorem), thus p; belongs to a cylinder defined by the curves
Uk, Vg+1. We can then follow the curve in F~'5 starting from pj, such curve
cannot exit the cylinder (since v and 4 are disjoint). If it intersects again q at
a point p’ then the image, under F', of the segment of q between p, and p’ is

4This definition is ambiguous if d = 2, but in such a case the ambiguity is irrelevant.
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an unstable curve that starts and ends at 7, hence it must cross v, contrary to
the hypothesis. It follows that p’ = py, that is F~14 = UZ=1 Uk, where the 7y
are disjoint closed curves, of homotopy type (0,1), and p, = 7 N q. As before,
we can label the curves so that the p, are positively oriented and py_1, px, D,
where the indexes are mod d. Next, for i € {1,--- ,d} and ¢ € v;, we define the
horizontal segment {£;(1)}ic 5 ()5, (@) Where &(t) = q + ext, £(64(q)) € ; and
&(—0-(q)) € Pi—1. We then define the regions

Q, =& (5.2.1)

S22

Clearly, €,,N2,, = 0ifi# j, and |, Q,, = T%. Note that F : Q,, U1 — T?isa
bijection, although the inverse is not continuous. However, if we restrict the map
to the set ,, then it is an diffeomorphism between ,, and 2., = T?\ {J}. Thus
it is well defined the diffeomorphism b,, : 2, — €2,, such that Fob,, =1 d|Q,Y. O

We call b, the inverse branch of F' associated to v and simply h when the
curve v is clear from the context. We denote by $ the set of inverse branches of
F'. Likewise, for each n € N we denote with §),, the set of inverse branches of F™.
As usual, we wish to identify the elements of £, as compositions of elements of
$. Unfortunately, Lemma tells us that each h € § is defined on a domain
obtained by removing a curve in T from T?. Therefore the composition of two
inverse branches in $ may not be well defined. We can however consider the
following sets: denoting as Dy and Ry, the domain and the range of b respectively.
For a curve y € T and n € N we deﬁneﬂ

Dy = {h € 9 Dy =T\ {7}},

My = {h” = (01,5 0,) €9" Dy CRey 15 €{2,,n}, Dy N{n} # @)} ‘
(5.2.2)

In $7, there exists the obvious equivalence relation b, ~ b, if hro---obh] =

[);;‘ 0---0 b'l* and the quotient of $7_ is naturally isomorphic to $,,. In the
following we will use the two notations interchangeably. Finally, we define

97 ={b=(01.) € 9" : Dy, C Ry, j €N Dy N {7} £ 0}
For h € H7°, the symbol b, will denote the restriction of h to H7  and we will
say that h ~ b’ iff their restrictions are equivalent for each n € N

In the following we will often suppress the subsripts v, v if it does not create
confusion.

n
x .y

5Here we are using the notation H” = H x --- X 9.
~————

n-times
6 As it is not obvious how to make sense of infinite compositions, we define the equivalence
relation indirectly.
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Some further notation

For technical reason it is convenient to work with cones which are slightly smaller
than C, and C.. Take € > 0 arbitrarily small but ﬁxedﬂ and, setting ¢ =1 — ¢,
let us consider the cone

Ceu={(z,y) €eR*: |y| < xuc'|z]}, (5.2.3)

which is strictly contained in C,. Moreover the difference between the angle of
C, and the angle of C, . is smaller than e. In the same way it is defined C,..
For each p € T? let RA eSS {heH™ : peDy}. By the expansion of the unstable
cone under backward dynamics and the backward invariance of the central cone
we can define my, (p,h) : T x H7° — N and m,,, € N as

My, (P, h) = min{n € N : Dpf]n(]R2 \C.) C C..}

My, (p) = Sup my, (. ) (5.2.4)

My, = sup sup my, (p, h).
p€eET2 heH>

To guarantee that the above quantities are finite, we choose € such that C.. D
D,hC., where h o F'(p) = p. Note that the latter condition is possible because of
(4.1.4)), the continuity of D,hC, and the compactness of T
By a direct computation (see Sub-Lemma for the details) equation ([5.2.4)
implies

A;Xu(pvh)(p)’l,umxu < XeXus VP ET?hEH™, (5.2.5)

m,, < élogx, ', (5.2.6)
for some uniform constant ¢ > 0 to be chosen later on (see Lemma [5.4.2)).
Next, consider a vector v = (1,ug) € C,, so that |ug| € [—Xu, Xu). By forward

invariance of the unstable cone, there exist continuous functions 1,,,=, : N x
T? X [—Xu, Xu] — R such that

DpFn’U = Tn(p, UO)(la En(p7 UO))>

where ||Z,||co < Xxu. We are interested in the evolution of the slope field Z,,. For
this purpose it is convenient to introduce the dynamics ®(p, ug) = (F(p), Z(p, uo)),
for p € T?, ug € [—Xu, Xu) and where we use the notation = = Z;. The map @
will describe how the slopes of the cones change while iterating F'. Note that

" (p, uo) = (F"(p), Zn(p; uo)) - (5.2.7)
Finally, for n € N and h € $H°°, let us define the function

uh,n<p7 U(]) = T20 (I)n(hn<p)a UO) : T2 X [_Xuv Xu] — [_Xua Xu]7 (528>

where 75 is the projection on the second coordinate. By Lemma [D.0.1] applied
with u =« = ug and ¢y = 1, we see that wuy,(p, uo) is Lipschitz and the Lipschitz

constant can be computed using (D.0.2)).

"During the following sections e will have to satisfies different conditions. However, it is
important to note that, once the conditions are satisfied, the value of € is fixed once and for all.
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Admissible central and unstable curves

In the following 7 : T? — T will denote the projection on the k" component,
for k = 1,2. Also, for ¢ € C"(T,C) we use the notation (¢)¥(t) = £-(t) and
¢’ in the case j = 1.

Definition 5.2.3. Let ¢ be a positive constant, then I'j(c) is the set of the C"
closed curves v : T — T? which are parametrized by vertical length, i.e. v(t) =
(m(t),t), satisfy conditions c1) and c2) of assumption (H2), and:

¢3) for every 2 < £ < j: |(moy(t) O] < D

Gwen ¢ > 0 and j < r we will call v € T'j(¢) a (j,¢)-admissible central curve (or
simply admissible curve if the context is clear). We will choose ¢ in Corollary

[543
Similarly, a curven € C"(I,T?) of length & defined on a compact interval I = [0, d]
of T is called an admissible unstable curve if n'(t) € C,, it is parametrized by

horizontal length and its j-derivative is bounded by cU~1",

The basic objects used in the paper are integrals along admissible (or pre-
admissible) curves. To estimate precisely such objects are necessary several tech-
nical estimates that are developed in the next subsections.

5.3 Preliminary estimates on derivatives

We start with the following simple, but very helpful, propositions.

Proposition 5.3.1. There exists a uniform constant C, > 1 such that, for every
z € T?, anyn € N, any vectors v* € C, andv¢ € C,. such that (a,b) := D, F™° ¢
C., we have :

[D-F vt [b]
loe - foel]

o IDF

. < |det D.F"| < C,
loedl el

Proof. Recall that for a matrix D € GL(2,R) and vectors vy, v, € R? linearly
independent
|Dvi A Dvg| || Duy] || Dvs|| sin(£(Dwy, Dvy))

det D| = = - . 53.1
et DI =0 el = Mol el sin((or, 02)) (5.3.1)

Let 6 = L(DF™", DF™°), 6 = £(DF"v"% e;), 0 = L(DF™°e;) and 6, =
arctan x,. Since D,F™v" € DFC, we have |0;| < cf,, for some fixed ¢ € (0, 1).
On the other hand, by hypothesis, |65 > 6,. Thus

10] [0 =61 _ [6a] + [64]

= < <l+c
|62 |62 |62
B lel-l
|62 |62
The Lemma follows since || DF"™v¢|| sin 0y = b. O
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We introduce the following quantities for each n € N, m < n,p € T? and some
constant Cy > 0:

1— ™
Con = Cy— _’”Ll < Cymin{n, (u— 1)} Cho =0, (5.3.2)

€n1m<p) = {C;L,n—ma )‘;(p)}+
gn,m<p) = {17 Cu,n + (X’u + Hchz)fn’m(p)}+, Sn,n = Sn,

and we will use the notation ¢, ., = ||$u.m|lco a0d G = ||Sn.mloo-

Remark 5.3.2. Note that we can always estimate C,,,, with (p — 1), which is
independent on n, and we will do it in the general case (SVPH) if we need esti-
mates uniform in n. However, such a bound will deteriorate when p approaches

one, a case we want to investigate explicitly in Section and for which (5.3.2))

18 more convenient.

Next, we provide sharper estimates of various quantities relevant in the next
sections.

Proposition 5.3.3. For any n € N and p € T?, we have:

A (p) < Gy, (p)

= i (5.3.5)
[(DF™)~Y|cor2y < Cyp™.

In addition, for each ¢ >0, m <n and v € I'y(c) such that DF"~™V € Ccﬁ

IDF"|lco < CyAy
IDE™ |y < CyAy Gump" ™
IDF™|cz < CyAL (Gumi™ ™) + Cy(N) e

d mn\— n—m
| (Do ") < Cop™ ™m0 0(2)
d2 — n —~ n—m
|25 (Do F) | < Cop™s2 o v ((8)) + i 0 v(E) o (V)" + ).

(5.3.6)

Proof. Let v° € Tpn(,)T? with v¢ € C, unitary, and w, € C,. Define

D,Fw,
Wy, = L€ C,.
[ Dp Fwy |

For each v € Tpn(,)T? we can write v = av® + S, then
[(Dpnp ™)~ 0l < |al[[(DpnpF™) " 08|+ |BII(Dpny ™)~ |

By (4.1.3) and (4.1.5) we have the following
1. [[(DpnpF™) "l || < CAZ,

Recall Section [5.1| for the definition of | - [|¢; and (5.3.4) for the notations used.
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2. [[(DimyF") 10| < Cop

Hence,

I(DrupF™) "]l < Cop™lal + CAZ"B),

A direct computation shows

u 9
{lallaly < TR <
where
cos ¥ 1= cos 1nf {|&(v w)[}H < ; <L

vEC, ,,w /1+X2

From the above the second statement of - follows. The strategy for proving

the first of (5.3.5) is similar. We take wy,w, ¢ C. unitary and v* = (0,1) €
C., and we set 0, = % € C.. Notice that |[D,F"o°|| < Cu™. Let
we = awy + BU°. By - ) it follows that there exists a minimal angle between
w; ¢ C. and ¢ € (DF)™'C,, thus |a| + |8] < C for some constant Cy > 0.

Hence,
[DpF" wy = DpF"ws|| < [1 = af|| Dy F"wi[| + Cop™ < (14 Cy) [ DpF"wr || + Cypa™.
Since || D, F™w.|| > CA;, (p), it follows that
Dpanl D ang n
<(1+Cy)+C
Dy~ D] < 9 gy

Equation (5.3.5) follows by the arbitrariness of wy,wy and since u < A_. To
conclude we must compute the derivatives of DEF™, (DF™)~!. By ({4.1.3)), we have

[ Dp F" w5
[ Dp ™ |

-

| D F*|| < CyAf(2). (5.3.7)
Moreover, for each n, k € N, we have

2 n—1

Dy F™" =Y Dprsruiy F" 00, (Dpr(uien F) Doy FH (Do F*V/)
s=1 k=0
d 2 n—1
Z Dy F")” =3 Doy F*) ' (00, (DF)  (Dpy F* #7171 o FH(u(t))
s=1 k=0
. (D,,(t)FkV/)S‘
(5.3.8)
The above, also differentiating once more, implies that
d —m —~ n—m
12 (Dv F < CoAa ™ {Crumms A} = CoAL Gomit™ ™™
1. 0P = I (00 D4 0D (59)
E’

< G (" " Gum) + Co(A)) e
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To estimate the second of (5.3.8]), note that for each p € T?, there exists £ €
C"%(T?,R?), [|¢]|er—2 < Cy, such that, for all w € R?, and |of <r —2,

[0a(DF) 0 — e1 (06 w)| < Gl wlleerso (5:3.10)

Thus, setting n,(p) = D,F¥e1|| D, F¥eq|| !, we have ||nx — e1]| < Cyx, and, for all
w € R?,
H(Dka)_lafci(DpF>_lw” < ||(Dka)_177k($)<aa:if7w>H
+[[(DeF*) 7100, (DyF) " 'w — (Do F™) " pi(2)(00,6, w) |
o vl
/\k( )

For simplicity we set C'r := x, + ||w|lcr. Hence, using the above and (5.3.5)),

+ Cypt*[|w|| (xu + [lwlle2)-

n—m—1

d n\— n— — —
I (D F™) <G D T H{O o) + Crptl
n—1
10 Y WO o) Crp T o
k=n—m

< /~L2nim [Cu,m + CF{Cu,nfmv )‘; o V}ﬂ .

Therefore p
|5 ((Dut F) ) < CopP™ "m0 (1), (5.3.11)
which yields the statement for the first derivative. Next, differentiating once more
the second of (5.3.8)),
d2 2 n—1
T3 (DuF")” => { iy FF)~ } (0., (DF) Y (Dpy F" 5717 o F¥(v)
s=1 k=0
2 n—-1
Dy F*V')s + (DyF*) " {0y, [0o.(DF) N (Dpy F" "1™} o F¥(v)
s, =1 k=0
2 n—1
(D) (D F )+ 3 SD R [0, (DF) (D) )] 0 Fo(v)
s=1 k=0

d k k. 1
{[Eou] v+ i)

We estimate the three sums above separately. By ((5.3.10) and ((5.3.11]), the first
one is bounded by

n—m—1

Cﬁ Z H2k§k,OOV,u —k—1 k+C«n Z ,U —k— llukgkkoy,u —k— lun m)\;; ik ©
k=0 k=n—m

2 2n— 2
< Cﬁlu’ " wn—mSn—m,0 © V +p " mgn,n)\;; ov < 1% ngn,n © VA:;L ov
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The second one is equal to

n—1
> (D,FY{a:, .. (D PPN o FRw) - (D, FRV) (D, FRY',
k=0

+ (D, F*) "' {8,,(DF) ' 0y,(Dp(y F* ¥ 1)1} o F¥(v) - (D, F*V/) (D, F*V')5,

so we can use again (5.3.10]) to get the bound

—_

Cy Y [N ov®)™ + Cru*] 1" ™" {1+ [Crni + CrAS_ 0 V] }
=0
uQmm{kn m}()\{Ok b}t o V( ))2 < Oﬁﬂngz,n o V)\:_rn o

3

R‘

For the last term we use the estimates above and, recalling ([5.3.9)), we obtain the
bound

{Cpn + CeXF (1)} (Gumpt™™™ + €) < Cisnn © V(1) (Gum (v (1)) "™ + ).

Collecting the above estimates, the last of the (5.3.6]) readily follows. O

5.4 Iteration of curves

We first check how the above curves behave under iteration. The following is a
more quantitative version of [53, Lemma 3.2] adapted to our case.

Lemma 5.4.1. Let ' be SVPH. There exist uniform constants n € N, C, > 1
and n < 1 such that, if ¢ > JC2u3", for each ¢, > ¢/2, v € Ty(c,), 1 < € <r,
and n > n, setting v, € F~ ”7, there ezxist diffeomorphisms h,,, =: h, € C"(T)
such that:

(a) The curve v, = v, o hy, is in Ty(n"c, + ©/2) and

Cyu™ if (=1
[nllce < CPenCpnp™ if £=2 (5.4.1)
(CRe)" Conu™ if €>2,

where a; = ({ — 1)! i_:t %, and Cy,, as in (5.3.2).

Proof. Fix v € T'j(cy) and n € N. Let v, be a pre-image of v under F™ and
consider h € $H* such that v, = b, 0o~. Let h, : T — T be the diffeomorphism
such that 7,, = v, o h,, is parametrized by vertical length. We then want to check
properties cl),...,¢3) for ©,. The first two follow immediately by assumption
(H2), thus we only have to check property ¢3). By definition we have

F"0, =~ oh,. (5.4.2)
Differentiating equation (5.4.2)) twice we obtain
(0, Dy, ™0 + Dy, F"0! =" 0 hy(h,)* ++ o h,hl. (5.4.3)
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Similarly, if we differentiate equation (5.4.2) j-th times,
Rj(F",0,) + Dy F"0) = 49D o hy (W) 4+ Qj(hnyy) +7 0 hyy - B (5.4.4)

where I?; is the sum of monomials with coefficients depending only of (0%F™)o,

Wlth la] < 4, in the variables i, ), s € {0,...5 — 1}, where if & is the degree of
7) we have ZJ _158ks = j. Likewise the @); are the sum of monomials that are

linear in 7(?), o € {2,...j—1}, and of degree p, in b\, s € {1 .j—o+1}, such

that S/-7"' sp, = j°| In order to obtain an estimate for 25 )|| it is convenient

to introduce the vectors 7, ; = D;, F "o\ We then define the unitary vectors

Mg Tnyg such that (1,5, 7n;) = 0 and 7, ; = IIZ::;II' Multiplying equation ([5.4.4))

by 7]#7 ; and 7, ; respectively, we obtain the system of equations

(s Ry (F™ 1)) = (5,79 0 b (R + Qj(hn,y) + 7' 0 - B
(s By (F™ 00)) + [0 | = (s ¥ 0 hn(RL)Y + Qj(hinyy) + 4 0 hyy - B
(5.4.5)

Notice that, since 1/7(3), j > 1, is a horizontal vector, by the invariance of the

unstable cone 7, ; € C,. Moreover 7' € C, by assumption and ||, ;|| = 1, thus
there exists ¢ € (0,1) such that

(M52 © ha)| > 9|y © Byl > 0. (5.4.6)

Using (5.4.6) and setting R;,, := ||R;(F™, 0y)|| + [|Q;(hn,7)|l, equation (5.4.5)
yields

P17 0 il + Rin

RO < ’
S o (5.47)
||77n,j < H’Y(]) © hn|||h:z|] + H'V, © hn|||h£z])| + Rj,n-
By equation (5.4.2)) it follows that
1770l = 1Rl [[(Ds, F™) 71 0 [, (5.4.8)

which yields, by (4.1.5) and the fact that 0/, = ((m 0 ,)', 1) € C,,

p" o Gl
S —A <1+ 20U = 5.4.9
Cin/T+ 2 il < T o hll H (549

9 The reader can check this by induction (equation (5.4.3) gives the case j = 2). E.g., if

a term @ in R; has the form P = HS o Oz3<V7(L )) where as(x) is homogeneous of degree ks in
x, then 0;Q Wlll be a sum of terms of the same type with homogeneity degrees k.. Let us
compute such homogeneity degrees: if the derivative does not hit a ﬁr(f), s > 0, then, by the

chain rule, we will get a monomial with & = k; + 1 while all the other homogeneity degree are
unchanged: k., = k, for s > 0. Hence, ZS o ki = j+ 1. If the derivative hits one ﬁ,(f), then

it produces a monomial with k! = k, for s ¢ {i,7 4+ 1} while kj = k; — 1 and ki, ; = k41 + 1.
Then SY_ K, = j — ik — (i + Dkipr +i(ki — 1) + (i + 1) (kisr +1) = j + L.
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Using this in (5.4.7) and observing that [|n,;|| = [|Ds, F"o| > A7 [0, we
obtain

121 < 19 0 hall (A7) (Cap™Y A + RS, (5.4.10)

where A = (14+97") and R}, = (A,)"'AR;,. We choose 7 and 7 < 1 such that
3L+ ) (Cop™) (A7) < 1,

| A N (5.4.11)
ni= (31 +9)(Cop™) (A7) 7).

Therefore we have
3'AC MY (A< 3TAC ™M) ()T <t < 1. (5.4.12)

Note in particular that, as C, and ¥ are uniform constants, so are both 7 and 7.
We are ready to conclude. For j =1 the Lemma is trivial since ||| < /1 + X2

and h% can by bounded by (5.4.9)), provided C, > C,. Equation (5.4.2)) implies
that ||Re(F?", 0a5)|| < Cy and Qa = 0, thus Ra oy < Cy. Then the first of (5.4.7),

remembering ((5.4.3)), and (5.4.8)), together with equation ({5.4.10f) imply
A2 < Cﬁc_’zc*p?” VYn < 2n

. , (5.4.13)

1221 < A {1V 0 hal[(Caps™)? + Cy} -

Next, we proceed by induction on j < £ to prove that for each n < n < 2n
B9 < Cpef = )
PPN < (e, +c/2)07 " -

By (5.4.13] m we have the case j = 2 let us assume it for all s < j > 2. Recalling
the structure of R;, )}, see after (5 , and setting ¢, := n"c,+2~ (1—7}")@ < e,
we have

j _ +1—0 s! o
Rﬁl,ngcﬁ{zgi—l“ ks Gt Y Y DL et }
k

o=2 p
Note that 37 _ (s — Dk, < (j —2)! 37 ske = (j —2)!(j + 1). If o = j, then

j+l—0o

=D+ > pesl=(j— D!+

On the other hand if o < j, then we have

Jjt+l—0o
(C=Dl+ > ps! <G =D+ (G —0)i < (G =2+ 1)

s=1

Accordingly, since the sums in k and p have at most j/ terms, setting 7; =
{G=D+7.G =2+ D},

R]_H n < Cﬂ {] c] NG+1) +7 ]+1Cj+1 T]Iun(J 1! (]-‘rl)}

* —g! 2nr! —j—1 (5415)
Rj+1,n <37 (O*M ) Rj_l’_l,ﬁ.
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Let us show the first of (5.4.14)). Substituting the above in the first of (5.4.7) and
using we have

(+1) (C*Mn)j+1 ! G+ [ (=25 +1) J+1 7 n(i-D(G+1)

We can finally choose Cj, > Cﬂ{2 - 1} and write
||h(]+1 || <, Cj { +]J+lcvj T J+1)!} Mn(j—i—l)!‘
Note that for j = 3 we have 73 = 5, which yields the wanted estimate if ¢ > 2°C?.

If j > 3, then 7; = (j —2)!(j + 1) and the first of (5.4.14) follows. Next, we
substitute (5.4.15)) in (5.4.10]) and, using (5.4.12)), write

|’ﬁ£j+1)|| < 3—j!nnj! {CJ +Cy L 33 4 (Cf*luﬁ)—j—lcbj+1czjlubn%j!}
5 j41 J!
< {nn3—1 (C* + [Cﬁ,r,r—i-l]l/j!c% + 05/3010—1)“37—1)} )
2
Observing that c%/g < (e, +2¢)?3 < P2k 4 (2¢)%/3 we have, for each j > 2

4!
||,;qu+1)|| < {77 [ <3+0n3n/2 5 4l 3 3n02/3) +Cﬁ\/_:|}

Hence the second of ([5.4.14) will follows if the term in the brace is smaller than
n"c, + ¢/2.  Choosing C, greater than all the constants C} appearing in the
above equation, it will be enough to check that

1 P | D
§+Cb773n/20*3 +C*3:u3n0b2/3 S 1;

n""CH/e < ¢/2.

