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ABSTRACT
In 1947, Bogoliubov suggested a heuristic theory to compute the excitation spectrum of weakly interacting Bose gases. Such a theory
predicts a linear excitation spectrum and provides expressions for the thermodynamic functions which are believed to be correct in the
dilute limit. Thus far, there are only a few cases where the predictions of Bogoliubov can be obtained by means of rigorous mathe-
matical analysis. A major challenge is to control the corrections beyond Bogoliubov theory, namely, to test the validity of Bogoliubov’s
predictions in regimes where the approximations made by Bogoliubov are not valid. In these notes, we discuss how this challenge can
be addressed in the case of a system of N interacting bosons trapped in a box with volume one in the Gross-Pitaevskii limit, where the
scattering length of the potential is of the order 1/N and N tends to infinity. This is a recent result obtained in Boccato et al. [Commun.
Math. Phys. (to be published); preprint arXiv:1812.03086 and Acta Math. 222, 219–335 (2019); e-print arXiv:1801.01389], which extends
a previous result obtained in Boccato et al. [Commun. Math. Phys. 359, 975 (2018)], removing the assumption of a small interaction
potential.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5096288., s

I. INTRODUCTION
Since the early experiments on superfluidity in liquid helium,1,2 and even more after the first experimental realizations of Bose-Einstein

condensation in cold atomic gases,3–5 the understanding of the low temperature properties of systems of interacting bosons has stimulated
several theoretical and mathematical investigations. The aim of these notes is to report on a recent result establishing the equilibrium prop-
erties of the interacting Bose gas in one of the regimes which are relevant for the description of condensation in low-interacting and dilute
atomic gases, the so called Gross-Pitaevskii regime. As a prelude, we will start by reviewing the progress made so far in the comprehension of
the equilibrium properties of the interacting Bose gas in the thermodynamic limit. This preliminary discussion will set the stage to clarify the
mathematical difficulties posed by the Gross-Pitaevskii regime and to compare the main result obtained in Refs. 6 and 7 with related results
achieved in different parameters regimes.

In the course of these notes, we are going to consider systems of N bosons in a three dimensional box Λ of side length L with periodic
boundary conditions. The Hamilton operator describing the system has the form

HN,Λ =
N

∑
j=1
−Δxj +

N

∑
i<j

V(xi − xj) (1)

and acts on the Hilbert space L2
s (ΛN

), with the subspace of L2(ΛN ) consisting of functions that are symmetric with respect to permutations of
the N particles. We require V to be non-negative, radial, and to have finite zero energy scattering length a0. The latter is defined as

a0 = (8π)−1
∫ V(x)f (x), (2)
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with f (x) solution of the zero energy scattering equation (−Δ + 1
2 V(x))f (x) = 0, with boundary condition f (x) → 1 as |x| → ∞. We will

first discuss the equilibrium properties of the system in the thermodynamic limit, where the density of the system ρ = N/|Λ| is kept constant
and the side of box Λ is sent to infinity. It is well known that in absence of interaction, the systems exhibit Bose-Einstein condensation; in
particular, at zero temperature, all particles are in the ground state of the kinetic energy operator, which is given by the zero momentum
mode. A long-standing goal is to understand what happens to the system when we take into account the interaction among particles. Does the
system still exhibit condensation? Can we provide expressions for the ground state energy and excitation spectrum, at least in some weakly
interacting regime? Can we explain the emergence of superfluidity, as observed in experiments?

The usual picture of Bose-Einstein condensation in the homogeneous interacting case is based on an approximate exactly solvable model
due to Bogoliubov8 [see also Ref. 9 (Appendix A) for a review]. Bogoliubov rewrote the Hamilton operator (1) in momentum space, using the
formalism of second quantization. Since he expected low-energy states to exhibit Bose-Einstein condensation (at least for sufficiently weak
interaction), he replaced all creation and annihilation operators associated with the zero-momentum mode by factors N1/2. The resulting
Hamiltonian contains constant terms (describing the interaction among particles in the condensate), terms that are quadratic in creation and
annihilation operators associated with modes with momentum p ≠ 0 (describing the kinetic energy of the excitations as well as the interaction
between excitations and the condensate), and terms that are cubic and quartic (describing interactions among excitations). Neglecting all
cubic and quartic contributions, Bogoliubov obtained a quadratic Hamiltonian that he could diagonalize explicitly, obtaining the following
expression for the ground state energy:

EN,Λ =
N
2
ρV̂(0) − 1

4 ∑
p∈ 2π

L Z3

p≠0

(ρV̂(p))2

p2 − 1
2 ∑

p∈ 2π
L Z3

p≠0

[p2 + ρV̂(p) −
√

p4 +2ρV̂(p)p2 −
1
2
(ρV̂(p))2

p2 ] (3)

and an excitation spectrum of the form10

∑
p∈ 2π

L Z3

√

p4 + 2ρV̂(p)p2 np (4)

for finitely many np ∈ N. Remarkably, Bogoliubov recognized that, after having taken the thermodynamic limit, the expressions

a
(0)
0 = (8π)−1V̂(0), a

(1)
0 = −∫

d3p
(2π)3

V̂(p)2

2p2

appearing on the rhs of (3) were just the first and second Born approximations of the infinite volume scattering length a0. By replacing the
sum a

(0)
0 + a

(1)
0 by a0 on the r.h.s. of Eq. (3), and V̂(0) by 8πa0 in the integral obtained from the sum on the r.h.s. of the same equation,11

Bogoliubov obtained the following formula for the ground state energy for particle of a dilute Bose gas in the thermodynamic limit:

lim
N,∣Λ∣→∞
ρ=N/∣Λ∣

EN,Λ

N
= 4πρa0[1 +

128
15
√
π
(ρa3

0)
1/2 + o((ρa3

0)
1/2
)], (5)

which is known as the Lee-Huang-Yang formula.12,13 A similar substitution is expected to give the correct expression for the velocity of
sound

vs = lim
p→0

√
p4 + 16πρa0p2

p
=
√

16πρa0,

obtained by substituting V̂(p) by 8πa0 in the dispersion relation provided by (4). As an additional example, one can compute within Bogoli-
ubov’s approximation the expected density of particles outside the condensate in the ground state (the so called condensate depletion),
obtaining

ρ+ = ∑
p∈ 2π

L Z3

p≠0

⎡
⎢
⎢
⎢
⎢
⎣

p2 + ρV̂(p) −
√

p4 + 2ρV̂(p)p2

2
√

p4 + 2ρV̂(p)p2

⎤
⎥
⎥
⎥
⎥
⎦

. (6)

Taking the thermodynamic limit of (6) and substituting V̂(p) with 8πa0, one obtains the prediction

ρ+

ρ
=

8
3
√
π

√

ρa3
0. (7)
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It is worth stressing that the Bogoliubov model is based on the very strong assumption (not a priori justified) that the interact-
ing system exhibits condensation, plus a quite rough truncation of the Hamiltonian. Nevertheless, Bogoliubov’s predictions are believed
to be correct in the dilute limit ρa3

0 ≪ 1. Indeed, in his final replacement [the one discussed after (4)], Bogoliubov might compensate
exactly for all terms (cubic and quartic in creation and annihilation operators) that he neglected in his analysis.14 Then, it is not sur-
prising that Bogoliubov’s ’47 paper was followed by several attempts to study in a systematic way the corrections to Bogoliubov theory;
that is, to understand the role of the cubic and quartic contributions neglected in Bogoliubov’s approximation. Unfortunately, perturba-
tion theory around the Bogoliubov model is plagued by ultraviolet and infrared divergences, whose meaning could be in principle that
the interacting system has completely different physical properties with respect to the ones predicted by Bogoliubov. A few partial results
confirming Bogoliubov’s picture have been obtained in the late ’60s on the basis on diagrammatic techniques borrowed from quantum
field theory,12,13,15–22 but they were all based on the summations of special classes of diagrams selected from the divergent perturbation
theory.

