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Abstract. A new approach to solving eigenvalue optimization problems for large structured ma-
trices is proposed and studied. The class of optimization problems considered is related to computing
structured pseudospectra and their extremal points, and to structured matrix nearness problems such
as computing the distance to instability or to singularity under structured perturbations. The per-
turbation structure can be a general linear structure. We focus on the practically important cases
of large matrices with a given sparsity pattern and on perturbation matrices with given range and
co-range. It is known that analogous eigenvalue optimization for unstructured complex matrices fa-
vorably works with rank-1 matrices. The novelty of the present paper is that structured eigenvalue
optimization can still be performed with rank-1 matrices, which yields a significant reduction of
storage and in some cases of the computational cost. Optimizers are shown to be rank-1 matrices
orthogonally projected onto the given structure. This is used in the numerical algorithms.

The numerical approach comes in two different versions. If the rank-1 matrices projected onto
the structure form a manifold and if the orthogonal projection onto the corresponding tangent spaces
is known and computationally inexpensive, as is the case for matrices with given range and co-range,
then the method relies on a gradient system on this manifold. Otherwise, in particular for matrices
with a given sparsity pattern, the method relies on the orthogonal projection of the free gradient onto
the tangent space of the manifold of complex rank-1 matrices. The solution of this rank-1 system is
then projected onto the structure. It is shown that there is a bijective correspondence between the
stationary points of the gradient system on the structure space and of the rank-1 system. Near a local
minimizer the rank-1 tangent projection is very close to the identity map, and so the computationally
favorable rank-1 projected system behaves locally like the gradient system. Numerical experiments
illustrate the two approaches for large matrices with a given sparsity pattern and for perturbation
matrices with given range and co-range.
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1. Introduction. We describe an approach to structured eigenvalue optimiza-
tion problems that uses constrained gradient flows and the underlying rank-1 property
of the optimizers. We illustrate basic techniques on a class of problems that arise in
computing structured pseudospectra or their extremal points and appear as the essen-
tial algorithmic building block in structured matrix nearness problems. For example,
we determine the largest possible spectral abscissa or radius of a given matrix under
perturbations of a prescribed norm that preserve its structure, or - in other words
- the structured pseudospectral abscissa or radius. This is an important subtask in
the computation of structured stability radii (or structured distance to instability in
another terminology). In the literature these quantities are extensively studied with
the purpose of analyzing stability properties and robustness of linear dynamical sys-
tems (see, e.g., [16]). Similarly, if one is interested in the distance of a matrix to
singularity, the unstructured distance is the smallest singular value. However, if the
matrix is structured, having a small singular value does not imply the existence of a
small structured perturbation that makes it singular, and the structured distance to
singularity is not readily obtained.
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The structures considered here are general complex- or real-linear structures, that
is, the perturbation matrices are restricted to lie in a structure space S, which can
be an arbitrary linear subspace of Cn,n or Rn,n. We will put the focus on two very
different classes of major interest in applications,

(i) perturbation matrices with a given sparsity pattern and

(ii) perturbation matrices with given range and co-range.

Instead of a direct discrete approach to solve the optimization problems, we present
a continuous approach using structure- and norm-constrained gradient flows, which
reveals the underlying rank-1 property of optimizers, on which we build our discrete
optimization method. The rank-1 property is well-known for unstructured problems
(see e.g. [27]) and has been exploited for developing suitable algorithms (see e.g.
[14, 22, 10]). The rank-1 differential equation is finally fully discretized, using an
appropriate time discretization (here chosen beyond mere gradient descent) and an
adaptive, line search-type stepsize selection. We mention that there are several sit-
uations previously addressed in the literature where considering a time-continuous
approach provides new insight, e.g. [4, 6, 17, 27, 1] and references therein. This list
is far from exhaustive.

In previous works, structured eigenvalue optimization problems were addressed
for some specific structures. For example when the matrices are required to be real
(the unstructured problem would consider them as complex), it has been proved that
the optimizers have a rank-2 structure [25] and indeed are obtained as real parts of
an underlying rank-1 matrix [11]. Similarly, Hamiltonian eigenvalue optimization has
been studied in detail in [24] and [2], in the setting of robust passivity analysis of linear
control systems, where eigenvalues of Hamiltonian matrices have to be bounded away
from the imaginary axis. In that case it is possible to show that for a real Hamiltonian
matrix, extremal perturbations have rank 4 [9]. However, when considering for ex-
ample a sparse matrix, the low-rank property of optimizers seems to be irremediably
lost. It is a basic goal of this article to uncover the underlying rank-1 property and to
show how it can be used in algorithms for structured eigenvalue optimization.

The paper is organized as follows. In Section 2 we set up the framework and
present our approach, which is based on a structure- and norm-constrained gradient
system. We show that optimizers are orthogonal projections of rank-1 matrices onto
the given structure. We discuss the possibilities and difficulties of using a gradient
system for structure-projected rank-1 matrices. This works well for the case (ii) of
prescribed range and co-range, but is not feasible for the case (i) of a prescribed
sparsity pattern. In Section 3 we introduce instead a differential equation on the
manifold of rank-1 matrices of unit Frobenius norm, for which the stationary points are
shown to be in a bijective correspondence with the stationary points of the structure-
and norm-constrained gradient system. In Section 4 we prove local convergence to
strong minima under an assumption that appears to be generically satisfied in case
(i) of sparse matrices, but is not satisifed in case (ii) of perturbation matrices with
prescribed range and co-range. A basic observation, valid for all cases, is that near
a local minimizer, the rank-1 tangent projection is very close to the identity map,
and so the computationally favorable rank-1 projected system behaves locally like
the gradient system. In Section 5 we discretize the rank-1 differential equation by
a splitting method. This leads us to a fully discrete algorithm that updates rank-
1 matrices in every step. Then, in Section 6 we describe a two-level approach to
compute the structured stability radius (or structured distance to instability), used
to characterize robustness of spectral stability properties. This is an important use
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of the considered class of eigenvalue optimization problems for solving structured
matrix nearness problems. The structured distance to singularity is computed in an
analogous way. In Section 7 we present some numerical examples showing that the
rank-1 system is well-suited for the efficient computation of optimizers.

Finally, in Section 8 we show how the alternative approach of using the gradi-
ent system for structure-projected rank-1 matrices can be used for the case (ii) of
prescribed range and co-range.

2. Structured eigenvalue optimization and constrained gradient flows.
In this section we formulate and discuss a class of eigenvalue optimization problems
that are related to structured pseudospectra. We derive and study structure- and
norm-constrained gradient systems and their stationary points, which turn out to be
structure-projected rank-1 matrices.

2.1. Problem formulation and motivation. For a matrix A ∈ Cn,n, let
λ(A) ∈ C be a target eigenvalue of A, for example:

(i) an eigenvalue of minimal or maximal real part;
(ii) an eigenvalue of minimal or maximal modulus;
(iii) a closest eigenvalue to a given set in the complex plane.
We note that here the target eigenvalue need not depend continuously on the

matrix A when several eigenvalues are simultaneously extremal, but it depends con-
tinuously on A when the extremal eigenvalue is unique.

Let S be a subspace of the vector space of complex or real n × n matrices, e.g.,
a space of matrices with a prescribed sparsity pattern, or matrices with given range
and co-range. We let

f : C2 → C with f (z, z) = f (z, z) ∈ R for all z ∈ C (2.1)

be a given smooth function that will be minimized over target eigenvalues λ(A+∆)
for structured perturbations ∆ ∈ S to a given matrix A. While our theory applies to
general functions f with (2.1), in our examples we consider specific cases where

f or −f evaluated at (z, z) equals

Re z =
z + z

2
or |z|2 = zz.

As will be dicussed in more detail in Section 6, the real part function is used in
studying the distance to instability (or stability radius) of a Hurwitz matrix, that is
with all eigenvalues in the left complex half-plane. The interest is in computing the
nearest matrix A + ∆ to A for which the rightmost eigenvalue is on the imaginary
axis. Here, the perturbation ∆ will be constrained to be in the structure space S,
and “nearest” will refer to the Frobenius norm ∥∆∥F . Similarly, the squared modulus
function is used when A is a Schur matrix, that is with all eigenvalues in the unit disk,
to compute the nearest matrix A +∆ to A for which the rightmost eigenvalue is on
the unit circle. The squared modulus function is also used to compute the structured
distance to singularity of an invertible matrix.

