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Figure 1: Example of handwritten score from the Archivio Storico Ricordi from the manuscript score of “La Bohème”, by
Giacomo Puccini.

ABSTRACT
The Ricordi archive, a prestigious collection of significant musical
manuscripts from renowned opera composers such as Donizetti,
Verdi and Puccini, has been digitized. This process has allowed
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us to automatically extract samples that represent various musi-
cal elements depicted on the manuscripts, including notes, staves,
clefs, erasures, and composer’s annotations, among others. To dis-
tinguish between digitization noise and actual music elements, a
subset of these images was meticulously grouped and labeled by
multiple individuals into several classes. After assessing the consis-
tency of the annotations, we trained multiple neural network-based
classifiers to differentiate between the identified music elements.
The primary objective of this study was to evaluate the reliability
of these classifiers, with the ultimate goal of using them for the
automatic categorization of the remaining unannotated data set.
The dataset, complemented by manual annotations, models, and
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source code used in these experiments are publicly accessible for
replication purposes.1

CCS CONCEPTS
• Applied computing → Sound and music computing; Digital
libraries and archives; Arts and humanities; • Computing
methodologies → Supervised learning by classification; Neural
networks.
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1 INTRODUCTION
The Ricordi Archive, or Archivio Storico Ricordi in Italian, is a vast
repository of historical documents amassed by the Italian publisher,
Ricordi. The archive is renowned for its digitized manuscripts of
distinguished opera composers such as Donizetti, Verdi, and Puc-
cini. These manuscripts, digitized and systematically cataloged in a
database maintained by the author’s institution,2 are a significant
asset for musicological and historical research.

This study aims to annotate the entire database with pertinent
musical symbols, thereby improving the accessibility and discover-
ability of these priceless manuscripts. To achieve this, we developed
a suitable Optical Music Recognition (OMR) methodology.

OMR is a subfield of computer science dedicated to converting
music notation from a visual format, such as scanned images or
printed music sheets, into a digital form that can be manipulated
by software. It serves as a bridge between physical music represen-
tations and their digital equivalents, with the aim of automating
the interpretation of music symbols for various applications, in-
cluding content retrieval, digital music libraries, and musicological
research [3, 14, 15].

The evolution of OMR, particularly for printed music, is largely
attributed to advancements in image processing and machine learn-
ing. Although early efforts relied heavily on rule-based systems [6],
contemporary strategies use modern neural architectures. These
architectures excel in feature extraction and help to accurately
identify and classify musical symbols across various datasets and
notation styles [2, 8, 11].

Handwritten Music Recognition (HMR) focuses on the recog-
nition of handwritten scores, adding an extra layer of complexity
due to the unique styles and nuances inherent in individual hand-
writing. Recent methodologies suggest various strategies, including
data augmentation and transfer learning, to enhance system per-
formance and address the challenges specific to HMR [3, 18].

1Code repository: https://github.com/LIMUNIMI/RicordiArchiveOMR; dataset reposi-
tory: https://zenodo.org/doi/10.5281/zenodo.11186095
2https://ricordi.lim.di.unimi.it

Automating the analysis of handwritten music presents signifi-
cant obstacles due to the intricacy and variability of human hand-
writing; here, progress has been driven by the implementation of
advanced machine learning models, specifically Convolutional Re-
current Neural Networks. Such models effectively capture both the
spatial characteristics of the image and the sequential nature of
music notation, which are crucial for the development of successful
OMR systems for handwritten scores [1].

The development of large-scale datasets has been fundamental
to the advancement of OMR technology. A key resource in OMR re-
search is the MUSCIMA++ dataset [9]. This dataset, comprising 140
pages of handwritten music scores, is meticulously annotated with
over 91000 symbols across 107 classes. It facilitates a wide range of
tasks, including symbol classification and notation graph assembly.
MUSCIMA++ is an extension of the CVC-MUSCIMA dataset, which
includes 1,000 music sheets from 50 musicians. The detailed anno-
tations of musical symbols and their interrelations in MUSCIMA++
are crucial for training and evaluating OMR systems. Its extensive
coverage of musical notations, from notes to articulation marks,
and structural annotations detailing symbol relationships, make
it an invaluable tool for machine learning applications in music
symbol detection and recognition. Moreover, MUSCIMA++ serves
as a benchmark in the OMR field, contributing significantly to the
development of technologies that convert sheet music into digital
formats, thereby enhancing the accuracy and reliability of OMR
systems.