More recently, a study of the whole perturbation theory around Bogoliubov’s model for weak repulsive interactions (and/or at low den-
sities) in three dimensions, and the proof of its order by order convergence after proper resummations, has been obtained by Benfatto.8 This
work provides a strong indication of the stability of the three dimensional Bose-Einstein condensate at zero temperature and a confirmation of
the expression (4) with a renormalized speed of sound.23 It is worth stressing that even though the method used by Benfatto is taken from the
constructive theory, the resulting bounds are not enough for constructing the theory: they are enough for deriving finite bounds at all orders
in renormalized perturbation theory, growing like n! at the nth order (n! bounds), but the possible Borel summability of the series remains a
great challenge for the current century. A long term program addressing this issue has been started by Balaban-Feldman-Knörrer-Trubowitz;
see Ref. 24 for the state of the art of this project.

Even though a full control of the corrections to Bogoliubov’s approximation is to date beyond reach of rigorous analysis, several results are
available if we focus on Bogoliubov’s predictions for the ground state energy. Indeed, mathematically, the validity of Bogoliubov’s approach in
three-dimensional Bose gases has been first established by Lieb and Solovej for the computation of the ground state energy of bosonic jellium
in Ref. 25 and of the two-component charged Bose gas in Ref. 26 (upper bounds were later given by Solovej in Ref. 27). Extending the ideas
of Refs. 25 and 26, Giuliani and Seiringer established in Ref. 28 the validity of the Lee-Huang-Yang formula (5) for Bose gases interacting
through potentials scaling with the density to approach a simultaneous weak coupling and high density limit. This result was later improved
by Brietzke and Solovej in Ref. 29 to include a certain class of weak coupling and low density limits. It is worth stressing that in the regimes
considered in Refs. 25, 26, 28, and 29, the difference between the first and second Born approximations and the full scattering length is small,
and it only gives negligible contributions to the energy. In other words, in the above mentioned regimes, cubic and quartic contributions
neglected in Bogoliubov’s analysis can be proved to be small; this is crucial to make Bogoliubov’s approach rigorous.

An upper bound for the ground state energy in the thermodynamic limit coinciding with (5) up to second order was established in
Ref. 30 (improving a previous result by Ref. 31). Very recently, a lower bound for the ground state energy of a dilute Bose gas which confirms
the Lee-Huang-Yang formula for a broad class of repulsive pair-interactions in three dimensions has been obtained in Ref. 32 (improving a
previous result by Ref. 33). Those results represent a confirmation of the validity of the predictions of Bogoliubov theory for the ground state
energy of dilute Bose gases in the thermodynamic limit.

It remains an ambitious open problem to verify Bogoliubov’s prediction for the excitation spectrum in the thermodynamic limit.

A. The Gross-Pitaevskii regime
A natural question arising from the discussion in Sec. I is whether some of the results predicted by Bogoliubov theory can be validated in

regimes different from the thermodynamic limit, but still physically relevant for the description of Bose-Einstein condensates. This is the case
of the so called scaling regimes, where the bosons are confined in a box of side length one (in the more general case the bosons are trapped by
an external confining potential) and the interaction is allowed to depend on the number of particles. In the three-dimensional case, it turns
out interesting to consider systems of N bosons in the box Λ = [− 1

2 ; 1
2 ]
×3, described by the Hamilton operator

Hβ
N =

N

∑
j=1
−Δxj +

κ
N

N

∑
i<j

N3βV(Nβ
(xi − xj)) (8)

for a parameter β ∈ [0; 1], a coupling constant κ > 0, and a short range potential V ≥ 0. Hamilton operators of the form (8) interpolate between
the mean-field regime associated with β = 0 (effectively describing bosons interacting through weak and long range interactions) and the
Gross-Pitaevskii regime corresponding to β = 1 (depicting a situation where interactions among the particles are strong and very short range).
Note that, denoting with aN the scattering length of the potential N3β−1V(Nβx), for any β ∈ [0, 1], we have ρa3

N = N−2, which corresponds
to a diluteness condition. Hence, we may reasonably expect the predictions of Bogoliubov theory to hold for systems of bosons described
by (8).

Since the Born series for the scattering length is an expansion in the ratio between the parameter ∫V and the range of the potential, a
simple computation shows that, in the regimes described by the Hamilton operator (8), replacing first and second Born approximations with
the scattering length produces an error in the ground state energy of the order N2β−1. Hence, one may guess that Bogoliubov’s truncation
of the Hamiltonian can be rigorously justified for any β < 1/2. Indeed, starting from the pioneering work,34 several results have confirmed
Bogoliubov’s picture in the mean-field limit β = 0, both in the homogeneous and nonhomogeneous setting.35–42 On the other side, for β ≥ 1/2,
Bogoliubov’s approximation fails. Nevertheless, in Ref. 43, the predictions of Bogoliubov theory where rigorously justified for any 0 < β < 1
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(the proof in Ref. 43 holds for κ sufficiently small, but can be extended to any κ using the strategy recently developed for the Gross-Pitaevskii
regime in Ref. 6). The key idea to achieve this result was to understand the emergence of the scattering length as a consequence of correlations
among the particles.

The Gross-Pitaevskii regime, where β = 1, is even more challenging from a mathematical point of view. Indeed, in this regime, the ratio
between aN and the range of the potential is of order one, and all terms in the Born series of the scattering length contribute to the same order
in N. From a physical point of view, the Gross-Pitaevskii regime owes its success to the fact that it represents a good description for the strong
and short range interactions among atoms in dilute, cold atomic gases. Moreover, the Gross-Pitaevskii equation, widely used in the physics
literature to effectively describe the dynamics of Bose-Einstein condensates, arises from a microscopic description where the interaction
among particles scales as in the Gross-Pitaevskii regime.44 Finally, it is easy to see that Hβ

N for β = 1 is equivalent to the Hamiltonian for N
bosons in a box with L = N interacting through a fixed potential V ; hence, the Gross-Pitaevskii regime corresponds to a regime where the size
of box is sent to infinity, but the system has in this limit a very low density ρ = N/L3 = N−2.

It follows from the results of Refs. 45–48 that the ground state energy EN of the Gross-Pitaevskii Hamiltonian

HN =
N

∑
j=1
−Δxj +

N

∑
i<j

N2V(N(xi − xj)) (9)

defined on L2
s (ΛN

) is such that

lim
N→∞

EN

N
= 4πa0 .

Furthermore, for any sequence of approximate ground states, i.e., for any sequence ψN ∈ L2
s (ΛN

) with ∥ψN∥ = 1 and

lim
N→∞

1
N
⟨ψN , HNψN⟩ = 4πa0 ,

the reduced density matrices γN = tr2,. . . ,N |ψN⟩⟨ψN | are such that

lim
N→∞

tr ∣γN − ∣φ0⟩⟨φ0∣∣ = 0, (10)

where φ0 ∈ L2(Λ) is the zero momentum mode defined by φ0(x) = 1 for all x ∈ Λ. The aim of these notes is to discuss how to go beyond those
results and compute the ground state energy and the low-lying excitation spectrum of (9), up to errors vanishing in the limit N →∞. This is
the content of our main theorem.