We consider the following structured eigenvalue optimization problem: For a given
perturbation size ε > 0, find

arg min
∆∈S, ∥∆∥F=ε

f
(
λ (A+∆) , λ (A+∆)

)
, (2.2)

where ∥∆∥F is the Frobenius norm of the structured matrix ∆ ∈ S, i.e. the Euclidean
norm of the vector of its entries and λ(A+∆) is the considered target eigenvalue of the
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perturbed matrix A+∆. The argmax case is treated analogously, replacing f by −f .
This problem arises in computing extremal points of the structured ε-pseudospectrum

ΛS
ε (A) = {λ ∈ C : λ is an eigenvalue of A+∆ for some ∆ ∈ S with ∥∆∥F ≤ ε}.

For −f(z, z) = Re z, (2.2) yields the structured pseudospectral abscissa αS
ε (A) =

max{Re z : z ∈ ΛS
ε (A)}, and for −f(z, z) = |z|2 it yields the structured pseudospec-

tral radius ρSε (A) = max{|z| : z ∈ ΛS
ε (A)}. The structured distance to instability

is then obtained by finding the smallest ε > 0 such that αS
ε (A) = 0 (for a Hurwitz

matrix A) or ρSε (A) = 0 (for a Schur matrix A).
In the following it is convenient to write

∆ = εE with ∥E∥F = 1 and Fε(E) = f
(
λ (A+ εE) , λ (A+ εE)

)
so that Problem (2.2) is equivalent to the problem of finding

arg min
E∈S,∥E∥F=1

Fε(E). (2.3)

Problem (2.2) or (2.3) is a nonconvex, nonsmooth optimization problem.
In a variant to the above problem, the inequality constraints ∥∆∥F ≤ ε and

∥E∥F ≤ 1 can also be considered in (2.2) and (2.3), respectively.
An extension to functions of several target eigenvalues is direct, but is not con-

sidered in this paper for brevity.

2.2. Projection onto the structure. In order to treat the above problem, we
shall make use of a projection onto the structure space S.

Given two complex n× n matrices, we denote by (tr(·) denotes the trace)

⟨X,Y ⟩ =
∑
i,j

xijyij = tr(X∗Y )

the inner product in Cn,n that induces the Frobenius norm ∥X∥F = ⟨X,X⟩1/2.
Let ΠS be the orthogonal projection (w.r.t. the Frobenius inner product) onto S:

for every Z ∈ Cn,n,

ΠSZ ∈ S and Re⟨ΠSZ,W ⟩ = Re⟨Z,W ⟩ ∀W ∈ S. (2.4)

For a complex-linear subspace S, taking the real part of the complex inner product
can be omitted (because with W ∈ S, then also iW ∈ S), but taking the real part is
needed for real-linear subspaces. Note that for S = Rn,n, we then have ΠSZ = ReZ
for all Z ∈ Cn,n. Our guiding examples in this paper are the following structures,
where the stated action of ΠS is readily verified.

Example 2.1 (Sparse matrices). If S is the space of complex matrices with a
prescribed sparsity pattern, then ΠSZ leaves the entries of Z on the sparsity pattern
unchanged and annihilates those outside the sparsity pattern. If S is the space of real
matrices with a prescribed sparsity pattern, then ΠSZ takes instead the real part of
the entries of Z on the sparsity pattern.

Example 2.2 (Matrices with prescribed range and co-range). An example of
particular interest in control theory is the perturbation space

S = {B∆C : ∆ ∈ Ck,l}, (2.5)

where B ∈ Cn,k and C ∈ Cl,n with k, l < n are given matrices of full rank. Here,
ΠSZ = BB†ZC†C, where B† and C† are the Moore–Penrose pseudo-inverses of B
and C, respectively. In the real case, where B and C are given real matrices and ∆
is required to be real, we have ΠSZ = BB†(ReZ)C†C.
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2.3. Free gradient of the functional Fε. To get the gradient of the functional
Fε, we need the derivative of the target eigenvalue λ(A+εE(t)) along paths of matrices
E(t), for t in some interval. In the case of a simple eigenvalue, which is the situation
we will consider in the following, this derivative is obtained from the following well-
known result; see e.g. [19, Lemma 6.3.10 and Theorem 6.3.12] and [7, Theorem 1].

Lemma 2.3 (Derivative of simple eigenvalues). Consider a continuously differ-
entiable path of square complex matrices M(t) for t in an open interval I. Let λ(t),
t ∈ I, be a continuous path of simple eigenvalues of M(t). Let x(t) and y(t) be left and
right eigenvectors, respectively, of M(t) to the eigenvalue λ(t). Then, x(t)∗y(t) ̸= 0
for t ∈ I and λ is continuously differentiable on I with

λ̇ =
x∗Ṁy

x∗y
, (2.6)

where the dot indicates differentiation with respect to t.
Since we have x(t)∗y(t) ̸= 0, we can apply the normalization

∥x(t)∥ = 1, ∥y(t)∥ = 1, x(t)∗y(t) is real and positive. (2.7)

The norm ∥ · ∥ is chosen as the Euclidean norm, and x∗ = x⊤. Clearly, a pair of left
and right eigenvectors x and y fulfilling (2.7) may be replaced by µx and µy for any
complex µ of modulus 1 without changing the property (2.7).

The following lemma will allow us to compute the steepest descent direction of
the functional Fε in Cn,n, which means neglecting any structural constraint. For this
reason we refer to it as the free gradient of the functional.

Lemma 2.4 (Free gradient). Let E(t) ∈ Cn,n, for t near t0, be a continuously
differentiable path of matrices, with the derivative denoted by Ė(t). Assume that
λ(t) is a simple eigenvalue of A+ εE(t) depending continuously on t, with associated
eigenvectors x(t) and y(t) satisfying (2.7), and let the eigenvalue condition number be

κ(t) =
1

x(t)∗y(t)
> 0.

Then, Fε(E(t)) = f
(
λ(t), λ(t)

)
is continuously differentiable w.r.t. t and we have

1

εκ(t)

d

dt
Fε(E(t)) = Re

〈
Gε(E(t)), Ė(t)

〉
, (2.8)

where the (rescaled) gradient of Fε is the rank-1 matrix

Gε(E) = 2fλ xy
∗ ∈ Cn,n with fλ =

∂f

∂λ
(λ, λ) (2.9)

for the target eigenvalue λ = λ(A + εE) and the corresponding left and right eigen-
vectors x and y normalized according to (2.7).

Proof. We first observe that (2.1) implies

fλ = fλ =
∂f

∂λ
(λ, λ).

Using Lemma 2.3, we obtain that Fε(E(t)) is differentiable with

d

dt
Fε (E(t)) = fλ λ̇+ fλ λ̇ =

ε

x∗y

(
fλ x

∗Ėy + fλ x∗Ėy
)
=

ε

x∗y
2Re

(
fλ x

∗Ėy
)
,
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where we omit the omnipresent dependence on t on the right-hand side. Noting that

Re
(
fλ x

∗Ėy
)
= Re

〈
fλ xy

∗, Ė
〉
,

we obtain (2.8)–(2.9).
Example 2.5. For

f(λ, λ) = − 1
2 (λ+ λ) = −Reλ

we have 2fλ = −1 and hence Gε(E) = −xy∗, which is nonzero for all λ. For

f(λ, λ) = − 1
2 |λ|

2 = − 1
2λλ

we have 2fλ = −λ. In this case Gε(E) = −λxy∗, which is nonzero whenever λ ̸= 0.

2.4. Structure-projected gradient. The optimization problem (2.3) is set on
the manifold S1 = {E ∈ Cn,n : E ∈ S, ∥E∥F = 1}.

Preserving the structure. Consider a differentiable path of structuredmatrices
E(t) in the linear space S. Since then also Ė(t) ∈ S, we have by Lemma 2.4

1

εκ(t)

d

dt
Fε(E(t)) = Re

〈
GS

ε (E(t)), Ė(t)
〉

(2.10)

with the rescaled structured gradient

GS
ε (E) := ΠSGε(E) = ΠS(2fλ xy

∗) ∈ S, (2.11)

which is the projection onto S of a rank-1 matrix.

Preserving the unit norm. To fulfil the constraint ∥E(t)∥2F = 1, we must have

0 =
1

2

d

dt
∥E(t)∥2F = Re

〈
E(t), Ė(t)

〉
. (2.12)

In view of Lemma 2.4 we are thus led to the following constrained optimization prob-
lem for the admissible direction of steepest descent.