Since ¢, > ¢/2 by assumption, the first equation is satisfied if ¢ > %Cf’u?’ﬁ while
the second one if ¢ > 4C?, as n®*" < 1 for each n > 7. Collecting all the conditions
on ¢, we see that it must be

9 . 9 .
c > {2°C,, 4C¢, ZCE;&””}* = ZC"S“S”’ (5.4.16)

eventually enlarging C,. Hence the second of ([5.4.14]) is satisfied.
In particular 2, € I'y(¢,) for each ¢ < r and n <n < 2n. Next, let ¢, = ¢ < ¢,
we have, for each integer k > 2,

- < *,k — * < * Y
2_Ck an1+2 77 C+2<1_nn)
It follows that Dx; € [y(c, ) where, for all m € {n, ... 2} 1]

A A * ~ *
Vkitm = Okatm—19 """ © Bkat1 © Vkn © hm,k+17

ONote that here we are including 7"*! into C and using that j(j]tll) <2

HRecall the definition of b in (5.2.2).
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hy 1 = ha, and
* —1)!  jlm
B nlles < 205697 i, (5.417)
Hence, applying iteratively the above argument to 7, for kn < n < (k+ 1)n, we
obtain the second of (5.4.14) for each n > n. It remains to prove the estimate
for h,, n > n. We write n =m + kn, m € {n,...,2n} and
b = hpy g1 ©hygo---ohyy=hy 00l (5.4.18)
Note that (5.4.9) yields ||hy,|ler < Cyu™, provided we choose Cy, > 3C,. It is then

natural to start by investigating the second derivative. In fact, it turns out to be
more convenient to study the following ratio

h r hy-

h = (log[(hy 1) © hial)” + h,n

kn

Since and (5.4.8) imply |} ;| > cou™ for each 4, for some constant ¢y,

formula - and m 5.4.17) yield ||logh gllee < C’ZJrl Z D EDim - hrovided
C, has been chosen large enough. It then follows 1mmed1ately that ||Q1|lco <
CyCley o> "™ < CyCReup™. To estimate ||Qzllco we write

= Q1+ Qo (5.4.19)

ey 7 e
ki _ (log H h;/,z o hm> = Z (log h;’yl o hm) ~ (5.4.20)
i=1

Pin Hz L hiii 0 hin i=1
Using formulae ((5.4.9)), (5.4.13)) and (5.4.19) we have, since n < m,

k k
1Qulleo < C4||D loghiohin|| < Cy Y [og hililler | i leo
i=1 cl i=1
k _
7 i pl—p (5-4.21)
< Oticfc*,lﬂz ZM < Cﬁcbgc*,lﬂz ﬁ#k

=1
2n 3 kn 3
< pCle 1 Cupnpt™ < Cle1Cpupnit”,

Hence, using the above and m, it follows by (|5.4.20))

h// //
[0 < Cyp h’
Cco

< C?C*O#7nﬂ2n + Cb C*/ub2n < Cb C*Ou,nMQn

[Pnllez < C || 77

(5.4.22)

n

This proves the second of ([5.4.1)). Next we prove the general case by induction
on j < (. Assume it true for all ¢ < j. Using again (5.1.3), by the inductive
assumption we have

1Qulles—1 = [[og[(h}, 1) © haallles < G elyum O ™ (5.4.23)
On the other hand, by formulae ([5.4.20)), (5.1.3) and the inductive assumption

k 7j—1
1Qalles— < Cy > |l log ki e Z il s

j_
< CyOITHRIED L ey

=1 ¢q

(5.4.24)

—_

l
,uzn m)q

Il
=)
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To estimate the last sum, notice that by definition
11 <Cuni <Cuak, Vi<k,
ii Cpay <Cupy Va>1,

Hence,

-1

k
Z % 'm q < C%J ZM (j—1D)mi < CCLJ(J 1)+1M] (§— 1)nl~c

<.

,unl w,nk w,nk

Il
=)

=1 ¢q

Using this in ([5.4.24)) we obtain

1Qsllei1 < CuOI TRV D D+ Gtk (5.4.25)

Therefore, by the inductive assumption, equations ([5.4.23)), (5.4.25)) and (5.4.19)),
and provided we choose C, large enough, we finally hav

h//
[hnllcivs < Cyllhglles-1 < Cy n [hnllci
ci—1
< Cbz(jﬁ‘z)!ci{;‘l)!cgfﬁrlIu(]-i-l)!n' O

In Section (10| we will need much sharper estimates (but limited to the first
derivatives) than the ones provided by Lemma [5.4.1} we prove them next.

Lemma 5.4.2. Under the hypothesis of Lemma we choose ¢y in ((5.2.6)),
depending on i, such that the set {n,...,cInx,'} is not empty. Then there

exist Cs,Cy,¢1,C3,¢, > 1 uniform such that, for all n, € {A,...,cInx; '},
setting a,, = (53)":1; Cn, = (El)n*_1 ‘m

1

by, = (C4cb6§§n*)ﬁ

* 5.4.26
Sn* = {MQn*§2*7 Obgn* Cﬂ,n*/’t4n* Cﬁ,n* 6n*}+7 ( )
we have, for alln > n,
7 < ™ PN (v o hy,(t) te, + Cy . 12 C
9601 < 612" A (0 hn(8)) s + Cp i C o

17| < eoar (N, (Y0 ha))7h e + abl 1P (A (v 0 hy)) ek + S,

12Here we are using the following elementary facts:
o G +2(+ 1 —1)+2( +1)! <20 + 2)!
GG G
° a;(j—1)+a;+1=ajn.

13Recall ((5.3.4)) for the definition of g,.
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Proof. To prove the first of ([5.4.27]) it is convenient to go back to equation (}5.4.3)
and, recalling (5.3.8)), for each v € R?, ||v|| = 1, we have

h//
(v, 27) = (0,037 | < [0, (Do, F") 71" 0 (B,)°)]
n—1
+ > (0, (Do, P71 (00, Dk s,y F] Doy F*0,) | |(Dy, F*) |
k=0 i=1
n—1
< (v, (Do, ™) 719" 0 B (h)*) | + Cy > (Do P I F 21 (Do, F*) 0|2
k=0

(5.4.28)

Note that, recalling (5.2.6)), for each n < n, < & log x; ! we have (D, ;) F™) 'e; ¢
C.. Consequently

(v, (D5, F™) 719" 0 ha)| < (A (0u(0) 1Y 0 R ()], Y < (5.4.29)

Next, if v is perpendicular to 7/, then it must be |vy| < x.|v1], hence

[0, 200 = orlllZ]] = (14 x2) 2127 (5.4.30)
On the other hand, if v is perpendicular to 2/, then v = ey and |(v,7])| = 1.
Accordingly, recalling Proposition and equations (4.1.5)), (5.4.9) we have for

n <n,

12 < (14 X232\, (7 (D) CR 2 [V 0 ha (1) + D CPuCy,
o h=0 (5.4.31)
1R /1| < (A (0 () C2 1" 0 h(B)]| + ) CRpP*Cy.

1
Setting ¢,, = [(1 + Xz)%Cﬂ " we obtain

Nie—1

17, (D < ez ™™ (A, P () I © ()] + Y O™ C (5.4.32)

We can now proceed by induction since, setting h;,, = hln*+moh;11*, ifn = In,+m,
m < n,, then

Ne—1
127 < e ™ (A (2 ()M 1200, 0 B (DI + Y CRuP*Cy
k=0
< e 1 A (0 () A (D1, 0 B ()7 (A, (7 0 B (1)) " Hes
+ Z CZT*/JFSVL* ST Z Cfu3k0u
s=1 k=0

< cbc”* (A (y o ha(t) lew + Cp ™™
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where we have called ¢, the constant in ([5.3.5)). It remains to bound the third
derivative of 7,,. The strategy is basically the same. Recalling that 0/, =
(Dy, F™)™14' o h,h!, we differentiate this expression twice and multiply by a
unitary Vector v orthogonal to v):

n

(52,0 = ([(Do, F*) 1" © Bl + 2[(Ds, )T (4" 0 bl + ' 0 o)

+ (Do )7 (3" 0 ha(l})* + 39" 0 huli i) v).
(5.4.34)
We will estimate the norms of the terms in the first line of the above equation one
at a time, for each n < n,. Flrst us1ng with m = 0 and ¢ = ||/|| (where
the latter is estimated using ((5.4.31))), and (5.4.1) we have, for some uniform
A >0
IH(Da, F™) 71"y 0 hahi || < 1"y + A1Chcuent i (A (20(8))) 7|7 0 ha(2)]]
+ GGyt C, n*,u?’”*.

Next, notice that (D;, F™)~'9" ¢ C,, hence by the second of (5.3.8)) and sub-
sequent, there is uniform A, > 0 such that

1[(Ds, F™) "'~ 0 ha(B.)?|| < AsC2iP" (N (0n(8)) " snl|7” © ha(B)]|.  (5.4.35)

It is convenient to write the third term as
1

hl, o |
h’//;, Al n " !/ h//
= (= (D P om0 = gt ).

The last term vanishes when we multiplied by v; hence, by (5.4.29)) and (5.4.31]),
we havd ]

(D5, F") 1y © hyliy = Dy, ™)'y 0 by,

(D5, F") 7'y 0 hulyy, v)| < ol + D5, ™)1y © (1)1}

< C"* f/fm(/\ (0 (1)) 20" © R (B)]?

+ e Crntt™ (AL (7)) I 0 B ()| + CF ™.
For the two terms in the second line of (5.4.34), when the matrix hits 7" or v, we
can use for n < n, and (5.4.1) with |7/ o h,(¢)|| instead of c,. Collecting
all the above estimates in @ we finally have, recalling also ,

(14 x2) 2 [9)]] < Copr®s) + ArChsuchz i (A (0 (1)) 1" © B (8)]

+ Chu it Clyp ™

+ A2 GG (A (1)) 1Y 0 B (8)]

+ o 2u4"( n () 721" 0 R ()]

+ c unﬂ "N (Pn(1)))” 1“7” o hn ()| + Cﬁ,nﬂﬁn

+ G (AL () I 0 ha(B))
+ (A (0n(0))) T G Cunll © B ()]
Recall also the lower bound for |h/,| in (5.4.9).
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Hence, setting ,, = [(1 + x2)/2C2)Y™, b,, = { A1, A} (1 4+ x2)V2Chs0, ] ™ ¢,
and recalling the second of ([5.4.26) we
1211 < a1 (7 @) 7MY 0 R0 + e ™ (A7 (2 (1)) 2 [0 0 ()
+ 0 (O (0) T " 0 B ()] + A (0n(6))) ez i Crunlly 0 B (8)]] + 0,
We can now iterate as in ([5.4.33)), using the latter to estimate the terms involving
7" and 4/ and, proceeding by induction, we obtain|
72/ < e e i O (0 b)) 7 e B i O (7 0 a)) e 4
from which the third of m ) follows setting Cy = {A;, A2}T,6 = (1 +
X2)2C2, 25 = ¢,(1 4 x2)2C3, and the Lemma is proved. O
Lemmata [5.4.1] and [5.4.2] imply immediately the following important result.

Corollary 5.4.3. Let n, € {ii,...,colnx;'} and £ € {2,--- ,r}. We define a
constant ¢ which depend on £ and n, as follows: if € € {2,3} we set

g2 Cosn, Chun, ™, Oy 1™ 3 (5.4.36)

un*

c =28, =2{u

if € >3 we set € = X ", for some wi ., > 1. ['| Then for alln > n, and such
thatn™ < 3, and for each £ € {2,--- ,r}, we have the inclusion F~"Ty(c) C Ty(c).
Proof. The case ¢ > 3 follows directly by Lemma choosing @y, and c,
such that 9

Cp=C =) X = §Cf’u3ﬁ. (5.4.37)

The result then follows since n™ < % For ¢ = 3, first we note that, recalling

(5.3.4), © given in (5.4.36)) is greater than %Cf’,u?’ﬁ, eventually enlarging n < n,.
On the other hand, recalling ((5.4.27)) and since ¢, > ¢/2, for each n, < n < 2n,
we have

Csay, 117" (A (v 0 b)) ek 4 6l 1M (AL (v 0 b)) e

S C2 {cba%* Mﬁn* )\:n* + Cbb2n*'u6n* )\:n*$—1

Tk

(5.4.38)

Since A~ < 1 and a2 = 3, the first addend in the brace is strictly smaller
than 2-(*1 provided @ has been chosen large enough at the beginning. For
the other term, recall the definition of b,, in (5.4.26). We then have b2™ =
(Cy46,23)%62 . Moreover, an easy computation shows that

Ny *
2 +
Sn <<pu —2 %
S, 7 Cho,

Hence, the second addend in the brace in (5.4.38)) can be made smaller than
2-(++1) a5 well, for 2 large enough. Iterating the above argument we obtain, for
each n > n,,

. 1
23] < €2 + s

form which we conclude the proof for f = 3 choosing ¢ = ¢ = 2s,,. The case
¢ = 2 is made in a similar but easier manner. O]

5Here we use again that p"A~! < 1.
16 Unfortunately, this yields worst estimates, this is why we make such a choice only for £ > 3.
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From now until the end of this section we fix 7 as in Lemma [5.4.]

The above results tell us that the space of admissible central curves is stable
under backward iteration of the map. Arguing as above, but forward in time, we
can prove that the space of admissible unstable curves is stable under the iteration
of F™, for n greater than n. In particular, if p : I — T? is an admissible unstable
curve, and 7, is the image of n under F", then there exists a diffeomorphism

Dn,y =: Pn such that
D, F™-n/(t
(= 1D @
[l (@)l

and 7, o p, = F™ on is an admissible unstable curve. Moreover, as F' acts as
an expanding map along those curves, we have the following standard distortion
estimate for each n > 1 :

(5.4.39)

Pu(t)
Pu(s)
In the following we will need to control the evolution also of curves not in the

center cone. To this end it is convenient to introduce a further quantity. Given
a smooth curve 7 such that m o +/(¢) # 0 for each ¢t € T, let

0,(t) = {Mx}

|1 0 '(1)]

i, = it {0, (1))
Lemma 5.4.4. Let F be a SVPH and A, € L>(T',[1,+0o0]) and consider any
closed curve y € C", homotopic to (0,1), such that ||¥'(t)|| = 1 and ||[yU+D(¢)]| <

Ay(t)jﬂ forall j € {1,....,r} andt € T. Forbh € H> let no > 0 and m >
{n,no}™ be the smallest integers such that, for allt € T,

Dyyhnyy (1) € Cu  and  Dyyhmy/'(t) € Int (C,). (5.4.42)

<1, Visel. (5.4.40)

(5.4.41)

Let v, = b(7), k € N. Note that for k > ng then there exists a reparametrization
hi such that, setting vy, = vy o hy, Ty 0 Dy(t) = t.
If, for some b, we have m < oo, then:

a) Forn <1, given in Lemmal[5.4.J[F| A as in (5-1.4), m = om, where

o= FD(MHAISU]‘”A)_ W , (5.4.43)

and ¢ as in C’omllary we have U € Tj(c) for each j > 3, and the C?-norm
of hw satisfies with ¢, = X, | A |loo (pA)™.
In the case j € {1,2} we have the following sharper version:
b) For each p € v and n, € {n,--- ,clogx,'}, let m(p,b,n,) = m be the
manimum integer such that

M (778, 1105.4) Mg (m, 1) < Clig, 1™

- 5.4.44
oo 7, 105 )V (11, £) < 0. (5:444)

1"We will apply this Lemma with A, (t) given by (E.0.1).
18See (5.4.11)) for a precise definition of .
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where

nn*<m7m>t) = Cb{bn,J n*}+ 3m)\+(VmOhm m(t))_la
T, (M, M t) 1= ) TSN (D © B (8)) 7

My (i t) = { A0 8,0, (L4 2051 o)y O} B4

_ +
Mg, £) i= {p" A AZ(1), Mg (m, )05 072 X (0001 ]

l/n0

are defined in Lemmal5.4.4 Then Dy € Ts(c) and

and ay, by, , Cn, , Sy,

CoA™™ 0, (1) ™ < [hig(t)] SCLA™ s, (8) 7 0™

7 (5.4.46)
|h%(t)| < CﬁMno (ma t)'

Proof. Let us start proving item a) first. Let h € $H* such that v,, = bh,.7.
Recalling ((5.1.4)), we can apply (5.1.3)) and we have for each j <r

[Vmllerst = Bm 0 Yller < ColllAy | A™). (5.4.47)

We set ¢(t) := (m2 0 1,) (). By there exists ¢, > X~ ™ such that we
have |¢'| > ¢, > 0, so it is well defined the diffeomorphism h,,(t) = ¢~*(¢), so
that 7, = v,, o h,, is parametrized by vertical length. We want to estimate the
higher order derivatives of h,, using a formula for inverse functions given in [39).
For the reader convenience we write it down here for our case:

Gy PN G Tt
hT(t) = T = Z[¢ ()] Z ijkv{bl}le H ¢ (t)
k=0 bi+-+b=j+k =1
bi>2
(5.4.48)
where B iyr = k,(gj—k)b;, It follows by (5.4.47) and (5.4.48)) that for each ¢
O < G (1A, eA™) (5.4.49)

By (5.4.47)), (5.4.49) and formula ({5.1.3) for the composition,

e > T nall (5.4.50)

s=0 keK,,s leN

< CulCun A oo AT < (641 Ay oo AS™) 0D,

j+1

1 Zmllcitr = [[Vm © hnlcint < Cy

where ¢,, = {c;2,1}*. Hence, setting c.(m) = Cu,[|A,||cA™ we have that
Um € L'j(ci(m)). Since m > m > n we can apply Lemma and we have that
the curve U = vy, 0 hem belongs to I';(n™c.(m) + 5). By definition, c,(m) <
Yo 2| A5 lso (#A)™ and by Corollary [5.4.3] ¢ > &, (since j > 3), having chosen o
large enough. The statement then follows choosing m = om, with ¢ defined in
(5.4.43).

Let us prove item b). Let v, = b, o for each n € N. Then, Cyd,(t)|m o
v, ()] > |ma o vy (t)] > ¥ (t)|m o v, (t)] > 0, and we can reparametrize vy,

n > ng, by vertical length ﬁn(t) = 1y, (ha(t)). Note that |27, (¢)]| < Cyd,(t)!
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If ng = 0, then Cydy, (1) ™! = Cyd), 0 ho(t) ™" <|hy(t)] < Cydy, (t) " and (5.4.28)
yieldd™|

N e NG
ol = e, o, )

177, (D1 < CeAy 0 hg (8) 05, (1)

If ng > 0, then CyA=™0;, (t)~" <|h;, (t)] < CyA™0;, (t)~' and [[v (t)]] <
CyA?™||v"(t)|]. Moreover

[ (D) < CLAP™0 A 0 hy (£, ()~
127, ()] < CLAP™ A © hyy ()05, (1) (5.4.51)
775 Ol < CoA™™ AT 0 iy ()5, () 2

1D,y F*) o (D)1 < /14 X2CA (0

and, setting F™ "0, = 0, 0 hyy_p,, We have

< Gy 0 oy, (8)05, (t)~2

Remark that

oo (O)] = [{e2, Doy F™ 00, ()] < CyA, gy (D ()05, (P ()
g (D)1= Ce g (0 (6)) 05, (R (£)).

Next, we want to use equation (.4.28]), with v replaced by 7,,,. Note that there
exists § € C"2, ||&|cr—2 < Cy, such that, for all w € R?

(5.4.52)

(D, FJw = ex(g 0| < Cyllwlwllz. (54.53)

In addition, it must be (D;, F*)~le; & C,, for all k < m — ng, otherwise, by the
monotonicity of the dynamics in the tangent bundle, it would be that 7, ; € C.
contrary to the hypothesis. Accordingly, recalling (4.1.3), (5.3.6), (5.3.5) and
setting mg = m — ny,

< >‘+(Vm)
A1 (Pm)
< Gy (L4 "IN () [wlle2) -
(5.4.54)
Arguing as in the proof of Lemma |5.4.1] just after (5.4.28)), the above and ({5.4.51])
yields,
127 (] < CeAy (P (8))0, (P (£)) A0 A 0 Ty (1)

mo—1

+ > O+ N () [lwllez } A (O (2))

[ (8)] < C (;Eo(ﬁm(t)))Qﬁano (Pamg (£))* A7 Ay 0 g (1)

|(Day ¥ [0, Do F] Do, ¥ + Oyl A (0m)

mo—1

+ > Co {1+ 1N D) wllez } AF (1)) 0y (oo (1)).

To continue we need the following

19 Note that ((5.4.28)) holds also if 7 is not parametrized vertically.
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Sublemma 5.4.5. If mq is the smallest integer for which v, (t) & C. for each
t, then
Xudmo (Fmo (1)) < Cypx '™, Vit € T2 (5.4.55)

Proof. If we define w, ||w|| = 1, such that DF™w = ||[DF™w||ez, then ], =
aey + pw, with ¢y < [al,[8] < Cy. Then, since Dy, F™e; € C,, w € C, and
using (4.1.3) again,

Cﬁ)\:;o © ﬁmo = ‘(61, D’)moFmOI};noH > Cﬁ)‘;m °© ﬁmo

- . ’ (5.4.56)
(€2, Doy F™0 010 )| < Co(l™ 4 Ay © D Xa)-

Next, let v € R?, ||v]| = 1 such that DF™v = ||[DF™wv]|(1, x,). Note it must be
v € C,, otherwise we would have 7;, € C,, contrary to the hypothesis. We can
then write again v = ae; + bw. Note that w € (DF)~*C,, moreover the uniform
cone contraction implies that there exists 9, € (0,1) such that, for all p € T?,
D,FC, C {(z,y) € R? : |y| < duxulz|} and (D,F)'C. C {(z,y) € R? : |z]| <
YuXely|}. Tt follows |w| < O,xc|ws| while |v1] > x.|ve|, thus vy = bwy and

_1
la > Xelva] = [bwi| = xe(1 = D) [bllwa] > xe(1 = 92)(1 + x297) "2 [b]
which implies % < Cyx.'. Finally, by equations (4.1.3)) and (5.3.5), we can write

D EF™o blymo D Fm™o b
= ’<€2’ U)’ < ‘ "u + |CL’ ‘(62, 61” < Cﬂuﬂmo()\:mooﬁmo)_l+19*Xua

Xu > =
|(e1, DE™ov)] |af [{e1, DF™ey )| |al
that is (5.4.55). O

By the above Sub-Lemma it follows that

Xe = 05, (8) = 7 ™ON) o Ui Us,, ()- (5.4.57)
Thus
177 ()] < CoA?™ 1™ Ay By (8) + G {14 1270, w2 b A (9 (1)),
[y (O] < G2 A 0 B (1) + Cy {1 20, e } NG (o ()7
[y ()] < Coxe '™
(5.4.58)
To estimate 2/ we use where ,,, 7, h,, are replaced by Dy, Dy, Bny- 10 this

case the curve 0, ¢ C., and so is hi(0,,) for each k < myg, by € H*. Therefore,
using Proposition [5.3.3] we have the following estimates
mo\—11" ~1 T m ~ ~ ~ 1
I {(Do ™) i i | S A1 A, (0 (8)) + il 23 1127 1|
1 {(Do ™) g g | S A (B (8)) ™ 1 P
Additionally, again by Proposition [5.3.3
mo\—17" » A m9—1 |7,
1 {(Ds,, ) 0y (i 2 S Sontt™ 95, 1B
1 {(Ds,, F70) ] 3 (B )P 1 S ™ 1250 1
(Do ) 03y By i | S 1™ 1070 1 R [P |-

no”"mo "o
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Using the above estimates in ((5.4.34) and recalling (5.4.52]), (5.4.58)), and ((5.4.51))

we conclude
17l < CoMug (m, )95, [ G + 2" AP0 AT © Ty ()]
+ Cﬁﬁﬁno N4mA3nOAf2y © hmo( ) + Cﬂﬂ2mgm)‘2_1(ym( ))79;”10 < AOMTLO (m> t)’

for some Ay > 0. Next we set m = m(h, p) and F™ " = Uy, © hi_,. First,

| ()] = | (€2, Doy T "0 ())| < Cyx '™

- e (5.4.59)
|h’m—m(t>| Z CﬁXc 11u m .

