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Abstract
The DArk Matter Particle Explorer (DAMPE) is well suitable for searching for monochromatic

and sharp γ-ray structures in the GeV−TeV range thanks to its unprecedented high energy resolu-

tion. In this work, we search for γ-ray line structures using five years of DAMPE data. To improve

the sensitivity, we develop two types of dedicated data sets (including the BgoOnly data which is

the first time to be used in the data analysis for the calorimeter-based gamma-ray observatories)

and adopt the signal-to-noise ratio optimized regions of interest (ROIs) for different DM density

profiles. No line signals or candidates are found between 10 GeV and 300 GeV in the Galaxy.

The constraints on the velocity-averaged cross section for χχ → γγ and the decay lifetime for

χ → γν, both at 95% confidence level, have been calculated and the systematic uncertainties have

been taken into account. Comparing to the previous Fermi-LAT results, though DAMPE has an

acceptance smaller by a factor of ∼ 10, similar constraints on the DM parameters are achieved and

below 100 GeV the lower limits on the decay lifetime are even stronger by a factor of a few. Our

results demonstrate the potential of high-energy-resolution observations on dark matter detection.
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INTRODUCTION

The modeling of the cosmic microwave background fluctuations suggests that in the
Universe the average energy density of matter is roughly 5.4 times larger than the baryon
density. [1]. The discrepancy is usually explained with an extra cold matter component−the
dark matter (DM). DM is also required to explain other phenomena observed at different
scales, such as the rotation curve of galaxies, the large mass-to-luminosity ratio of galaxy
clusters, and the spatial offset of the center of the total mass from the center of the baryonic
mass in the Bullet Cluster (see [2–4] and references therein). So far, however, the nature
of the DM is still unclear. The weakly interacting massive particles (WIMPs) are a leading
candidate for cold DM, since they provide a natural explanation for the observed DM relic
density [5, 6]. If two WIMPs (χ) can annihilate into a photon (γ) and another particle
(X) directly, an approximately monochromatic structure at Eγ = mχ (1 − m2

X/4m
2
χ) will

be produced (in the case of decay one should replace mχ with mχ/2). Such processes have
been proposed in some extensions of the standard model of particle physics, such as the
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lightest supersymmetric particles annihilating through χχ → γγ or χχ → γZ0 [7–9], or
the gravitinos decaying through χ → γν with R parity violation [10]. Besides, peak-like
spectral features may also arise from the virtual internal bremsstrahlung process in the
DM annihilation [11, 12] or the decay of low-mass intermediate particles generated by the
annihilating/decaying DM [13]. Since these distinct spectral features are hard to be produced
in known astrophysical processes, a robust detection would be a smoking-gun signature of
WIMPs.

Though plentiful works have been carried out to search for γ-ray lines after the launch of
Fermi Gamma-ray Space Telescope, no GeV line signal has been formally detected yet [14–
33]. The potential ∼ 133 GeV line reported in the Galactic center [18, 19, 21] was recognized
as a systematic effect later [26]. The tentative signature at ∼ 43 GeV from a nearby Galaxy
cluster sample [28] is found to have a strange temporal behavior of its significance [33].
Nevertheless, the γ-ray line signal is so important that independent line searches with data
from different telescopes are needed.

The DArk Matter Particle Explorer (DAMPE) is a space-borne high energy particle
detector launched on 17 December 2015. It aims to measure charged cosmic rays and γ rays
in a very wide energy range [34–36]. From the top to bottom, DAMPE consists of a Plastic
Scintillator strip Detector (PSD), a Silicon-Tungsten tracKer-converter (STK), a Bismuth
Germanium Oxide (BGO) imaging calorimeter and a NeUtron Detector (NUD). The PSD
measures the particle charge and acts as an anti-coincidence detector. The STK converts the
incident γ-ray photons to electron pairs and records the trajectories. The BGO measures the
energies of incident particles and images the profile of shower. The NUD further enhances
the electron/proton separation.