Lemma 2.6 (Direction of steepest admissible descent). Let E ∈ S with ∥E∥F = 1
and let G ∈ Cn,n be such that GS := ΠSG is not a real multiple of E. Then, the unique
solution of the optimization problem

Z⋆ = arg min
Z∈Cn,n

Re ⟨G,Z⟩

subject to Z ∈ S
and Re ⟨E,Z⟩ = 0 (2.13)

and ∥Z∥F = 1 (for uniqueness)

is given by

µZ⋆ = −GS +Re⟨GS , E⟩E, (2.14)

where µ is the Frobenius norm of the matrix on the right-hand side.

Proof. The result follows by noting that the real part of the complex inner product
on Cn,n is a real inner product on R2n,2n, and the real inner product with a given vec-
tor (which here is a matrix) is maximized over a subspace by orthogonally projecting
the vector onto that subspace. The expression in (2.14) is the orthogonal projection
of −GS to the orthogonal complement of the span of E, which is the tangent space
at E of the manifold of matrices of unit Frobenius norm. Since E,GS ∈ S in (2.14),
also Z⋆ is in S.
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2.5. Structure- and norm-constrained gradient flow. Lemmas 2.4 and 2.6
show that the admissible direction of steepest descent of the functional Fε at a ma-
trix E ∈ S of unit Frobenius norm is given by the positive multiples of the matrix
−GS

ε (E) +Re ⟨GS
ε (E), E⟩E. This leads us to consider the (rescaled) gradient flow on

the manifold S1 of matrices in the structure space S of unit Frobenius norm:

Ė = −GS
ε (E) + Re ⟨GS

ε (E), E⟩E. (2.15)

By construction of this ordinary differential equation, we have that Ė ∈ S for
E ∈ S and Re⟨E, Ė⟩ = 0 along its solutions, and so both the structure S and the
Frobenius norm 1 are conserved.

Monotonicity. As we follow the admissible direction of steepest descent of the
functional Fε along solutions E(t) of the ODE (2.15), we obtain the following.

Theorem 2.7 (Monotonicity). Assume that λ(t) is a simple eigenvalue of A +
εE(t) and that λ(·) is continuous at t. Let E(·) of unit Frobenius norm satisfy the
differential equation (2.15). Then,

d

dt
Fε(E(t)) ≤ 0. (2.16)

Proof. Although the result follows directly from Lemmas 2.4 and 2.6, we compute
the derivative directly.

We write G = Gε(E) for short and take the inner product of (2.15) with Ė. Using
that Re⟨E, Ė⟩ = 0, we find

∥Ė∥2F = −Re⟨G− Re⟨G,E⟩E, Ė⟩ = −Re⟨G, Ė⟩

and hence Lemma 2.4 and (2.15) yield

1

εκ

d

dt
Fε(E(t)) = Re⟨G, Ė⟩ = −∥Ė∥2F = −∥G− Re ⟨G,E⟩E∥2F ≤ 0, (2.17)

which gives the precise rate of decay of Fε along a trajectory E(t) of (2.15).

The following important result states the genericity of the non-vanishing property
of the structured gradient.

Lemma 2.8 (Non-vanishing structured gradient). Let A,E ∈ S and ε > 0, and
let λ be a simple target eigenvalue of A+ εE.

(i) Complex case: S is a complex-linear subspace of Cn,n. Then,

GS
ε (E) ̸= 0 if λfλ ̸= 0.

(ii) Real case: S is a real-linear subspace of Rn,n. Then,

GS
ε (E) ̸= 0 if Re(λfλ) ̸= 0.

We emphasize that also A needs to be in S. The result does not hold true when
A /∈ S.

Proof. We give the proof for the real case. The complex case is analogous but
slightly simpler. We take the real inner product of GS

ε (E) with A+ εE ∈ S and use
the definition (2.11) of GS

ε (E):

⟨GS
ε (E), A+ εE⟩ = Re⟨ΠS(2fλ xy

∗), A+ εE⟩ = Re⟨2fλ xy
∗, A+ εE⟩

= Re
(
2fλ x

∗(A+ εE)y
)
= Re

(
2fλλx∗y

)
= 2Re

(
fλλ

)
(x∗y),
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where x∗y > 0. This yields the result.
If the identity matrix I is in S, then the condition for GS

ε (E) ̸= 0 can be weakened:
– In the complex case, it then suffices to have fλ ̸= 0. This is seen by taking the

inner product with A+ εE − µI ∈ S for an arbitrary µ ∈ C.
– In the real case, if λ is real, then it suffices to have Re fλ ̸= 0. If λ is non-real,

then it even suffices to have fλ ̸= 0. In both cases this is seen by taking the inner
product with A+ εE − µI ∈ S for an arbitrary µ ∈ R.

Stationary points. We have the following characterization of stationary points
of the norm- and structure-constrained gradient system (2.15) on S1.

Theorem 2.9. Let E⋆ ∈ S with ∥E⋆∥F = 1 be such that
(i) The target eigenvalue λ(A+εE) is simple at E = E⋆ and depends continuously

on E in a neighborhood of E⋆.
(ii) The structure-projected gradient GS

ε (E⋆) is nonzero.
Let E(t) ∈ S be the solution of (2.15) passing through E⋆. Then the following are
equivalent:

1.
d

dt
Fε (E(t)) = 0

2. E⋆ is a stationary point of the differential equation (2.15).

3. E⋆ is a real multiple of GS
ε (E⋆).

(2.18)

Proof. Clearly, 3. implies 2., which implies 1. Since the Cauchy–Schwarz inequal-
ity in (2.17) is strict unless E is a real multiple of GS

ε (E), 1. implies 3.

Remark 2.10. In degenerate situations where GS
ε (E⋆) = 0, we cannot conclude

from 2. to 3., i.e., that the stationary point is a projection onto S of a rank-1 matrix.
Such degenerate situations might arise. For example, for the case f(λ, λ) = −Reλ
we have seen in Example 2.5 that Gε(E) = −xy∗ ̸= 0. However, for a structure space
S we might nevertheless have GS

ε (E⋆) = ΠSGε(E⋆) = 0. An instructive minuscule
example is when n = 2, x = y = (1, 0)⊤, and S is given by a sparsity pattern that
does not contain the (1, 1) entry. We consider such degenerate cases as exceptional
situations and do not consider them further in this paper.

We call an optimizer E⋆ of (2.3) non-degenerate if conditions (i) and (ii) of The-
orem 2.9 are satisfied. Since non-degenerate optimizers are stationary points of the
norm- and structure-constrained gradient system (2.15), Theorem 2.9 immediately
yields the following corollary.

Theorem 2.11. Non-degenerate optimizers E⋆ of (2.3) are projections onto S
of rank-1 matrices.

This provides the motivation to search for a differential equation that retains the
rank-1 property along its solutions. We describe a first, seemingly obvious approach
in the next subsection and then turn to a less obvious alternative in Section 3 on
which we focus in Sections 3 to 7.

2.6. Constrained gradient flow for structure-projected rank-1 matrices.
Let M1 = M1(Cn×n) be the manifold of complex n × n rank-1 matrices, and let
MS

1 = ΠSM1 be the set of S-projected rank-1 matrices. We note that MS
1 need

not be a manifold. For example, for S = Rn,n = ReCn,n we have MS
1 = ReM1,

which is the union of {0} and the two manifolds of real rank-1 and rank-2 matrices.
Let us suppose in this short subsection that MS

1 is a manifold, at least locally in a
neighborhood of interest. For E ∈ MS

1 (in such a neighborhood), we then let TEMS
1

be the tangent space at E of MS
1 .
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We further suppose that the orthogonal projection PS
E onto the tangent space

TEMS
1 is computationally readily available. This is the case when the structure

space S consists of matrices of prescribed range and co-range, as will be discussed
in Section 8. However, this is not the case when the structure is given by a sparsity
pattern, for which we therefore propose the alternative approach of Section 3.

We consider the projected gradient system on the manifold MS
1 :

Ė = −PS
EGS

ε (E) + Re ⟨PS
EGS

ε (E), E⟩E. (2.19)

We note that PS
EE = E for E ∈ MS

1 , because the fact that scalar multiples of E are
again in MS

1 implies that E ∈ TEMS
1 . Therefore, the right-hand side of (2.19) is in

the tangent space TEMS
1 , and so we have a differential equation on MS

1 .
Since Re⟨E, Ė⟩ = 0, the unit Frobenius norm is preserved. Moreover, we again

have the monotonicity property (2.16) by the same argument as before.
Under the non-degeneracy condition PS

EGS
ε (E⋆) ̸= 0, we have that E⋆ ∈ MS

1 is a
stationary point of (2.19) if and only if E⋆ is a real multiple of PS

E⋆
GS

ε (E⋆). Clearly,
every stationary point E⋆ of (2.15) is also a stationary point of (2.19). In fact if
the right-hand side R(E) of (2.15) vanishes, then also PS

ER(E) vanishes, which is the
right-hand side of (2.19). However, in general we cannot exclude that (2.19) may have
additional, spurious stationary points E⊙ that are not a real multiple of GS

ε (E⊙).
In Section 8 we show how the projected gradient system (2.19) can actually be

used in computations when the structure space S consists of complex matrices with
prescribed range and co-range. Moreover, we find that in this particular case no
spurious stationary points are possible.