Theorem I.1. Let V ∈ L3
(R3
) be non-negative, spherically symmetric, and compactly supported. Then, in the limit N →∞, the ground

state energy EN of the Hamilton operator (9) is given by

EN = 4π(N − 1)a0 + eΛa2
0 −

1
2 ∑p∈Λ∗+

[p2 + 8πa0 −
√
∣p∣4 + 16πa0p2 −

(8πa0)
2

2p2 ] + O(N−1/4
), (11)

with a0 as the scattering length of V. Here, we introduced the notation Λ∗+ = 2πZ3
/{0} and we defined

eΛ = 2 − lim
M→∞

∑
p∈Z3

/{0}:
∣p1 ∣,∣p2 ∣,∣p3 ∣≤M

cos(∣p∣)
p2 ,

where, in particular, the limit exists. Moreover, the spectrum of HN − EN below a threshold ζ consists of eigenvalues given, in the limit N→∞, by

∑
p∈Λ∗+

np
√
∣p∣4 + 16πa0p2 + O(N−1/4

(1 + ζ3
)) . (12)

Here, np ∈ N for all p ∈ Λ∗+ and np ≠ 0 for finitely many p ∈ Λ∗+ only.
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Remarks.

● By comparing (11) with the prediction (3) from Bogoliubov theory, we see that in the Gross-Pitaevskii regime the leading order term
contains the scattering length a0, rather than the sum of the first two terms on the rhs of (3). Moreover, the first term in the Born
approximation of the scattering length (8π)−1V̂(0) has been replaced by a0 both in the sum on the r.h.s. of (11) and in the expression
for the spectrum (12) [to be compared with (4)].

● The term eΛa2
0 in (11) arises as a correction to the scattering length a0, due to the finiteness of box Λ. For small interaction potentials,

we can define a finite volume scattering length aΛ through the convergent Born series

8πaΛ = V̂(0) +
∞

∑
k=1

(−1)k

(2N)k ∑
p1 ,...,pk∈Λ∗+

V̂(p1/N)
p2

1
(

k−1

∏
i=1

V̂((pi − pi+1)/N)
p2

i+1
)V̂(pk/N) .

In this case, one can check that

lim
N→∞

4π(N − 1)[a0 − aΛ] = eΛa2
0 .

Observe that, if we replace the potential V by a rescaled interaction VR(x) = R−2V(x/R) with scattering length aR = a0R then, for
large R (increasing R makes the effective density larger), the order one contributions to the ground state energy scale as eΛa2

0R2 and,
respectively, as

−
1
2 ∑

p∈2πZ3/{0}
[p2 + 8πa0R −

√
∣p∣4 + 16πa0Rp2 −

(8πa0R)2

p2 ]

=
R
2 ∑

p∈ 2π√
R
Z3/{0}

[p2 + 8πa0 −
√
∣p∣4 + 16πa0p2 −

(8πa0)
2

p2 ]

≃
R5/2

2(2π)3 ∫R3
[p2 + 8πa0 −

√
∣p∣4 + 16πa0p2 −

(8πa0)
2

p2 ]dp

=
4πR5/2

(16πa0)
5/2

15(2π)3 = 4πa0 ⋅
128

15
√
π
a

3/2
0 R5/2.

(13)

In particular, letting R → ∞ (independently of N), consequently the finite volume correction becomes subleading, compared with
(13). From this point of view, Theorem I.1 establishes the analog of the Lee-Huang-Yang formula for the ground state energy in the
Gross-Pitaevskii regime.

● Theorem I.1 gives precise information on the low-lying eigenvalues of (9). The approach in Ref. 7 combined with standard arguments,
also gives information on the corresponding eigenvectors. In Ref. 7, we provide a norm approximation of eigenvectors associated with
the low-energy spectrum of (9). As an application, we can compute the condensate depletion in the ground state ψN of (1), confirming
Bogoliubov’s prediction.

In the rest of these notes, we are going to describe the strategy leading to Theorem I.1, as obtained in Refs. 6 and 7. In particular,
we will focus on the new ideas which are needed to remove the assumption of the small interaction potential that was previously used
in Ref. 49.

II. A FOCK SPACE REPRESENTATION FOR EXCITED PARTICLES
The first step in the proof of Theorem I.1 consists in a rigorous version of the substitution of the creation and annihilation operators

in the condensate by scalar numbers, which is the first step in Bogoliubov theory. Following an idea from Ref. 36, we use the Fock space
to describe orthogonal excitations with respect to the condensate wave function.50 More precisely, we write any arbitrary N-particle wave
function ψ ∈ L2

s (ΛN
) as

ψN = α0φ⊗N
0 + α1 ⊗s φ⊗(N−1)

0 + ⋅ ⋅ ⋅ + αN (14)

with αj ∈ L2
s,⊥(Λj

) for all j = 0, 1, . . ., N. Here, φ0(x) is the condensate wave function in (10). Moreover L2
⊥(Λ) denotes the orthogonal

complement of the one-dimensional subspace spanned by φ0 in L2(Λ), and L2
s,⊥(Λj

) is the symmetric tensor product of j copies of L2
⊥(Λ). It

is easy to check that the decomposition (14) defines a unitary map UN from the space ∈ L2
s (ΛN

) to the truncated Fock space constructed over
L2
⊥(Λ),
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F≤N
+ =

N
⊗
j=0

L2
s,⊥(Λ

j
).

For a ψN ∈ L2
s (ΛN

), we denote with ξN the corresponding excitation vector

ξN ∶= UNψN = {α0,α1, . . . ,αN} ∈F≤N
+ .

The action of the unitary operator UN on products of a creation and an annihilation operator [products of the form a∗p aq can be thought
of as operators mapping L2

s (ΛN
) to itself] is reminiscent of Bogoliubov’s substitution. Indeed, for any p, q ∈ Λ∗+ = 2πZ3

/{0}, we find (see
Ref. 36)

UN a∗0 a0 U∗N = N −N+,

UN a∗p a0 U∗N = a∗p
√

N −N+,

UN a∗0 ap U∗N =
√

N −N+ ap,

UN a∗p aq U∗N = a∗p aq,

(15)

with N+ = ∑p∈Λ∗+
a∗p ap as the operator counting the number of excited particles (here, a∗p and ap are the usual creation and annihila-

tion operators defined on the bosonic Fock space F = ⊗j≥0L2
s (Λj
) and satisfying canonical commutation relations [ap, a∗q ] = δpq and

[ap, aq] = [a∗p , a∗q ] = 0).
Using UN , we can define an excitation Hamiltonian LN ∶= UN HN U∗N , acting on a dense subspace of F ≤N

+ . To compute the operator LN ,
we first write the Hamiltonian (9) in momentum space, in terms of creation and annihilation operators. We find

HN = ∑
p∈Λ∗

p2a∗p ap +
1

2N ∑
p,q,r∈Λ∗

V̂(r/N)a∗p+ra∗q apaq+r , (16)

where

V̂(k) = ∫
R3

V(x)e−ik⋅xdx

is the Fourier transform of V, defined for all k ∈ R3. Using (15), we conclude that

LN =L
(0)
N + L

(2)
N + L

(3)
N + L

(4)
N (17)

with

L
(0)
N =

N − 1
2N

V̂(0)(N −N+) +
V̂(0)
2N

N+(N −N+),

L
(2)
N = ∑

p∈Λ∗+

p2a∗p ap + ∑
p∈Λ∗+

V̂(p/N)a∗p ap(
N −N+

N
)

+
1
2 ∑p∈Λ∗+

V̂(p/N)
⎡
⎢
⎢
⎢
⎢
⎣

a∗p a∗−p

√
N − 1 −N+

N
N −N+

N
+ h.c.