The BGO calorimeter has a thickness of 32 radiation length, with which the deposit en-
ergy of electron/γ-ray events can be effectively absorbed and the shower developments can
be well contained. As a result, for electrons/γ rays, the energy resolution of DAMPE is
significantly higher than Fermi-LAT in a wide energy range [35]. Since a better energy res-
olution will not only make the line structure more evident in the spectrum, but also reduce
the systematic uncertainties, DAMPE is well suitable for searching for the monochromatic
spectral structures. In this work, we perform a line search using the DAMPE γ-ray ob-
servations of the inner Galax, set constraints on the DM parameters, and demonstrate the
potential of high-energy-resolution observations on dark matter detection.
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DATA SELECTION

The local significance of a line-like structure can be approximated by nline/
√
nbkg,eff [37,

38], where nline (the photon counts of a line) is proportional to the acceptance A, and nbkg,eff

is the number of background events below the line, i.e. the effective background reported in
previous works [25, 26, 37]. Approximately we have nbkg,eff ∼ N×

∫
min{fbkg(E

′), fsig(E
′;Eline)} dE ′,

where N is the total background counts in the fit range, fbkg and fsig are the background
and signal probability density functions, respectively [37]. For a very narrow energy disper-
sion profile, nbkg,eff reduces to N fbkg(Eline)∆E, which is proportional to the acceptance A

and the energy resolution ∆E/E. Therefore, the significance of a line improves when the
division of acceptance and energy resolution

√
A/(∆E/E) increases.

In our analysis, two dedicated data sets, namely the LineSearch and BgoOnly data
sets [39], are developed and combined to improve the sensitivity. The former contains the
events converted in the STK. Compared with the standard STK converting events based on
the algorithm in [40], these events are required to pass through more BGO layers to improve
the sensitivity of lines by maximizing A/(∆E/E). The latter contains the events converted
in the BGO calorimeter, in which photons are reconstructed based on the tracks in the BGO
detector. The incident energies of all the events are reconstructed from the deposit energies
in the calorimeter using a parameterized correction method [41]. The total acceptance of
these data sets is ∼ 1600 cm2 sr at 5 GeV and ∼ 1900 cm2 sr between 10 and 100 GeV. The
68% containment of energy resolution averaged over the acceptance is smaller than 1.7%
(1.0%) above 10 GeV (35 GeV) for both types of data [39]. To our knowledge, this is the first
time to use the BgoOnly data in the analysis for the calorimeter-based γ-ray observatories.

In this work, the above data sets from Jan. 1st, 2016 and Dec. 31st, 2020 are chosen.
The energy range is restricted from 5 to 450 GeV with the DAMPE γ-ray science toolkit
DmpST [42, 43]. We only choose the events satisfying the High-Energy Trigger (HET) con-
dition. Data collected during the South Atlantic Anomaly or strong solar flares has been
excluded. In total, over 90 thousand γ-ray events are used for the analysis.

Based on the live time during the observation and the Monte Carlo (MC) instrument
response functions, we are able to calculate the exposure and energy dispersion profiles.
Fig. 1 shows the average spectral energy distributions (SEDs) of the region with the Galactic
plane (|l| > 10◦ and |b| < 10◦, where l and b are longitude and latitude in the Galactic
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FIG. 1. (Color online) The average SED of the LineSearch and BgoOnly photons from the region

with Galactic plane removed.

coordinate, respectively) [15] removed. The SED is almost featureless and no obvious line-
like structure displays. To be quantitative, we perform an unbinned analysis in the following.

METHODOLOGY

DM density profile ρDM is uncertain particularly in the inner Galaxy, so we consider
three representative profiles, including the Navarro-Frenk-White (NFW) profile ρNFW(r) =

ρs/[(r/rs)(1+r/rs)
2] with rs = 20 kpc [44], the Einasto profile ρEin(r) = ρs exp{−(2/α)[(r/rs)

α−

1]} with rs = 20 kpc and α = 0.17 [45, 46], and the isothermal profile ρiso(r) = ρs/[1+(r/rs)
2]

with rs = 5 kpc [47]. The normalization ρs is governed by ρDM(R0) = 0.4 GeV cm−3 [48]
and R0 = 8.5 kpc [49].

