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SUMMARY & CONCLUSIONS 

This paper compares hard disk drives (HDDs) and solid-
state drives (SSDs), the two most used storage devices in data 
centers, which frequently fail and are among the main causes of 
data center downtime. Using a six-year field data of 100,000 
HDDs from the Backblaze dataset and a six-year field data of 
30,000 SSDs from a Google data center, we characterize 
workload conditions that prompt drive failures. %and show that 
they differ from common expectation. We develop machine 
learning models that accurately predict the drive failure state 
several days in advance and provide highly interpretable results 
that are useful to identify the causes and symptoms of drive 
failures.  

1 INTRODUCTION 

 Data centers dependability is highly affected by storage 
devices such as hard disk drives (HDDs) and solid state drives 
(SSDs) [1,2]. Accurate prediction of storage device failures 
increases the data center dependability by enabling actions to 
reduce data loss [3], such as drive replacement before failures 
occur, migration of data to other resources, and allocation of 
virtual machines to disks that are not prone to failure [4]. 
Observations from HDDs (SSDs) cannot be generalized to 
SSDs (HDDs) due to their different physical mechanisms. 
Previous research on HDD dependability analyzes data 
collected during a period of up to two years from a few disk 
models [5,6]. Most SSD studies use simulated or controlled 
environments [7,8] and consider specific error types [9,10]. 

In this paper, we investigate HDD and SSD failures by 
analyzing disk logs collected from real-world data centers over 
a period of six years. We analyze Self-Monitoring, Analysis and 
Reporting Technology (SMART) traces of HDDs from the 
Backblaze data center [11] and the logs of SSDs collected at a 
Google data center. We study the role of errors accounted in the 
logs in triggering future drive failures. 

The datasets considered in this paper contain a tremendous 
amount of data (i.e., tens of millions of daily drive reports) 
regarding drive performance and errors. Error logs are analyzed 
to find attributes that are related to drive malfunctions and may 
be used to predict forthcoming failures. Statistical methods do 
not achieve good results and there is no evidence that the 

repairing process is started by deterministic decision rules. We 
train machine learning models with monitoring logs to achieve 
accurate and fast failure prediction several days before the drive 
failure. 

Highly imbalanced datasets (the healthy-faulty ratio is 
10,000:1) make it difficult to achieve simultaneously high true 
positive rates and low false positive ones. We present different 
ways to partition the HDD and SSD datasets to increase model 
accuracy. This partitioning is based on workload analysis that 
was first developed in [12] for SSDs and focuses on the 
discovery of certain drive attributes. We saw that similar 
partitioning can be also successfully applied for the case of 
HDDs. We also focus on the interpretability of the machine 
learning models and derive insights that can be used to drive 
proactive disk management policies. Our findings are 
summarized as follows: 
 Drive failures are triggered by a set of attributes. There is 

no single metric that triggers a drive failure after it reaches 
a certain threshold.  

 Several machine learning predictors are quite successful 
for failure prediction. Random Forest models are found to 
be the most successful for both SSDs and HDDs. 

 Datasets may be partitioned to improve the performance of 
the classifier.  
Partitioning SSDs on the drive age attribute and HDDs on 

head flying hours (i.e., SMART 240) increases model accuracy. 

2 SSD AND HDD DATASET  

The SSD dataset consists of daily performance logs for 
three multi-level cell (MLC) SSD models collected at a Google 
data center over a period of six years. All three models are 
manufactured by the same vendor and have a 480GB capacity 
and a lithography on the order of 50nm. They utilize custom 
firmware and drivers, meaning that error reporting is done in a 
proprietary format rather than through standard SMART 
features. We refer to the three models as MLC-A, MLC-B, and 
MLC-D in accordance with the naming in [9,13]. We have data 
on over 10,000 unique drives for each drive model, totaling 
over 40,000,000 daily drive reports overall. The logs used in 
this paper report daily summaries of drive activity. Drives are 
uniquely identified by their drive ID, which is a hashed value 
of their serial number. For each day of operation, the following 
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metrics are reported: drive age; number of operations and 
program-erase cycles; drive failure state; number of bad blocks 
in the drive; count of different errors (e.g., correctable and 
uncorrectable errors). 