We can now apply Lemma ‘ in particular ([5.4.27 m to s and hgp_,, with
replaced by © um, and ¢, and ¢ replaced by M,,(m,t) and M, (m,t) respectively,
defined in . We thus obtain

H | <o¢ Cm N2m)‘+ (Um0 hﬁ m)” 1Mno( ) + Omn*ﬁ‘gn*
1ol < a1 ey M (P © higm) ™ Mg (1, ) + O (2 e, N (7 © B, )™ Mgy (m,-) + 8,
‘h%fm| < Cﬁ n0<m7 ')MQmCﬂvm'

(5.4.60)

We are ready to conclude. Recalling Corollary [5.4.3 the first two of the above
equations plus condition (5.4.44) give v € I's(¢). Next we set my = m —m. If
F™ e = 7 0 hy, by definition we have

P = Py © Ry © iy - (5.4.61)

Hence, differentiating (5.4.61)) and recalling (5.4.52)), (5.4.59)) and

Co A5, (8) Ry ()] < CoA™5, (8) 7,

we have the first of (5.4.46)). Taking two derivatives of ([5.4.61)) and using the
second lines of (5.4.51)), (5.4.58) and the third of (5.4.60)), we havd™]

|h%| S |h;’10 © }_?'mO © Bml ’ B;TLO © hml ’ ]TL;NJ‘

+ |y, © Ty huny (P © By = 1y 4 By = B0 Ry, ) |
< Cy (0521 4 0 17 Mg (m) + ﬁi)lcu,mumMno ),

form which the second of (}5.4.46)) follows and the Lemma is proven. O]

Remark 5.4.6. From now on we will use I' to denote I',.(c) where ¢ is defined
in Lemma and has thus the invariance property stated in Corollary[5.4.3,

5.5 Distortion

We conclude this section with some technical distortion results needed in the
following.

20Here we drop the dependence on t to ease notations.
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Lemma 5.5.1. For alln € N, v e F7"(I'(¢)) and z,y € v, we have

+

A n
e " Cunllz=yll < /\+E i < " Cumllz=yll (5.5.1)

Proof. We prove it by induction. To start with, let z = v(¢;),y = v(t2) such that

|z — y|| < 7, for some 7, to be chosen shortly. For n = 1 we have, for all unit
vector v ¢ C,,

D FU [ HDIF’UnyF'UH] [|[Dg Fv—Dy Fv||
Do Fol| _ w1 2efmbarel]  LDepmpyrel

1Dy Fvl| — B

to d
IDeF0 = DFul < [ 18 Dy Fullds < Gty ~ ] < Cille (552

t1

the case n = 1 follows. Assume it is true for each k < n, then, by the triangular
inequality

n—1
|DyF"v — D, F™|| <Y ||Dprs1, F* " (Dpry F — D, F) D, F*0||
k=0
n—1
< OuZAn 1t (F*N @) | Dy F = Do FIl < Gy N (FRy)N ()|l — -
k=0

Since v € F~"(I'(¢)), || DpryF — D F|| < Cyp¥ ||z —y||. Also remark that (5.3.5)
and the induction hypothesis imply

k i _
M (FR )N () < e CerlemiNe (FRy)AL (y) < Cods (o),
provided we have chosen 7, small enough. Accordingly, since || D, F"v|| > A (y),

H%?”U” Pemimtrl  C i u eyl
'fL/U - -
Yy

We can now choose v such that ||D,F"v| = A} (z) so

i) _ IDF _ g,

n

Ar(y) T lIDy ol

n

-1
r=0 u’“Hw—yII’

which proves the upper bound, for points close enough. Next, for all z,y € v
we can consider close intermediate points {z;}._,, o = z, 1; = y, to which the
above applies, hence

-1

A () | Do F o] _ | Dz, F 0| Cy Shzg wE TZg lwir—aill
< e =0

M) T IDyE ol L Do Froll —
Taking the limit for [ — oo we have the distance, along the curve, between x
and y which is bounded by Cy||x — y||. This proves the upper bound. The lower
bound is proven similarly. O]
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Next, we prove two more distortion Lemmata, inspired by Lemma 6.2 in [43].
Even though the basic idea of the proof is the same, the presence of the central
direction creates some difficulties.

Lemma 5.5.2. For each vy € I'(¢), n >n and 0 < p <r — 1, we have

>

vp€EF Ny

2

vp €EF Ny

wher a, = a,p(p+1)/2+1 and b, = plp(p +1)/2 + 1.

Proof. For every v € F~"~ define

h/

0 b
oD, |, S GG

co(T)
) (5.5.3)

det Df/n Fn

< Cﬁ(l?ap sznu(bp—i-l)n

ce(T)

ha(t)

\IJV t = TN
n( ) det D,;n(t)F"

and recall that in dimension one holds ||, |lco < ||V, ||zt + [[¥],_|z1. We then
first look for a bound of the W!(T)-norm of ¥, . Since e; = (1,0) € C,,
D, F"v! ¢ C, and recalling that F"p, = v o h,, we have

h;D,;nF"el VAN "}// o hn = Df,nF”el A D,;nFnﬁ; = det(D,;nF”)el VAN ﬁ;t
Thus we have the equation

@) _ e1 A\ 7, (1)
det Dy, iy F™ Dy, iy Fe1 A’ 0 hy(2)

(5.5.4)

Arguing as in Proposition and since ||7/|| > 1 we have, recalling definition

(5.4.41)),
Dy, Fe1 Ay 0 hy| > Cyd),, 0 hy|| Dy, Fe . (5.5.5)

Therefore, since ||7,]|*> < 1+ x?, we have

S e s S

vpEF—ny vpEF—ny

1
0, 0 bl Do, F -]

(5.5.6)

Ll

Recall that, by Lemma/5.2.1], for each 7, we have an inverse branch b, : Q, — €,
such that F" o b, = Idg . More precisely, the domain €, = J,cr &.0,,, where
&0, (S) = Up(t) + sey are horizontal segments defined on an interval I; of length

0p,(t) Whose images are unstable curves 5?77 with length(¢f ) = 5577 > 1. Let
Pn.t..,, be the diffeomorphism associated to &;,,,,, see formula (5.4.39). By equation

(-4.40) pr¢,, (5) S Prg,, (0) = ||Ds, ) F"er||. 1t follows

1 gdfﬁz/
Iy

21Recall the definition of a, in Lemma

d

%Fn(ft,f/n(S))H ds < Cﬁ5ﬁn(t)]7/n,gt,yn (0),
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from which

1D,y F el 2 (5.5.7)

51/n t)
Since by Lemma the €, —are all disjoints and the v, are parametrized

vertically, by (5.5.7 - we havelﬂ

‘IIDHoF el

S Y [0 X m@) Smr) 1

U € Fry D€ FMry Vi€ Fy
Using this in ((5.5.6) yields
Sy, [l < Ot <O, (5.5.8)
vp €FMy

since |m 0 7/(t)]7" > x;t > 1 > x,, implies 9" < 1. To bound the L' norm of

the derivative we can notice that:
!

U
U < Un
19,1 < |5

Un

W, ||z (5.5.9)
co

To continue it is useful to see 7, = v, o h, as the time evolution of curves
parametrized by vertical length. For each 0 < i < n, let v,_; = F'v, and h; the
diffeomorphism such that 7; = v; o h; is parametrized by vertical length. Define
the diffeomorphisms h} by

D; = F oDy o(hi,)™ (5.5.10)

where 1y = 7 and h{ = ho. It is immediate to check that h; = hjo---oh’. We
can then write

4 ; .
¥, (1) = gho()  TI,(h;) ohiy0---oh; “
n det Dy, (i F™ I, (det D, F)ohzﬂo .o hX

=[Mewieniae oo

where ;(t) = (h})'(t) - (det Dy, ;) F)~'. Hence,
‘ i=1

By (5.5.10), since o, € I'(c), it follows by - ) that ||1;]lcc < CyeD' for each
¢ < p. Thus, setting b, := ¢! and h;, = hy, , 0---0oh}, by (5.1.3)) and (5.4.1) we

have

/
<¢ ohi 00 h;‘l) (hipy0---ohn)|. (5.5.11)

\If/ n—1 n—1
H\Ij_yn S | (log ¥; o hi,n)chg_l N Z [log i © hipnl| e
vn |lct—1 0 par
n—1
S ) [Hog | Z [ [
=0
n—1 £—1
5 @(g,1)1 ZZ th,'ﬂHéé 5 (B (e—1)! C«Eag nfbg,
i=0 j=0

22Here m(A) is the Lebesgue measure of a set A.
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In particular the above estimates in the case ¢ = 1 and (5.5.9) gives

Dol € CiCunp™ Y 1l < CiChunit”

vn€F My U EFMy

which gives the result for p = 0. Once we have the bound of the C°—norm, we
can obtain the general case p € [1,7 — 1] as follows:

dYooWles Y Wl S D, |22 1V, [lco—
vp €EF Ny vp €EF Ny vp €EF Ny V” ce=t
LR AT S | P
vp€EF Ny
S et e ok ST, o
vp€EF Ny
aPC’ p(p+1)+1,u(bpw+1)n.

The procedure to prove the second of ([5.5.3) is analogous, with the difference
that, by (5.5.4) and (5.4.9)), the estimate for p = 0 gives another Cyu”, while
the computation for p > 1 is exactly the same, but using ¢; = (det Dy, )~

instead. O

The next result is a refinement of the previous Lemma in the more general
case in which the curve 7 is simply not contained in C,. To state the result it is
convenient to define the following quantities

1
m {1 = nfwllVs,, (5)71 Xuls,, (5)~ 1}+ (5.5.12)
H'y,n,m = [gm + Xu,unA'yﬁ;l]
Lemma 5.5.3. In the same hypothesis of Lemma[5.4.4 with no = 0, we have

J’y7n

W _
+ S Oﬁ (C+]I ,n7m/l9_1) /qu]] m
W 2m -1\2 , m
D e I R
vmerT y (5.5.13)
—n <O.M 0 APt
> | D gy S Ol Moom), (X1)7)
vmEF Ty
> ar "
—m < CAST > 2,
where, recalling (5.4.45), Mo(m) = |Mo(m,-)||s, and
O, =0, (m,m) : = C o™ (¢ + Lymm95 ") Ty
{(Aw DT e+ L] St A2 G, (AV0) 1}*}
5.5.14)
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Proof. . We use the same notations of the proof of Lemma [5.5.2] In the case
p > 2 we content ourselves with a rough estimate, so we can proceed exactly as
in the proof of the above Lemma and, using and , the estimate
is immediate. In the other cases we need to be more careful in the estimation of

(5.5.6). Setting J;(x) = det D, F*, we write, recalling ((5.4.61) and m; = m —m,

Vi | i © by B
W;mv J%@m) ce umeZF:mvume;mwm J;ll(ﬁml)‘];l(ﬁmohW) cr
A ‘L
Um EF~M~ J;;l(ﬁmOhml) cr Vmy €F ™1 D, J:“(ﬁml) cr
= 2 wohmlle, > 1%l
vm EF ™My Umq €EF T Dy,
(5.5.15)

First we are going to estimate the last sum, for p = 2. By the results of Lemma
5.4.4) Uy, is an admissible central curve and, by equation (5.4.58)), || (¢)| <
My(t,m). Therefore we can apply Lemma with ¢ replaced by My(t,m)
and we have

S 1 e < Mol m) ]| Ci boma (5.5.16)

l/mleF_ml Um
Next, arguing as in ((5.5.4) we have
h! o h,, A D (t N
m2m LU = U, (5.5.17)
Jx (Um0 humy) Doy F™eyr Ay o him(t)

By (5.5.7) we have
E 1 < g

Um EF~™Mxy Um EF My

< Cyu™ Z /”9 Oh

vmEF~M~

Since |ma(F™(2,0)) — 0] < m|w||~ it follows that, given 0, ,,, € F'~™, for each
Um € F7Mry

o (E™ (04 (t))) — ma(E™ (0m (1)) < mf|w]|oo,
accordingly, since ' ¢ C,,, we have, calling h;,  the reparametrizartion associated
to Uy,

0y 0 h,, () = {0y 0 s, L, (1) = mwlloo, Xu} ™

Hence,

L m 6’)m
Z Wy, [ SC}/ D mer—mny O, (t) "

+
vmEF~ M~y {7‘9 Ohl’* m( ) meHOO:Xu}
1

<Gy - = dt.
o | (Rl () {04 (s) — mllwlle, X}
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Recalling ((5.4.46|) we obtain
~ um
ol < 0™
2 F {1 = nlw]lo?,

s (Tt oy Gt
(5.5.18)
Next, we want to compute, using ,
U ey AP 0, (Dy F™e) AY 0 huy + Dy F™er Ay 0 hig - hle
b, e AL D;_Fme; A o hyy
_ (Do ™) 710 (Do ™)) €1 A Vg + €1 A (D ™) 719" 0 i - (Bi)?
a er N\ UL
e1 N\ Uy
er A\

(5.5.19)
where we have used equation ([5.5.4). Next, note that 7”(s) = ae; wiht |a] < A,

and e; = an + bey with |b] < x,, and (DF™)"'n Ae; = 0. Using (5.3.8)), arguing

as in (5.4.54)), we have

m—1
I (Do F™) "0 (Dy F™] 1| < (Do ¥ 7 [0, Dt 5, F] Dy Fe |
k=0
m—1
N Do ol < Co(1+ i (lwller + Xu) M| Do ]|
k=0
< Cym |z
Thus, using (5.4.46)),
Tl
=0 By, | <Cy (€ 4 Sl | + Xt AL W) < Cy (€ + [an + xalt™ A0 05T

v

The first of ((5.5.13) follows by (5.5.9) and (5.5.18). While,

/
Um

H‘TJLWHCO <

1%, ||co. (5.5.20)

lm

CO

leads immediately to the second of (5.5.13). To conclude the lemma we must
compute ¥, which can be obtained by ([5.5.19):

" ~ 111 ~11\2 ~ 11 \TU N
Vo e Aim (er A) eg NV W | ey AT
€1 VAN ﬁ/ﬁ

0 (Do ™) 710 (Do F™)] €1 A 0 + (Do ™) 10y (D ™) €1 A D

D, el (e AUg)?

/\/ =
er N\ Ve \I/VW

€1 N lym
e1 1 [ Dig ™) 117" 0 b - (H)® + €1 1 (Do ™) 19" © - (h)®
WA ﬁlﬁ
~ 2
2e1 N (Do F™) 7" 0 o - highiy | Yo
€1 A lym \If,,m
(5.5.21)
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We estimate the lines of (5.5.21]) one at a time. The first line is bounded by
Cy {® + ¢ [Gn + xup" AT 0} (5.5.22)

To estimate the second line we firt note that

2 -1
(Do F™) 71 04( Dy F™) <Y oo P 720, (Dt (o0 F) Doy F* (Do FFV) .
k::O

3

—_

S=

We can thus use the fourth (5.3.6) and (5.4.54) to bound the second line of
(5.5.21) with

Cism 0 Uy (N, 0 D) + (N 0 0m)? 4+ A, 0 D] < Csin (A 0 D)™
(5.5.23)
To estimate the third line we use the second line of ([5.3.8)), arguing as above, and
(5.4.40)

o[, 0,07 OB 0 ]
< G (B (N 9) A2 0

Finally, again by ([5.4.46)), the last line is estimated by
Co(NL) ™9 Mo(m, t) + Cy (€ 4 [sm + xut™ A0 1] 0

o)
< Cy{Mo(m, 1), 0721 - {(N0:) ™0™, [+ G+ Xt A0 }2}+. (5:5.25)

Collecting the above estimates we obtain

. o - +
< {(A;m)—lum, [© 4 G+ Xl A5 Gl A2 {6, (A;;@%)‘l}*}

"
Vm

m

0T Mo (m,)llso, (A7)}
We finally have, setting Mo(m) := [|[Mo(m, -)]|co,

T/

> e <Gy Y IWuslleo < GO {052, Mo(m), (A7)}

Um €F™My Vi || 0 vmme Fiy
By the above equation and ([5.5.16|) we then obtain the statement. O

Corollary 5.5.4. For each n € N
1£71]| oo 2y < Cluppt™. (5.5.26)

Proof. For any x € T? we want to estimate the quantity

n 1

yeF—ng

60



Recall the notation in Section and take y € v, where v € I' is an admissible
central curve. Then, for every x € F~"(y), there exist ¢t € T and v € F~"y such
that = v(h,(t)) = 0(t). Hence

sup Z

yE"/

!
v,n

detl)ﬁ}7” C

LI P \ A
veF—ny 0

By equations (5.4.9) and (4.1.5) we know that ||(hl) " |lco < Cyu™, for every v
and n. Moreover, Lemma [5.5.2] gives the bound

2.

veF—ny

hl

e <:(7 " 2n
det D F" ||, = #nH

O

Remark 5.5.5. With some extra work the estimate can be made sharper,
however the above bound is good enough for our current purposes. We will need
an improvement, provided in Lemma in Section [10}
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Chapter 6

A first Lasota-Yorke inequality

We define a class of geometric norms inspired by [43] and [4]. Given u € C"(T? R)
and an integer p < r, we denote by B, the completion of C"(T? R) with respect
to the norm:

|lul|, := maxsup sup /¢(t)(8°‘u)(’y(t))dt. (6.0.1)
le|<p ~eT peclel(T) JT
ol e =1

This defines a decreasing sequence of Banach spaces continuously embedded in
L', namely

lullrr < Cllull,, < Cllullp,, forevery 0<p <py<r-—1. (6.0.2)

To see this we observe that, since o,(t) = (z,t) € T,

|ul[zr = sup <1[rdxAdy¢(x,y)U(x,y) < /Td«%‘ sup /wa(x,y)utv,y)

H¢||CO(T2)_ ”¢HCO('JT2)

< [dz s [ arottuto) < [ dolul = fule

||¢Hc0(jr)

The above proves the first inequality of (6.0.2)), the others being trivial. We start
with a Lasota-Yorke type inequality between the spaces B, and B,_;.

Theorem 6.0.1. Let F' € C"(T? T?) be a SVPH. Let L := Lp be the transfer
operator defined in , and @i be the integer given in Lemmal[5.4.1. For each
p € [1,7 —1] and n > n, there exists C,, , such that

[ £%ullo < Cpupnpt™ [|ullo (6.0.3)
n C&f)n:ugpn
£ ull, < M)\THUHP + Chpllull -1 (6.0.4)

where @, =1+ a,(p®> + p(p+1)/2+1) and b, = 1+ p!(2p* + p/2 + 1).

We postpone the proof of Theorem to section [6.2] First we need to develop
several results on the commutators between differential operators and transfer
operators which will be needed throughout the paper.
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6.1 Differential Operators

For s, p € N we denote by P, , a differential operator of order at most p defined
as a finite linear combination of compositions of at most p vector fields, and we

P u= Z Z Vjar " Vjay Uy (6.1.1)

J=0 ac ACNJ

write

where A is a finite set and for every i < j, v;,, are vector fields in C?*~*, with
the convention that vjq, -+ vjo,u = u if 7 = 0. We denote by WU*” the set of
differential operators P; ,. For a function v € C"(T? R) and a smooth vector field
v, we denote dyu(z) = (V,u,v(z)).

We start by studying the structure of the commutator between £ and the
differential operators. Next, we will estimate the coefficients of the commutator.

Proposition 6.1.1. Given smooth vector fields vy, --- ,vs € C?, we have
Oy, +++ O L1 = L Opmw, +++ Opmr, + L Py,

where F*v(z) := (D, F) " v(F (x)) is the pullback of v by the map F and Ps_ , €
Us—Lr whose coefficients may depend on n.

Proof. Let us start with s = 1. Let v; € C*(T?,T?) and define
Jn(p) = (det D,F™)™  ¢,(p) = log | det D, F"|. (6.1.2)
For each h € $H" we have

(V[Jnobh-uob],v) = (Jyobh(Dh)*"Vuob,u)
= J, o h{(Dh)*Vuob,v1)

((D})*V(det DF™) o hJ? o hu o b, v;)
Jn 0 H((Dh)*V ey, o huo b, vy).