3. A rank-1 matrix differential equation. When the structure space S con-
sists of matrices with a prescribed sparsity pattern, the above tangent space projection
PS
E is not readily available, and the projected gradient system (2.19) of the previous

subsection can apparently not be used in a computationally efficient way. As a more
accessible alternative, we consider a differential equation on the manifold M1 of rank-
1 matrices, which uses only the known and computationally very simple orthogonal
projections ΠS onto the structure and PY onto the tangent space TY M1 at Y ∈ M1

(note that in general PS
E ̸= ΠSPY for E = ΠSY and Y ∈ M1, since ΠS and PY do

not commute). The alternative differential equation is shown to lead to the same sta-
tionary points as the structure- and norm-constrained gradient flow (2.15), without
any spurious stationary points (under a non-degeneracy condition). However, this
differential equation is not a gradient system, and the monotonicity property (2.16)
is therefore not guaranteed (though it is usually observed in numerical experiments).
This alternative differential equation, reformulated for the factors of the rank-1 ma-
trices, is to be numerically solved into a stationary point.

3.1. Formulation and properties of the rank-1 differential equation.
Solutions of (2.15) can be written as E(t) = ΠSZ(t), where Z(t) solves

Ż = −Gε(Π
SZ) + Re⟨Gε(Π

SZ),ΠSZ⟩Z, (3.1)

as is immediately seen by projecting both sides onto S with ΠS and comparing with
(2.15). We note that if E(t) = ΠSZ(t) has unit Frobenius norm, then

Re⟨E, Ė⟩ = −Re⟨E,Gε(E)⟩+Re⟨Gε(E), E⟩Re⟨E,E⟩ = 0.

Therefore, the unit Frobenius norm of E(t) = ΠSZ(t) is conserved for all t.
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Since Gε(E) is of rank 1 (unless Gε(E) = 0, which we exclude), every stationary
point Z⋆ of the differential equation (3.1) is of rank 1. We therefore project the
right-hand side onto the tangent space TY M1 at Y ∈ M1 and consider instead the
projected differential equation with solutions of rank 1:

Ẏ = −PY Gε(Π
SY ) + Re⟨PY Gε(Π

SY ),ΠSY ⟩Y. (3.2)

Here, PY : Cn,n → TY M1 is the orthogonal projection onto the tangent space
TY M1, which for a rank-1 matrix Y = σuv∗ with ∥u∥ = ∥v∥ = 1 is given as (see [20])

PY (Z) = Z − (I − uu∗)Z(I − vv∗). (3.3)

It is useful to note that PY (Y ) = Y . For E = ΠSY of unit Frobenius norm in (3.2),
we find

Re⟨E, Ė⟩ = Re⟨E, Ẏ ⟩ = −Re⟨E,PY Gε(E)⟩+Re⟨PY Gε(E), E⟩Re⟨E, Y ⟩ = 0,

where we used that Re⟨E, Y ⟩ = Re⟨ΠSE, Y ⟩ = Re⟨E,ΠSY ⟩ = Re⟨E,E⟩ = ∥E∥2F = 1.
So we have for E = ΠSY

∥E(t)∥F = 1 for all t.

Stationary points. The following theorem states that under a non-degeneracy
condition, the differential equations (2.15) and (3.2) yield the same stationary points.

Theorem 3.1 (Relating stationary points).
(a) Let E ∈ S of unit Frobenius norm be a stationary point of the gradient system

(2.15) that satisfies ΠSGε(E) ̸= 0. Then, E = ΠSY for some matrix Y ∈ M1

that is a stationary point of the differential equation (3.2).
(b) Conversely, let Y ∈ M1 be a stationary point of the differential equation

(3.2) such that E = ΠSY has unit Frobenius norm and PY Gε(E) ̸= 0. Then,
PY Gε(E) = Gε(E), Y is a nonzero real multiple of Gε(E), and E is a
stationary point of the gradient system (2.15).

Proof. Let G = Gε(E) in this proof for short.
(a) By (2.18), E = µ−1ΠSG for some nonzero real µ. Then, Y := µ−1G is of

rank 1 and we have E = ΠSY . We further note that PY G = µPY Y = µY = G. We
thus have

−PY G+Re⟨PY G,E⟩Y = −G+Re⟨G,E⟩Y.

Here we find that

Re⟨G,E⟩ = Re⟨ΠSG,E⟩ = Re⟨µE,E⟩ = µ∥E∥2F = µ.

So we have

−G+Re⟨G,E⟩Y = −G+ µY = 0

by the definition of Y . This shows that Y is a stationary point of (3.2).
(b) We show that Y is a nonzero real multiple of G. By Theorem 2.9, E is then

a stationary point of the differential equation (2.15).
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For a stationary point Y of (3.2), we have that PY (G) is a nonzero real multiple
of Y . Hence, in view of PY (Y ) = Y , we can write G as

G = µY +W, where µ ̸= 0 is real and PY (W ) = 0.

Writing the rank-1 matrix Y = ρuv∗ with ρ ̸= 0 and ∥u∥ = ∥v∥ = 1, we then have by
(3.3) that

W = W − PY (W ) = (I − uu∗)W (I − vv∗).

On the other hand, G = 2fλxy
∗ is also of rank 1. So we have

2fλxy
∗ = µuv∗ + (I − uu∗)W (I − vv∗).

Multiplying from the right with v yields that x is a complex multiple of u, and
multiplying from the left by u∗ yields that y is a complex multiple of v. Hence, G is a
complex multiple of Y . Since we already know that PY (G) is a nonzero real multiple
of PY (Y ) = Y , it follows that G is the same real multiple of Y .

Thus stationary points Y ∈ M1 of the differential equation (3.2) are characterized
as real multiples ofG. Hence, E = ΠSY is a real multiple of ΠSG, and by Theorem 2.9,
E = ΠSY is a stationary point of (2.15).

Possible loss of monotonicity. Since the projections ΠS and PY do not com-
mute, along solutions of (3.2) we cannot guarantee the monotonicity property (2.16)
that we have for the constrained gradient system (2.15).

However, in all our numerical experiments we observed that starting with an
initial datum given by the negative free gradient of the considered functional (2.9),
i.e. Y (0) = − Gε(0), we always obtained a monotone convergence behavior to a
(local) optimum. Only in very few cases, by starting from a randomly chosen initial
datum, we were able to observe a nonmonotonic convergence. However the loss of
monotonicity occurred only once, after the first step, and monotonicity was recovered
from the following step onwards. In the following section we will explain this behavior
locally near a stationary point, but we have no theoretical explanation for the favorable
numerically observed monotonic behavior far from stationary points.

3.2. Differential equations for the factors of rank-1 matrices. Equation
(3.2) is an abstract differential equation on the rank-1 manifold M1. We write a
rank-1 matrix Y ∈ M1 in a non-unique way as

Y = ρuv∗,

where ρ ∈ R, ρ > 0 and u, v ∈ Cn have unit norm.
The following lemma shows how we can rewrite the rank-1 differential equation

(3.2) in terms of differential equations for the factors u, v and an explicit formula for ρ.
Lemma 3.2 (Differential equations for the factors). Every solution Y (t) ∈ M1

of the rank-1 differential equation (3.2) with ∥ΠSY (t)∥F = 1 can be written as Y (t) =
ρ(t)u(t)v(t)∗ from the following differential equations for the factors u and v of unit
norm,

ρu̇ = −(I − uu∗)Gv − i
2 Im (u∗Gv)u,

ρv̇ = −(I − vv∗)G∗u+ i
2 Im (u∗Gv)v,

where G = Gε(E) for E = ΠSY = ρΠS(uv∗) and ρ = 1/∥ΠS(uv∗)∥F .
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The positive factor ρ on the left-hand sides of the differential equations for u
and v only determines the speed with which the trajectory is traversed, but has no
influence on the trajectory itself.