The DeepScores [17] dataset is another valuable resource, con-
sisting of high-quality images of printed music divided into approx-
imately 300,000 sheets of musical scores with nearly a hundred
million small objects. It provides ground truth for object classi-
fication, detection, and semantic segmentation, focusing on the
recognition of small objects and intricate details in musical scores.

Carefully curated and annotated datasets, such as MUSCIMA++,
are instrumental in advancing the field of HMR. They not only
improve the accuracy of recognition models, such as Convolutional
Recurrent Neural Networks, but also establish rigorous benchmarks
for evaluating these models against the complexities of real-world
musical notations. By offering a comprehensive collection of sam-
ples that cover the full range of human handwriting variability,
these datasets are essential to refine the capabilities of end-to-end
OMR systems. Consequently, these systems can accurately inter-
pret the intricate nuances of handwritten music scores, addressing
a significant academic and practical challenge.

In this study, we address a series of the challenges in OMR by
providing a new dataset of musical symbols from real-world anno-
tated manuscripts, and by training and evaluating several neural
classifiers to distinguish between these symbols. Moreover, we ex-
pect that the current work will be an important step towards the
automatic annotation of the entire Ricordi Archive. The data set is
published online.3

The rest of the paper is structured as follows: in Sec. 2 we provide
an insight into the history and the activities of the Ricordi Archive.
Sec. 3 presents the dataset of images focusing on preprocessing
and annotation processes, while in Sec. 4 we conduct a series of
experiments assessing the ability of statistical models in music

3https://zenodo.org/doi/10.5281/zenodo.11186095
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symbol identification. Sec. 5 discusses the obtained results, and,
finally, in Sec. 6 we draw the conclusions.

2 BACKGROUND
The Ricordi Archive originated alongside the publishing house
Casa Ricordi, established in 1808. Regarded as a paramount private
musical repository, it safeguards the original handwritten scores of
23 out of Verdi’s 28 operas, all operas by Giacomo Puccini (except
La Rondine), and numerous works by composers such as Bellini,
Rossini, Donizetti, as well as contemporary composers like Nono,
Donatoni, Sciarrino, and Bussotti.

The archive’s exceptional significance lies in the diversity of its
materials, offering an articulated view of Italian culture, industry,
and society. This archive preserves an extensive collection of vi-
sual materials associated with numerous premieres worldwide and
locally, encompassing set and costume designs, photography com-
pilations, correspondence, and business records. These resources
empower researchers to reconstruct the inception of significant
operas and the evolution of the musical publishing industry during
the 19th and early 20th Centuries. Furthermore, the visual collec-
tion covers various artistic domains such as painting, stage design,
and decorative arts, offering insights into costume history, jewelry
design, stage properties, and the broader publishing landscape. It
also sheds light on the relationship between publishers and artists
across different fields and provides glimpses into the theatrical
realm. Scholars can trace the personal and professional trajectories
of numerous composers from their earliest works, such as Verdi’s
Oberto Conte di San Bonifacio and Puccini’s Le Villi, to their most
important operas like Verdi’s Falstaff and Puccini’s unfinished Tu-
randot.

The Ricordi Archive preserves approximately 8,000 scores, over
16,000 letters exchanged among musicians, librettists, singers, and
other stakeholders, around 10,000 set and costume designs, more
than 9,000 librettos, 6,000 historical photographs, and a substan-
tial collection of Art Nouveau and Art Deco posters crafted by
prominent artists of the era.