Then, since DF™ o hDh = Idg, , for each h € H" and = € Dy E|
(V[Jnob-uob](z) vi(x)) = Jnob(x)[Oprv,u— Opreo, dpul o h(x).  (6.1.3)

Observing that

LM = Z uobJ,oblg, ob, (6.1.4)
henHn
it follows
(VoL u,v1(2)) = L7 (Opny, 1) (2) — L (Opnry, b - w) (), (6.1.5)
which prove the result since the multiplication operator Py, := —0pn=,, ¢, € WP,
Next, we argue by induction on s:
Opsrr O LU = 0y, [E”@FH*US < Opnr U+ ﬁ"PS_Lpu}
= EnaF"*vs_H T aF"*vlu + £n<aF"*v,g+1¢n ’ aF"*vS T 8F”*vlu) (616)
+ L"Opnxy, Ps1,pt + L™ (Opnry, O - Pso1,pu),

'Recall that Dy, Ry indicate respectively the domain and the range of b.
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which yields the Lemma with

PS,p = aF"n‘*'US—Q—l P'S*lvp + aZ:Wfkvsﬁ-lgb’n’ ’ [aFn*'Us T aF‘n*vl _'_ Psil’p:| + aFn* P(s6:3’p7)

]

VUs+1

In the case v; € {e1,ex} for each j, we have the following Corollary as an imme-
diate iterative application of formulae (6.1.3]) and (6.1.5)).
Corollary 6.1.2. For eacht>1,n €N a = (ay,..,a;) € {1,2} and h € H",

0% Jnob-uobl=J,obh-[Pulob, (6.1.8)
in particular
0L = L" P u, (6.1.9)
the operators Py, being defined by the following relations, for each u € Ct,
Plou=u,
Pfiu = Aptu — A5t oy, - u, (6.1.10)

Pr?,tu = Ag,lu - 22:1 Ag,k+1(("4gk¢n) : Pﬁ,kqu) Jort > 2,
where A3t = Opn=,, , Ap = Apt--- Ajk ARy = Id and ¢, is defined in .

Proposition 6.1.3. For each n € N let P2, € U"' given by (6.1.10). For any
1 <t<r, e C(T*C) with suppp C U = UcCT? ve [(c) such that
DF™™) € C,, ¢ € CYT,C) with ||¢|lcc < 1, multi-indezx «, |a] =t and u €
C(T?) we have

A@(T)Pﬁt(W)(V(T))dT < C(t,n,m)||[e e ulle, (6.1.11)
where [
C’(t, nom) < Cyp® Suptesupw{gg o v(t)Gum o v(t) + ps o v(t)e} t =2,
CﬁAcﬁn t> 2.

(6.1.12)
Proof. For simplicity we set 0y = 0,, for k € {1,2}. First of all notice that, if
we set di; = (DF™)le, ¢;), then Ay’ =377 dq; i0y,. Furthermore, by formula
5.1.4), ||djillce < |(DE™)7Y|ee < A™, for each 2 <t < r. We are going to prove
6.1.11) by induction on ¢t. For ¢t = 0 it is obvious, let us assume it for any

k <t—1. By (6.1.10) the integral in (6.1.11f) splits intoﬁ
[P @)

_ / o [A2t - A2 ()] o v — / 03 A% (A%6,) - P2y ()] o
. (6.1.13)

2Recall equations (5.3.3) and (5.3.4) for the notations.

3Unless differently specified, in the following all the integrals are on T.
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The first integral is equal to

Z Z /90' (Haﬂu)( H 8j¢)( H ajdal,il) e ( H ajdat,it)a

it J,Jo,J1,.. jeJ j€Jdo je JEJt
Zle{l 2}

(6.1.14)

where the second sum is made over all the partitions J, Jo, Ji, .., J; of {1, .., £} such

. . t
that J; C {j +1,..,t},j > 1 Note that ||(TTi_; Wjes, 0)day iy || o < A" k=157
and |[|IL;e, ]@DHCW 1] ctr+t70 < ||¥|lct. Consequently, from (6.1.14]) and the
definition , we have

[ ez

To bound the second integral in (6.1.13]) we first note that

< A [l (6.1.15)

n—1
ARon(z) = ) ((DoF7)'Vér o F(x), (Do F") ea,)
- (6.1.16)
= <V¢1,(DFH_ ) 60¢k>on(m)7
j=0
thus (5.1.3) implies
n—1 n—1
Onllet < )~ aN™ < cg(n—j < cyn 1.
A% Cy DF" ) HaA™ < Cy Y A4 < G\ 6.1.17
Jj=0 j=0

We can then use ((6.1.15) to estimate

[ ot (0n) - P s )| SGA AT 6o P () s

< A || Py (Yu)) k-1
(6.1.18)

To bound the last term we take ¢ € C*™%71 ||¢||c-x—1 = 1,7 € T, and we consider

[ oo ulen
We can then split the integral as in (6.1.13), although this time o = (ay, - -+ , ag_1).
For the first term we take t — k — 1 derivatives in (|6.1.14)) and, arguing as we did

to prove (|6.1.15)), we have
‘ [ ot a6

< GRS [ lleelfull:

4We use the conventions [] jep ;A = A and §B denote the cardinality of the set B.
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The second term is estimated in the same way, using the inductive assumption.
The first statement of the Lemma then follows using this in (6.1.18)).
In the special case t = 2, for a = (ay, Oéz)ﬂ

Pro(tu) = Ay (Yu) — AT (0n) A7 (Yu) — AT 1 (dn)u — A7 AT (Yu)
— AL oA O - Y
= {AR 10 — AP0, AT — (AN 0 A2y + AL 100U} u
—{APY + VAT dn} ATt — {AT + VAT O} APu + AT u
=: P + Oy + P53 + Dy.
We then want to integrate the above terms along the curve v against a test

function ¢ € C2. Recalling that the coefficients of the differential operators Ay’
have C" norm bounded by [[(DF™)7!|¢r, we thus have

[ eiow < Gomax{145,0 g 1042 nlcr
(1 145 Bnllg P10 o, 14560456 g Hlalo

The bounds for &, and ®5 are similar:

/90‘192 ov < GY|(DF™) ™ [ley max{[| A7 ¥ lley, [| A% Sulley [ ller }Hlullr-
Next, for any two vector v,w € R?, i,7 € {1,2} and z = (21, 72) € T[]
Op-o(Op-wtt) = Ip+o((Vu, (DF) " w)) = (V((Vu, (DF) " w)), (DF)™'v)
=300 - [(DF) Y], (DF) ]y + 3 0y,u 0 [(DF) s - [(DF) ;.
ik Jk

Recalling the properties of the | - ||, norm and ([5.3.6) we have

/90@4 ov < C{p®|[Vllez, " [(DF™) ez @ ller, I(DF™) g [ ller Hiwllo-

It follows by the property of the C" norm and (/6.0.2]) that

/ P () 0 v < Cy{l| A% s Il lleo, | AZ 25 1 o,
I(DF™) el Ax* dullcy @]l w™ [(DF™) ez lllez, I(DF™) 12 [9]le2 }lwlle.
We have thus proved that
C(2m) = G143, dnllcy. max 1436, I(DF™) ey |45 60 ey

n n\— mn\— +
PHIDF") ez, I(DF™) 7 iy

5 We use the following notation: ®; equals the third line from the bottom, the other ®; are,
ordered, the terms in the second line from the bottom.
Here we denote [(DF)~'w|, := (DF) w,ey).
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To conclude we give a bound of the above quantity. By Proposition [5.3.3] it is
enough to find estimates for |[(A%;¢,)|co and [|A2 by || - [[(DE™) " Y|e1. First we

can use formulae (6.1.16)) and (/5.3.6]),
n—1
Op e, On(@)] < Cy > 1" < G (6.1.19)
=0

In particular || A5 ¢p|lco < Cpppt. Next we take another derivative of (6.1.19)) in
the direction of F™ e, and, setting g, ;(x) = (Véy, (DEF"7)"te,)(x), we have

n—1

Oy (Opre e, 00 (%)) = Y (V(gemg 0 F7(2)), (DoF") ey

<.
_ O

— Z«Dxpa‘)*vgw o Fi(z),(D,F")'e,)  (6.1.20)

3

<
Il
_= O

3

= (Vom0 F(2), (DF" ) ey,

5=0
By a direct computation we see that, recalling ((5.3.10)),

IVgemill < C; max{||0s,(DF" )"} < Cagay ()™,

We use this in (6.1.20]) obtaining
|0pn® ey (Opnr o, 0 ()] < Cyp®Ga(2).

Hence, ||AS  ¢nllco < Cypi* s, Finally, we compute

d n—1 . '
‘E(Aild)n ov)| < jZO (D, F?)*D(V¢y) o 13078 (DVFn)71€a1>‘

+ (V1o F(v), (D, F") " ea,)]
S Ou,nun + Cﬂgn,m ov,
so that, using (5.3.6) and the definition of g, ,,, in (5.3.2)), we obtain
1A% @aller - IDF™) " lex < Cop™ ™5

The Lemma follows collecting all the above estimates and recalling again (/5.3.6))
for the estimate of p™||(DF™)~|cz. O

6.2 Proof of Theorem [6.0.1]

Proof. Given Lemma the proof of Theorem [6.0.1]is almost exactly the same
as in [43], hence we provide the full proof for p = 0,1 and give a sketched proof
for the case 1 < p <r —1.
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Let us prove (6.0.3) first, since it is an immediate consequence of Lemma m
and Definition [6.0.1] in the case p = 0. Indeed, by changing the variables and
recalling the notation of Section and Lemma [5.5.2] we have

/ng;( )L™ u( = > /|detD VFP 7 (wo v)(t) - o(t)dt

veF "y

_ u/|detD F71 (wo b)(t) - (60 hy) (E)R (t)dt
veF—ny
< > | Idet Do 7| oo llullo S Coumt™ o

veEF Ny

Let us now proceed with the case p = 1, from which we deduce the general case
by similar computations. We must bound the quantity

/T G()(0uL"u)(y(1))dt = /T GV (L u)(v(1)), v)dt,

where now ¢ € C'(T) with norm one and v is a unitary C" vector field. From
Proposition the above quantity is equal to the sum over v € F~"y of

1
| taerpig )+ [ R (6.21)

where F, is an operator of multiplication by a C? function.

By Proposition applied with ¢ = 1, plus the result for p = 0, the last term
is then bounded by C,||u||;. In order to bound the first term of we need
an analogous of Lemma 6.5 in [43]. The idea is to decompose the vector field
v into a vector tangent to the central curve v and a vector field approximately
in the unstable direction so that the first one can be integrated by parts, while
for the other we can exploit the expansion. The proof of the following Lemma
follows that of the aforementioned paper, since the key point is the splitting of the
tangent space in two directions, one of which is expanding. Once more, however,
the presence of the central direction creates difficulties. For completeness we give
the proof adapted to our case in Appendix [B]

Lemma 6.2.1. Let n be the integer provided by Lemma|5.4.1l For every n > n,
v € I'(e), v € F~™y, and any vector field v € C", with ||v|]er < 1, defined
in some neighborhood M (7y) of 7, there exist a neighborhood M'(vy) of v and a
decomposition

v =00+ 0, (6.2.2)

where 0¢ and 0" are C"(M' (7)) vector fields such that, setting F™(N(v)) = M'(y),
o 0°(y(t)) = g(t)¥'(t), where g € C" and ||g|lce < Cye? Cplnp?™,
o [[(F™) 0" lcon(wy) < AZ"Chatuef™,
o (P 6 lenviny < Coer o eaen,

o [|0%llcoarr(yy) + 10%Nlcemarny) < Ca
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By the above decomposition, the first term in (6.2.1)) becomes

1 1
/|detDVFn|¢'aF"*ﬁC“(”)+/—| detDyFn|¢"aF"*ﬁuu(V>‘ (6.2.3)
Since ¥(t) = F™v(t) we have g(t)D,,(t)F” -V (t) = 9°(F"u(t)), hence:

g (t) = (Dyy F™) 1 - 0°(F v (t)) = F™ o°(v(t)).

Accordingly,

__o) _ [ _9)e(t) d
/ et Dy ] Or el (D)t = / W@(U(V@)))dt

- / |deti)(7f)j(f()t) Fr [%(uoﬁ)} oy (t) [ (1)) dt

[ lgd)oha(?) v [ 4 [ [g9]oha(t) A

= [ e w9y ()t = / ° (—| detDﬁ(t)Fﬂ)u(y(t))dt
[9¢] © h

<|ati g, et

Summing over v € F~"y and using Lemma we obtain

> [ 600 v ®)ie £ EC ol (62.4)

veEF Ny

The second term of (6.2.3)) is

¢ ¢ n* su
/ Tdet D, o] Or o) = / Taet D, v e

¢Ohnh, * N
<Oy || Z———2 J il
= ”‘ det Dy F" || 17 0% o wlex|ully (6.2.5)
h/
< Cyl|hnllex et D™ || |1

where we made the usual change of variables ¢ = h,(s) and used Lemma [6.2.1]

Finally, using (6.2.4) and (6.2.5) in (6.2.3)), and recalling (5.4.1), we have by
Lemma [5.5.2) with p =1,

1£7ull < A2 Crunp®|ully + Collullo- (6.2.6)

For the general case 1 < p <r — 1 one has to control the term

/Téﬁ(t)avs e Oy L u(v(1))dt,

for vector fields v; € C?,j = 1,...,s and s < p. Using again Propositions [6.1.1]
and [6.1.3] the latter is bounded by

veF—™m

1
Z / mgb Opn*g,...pnt o, W(V) + Chp|u]] p—1. (6.2.7)
gl
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Now the strategy is exactly the same as before. We use Lemmal[6.2.1]to decompose
each v; = 0§ + 05. We take 0 € {u,c}®, k = #{ilo; =c} and let © be a
permutation of {1,...,s} such that 7{1,...,k} = {i|o; = ¢}. Using integration
by parts, we can write the integral in as

¢
[ et tmennt) = X [ G (Ha )

aE{u c}s

2 /detD FSHaF"“ H Opn g, (W) + O pllull

oc{u,c}s

_ ¢
_ / H O HaFn - (W) + Co 1.

UE{u c}S i=k+1

By Lemma [6.2.1]

HFW@C z‘)“CP( ) < C«i’pTszp—&-lM(p—l-l)(Qp!—l-l)n

while )
n* su _(s—k)n " ..
I H F vﬂ(i)HCP(V) < ON"6h) (Cﬁyrf:upp' )3k,
i=k+1
It follows by Lemma -5.5 2|, equation ([ and the fact that ||¢]|cr <1, thatﬂ

Z /detDF”aanl' - Opney U0V

veF—ny
<\ Pncp aplup p'th HCP Z
veF—ny

S ATt 2P 1 G,

lullp + Crplltell -1

B
’ det D,;Fn cr

hence (6.0.4) with a, = 1+a,(p*+p(p+1)/2+1) and b, = 1+p!(2p*+p/2+1). O

The last result of this section is a Corollary of Theorem [6.0.1]| which provides
the inequality we are truly interested in.

Corollary 6.2.2. Let us assume that, for every integer 1 < p <r —1,

IS]

Pt A" <1, (6.2.8)

1

where Z_)p given in Theorem|6.0.1. Let 6, € (A\_%,1). Then, for each n € N,

1£mull, < G2l + Clunt” ullo. (6.2.9)

"Notice that the coefficient in front of the strong norm is obtained in the case s = p and
k = 0, while all the other terms are bounded again by C,, ,|lul/,—1.
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_1

~ Proof. Let us set § := A_* and take n € N large enough to guarantee that
Cpbapm NP < 67" for every p € [1,7 — 1]. Notice that this is possible by the
definition of C),,, and ([6.2.8)). Let us proceed by induction on p. For p =1 the

statement is simply (6.0.3). Let us assume it true for each integer smaller then

or equal to p — 1. By Theorem and ((6.2.8)), we have
1£7ull, < Cyo™||ull, + Crllull -1 (6.2.10)
For every m € N we write m = ng+r, 0 < r < n, and iterate (6.2.10]) to have

1™l = 1L ), < Gy L7 ull, + Cal 2™l ey < -+
q—1

o S G |LTull, + Gy Y S LTE M,y < Gy ([l + Crat™ -1,
k=0

where we used ||[£™~ Ry, < O, ™ FHY||u||,—1 by the inductive assump-
tion. We iterate the last inequality p times and obtain

127 ull, < O (1) [[ull, + CF ™ lullo
< Ol (pP0?) ™ [ullp + Cf ot [ulo-

We then consider the above inequality for m such that pm = n, so that
O o (uP6P)™ < o™,

_P
2

as pP8” < pb* A% < 1 by assumption. Hence,
£ ull, < 6™ lull, + Cruai™[|ullo- (6.2.11)

Finally, we iterate once again ((6.2.11) and we obtain the result for some 4, €
(0,1)=(A_2%,1). O

Remark 6.2.3. Although Corollary [0.2.9 provides a Lasota-Yorke inequality, a
fundamental ingredient is missing. Indeed the embedding of B, in By is not com-
pact.

71



Chapter 7

A second Lasota-Yorke type
inequality: preliminaries

The main result of the following two sections is the second step towards the proof
of Theorem [4.3.2] namely a Lasota-Yorke type inequality between the Hilbert
space H*® and BP.EI We will see in Corollary that this solves the compactness
problem mentioned in Remark [6.2.3] First we state some result on the H*-norm
of the transfer operator.

7.1 HP-norm of L

Lemma 7.1.1. Let F € C"(T? T?) satisfying (H1). For eachn € N and 1 <
s <r, there exist As, Q(n,s) > 0 such that, for every u € H*(T? R),

1
£l < [[£71[& [l 2
1£7ulle < Asp®™ | £71|oo |

3+ Q(n, ) |ulles, (7.1.2)

3
2

where Q(n,1) < C2nu".

Proof. First of all notice that

[N
S

HﬁnuH%Q < HUHLQ (/(ﬁnqun)Q)

1
< Jull 2 [ £7 TS [| £l 22,

< Jlull e (/(E”U>2£"1) (7.1.3)

hence (7.1.1]). Next, by (6.1.9) and (6.1.10) we have, for each v; € {eq, es},

[0y, - - avrcnuH%? < L™ (Opnen, -+ aF"*m)UH%?

3L (AL (AL ) - PEyu) |2

k=1

(7.1.4)

1See Appendix |C|for definitions and properties of H*(T?).
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Let us analyse the first term above when s = 2. Notice that

Opnevy (Opnen, 1) = (V ((Vu, (DF")"lv1))  (DF™)y)

= ((DF™) vy D*u, (DF™) ') + (D((DF™) " v1)Vu, (DF™) ).
where D?f indicates the Hessian of a function f and D(V) is the Jacobian of the
vector field V. The term with higher derivatives of u has coefficients bounded by

|(DF™)~Y|?, while the other term is a differential operator of order one applied
to u. In the general case we can find some P,_; , such that

(L7 (Opneo, -+ Opnes, Ju| < [(DF") L™ (|00, - Ouyul) + [L" Pooypul.  (7.1.5)

Hence, by (7.1.1)), (C.0.4) and (5.3.5]), there exists a constant C;(n, s) such that

100, - Ou L7ull7> < CHIL™ U oop™ " Jull3s + Cr(n, 5) [l (7.1.6)
Similarly there exists Cy(s,n) such that
¢
S LA (A2 60) - P2 _yu)) 22 < Coln,8)lJullemr (7.1.7)
k=1

By (7.1.4), (7.1.6) and (7.1.7) we obtain

1£7(Opreuy -+ Opas Jull 12 < CHlIL™ Uloop™ ™ [l + Q(n, 5) [[ull3o-.

It remains to prove that in the case s = 1 we have an explicit bound on Q(n,1).
Recall that by (6.1.5) and (7.1.1)) we have, for any v € {ey, es},

(VL w,0)lze < [I£7(Vu, (DE™) ™ 0)|lz2 + 1£" (Vb (DF") " 0)u) | 12,
< 1£"H% (IKVa, (DE™) ™ o))l 22 + 1((V b, (DE™) " o)) 12) -

(7.1.8)
A bound for the first term is straightforward, since by ((5.3.5)
(Vu, (DF™) ™" 0))|lz2 < Cop” ||Vl 2. (7.1.9)

For the second term we use formula ((6.1.16]) and we have

1V, (DF™) " v)u) 2 < i (V1 0 F(x), (DpsuF™ )" 0) oo lull 2

—

n
<Gy pullre < Crpplul| 2,

<
Il
o

(7.1.10)

By (7.1.8), (7.1.9)), (7.1.10) and (5.5.26]) we obtain ([7.1.2) for s = 1. O
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7.2 'Transversality

In this Section we give some useful definitions and results related to the quantities
Ng, Nr defined in section . Recall that

NF(n) = Sup sup NF(n7 Y, Zl)
yeT?2 21 F—"(y)

Ne(n) = sup supNp(n,y, L).

yeT2 L

(7.2.1)

Both Ny and N depend on the map F, however in the following we will drop
the F' dependence to ease notation. An important advantage of N over N is the
following

Proposition 7.2.1. N(n) is sub-multiplicative, i.c N'(n+m) < N (n)N(m), for
every n,m € N.

Proof. For any z € T2, let us call L' the line obtained applying (DF™(z))~"
to L. Then

Ny, L,n+m) = > | det DF™™(2)|~!

ZEFT"T™M(y)
DF" ™ (2)Cy DL

1
= Z Z | det DF™(z2) det DF™(2)]
2eF~"(y) 2€F™™(3)
DF"(2)CuDL DF™(2)Cy>(DF™(2)) 'L

1 1

< - - - -

< D [det DFn(3)| "2 00P ~Z |det DF™(2)|’
2R (y) ZEF—™(2)

DF™(2)Cy>L DF™(2)Cy DL

taking the sup over y € T? and L we get the claim. [

Remark 7.2.2. The above Proposition, in spite of its simplicity, turns out to
be pivotal. The sub-multiplicativity of the sequence N (n) implies the existence of
lim,, o N(n)% Also, an estimate of N(ng) for some ng € N yields an estimate

for alln € N,

The result below, inspired by [16], provides the relation between N and N.

Lemma 7.2.3. Let a = % € (0,1) and mo = my(n) = [an] we have, for
alln e N ) e

N < et (Fomg) )
Proof. Giveny € T?, we consider 21, 2z € F~"(y) such that D,, F"C,ND,,F"C, #

{0} and the line L := L(z) := D, F" (R x {0}). Let vy = (1,£x,) € C, and
0, == £(D,,F"ey, D, F"v.). Clearly, for each n € N, |cos#,|™" < ag, for some
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uniform ag > 1E| On the other hand, by formula , Proposition and
condition we have

| | det D, F[[[v+]]
1D Frer|[[ Dy Fros]
< | sin(arctan x,,)|agCL C2 't A_"

= aOC*CEXuMi)‘:na

|tan 6,| < aplsinb,| = ap| sin £L(e1,v+)
(7.2.2)

where we have used that sin(arctanz) = z(v/1+22)"!.  Next, note that in
the projective space RIP? the cones are canonically identified with two intervals
I, = [a1,b;] and Iy = [ag, bs], while the line is a point that we also denote by
L. From the assumption on the cones, and , we have that the projective
distance between L and each one of the extremal points of I5 is bounded by

min{dist(L, as), dist(L, ba)} < agCLCox A" ;. (7.2.3)

Let us now take m < n to be chosen later and, for Z = F"~"(z,), consider the cone
D:F™C, corresponding to the interval I35 in the projective space. By the forward
invariance of the unstable cone it is clear that D;:F™C, D D,,F"C,, meaning
that I3 D I,. We are going to prove that L € I5. Let w,,, = D, F" ™vy.
Arguing as before, but remembering also condition (4.1.4)), we have

| det D F™ | [v [l wn,m
[ Dz E™wp ||| Dz ™o |
> C7107?| sin(arctan (e x,) )AL 1"

—1 bx Xu —-m, n
:C*l *2—>\+ B

1T+ (texu)?

|sin £ (DzF™ Wy, D:F™vy) | = | sin £(wp m, v )|

(7.2.4)

It follows that, setting B,, = aoCZC{i;t > 1, if \T"u" > B, A", then
L € I . By a direct computation, and recalling that p := {u, u~'}*, we see that

the choice m = [an — f,, |, with o := % >0 and 3, := % > 0 yields
the wanted inequality. Also, note that o < 1 since A_ < A p? .