For both the annihilation and decay scenarios, we make regions of interest (ROIs) opti-
mized for the sensitivity, where we approximate the recorded photon counts as the spatial
distribution of the background, and convolve the exposure with different DM density profiles
for the anticipated signal. All of the ROIs are circular regions with radius RGC centering at
the Galactic center but with the rectangular region |l| ≥ ∆l and |b| ≤ 5◦ masked. For the
annihilating DM, the optimal (RGC,∆l) are (16◦, 5◦), (40◦, 9◦) and (86◦, 0◦) for the Einasto,
NFW and isothermal profiles, respectively. For the decaying DM, all the optimal (RGC,∆l)

for different profiles are close to (150◦, 0◦), so this parameter set is adopted as a representa-
tive. Table I presents the ROIs for different density profiles and the corresponding J-factors
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TABLE I. The signal-to-noise optimal ROIs for three different DM density profiles for annihilating

DM or decaying DM. The corresponding J-factors for annihilating DM and D-factors for decaying

DM are also presented, whose units are GeV2 cm−5 and GeV cm−2 respectively.

Annihilation Decay

Profile ROI J-factor ROI D-factor

Einasto R16 9.00× 1022 R150 2.42× 1023

NFW R40 9.50× 1022 R150 2.40× 1023

Isothermal R86 6.58× 1022 R150 2.53× 1023

JDM =
∫

ROI dΩ
∫

dl ρ2DM (annihilating DM) or D-factors DDM =
∫

ROI dΩ
∫

dl ρDM (decaying
DM), where l is the distance along the line of sight.

We perform an unbinned likelihood analysis with the sliding-window technique to quan-
tify the significance of the hypothesized lines, which will mitigate the bias caused by the
background spectral shape and energy binning. For a line at Eline, only the photons in the
window from 0.5Eline to 1.5Eline are used in the fittings. The energy difference between two
adjacent windows is 0.5 σE, where σE is the half width of the 68% exposure weighted energy
dispersion containment in the Galactic center for LineSearch data set [26, 28]. To make
sure the Chernoff’s theorem valid [38], at least 30 photons are required in each window,
which restricts the highest line energy in the ROI R16 to 211 GeV. The unbinned likelihood
function Lk(Θ) for the data set k in the energy window of [Emin, Emax] is defined as

lnLk(Θ) =

nk∑
i=1

ln[λ̄k(Ei; Θ)]−
∫ Emax

Emin

λ̄k(E; Θ) dE, (1)

where nk is the number of observed photons in the given energy range, and λ̄k(E; Θ) is
the expected counts in model per energy range with the parameter Θ, which is calculated
with the exposure ϵ̄k(E) at energy E averaged over the ROI. The likelihood to be fitted is
L(Θ) = L1(Θ)× L2(Θ), where the subscript indices represent two data sets.

In each energy window, a likelihood ratio test [50] is performed. The null hypothe-
sis consists of a power-law background, i.e. λ̄null,k(E; Θ) = Fb(E) ϵ̄k(E), while the signal
hypothesis contains a monochromatic line and a power-law background, i.e. λ̄sig,k(E) =

Fb(E) ϵ̄k(E) + F̄s,k(E) ϵ̄k(Eline). The power-law spectrum and the line structure are de-
fined as Fb(E;Nb,Γ) = Nb E

−Γ and F̄s,k(E;Ns, Eline) = Ns D̄eff,k(E;Eline) (i.e. Sline(E) =
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FIG. 2. (Color online) TS values of line candidates at various energies in the signal optimized ROIs

and the Galactic plane region (|l| > 30◦ and |b| < 5◦). The local significance can be calculated

with slocal =
√

TS [37]. The highest line energy for R16 ROI is 211 GeV which is limited by the

minimum photon counts we required in a window.