The digitization initiative of the historical archive stemmed from
a collaborative effort involving the Italian Ministry of Culture, the
National Department of Archives and Libraries, the Italian Supervi-
sory Council for Libraries and Cultural Institutions, Casa Ricordi,
Biblioteca Nazionale Braidense, and the Laboratory of Music Infor-
matics (Laboratorio di Informatica Musicale, LIM) of the University
of Milan. This project, initiated in 2006, adheres to the standards
established by the Italian National Library Service (Servizio Bib-
liotecario Nazionale, SBN), which is overseen by the Central Unified
Catalogue Institute (Istituto Centrale per il Catalogo Unico, ICCU).
Given the archive’s artistic and historical significance, its preserva-
tion is subject to the regulations and oversight of the Ministry of
Culture.

3 DATASET
The original core of the digitization campaign of Ricordi Archive
consisted of about 3000 digitized images, mainly handwritten scores
by Donizetti, Puccini, Verdi, and Respighi.

3.1 Preprocessing
The creation of the dataset necessitated preliminary processing to
identify pertinent objects and reduce the annotation effort in its
initial phase. This process entailed the following steps:

• Staff Line Removal –A neural autoencoder-based algorithm [7]
was employed to identify staff lines. Given the distinct clarity
of the staff lines in the 19th-century documents from the
archive, this method proved highly effective. The staff lines,
being printed rather than handwritten, were easily distin-
guishable from the musical symbols, thereby enhancing the
reliability of this step;

• Blob Detection – The Difference of Gaussians (DoG) method,
as implemented by the scikit-image Python module [12],
was utilized to identify the musical symbols in the images.
We used 𝜎 ∈ [10, 50] and a threshold of 0.1. Although this
step does not guarantee the detection of all relevant objects
in the images, it was tuned to be particularly sensitive to
the ink regions. As a result, a large number of false positives
were included to minimize the occurrence of false negatives,
i.e., relevant objects not included in the dataset;

• Rescale and Save – The grayscale images of the detected
blobs were stored after rescaling their intensity values to
[0, 255].

The construction of our inter-referencing database, which uti-
lizes JSON files, began with the collection of blob images. In total,
473,238 blobs were extracted. These images were then systemati-
cally stored to facilitate easy access and reference.

The initial step in this process involved generating a grayscale
image for each image in the original Ricordi Archive by removing
the staff lines. Each of these grayscale images was then associated
with a JSON file, which contained a reference to the original image,
the path to the grayscale image without staff lines, and a list of
JSON files associated with the blobs detected in the image.

Subsequently, a set of blobs was detected for each image from
which staff lines had been removed. Each detected blob was stored
as a grayscale image, and a JSON file was created for each blob. This
file contained a reference to the parent image (the image without
staves) and the bounding box of the blob. This systematic approach
ensured that each blob and its associated data could be easily traced
back to its parent image.

3.2 Annotation
The annotation phase was facilitated by 15 local high-school stu-
dents with music reading skills, who were divided into seven groups
of two or three. We developed a custom interface that enabled the
students to assign labels to each blob image.

For reference, each detected blob was highlighted with a bound-
ing box within a larger excerpt of the original image. Additionally,
an HTML link to the original image was provided for further ex-
amination if necessary. A screenshot of the annotation interface is
depicted in Figure 2.

We identified 16 classes of objects that could be recognized as
blobs. These included page border, erasure, smudge, printed and
handwritten text, rest, single or multiple notes, single or multi-
ple chords, alterations, clefs, ornaments, multiple categories (with
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Figure 2: Screenshot of the interface used for annotating the dataset. Texts are in italian.

and without music signs), and an “other” category (with and with-
out music signs) for objects that did not fit into any of the other
categories.

To assess the accuracy of the annotations, a sample of 500 blobs
was randomly selected for cyclic annotation by all annotators. This
process involved the selection of a control blob with a 20% prob-
ability at each annotation cycle. The control blobs were initially
used during the annotation process to gamify the labeling work by
providing the annotators with simple scores that reflect the quality
of their work. The score was calculated based on the average of
two factors: the Spearman correlation coefficient of the annotator’s
labels, which represents intra-agreement, and the Spearman corre-
lation coefficient between a) the average of the annotator’s labels
for each control blob and b) the average of the annotations already
stored in the database, provided by other annotators, representing
inter-agreement.