The HDD dataset contains daily logs of HDDs collected at 
a Backblaze data center over six years. Basic information such 
as serial number, model, and date is reported, as well as 
standard SMART features. We consider the 5 most popular 
Seagate HDD models starting from January 17, 2014, until 
December 31, 2019. There are over 100,000 unique HDDs in 
the dataset, with more than 100,000,000 daily reports in total. 
HDDs are uniquely identified by their serial number. A 
snapshot operation is performed every day for all operational 
hard drives.  

3 DRIVE FAILURE AND CAUSES 

In this section, we analyze failures of SSDs and HDDs. We 
identify possible symptoms and causes of those failures. 

3.1 Drive Failure 

Table 1 shows the percentage of failures for each drive 
model in SSD and HDD datasets. On average, the failure rate 
of SSDs is higher than the one of HDDs. Table 2 provides more 
insights by reporting statistics on the frequency of failures for 
the same drive. Unexpectedly, we find that some SSDs have 
failed as many as four times over the course of their lifetime. 
Nonetheless, 89.6% of drives with failures fail only once. 
HDDs have no more than 2 failures per drive, and only 0.194% 
of the failed drives has 2 failures. 

Table 1 – High-level failure incidence statistics. 

 Model #Failures %Failed 

SSD 

MLC-A 734 6.95 
MLC-B 1565 14.3 
MLC-D 1580 12.5 

All 3879 11.29 

HDD 

ST12000NM0007 1448 3.76 
ST3000DM001 1357 31.89 
ST4000DM000 3710 10.21 
ST8000DM002 354 3.47 

ST8000NM0055 435 2.91 
All 7743 7.01 

Table 2 – Distribution of lifetime failure counts. 

 # of Failures % of Drives % of Failed Drives 

SSD 

0 88.71 — 
1 10.10 89.60 
2 1.038 9.208 
3 0.133 1.180 
4 0.001 0.001 

HDD 
0 93.35 — 
1 6.64 99.81 
2 0.01 0.194 

HDD failure events are directly logged using the failure 
feature, while failures are not directly reported for SSDs.  

(a) SSD          (b) HDD 

Figure 1 - CDF of the length of the drive’s operational period. 
The bar indicates what proportion of operational periods are 

not observed to end. Failure rate of SSDs is larger than HDDs 

Hence, in the SSD case, we define failure events as a 
drive’s last day of operational activity This is a natural point of 
failure since, after this point in the timeline, the drive has ceased 
normal function and needs to be repaired. If no performance 
summaries are documented in the SSD log, or substantially 
higher rates of inactivity relatively to normal drive operation 
are discovered, i.e., an absence of read or write operations 
provisioned to the drive, then we define a failure as happening 
directly prior to this period of inactivity, if such a period exists. 
For both HDDs and SSDs, the failed drive may or may not be 
repaired successfully. If it is repaired, it re-enters its operational 
period.  

Fig. 1 presents the CDF of the length of operational periods 
(alternately denoted “time to failure”). The CDF includes both 
operational periods starting from the beginning of the drive’s 
lifetime and operational periods following a post-failure reentry 
if the failed drive is successfully repaired. More than 80% and 
90% of operational periods of SSDs and HDDs, respectively, 
are not observed to end with failure during the 6 year sampling 
period; this probability mass is indicated by the bar centered at 
infinity. The figure indicates that there is a substantial 
variability in the drive operational time, with the majority of 
operating times being long. Yet, there is a nonnegligible portion 
of operating times that are interrupted by failures. 