Proof. The equation for ρ is obvious because 1 = ∥E∥F = ρ∥ΠS(uv∗)∥F .
We write the right-hand side of (3.2) and use (3.3) to obtain for Y = ρuv∗

Ẏ = −PY G+Re⟨PY G,E⟩Y

= − (I − uu∗)Gvv∗ − uu∗G(I − vv∗)− uu∗Gvv∗ +Re
〈
PY G,E

〉
Y

= −
(
(I − uu∗)Gvv∗ + i

2 Im (u∗Gv)u
)
v∗ − u

(
u∗G(I − vv∗) + i

2 Im (u∗Gv)v∗
)

−
(
Re(u∗Gv) + Re⟨PY G,E⟩ρ

)
uv∗.

Since this is equal to Ẏ = (ρu̇)v∗ + u(ρv̇∗) + ρ̇uv∗, we can read off ρu̇, ρv̇∗ and ρ̇
as the three terms in big brackets. This yields the stated differential equations for
u and v (and another one for ρ, which will not be needed). Note that (d/dt)∥u∥2 =
2Re(u∗u̇) = 0 and analogously for v, so that the unit norm of u and v is conserved.

We note that for G = Gε(E) = 2fλ xy
∗ (see Lemma 2.4) and with α = u∗x,

β = v∗y and γ = 2fλ, we obtain the differential equations

ρu̇ = αβγ u− βγ x− i
2 Im (αβγ)u

ρv̇ = αβγ v − αγ y − i
2 Im (αβγ)v.

(3.4)

3.3. Cases of interest. The real dimension of the manifold of complex n × n
rank-1 matrices of unit norm is 4n − 2. Integrating (3.2) instead of (2.15) is very
appealing in those cases where dimS is significantly larger than 4n−2. An important
example is given by sparse matrices with a sparsity pattern with a number of nonzero
elements of order cn with c > 4 (and ideally much larger than 4).

In the case of a real target eigenvalue the dimension of the manifold of real n×n
rank-1 matrices of unit norm is 2n−1 so that for structured matrices it is meaningful
to make use of (3.2) if c > 2.

Similarly, when considering matrices with prescribed range and co-range,

S = {B∆C : ∆ ∈ Rk,l},

where B ∈ Rn,k and C ∈ Rl,n with k, l < n, replacing the unknown matrix ∆,
which is a full k× l real matrix, by a rank-1 matrix, significantly reduces the memory
requirements when k and l are large. As for the computational cost, we may argue
that the reduced number of variables may lead to faster convergence of the method.

4. Local convergence to local minima of solutions to the rank-1 pro-
jected differential equation. In this section we show that solutions of the rank-1
projected differential equation (3.2) converge locally to strong local minima of the
functional Fε, that is the solution converges to a local minimum E for which the
Hessian matrix Hε(E) of Fε at E yields a positive definite quadratic form when re-
stricted to the tangent space TES1 of the manifold S1 at E. Here, S1 is the manifold
of matrices in S of unit Frobenius norm.

We first state the result, then formulate and prove a key lemma, and finally give
the proof of the local convergence result.
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4.1. Statement of the local convergence result. For the formulation of our
local convergence result we need the following assumptions. There, M1 is the manifold
of rank-1 matrices in Cn,n, and MS

1 = ΠSM1 consists of structure-projected rank-1
matrices. The first assumption is made on the structure space S. It excludes, in
particular, spaces S that are too low-dimensional: it requires dimS ≥ dimM1 =
4n− 2 (as before dim indicates the real dimension).

Assumption 4.1. The restricted projection ΠS
∣∣
M1

: M1 → MS
1 ⊂ S is a local

diffeomorphism, or equivalently:
(i) If E = ΠSY ∈ MS

1 for some Y ∈ M1, then Y is locally unique.
(ii) The local inverse map E 7→ Y is continuously differentiable.
Remark 4.2. We comment on Assumption 4.1 to (a) make it plausible in the case

of perturbation matrices E with prescribed sparsity pattern and (b) show that it is
not satisfied in the case of perturbation matrices with prescribed range and co-range.

(a) Consider the structure S of real n × n matrices with a prescribed sparsity

pattern. Let E ∈ MS
1 ⊂ S be given. So E = ΠS Ŷ for some Ŷ ∈ M1. In principle, in

order to determine all solutions of the equation

ΠSY = E (4.1)

we should form Y = uv∗ with u, v ∈ Cn with ∥u∥ = 1 and v ̸= 0, and write a system
of quadratic equations in the variables {ui}ni=1 and {vj}nj=1 that reads

Re
(
uiv

∗
j

)
= Eij for all (i, j) ∈ P

where P is the considered sparsity pattern, together with the norm constraint ∥u∥2 =
1, and moreover the first nonzero entry of u can be chosen to be real and positive to
guarantee uniqueness of the representation Y = uv∗.

This gives a system of s + 1 quadratic equations where s = #P = dimS is
the number of entries of E which are not prescribed to be zero. In terms of the
real variables Re(ui), Im (ui),Re(vi), Im (vi) (excluding Im (u1) = 0), the system has
s + 1 quadratic equations in 4n − 1 variables: Φ(u, v) ≡ ΠSY = E. We have local

uniqueness of Ŷ = ûv̂∗ if the derivative matrix DΦ(û, v̂) ∈ Cs+1,4n−1 has only the
trivial kernel 0. This can be expected to hold true generically if s ≥ 4n− 2 (and the
more so as s gets larger).

On the other hand, if s < 4n − 2, then integrating the gradient system (2.15),
translated into a system of differential equations in terms of the s nonzero entries
of E, would be favorable over integrating the rank-1 matrix differential equation
(2.15). This further indicates that Assumption 4.1 is reasonable in the case where the
structure is given by a sparsity pattern.

For the structure space S of matrices with a prescribed sparsity pattern, As-
sumption 4.1 is reminiscent of the problem of matrix completion, where the aim is
to minimize the rank r such that there exists a unique matrix M of rank r with
ΠSM = E for a given matrix E ∈ S; see e.g. [5]. Note, however, that in Assump-
tion 4.1 the condition is not about existence but about local uniqueness, and the rank
is fixed to 1.

(b) Assumption 4.1 is not satisfied in the case where the structure S is given
by matrices with prescribed range and co-range. Since in this case the orthogonal
projection onto the structure is given by ΠSY = BB†Y C†C (see Example 2.2), we
have that for a rank-1 matrix Y = uv∗, the projected matrix E = ΠSY can also
be written as E = ΠS Ỹ with Y = (u + ũ)(v + ṽ)∗ for arbitrary ũ ∈ KerB⊤ and
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ṽ ∈ KerC⊤, and so condition (i) in Assumption 4.1 is violated. This could be remedied
by requiring that Y = uv∗ be such that u ∈ (KerB⊤)⊥ = RanB and v ∈ (KerC⊤)⊥ =
RanC and incorporating these constraints in the differential equation. We will not
carry this out in detail for two reasons: On the one hand it did not seem necessary
in our numerical experiments, and on the other hand we can here work instead with
the projected gradient system (2.19) on MS

1 , as is described in Section 8.

The next assumption is made on the Hessian of the functional Fε at a stationary
point of the differential equation (2.15).

Assumption 4.3. Let E0 ∈ S1 be a stationary point of the constrained gradient
system (2.15). We assume that E0 is a strong minimum of the functional Fε on
S1, that is, the Hessian matrix Hε(E0) of Fε at E0 yields a positive definite quadratic
form when restricted to the tangent space TE0

S1 of the manifold S1 at E0: there exists
α > 0 such that

⟨Z,Hε(E0)Z⟩ ≥ α∥Z∥2F ∀Z ∈ TE0
S1. (4.2)

Under these assumptions we have the following result.
Theorem 4.4 (Local convergence to a strong local minimum). Under Assump-

tion 4.1, let the rank-1 matrix Y0 ∈ M1 be a stationary point of the projected dif-
ferential equation (3.2) such that E0 = ΠSY0 ∈ S1 is of unit Frobenius norm and
PY0Gε(E0) ̸= 0. We assume that E0 satisfies Assumption 4.3.

Then, for an initial datum Y (0) sufficiently close to Y0, the solution Y (t) of
(3.2) converges to Y0 exponentially as t → ∞. Moreover, Fε

(
ΠSY (t)

)
decreases

monotonically with t and converges exponentially to the local minimum value Fε(E0)
as t → ∞.

Note that E0 = ΠSY0 ∈ S1 is a stationary point of (2.15) by Theorem 3.1 (b).
So the assumption on E0 reduces to the condition (4.2) on the Hessian Hε(E0).

The proof of Theorem 4.4 will be given in Section 4.3.