The same control blobs were then used to compute the inter
and intra-annotator agreement in order to assess the annotation
quality. We first calculated a reference label for each control blob 𝑖
and annotator 𝑗 as the mode of the ratings given by annotator 𝑗 to
the control blob 𝑖 . On these sets of ratings, we computed Krippen-
dorff’s alpha (0.72), indicating that the raters generally agreed on
the representation of the symbols. The intra-rater agreement was
computed using Krippendorff’s alpha over each annotator’s labels
separately, and was found to be between 0.52 and 0.71 depending
on the annotator, indicating that the annotators were generally
coherent on the representation of the symbols.

To identify the reasons for the partial disagreement, we first
identified a reference annotation for each control blob 𝑖 across all
annotators using the mode of the labels given by all annotators. We
then analyzed the normalized confusion matrix resulting from the
annotated labels and the reference labels. If a label was annotated
correctly on average, the maximum value of each row was along

the diagonal. The remaining values were then in reference to such
value, so that a value near to 1 would mean that there was confusion
among the annotators about the meaning of that label. We merged
the classes that had a normalized confusion value greater than
0.5. We performed this step – i.e. computation of the confusion
matrix, normalization, and class merging – iteratively until no
classes were merged. This procedure led us to merge the “multiple
notes” and “multiple chords” labels, as well as the labels “blurs” and
“multiple categories without musical signs”, thus resulting in 14
classes. The class merging increased Krippendorff’s alpha to 0.84
for the inter-rater agreement, while the the intra-rater agreement
raised to [0.63, 0.79]. The distribution is shown in Figure 3.

To enhance the training of machine learning models, we ad-
dressed the issue of class imbalance by consolidating certain classes
into a single category, termed as “Remaining”. This amalgamation
involved classes with sample sizes less than 0.75 ×𝑚, where 𝑚
represents the median class cardinality. Consequently, pauses, em-
bellishments, single chords, accidentals, and “Other (with musical
signs)” were merged, resulting in a total of 11 classes. The revised
distribution of samples across these classes is depicted in Figure 4.

For the purpose of simplifying the classification task, we catego-
rized the labels into two clusters: “musically relevant” and “musi-
cally irrelevant”. This distinction signifies the presence or absence
of musical signs in the blob. The inter-rater agreement for this bi-
nary annotation was measured using Krippendorff’s alpha, yielding
a value of 0.89. The intra-rater agreement ranged between 0.74 and
0.79.

The final class distribution in the proposed dataset, comprising a
total of 198,159 annotated blobs, is illustrated in Figure 4. Examples
of blobs are shown in Figure 5. We further provide predefined
splits for training and testing sets, applicable to both binary and
multiclass classification tasks.
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Figure 3: Original distribution of the blob images across the classes before merging the less frequent ones. Note that the Y axis
is in log scale.

4 EXPERIMENTS
To evaluate the efficacy of statistical models in recognizing musical
symbols, we fine-tuned three renowned deep learning classifiers:
ResNet, DenseNet, and GoogleNet. We also employed an advanced
AutoML method [5] to compare neural networks with conventional
machine learning techniques.

Considering the significant imbalance depicted in Figure 3, we
initially subsampled the classes with the highest cardinalities to
achieve perfectly balanced training and validation sets. This sub-
sampling involved randomly selecting 𝑛 samples from the largest
categories, where 𝑛 corresponds to the number of samples in the
smallest category. While this method yields balanced training and
validation sets, the test sets remain highly imbalanced. Therefore,
it is crucial to implement appropriate validation measures that ac-
count for class imbalance during testing, as shown in Tables 1 and 2.

In all instances, we enhanced the training set by applying random
rotations of up to ±10 degrees, random flips with probability of
0.5, brightness, contrast, and saturation jitters with factor 0.25. To
improve the quality of the images, we also implemented Gaussian
blur denoisingwith kernel of 3 and sigma 1.5 and contrast correction
to 1.5 of the original contrast. To ensure compatibility with the
ImageNet pre-trained weights, we renormalized the image channels
and resized all images to 256 × 256 pixels.