Comparing SSDs with HDDs in Figs. 1(a) and (b), the 
maximum time to failure of HDDs is less than 5 years, while 
the one of SSDs is close to 6 years. Only 7% of HDDs fail after 
an operational period, while for SSDs it is near to 20%. This is 
due to 1) the lower failure rate of HDDs compared to the one of 
SSDs and 2) the different maximum number of failures on a 
single drive (i.e., 2 for HDDs and 4 for SSDs, see Table 2). 

3.2 Symptoms and Causes of Failures 

Since the features/information provided by the two datasets 
are different, here we analyze SSDs and HDDs separately. 

1) Age in SSDs: Recall that Table 1 shows that, among 
the drives represented in the datasets, 11.29% of SSDs and 
7.01% of HDDs fail at least once. A natural question is when 
do these failures (and the following swaps for SSDs) occur in 
the drive’s lifetime: what is the role of age in drive failure? 
Figure 2(a) reports the CDF of the failure age (solid line) as a 
function of the drive age for SSDs. The figure shows that there 
are many more drive failures in the first 90 days of drive 
operation than at any other point in the drive lifetime. In fact, 
15% of observed failures occur on drives less than 30 days old 
and 25% occur on drives less than 90 days old. This seems to 

Authorized licensed use limited to: Gran Sasso Science Institute. Downloaded on April 18,2023 at 10:13:49 UTC from IEEE Xplore.  Restrictions apply. 



indicate that these drives have an infancy period during which 
drive mortality rate is particularly high. This performance 
pattern has been noticed previously in similar studies of SSDs 
in the wild [14]. 

 

(a) SSD          (b) HDD 

Figure 2 - The CDF of the age of failed drives (solid line) and 
the proportion of functioning drives that fail at a given age 

level, in months (dashed line) 

The  slope of the CDF in Figure 2(a) gives us an estimate 
of the rate at which swaps occur at a given drive age. However, 
this estimate is skewed since not all drive ages are equally 
represented in the data. For example, the rate of failures seems 
to slow down following the four year mark, but this is due to 
the fact that drives of this age level are not as common in the 
data. We normalize the number of swaps within a month by the 
amount of drives represented in the data at that month to 
produce an unbiased failure rate for each month (dashed line in  
Figure 2). We see that this rate evens out after the third month, 
indicating that the length of this observed highfailure infancy 
period is approximately 90 days. Accordingly, for the 
remainder of this paper, we distinguish drive swaps as young 
versus old, i.e., those swaps occurring before vs. after the 90-
day mark. Beyond the 90-day mark, we observe that the failure 
rate is roughly constant, suggesting that, even if drives become 
very old, they are not more prone to failure. 

One potential explanation for the spike in failures for infant 
drives is that they are undergoing a “burn-in” period in 
manufacturing malfunctions. This is a common practice in data 
centers, wherein new drives are subjected to a series of high-
intensity workloads in order to test their resilience and check 
for manufacturing faults. These increased workloads could 
stress the drive, leading to a heightened rate of failure.  

2) Head Flying Hours in HDDs: Similar to the drive age in 
SSDs shown in Figure 2(a), we also present a similar plot for 
HDDs in Figure 2(b). Differently from the high failure rate of 
young SSDs, the failure rate for HDDs regarding drive age is 
relatively small (less than 1%). Therefore, we need to find other 
features which may be related to failure rate. 

We examine all SMART features for HDDs, and find out 
that head flying hours (HFH, SMART 240) is highly related to 
failures. Here we define two kinds of disks regarding head 
flying hours with a certain threshold: i) Large HFH disks are 
observed at least once with head flying hours larger than the 
threshold; ii) Small HFH disks always have head flying hours 
smaller than or equal to the threshold. 

Figure 3(a) shows the failure rate of small and large HFH 
drives as a function of the threshold. The average faialure rate 
of all HDDs is also reported (baseline, see dashed line). We 
observe two situations with high failure rate in Figure 3: i) small 

HFH when threshold is less than 3000 (the beginning of small 
HFH line), and ii) large HFH when threshold is larger than 
40,000 (the end of large HFH line).  