⎤
⎥
⎥
⎥
⎥
⎦

,

L
(3)
N =

1
√

N
∑

p,q∈Λ∗+ :p+q/=0
V̂(p/N)

⎡
⎢
⎢
⎢
⎢
⎣

a∗p+qa∗−paq

√
N −N+

N
+ h.c.

⎤
⎥
⎥
⎥
⎥
⎦

,

L(4)N =
1

2N ∑
p,q∈Λ∗+ ,r∈Λ∗ :r/=−p,−q

V̂(r/N)a∗p+ra∗q apaq+r .

As in Bogoliubov theory, conjugation with UN extracts, from the original quartic interaction, constant, quadratic, cubic, and quartic terms
in creation and annihilation operators a∗p and ap associated with momenta p ∈ Λ∗+ = 2πZ3

/{0}, collected in L
(0)
N , L

(2)
N , L

(3)
N , and L

(4)
N

respectively. The challenge of the Gross-Pitaevskii regime is that, due to the slow decay of V̂(p/N) for large momenta, we cannot neglect the
cubic and quartic contributions in (17) for N →∞. This fact can be understood from different points of view.

● It is well known that the ground state energy of bosons in the Gross-Pitaevskii regime is heavily affected by correlations. Indeed, the
ground state vector is characterized by a correlation structure which varies on the length scale of the scattering length of the interaction
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aN ∼ N−1, and which can be modeled by the solution of the zero energy scattering equation. This is the key ingredient to show upper
and lower bounds consistent with (11) at leading order,45 and to establish the results in Refs. 30–33. The same correlation structure
has to be included in any approach aimed to show the emergence of the Gross-Pitaevskii equation as an effective description for the
evolution of initially trapped Bose-Einstein condensates which evolves under the dynamics generated by (9) [see Ref. 51 (Chap. 5) and
references therein]. On the contrary, the application of the unitary map UN only factors out the condensate, but does not remove the
short scale correlation structure that, as we will see below, still carries an energy of order N.

● From a renormalization group perspective, studying LN corresponds to carry out perturbation theory around Bogoliubov’s approxi-
mation for momenta larger than 2π. However, as already commented in the Introduction, such a theory is divergent in the ultraviolet,
and to get a well defined theory, we need to renormalize both the quadratic and the cubic vertices of the theory.

Before describing how to include the correlation structure into our analysis, let us explain the guiding idea behind our overall strategy,
which can be easily illustrated in the simpler case where we substitute V̂(p/N) by a mean-field potential κV̂(p)with intensity κ > 0 sufficiently
small.

A. A sketch of the strategy in the mean field case
In the approach we are going to follow, the key ingredient used to investigate the validity of Bogoliubov theory is the proof of optimal

bounds on the number and energy of excitations in low energy states. With this goal in mind, let us denote with L mf
N an excitation Hamiltonian

identical to (17) except that V̂(p/N) is substituted by κV̂(p). It is easy to check that there exists a constant C > 0 such that

L mf
N ≥

N
2
κV̂(0) + ∑

p∈Λ∗+

p2a∗p ap +
κ

2N ∑
p,q∈Λ∗+ ,
r∈Λ∗ :

r/=−p,−q

V̂(r)a∗p+ra∗q apaq+r − Cκ (N+ + 1), (18)

where we used that N+ ≤ N. Using positivity of the interaction and the gap in the kinetic energy∑p∈Λ∗+
p2a∗p ap ≥ (2π)2N+, we obtain that for

sufficiently small κ, there exists C > 0 such that

L mf
N ≥

N
2
κV̂(0) + cN+ − C. (19)

This also implies the lower bound L mf
N ≥ N

2 κV̂(0) + C. On the other side by using the vacuum state in F≤N
+ as a trial state, we obtain the

upper bound

L mf
N ≤

N
2
κV̂(0).

This allows us to conclude that the ground state energy of our mean-field Hamiltonian

H mf
N = ∑

p∈Λ∗
p2a∗p ap +

κ
2N ∑

p,q,r∈Λ∗
V̂(r)a∗p+ra∗q apaq+r

satisfies the bound ∣E mf
N −NκV̂(0)/2∣ ≤ C. Moreover for any N-particle wave function ψN ∈ L2

s (ΛN
) such that

⟨ψN , H mf
N ψN⟩ ≤

N
2
κV̂(0) + ζ, (20)

we have that the corresponding excitation vector ξN = U∗ψN satisfies

⟨ξN , L mf
N ξN⟩ ≤

N
2
κV̂(0) + ζ,

and hence, through (19),

⟨ξN ,N+ξN⟩ ≤ C(1 + ζ).

Hence, low energy states have a bounded number of excitations. Additionally, denoting

J. Math. Phys. 60, 081901 (2019); doi: 10.1063/1.5096288 60, 081901-7

Published under license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jm

p/article-pdf/doi/10.1063/1.5096288/14816471/081901_1_online.pdf

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

K = ∑
p∈Λ∗+

p2a∗p ap

as the kinetic energy of excitations and

V mf
N =

κ
2N ∑

p,q∈Λ∗+ ,r∈Λ∗ :
r/=−p,−q

V̂(r)a∗p+ra∗q apaq+r

as the potential energy in the mean-field scaling, from (18), we also obtain

L mf
N ≥

N
2
κV̂(0) +

1
2
(V mf

N + K ) − C. (21)

This implies that any excitation vector ξ associated with low energy states in the sense of (20) has a bounded excitation energy, namely,
satisfies

⟨ξN , H mf
N ξN⟩ ≤ C(1 + ζ),

with H mf
N ∶=K + V mf

N .
We can derive even stronger bounds on the excitation vector ξN associated with normalized N-particle wave function ψN , if instead of

imposing the condition (20), we require ψN to belong to the spectral subspace of HN associated with energies below N
2 κV̂(0) + ζ. To this aim,

we define

L̃N =L mf
N −

N
2
κV̂(0).

Then,

⟨ξN ,N+H mf
N ξN⟩ = ⟨ξN ,N 1/2

+ H mf
N N 1/2

+ ξN⟩ ≤ ⟨ξN ,N 1/2
+ (L̃N + C)N 1/2

+ ξN⟩ ≤ ⟨ξN ,N 1/2
+ [L̃N ,N 1/2

+ ] ξN⟩ + ⟨ξN ,N+(L̃N + C)ξN⟩,

where in the second line we used (21). Using the assumption of ξN being in the spectral subspace of L̃N associated with energies below ζ, we
get

⟨ξN ,N+L̃NξN⟩ ≤ ⟨ξN ,N+ξN⟩
1/2
⟨L̃NξN ,N+L̃NξN⟩

1/2
≤ C(1 + ζ)1/2

⟨L̃NξN , H mf
N L̃NξN⟩

1/2
≤ C(1 + ζ2

).

On the other side, to bound the term ⟨ξN ,N 1/2
+ [L̃N ,N 1/2

+ ] ξN⟩, we use that the commutator [L̃N ,N 1/2
+ ] can be computed explicitly. More

precisely, one can show that the operator A = (H mf
N + 1)−1/2

[L̃N ,N 1/2
+ ](H

mf
N + 1)−1/2 is a self-adjoint operator on F≤N

+ whose norm is
bounded uniformly in N, leading to the bound

⟨ξN ,N 1/2
+ [L̃N ,N 1/2

+ ] ξN⟩ ≤ ⟨ξN ,N+(H
mf

N + 1)ξN⟩
1/2
⟨ξN , (H mf

N + 1)ξN⟩
1/2
≤ δ⟨ξN ,N+H mf

N ξN⟩ + C(1 + ζ).