The above computation shows that, given z; € F~"(y), for every z, € F~"(y)
which is non-transversal to z;, the line L is contained in the cone D;F™C,, for

Z = F""™(z). In particular, for every y € T?, one has

sup Z |det D, F"|7* < sup Z |det D, F™|™"

z1€F~"(y) 2eF—1(y) LCRP? 2EF—"(y)
oo D:F™CyDL
< suwp Y [detD.FTTN Y |det D, P
LCR]P)Z zEF’m(y) Z2€F7n+m(z)
D.F™Cy>DL
< L"™1(z) sup Z | det D, F™| 7!,
LCRP? =
z€EF ™ (y)
D.F™Cy>OL

2Notice that, for n = 0, | cosfp| =1 = | cos(arctan(x,))| ! = /1 + x2 < 2.
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where we have used (4.3.2)). The above inequality then implies

N(n) < £l (m) < LN oN ([an]). O
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Chapter 8

A second Lasota-Yorke
inequality: Results

To state the main result we need a few definitions. From Appendix [C|] we recall
that, for positive integers N € N and s > 1, and for v € C"(T?),

1LY w5 = > (&) FLY u(©)P, (8.0.1)

cez?

where (£) = /1 + ||€]|?. Since we will work in Fourier space, it is convenient to
introduce the notion of the dual of a cone in R? by:

Ct={veR? st JueC:(v,u) =0} (8.0.2)

and if £ € Z? we define £ := (£},&;) to be the unit vector normal to & with
the usual orientation. In addition, we define p(§*) = [£5]/[&5], for & # 0, and
p(Fes) = 0o, and
9(E) = {pl€) xu} (8.0.3)
Let us also define the sequence
L, = [|£"]]so- (8.0.4)
Finally, to state the main result one last key assumption is needed. Let us define
no(F) :=min{n e N:Vp € T? 3z, € F "p:2 Mz} (8.0.5)
We will always assume that the map F' satisfies
no(F) < oo. (8.0.6)
For simplicity, in the following we will just use the notation ng instead of ng(F).

Remark 8.0.1. In [53] it is proven that assumption (8.0.0) is generic. More
precisely, the author proves that for surface partially hyperbolic systems F', the
quantity Nr(n) is generically strictly smaller than 1, for n large. Nevertheless,
n Sectz’on we will introduce an open set of systems for which 15 always
satisfied.
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The scope of this Section is to prove the following Theorem.

Theorem 8.0.2. Let m,, and ng be the integers given in and (8.0.5))

respectively. There exist uniform constants Ci,cy > 0, A > 2 and o > 1 such
that, for each qo > no and any 1 < s <r, if M = om,, and N = M + qo,

1£% ]

N
n = (\/[LMN(%)]W%) [ulloe + O, (M, 5)[[tf| o2 (8.0.7)
where ©,,(N,s) S CpQQ(M, s)CpyAM and Q(M, s) is the constant given in
Lemma|7.1.1. In addition, if the map F satisfies the following condition

Xa'llwller < Cs, (8.0.8)

for some uniform Cs > 0, then there exist B3, 84 € RT which depend only on Cs
such that 0 .
O, (M, 1) < CyCyoxu * O M M2 (8.0.9)

We will prove Theorem in Section [8.4], after several steps.

8.1 Partitions of unity

We will use notations and definitions given in Section [5.2| First of all we want
to decompose the transfer operator using suitable partitions of unity. For each
point z € T?, and g > ng, let us set d,,(z) = u;}(z))\;;)(z)_l,ﬂ and define

Usgo ={y € T? : |ly — z[| < dedyy(2)}, (8.1.1)

wherée?]
d = d(xu) = L+(90, Xu) " CoXus (8.1.2)

for some uniform constant Cy to be chosen later. By Besicovitch covering theorem
there exists a finite subset A and points {2z, }aea such that T? C |J, U, where
U, = dU.,, 4,, and such that the number of intersections is bounded by some fixed
constant Cy. We then define a family of smooth function {v, }, supported on U,
such that ) 1 = 1. Next we construct a refinement of the above partition using
the inverse branches introduced in Section [5.2l For a € A we pick two curves
Yo o € T such that U, N7, = {0} and, recalling 9., 1 = {h € H : Dy = T*\ .},
for each h € 9,1 U 95, 1 either h(T?) Ny, =0 or h(T?) N7, = 0. Note that the
cardinality of 4,0 := $,,,1 and $5, 1 is exactly d.

We can then consider the set $7 = {(hy,--- ,bn) € H” 1 h; € H,,_ 4, J €
{1, ,n}} where v; = v, if h;_1(T?) Ny, = 0 and v; = F, if h;_1(T?) N7y, # 0.
Note that the £ has an element for each equivalence class of D defined in
equation , hence it is isomorphic to £),, , and has exactly d" elements.
To simplify notation, given o € A and ¢y € N, in the following we will denote
Ho = .‘7)‘,{?% which is then a set with finite cardinality.

'The functions p,, and A, are defined in (4.1.3).
2Recall that L, is the Lipschitz constant of the unstable cone field given in (E.0.2)).
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Next, let

Yay(2) = Yo © F*(2)1pa(2), ¥h € H7,2 € T, (8.1.3)

where 1y, := 1y, and Uy = h(U,). Notice that defines again a C*
partition of unity, supported on {Us p }peqnew0, which have intersection multiplicity
bounded by Cj. We have the following result from [4, Lemma 9], whose proof is
adapted to our case.

Lemma 8.1.1. For each u € C"(T?)

lullfee < Co > lutballfee (8.1.4)
acA
30D Nutbapllie < Cellullfe + Culs)llullis, (8.1.5)

acA heH
where Cy(s) depends on 1,. However, Cy(1) < Cy,(de)™2

Proof. For the first inequality note that

||u||g{3 = H ZW/Ja‘ ’i[s = Z <wau7wo/u>s-

acA (a')eAx A

By the definition of the (-, -), the above sum is zero if the supports of 1, and ¥/
do not intersect. For the other terms, denoting with A* the set of elements in
A x A for which the above supports intersect, we have:

Z<¢au ¢a’u Z ||77Z)o¢u| Hs —g ||77Z)oc U| Hs < C Z ||wau||Hs

A acA

We now prove (8.1.5)). By formula ((C.0.4]) we have

Z ||U%h| HE ~S S Z Z Haﬁ uwah HL2

a,h |B\<s

2 / s+ 33 Y G / 0PI
ab |B|<s ah |BI<s [v|<|B]

< CyllullZe + Cols)E [ullZs < CollullZ + Cols)llull22.

where in the last line we used the fact that the v, are partitions of unity and

Lemma |C.0.1} This proves (8.1.5) in the general case s > 1. Next we compute
explicitly the second summation in the second line above for s = 1, which is

bounded by:

2/2 UV (¢ap)|* < 2/2 [uf’|(DF®)' Vi, 0 FO1g 4|

UPFIEE [, 3 196 FLualu® < Cosup ol ol

T2 pegao
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Finally, since 1, is supported on U, which has diameter bounded by deg= 0\ %,
it is easy to see that there exists €y, such that

[aller S Coo (de) ™,
hence Cy(1)2 < Cyy (de) ™", from which we conclude. O

Remark 8.1.2. Note that, under condition (8.0.8)), recalling (E.0.2)), we have
l1—cyln
Li(a0,xu) = CiCooxu ",

which implies that, by (81.2), Cy(1) < e 2Cyxu e
The next Proposition is the main ingredient for the proof of Theorem [8.0.2]

Proposition 8.1.3. Let o as in (5.4.43) and ng as in . For each £ € 72,
meN, g >nybhen acAandlh e Ho suchthath =h o hzswell—
defined, Dyh&* € C.. for each p € suppthayy and Dyh, &* & C,, there exists Mg,
depending only on & and m, such that om < M¢ < 00, Supg.e¢c, Me < 00 and,
for each t > 2,

() |FLD (Yo LY%u)(E)] < Ki(t, Mg, m)lulle, (8.1.6)

where Ky (t, Mg, m) < CyCy 4o AMe | with Cy 4, a constant which depends on 1,y .
In addition, iof the map satisfies condition , then there exist Ce g, B1, 2 > 0
such thaf’]

K1(2, Me,m) < CyClgoxa™ " Oy Mo ()7 (8.1.7)

Proof. Let € = (&1,&), let j € {1,2} such that ||£|| < 2|¢;], and M,g > 0 to be
chosen later. Since {;Fu = —z']-"@x]u | Fulloo S ||u|lr: and using we have,

for each ¢t > 1 and setting u = Yoy LMeu,
e a1 1l + o) 819
M 1.
S ulle + [F0,, L% (ug 5)]-
Let us estimate the last term. Letting Ji(p) = (det D,F*)~! we have
For, )] (© = [ a0, [paplea] ob(2)
’ (8.1.9)

= > Cum / dz e 2T ENOM [y ] 0 h(2) - 07 [T LMeu] 0 ().

1|+ =t Ua

Operating the change of variables w( ) = z + L€ + 7EL, where ¢1 is the unit

vector perpendicular to € and ¢, 7 € I, = [—dedy,(zq), dedy, (2a) ﬁ we have
Fo Lol <€ sup [ / A7 {0 - O [y £¥%u] 0 B} (30(7))
“ In1|+(nz2|=t Iq() Iqo

3Recall the definition of ¥(£*) in (8.0.3).
4This is because ~, is supported in some 5U,_ 4, given in (8.1.1), i.e. the integrand is

supported on an interval depending on qq.
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Let mi(z, b o h) satlsﬁes (5.4.44) with n, = min{m,c;log x;'}, and set m(ﬁ) =
SUp, Sup,., M(2, ho h) P We then define

M = sup m(ﬁ), (8.1.10)
hene

and we observe that, by Lemma (5.4.4), M¢ > om, where o is defined in (5.4.43)).
Moreover, the assumption D,bh,,&* ¢ C, and condition (4.1.4)) imply that M, <

oo. At the end of the proof we will show that SUPg+¢ sC, Mg < 00.
Next, we define 7, = {bm. ) Yoo Ha=1{h : hoheH:l, v, = LM m(h)+4a0,,

and write ) A
HMe= | {b’ oh : b e 5M£—m<">+q°} (8.1.11)
HENa
which allows to define the decomposition

M, _ ) ‘. Me—m(h)+ - . A ok
LY%u = T4 00 [ﬁ e qo“} b=D_ Jniy-0 b Vajb
hEHa

Thus, recalling (6.1.8)),

FoL L (ul)

=5
m
S
Q

< Cy sup Z/ dl
I

[n1]+In2|=t heh., 1o

[ dr{om i dug ohon [Py n] b on} (ul)

0

Next, we apply Lemma to v, with § = ded,,(24), note that the hypotheses
of the Lemma are satisfied thanks to the assumptions on §. We thus obtain closed
curves 7, with j + 1 derivative bounded by Cy, ;AL. Tt follows

0 M,
FoL Lo ()|
1 12 ‘. ~
< Clﬁmi}llngztAZ/I drl /’Jl‘dT {aﬁ Vo - Iy ofJ h[Pm(b) o] ah} hofJ}(W(T))
heHa 10

Next, we apply, for each inverse branch 6 o b, Lemma m to the curves 7, and
obtain admissible central curves 0, = I/goh,g,m.lﬂ Thus, we can rewrite the integrals
in the right hand side of the above equation as follows

/dT {an Yo Sy 0 b U[Plzm ) Il ah] ob}(%(f))
- /Td“l’w(ﬂ {@ 0y o 7O [P v (0e())

\:}‘>

5Notice that 7 depends on & through 7. Also, it would be more precise to call it m(ﬁ ob),
but we keep the notation as simple as possible.
6Notice that v, depends on b, but we drop this dependence for simplicity.
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where Wp, (1) = hy[det Dy F™®1]-1. By Proposition [6.1.3| applied with n =

(), ¢ = W5, (0Mha) 0 F™O o iy|| Wy, (0Mps) 0 FTO| -1 ) = 1, u = v, ; and
7 ’

U = T2, the above integral is bounded by

Ct, (), m)[[ o, (9" %a) © F Vet [|vg llel . (8.1.12)
where |1, < 2dedyy(20) < 2deA[®p®. Accordingly,
M
For v ()|
<G osup Y Ct(h),m)|[ s, (0™¢a) o FO e v llelLuo-

1|+n2|=t ~ -
1|+ [m2] beha

(8.1.13)

By (6.1.12)), @(t,m(ﬁ),m) < CyA%Me and

C(2,m(b),m) < Co*™ sup [N}, 0u(s)62 ) 0 De(s) + iy © 24 Coo B3] (8.1.14)

SESuUpp ¢

Note that, by Corollary
HUtht = HﬁMg—ma(h)Jrqoth < CM,M,;-MMgHth (8.1.15)

and, by Lemma [5.5.3] for each o € A

Z H\IJD(B)HCt < Z "qug(ﬁ)"ct < Au(ta Mfam)> (8116)
HEHA hen™e
where
( ~1\ ,m
Cy (A:Y 1, ), mﬁi1> 1"y m 7=0
) 2m(h) _
Ay (1, Mg,m) = (Cuﬁ(h) ) <A +1 *b)m v ) T=1
Ou (Mg, m) - {952, [ Mo(m, )|, (A7)%} T=2
\CﬁAC“Mg T > 2.
(8.1.17)

Since [|(0™M1,) o FWG)H@ < CyClp o A%Me | this concludes the case t > 2.
It remains to prove |-D In this case we assume and we estimate the

terms in for t = 2. Arguing as in Remark |8 m 8.1.2) we first have [|¢q||cr <
CyClgoXu C“ .

Next, setting temporarily m = m(f)), Go = 0My, and G4 (s) = g © Je © hem(s),
and recalling that F"0y = Y4 0 hy g,

G, = (Vga 030 © hygm, 7y © hymhiy )
G2 = ((DVga); © hegm, ¥y © hegm) (M)
+ (Vga 03¢ © hezm, 77 © hegm(hm)® + 74 © hegmhi ).
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Then, by (5.4.46) (with hm = hme) and since (E.0.1), (E.0.2) imply A5 <

—cglnp oy
CooeXu = 1™,

(0" 4a) o Fm(h)”cge < qu,eﬁ—;lﬂME (8.1.18)
i — —eylnp g L
[(0™1pa) o F (h)Hcge < Cegol[Mgo (M, ) lloo + Cegort® e xa™ MﬁﬁQ-

Since (V;,Go)" = ¥} Go+2V, G, +V;,GY, by Lemmal5.5.3, (8.1.16) and (8.1.18)

> 15, (0™ 0) 0 F70) s
Yo

hEHa

< CyClgoXn* " AU(2 Me,m) + Ay (1, Mg, m)Co 05 e (8.1.19)
M —cylnp g—

o+ Au 0, M) Clg [V m, )l + 234052

To conclude, we need to relate all the quantities to ¥(£*). First we notice that, by
(5.4.41)) and Lemma E.0.1|7 ﬁ;lg 0,71 = [{p(€*), xu}t] " =: 9(€*)~L. Therefore,
recalling (5.4.57)), it follows that A} oy(s) < Cyd(£*) " u™, for each s € T?. Next,
choosing n, = min{c, log x; ', m} in Lemma we can check that

m m . m _ . o 6n
GN* + c S Cﬁ ’ bTL* S CM,TL* - H/vM{ ) Sn* - M?n*ljl N

T

since, by (5-3.2)), ¢, < [Chun, + CixuP(§*) 71 < Cip,. Similarly ¢, < C), . We
can use this to compute, in 5.4.45,|Z|

Moy (112, oo < {Cu0cxa ™ 2™, (1 + Cop®™)(€*) L+
S {qu’gﬁ(g*)—q lnulu?rn’ (1 + CﬁMQm)ﬁ(f*)—llum}-i-
< Oqo,elu:imﬁ(f*)_{l’cﬁ lnp}""

Consequently, we can also compute

—_— m —cy In m *\—{1,c4 In *\— *\—2, m
IV (1, oo < {1 Cguoxa™ ™ Cop et O(€") o™ (€7) 2, G (€7) 2}
< qu eu?)mﬁ(g*)—l—{l,c,j lnu}‘L.

Finally, by the above estimates and condition 5.4.44E|

3(Mg+m)

w3 T
Colp, Mno(m7t) < Oﬁljl (é-*)—l—{l,cﬁ Inp}t
S, 2 pbms (8.1.20)
< Cﬁu?)Mfﬁ(é-*)flf{l,Cﬁ ln,u,}“"

/\%O ﬁg(S) S Cﬁ

so that ¢y, < C’W?’Mﬁﬂ(f)_l—{lvcﬁ mu}" and we immediately have by (6.1.12)

C(2,m(h),m) < CypMe(gr) =2~ thestnnt, (8.1.21)

"Recall that gg > ng.
8Note that, since 7 is the smaller integer such that the second of (5.4.44)) holds, there exists

Cy such that 7,, (M + 1, m; t)M,,(m,t) > Cys,,
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We can now conclude. Using the above estimates it follows that there are a,b > 0
such that

Jym < Gy,
vam < C(qo 6{Oumvﬂ Xu Cﬁln#}+
O*(M§7 ) < Cﬁqu,ecu,Mg &
which imply
Au(0, Mg, m) < Cop ept®ox " 9(€7) 7,
Au(1, Me,m) < Cyo Chungept™xa @ M H9(£7) 2 (8.1.22)
Au(2, M, m) < Cy CyCl g pPMe(§7) 71 healnmd™,

Using this in (8.1.19)) we find 31, f2 > 0 such that

= (h o *\—3. —cyln
D15, (0%400) 0 F™ 02 < O Oty ™Med(€) ™. (8.1.23)
HEHa

Hence, by (8.1.13)), (8.1.21)), and (8.1.23]), we have

M, \—6_ —ciln
‘]:azjﬁqo(ua,g)) < OQMO;TM&“BZM&&(& ) O

which concludes the proof of (8.1.7)), recalling equation (8.1.8)).

We still ow the reader the proof that supe.gc, Me < oo. We notice that, by
equations (8.1.20)), (8.1.10)) and (4.1.5), for each &* ¢ C,,

/\]l/lé < C*CﬁMSMg’ﬁ(g*)_l_{l’cu lnu}+7

which yields M < log(A_pu=3) " log(C,Cyd(¢*) "1~ {besmud™y " which is finite for
each £* ¢ C,, by the definition of ¥(£*) in (8.0.3]).
[

We henceforth consider ¢ > 1 as in ((5.4.43)) and m,, as in (5.2.4), and we define

My, = OMy, . (8.1.24)

8.2 Decomposition in Fourier space

Let Z, ={¢: ¢ € C,}and Z¢ = Z2\ Z,. Recalling that p(¢*) = |&](&5]171, ples) =
m7

Z, =1 p(&) <xu} 5 Zg={5:p(&) > xul-

Next, take N = gy + M, for some M € N to be chosen shortly. For simplicity, it
is convenient to introduce the following notation for A C Z2,b,5’ € H:

Sgan(4,8,6) = 3 L@@ FL WO FLo@PE),  (821)

£ez?
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where u}y = by £ u. Then, by equation (8.1.4) we have

<O | > Lol

« heno

=Gy D Ll L (uy )

a  (h,h)€HT0 xH90

=GY ., Y D AOPIFL(u)IEFLO ()€

a  (b,h)eNoxHI L7

—CuZ Z Se(Zah )+ G Y ST s (2 h. ).

1) e$H0 x H90 a  (b,h")eN?o xHao

1£%u]

(8.2.2)

We start estimating the second term in the above equation, in the next section
we will treat the term with £ € Z,,.

Lemma 8.2.1 (Bound on Z¢). Let M := SUDg¢e ze Mf-ﬂ For each M > M,
1<s<r—1,5e€H® and N =qyo+ M,

31 Lz (O)[F L2 (D)) S O, ulls (8.2.3)

£ez?

where O5 = (Cy.go Crnr ™ AM)2 and, under condition (8.0.8),
1 5 —11—cy lo
O1 = (CoaCiri™™)xu’ "M (8.2.4)

Proof. Since £* ¢ C,, by the definition of m,, in (5.2.4)), for each p € T2, h €
‘sTJOO
Dybm,, & € Cee
Dybno&* ¢ Cy,

so the hypothesis of Proposition are satisfied with m = m,,. We will treat
the case s > 1 first. For each M > M, we have

S Lz FLO ()P = SO O o F L (b £ (LY Vo)) P

£ez2 £ez?
< (Cpo A LM 12,.

(8.2.5)

(8.2.6)

where we used the fact that A > 2 and the convergence of the series. The

statement (8.2.3)) for s > 1 then follows since, by Corollary [6.2.2]

1LYl < CL ™ ullf, V> 1.

9Recall that thisi is finite by Proposition
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Let us move on the s = 1 case. For any R > 0 let Bg = {£ € Z*: ||¢]| < R} and
B§, = 7Z?\ Bg. Then

D O L FLo (uply)

cez?

= D OTUOTFLOwl)P+ D (O TFLY(

£€ZSNBR

Uy ) () TP F LD (ugy ).