For the deep-learning classifiers, we utilized the pre-trained
weights available in the torchvision library, obtained from the
ImageNet 1K dataset [4, 13]. We re-trained all models using stan-
dard cross-entropy loss and the 1 cycle learning rate policy [16]
with Stochastic Gradient Descent, setting the maximum learning
rate at 0.01. The models were trained for 500 epochs with early
stopping based on validation loss, exhibiting a patience of 20 epochs.
This resulted in approximately 40 epochs of actual training, with
a maximum of 70 epochs for GoogleNet in binary classification.
We used a batch size of 64 and allocated 68%, 17%, and 15% of the
dataset for training, validation, and testing, respectively.

We placed particular emphasis on uncertainty analysis by ex-
amining the activations in the networks’ final layer. Ideally, a con-
fidence close to 1 suggests that the input sample is located in a
region of the feature space familiar to the network, while a confi-
dence near 0 indicates unfamiliarity. Consequently, we can disre-
gard low-confidence predictions to minimize the risk of incorrect
classifications. In Bayesian statistics, uncertainties are categorized
as epistemic and aleatoric [10]. Epistemic uncertainty pertains to
the model parameters, indicating that the model parameters have
learned the under-represented region of the data. Aleatoric uncer-
tainty, on the other hand, relates to the data itself, suggesting that
the data is inherently noisy.
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Figure 4: Distribution of the images across the classes, after the merging of the less frequent classes. Note that the Y axis is in
log scale.

In this study, we employed the entropy of the neural output as a
foundation for the confidence score, serving as a comprehensive
measure of both epistemic and aleatoric uncertainty. Mathemat-
ically, given the network outputs 𝑦𝑖 , 𝑖 ∈ [1, 𝑁 ] for classifying 𝑁

classes, the entropy is calculated as:

𝐻 =

𝑁∑︁
𝑖=1

𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝑦𝑖 ) × 𝑙𝑜𝑔𝑁 (𝑚𝑖𝑛(1, 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝑦𝑖 ) + 𝜖)),

Here, 𝑚𝑖𝑛(·) and 𝜖 are incorporated to circumvent numerical
instability, and 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 is conventionally defined as:

𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝑦𝑖 ) =
𝑒𝑦𝑖∑𝑁
𝑗=1 𝑒

𝑦 𝑗

For𝑁 = 2,𝐻 alignswith the classical Shannon entropy computed
using bits as information units. Generally, it always lies within [0, 1],
allowing the computation of a confidence score as 1 − 𝐻 .

We conducted all experiments for both the binary classification
task, which involves distinguishing between “musically relevant”
and “musically irrelevant” blobs, and the multi-class classification
task, which involves differentiating among the 14 classes of objects.

5 RESULTS
For the binary classification task, all three deep learning models
achieved a balanced accuracy of 85% and an f1-score of 74%, as
detailed in Table 1. In contrast, the constant predictor yielded a
balanced accuracy of 50% and an f1-score of 46%, underperforming
the random guessing.

By considering varying confidence levels, we observed a con-
sistent monotonic trend for both accuracy and the proportion of
retained test data. This indicates that higher accuracies can be
attained by predicting fewer samples, as illustrated in Fig. 6. For ex-
ample, with GoogleNet, a balanced accuracy of 95% and an f1-score
of 88% can be achieved by retaining only samples with a confidence
exceeding 50%, which constitutes 64% of the test set.

In the multi-class classification task, the deep learning models
achieved a balanced accuracy of 43% and an f1-score of 38%. For
comparison, random guessing and constant predictors were used
as baselines, yielding a balanced accuracy of 9% and an f1-score of
6%.

Upon considering confidence levels, we observed a convex accu-
racy curve with a peak between 25% and 50% for the three models.
Specifically, GoogleNet and ResNet can achieve a balanced accuracy
and f1-score of 50% and 51% respectively, by retaining 68% of the
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Figure 5: Examples of blobs for each class in the dataset.