We conclude that

⟨ξN ,N+H mf
N ξN⟩ ≤ C(1 + ζ2

).

By induction, similar bounds can be proved for expectations of products of the form (H mf
N + 1)(N+ + 1)k onto excitation vectors which are

in the spectral subspace of L̃N associated with energy below ζ, for any k ∈ N.
Armed with these stronger bounds, one can analyze the excitation Hamiltonian L mf

N from a different perspective and show that the
cubic and quartic terms in L mf

N are bounded by CN−1/2
(N + 1)2 and are therefore negligible on low energy states, according to Bogoliubov’s

picture.
If now we want to apply the strategy sketched above to the Gross-Pitaevskii regime, already in the simpler case of sufficiently small

unscaled potential, we find two main difficulties. First of all, the ground state energy in the Gross-Pitaevskii regime is given at leading order in
N by 4πa0N, which is strictly smaller than N

2 κV̂(0). Moreover the quadratic non diagonal term are large (of order N), due to the slow decay
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of the interaction. Both problems are related to the fact that we need to extract from L
(3)
N and L

(4)
N important contributions to the energy of

low energy states. This is what we are going to describe in Sec. III.

III. CORRELATIONS BETWEEN CONDENSATE AND EXCITATION PAIRS
In Sec. II, we emphasized many times that in order to deal with the Gross-Pitaevskii regime, we should take into account correlations

among particles. We include correlations in F≤N
+ by means of a suitable unitary operator which models the creation (annihilation) of excita-

tion pairs out of the condensate. The idea of factoring out correlations using unitary operators in the Fock space (and in particular Bogoliubov
transformations) dates back to Ref. 52. In our setting, to make sure that the truncated Fock space F≤N

+ remains invariant, we will have to use
generalized Bogoliubov transformations. For μ > 0, we define the operator

T(ηH) = exp
⎡
⎢
⎢
⎢
⎢
⎣

1
2 ∑
∣p∣≥μ

ηp(b∗p b∗−p − bpb−p)

⎤
⎥
⎥
⎥
⎥
⎦

, (22)

where we introduced generalized creation and annihilation operators

b∗p = a∗p

√
N −N+

N
, and bp =

√
N −N+

N
ap

for all p ∈ Λ∗+ . To understand the role of the bp and b∗p operators, it is sufficient to observe that, by (15),

U∗N b∗p UN = a∗p
a0
√

N
, U∗N bpUN =

a∗0
√

N
ap.

In other words, b∗p creates a particle with momentum p ∈ Λ∗+ but, at the same time, it annihilates a particle from the condensate; it creates an
excitation, preserving the total number of particles in the system. This guarantees that T(ηH) is an operator from F≤N

+ into itself. The action
of T(ηH) on bp and b∗p is reminiscent of the action of a usual Bogoliubov transformation [which would be defined as (22), but with usual
creation and annihilation operators]. Indeed, for any p such that |p| ≥ μ, we have

T∗(ηH)bpT(ηH) = cosh(ηp)bp + sinh(ηp)b∗−p + dp,

T∗(ηH)b∗p T(ηH) = cosh(ηp)b∗p + sinh(ηp)b−p + d∗p ,
(23)

where it is possible to prove that the operators dp and d−p produce small contributions on states with a bounded number of excitations, as
those we are going to consider. We refer the reader to Ref. 6 (Lemma 3.4) for the precise estimates satisfied by the dp operators and a discussion
of this point. For the sake of these notes it will be sufficient to think that the operators bp and b∗p act as usual creation/annihilation operators.

It remains to discuss the role of the function ηp appearing in (22). The correct choice for this function results to be

ηp =
1

N2
̂(1 − fN)(p/N), (24)

with f N (x) the solution of the Neumann problem

( − Δ +
1
2

N2V(Nx))fN(x) = λN fN(x)

on the ball |x| ≤ 1/2, with f N (x) = 1 and ∂ |x |f N (x) = 0 for |x| = 1/2. The function f N (x) is a slight modification of the zero-energy infinite
volume scattering length and, in particular, we have

∣∫ N3 V(Nx)fN(x) − 8πa0∣ ≤
Ca2

0

N
, (25)

to be compared with (2). The properties of f N (x) can be found in Ref. 6 (Lemma 3.1). What is relevant for the next analysis is that as a
consequence of the definition (24), we have

∣ηp∣ ≤
C
∣p∣2

e−∣p∣/N
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for some constant C > 0. Hence, defining

ηH(p) = ηpχ(∣p∣ ≥ μ),

we have ∥ηH∥2 ≤ Cμ−1/2 (in the following, μ−1/2 will play the role of the small parameter in the general situation where the unscaled potential
is not small). Note that conjugation by T(ηH) does not change substantially the number of excitations. Indeed, by using (23), it is easy to check
that the number of excitations on a excitation state ξN = T(η)ΩN , with ΩN = {1, 0, 0, . . . , 0} ∈F≤N

+ as the vacuum state, is given by

⟨T(ηH)ΩN ,N+T(ηH)ΩN⟩ ≤ C∥ηH∥
2.

More in general, one can show the following lemma [see Ref. 53 (Lemma 3.1)]:

Lemma III.1. For every n ∈ N, there exists a constant C > 0 such that, on F≤N
+ ,

T∗(ηH)(N+ + 1)nT(ηH) ≤ CeC∥ηH∥(N+ + 1)n.

On the other side, since ∥η∥H1 ≤ C
√

N, we expect the few excitations that we are introducing through T(ηH) to carry a large (order N)
contribution to the energy. Therefore, conjugation with T(ηH) has a chance to decrease the vacuum expectation of the excitation Hamiltonian
LN to 4πa0N (to leading order). With this motivation in mind, we define a new excitation Hamiltonian GN : F≤N

+ →F≤N
+ by setting

GN = T∗(ηH)LN T(ηH) = T∗(ηH)UN HN U∗N T(ηH).

The outcome of the action of T(ηH) on LN is summarized by the next proposition, which was proved in Ref. 6 (Proposition 4.2) [note that in
Ref. 6, the high-momentum cutoff was chosen to be μ = ℓ−α, for some α > 3 and ℓ ∈ (0; 1/2) a sufficiently small parameter].

Proposition III.2. Let V ∈ L3
(R3
) be compactly supported, pointwise non-negative, and spherically symmetric. Then,

GN = 4πa0N + HN

+ [2V̂(0) − 8πa0] ∑
p∈Λ∗+ : ∣p∣≤μ

a∗p ap(1 −N+/(2N))

+ 4πa0 ∑
p∈Λ∗+ : ∣p∣≤μ

[b∗p b∗−p + bpb−p]

+
1
√

N
∑

p,q∈Λ∗+ :p+q≠0
V̂(p/N)[b∗p+qa∗−paq + h.c.]

+ EGN ,

(26)

where there exist constants C, α, β > 0 such that

±EGN ≤
C
μα

HN + Cμβ.