EEZSNBS

For each £ € Z; we can apply Proposition to have

Y HOFLO(ugly)P < Char®™lluly Y (672, Mg,my,)* (8:2.7)

EEZENBR EEZENBR

and
> HOFLe )P
EEZENBS, (828)
< C2 M ullallulls DT (O TPE(2, Me,my K (3, Me,my,).
>Cym 2 3 1\ &, Vg, Ty, 1\, dWlg, Ty,

EEZSNBS,

We use the estimate of K;(2, M¢,m,,) in (8.1.7) for the sum in (8.2.7), with
V(&) = p(&*), since £ € Z¢, and we have

S (O (M, 2)* S (Cogoxa™ O M)

€,q0 Xu
£€ZENBRr

(It

£€EZSNBR
(Ce qOCB ,82M>2X1:11*Cu Inp log R’
(8.2.9)
since
DR (IR s /R/ ! L pdpdd < ;M log R
p ~ papab =5 X, 1og Lt.
¢€ZeNBg 0 {tan0>xw} 1+ p2 (tan 0)12
(8.2.10)
Similarly, for the sum in , we have
Z <€>_3K1(27 M£7 mxu)Kl(ga Mfa mXu)
¢€Z¢NBS,
—cyln 1 5 — *\—6 A ¢
< Ceaxa ™ORN Y ()P p(€7) O (8.2.11)
EEZSNBS,
<C., C’B BQMX—5—% np =1 g M
€,90 u .
Choosing R = A%M by (8.2.7) and (8.2.8)) we have the following estimate:
—11—c41In

Z | ZC'F‘CQO ah’)|2 (Oe qocﬂ B2M)2Xu n ”MHUH%, (8.2.12)
¢er?

from which we conclude the proof of (8.2.3) also for the case s =1. O
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8.3 The case ¢ € C,

In this case we cannot apply Proposition directly as we did in the previous
section. The main reason is that there could be “bad” vectors £* which are in an
unstable direction, so may fail. Here transversality plays a major role.

Lemma 8.3.1 (Bound on Z,). If there exists qo € N such that for each § € Z
the hypothesis of Proposition [8.1.3 are satisfieded, then there exist Cy, such that,
for each M >m,,,,

SN S 1 R FL (W)€ [F Lo (k)] (€)

@ (h,h")€NT0 xHI0 E€Z2
<N 28(10 Z Huoab”i-ts—i_cqo Z Huah|

hendo hesHo

where Q(M, s) is given in and ©g in Lemma (8.2.1,.

The rest of this Section is devoted to the proof of the above Lemma. We
divide the argument in three Steps.

w1+ Coe QM 5)\/ O[] 42 ]

’}.[S

Step I (Local transversality)

We need a definition of transversality uniform on the elements the partition of

unity (§.1.3):

Definition 8.3.2. Givenn € N and b, h' € H™ we say that b M2 G’ (b is transver-
sal to B on « at time n) if for every z € h(U,) and w € B (U,) such that
F™(z) = F"(w) € Uy, :

D.F"C,, N DyF"C,, = {0}. (8.3.1)
Next, we relate the (pointwise) Definition to the (local) Definition [8.3.2]

Lemma 8.3.3. The constant Cy in (8.1.2)) can be chosen such that: for alla € A,
p €U, CT? and b, b € H9, if 2, = h(p) and z = b/ (p), then 21 M 2z implies
h e b’

Proof. Recall that z; M 2 means
D, F*C,ND,,F*C, ={0}. (8.3.2)
As C, . € C,, clearly D, F*C, . € D, F*C,. So the above implies also
D,F*C,.ND,F*C,.={0}.

Let p € Uy, p # p, and define Z; = h(p) and Z; = h’(p). We claim that, for each
v € Cy, the difference between D, FF®v and D3 F'%v is smaller than the opening
of D, F©C,, provided we choose U, small enough. This suffices to conclude the
argument.
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We compute a lower bound for the opening of the connected components of

D, FrC,\ D, F©C,.. By Proposition and by formula (5.3.1]), we deduce
that, for each unitary vectors v € C, . and w ¢ C, U C,,

~|det D, F°|£(v, w) S Cixue
1Dz, Fov|[[| D, Frowl| ™ g, (2) A, (2)

L(D,, F*v, D, Flw) = CiXu€lq(21).

On the other hand let us recall that uy 4 (p) defined in (5.2.8)) gives the slope of
the boundary of the cone Dy, ) F'*C,, and it is a Lipschitz function of p. In
particular Lemma m provides an estimate for the Lipschitz constant L,(qo)

given in (E.0.2)). Then, by the definition of U, 4, in (8.1.1) and (8.1.2)), we have
the claim, since

1D:, Fv — Dz, F®v|] < Li(go)ll21 — 21| < La(g0) La(Xu: 40) " CoXu€o (21)
S CﬁCoXuE(SqO (Zl).

Clearly the same is true replacing z1, Z1, h with 2o, 25, b’, and the result follows.

]

Lemma 8.3.4. Let m,, given in . For every p € Uy, M > m,, and
Z,w € F~%(p) such that Z M @ we have

R? = ((DZFM+40)*)_1 Ci:c U ((DwFMJrqo)J_)*l Ci:m (8.3.3)

for every z € h(2) and w € §'(w), b, b € HM.

Proof. By assumption D;:F*C, N DgzF*C, = {0} which, together with
condition (5.2.4)) implies that for every z; € F~™(2) and 2, € F~™ ()

D:F®(D, FM([R?\ C,)) N DgF*(D,,FM(R*\ C.)) = {0}. (8.3.4)
Therefore, setting N = gy + M, there are z,w € F~"(p) such that
D.FN(R*\ C.)Nn D, FN(R*\ C,) = {0}. (8.3.5)

Now we can conclude the argument showing that the above implies the statement.
Indeed, equation ([8.3.5)) obviously implies

(D.FN(R2\ C.))" N (D, FN(R?\ C.))" = {o}.

For any cone K C R? and any 2z € T?, one has (D,FNK)* = ((DZFN)*)_1 K+
and (R?\ )t = R?\ K. We then have

((D-FY)7) 7 (R C2) N (D FY)) ™ (R2\ CF) = {0},
which in turn implies that R? = ((DZFN)"‘)f1 Ctu ((DwFN)*)f1 Ct. The

conclusion then follows using Lemma [8.3.3| and obtaining the statement for the
smaller cones Cc.. [
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Using Definition [8.3.2] and recalling notation (8.2.1)), we have the following
decomposition into transversal and non transversal terms:

> S8 u(Zab,1)

(h,h")€5H70 x $H90

(8.3.6)
Z qOM Zluhuh Z qOM ZU)hah,)'
mqob/ %qoh,
Step II (Estimate of transversal terms)
In this step we will prove that
D Sear(Zuh,0) < GCWQIM, 8)v/O,[ullssaulles, (8.3.7)

bha’ b’

where O, is given in Lemma [8.2.1]

If M > m,,,, for h M® ', Lemma and Lemma imply that, for any £ €
72, either (D,FN)*¢€ € (C..)" for every z € supp(tay), or (D.FN)*¢ € (C..)*
for every z € supp(¢a). We then decompose Z, = Z; U Z,, where

Zy={¢€Z,: (D.FY)*¢ € C., Vz € supptay}, Zy = Z,\ Z1,
and we write
Se 0(Zu b, b)) =S¢ 1 (Z2u N Z1,0,0) + 52 4(2u N Zo, b, 1), (8.3.8)

It is enough to estimate the first addend, the second being analogous. Notice
that for each £ € Z;,i € {1,2} we can apply Proposition (8.1.3) with m = m,,,.
By the Cauchy-Schwartz inequality we have

HS.

S ar(Zu NV 200,00 S [ D 1) Mzunzs FLO (ughy) P | 1€ (ugly)]
£ez?

(8.3.9)

Moreover, by ), [[£% (ub ) lae < CQ(M, s)lul[3s. On the other hand, we
can bound the sum 1n81de the square root using the same argument of the proof

of Lemma [8.2.1] since the key condition (8.2.5)) is now replaced by & € Z7, with
the difference that this time 9(£*) = y,, since £ € Z,,, so we use the estimate

Y (O < CixulogR

£eZ,NZ1NBR

instead of ([8.2.10). We thus have

152 i (2u0 Z1,5,8)| S Q(M, 5)v/O,]|ul|

Of course the same computation is valid for the second term of (8.3.8)) from which,
summing over hH®h’ we conclude the proof of (8.3.7).

89



Step III (Estimate of non-transversal terms).

We now want to estimate the sum in (8.3.6) for h#i®°h’. We are going to prove
that, for N = qo + M,

D ALe @), £0upl))s SN(go)p® Y flud|3

b0 hesHw

+ Coo Y Iluny 3

Hsfl .
henao

(8.3.10)

Keeping the same notation used previously, we write

D (LR (ugh) £0(a s = D D (L% (ughy), £2(uly))s (3311

e’ b’ HENT -/ sh

By equation (C.0.4)) and the definition of the inner product (C.0.3)), there are
C,, 5 such that

(Lo (uhy), LOuply))s = D Cyp(07,00,(L2 (uhl), 07,00,£% (ully)) 2.

T1 T2 2 T )
Y+B=s

(8.3.12)
We then use equation ((7.1.5) and we have, for every v, 5 such that v+ 8 = s

107,07, (LPuply)| < [(DF®) 7 [3,£% (107,07, ualy]) + L% (P uqly)

Tl x2 ) ah

where P, is a differential operator of order s — 1. By (5.3.5) [[(DF®)7!||5, <
Cp*®. Clearly the same inequality holds for h’ and we use this in (8.3.12)) to
obtain

> CLp(07,00,(L0 (uhh), 07,00, £ (ul)) 2

xr1 -T2 ? YT T X2
Y+pB=s
< p2sao Z C,op (L2 (100,05, ah’) L0(|87,02 toiy])) 2 (8.3.13)
Y+B=s
+ Oqo”“i/,[ﬂ Hs—1 HU%/HH%L
Since u%h and ué\fh, are supported on invertibility domains of F'%,
00, 0% ul | or
L8702 ud! wlar 0T g gy 8.3.14
|( xr2 OLT) |detDFqO| T {h b} ( )
We define x, := (07,05 ul | o 7 and g, := |det DF"| o 7 and we have
XX’
<£q0<|a’y 895 Ug, |) LQO(’(‘)’Y am Ug, /|)>L2 = T —
2 eh 2 eh 12 /990" /G0 Gy
9 9 (8.3.15)
S
T2 ) gy 2Jre Gygy
: : 10,2 1 P2 i _ Xy _
where we used the elementary inequality ab < 3(a” + b*) with a = N b =

Xp/ . .
N In order to obtain (8.3.10]), we need to sum equation (8.3.13) over h € $H%
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and h'#9h. Let us begin with the first term. Consider one of the integrals in

(8.3.15)), for example the first one. By Definition of N'(¢o) and Lemma|3.3.3]
it follows that

2. 2

b bn/faon

107,05, uzly|* o b
gh/ QO Z/2 |det12)FJS|O
h’b%Nh

ZN((Jo)ZIIE"”W 07, oy Pl < N(ao) ZIW T
b

Xh

T2 9 gh

(8.3.16)
By symmetry we have
B DD CrslL (102,073l ), £ (105,07, e )2
T (8.3.17)
SEPON(g0) > D 103,00,ullill7e < Co® N (@) Y lludlyllee,
heH0 y+B=s hefHI0
which corresponds to the first addend of the r.h.s. of (8.3.10)).
Finally we sum the second term of (8.3.13]) over h € $H%, and we write
[udis 31 + gy s
Cor 3 ke [l s < €y 3 et L T
ey e (8.3.18)
S Co Y Nl e,
hesHo

which yields the second addend of (8.3.10)) and, together with (8.3.7)), conclude
the proof of Lemma [8.3.1]

We are finally ready to prove Theorem [3.0.2

8.4 Proof of Theorem 8.0.2
By (8.2.2) and Lemmata [8.2.1] and [8.3.1]["| we have

1£%ull7. < O, IIUHs+2 + CoQ(M, 5)/Os]|uf

(o)™ Y > Nyl + Co Y Y lubhll3

Hsfl .
a henHo a heHo

Recalling that u) = 14, LM u, we can use equations (8.1.5)) and (7.1.2)) to Writeﬂ

(8.4.1)

Do e =D > IanlMulde < CILM w3 + Cull LM ul7,

a henw a henio

< CALY U |oop™ M [[ull3s + QM. 5)ul

pemr + Cyllullza
(8.4.2)

10Note that, to use (8.2.3) in (8.2.2), we just use an inequality analogous to (8.3.18).

H'We also use repeatedly || £ul|zr < ||ullz:-
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and

Z Z i3

Hs—1
a heHo (8.4.3)

< CLY ull3ger + Cyll LM ullfr < CQM, s)Jull3s-r + CyllullL-

Next, by Lemma

lulles < <lullde + < Cllulls, Ve > 0. (8.4.4)

If we Cli)se ¢ = N(qo)p**Q(M,s)~*C,", using (8.4.2) and (8.4.3) in (8.4.1)),
setting Q(M, s) = {Q(M, s), Cy}T, and recalling (8.0.4) for the definition of Ly,

we obtain

127l

#e < CeLu N (qo) ™™ [Jul 5

+Os[lullf 1 + CanQ(M, 5)v/Oslullss2]lul

Hs + Oqo@(Mv 8) ||U||%1
(8.4.5)

e [|ulls+2 and, as Vab < \/ga + 1/ 5zb for each

a,b, € > 0, we have /||| ||t se < \/§||u|

_1
€ := 0,2Q(M,s)" L, for ¢ arbitrarily small so that, taking the square root of
(8.4.5), there exist a uniform constant C; > 0 and Cy, > 0 such that[™|

Finally we note that ||ul|3, < |lul

e+ 1/ 5=l ulls2. We apply this with

||£Nu| HS + qu@(Ma S) V ®s”ul|s+27

1 N
w <0 (VLN @) 1
from which we obtain in the case s > 1.

The case s =1

3
It remains to prove (8.0.9) for s = 1. First, by Lemmal7.1.1{ Q(M,1) < C7Z , u*"

Recalling Remark|8.1.2) Cy(1) < C4Cyxu ' "¥Finally, using also (8.2.4), we can
find (3, B4 > 0 such that

QM 1)y/8; < O Py 2 =™ arh,

which concludes the proof of Theorem [8.0.2 [

2Here we use ||ul|zr < ||ul|sio-
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Chapter 9

The final Lasota-Yorke Inequality

In this section we state and prove our main technical Theorem which implies the
Theorems stated in section . For each integer 1 < s < r — 1 we define the
following norm

[+ s =1 |

Theorem 9.0.1. Let F € C"(T? T?) be an SVPH an and o = %. Let

my, be as in (8.1.24), ng as in (8.0.5)) and Cy > 0 provided in Theorem ({8.0.2)).

We assume that there exist: a constant K > 0, an integer ny > ng, and uniform
constants 19 > 1,¢ > 0, k1, kg € N such that, for some 1 < s+2<r— 1H

we - lstas

sup || £™1]]oe < Kp™™, Vn < King + My, , (9.0.1)
m<n
<— _1 -~ T0 —T0 +
{u A2, \/NF([anﬂ)uaml +58m><u)} <y <1, (9.0.2)
g
(K Cy)mommsm yommae < 1, (9.0.3)

where N is given in , as = c[(1 —a)™ + 1]+ 2s, B = 2(s + ¢) and (
given in (4.3.3). Moreover, for k € (Ko, k1), choose

70

o, € (D27, (CLK ) mormim i e ) 1), (9.0.4)

Then, for eachn € N and 7, € (0,,1) we have

£l < CoAlmr T, )00 e+ CoAl, iy T, ) uily (9.0.5)
1£" e < CoAl,my, T, )7l + Co, Al e, Ty, )™ ], (9.0.6)

where A(k,n1, Ty, s) = Oy, (kn1 + Ty, s), Oy, asin with Cy ,,, instead
of Cy, -

Proof. We will use Theorem with N = qo + m,,,, where gy = kny > ny
and k € (Ko, k1). First, by conditions (9.0.1)) and (9.0.2)) and Lemma , we

'Notice that (9.0.1)) defines 1, (9.0.2)) defines n; and (9.0.3)) defines xg.
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observe that

1

Lo, N (q0)] ¥ 12 < [K p™ N (go)] ¥ i <
= (K“cmX“Ltm a1 N ([ago]) >
< (a2 0T gy 1))
< (KN (Tago] s+ )
Therefore, by equation (8.0.7),

18l < CLE (N (Tago])p® @)X ) flulls + Copr (N, 8) [l 2
(9.0.8)

Z\H

(9.0.7)

2\

vl

Moreover by the sub-multiplicativity of N
N([ago]) = N([arni]) < N ([am])".

It follows by the definition of 1y that

T T T0
v, asag” +8sTyy, E

V(W ([ago] i o+ < V (N (Tamy )" w0y 3 < g e

Accordingly
127 ul

we < o ||ul

He + OOy, (N, 8)[[ul[ s42- (9.0.9)

_1
On the other hand, the assumption pSA_ 2 < vy implies (6.2.8), so that we can
choose ¢, in (6.2.9) such that, for all n € N,

1£7u]l 12 < Colullsz + CChnpa lullo, (9.0.10)
where C),,, is defined in (5.3.2). Iterating by multiple of N and using

(19.0.10) yields

£l so < Cyoyl (Jullaes + Ak, 01, My, , 8)|[ul[s42) + CoA(R, na, Ty, o s)u" [|ullo,
(9.0.11)

from which we deduce ((9.0.5)).

Next, we want to compare the norm ||-||o with the L'-norm. Let us fix £ > 0. Take
an admissible central curve v and notice that, for any ¢ € C°(T) with ||¢|. = 1,
we have

05 ds /T o(t)0u(v(t) + sel)dt’ :

t) + ley) dt—/gb t))dt‘ -

Writing v(t) = (o(t),t) we can make the change of variables ¥ (s, t) = v(t)+se; =
(o(t) + s,t). Since det(Dwy) = —1 and setting D, = {¢(s,t) ; t € T, s € [0,/]},
we have

/¢ t) + ley)dt — /(b ‘:

< 6llzv/Ell s

o(2)0u(z, z)dzdz
Dy
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Hence
/(b t) 4 sey)dt > /¢ Y(t))dt — /s|ul3:.

Integrating in s € [0, /] and taking the sup on v and ¢ yields

1

_ 202
lullo < €M ullzr + == llullzo- (9.0.12)

Applying the above formula to with ¢ = Cyo2p 2" yields
1£7ulls,e < CyA(r, 0,y 8)op lulls + CyA(K, 01, Ty, 8)or 1" || o1
Next, for each 7, € (0,,1), let n,, be the smallest integer such that
CyA(k, 1, My, 8)o" < G,."
For each n € N, write n = kn,+m with m < k, then iterating the above equation

yields

k—
1£7ullo < @ Lo + CoA (s, 1,1y, 8) ™" 0,2 Z [l e

(K/ nl’ mXu’ )3

72— ag)

< CyA(R, 1, My, 8)0|ulls.« + Gy I

which implies . O

Corollary 9.0.2. Under the assumptions of Theorem[9.0.1] there exists a Banach
space Bs.. such that C"~*(T?) C Bs. C H*(T?) on which the operator L : B, —
Bs . has spectral radius one and is quasi compact with essential spectral radius
bounded by o,,.

Proof. We call B, the completion of C"*(T?) with respect to the norm || - ||s.,
then C"1(T?) C B, C H*(T?). Iterating (9.0.6), and since £ is a L' contraction,
implies that the spectral radius is bounded by one, but since the adjoint of £ has
eigenvalue one, so does L, hence the spectral radius is one.

To bound the essential spectral radius note that the immersion B, — H?
is continuous by definition of the norm. Moreover the immersion H® «— L!
is compact for every s by Sobolev embeddings theorems, hence B, — L' is
compact. Hence by and Hennion theorem [37] follows that the essential
spectral radius is bounded by &, and hence the claim by the arbitrariness of
T O

Proof of Theorem [4.3.2] According to Corollary it is enough to
check the conditions of Theorem [9.0.1l Since p > 1, Corollary implies

SUpg<,, [|£51]|oe < Kp?" for each n € N, with K = (u — 1)_1ﬂ hence (9.0.1)
- 1
is satisfied with ¢ = 2 and 7y = 1 and arbitrary x; € N. Next, u®\2 < 1 is

2Recall that C), ,, < (u—1)"! (see also Remark -
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implied by hypothesis (H3). Therefore, condition (4.3.4)) coincides with (9.0.2))
with ay, Bs, (s given in (4.3.3]). Finally, choosing any xq such that

In(C1K?)

In 1y

Ko > — (9.0.13)

we have also (9.0.3), whereby we conclude. [J
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Part 111

Application to Fast Slow Systems
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Chapter 10

The map F-

In this section we check that we can apply Theorem to the family of maps
F. given in (4.5.1)) and we prove Theorems [4.5.2| and [4.5.4]

10.1 The F. are SVPH

Let (1,eu) € CY, for p = (x,0) € T?. In this case equation (4.4.2) yields

D,F.(1,eu) = (0.f +cudy f)(1,eZ(p, u)), (10.1.1)
where 90+ cudnw +
_ W+ eudow + u
= = 10.1.2

We have also a more explicit formula for iteration of the map =.. For any k& > 0
and p € T?, let us denote p, = F*(p). Then we have the recursive formula:

=M (p,u) = Ee(pa-1, 2"V (p,w)). (10.1.3)

On the other hand, recalling (4.4.3)):

- o axf + 5(59wazf - a@faxw)
OuZe(pyu) = (Oof + cudyf)?

Now we use Lemma applied with w replaced by we, to check that the
maps given in are SVPHS for € small enough. Conditions and are
immediate. In particular, C* = {(&,n) € R?: || < ew,|¢|}]and C° = {(&,n) €
R? : €] < x¢|n|} satisty D,F.(C*) € C* and D,F.*(C) € C if

(10.1.4)

ty = 2||0:w |00 = € X0 and Xe = (10.1.5)

5.
In fact, with the above choice of u, and using (|10.1.2)), for £ small enough,

3

1Observe that in this special case x, (&) = uy, thus we have an unstable cone of size .
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hence condition (4.1.4)) with ¢, = %)\_1 < Next, we note that condition of
Lemma, implies conditions ([1]) and (4)) for each ¢ small enough. Moreover,
in it is shown that for some ¢ > 0, p4 = €*®, which implies @ for suffi-
ciently small €. In particular, by , it follows that condition (4.1.5) holds
with C, =1, A; = 2supq 0, f and A_ = 2)/3.

The above discussion shows that all the quantities y., ¢, and C, are indepen-
dent of ¢, and py and (A_ — puy)~! are bounded uniformly in . Therefore, a
constant which depends on these quantities, will be uniform according to the
notation given at the beginning. Finally, it is useful to note that, if we set

Y(p) = (Vw, (_g:j” 1))(p), for every p € T? and n € N we have

n—1 n—1
det D, F" = [ [ det Dy, e = [T [0:F(FEp) (1 + ewo(FEp))]
k=0 k=0

hence
e A" < det D, FI' < €™"A", Vp € T%,Vn € N, (10.1.6)

10.2 A non-transversality argument

The aim is to prove the following theorem which guarantees that, after some fix
time which does not depend on ¢, for each point we have at least one couple of
pre-images with transversal unstable cones, provided w satisfies some checkable
conditions. We will see that this corresponds to proving the existence of the in-
teger ny required by Theorem [9.0.1}

In the following we denote as ). the set of the inverse branches of F. E| More-
over, )7 will be the set of elements of the form h; o ---b,, for h; € H. and
H = O in particular, for h € H° the symbol h,, will denote the restriction of

h on HY.