 

(a) Failure Rate         (b) HDD Percentage 

Figure 3 - Failure rate and percentage of corresponding 
HDDs with different head flying hours (SMART 240). 

The percentage of HDDs if we partition the dataset 
according to HFH is also shown in Figure 3(b). When the 
threshold is less than 3000, the percentage of small HFH drives 
is less than 3%, therefore it is not representative. When the 
threshold is larger than 40,000, the percentage of large HFH is 
about 20%, which is worth to be considered. The failure rate of 
these 20% large HFH disks is 17%, which is much higher than 
the 7% failure average (baseline). Balancing the failure rate and 
percentage of large HFH disks, we use threshold = 40;000 to 
split the dataset. This observation (HDDs with small and large 
HFH have different resilience behavior) guides us to split the 
dataset for better prediction, see Section 4.3 for more details. 

4  FAILURE PREDICTION 

In this section, we use machine learning models to detect 
SSD and HDD failures that will occur within N ≥ 0 days. 
Causes of SSD and HDD failure investigated in Section 3.2 are 
used to improve model accuracy. Feature importance allows 
identifying those attributes that are more critical for SSD and 
HDD lifetimes. 

4.1 Model description 

Input. Both SSD and HDD datasets present daily statistics 
and are extremely imbalanced, i.e., the number of healthy disks 
(majority class) is larger than the number of faulty ones 
(minority class). In the SSD case, the ratio of healthy and 
defective drives is 10,000:1, for HDDs it is 13,000:1. To deal 
with such imbalanced datasets, we under-sample the majority 
class, use cross-validation for training and testing the model, 
and evaluate its performance with measures that are not affected 
by imbalanced datasets.  

Under-sampling. The training set of both datasets is 
undersampled to result in a 1:1 healthy-faulty drives ratio to 
avoid the classifier being biased toward healthy drives. We use 
a random strategy, i.e., observations to be removed are 
randomly chosen from the majority class. We observe that the 
model performance is not profoundly affected by considering 
different under-sampling strategies and healthy-faulty ratios.  

Cross-Validation. Classifiers are cross-validated by 
splitting each dataset into five different folds (4 folds for 
training, 1 for testing). The dataset is partitioned by drive ID 
(i.e., all observations of a drive belong to the same fold and are 
not used concurrently for training and testing). If folds are 
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created by randomly partitioning the dataset as in [5,9], future 
observations of a drive may be used to predict the past failure 
state of the same drive. This is undesirable since no future 
information is available in real scenarios. 

Output. The model returns a continuous value in the 
interval (0,1), i.e., the probability that the drive fails. Such a 
value is discretized by using a discrimination threshold, α. If the 
output is larger than α, then the model predicts a failure; 
otherwise, the model predicts a non-failure. Due to its 
insensitiveness to imbalanced datasets, receiver operating 
characteristic (ROC) is a widely used metric to evaluate the 
accuracy of binary classifiers [9]. ROC curve plots the true 
positive rate, TPR=TP/(TP+FN), against the false positive rate, 
FPR=FP/(FP+TN), of the analyzed classifier by considering 
different values of α. We also use the area under the ROC curve 
(i.e., AUROC) to determine the performance of the proposed 
classifier. The AUROC value is between 0.5 (i.e., random 
classifier) and 1 (i.e., perfect predictor). 

4.2 Prediction Accuracy 

We investigate and report the performance of different 
classification models in Table 3. It shows the AUROC of 
predictors for different lookahead windows and datasets (i.e., 
SSDs and HDDs). Although Table 3 shows only one value for 
each classifier, we investigate their performance with various 
hyperparameters. XGBoost and Random Forest models have 
similar performance, but the time required to train the latter 
classifier is only 5% of the time required for training the former 
one. Table 3 also shows that, for all classifiers, the AUROC 
decreases when the lookahead window increases.  

Table 3 - AUROC for different predictors and lookahead 
windows, N. The cross-validated average AUROC is provided 

with the standard deviation across folds. 