4.2. A basic lemma. The following remarkable lemma provides the key to the
proof of Theorem 4.4.

Lemma 4.5. Let Y⋆ ∈ M1 with E⋆ = ΠSY⋆ ∈ S of unit Frobenius norm. Let
Y⋆ be a stationary point of the rank-1 projected differential equation (3.2), with an
associated target eigenvalue λ of A + εE⋆ that is simple. Then, there exists δ̄ > 0
such that for all positive δ ≤ δ̄ and all Y ∈ M1 with ∥Y −Y⋆∥F ≤ δ and ΠSY of unit
norm, we have

∥PY Gε(Π
SY )−Gε(Π

SY )∥F ≤ Cδ2 (4.3)

with C independent of δ.
Proof. Let us consider a smooth regular path Y (τ) = u(τ)v(τ)∗ ∈ M1 (with

nonzero u(τ), v(τ) ∈ Cn) such that E(τ) = ΠSY (τ) is of unit Frobenius norm and

Y (0) = Y⋆ = αG⋆ for some real α, where G⋆ = Gε (E(0)) = 2fλxy
∗,

where (λ, x, y) is the eigentriplet of A+εE(0) associated with the target eigenvalue λ.
Similarly, for τ ∈ [0, δ] with δ such that λ(τ) remains simple, we have

G(τ) = Gε(E(τ)) = 2fλ(τ)x(τ)y(τ)
∗.

We may assume that the path is parametrized such that ∥Ẏ (τ)∥F = 1 and hence
we have ∥Y (τ) − Y⋆∥F ∼ τ for small τ . By the given assumptions all quantities
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are smooth w.r.t. τ . In particular, for a simple eigenvalue, under a smooth matrix
perturbation, the derivatives ẋ(τ) and ẏ(τ) of the associated eigenvectors - under the
assumed normalization (2.7) - are given by (see e.g. [23, 13])

1

ε
ẋ(τ)∗ = −x(τ)∗Ė(τ)N(τ) + Re

(
x(τ)∗Ė(τ)N(τ)x(τ)

)
x(τ)∗,

1

ε
ẏ(τ) = −N(τ)Ė(τ)y(τ) + Re

(
y(τ)∗N(τ)Ė(τ)y(τ)

)
y(τ),

where N(τ) is the group inverse of A + εE(τ) − λ(τ)I and the last terms on the
right-hand side of both differential equations account for the unit norm preservation
for both eigenvectors and for the positivity of their inner product. Note that by the
simplicity of λ(τ), the group inverse N(τ) and thus also ẋ(τ) and ẏ(τ) as well as their
derivatives are bounded.

With the formula (3.3) for the projection PY , we thus have the following first order
expansion near τ = 0. Here we indicate by u, v, x, y and fλ (and further u̇, v̇, ẋ, ẏ and

ḟλ) the associated functions of τ at τ = 0, i.e. corresponding to the stationary point.
We have

PY (τ)G(τ) = PY (τ)

(
fλ(τ)x(τ)y(τ)

∗
)
=
(
fλ + τ ḟλ

)
·((

xx∗ + τ (u̇x∗ + xu̇∗)
)(

xy∗ + τ (ẋy∗ + xẏ∗)
)
+

(
xy∗ + τ (ẋy∗ + xẏ∗)

)(
yy∗ + τ (v̇y∗ + yv̇∗)

)
−

(
xx∗ + τ (u̇x∗ + xu̇∗)

)(
xy∗ + τ (ẋy∗ + xẏ∗)

)(
yy∗ + τ (v̇y∗ + yv̇∗)

))
+O(τ2) =

fλxy
∗ + τ

(
ḟλxy

∗ + fλxẏ
∗ + fλẋy

∗
)
+O(τ2). (4.4)

Consequently, (4.4) has the same first order expansion as

G(τ) = fλ(τ)x(τ)y(τ)
∗ = fλxy

∗ + τ
(
ḟλxy

∗ + fλxẏ
∗ + fλẋy

∗
)
+O(τ2),

which yields the result.

4.3. Proof of Theorem 4.4. With E(t) = ΠSY (t) ∈ S1, the differential equa-
tion (3.2) for Y (t) ∈ M1 is equivalent to

Ė = −ΠSPY Gε(E) + Re⟨ΠSPY Gε(E), E⟩E.

By Lemma 4.5, this can be rewritten as a perturbation to the constrained gradient
system (2.15) (recall that GS

ε = ΠSGε):

Ė = −GS
ε (E) + Re⟨GS

ε (E), E⟩E +D with ∥D(t)∥ = O(∥Y (t)− Y⋆∥2).

By Assumption 4.1 (ii), this bound further implies

∥D(t)∥ = O(∥E(t)− E⋆∥2).
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The orthogonal projection Π̂E of Z ∈ Cn,n onto the tangent space TES1 at E ∈ S1 is
given by

Π̂EZ = ΠSZ − Re⟨ΠSZ,E⟩E.

We write

Ĝ(E) = Π̂EGε(E) = GS
ε (E)− Re⟨GS

ε (E), E⟩E

for short. We have

1

2

d

dt
∥E(t)− E⋆∥2 = Re⟨E − E⋆, Ė⟩ = Re⟨E − E⋆,−Ĝ(E) +D⟩.

Since Ĝ(E⋆) = 0 and

E − E⋆ = Π̂E⋆
(E − E⋆) +O(∥E − E⋆∥2),

which is due to the fact that both E and E⋆ lie on S1 so that letting δ := ∥E −E⋆∥,
the orthogonal projection Π̂E⋆

(E − E⋆) onto the tangent plane at E∗ is δ2-close to
E − E∗, we find

Ĝ(E) = Ĝ(E)− Ĝ(E⋆) = Π̂E⋆
Hε(E⋆)Π̂E⋆

(E − E⋆) +O(∥E − E⋆∥2),

where Hε(E⋆) is the Hessian matrix of the functional Fε at E⋆. By Assumption 4.3,
Hε(E⋆) is positive definite on TE⋆

S1. So we obtain

Re⟨E − E⋆,−Ĝ(E) +D⟩
= Re⟨Π̂E⋆(E − E⋆) +O(∥E − E⋆∥2),−Π̂E⋆H(E⋆)Π̂E⋆(E − E⋆) +O(∥E − E⋆∥2)⟩
= −⟨Π̂E⋆

(E − E⋆),−H(E⋆)Π̂E⋆
(E − E⋆)⟩+O(∥E − E⋆∥3)

≤ −α∥Π̂E⋆
(E − E⋆)∥2 +O(∥E − E⋆∥3)

≤ − 1
2α∥E − E⋆∥2,

provided that E is sufficiently close to E⋆. This yields that ∥E(t) − E⋆∥ decreases
monotonically with growing t and converges exponentially fast to 0 as t → ∞. Simi-
larly we obtain, with the projected Hessian Ĥ(E⋆) = Π̂E⋆Hε(E⋆)Π̂E⋆ for short,

1

κε

d

dt
Fε(E(t)) = Re⟨Gε(E), Ė⟩ = Re⟨Ĝ(E), Ė⟩ = Re⟨Ĝ(E),−Ĝ(E) +D⟩

= −∥Ĥ(E⋆)Π̂E⋆
(E − E⋆)∥2 +O(∥E − E⋆∥3)

≤ −α2∥Π̂E⋆
(E − E⋆)∥2 +O(∥E − E⋆∥3)

≤ − 1
2α

2∥E − E⋆∥2,

provided that E is sufficiently close to E⋆. We conclude that Fε(E(t)) decreases
monotonically and exponentially to Fε(E⋆). □

5. Numerical integration by a splitting method. We need to integrate
numerically the differential equations (3.4). The objective here is not to follow a
particular trajectory accurately, but to arrive quickly at a stationary point. The sim-
plest method is the normalized Euler method, or normalized gradient descent method,
where the result after an Euler step (i.e., a steepest descent step) is normalized to unit
norm for both the u- and v-component. This can be combined with a standard line
search strategy to determine the step size adaptively. We found, however, that a more
efficient method is obtained with a splitting method instead of the Euler method.
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5.1. Splitting. The splitting method consists of a first step applied to the dif-
ferential equations (with α = u∗x, β = v∗y and γ = 2fλ as in (3.4))

ρu̇ = αβγ u− βγ x

ρv̇ = αβγ v − αγ y
(5.1)

followed by a step for the differential equations

ρu̇ = − i
2 Im (αβγ)u

ρv̇ = + i
2 Im (αβγ)v.