Table 1: Neural network performances for the binary classification task. Note that the balanced accuracy is equivalent to
the average recall. The best average values for each measure are highlighted in bold. The symbol “-” means that no data was
retained for that class at that level of confidence.

DenseNet
Precision Recall F1-score

Confidence level 0% 25% 50% 75% 90% 0% 25% 50% 75% 90% 0% 25% 50% 75% 90%
Irrelevant 0.98 0.99 0.99 1.00 1.00 0.82 0.89 0.93 0.97 0.99 0.89 0.94 0.96 0.98 1.00
Relevant 0.44 0.56 0.66 0.77 0.87 0.87 0.94 0.95 0.98 0.98 0.58 0.70 0.78 0.86 0.92
Average 0.71 0.78 0.83 0.88 0.93 0.85 0.91 0.94 0.97 0.98 0.74 0.82 0.87 0.92 0.96

ResNet
Precision Recall F1-score

Confidence level 0% 25% 50% 75% 90% 0% 25% 50% 75% 90% 0% 25% 50% 75% 90%
Irrelevant 0.98 0.99 0.99 1.00 1.00 0.82 0.90 0.95 0.98 1.00 0.89 0.94 0.97 0.99 1.00
Relevant 0.45 0.58 0.69 0.82 0.90 0.87 0.94 0.94 0.97 0.95 0.59 0.72 0.79 0.89 0.92
Average 0.71 0.79 0.84 0.91 0.95 0.85 0.92 0.95 0.98 0.97 0.74 0.83 0.88 0.94 0.96

GoogleNet
Precision Recall F1-score

Confidence level 0% 25% 50% 75% 90% 0% 25% 50% 75% 90% 0% 25% 50% 75% 90%
Irrelevant 0.98 0.99 0.99 1.00 1.00 0.82 0.90 0.94 0.97 1.00 0.89 0.94 0.97 0.99 1.00
Relevant 0.45 0.58 0.68 0.78 0.90 0.88 0.94 0.95 0.98 0.97 0.59 0.71 0.79 0.87 0.93
Average 0.71 0.78 0.84 0.89 0.95 0.85 0.92 0.95 0.98 0.98 0.74 0.83 0.88 0.93 0.96

data, as depicted in Fig. 7. For confidence levels larger than 0.5,
only printed text, keys, and page border can be identified satisfac-
torily, with f1-scores near to 1. However, a little number of samples
are misclassified, leading the a fall in balanced accuracy, which is
computed as the arithmetic mean of the per-class recall.

The per-class f1-score values, presented in Table 2, reveal that
the models are generally more proficient at predicting the most
common classes. Specifically, the classes “Page Border”, “Printed
Text”, and “Keys” achieved an f1-score of 85%, 63%, and 61% re-
spectively. These results are particularly beneficial for reducing
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Figure 6: Trend of the balanced accuracy and percentage of retained test data for various level of confidences for the binary
task.

the number of samples requiring manual annotation for dataset
expansion.

The AutoML classifier, while not reaching the accuracy of the
neural networks, achieved a balanced accuracy of 37% and an f1-
score of 31% in the multi-class case. In the binary classification, it
achieved a maximum of 84% and 70% respectively. The resulting
models, composed of large ensembles of random forests, gradi-
ent boosting, support vector machines, linear and quadratic dis-
criminant analysis, coupled with various pre-processing steps, are
described in detail in the notebooks available in the source code
repository. These architectures generate large models of several
gigabytes. However, existing tools cannot leverage GPU processing
like neural network frameworks, making the training and inference
of such AutoML models more memory and time-intensive than the
neural transfer learning approach.

For all the aforementioned metrics, detailed values and per-class
statistics can be found in the notebook in the source code repository.

6 CONCLUSIONS
This study presents a comprehensive methodology for OMR ap-
plied to historical and handwritten music scores, with a particular
focus on the Ricordi Archive. This prestigious archive, housing
significant musical manuscripts from eminent opera composers,
has been digitized and meticulously annotated to generate a novel
dataset of musical symbols. This dataset, along with the models

and source code employed in our experiments, is publicly available,
thereby contributing to the wider research community.4

We have addressed several OMR challenges by training and
evaluating multiple neural classifiers to differentiate between these
symbols. Three renowned deep learning classifiers, namely ResNet,
DenseNet, and GoogleNet, were fine-tuned, and a robust AutoML
approach was utilized as a baseline. The deep learning models
demonstrated promising results, achieving a balanced accuracy of
85% in the binary classification task. By leveraging the confidence
of the models, even higher accuracies were attained.