We see that indeed the action of T(ηH) renormalizes the constant part of the energy (at leading order) and the nondiagonal
quadratic contributions. Let us quickly explain the mechanism behind the outcome of Proposition III.2. Writing T = eB(ηH), with
B(ηH) = (1/2)∑p∈Λ∗+

ηH(p)(b∗p b∗−p − bpb−p), we observe that

GN = T∗(ηH)LN T(ηH) = e−B(ηH)LN eB(ηH)

≃LN + [LN , B(ηH)] +
1
2
[[LN , B(ηH)], B(ηH)] + . . . . (27)

The commutator [LN , B(ηH)] contains the contributions [K, B(ηH)] and [VN , B(ηH)]. Up to small errors, we find

[K, B(ηH)] ≃ ∑
p∈Λ∗+
∣p∣≥μ

p2ηp[b∗p b∗−p + bpb−p] (28)
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and

[VN , B(ηH)] ≃
1

2N ∑
p,q∈Λ∗+
∣p+q∣≥μ

V̂(q/N)ηq+p[b∗p b∗−p + bpb−p] . (29)

In fact, the commutator [VN , B(ηH)] is approximately quartic in creation and annihilation operators. Rearranging it in normal order, however,
we obtain the quadratic contribution (29) (the remaining, normally ordered, quartic term is negligible). With the appropriate choice of the
coefficients ηp [given by (24)], we can combine the large term

1
2 ∑p∈Λ∗+

V̂(p/N)[b∗p b∗−p + h.c.]

with (28) and (29) so that their sum can be estimated by C∥ηH∥(N+ + 1). At the same time, the second commutator [[LN , B(ηH)], B(ηH)]

produces new constant terms that, again with the choice (24) of ηp, change the vacuum expectation to its correct value 4πa0N.
An important remark is that conjugation by T(ηH) leaves the cubic term and the quadratic diagonal terms in LN unchanged. For

interactions κV with sufficiently small intensity κ > 0, we can bound all the diagonal quadratic terms by Cκ(HN + 1). Moreover, after writing
the cubic term in position space, we get

∣⟨ξ,
1
√

N ∫
dxdyN3κV(N(x − y))b∗x a∗y axξ⟩∣

≤ [∫ dxdyN2κV(N(x − y))∥axayξ∥2
]

1/2

× [∫ dxdyN3κV(N(x − y))∥axξ∥2
]

1/2

≤ Cκ1/2
⟨ξ, VNξ⟩

1/2
⟨ξ,N+ξ⟩

1/2

≤ Cκ1/2
⟨ξ, HNξ⟩.

Hence, for weak interaction potentials, Proposition III.2 immediately implies the lower bound

GN ≥ 4πa0N +
1
2
HN − Cμ,κN+ − C,

where the constant Cμ ,κ > 0 can be chosen to be sufficiently small by choosing μ−1 and κ sufficiently small. Hence, the error term proportional
to the number of particles operator can be controlled by the gap in the kinetic energy, and one can repeat for the Gross-Pitaevskii interaction,
the same strategy sketched in Sec. II A. This is the approach used in Ref. 49 to show condensation with an optimal rate for bosons in the
Gross-Pitaevskii regime, under the assumption of a small unscaled potential.

For large potentials, it is clear that conjugation by T(ηH) is not enough to take advantage of the kinetic energy gap. In fact, we can only
show the following proposition [see Ref. 6 (Proposition 4.2) for a proof].

Proposition III.3. Let V ∈ L3
(R3
) be compactly supported, pointwise non-negative, and spherically symmetric. Then,

GN = 4πa0N + HN + θGN ,

where for every δ > 0, there exists constants C, α, β > 0 such that

±θGN ≤ δHN + Cμα(N+ + 1)

and the improved lower bound

θGN ≥ −δHN − CN+ − Cμβ (30)
holds true for μ (of order one) sufficiently large and N ∈ N large enough.

The remaining part of these notes are devoted to explain how to extend our analysis to large potentials. Looking at (26), it might appear
evident that one possible route to this extension is to take into account for additional correlations, to renormalize the cubic term on the rhs of
(26). Mathematically, this is achieved by conjugating GN with an additional unitary operator, given by the exponential of an operator cubic in
creation and annihilation operators, as described in Sec. IV.
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IV. CORRELATIONS DUE TO TRIPLETS
To renormalize the cubic term on the rhs of (26), we include correlations due to triplets. For a parameter 0 < ν < μ, we define the

low-momentum set

PL = {p ∈ Λ∗+ : ∣p∣ ≤ ν}.

Notice that the high-momentum set entering in the quadratic operator T(ηH)

PH = {p ∈ Λ∗+ : ∣p∣ ≥ μ}

and PL are separated by a set of intermediate momenta ν < |p| < μ. We introduce the operator A : F≤N
+ →F≤N

+ , by

A =
1
√

N
∑

r∈PH
v∈PL

ηr[ b∗r+va∗−rav − h.c. ]. (31)

While the generalized Bogoliubov transformation T(ηH) used in the definition of GN describes scattering processes involving two excitations
with momenta p and −p and two particles in the condensate (i.e., two particles with zero momentum), the cubic operator A corresponds to
processes involving two excitations with large momenta p and p + v, an excitation with small momentum v, and a particle in the condensate.
Here, large and small refer to the expected value of the sound velocity

√
16πa0, which represents the separation between momenta for which

we expect a linear spectrum of excitations and momenta for which the quasiparticles behave as free particles; see Fig. 1.
Similarly to what discussed for T(ηH), conjugation with eA does not substantially change the number of excitations. Indeed, the following

lemma is proved in Ref. 6 (Sec. V).

Lemma IV.1. Suppose that A is defined as in (31). For any k ∈ N, there exists a constant C > 0 such that the operator inequality

e−A
(N+ + 1)keA

≤ C(N+ + 1)k

holds true on F≤N
+ , for all μ > ν > 0, and N large enough.

We use now the cubic phase eA to introduce a new excitation Hamiltonian, defining

RN ∶= e−A GN eA

on a dense subset of F≤N
+ . The definition of the excitation Hamiltonian RN corresponds to rewrite N-particle wave functions in the form

ψN = U∗eA T(ηH)ξN , (32)

with ξN ∈F≤N
+ . Conjugation with eA renormalizes the diagonal quadratic term and the cubic term on the rhs of (26), effectively replacing the

singular potential V̂(p/N) by a potential decaying already on momenta of order one. The mechanism for this renormalization is similar to
the one described around (27). Again, expanding to second order, we find

RN = e−AGN eA
≃ GN + [GN , A] +

1
2
[[GN , A], A] + . . . . (33)

FIG. 1. Schematical picture of the high and low momenta sets entering in the definition of the cubic operator A defined in (31). The arrowed line represents the energy scale
of the problem going from zero energy to high energy (ultraviolet). There are two energy scales in our problem: the first is the inverse of the range of the potential, which in
our case is of order N; the second is provided by the expected value of the velocity of sound, equal to

√
16πa0, which is in our setting of order one. The latter corresponds

to the scale below which the low energy excitation spectrum behaves linearly.
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From the canonical commutation relations (ignoring the fact that A is cubic in generalized, rather than standard, field operators), we conclude
that [K, A] and [VN , A] are cubic and quintic in creation and annihilation operators, respectively. Some of the terms contributing to [VN , A]
are not in normal order; i.e., they contain creation operators lying to the right of annihilation operators. When we rearrange creation and
annihilation operators to restore normal order, we generate an additional cubic contribution. There are therefore two cubic contributions
arising from the first commutator [GN , A] on the rhs of (33). Moreover, the first commutator between the cubic term left in GN and A, and
the second commutator [[HN , A], A] produces the quadratic contributions that renormalizes the diagonal quadratic term in GN . Indeed, one
ends up with the following proposition, whose proof can be found in Ref. 6 (Sec. 8.6).

Proposition IV.2. Let V ∈ L3
(R3
) be compactly supported, pointwise non-negative, and spherically symmetric. Then, for all choices of

μ1/2
< ν < μ2/3, there exist κ, α > 0 and a constant C > 0 such that

RN = 4πa0N − 4πa0
N 2

+

N
+HN + 8πa0 ∑

p∈Λ∗+ , ∣p∣≤μ
a∗p ap(1 −

N+

N
)+ 4πa0 ∑

p∈Λ∗+ , ∣p∣≤μ
[bpb−p + b∗p b∗−p]+

8πa0
√

N
∑

p,q∈Λ∗+
∣p∣≤μ, p≠−q

[b∗p+qa∗−paq + h.c.]+ ERN (34)

with

±ERN ≤ Cμ−κ (HN + 1) + Cμα.