Remark 10.2.1. Since Fy and F. are homotopic coverings they are isomorphic,
that is there exist I. : T? — T? such that F. = Fy o I.. This induces an isomor-
phism L. : $ — 9. defined by T.h = I-1 o h. Hence the same is true for the sets
HL = H" and H. In the following we will then identify inverse branches of F
and F{' by these isomorphisms, and drop the script € from the notation when it
1S not necessary.

The main result of this section is the following.

Proposition 10.2.2. If w is not x—constant with respect to Fy (see Definition
, then there exist e > 0 and n; € N such that, for every e < gy, p € T?
and vector v € R?, there exists g € F-™ (p) such that v & D, F" CY.

2Recall that A = inf 9, f > 2.
3 Accordingly g is the set of inverse branches of Fy.
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Proof. We argue by contradiction and suppose that for every ¢y > 0 and £ € N
there exist &, € [0,20), pr € T? and v, = (1, guy) with |u,| < u, such thatf]

D,F!,CY Dv, Vg€ F. (po), (10.2.1)

14

namely, all the above cones have a common direction. Since the sequence {py, us} C
T? X [—u,, u], it has an accumulation point (p.,u,). In analogy with (5.2.7)), for
p € T? and u € [—u,,u,| we define

o (p,u) = (F'(p), 2 (p,u)) , (10.2.2)
where 2™ is given by formula ((10.1.3]). Condition ((10.2.1)) in terms of this dy-

namics says that the slope u, is contained in the interval Eg)(q, [—us, uy]) for

every ¢ € N and ¢ € F,,(p;). Hence, it can be written as:
VOEN, 3(prw): mo® (¢ [—uwud) D{ut, Vg€ F (p), (10.2.3)

where o : T? X [—u,, uy] — [—uy4, uy] is the projection on the second coordinate.
Now, for m € N, ¢ € [0, &¢], up € [—us, u,] and h € H™, let us define

Up 1 (P) = T2 0 P (B (p), u0) : T2 = [~ wa]. (10.2.4)
Next, we prove the following result, which will allow us to conclude the proof.
Sublemma 10.2.3. The sequence of functions defined in (10.2.4) satisfies:

(i) For every e € [0,e0] and b € H%°, there exists ug ., (q) = limy, o0 U ,,,(q),
and the limit is uniform in q € T?.

1) For every h € H™, the sequence {ug .} converges to Uy o uniformly.
h,00 b,

(111) The functions Uy~ are independent of b, we call them @. In addition, @
satisfies

a(Fo(q)) = Zolg,alq)), Vg eTx {6.}. (10.2.5)

Proof. Applying Lemma with u = v/ = ug € [—uy,uy], 69 = 1, A = 2x.u,
and B = 0 we have that there exists v € (0, 1) such that, for each b € $H>, ¢q € T?,
e, e’ €]0,1), m € Nand n > mﬁ

[t (@) = (@] < Cp®™ e — €|
|t () — 1y (@)| < Cop™.
It follows that there exists uf . (q) := limy, o0 uf ,,,(¢), and the limit is uniform in

q. Next, for each § > 0, we choose ¢, and m such that Cyp™e, < g and " < g,
then, for each €,¢’ < e, and ¢ € T?

(10.2.6)

!

<M+ CyPle — €] <6

4 We use the notation with subscript ¢ for a generic object that depends on ¢ through &,
but we keep the notation as simple as possible when there is no need to specify.

5The second equation of (10.2.6)) is a direct consequence of (D.0.5)) which implies that Z.(p, -)
is a contraction.
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The above proves the first two items. Let us proceed with the third one.
First we claim that, for ¢ € T?, if b, is such that ¢ = b,(F.(g)), then

Uop, 0o (F=(0)) = Be(q, 15 10 (q)), Vg € T2 (10.2.7)

Inc(lieed, ?],Iigce up o, belongs to the unstable cone, by (10.2.4), for every h € H>
and q € 17,

(@), E-(0, 15 () = @, 4 (@) = (F2(0), hop, o (Fo(0)))

which implies the claim taking the projection on the second coordinate.
For every ¢ € N, let us now consider ¢y, p; and wu, as given in ((10.2.3)) and let
{; so that (pe;,ue,) is a convergent sequence. Equation (10.2.1)) implies

', ()] < Co™. (10.28)
Taking the limit for j — oo in the above inequality yieldsﬂ

u, = lim up, = lim u?ﬁw (Pe;) = Tp,00(Ps), (10.2.9)
j—o00 J—00 7y

regardless of the choice of the inverse branch h € $°°. Let b, be the inverse branch
such that ¢ = b,(F:(¢)), and set ¢o = h,(p¢) in equation (10.2.7)) to obtain:

Upop, o0 (P) = Ze (e, uy' o (q0))- (10.2.10)

By item (ii) above, and by the continuity of the map F., we can take the limit
as ¢; — 00 in the last equation and obtain

ﬂhohqpo(p*) = E()(q*, ﬂh,oo((l*)),

where ¢, is such that Fy(q.) = p.. By (10.2.9)), the above equation becomes
U = Zo(qs, Upoo(gs)), and, since Zg(qs, ) is invertible, this implies that there
exists u.(q«) independent of h € H*> such that

— — 1 &t
() = ty(qn) = lim uy 5 (qr,)-

Hence, by induction, Uy (¢) is independent on b for each ¢ € [,y EyM(p,) =:
Ay, , let us call it u,(q). Taking the limit in equation we have, for each
qc A9*7

u«(Fo(q)) = Zo(q, u«(q))- (10.2.11)

Note that the uy o, are uniform limits of continuous functions and hence are
continuous functions such that @y s, = u.. Since Ay, is dense in T x {9*}|Z| It
follows that the @y o equal some continuous function @ defined on T x {6,} and
independently of h. In addition, u satisfies |§| O]

6 Recall that (ps,u,) is an accumulation point of the sequence (pg,ug) given in

" It follows from the expansivity of f(-,6.) that the preimmages of any point form a dense
set.

8 Just approximate any point with a sequence {g;} C Ay, and take the limit in .
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We can now conclude the proof of Proposition [10.2.2, By Sub-Lemma [10.2.3| we
can find a function @ : T?> — R and 6, € T' such that (10.2.5) holds, namely:

iFi(q) = 20D

Let us use the notation gs(z) for a function g(z, 0) and observe that, integrating
(10.2.12) and recalling that w is periodic by hypothesis, we have

/Oue* dI—/fe 0. (fo.(x dz—/@xwa)
1

—Z / A . o) = d [, 0

where U; are the invertibility domains of fy,, and d > 1 its topological degree
Hence [; @, (z)dz = 0. So there is a potential given by Wy, (z) = [ g, (2
Finally, integrating equation ((10.2.12)) from 0 to x, there ex1sts ¢ > 0 such that

wo. () = Vo, (fo.(x)) = V. (2) + ¢,

which contradicts the assumption on w whereby proving the Proposition. O

T x {6,} (10.2.12)

For reasons which will be clear in a moment, we introduce a further quantity
related to Nr. and N which can be interpreted as a kind of normalization of
the latter one. The following definition is inspired by [16].

Definition 10.2.4. For eachp = (z,0) € T?, v € R?, n € N and € > 0 we define

_ 1 h*(ya 6))
) _ 1 10.2.1
N(z,0,v,n) h.(z,0) Z |det DE™(y,n)|’ 0219
(ymeF: " (x,0)
DF(y,n)C¢Dv

where, for every 0 € T, h.(-,0) =: h.(:) is the density of the unique invariant
measure of f(-,0). As before we will denote N(n) := sup, sup, N(p, v, n).
The motivation to introduce this quantity is twofold. One reason lies in

Lemma |10.2.5 below in which, using a shadowing argument similar to [21, Ap-
pendix BJ, we exploit the following fact: for each 6 € T, setting fy(-) = f(-,0),

we have . ho(y)
h.o(2) (f3) (y)

On the other hand it is easy to see that M has the same properties of N, F. In
particular, arguing exactly in the same way as in Proposition and Lemma
7.2.3 one can show that

=1, VxeT. (10.2.14)
yEfo(z)

N(n) is submultiplicative, (10.2.15)
Np(n)w < C; ||£ 1= C¥J1||oo ( (Lomj)ﬁy, for some o € (0,1) (10.2.16)
~ 1

MN(n) < sup (LE hi)(x,0). (10.2.17)

(z,0)€T? /bx (I7 0)
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This implies~that we can check condition 1) of Theorem (9.0.1) with N
replaced by 1.
To ease notation in the following we set Lr =: L..

Lemma 10.2.5. There are constants C,c, > 0 such that, for each n < Cé_%,

2

(L7h,)(x,0) < e (10.2.18)

sup
(4,0)€T? h. (% ‘9)

Proof. Let F*(q) = (z,0) and define g, = (zx, 0r) = F¥(q), for every 0 < k < n.
Then,

n—1
10— 0] < ellwllo < Cyl(n — k)e. (10.2.19)
=k
Let us set fo(y) = f(y,6). Since fp is homotopic to fy,, for each k, there
is a correspondence between inverse branches, hence there exists x, such that
|fo(x.) — 2] < A7 Moreover, let & = fF(z.) — xx. Since f is expanding, by
the mean value theorem and ((10.2.19)), there is (7, 6) such that

(i1l = [V F(Z,0), (. Ok — 0))] = A&kl — Cine.

Since &, = 0, we find by induction || < Z?;kl; ATt Chen < Cyen. Moreover,
since h, is differentiableﬂ we also have

\ha (@, 1) — Puo(f5 (22))] < Cyen.

Next, since |det D F. — 0, f(q)| < Cie,

S/ AMCO NS = O 710/ (CO) PR = SR 10/1C),
det Dng(xo,eo) L det %FQ’E(%@C) < 1 G DeFffg(m,@) [1+ Cyne| < e™*.

It follows that,

1 h*(yafl% ecun% h*e(l'*) —ecun2€
e 2 (faabio) i 2 e

(yvﬁ)GFE_n(mve) z*efg_n

where we have used (10.2.14]). m

10.3 Proof of Theorem 4.5.2.

By the results of section [10.1] F. is SVPH for £ small enough. We now prove
conditions of Theorem[9.0.1|for F, under the assumption that w is not z-constant.
In this case the existence of n; independent of ¢ is guaranteed by Proposition
Notice that x, = u.e, i.e the unstable cone C! is of order ¢ while the
center cone C¢ is of order one. Hence, by , there exist ¢y > 0 such that

9See [20] for the details.
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my, <|cologe™!]. m We then take any x; < ¢;loge™!, for some ¢; > 0 and, by

Lemma [10.2.5, we have

1 1 2
Eml < Lmh* < CxEN 7 \v/ < ’ +1 —17
rSnl;IT)L ” € ||C>O = |1nf h*| rSnl;IiL || € ||OO = |1Ilf h*le > {CO Cl} oge

hence condition with K = |mfh o= 2 and ¢ = ¢, /¢. Next, let ny be the
integer as in Proposmon [10.2.2l We prove that there exists a uniform constant
vy such that

— 1 =~ +
{ecsé‘s)\ﬁ,m([anl])ec‘s(%n%wsmi“)} <1y <1, (10.3.1)

i.e condition ((9.0.1]) with N replaced by 91 which, as we already observed, implies
(9.0.2)) for F.. Obviously there exists e; > 0 such that, for each 1 < s <r —1

pOAT2 ==\ < 1, Ve € (0,e). (10.3.2)

Let n; and gy be as in Proposition [10.2.2] Accordingly, for every p = (x,0) € T?
and v € R?, there exists ¢, € F~"(p) such that

1 h.(y,0) 1 k
< L) (x,0) — ———,
ha(z, ) Z et D,F] = (w0 o5 1)@ 0) = Tag
(y.0)eF: " (p)
DF (yn)CtDv
where k = % By Lemma [10.2.5] and equation ((10.1.6)), the last expression

is bounded by e — Choosing €9 < min (50, -z log(1+ C’A‘”l)> , we have
1

A"l
that ’yt(nl) < g < 1 for every ¢ € [0,e2]. Consequently there exists £5 such that

RN([am )ec(emt+ima)” < geee(amt+bmdn) <1 Ve e (0,e4).  (10.3.3)

By (10.3.2) and (10.3.3) we deduce (10.3.1)) taking . = min{e;, e3}. Finally,
condition ((9.0.3) is satisfied choosing kqy as in (9.0.13)), since C1,1y and K are

all uniform. Thus Theorem [9.0.1] applies and Theorem follows by Corollary
9.0.2 O

10.4 Eigenfunctions regularity (quantitative)

As we have already seen in the main consequence of Theorem [8.0.2]is that
there exists a Banach space B, C H® on which the transfer operator L. is quasi
compact for each ¢ < €,. In addition, using inequality , we can say much
more about the constants, paying the price of having a bigger essential spectral
radius. Indeed for each n,x € N

HESUHS,* < CﬂA("iv T, My S)JHHHUHS,* + BﬂA("iv T, My, S):u’nHuHO’

OFor simplicity in the following we drop the |-| notation.
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1 1

where m,, = cologe™ and o, given in (9.0.4). The choice k = Cyloge™
yields a spectral radius uniform in e, but we have no control on the constant
A(k,n1,my,,s). On the contrary, the choice kK = 2ky € N (independent of ¢)
implies, for some ¢, > 0,

Oy € (1= (cx log»s_l)f1 1),

hence a lesser information on the size of the essential spectrum but allows a
control of the constants, especially in the case s = 1. Indeed, observe that by
(15.3.2)

Chonitmy, < Cymin{loge ', e} = Cyloge™".

In addition, since kK = 2k and n; do not depend on ¢, in this case the constant
Cy.n, in Theorem is independent on €. Hence, it follows by (8.0.9) that we
can find f33, B3, Cy > 0 and € > 0 such that

1

Oue(ny +ue, 1) < Cﬁe_%(log g1)Prehasloge™ (10.4.1)

11

Thus, for s = 1 and for each a >

have, for all n € N,

and provided ¢ is chosen small enough, we

1£zullo < Ce™ lullo

- _ (10.4.2)
[£2ull1 < Cae™%™m=T JJullyy + Bag™lullo,

Proof of Theorem A.5.4. Let ¢, = ¢ and Lou = vu with 1" > ¢ "h=T, 1 < 1,
then

lullr,e = v LUl < Cog™v e T ully e + Bar e ullo-

(1—r)en

We choose n to be the smallest integer such that C,e %™ we"T < %, which yields

lullse < Jlull1e < Cae™ % fullo

which concludes the proof. n

10.5 Proof of Theorem 4.5.3

Let opn(Lr,) = {2 € C : |z| = 1} be the peripheral spectrum. If ? € o,,(LF.),
then by Theorem it is point spectrum of finite multiplicity. In addition,
since the operator is power bounded, there cannot exists Jordan blocks, thus the
algebraic and geometric multiplicity are equal.

In fact, see [9, Section 5] for a proof which applies verbatim to the present
context, the eigenvectors associated to the eigenvalue one are the physical mea-
sure.

Hence there is N € N and {v;, h;, ;}}L, such that Jy = 1, lo(p) = [ ¢,
¥; €10,2m), hj € Bis, {; € B, and Lp.h; = eih;, €;(Lr.p) = eVil;(p) for all

*,8
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¢ € B, s. On the other hand, for each j let ¢; € C* be such that fTQ hipj = Okj,
then

|¢;(R)

—m9k: k
JEEMZ Lot

Which implies that there exists le € L such that

< lim L Z / [soF ¥ ] < slocl B2

n—oo N

t;(h) = [ ;h.
T2
Note that the above also implies le o F, = ¢ Zj, The above means that, for all
[l €N,
Lph= | 0 oFh=e"" [ (h.
T2 T2 T2
This implies that ¢’i' belongs to the spectrum of (Lr.)’, hence of Lr. Since
there can be only finitely many elements of o,,(Lp.), it must be ¥; = ? for
some p,q € N, that is the {0);} form a finite group.
It follows that we have the following spectral decomposition

=> el +Q (10.5.1)
J

where II;h = h;l;(h), 1111, = 0,11, and @ has spectral radius strictly smaller
than one.
In addition,
|hi| < L. |hy].

Since h; € H? it follows that h; € C', so |hy| is Lipschitz, hence h} = |h;| €

H! N C°. Hence,
0:/T2£F5hj—hj

which implies b} = Lp h}. It follows that 7 is an eigenvector of L, associated
to the eigenvalue one. Next, we prove that 1 is the only eigenvalue on the unit
circle or, in other words, that in the decomposition the ¥; are all null.
Setting V; := {z € T? : h}(z) = 0} and A; := T?\ Vj, we observe that A; is an
F.-invariant set Lebesgue almost surely. Indeed, if z € T? \ A;, then

0=hi(z) = Lrhi(z) = Y (detDF.)~"-h3)(y),
yeF ! (2)
Which implies h’(y) = 0, for each y € F7'(2), by the positivity of Lr.. Hence,
~1(T?\ A;) C T?\ A; which implies in turn F.(A;) C A; Lebesgue almost surely.

By the previous discussion we can have h; = hje b5 Where B; € C°(A;), as both
hj, and h* are continuous. Next, since LF hj = e“%h , we have

‘CF i(B;—9;—PBjoFz) h h* —0.

E
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Taking the real part and integrating we get
/ (1 — cos(9, + ; — B0 F2)) = 0. (10.5.2)
T2

Equation (10.5.2)) implies that there exists a function k : A; — N such that
21k(z) =9; + B(2) — B; o Fe(z), (10.5.3)

Lebesgue almost surely in A;. But 8; € C°, hence k must be a constant function.

Therefore, multiplying by h} and integrating over A;, we obtain ¥; =
2k, which implies ¥; = 0, since 0; € [0,27). We conclude that Lp h; = h; and
[Ty is the projector associated to the eigenvalue 1. In particular

Hog = Zha‘/f@ga (e L™, hjebB,, (10.5.4)
J

and Ty = LpIl,. We claim that ¢; = 1 j, for some set B;. Let us assume,
without loss of generality, that [ le = 1. Equation ({10.5.4) implies that, for each

g < 817*,
> h /ng => b /(Zj o Fy)g.
J J
Therefore le = Ej o I, Leb-a.s. This implies that, for each set B;,

/]lBioFagjhi :/]lBioFagjoFehi:/]lBi»CFshi-

Hence, if B; is the basin of the measure with density h;, the above equation
implies f@lﬂz = [1p,hil; = b;;. For i = j it follows that f@? = [ ¢;, therefore ¢,
can have only two values {0, 1}, from which the claim follows.

Next we would like to better understand the structure of the peripheral spec-

trum, and prove equations (4.5.2)) and (4.5.3)).
Let (w1, 0) = FF(x,0) and fy(z') = f(2',60). By 21, Lemma 4.2] there exists
Y, such that mo(EF(z,0)) = f3/(Y.(z)) and, for all £ < n,

lzw = f5 0 Yalloo < Cyek
|0k — 9| S Cﬁk&?
11— 0.V, oo < Cyen®.

Let Ly be the transfer operator associated to fy and h.(-, 0) the associated unique
invariant probability density. The operator £y has a uniform spectral gap 1 — o

in H'(R), hence we have, for each n € {Cylne™?, ... ,Cﬁe’%},
o= [ worn= [ o). 0.0+ Olenlgler Itz
= [ 3@ 0o, (w6) + Olerlelen )
= [ o 0025 oVl (w.0) + Olent gl ).
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Let Ly be the transfer operator associated to fp and h.(-, 0) the associated unique
invariant density. Then, for each § € T, £,y has a uniform spectral gap o € (0,1)
on the Sobolev space W1(T) with norm ||g|w11 = ||g]|z1 + ||¢']|z:. Thus

/

Since |[hoY, (-, 0) lwrs < Cy|h(-, 0)||wr1, we have, setting |||y = [ dO||h(-, 0) w1,

dr < CﬁUth o Yn_lHWl’l'

L3(h o Y1) (2,0) — hu(x,6) / (h oY) (y.0)dy

[ oth= [ doptw0)n(e.6) [ duhiy.6) + Or?lolenlbln)
T2 T2 T
+ 00" ellellhl) (105.5)

= /T ph + O(en®[lglle 1Rl + o™ @llcolllly)

where ¢(0) := [ p(z,0)h.(x,0)dz. Let

Ph(z,0) = h*(x,ﬁ)/qrh(y,ﬁ)dy. (10.5.6)

We can then choose n = clne™!, for ¢ large enough, and obtain
cylneg™?! —
Hﬁlﬁg h — Ph”(cl)/ S Cﬁ&?[lné‘ 1]2||h||L1 —+ CﬁélOOOHhHHl (1057)
Equation yields
cyk
||£’}Eh||ﬂ1 < Cas_o‘e_lnsﬁ—l P, + Coe*Ine R 1. (10.5.8)

Hence, by equation (10.5.7) we have that, for each ¢ € C! and h € By .,

n—1
1
IIoh = lim — £k n
/TQSO 0 n_mn;;/ww F.
n—cylne=1
li 1 d / o lnafl‘cl.C h
= lim —
n—o0o N, kZ:O T2 ¥ Fe Fe
n—cy Ine—?!

.1 -
—lim = Y [ P+ Ol el bl +<h])
n—,o0 =0 T2

(10.5.9)

_ / HPTIoh + O(e[lnePlgller + )| .
TQ

Hence, by the density of B, in L' and since I, extends naturally to a bounded
operator on L', we have

|To — P11y < Cye[lne™ ') (10.5.10)
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It remains to prove equation (4.5.3)). For each 7 > 0 consider h € B, ; such that
Ly h =vh with |v| > e™¢". Then, for all ¢ € C! and n € N, we have

/ g(,h_y—n/ gpﬁ%sh—u_n/ poFlh
T2 T2 T2
=y /T (5 0 Yu(@), 0)h(z,0) + O (v "nellglleal|hllr)
— /Ez p(f5 (), 0)h(Y,  (2),0) + O (v "n’cllpller [|2]]1)
- y‘”/ p(x,0)(Lyhe o Y, ) (@) + O (vl ||l 1)
T2

where hy(x) = h(z,6). Note that ||[hg o Yy ||wir = [[he|lwrr and [5, dO||hgllwia <
|h|lgr and, by inequality (10.5.8)), we have |||y < Cye™?*Ine|h||z1. Thus

| el 0)(&5lho Vi @) -
= [ dudtp(a 0)na,6) [ duh(v(0).0) + O el )
_ /T oPh+ O([o"e " n e + n2e] |lglleol|Al| ).