The primary contribution of this work lies in the creation of a
unique dataset of musical symbols derived from real-world anno-
tated manuscripts, which can be utilized to train and evaluate OMR
models. Additionally, our work outlines a comprehensive methodol-
ogy for preprocessing, annotating, and classifying musical symbols,
which can be replicated and expanded upon in future research.

Future work will involve using the trained models to annotate
additional data, discarding irrelevant sub-images and focusing on
images where the model exhibits low confidence. This strategy will
enable automatic pixel-wise classification of all pages, followed
by a focus on image regions with lower confidence. The ability to
identify musical objects will facilitate the provision of more specific
labels for such objects. This approach will significantly simplify the
annotation of the full corpus, providing the research community
with an updated version of the dataset.

4https://zenodo.org/doi/10.5281/zenodo.11186095
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Table 2: Neural network performances for the multiclass task. Note that the balanced accuracy is equivalent to the average
recall. The best average values for each measure are highlighted in bold. The symbol “-” means that no data was retained for
that class at that level of confidence.

DenseNet
Precision Recall F1-score

Confidence level 0% 25% 50% 75% 90% 0% 25% 50% 75% 90% 0% 25% 50% 75% 90%
Single note (with at least the head) 0.11 0.16 0.00 0.00 - 0.31 0.27 0.00 0.00 - 0.16 0.20 0.00 0.00 -

Manuscript Text 0.42 0.57 0.86 1.00 0.00 0.37 0.46 0.46 0.13 0.00 0.40 0.51 0.60 0.24 0.00
Remaining 0.15 0.21 0.00 0.00 0.00 0.21 0.18 0.00 0.00 0.00 0.17 0.19 0.00 0.00 0.00
Printed Text 0.56 0.69 0.85 0.92 0.94 0.67 0.86 0.97 0.99 1.00 0.61 0.77 0.90 0.96 0.97

Key(s) (whole(s) or nearly) 0.50 0.72 0.91 1.00 1.00 0.77 0.94 1.00 1.00 1.00 0.61 0.82 0.95 1.00 1.00
Blur or multiple categories (no music signs) 0.26 0.30 0.59 0.33 0.00 0.49 0.58 0.50 0.05 0.00 0.34 0.39 0.54 0.09 0.00

Multiple notes or chords 0.29 0.38 0.79 0.00 0.00 0.38 0.59 0.56 0.00 0.00 0.33 0.46 0.65 0.00 0.00
Page border 0.95 0.95 0.98 0.99 0.99 0.77 0.89 0.98 1.00 0.99 0.85 0.92 0.98 0.99 0.99

Other (without musical markings) 0.23 0.31 0.43 0.75 0.00 0.18 0.27 0.47 0.50 0.00 0.20 0.29 0.45 0.60 0.00
Erasure 0.26 0.34 0.67 0.00 0.00 0.41 0.39 0.27 0.00 0.00 0.32 0.37 0.39 0.00 0.00

More categories (with at least one musical sign) 0.28 0.36 0.00 0.00 0.00 0.11 0.09 0.00 0.00 0.00 0.16 0.14 0.00 0.00 0.00
Average 0.36 0.45 0.55 0.45 0.29 0.42 0.50 0.47 0.33 0.30 0.38 0.46 0.50 0.35 0.30

ResNet
Precision Recall F1-score

Confidence level 0% 25% 50% 75% 90% 0% 25% 50% 75% 90% 0% 25% 50% 75% 90%
Single note (with at least the head) 0.12 0.16 0.00 0.00 - 0.33 0.30 0.00 0.00 - 0.18 0.21 0.00 0.00 -