(5.2)

Note that the second differential equation is a mere rotation of u and v. In the case of
a real eigenvalue of a real matrix, the system (5.2) has a vanishing right-hand side and
can therefore be ignored. As is unusual for splitting methods, this method preserves
stationary points.

Lemma 5.1 (Stationary points). (u, v) is a stationary point of the differential
equations (3.4) if and only if (u, v) is a stationary point of the differential equations
(5.1) and (5.2).

Proof. If (u, v) is a stationary point of (3.4), then u is proportional to x and v is
proportional to y. Hence, x = αu and y = βv. This implies that (u, v) is a stationary
point of (5.1), and hence also of (5.2). The converse direction is evident.

5.2. Fully discrete splitting algorithm. Starting from vectors uk, vk of unit
norm and

ρk =
1

∥ΠS(ukv∗k)∥F
, (5.3)

we denote by xk and yk the left and right eigenvectors to the target eigenvalue λk of
A+ ερkΠ

S(ukv
∗
k), and set

αk = u∗
kxk, βk = v∗kyk, γk = 2fλk

. (5.4)

We apply the Euler method with step size h to (5.1) to obtain

û(h) = uk + (h/ρk)
(
αkβkγk uk − βkγk xk

)
v̂(h) = vk + (h/ρk) (αkβkγk vk − αkγk yk) ,

(5.5)

followed by a normalization to unit norm

ũ(h) =
û(h)

∥û(h)∥
, ṽ(h) =

v̂(h)

∥v̂(h)∥
. (5.6)

Then, as a second step, we integrate the rotating differential equations (5.2) by
setting, with ϑ = − 1

2ρk
Im(αkβkγk),

u(h) = eiϑh ũ(h), v(h) = e−iϑh ṽ(h), (5.7)

set ρ(h) = 1/∥ΠS(u(h)v(h)∗)∥F , and compute the target eigenvalue λ(h) of the per-
turbed matrix A+ ερ(h)ΠS(u(h)v(h)∗).

We note that this fully discrete algorithm still preserves stationary points.
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Algorithm 1: Integration step for the rank-1 differential equation

Data: A, ε, θ > 1, uk ≈ u(tk), vk ≈ v(tk), hk (proposed step size),
λk (target eigenvalue of A+∆k with ∆k = εΠS(ukv

∗
k)/∥ΠS(ukv

∗
k)∥F )

Result: uk+1, vk+1, hk+1, λk+1

begin
1 Initialize the step size by the proposed step size, h = hk

2 Compute left/right eigenvectors xk, yk of A+∆k to λk such that
∥xk∥ = ∥yk∥ = 1, x∗

kyk > 0
3 Compute αk, βk, γk by (5.4) and gk by (5.8)
4 Initialize f(h) = fk

while f(h) ≥ max(fk, fk − hθgk) do
5 Compute u(h), v(h) according to (5.5)-(5.7)

6 Compute ∆(h) = ερ(h)ΠS(u(h)v(h)∗) with

ρ(h) = 1/∥ΠS(u(h)v(h)∗)∥F
7 Compute λ(h) target eigenvalue of A+∆(h)

8 Compute the value f(h) = f
(
λ(h), λ(h)

)
if f(h) ≥ max(fk, fk − hθgk) then

Reduce the step size, h := h/θ

if
(
gk ≥ 0 and f(h) ≥ fk − (h/θ)gk

)
or
(
gk < 0 and f(h) ≥ fk − hθgk

)
then

Reduce the step size for the next step, hnext := h/θ
else if h = hk then

Set hnext := θhk (augment the stepsize if no rejection has occurred)
else

Set hnext := hk

9 Set hk+1 := hnext, λk+1 := λ(h), and the starting values for the next step
as uk+1 := u(h), vk+1 := v(h)

return

One motivation for choosing this method is that near a non real stationary point,
the motion is almost rotational since x ≈ αu and y ≈ βv. The dominant term
determining the motion is then the rotational term on the right-hand side of (3.4),
which is integrated by a rotation in the above scheme (the integration would be exact if
α, β, γ were constant). This algorithm requires in each step one computation of target
eigenvalues and associated eigenvectors of structure-projected rank-1 perturbations
to the matrix A, which can be computed at moderate computational cost for large
sparse matrices A by a Krylov Schur algorithm [26], as implemented in the MATLAB
function eigs.

5.3. Step-size selection. We use an Armijo-type line search strategy, adapted
to the possibility that the functional f(λ, λ) is not everywhere reduced along the
flow of the differential equation (3.2) (even though this was never observed in our
numerical experiments when we chose the initial value Y (0) as a positive multiple
of the negative free gradient −2fλ xy

∗ where (λ, x, y) is the target eigentriplet of the
matrix A). By Lemma 2.4, the change of the functional along solutions of (3.2) equals
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(with G = Gε(E)) and omitting the argument t on the right-hand side)

d

dt
Fε(E(t)) = εκRe⟨Gε(E), Ė⟩

= −εκ
(
Re⟨ΠSG,ΠSPY G⟩ − Re⟨ΠSPY G,E⟩Re⟨ΠSG,E⟩

)
=: −g (5.8)

We write gk = g for the choice E = Ek = ukv
∗
k, G = Gε(Ek) = 2fλ(λk, λk)xky

∗
k, and

κ = κk = 1/(x∗
kyk). Let

fk = f(λk, λk), f(h) = f(λ(h), λ(h)).

We accept the result of the step with step size h if, for a given parameter θ > 1,

f(h) < max(fk, fk − hθgk).

If gk ≥ 0 and f(h) ≥ fk − (h/θ)gk, or if gk < 0 and f(h) ≥ fk −hθgk, then we reduce
the step size for the next step to h/θ. If the step size has not been reduced in the
previous step, we try for a larger step size. Algorithm 1 describes the step from tk to
tk+1 = tk + hk.

6. Application to structured matrix nearness problems. We consider ma-
trix nearness problems that are closely related to the eigenvalue optimization problems
considered in this article. We pose the problem in the structure space S. Let again
A ∈ Cn,n be a given matrix and let λ(A) ∈ C be a target eigenvalue of A. We again
consider the smooth function f(λ, λ) satisfying (2.1) that is to be minimized. For a
prescribed real number r in the range of f we assume that

f(λ(A), λ(A)) > r,

so that for sufficiently small ε > 0 we have ϕ(ε) > r, where

ϕ(ε) := min
∆∈S, ∥∆∥F=ε

f
(
λ (A+∆) , λ (A+∆)

)
.

The objective now is to find the smallest ε > 0 such that ϕ(ε) = r:

ε⋆ = min
{
ε > 0 : ϕ(ε) ≤ r

}
. (6.1)

Determining ε⋆ is a one-dimensional root-finding problem for the function ϕ that is
defined by the considered eigenvalue optimization problem.

6.1. Structured distances to singularity and to instability. Let us con-
sider two examples, with a peculiar difference. In the first case the problem reduces to
the search of the simple (unique) zero of a smooth function, while in the second case
the function is not smooth at its smallest zero, and (generically) vanishes identically
right to it.

Example 6.1 (Structured distance to instability). Let A be a Hurwitz matrix,
i.e. with negative spectral abscissa α(A) = max{Reλ : λ is an eigenvalue of A} < 0.
With the function f(λ, λ) = − 1

2 (λ+ λ) = −Reλ and the target eigenvalue λ given by
the eigenvalue of largest real part, and r = 0, we arrive at the problem of computing
the structured distance to instability of A :

ε⋆ = min{ε > 0 : αS
ε (A) = 0}, where αS

ε (A) = max
E∈S,∥E∥F=1

α(A+ εE)
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is the ε-pseudospectral abscissa with respect to the structure space S.
Example 6.2 (Structured distance to singularity). Let A be a nonsingular ma-

trix. With f(λ, λ) = λλ = |λ|2 and the target eigenvalue λ the one of smallest
modulus, we arrive at the problem of computing the distance to singularity of A :

ε⋆ = min{ε > 0 : ϱSε (A) = 0}, where ϱSε (A) = min
E∈S,∥E∥F=1

ϱ(A+ εE)

where ϱ(M) is the smallest modulus of eigenvalues of a matrix M .1

6.2. Two-level iterative method. As in previous work (see e.g. [9, 8]), we
use a two-level method:

(i) Inner iteration: Given ε > 0, we aim to compute a matrix E(ε) ∈ S of unit
Frobenius norm, such that Fε(E) = f

(
λ (A+ εE) , λ (A+ εE)

)
is minimized:

E(ε) = arg min
E∈S,∥E∥F=1

Fε(E). (6.2)

(ii) Outer iteration: We compute the smallest positive value ε⋆ with

ϕ(ε⋆) = r, (6.3)

where ϕ(ε) = Fε (E(ε)) = f
(
λ (A+ εE(ε)) , λ (A+ εE(ε))

)
.