 
Figure 4 plots the AUROC of the Random Forest 

prediction on HDD (solid line) and SSD (dashed line) datasets 
against different lookahead windows. Each value, obtained by 
averaging the AUROC of different cross-validation folds, is 
plotted with its standard deviation. In both cases, the Random 
Forest performance decreases for longer lookahead windows 
and better AUROC values are observed for the HDD dataset. 
Figure 4 suggests that the Random Forest can efficiently predict 
SSD and HDD failures for N ≤ 2 and N ≤ 8 days lookahead, 

respectively. 
 

Figure 4 - Random Forest AUROC as a function of lookahead 
window size, N. Error bars indicate the standard deviation of 

the cross-validated error across folds. 

4.3 Model Improvement 

Section 3.2 shows that many SSD failures are related to the 
drive age, while HDD ones are affected by the head flying hours 
(i.e., SMART 240). Here, we use those attributes to improve the 
performance of the model. Each dataset is split based on the 
value of the considered feature (i.e., drive age or head flying 
hours).  Then, a model is trained and validated on each sub-
dataset and the performance of each new model is compared to 
the performance obtained without splitting the dataset. 

Fig. 5 shows the ROC curve of the model when it is trained 
on different sub-dataset and predicts the state of each drive in 
the next 24 hours. As depicted in Fig. 5(a), the prediction model 
works better with young SSDs (i.e., drive age smaller than 3 
months) since its AUROC is significantly larger (0.961) than 
the one shown in Fig. 4 (0.906). This comes at the expense of 
slightly reduced performance for older drives (0.894). 
Similarly, Fig. 5(b) shows the performance improvement 
observed by splitting the HDD dataset on the head flying hours 
feature (i.e., 40,000 hours). The model can better predict the 
state of HDDs that spend a longer time in positioning their 
heads (0.929). Improvements are observed comparing to the no-
split strategy whose AUROC is 0.902, while the performance 
for drives with small head flying hours slightly decreases 
(0.890). It is worth noting that the 20% of swap-inducing 
failures in the SSD dataset are young failures, while the 25% of 
HDDs has a large head flying hours.  

(a) SSD   (b) HDD 

Figure 5 - ROC curves after splitting the dataset on drive 
features. Prediction model is random forest with lookahead 

window N=0 days. HFH is for Head Flying Hours (i.e., 
SMART 240). 

4.4 Model Interpretability 

Random Forest models assign a score to each attribute 
based on its relevance for solving the classification problem. 
This increases the model interpretability since it is possible to 
identify those features that are more related to drive failures. 

 N 0 1 7 

S
S

D
 

Logistic Reg. 0:796±0:010 0:765±0:009 0:713±0:010 
k-NN 0:816±0:013 0:791±0:009 0:716±0:008 
SVM 0:821±0:014 0:795±0:011 0:728±0:011 

Neural network 0:857±0:007 0:828±0:004 0:770±0:008 
Decision tree 0:872±0:007 0:840±0:007 0:780±0:006 

XGBoost 0:904±0:001 0:873±0:002 0:809±0:001 
Random forest 0:905±0:008 0:859±0:007 0:803±0:008 

H
D

D
 

Logistic Reg. 0:668±0:001 0:669±0:001 0:668±0:001 
k-NN 0:699±0:022 0:699±0:026 0:691±0:029 
SVM 0:679±0:012 0:689±0:009 0:684±0:009 

Neural network 0:684±0:065 0:683±0:076 0:682±0:076 
Decision tree 0:886±0:051 0:870±0:053 0:837±0:052 

XGBoost 0:904±0:001 0:888±0:001 0:854±0:001 
Random forest 0:903±0:013 0:888±0:010 0:854±0:006 
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(a) Failure Rate         (b) HDD Percentage 

Figure 6 - Feature importance for Random Forest models 
after splitting the dataset on drive features. 