1

To conclude we choose n = clne™", with ¢ large enough, and obtain

/ oh = / ePh+ 0 (e glles 12l1:)
T2 T2

It follows that there exists a (3, € H'(T), B(0) = [ dyh(y,6), such that

”h — h*ﬂh”(cl)’ S Cﬁ&“(lng*l)QHhHLl. ]
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Appendix A

Proof of Lemma

We start considering o, € C?(T?* R

p
sup [ (0o <3 ()
loo|=p k=0
Indeed, it is trivial for p = 0 and

Héklaa @¢)|

> ()
(&),
(i) e,

(.7 )

op—k

S

T

|Bl=p—Fk

+

B

|Bl=p—k

IA
o

S~
Al

+

k=0

from which (|A.0.1
We then have the

sup

P k
B k
lovler <32+ S ( )
k=0 im0 \J

-5()

<22

7=0 [=0

|Bl=p—Fk

|Bl=k—j

2P~ lsup 107 ¢]|co sup |07 [|eo < [|olcr

5.1.1

). First we prove, by induction on p, that

sup |07 l|co sup 1074 ]| o
v

(A.0.1)

= [|0%(¥0s, 0 + @0, 0)||

sup \85890 ©llco sup ||079]|co

[vI=k

sup |8’38xleCo sup [|07¢]|co

[v|=k

sup [|90%¢]|co sup 1074)]|co
. 10°¢]|co sup 107%][co,
o

follows taking the sup on «, i and since (z) + ( P ) = (p+1).
first statement of the Lemma, indeed

p+1—k k

10%¢llco sup [|874)]|co

[v1=7

[v1=7

since (;) < 2°. The extension to function with values in the matrices follows
trivially since we have chosen a norm in which the matrices form a norm algebra.
To prove the second statement we proceed again by induction on p. The case
p = 0 is immediate since Ky contains only the zero string. Let us assume that
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the statement is true for every k < p and prove it for p+ 1. By equation (A.0.1])
and the inductive hypothesis (5.1.3)), we have, for each |a] = p+ 1,

|0%(p o) < Cy ﬁ;‘lp | |S‘up| 1 ‘aﬁ (0™ ) o 1) - arzw”
plrllm
<C, sup sup [0 [(0™ @) o ¥] ||co]| 0 O™ ]| co

I71],I72|=1 |evo|[+]ea|=p

< G, sup sup [[(87¢) ©pllewo | DYlleo-oo

|T1|=1 ao<p

<C,C; supZng

Cs+l Z HHD@Z’HCZ 1 1D ]|

=F s=0 k€kaq,s lEN
< C,C sup Z\|<p\|cs+1 Z H HDWIcz 1
ap<p s=0 keKpr1,s+1 lEN
p+1
yeXer ol | (X
keKp41,s IEN

The result follows by choosing C7; large enough. [
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Appendix B

Proof of Lemma 6.2.1

This appendix is devoted to the proof of Lemma [6.2.1}

As usual we use the notation F*9, = v o hy, F*1v, = v . As the computation
is local it suffices to consider p, € 7, and py € 7 such that F"(p,) = po. Let
pr = F" Fp,. To ease notation we use a translation to reparmetrize the curves
so that v4(0) = 7%(0) = p, note that hy(0) = 0. Before discussing the splitting
of the vector field we need some notations and few estimates.

It is convenient to perform the changes of variables ¢, ' (z,y) = (z,0) + 7 (y)
and set

ﬁk:%OFkO(ﬁ/;l; ﬁk:¢k—1OFO¢;§l

Note that F* = Fyo---0 Fy and F™(0,y) = ¢o 0 F*(0,(y)) = do(y 0 ha(y)) =
(0, hn(y)), this implies that

Do = (&) i) ¢ Powe= (6 aty) ¢ =0 1)

with d"(y) = hl (y) and di(y) = hj(y). Thus, we have the estimates on the C”
norms of d* by Lemma [5.4.1] also the changes of coordinates ¢, have uniformly
bounded C” norms. From the above we easily get the formulae:

a"*'(y) = a"(y)ar1(he(y)) (B.0.1)
" (y) = dyr1 (ha(y))d"* () (B.0.2)
Hty) = de(hk—l(y)) i1 (hi(y))ej(hj-1(y))aj-1(hj—2(y)) - - - a1 (y)
" (B.0.3)
Moreover,
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which, setting v, = hi(y), yields the alternative representations and estimates

cr(Yr—1) = (€2, Doy, Fe1)

ap(ye-1) = (e1, D(Ovyk—l)F61> — vy (Ye—1)1{eo, D(O,yk_l)F61>

" (y)] = [{e2, Doy Frer)| < A xu (B.0.4)
A

Ve

Also, for further use,

— XeXu M, < 1" ()] < A+ XeXu A

) a*(y)"!
<DF > - (-dk(y)‘lag(y)—lck(y) dk<2)_1> . (B.0.5)

We are now ready to describe the splitting of the vector field. We do it in
the new coordinates. Consider the subspace E,(y) = {(n,u"(y)n)},er, where
un(y) = a™(y)~tc"(y), which is a C" approximation of the unstable direction.
Given a vector v € R? let us call = Dg¢gv the vector in the new coordinates.
Next, we decompose a vector v as

U= (Lun o bn)ﬁl + ({’2 — U1y, © hn)62

where b, o F(0,y) = (0,y). Thus, setting V() = v1(v(t)) — v/ ()102(y(t)), we
have the decomposition (6.2.2)) with

v (y(8) = V() (1 + ' (t)1un © 5a(0, 1), un © 5 (0, 1))

ve(y(1) = [v2(7()) = un 0 ba(0, )V (1) (1),
which gives, in particular, v°(v(t)) = g¢(t)7/(t) with g(t) = va(y(t)) — u, ©
H.(0, )V (2).
To extend the above decomposition in a neighborhood of v we will proceed as in

[43, Lemma 6.5}E| First, we compute the derivatives along the curve, to this end
note that in the new coordinates t = y,,. Differentiating (B.0.1)) we have

0,a"(y) ™" = [9,a" (W) anlye—1) T+ a7 (y) Dy k(e )T, (BLOT)
and, by (B.0.4) and and Lemma [5.4.1}

[0y, yar(Yr-1)] < Cy(1+ [y ]]) < Co(1 4 )
18yarllcs < Cyllvi-rlleotr < Coe?.

Next, using (B.0.7), we prove by induction that ||(a™)~!|lcs < CYAZ"cP? Oy PP ﬂ

(B.0.6)

10" e < CoAZ" + AT oo + Cillla™ ) lew-107' Gt _ypa? )
n—1
< CAT 07 Cy Y N [0] oo Ot
j=0
< Gl Ol e,
(B.0.8)

'In the mentioned paper the authors need more regularity for the extended vector field.
Here it is enough to obtain a vector field which is C*.
2Here a, is the one given by Lemma
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To compute ||(d™)7||ce we can use formula ((5.1.3]) and recall (5.4.1)) and ([5.4.9):

H(dn)_lucp _ H(h;)_lucp < Oﬁﬂ(p+l)n03f);1ﬂ(p+l)!n _ CuCZf;TIM(p—i_l)(le)n-

(B.0.9)
Next, by (B:0.1), (B:0:2) and (B0.3) we have

[a"(y)] " (y) = Zdn(hnq(y)) e dia(hy(y))ei(hi—1(y))-

(an(hn-1(y)) -+~ a;(hj—1(y))] ",

[d"(y)a" ()]~ " (y) = D i1 (hja()) -~ dr ()] ¢ (i1 (v))-

j=1
[an(hn-1(y)) - a;(hy-1(y))]

Hence, by (B.0.8)), (B.0.9) and the first of (B.0.4), we obtain, using (A.0.1)),
%) ler < o C2met oDzt

B.0.10
@ e er < Cre' O g, (B.0.10)

We are ready to conclude. Since
(Do F™) ™ = Doy bn (Diog) F") ™ Dron, ) G0,
by (B.0.6) and (B.0.5) it follows

(D F™) 10" (v 0 b () = V(ha(y)) (a™(y)~1,0),
(Do y F™) 10 (v 0 b () = d™(y) ™" - [v2 — wnvn] 0 y(ha (1)) (7,)1(y), 1).

Recalling that u,(y) = a"(y)'c"(y), by (B.0.8), (B.0.9), (B.0.10), and since
v € T'(¢) and ||v|ler < 1, we have the result for the vector field along the curve.
Finally, we extend v* to a neighborhood of v. It turns out the be more convenient
to define first the extension

w(z,y) = F" 0" (7u(y))
then ¢ = hiw and F™ 9% = w. By these definitions it follows

IF™ 0% \lervwy = IIF" v |lep < AZCRo pPP™

19%]lco(arr (7)) < Ch

The definition of ¢ and relative estimates are analogous. [
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Appendix C

The space H*

Let u € C®(T?). The Fourier Transform of u and its inverse are

Fu(¢) = / e 2y (x)de, € € 77, (C.0.1)
T2
u(x) = Z Fu(§)e? ™z e T (C.0.2)
gez?

Then H? is the completion of C*(T?) with respect to the inner product

(u,v)s = > (O Fu(§)Fv(€), (&) = 1+]¢]> (C.0.3)

€72

Notice that, by formula (7.9.2) of [38], there is C' > 0 such that

C™h Y Cypll0z,0%ullze < lul

x1 X2
Y+B=s y+B=s

e < C Y Cpll0], 00 ull3a. (C.0.4)

Ty -T2

Below we recall some standard important results about the space H* {f]

(

o HO(T?) = L*(T?);
(
(

o H*(T?) = {ue L*T?):0°p € L*(T?), for any |B] < s};

o H*(T?) C H* (T?) if s > ¢

e C°(T?) C H*(T?), and if s > 1, then H*(T?) C C* 77 (T?), for each
v>0

'We denote with C°>*(T?)’ the dual space of C°°(T?).
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Lemma C.0.1. For everys € (0,1) and 1 < s < r there exists constants Cs such
that

Cs
e+ ?HUH%l, u € C"(T?).

lullys < sllul

Proof. By definition of the norm we have, for all 7 € (1, 2),

ullfer = D IFul€)P(€D = Y |Fu(@P€)> (&) (C.0.5)

£ez? £ez?

_D
By Young inequality ab < % + %, for every ¢ > 0 and % + % = 1. We apply
this with a = ()27 b= (£)"" and p = (283—§+7), g = 5= to obtain:
_ 2sT
(2—7)€) >
25 '

2—1T1
2s

i < (1- 220 et 4o

Using this fact in (C.0.5)) and recalling that ||Ful|e < C||lu|z:, we get

|

Cs
e S ) IFul@P©* + ?HFUH2 < <llul

C
el
£ez?
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Appendix D

Vector Field regularity

This appendix is devoted to proving the following regularity results on the itera-
tion of a vector field.

Lemma D.0.1. Let ¢y € (0,1], A € [0,1/2], B > 0 and u,uv’ € C(T?,R) such
that ||u]|se, |t/ ]| < Ayt and |V, |V ||l < Bey'. Consider a family of

vertically partially hyperbolic map F., € < g such that
.=

92 f(p) [1 - '

%of (o (D.0.1)

H } > 2(1 + €0]|0pw]|o0)-

For each b € 9 and k < n € N, we define the sequence of functiond]]

to(p, €) = u(bn(p))
Uk (p, €) = my 0 DE(hn(p), u(bn(p))),

and similarly for ). Then, for each p,p’ € T? and ¢,&' < &y,
0.2) = 1als' )] < Coe i LAt )=
+ ([lwllez + 1A% (02(p) 7' Culw/Dllp — 2l (D-0.2)
[+ X)) e =

Proof. Let p(p,e) = bi(p), for h € H>®, p € T2 By (5.3.6) (or see [20] for
details) we have

10ppxll < [[(Dyy FE)7H| < Gy < Creseh (D.0.3)
For each u > 0 and for k < n let
10:.f ()] 1
29 = T Bl + Bl = =) (D.0.4)

Uk(p, &, ’LL) - Ha(pn—k:—i-l (p> )7 uk—l(p7 &, ’LL)),
1See for the definition of ®7.
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where in the first line we have used Remark4.4.1, Note that @, (p, ) = u,(p, €, up(p, €)).
Using ((10.1.2) and ((10.1.4) a direct computation yields, for |u| < Agj?,

Jul (1 + &[0l 102 oo

Ze(p,u)| <
eSO [1 = elul 1258 o] 0ef ) [1 = A 1]
< o] 4 [0,
@f(f) a;() , (D.0.5)
- _ 0J\D
ozt < 555 |1 <3270

10p= (P, w)|| < Cy([[wllez + [ul)
|0:Ec (p, w)| < Cy(1 + [u])]ul.

The first line of the (D.0.5) and the second of (D.0.1)) imply
[ur(ps &, )| < 27"l + (105wl

We can get a sharper bound defining

J

Ayj(p) = H Apire) s Arylp H 10, f (pi)]

i=k+1 i=k+1
Ouf(P) |l
then
Jur(py &, w)] < Angen ()™ ul 4 (|02 oo- (D.0.6)
Moreover, setting u; = u;(p,u,e), vj = u;(p’,u', &), with [ul,[u'] < %, and
recalling ([D.0.3)), (D.0.4), (D.0.6|), we have
‘ukJrl (p7 g, ’LL) - Uk+1<p/, 5/7 u/” = ‘Es(pnfka uk) - EE’ (p/n—ka u;c)’
< Cylllwllez + [ugDlIPa—k — Pl + Co(L + [u)uglle — €|
+ Apmtni(p)The? AR gy g (D.0.7)
< Cylllwllez + A (@)~ 1) 1" Fllp = | -
+ (14 Apin () ) — €]
N O Ll [T TA
We can then iterate the above equation and obtain
[un(p, &, 1) = un(p, €', u')| = Ao n(p) ™' u"e* 2003w — /|
n—1
+Cy Y Ko i(p) et 4200 PR (w2 4 Ao ()l " lp = 2|
k=0
n—1
+ Cﬁ Z Ko,nfk (p)fllunfke4A+250(n7k)A(1 + ank,n(pl)72,uk’u/‘2) ’6 . 5/"
k=0
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In addition equations (10.1.1]) and ([5.3.5)) imply

Ajn(p) 2 CoAL(pn)

_ "ol ag flp) — -
A0 < S Az,n<p>WAﬂ_l<p>\ 10,1l < CoChuntt™ Ky ().
j=l+1 v

Thus,

un (py e, u) — u, (p, €, u')| < Cu€4A+2"€°AM"{>\I(pn)_1!u — |

+ (lwllez + 1 A7 (pn) ™ Cou ! Dllp = P/l + [+ A7 (pa) " '] e — €’|}.

The Lemma follows since, by Remark and our hypotheses, 02 < pu.
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Appendix E

Extension of curves

In this section we explain how to extend a segment to a close curve of homo-
topy class (0,1) with precise dynamical properties and explicit bounds on the
derivatives.

Lemma E.0.1. There exist constants oy, Cy,; > 0 and L, > 1 such that for
each line segment v(t) = v(0) + (1,v)t of length 6 < &y and ny € N such that
Y (t) € Userro(yu)D-F"C, we can extend v to a closed curve 7, parametrized by
arclength, of homotopy class (0,1) with the following properties:

let v_(t) = v(0) + 3e1 + eot, then for each h € H° and k € N we have
A € Dom(by) and by o7 is a closed curve in the homotopy class (0,1).

9, < 5.

For all p € T? and m > ng € NU{0}, if Dpbn,y' € Cu and Dph,y' € Ce,
then Dpbn,y & Coyen and Dby € C..

For each j € {1,...,r — 1} and t € R,

(LA L, 1} ety
(Xu + [m2(3'(2))])7

159D ()] < Chuy.s 1= Chry jAL. (E.0.1)

Moreover, if the conditions of Lemma are satisfied, then (E.0.1) holds true
with

Li(n) = sup L,(n,v),
vl<1 (E.0.2)
La(,0) = G5 C (s + R549) 5 & = [o] + xar

Proof. By an isometric change of variables we can assume, without loss of gener-
ality, that v(0) = 0. Hence ~(t) = (1,v)t for t € [=0,d] and +'(¢t) = (1,v) =: ©.
Note that we can assume |v| < 1 since otherwise the Lemma is trivial.

Before getting to the extension per se, we need some results on the dynam-
ics of the tangent vectors seen as elements of a projective space. We write a
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vector outside the central cone as (1, (), so ¢ can be interpreted as a projective
coordinate. Then, in analogy with (4.4.2)), we have, for each p € T? and ¢ € R,

D,F(1,¢) = (0. F1 + 9 Fy¢) (1, Z(p, €))
B 0 Fy + Og F5¢

‘—‘(pa g) - a:r:Fl +89F1C
Also, computing as in (4.4.3)),
_ det(D,F
02(p.¢) = — b T)

(0.Fy + 0pF1C)*

Next, for each ¢ € T? let ¢, = F™(q), 20(¢) = ¢, 21(¢,¢) = Z(q,20(¢)) and,
for 7 > 1, 241(¢5, () = Z(qj,2;(gj-1,¢)). In particular, if h € H>, p € T? and

Lj(p) = Dy, F7Ce, then Tj(p) = {(1,%(p,¢)) : [ < X} where 2(p, () :=
2;(h;(p), ). Note that for all j such that z; € C,, we have

12 (P, xe)| < oA (B;(p) ™ Xe-

In the following we need an estimate of |Z;(p, £x.) — Z;(p, £x.(1 —€))|. Since

acfj (pa C) = aEE<b](p)7 gjfl(pa C))aggjfl(pa C)

iterating the above identities and recalling Propositions [5.3.1], we have
—j AT (B, J

Cﬁ — K ]7(bj (p))/’; S Cﬁﬂno)\:no .

Aj (bi(p) Aj (bi(p)

It follows that |7 (p, %xe) — 2i(p. £xe(1 — )] > Cee~? |7 (0, x0)].
If, for some vy > 0, vo > Z;(p, xc(1—€)) > Z;(p, Xc) = 0, then either Z;(p, x.) <
o, then |Z;(p, xc) — vo| > $vo; otherwise

< [0¢z;(p, Ol < G

|Zj<p7 Xc) - UO' 2 !53'(1?7 Xc) - Ej(pa Xc(l - ‘5))’ Z Cuﬁﬂfj\fj(p, XC)‘ Z Cﬁeﬂijvo-

Accordingly, |z;(p, £x.) — vo| > CiepJvy. Let Ly be the maximal Lipschitz
constant of the z;(p, £x.) for m —ny < Cy. If the hypotheses of Lemma are
satisfied, then we can provide and explicit estimate for L,: in a finite number of
steps n; (depending only on the derivatives of F') we can have z,, < 1/2, we can
thus apply Lemma gg=e=¢=1,A=1/2, B<Cyand u=u =z, (p),
we have

| Zim—no (Ds Xe) = Zm—no (D' Xe)| < Lin—nollp — /|

L; = Cop™ (||lwllez + X ()~ Clu /2).

Since Db, v ¢ C, we have, for ng = 0,
|2 (P, £xe)| — v > Chep™ ™,
while, for ng > 0, applying the above considerations to vy = Db,,v yields

7T2(Dbn0'l_})

|2m—no(hno(p)> j:Xc)l - m

> Chep™ "Xy
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Hence,
[ 12 (v(1), £xe)| — 0| > C) e ™. (E.0.3)

Next, note that, by usual distortion arguments, it must be A, _,, . > Cyu™ (xck)
and m —n < Cylnk~, thus

1

cylng~1 cglnk™* -
Ly < Gy (|[wlle2 + Crungpt® ™ R) = Lu(v).

We are finally ready to extend our segment. We discuss only the case v >
Zm(7(9), xc) and t > 0 since the other cases can be treated similarly.

For ¢ € R, let w(p) = (cosy,siny), § = tanv and a = v/1+ 02 Then
v = aw(f). We start by extending the curve to the interval (5,6 + A), with
A=Cllew ™RLT < 1,

Next, let b € C*(R,[0,1]) be a bump function with b(¢) = 0 for ¢ < 0 and
b(t) =1 for t > 1. Also, let B = {aL,, 166.,k}, for some k > 1 to be chosen

later, and where 6, := arctan(2y;'), and define
A'(t) = aw (8 +b((t — 0)A™")B(t — §)) = aw(0(t)). (E.0.4)
Note that, by construction, 6(t) > 6. Moreover, for t €[5, + A], we have
5+A .
50 =300 < [ lowl@(es)lds < Aa

Thus, recalling (E.0.3)),
€

arctan Z,, (7(t), x.) < arctan z,,((9), xe)+LxaA < 9—25 pm L, Aa < 0 < (1),

which implies that D5 h,,9(t) € C.. In addition, for ¢ > 6 + A, we have

d ~ d
— > B> > | —Z, (7 .
4 tand(o) = B> aL > | T2, G0
Next, let T > 0 be such that §(T) = 6, so that 4/(T) is well inside the central
cone. This implies T < 6 + 0.B~! and

Im(9)| < GT < Cyd+ B < Cy(do+ k1) < 1/2,

provided §y and k! are small enough. It is then a simple exercise to construct
an extension 4 : [0,S] — T? such that 4'(t) € C., ||¥] = a, for all t € [T, S]
and §(S) = (0,1/2), [m(y)] < Cy(do + k™), ¥(S) = (=xe/2,1), 4V(S) = 0
for all j > 1 and sup;¢(r g 199 (#)|| < Cy. By symmetry we have a closed curve
4 of homotopy class (0,1). It suffices to ask Cy(dp + k') < 1, to insure that
4 € Dom(bhy) for each h € H° and k € N. Then Lemma |5.2.1 implies that

there exists inverse branches {h;;}%",, where d is the degree of F, such that

FF3 = Ufil Bri o %. Since b, is a diffeomorphism, bz, o 4 is a closed curve.
In addition it must be of homotopy type (0, 1), otherwise it would intersect an
horizontal segment in more than one point and the image, under F*, of the
interval between two intersection points would be an unstable curve going from
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4 to itself. Since such a curve would be transversal to 4 by hypothesis, it follows
that it would have to wrap around the torus horizontally an hence intersect v_
contradicting the fact that it is in the domain of by ;.

Recalling (E.0.4)), formula gives, for all j > 2, E|
J J
. 5 Ak
Wlless < Collwoflles < Cy Y flwlles Y [T 1161l

s=0 ke, s leN

-l ki 7 s
6y Y [Tan)f <a ZB
s=0 keK; s leN

Thus, since ||3’|| = a, we can reparametrize the curve by arc-length. Calling ¥
the reparametrized curve we obtain

0 if [t] <6
FP®] < { GAZHIBIT i<t <6+ A
CyBI~1 if [t| >0+ A,

which yields (E.0.1)) since

ima(5(8))] > [v] if [t| <6+ A
~ | Cilv| + B(t=4)) if|t] >+ A

INotice that, as [|0]|¢: < C4A~!B, recalling the definition of K; , we have

Z H(A_ZB)’” < Z A XiZi gyt ki < A=I RS,
keK; s leEN ke,
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