Ns δ(E − Eline) before convolution), respectively, where Ns is non-negative. D̄eff is the ex-
posure weighted energy dispersion function averaged over the ROI and is given by

D̄eff,k(E;Eline) =

∑
ij Dk(E;Eline, θj) ϵk(Eline, θj, ri)∑

ij ϵk(Eline, θj, ri)
, (2)

where θ is the incident angle with respect to the boresight, r is the pixel coordinate within
the ROI, and D(E) is the energy dispersion function of DAMPE [42]. We fit both models
to the data using the MINUIT [51] and then calculate the test statistic (TS) value TS ≡

−2 ln(L̂null/L̂sig), where L̂null and L̂sig are the maximum likelihood values of the null and
alternative model respectively.

RESULTS

We do not find any γ-ray line signal or candidate (TS ≥ 9) in all the ROIs (Fig. 2).
Therefore we calculate the 95% confidence level (C.L.) constraints on the DM parameter
space.

For annihilating DM, the γ-ray spectrum is given by

Sline(E) =
1

4π

JDM × ⟨σv⟩γγ
2m2

χ

2δ(E − Eline), (3)
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FIG. 3. The 95% C.L. constraints for different DM density profiles. (a-c) The ⟨σv⟩γγ upper limits

of annihilating DM assuming the (a) Einasto, (b) NFW and (c) Isothermal profile respectively.

(d) The τγν lower limit of decaying DM assuming the NFW profile. Yellow (green) bands show

the 68% (95%) expected containment obtained from 1000 simulations of background emission with

systematic uncertainties involved. The red solid and purple dotted lines are the results with and

without the systematic uncertainties respectively. The blue dot-dashed lines show the 5.8-year

Fermi-LAT constraints [26].

where ⟨σv⟩γγ is the velocity-averaged annihilation cross section for χχ → γγ, and mχ is the
rest mass of a DM particle which satisfies Eline = mχc

2. For the decaying DM, the spectrum
can be written as

Sline(E) =
1

4π

DDM

mχ τγν
δ(E − Eline), (4)

where τγν is the particle lifetime of a DM particle through the χ → γν process and Eline =

0.5mχc
2. We increase (decrease) the cross section (lifetime) from its best-fit value (under

the condition of Ns ≥ 0) until the log-likelihood changes by 1.35 to achieve the constraints.
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These results are conservative since we do not take into account the contributions from
extragalactic DM annihilation or decay [52, 53].

Purple dotted lines in the Fig. 3 show the ⟨σv⟩γγ and τγν constraints for various DM
density profiles without the systematic uncertainties. The cuspy profiles show better con-
straints since they have larger J-factors and better background-to-noise ratios. Because of
smaller energy dispersion and low statistics of DAMPE data, more fluctuations appear in
the constraints.

Three types of systematic uncertainties are considered in this work (see also [37]):

(1) Uncertainties about the conversion from the signal counts to the fluxes, which are
mainly associated with the uncertainties of exposure. The overall uncertainty of effective
area is |δϵ/ϵ| ≲ 2.5% between 2 and 10 GeV based on the ratio of event fraction in the flight
data to the MC prediction of Vela pulsar [54]. The |δϵ/ϵ| caused by the spatial binning of
exposure is less than 2% and 5% for R16 and R150 respectively, if compared to the results
calculated with smaller pixel bins of 0.5◦. Adding them quadratically, we have |δϵ/ϵ| ≲ 6%.

(2) Uncertainties that could affect the expected signal counts. The uncertainty δnsig/nsig

arised from the width of sliding windows is on average 1.5% if narrow boundaries of 0.7Eline−

1.3Eline are used. The uncertainty from the shared background emission parameters in
likelihood functions of the two data sets is on average < 0.3%. The systematic uncertainty
of energy resolution is ≲ 20% if we compare the MC results to the beam test ones [35] which
will thereby lead to the mean signal counts uncertainty of 8%− 9%. The overall systematic
uncertainties of signal counts δnsig/nsig are calculated at all the line energies, and the average
value is approximately 9%.

(3) Uncertainties that could mask or produce line-like structures. The fractional signal
f ≡ nsig/beff is often used to evaluate this type of uncertainties, where nsig and beff are the
signal counts and effective background counts, respectively [26, 37]. The analysis of the
control regions along the Galactic plane between 10 and 14 GeV shows |δfsys| = 1.3% (refer
to the appendix for detail). The fraction of cosmic ray contamination is ≲ 1.5% above
10 GeV, as found in the simulations [40]. Therefore the overall systematic part of fractional
signal is |δfsys| ≲ 2.0%.