We notice that RN is almost an excitation Hamiltonian for a mean field potential 8πa0χ(∣p∣ ≤ μ). More precisely, we define the function
νμ ∈ L∞(Λ) by setting

νμ(x) ∶= 8πa0 ∑
p∈Λ∗ : ∣p∣≤μ

eip⋅x.

In other words, νμ is defined so that ν̂μ(p) = 8πa0 for all p ∈ Λ∗ with |p| ≤ μ and ν̂μ(p) = 0 otherwise. Observe, in particular, that ν̂μ(p) ≥ 0 for
all p ∈ Λ∗. Using (15), it is easy to check that most of the terms on the rhs of (34) can be obtained by computing UN−1

∑
N
i<j νμ(xi − xj)U∗, and

in fact, we obtain the lower bound

RN ≥
1
N

U
N

∑
i<j
νμ(xi − xj)U∗ + (1 − Cμ−α)(HN + 1) −

4πa0

N ∑
lp,q,r∈Λ∗+

∣r∣≤μ, r≠−p,−q

a∗p+ra∗q apaq+r − C
N 2

+

N
− Cμβ.

Following a standard argument for mean field potentials with non-negative Fourier transform [e.g., Ref. 34 (Lemma 1)], we find

1
N ∑i<j

νμ(xi − xj) ≥ 4πa0N − Cμ3.

Using then the bound

4πa0

N ∑
p,q∈Λ∗+ ,∣r∣≤μ:

r/=−p,−q

⟨ξ, a∗p+ra∗q apaq+rξ⟩ ≤
C
N ∑

p,q∈Λ∗+ ,∣r∣≤μ:
r/=−p,−q

∥ap+raqξ∥∥apaq+rξ∥ ≤
Cμ3

N
∥N+ξ∥2,

we conclude that there exists β > 0 such that

RN ≥ 4πa0 N +
1
2
HN − μ3N 2

+/N − Cμβ. (35)

If we were on a subspace of F≤N
+ with N+ ≤ cN, for sufficiently small c > 0, we could conclude that

RN ≥ 4πa0N + cN+ − C

thus allowing us to show that N+ is bounded on low energy states. This observation suggests us to apply localization techniques developed by
Lewin-Nam-Serfaty-Solovej in Ref. 36 (inspired by previous work of Lieb-Solovej in Ref. 46) based on localization of the number of excitations.
On sectors with few excitations, we can control all the error terms in RN by the gap in the kinetic energy operator. On the other hand, on
sectors with many excitations, we are going to use that we do not have condensation, and therefore the energy per particle must be strictly
larger than 4πa0N [due to the estimate (10)], as described in Sec. V.
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V. LOCALIZATION TECHNIQUES AND BOSE-EINSTEIN CONDENSATION
The aim of this section is to explain how the application of localization techniques from Ref. 36 allows us to show the optimal rate of

condensation and similar bounds for the energy of excitations.
Let f , g : R → [0; 1] be smooth, with f 2(x) + g2(x) = 1 for all x ∈ R. Moreover, assume that f (x) = 0 for x > 1 and f (x) = 1 for x < 1/2. We

fix M = cN and we set fM = f (N+/M) and gM = g(N+/M). It follows from Ref. 6 (Proposition 4.3) that

GN − 4πa0N ≥ fM(GN − 4πa0N)fM + gM(GN − 4πa0N)gM −
Cμ1/2

N2 (HN + 1) (36)

for μ > 0, N ∈ N, and M ∈ N large enough. To bound fMGN fM , we conjugate GN by e−A and use the lower bound (35)

fMGN fM

≥ fMeA RN e−AfM

≥ 4πa0 Nf 2
M

+ fMeA
[

1
2
HN − μ3N2

+/N − Cμα]e−AfM

≥ 4πa0 Nf 2
M

+ fMeA
[

1
2
HN − μκN+]e−AfM − Cμαf 2

M ,

(37)

where we used Lemma IV.1 and chose M = μ−3−κN. Using the gap in the kinetic energy and once more Lemma IV.1, we conclude that for μ
large enough

fMGN fM ≥ 4πa0 Nf 2
M + Cf 2

MN+ − Cμαf 2
M . (38)

On gM using (10), one can claim that there exists a constant C > 0 such that

gMGN gM ≥ 4πa0 Ng2
M + Cg2

MN (39)

for all N sufficiently large. Indeed, if this was not the case, one could build, starting from an excitation vector ξ ∈ F≤N
≥M/2 with at least

M/2 = μ−3−κN/2 particles, an approximate ground state of HN . But this would contradict (10) since the ratio between the expected number of
excitations on ξ and the total number of particles would not go to zero as N →∞. We refer the reader to Ref. 6 (Sec. 6) for details. From (39),
using N+ ≤ N, we get

gMGN gM ≥ 4πa0 Ng2
M + CN+g2

M . (40)

Inserting (38) and (40) on the rhs of (36), we obtain that

GN ≥ 4πa0N + CN+ − CN−2HN − C (41)

for N large enough [the constants C are now allowed to depend on μ and ν, since the cutoff has been fixed once and for always after (38)].
Interpolating (41) with the lower bound

GN ≥ 4πa0N +
1
2
HN − CN+ − C,

obtained using (30), we get

GN ≥ 4πa0N + cN+ − C. (42)

The condensation bound follows easily from (42). Now let ψN ∈ L2
s (ΛN

) with ∥ψN∥ = 1 and

⟨ψN , HNψN⟩ ≤ 4πa0N + ζ.

Recalling that GN = e−B(ηH)UN HN U∗N eB(ηH) and defining the excitation vector ξN = e−B(ηH)UNψN , we have
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⟨ξN ,N+ξN⟩ ≤ C⟨ξN , (GN − 4πa0 N)ξN⟩ + C ≤ C(1 + ζ). (43)

Following a strategy similar to one described for the mean-field case in Sec. II A, we can show the following stronger bounds on excitation
vectors; see Ref. 7 (Sec. IV) for their proof.

Proposition V.1. Let V ∈ L3
(R3
) be non-negative, compactly supported, and spherically symmetric. Let EN be the ground state energy of

the Hamiltonian HN defined in (16) [or, equivalently, in (1)]. Let ψN ∈ L2
s (ΛN

) with ∥ψN∥ = 1 belong to the spectral subspace of HN with
energies below EN + ζ, for some ζ > 0, i.e.,

ψN = 1(−∞;EN +ζ](HN)ψN . (44)

Let ξN = e−B(η)UNψN be the renormalized excitation vector associated with ψN . Then, for any k ∈ N, there exists a constant C > 0 such that

⟨ξN , (N+ + 1)k
(HN + 1)ξN⟩ ≤ C(1 + ζk+1

) .

Using these bounds, we are now in the position to establish the validity of Bogolibov theory in the Gross-Pitaevskii regime, as pictured
in Sec. VI. Notice also that the bound (43) also implies an improved bound for the trace norm convergence in (10). In fact, if γN denotes the
one-particle reduced density matrix associated with ψN , we obtain

1 − ⟨φ0, γNφ0⟩

= 1 −
1
N
⟨ψN , a∗(φ0)a(φ0)ψN⟩

= 1 −
1
N
⟨U∗N eB(ηH)ξN , a∗(φ0)a(φ0)U∗N eB(ηH)ξN⟩

=
1
N
⟨eB(ηH)ξN ,N+eB(ηH)ξN⟩

≤
C
N
⟨ξN ,N+ξN⟩ ≤

C(K + 1)
N

,

where in the last line, we used Lemma III.1.