Fig. 6 shows the TOP-10 features for each sub-dataset 
considered in Section 4.3 (i.e., young and old SSDs, HDDs with 
small and large head flying hours). Fig. 6(a) shows the feature 
ranking for the SSD dataset. When considering young drives, 
the drive age is the most important feature, followed by the read 
count, its cumulative value, and the cumulative number of bad 
blocks. For old SSDs, featu  res counting correctable errors and 
read/write operations, and the cumulative number of bad blocks 
are in the TOP-4. It is expected that read and write counts are 
more relevant for the state prediction of old drives since young 
drives may have only a few activities at the failure time. Fig. 
6(b) depicts the feature importance for the HDD dataset. The 
number of current pending sectors, uncorrectable errors, 
uncorrectable sectors, and r  eallocated sectors are among the 
most important features for detecting failing drives. This is 
similar to what is observe  d in [9]. The attribute ranking of 
HDDs with large head flying hours provides new insights. The 
two most relevant features are the incremental step of written 
logical block addressing (LBA) and seek error rate, followed by 
the number of uncorrectable errors and uncorrectable sectors. 
The seek error rate and the uncorrectable sector count are 
observed to be important features also in [15]. The reallocated 
sector count is not in the TOP-10 important features for HDDs 
with large head flying hours.  

5 RELATED WORK 

Prior work investigates the main components that affect the 
data center dependability [16,17,18,19] and storage drives are 
among the most important ones [1,2]. Different approaches are 
proposed to predict drives failures on various datasets 
[15,20,21]. However, to fairly compare the performance of our 
method with other approaches, the same dataset must be used 
[22]. The Backblaze dataset is used in [5,23] to train and 
validate their approaches for predicting disk failures while [9] 
uses the Backblaze and the Google datasets for investigating 
faulty HDDs and SSDs. The regularized greedy forest adopted 
by Botezatu et al. [5] has 98% precision and accuracy, but it 
splits observations from the same drive into training and test 
sets not considering error and workload correlations across 
different drive days. Similarly to Wang et al. [6], it also 
undersamples both training and  test sets [23], but resampling 
the whole dataset (training and test sets) generates 

overoptimistic results. Aussel et al. [23] train and evaluate a 
random forest on a small subset of the Backblaze dataset (i.e., 
only data from 2014) resulting in high precision and 
considerable recall. However, they filter out observations with 
similar features and different failure states, that requires apriori 
knowledge of the drive state. Mahdisoltani et al. [9] investigates 
different prediction models to predict uncorrectable errors and 
bad blocks in HDDs and SSDs, and they show that random 
forests provide good performance for this task. Although our 
approach is similar to the one presented in [9], we aim to predict 
drive failures and do not try to predict errors. Approaches for 
online HDD failure prediction are also investigated [24,25] by 
using online random forests. The SSD dataset does not provide 
global timestamps, so online prediction cannot be implemented. 

In this paper, we explore the capability of random forests 
for predicting drive failures and investigate possible 
enhancements by statistically analyzing drive features and 
using different models based on observed attributes. We 
consider a conceivably long lookahead window and use two 
large and real datasets for training and validating the proposed 
machine learning approach. To the best of our knowledge, 
storage device failures have never been studied by splitting the 
dataset based on attribute values.  

6 CONCLUSION 

In this paper, we investigate SSD and HDD failures using 
two traces from production environments. Daily logs for 30,000 
SSDs are collected at a Google data center, while 100,000 
HDDs are observed at a Backblaze data center. We train and 
test different classifiers to predict faulty SSDs and HDDs, and 
note that Random Forest models provide accurate predictions 
with a short training time. Their high interpretability makes 
them the best predictor for the analyzed problem. We observe 
that splitting each dataset based on attribute values of its 
observations allows increasing the performance of random 
forests. The drive age is a critical attribute for predicting SSD 
failures; drives failing before being three months old can be 
detected easier than other drives. When predicting faulty 
HDDs, a higer detection rate is observed for drives with head 
flying hours (SMART 240) longer than 40,000 hours. 
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