To incorporate the systematic uncertainties, we replace the likelihood function with [25,
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55]

L(nsig) → L(nsig + nsys)×
1√

2πσsys
exp

(
−

n2
sys

2σ2
sys

)
, (5)

where σsys = |δfsys| × beff is the the standard deviation of systematic uncertainty, and nsys

describes the counts from the false signal. The exposure and signal counts are also scaled
according to the uncertainties.

Our 95% C.L. constraints for different DM density profiles，after addressing the systematic
uncertainties, are shown in red solid lines in Fig. 3. The expected 68% and 95% containment
regions obtained with 1000 simulations of the best-fit power-law null model are also drawn
in yellow and green bands, respectively, which encompass all fluctuations of the upper limits.
Most of our results are comparable to the 5.8-year results of Fermi-LAT in blue dot-dashed
lines with the systematic uncertainties included. For the decaying DM, our lower limits on
the decay lifetime are stronger than that from Fermi-LAT by a factor of ∼ 2 for DM with
mass ≲ 100 GeV. Even though DAMPE has a much smaller data set than Fermi-LAT
(DAMPE just has an acceptance peaking at ∼ 0.2 m2 sr [39], which is smaller than that
of Fermi-LAT by a factor of ∼ 10), a comparable or even better constraints are achieved
for DAMPE because of the much higher energy resolution and the smaller impact of the
systematic uncertainties, some of which are contributed by the components below the lines.

SUMMARY

DAMPE has an unprecedented high energy resolution due to its thick BGO calorimeter,
and therefore has an advantage in detecting sharp structures. In this work, we use 5.0
years of DAMPE data to search for spectral lines from 10 GeV to 300 GeV. To improve the
sensitivity to line signals, two types of γ-ray data sets, the LineSearch and BgoOnly data
sets, are developed. To our knowledge, this is the first time to take the BgoOnly data into the
scientific analysis for the calorimeter-based γ-ray observatories (Previously, the production
of calorimeter-only data was suggested by the Fermi-LAT collaboration but so far such a
kind of data is still unavailable). We also make four ROIs optimized for DM density profiles
for signals originating from the DM annihilation or decay in the Galaxy. We use the summed
unbinned likelihood function to combine two data sets and the sliding windows technique
to reduce the uncertainty from the spectral shape of background emission.

No line signals or candidates with TS value ≥ 9 are detected with 5.0 years of DAMPE
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data (Fig. 2). The 95% C.L. constraints on the annihilation cross section or decay lifetime,
with proper addressing of the systematic uncertainties, are presented. As depicted in Fig. 3,
most of our constraints are comparable to the 5.8-year results of Fermi-LAT thanks to
the better energy resolution and the smaller influence of the systematic uncertainties. For
the decaying DM, our lower limits on the decay lifetime are stronger for DM with mass
≲ 100 GeV by a factor of ∼ 2. In view of the fact that the DAMPE data set is about
ten time samller than that of Fermi-LAT，our findings demonstrate the potential of high-
energy-resolution observations on dark matter detection.
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The DAMPE experiment: The DAMPE is the first Chinese astronomical satellite,
which consists of four sub-detectors, including the plastic scintillator detector, the silicon
tracker, the BGO calorimeter and the neutron detector. As a general-purpose high-energy
cosmic ray and gamma-ray detector, DAMPE is distinguished by the unprecedented high
energy resolution on measuring the cosmic ray electrons and gamma-rays. The main scien-
tific objectives addressed by DAMPE include probing the dark matter via the detection of
high-energy electrons/positrons and gamma-rays, understanding the origin, acceleration and
propagation of cosmic rays in the Milky Way, and studying the gamma-ray astronomy. The
DAMPE mission is funded by the strategic priority science and technology projects in space
science of the Chinese Academy of Sciences. The DAMPE collaboration consists of more
than 140 members from 3 countries, including physicists, astrophysicists and engineers.
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