VI. BOGOLIUBOV THEORY
In this section, we sketch the proof of Theorem I.1, as proved in Ref. 7; we refer to the review Ref. 54 for a more extended presentation

of this part, which is only slightly modified whenever we remove the assumption of smallness of the potential. The key idea is that using the
bounds in Proposition V.1, we can give a second look to the excitation Hamiltonian GN = e−B(ηH)UN HN U∗N eB(ηH), and identify terms which
go to zero as N →∞ on low energy states. More precisely, one finds

GN = CN + QN + CN + VN + δN , (45)

where CN is a constant, QN is quadratic,

CN =
1
√

N
∑

p,q∈Λ∗+ ,p≠−q
V̂(p/N) b∗p+qb∗−p(γqbq + σqb∗−q) + h.c.

with γp = cosh(ηH((p)) and σp = sinh(ηH(p)), and the error term satisfies the bound

±δN ≤
C
√

N
[(HN + 1)(N+ + 1) + (N+ + 1)3

].

If there was no cubic term on the rhs of (45), we could obtain the ground state energy and spectrum of GN just by diagonalizing a quadratic
Hamiltonian. In fact, the quartic interaction can be bounded from above by CN−1on suitable states [see Ref. 7 (Lemma 6.1)] and can be
neglected due to positivity of the interaction as far as lower bounds are concerned.

Once more, the strategy to renormalize the large (order one) cubic term is to conjugate GN by a suitable unitary operator, given by the
exponential of the operator
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Ã =
1
√

N
∑

p,q∈Λ∗+
∣r∣≥
√

N,
∣v∣<
√

N

ηr[σvb∗r+vb∗−r(γvbv + σvb∗−v) − h.c.].

Notice that, as in the definition of A in (31), the operator Ã describes the scattering between two excitations with high momenta, one excitation
with low momenta and one particle in the condensate, but with a different notion of “high” and “small” momenta with respect to (31). We
introduce a new excitation Hamiltonian JN : F≤N

+ →F≤N
+ through

JN = e−ÃGN eÃ
= e−ÃT∗(ηH)UN HN U∗N T(ηH)eÃ. (46)

The latter can be decomposed as

JN = C̃N + Q̃N + VN + δ̃N ,

where C̃N and Q̃N are constant and quadratic in annihilation and creation operators and where

±δ̃N ≤ CN−1/4
[(HN + 1)(N+ + 1) + (N+ + 1)3

].

In particular, the expression of the quadratic part makes evident the effect of the renormalization obtained by conjugating LN with the unitary
operators T(η) and e−Ã. We have in fact

Q̃N = ∑
p∈Λ∗+

[Fpb∗p bp + Gp(b∗p b∗−p + bpb−p)]

with

Fp = p2
(γ2

p + σ2
p) + (V̂(⋅/N) ∗ f̂N)p

(γp + σp)
2

Gp = 2p2γpσp + (V̂(⋅/N) ∗ f̂N)p
(γp + σp)

2.

We see that the Fourier transform of the interaction potential V̂(p/N) has been replaced everywhere by (V̂(⋅/N)∗ f̂N)p
, whose value for p = 0

is related to the scattering length a0 through the relation (25). One can check that for all p ∈ Λ∗+ ,

p2
/2 ≤ Fp ≤ C(1 + p2

), ∣Gp∣ ≤ C/p2, ∣Gp∣ < Fp,

and therefore, we can introduce coefficients τp ∈ R such that

tanh(2τp) = −
Gp

Fp

for all p ∈ Λ∗+ . Using these coefficients, we define the generalized Bogoliubov transformation eB(τ) : F≤N
+ → F≤N

+ with

T(τ) ∶= exp
⎡
⎢
⎢
⎢
⎢
⎣

1
2 ∑p∈Λ∗+

τp(b∗−pb∗p − b−pbp)

⎤
⎥
⎥
⎥
⎥
⎦

.

Notice that, since |τp| ≤ C|p|−4 for all p ∈ Λ∗+ , we can show that [see Ref. 7 (Lemma 5.2)]

T∗(τ)(N+ + 1)(HN + 1)T(τ) ≤ C(N+ + 1)(HN + 1).

That is, the generalized Bogoliubov transformation T(τ) does not change substantially neither the number nor the energy of the excita-
tions. Conjugation of the excitation Hamiltonian JN defined in (46) with T(τ) leads to the excitation Hamiltonian MN : F≤N

+ → F≤N
+

defined as
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MN = T∗(τ)JN T(τ) = T∗(τ)e−Ã T∗(ηH)UN HN U∗N T(ηH)eÃ T(τ).
One finally finds

MN = 4πa0(N − 1) + eΛa2
0

+
1
2 ∑p∈Λ∗+

[
√

p4 + 16πa0p2 − p2
− 8πa0 +

(8πa0)
2

2p2 ]

+ ∑
p∈Λ∗+

√
p4 + 16πa0p2a∗p ap + VN + δ′N

with
±δ′N ≤ CN−1/4

[(HN + 1)(N+ + 1) + (N+ + 1)3
].

Theorem I.1 follows from the min-max principle, since on low energy states of the diagonal Hamiltonian, we find VN ≤ CN−1
(ζ + 1)7/2 [with

ζ entering in the spectral assumption (44)].
The results of Theorem I.1, together with standard arguments as in Ref. 35 (Sec. 7), also provide an approximation for the eigenvectors

corresponding to low energy states. In particular, if ψN denotes a ground state vector of the Hamiltonian HN , one can show that there exists a
phase ω ∈ [0; 2π) such that

∥ψN − eiωU∗N T(ηH) eÃ T(τ)Ω∥
2
≤

C
θ1 − θ0

N−1/4, (47)

where θ0 ≤ θ1 ≤ . . . denote the ordered eigenvalues of HN .
It is interesting to compare Eq. (47) with the approximation for the ground state vector within Bogoliubov’s approximation that would

have been of the form U∗N T̃(τ̃)Ω, with

T̃(τ̃) = exp
⎡
⎢
⎢
⎢
⎢
⎣

1
2 ∑p∈Λ∗+

τ̃p(a∗p a∗−p − apa−p)

⎤
⎥
⎥
⎥
⎥
⎦

as the usual Bogoliubov transformation and coefficients τ̃p ∈ R that in the Gross-Pitaevskii regime would be defined by

tanh(2τ̃p) = −
V̂(p/N)

p2 + V̂(p/N)

[see Ref. 9 (Appendix A)]. The unitary transformation T̃(τ̃) is the one that diagonalizes the quadratic terms in the Bogoliubov Hamiltonian,
and so it has the same role of the transformation T(τ) in our approach. On the other side, while the kernel τ̃p has a large H1- norm [similarly
to the kernel ηp defined in (24)], the kernel τp has both the L2 and H1 norms uniformly bounded in N. Hence, the diagonalizing unitary
transformation T(τ) does not change substantially neither the number nor the energy of excitations. We see that the trick to take into account
for the correlations among excitations neglected in Bogoliubov theory was to implement two additional unitary transformations T(ηH) and
eÃ which have extracted the large energy contained in the cubic and quartic terms. In particular, one of the consequences of the action of
T(ηH) and eÃ is the renormalization of the quadratic terms of the excitation Hamiltonian RN , leading to the appearance of the convolution
(V̂(⋅/N) ∗ f̂N)p

in the definition of the coefficients τp.
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