Manuscript Text 0.44 0.56 0.76 1.00 0.00 0.38 0.50 0.50 0.13 0.00 0.41 0.53 0.60 0.24 0.00
Remaining 0.14 0.19 0.00 0.00 0.00 0.15 0.08 0.00 0.00 0.00 0.15 0.11 0.00 0.00 0.00
Printed Text 0.61 0.70 0.87 0.93 0.95 0.65 0.83 0.97 0.99 1.00 0.63 0.76 0.91 0.96 0.98

Key(s) (whole(s) or nearly) 0.38 0.58 0.85 0.95 0.99 0.78 0.94 1.00 1.00 1.00 0.51 0.72 0.92 0.97 1.00
Blur or multiple categories (no music signs) 0.26 0.32 0.65 1.00 0.00 0.42 0.49 0.39 0.10 0.00 0.32 0.38 0.48 0.18 0.00

Multiple notes or chords 0.28 0.34 0.87 0.00 0.00 0.37 0.53 0.81 0.00 0.00 0.32 0.42 0.84 0.00 0.00
Page border 0.95 0.95 0.98 0.99 1.00 0.74 0.88 0.97 0.99 0.98 0.83 0.91 0.98 0.99 0.99

Other (without musical markings) 0.16 0.20 0.36 0.71 0.00 0.22 0.29 0.53 0.80 0.00 0.18 0.24 0.43 0.75 0.00
Erasure 0.24 0.34 0.56 1.00 - 0.42 0.43 0.35 0.38 - 0.31 0.38 0.43 0.55 -

More categories (with at least one musical sign) 0.32 0.44 0.00 0.00 - 0.18 0.19 0.00 0.00 - 0.23 0.27 0.00 0.00 -
Average 0.35 0.43 0.54 0.60 0.37 0.42 0.50 0.50 0.40 0.37 0.37 0.45 0.51 0.42 0.37

GoogleNet
Precision Recall F1-score

Confidence level 0% 25% 50% 75% 90% 0% 25% 50% 75% 90% 0% 25% 50% 75% 90%
Single note (with at least the head) 0.11 0.15 0.00 - - 0.34 0.31 0.00 - - 0.17 0.21 0.00 - -

Manuscript Text 0.43 0.57 1.00 0.00 0.00 0.34 0.41 0.42 0.00 0.00 0.38 0.48 0.59 0.00 0.00
Remaining 0.14 0.18 0.00 0.00 0.00 0.15 0.08 0.00 0.00 0.00 0.15 0.11 0.00 0.00 0.00
Printed Text 0.58 0.69 0.83 0.92 0.95 0.67 0.84 0.96 0.99 1.00 0.62 0.76 0.89 0.95 0.97

Key(s) (whole(s) or nearly) 0.46 0.70 0.92 1.00 1.00 0.79 0.93 0.99 1.00 1.00 0.58 0.80 0.96 1.00 1.00
Blur or multiple categories (no music signs) 0.28 0.32 0.67 1.00 0.00 0.42 0.49 0.36 0.04 0.00 0.33 0.39 0.47 0.07 0.00

Multiple notes or chords 0.27 0.34 0.71 0.00 0.00 0.43 0.64 0.76 0.00 0.00 0.33 0.44 0.73 0.00 0.00
Page border 0.94 0.95 0.98 0.99 0.99 0.78 0.89 0.99 1.00 1.00 0.85 0.92 0.98 0.99 0.99

Other (without musical markings) 0.20 0.24 0.50 0.80 1.00 0.18 0.26 0.56 0.57 1.00 0.19 0.25 0.53 0.67 1.00
Erasure 0.26 0.36 0.61 1.00 0.00 0.44 0.48 0.34 0.20 0.00 0.33 0.42 0.44 0.33 0.00

More categories (with at least one musical sign) 0.28 0.37 0.00 0.00 0.00 0.15 0.11 0.00 0.00 0.00 0.20 0.17 0.00 0.00 0.00
Average 0.36 0.44 0.56 0.57 0.39 0.43 0.50 0.49 0.38 0.40 0.38 0.45 0.51 0.40 0.40
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