6.3. Inner iteration. The eigenvalue optimization problem (6.2) is precisely of
the type studied in the previous sections. To compute E(ε) for a given ε > 0, we
integrate numerically either the ODE system (2.15) or (3.2); see Section 5.

The computational cost can be significantly reduced if we are able to compute
efficiently ΠS(Y ) and the matrix vector multiplication ΠS(Y )v (with v ∈ Cn) which
is typically used by an iterative eigensolver applied to A + εΠS(Y ). This is true
for example when S is the set of matrices with a prescribed sparsity pattern. Note
that often also linear system solves are required to find the desired eigenvalue and a
convenient solution of the structured linear systems is desirable.

6.4. Outer iteration. The outer iteration determines the smallest positive so-
lution of the one-dimensional root-finding problem (6.3). We make use of a locally
quadratically convergent Newton-type method, which can be justified under appro-
priate regularity assumptions. It turns out that the derivative of ϕ is then simply

ϕ′(ε) = −∥ΠSGε(E(ε))∥F /(x(ε)∗y(ε)), (6.4)

where x(ε) and y(ε) with x(ε)∗y(ε) > 0 are the eigenvectors to the (simple) target
eigenvalue λ(ε) of A+ εE(ε) at the extremizer E(ε); cf. [8, 12] for related derivative
formulas. If the assumptions justifying this formula are not met, we can always resort
to bijection. The algorithm we use is indeed a combined Newton / bisection approach,
similar to [9, 8, 12].

7. Numerical experiments. In this section we show the behavior of Algorithm
1, which is based on the rank-1 differential equation (3.2), on two sparse matrices and
an example with prescribed range and corange.

We start by considering two well-known sparse matrices.
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Fig. 7.1. Sparsity patterns of the matrices ORANI678 (left) and FIDAPM11 (right).

7.1. The matrix ORANI678 from the Harwell Boeing collection. The
matrix A is a sparse real unsymmetric square matrix taken from the set ECONAUS.
It has dimension n = 2529 and a number of nonzero entries nz = 90158 ≈ 40n. Its
sparsity pattern is plotted in Figure 7.1.

(i) We have set ε = 1 and applied our algorithms to the minimization problem
(2.3) with f(λ, λ) = − 1

2 (λ+ λ) = −Re(λ) and S the space of real matrices with the
sparsity pattern of A. The target eigenvalue is the one with largest real part. We
thus aim to compute the structured ε-pseudospectral abscissa of A with an accuracy
of 14 digits. We denote by neig the total number of eigenvalue computations (that is

k Re(λk)

0 −1.232670912085709
1 −1.745212357950066
2 −1.917229680782718
3 −2.076407232182272
4 −2.249359154133923
5 −2.343018078428841
6 −2.343036033336665
7 −2.349611649664635
8 −2.350556073486847
9 −2.350620017092603
. . . . . .
25 −2.350634775262768

Table 7.1
Computed values using Algorithm 1 for the ORANI678 matrix.

the number of calls to the Matlab routine eigs).
We integrated (3.2) by Algorithm 1 and obtained the results in Table 7.1. The

main cost is the number of eigentriplets evaluations by the Matlab routine eigs and
is given by neig = 38. The CPU time is around 1.5 seconds. For comparison we
also integrated the full-rank ODE (2.15) by the Euler method (gradient descent)
with variable stepsize and obtained a similar behavior. The number of eigentriplets

1Instead of eigenvalues of smallest modulus, we could take the smallest singular value.
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evaluations is neig = 35 and the final approximation to the ε-pseudospectral abscissa
is 2.350634775261177, which coincides with the value computed by the rank-1 method
up to the 11-th digit. The CPU time is 1.6 seconds.

Since u and v turn out to be real, the gain in terms of memory requirements for
the rank-1 algorithm is 90158/5058 ≈ 17.82, which is a significant reduction in the
storage of the iterates.

(ii) Setting next f(λ, λ) = λλ = |λ|2 and the target eigenvalue the one - say λmin

- with smallest modulus, we approximated the structured distance to singularity of
A. Given the convergence to a local optimizer of Algorithm 1 we obtain this way an
upper bound to this distance. An immediate lower bound is the unstructured distance
σmin(A), i.e. the smallest singular value, which is equal to 0.0033388. As we see in
Table 7.2, the effective structured distance to singularity is one order of magnitude
larger. Applying a Newton-bisection method we obtained the results shown in Table
7.2. Since the function ϕ and its derivative (see (6.4)) are computed inexactly (by
Algorithm 1), we do not observe quadratic convergence.

k εk ϕ(εk) # eigs

1 0.0104015 1.1019564 · 10−2 13
2 0.0176409 9.5284061 · 10−4 13
3 0.0219541 2.5263758 · 10−4 14
4 0.0243116 6.5050153 · 10−5 13
5 0.0255439 1.6503282 · 10−6 13
6 0.0261739 4.1561289 · 10−6 13
7 0.0264923 1.0428313 · 10−6 13
8 0.0266524 2.6118300 · 10−7 13
9 0.0267327 6.5355110 · 10−8 13
10 0.0267728 9.6346192 · 10−9 13
11 0.0267930 1.7293467 · 10−10 4

Table 7.2
Distance to singularity for the ORANI678 matrix: computed values εk, ϕ(εk) = |λmin(A +

εkEk)|2 and number of eigenvalue computations of the inner rank-1 algorithm.

The average CPU time of an outer iteration is around 528.6 seconds, which is due
to the augmented computational cost required by the routine eigs for linear systems
solves. The average number of eigentriplets evaluation is neig = 12.

7.2. The matrix FIDAPM11 from the SPARSKIT collection. The ma-
trix A is now a sparse real unsymmetric square matrix taken from the set ECONAUS.
It has dimension n = 22294 and a number of nonzero entries nz = 623554 ≈ 30n. Its
sparsity pattern is plotted in Figure 7.1.

We have set ε = 0.5 and applied our algorithms to the minimization problem
(2.3) with f(λ, λ) = −λλ = −|λ|2 and S the space of real matrices with the sparsity
pattern of A, and the target eigenvalue is the one with largest real part. We are thus
aiming to compute the structured ε-pseudospectral radius of A.

Integrating both ODEs (2.15) and (3.2), we obtain the same optimizer λ =
1.9716893. The number of computed eigen-triplets is neig = 107 and neig = 99, with
a slight advantage of the rank-1 method. The CPU time is close to 32.95 and 31.32
seconds respectively.

Also in this case u and v turn out to be real so that the gain in terms of memory
requirements is significant, 623554/44588 ≈ 13.98.
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Fig. 7.2. Behavior Fε (E(t)) − F ∗
ε (where F ∗

ε is the computed value of Fε at the stationary
point) in the numerical integration by Algorithm 1 for the matrix ORANI678 with f(λ, λ) = −Re(λ)
(left picture) and for the matrix FIDAPM11 with f(λ, λ) = −|λ|2 (right picture). In both cases
Fε (E(tk)) decays monotonically with k.

7.3. A comparison with Manopt. We made experiments on the sparse ma-
trices considered above using Manopt, a well-known toolbox for optimization on man-
ifolds and matrices [3].

Applying Manopt to the same problem considered for the ORANI678 matrix, pro-
viding the Riemannian gradient on the manifold of sparse matrices with unit Frobenius
norm, the method yields a result very close to the one computed with our method (the
difference is around 10−13. The CPU time for our algorithm is approximately 1.4 sec-
onds Concerning the algorithm implemented in Manopt, with the conjugate-gradient
method. we have found that the method converges in 20 iterations using a CPU time
which is approximately 14 seconds; with the BFGS solver it converges in 15 iterations
using a CPU time of approximately 16 seconds and finally with the Barzilai-Borwein
method it converges in 117 iterations in about 57 seconds. The trust region method
(which is the default choice) instead turns out to converge very slowly.

Applying next Manopt, with the conjugate-gradient solver, to the considered
example with the FIDAPM11 matrix, we have obtained that the result coincides with
the one we obtain to 5 digits, but the CPU time exceeds 5 hours when the default
accuracy is used, and it drops to around 8 minutes when a tolerance of 10−2 is required,
which still gives 3 correct digits. With the option of adaptive line search and the same
tolerance, a result with the same accuracy is obtained in a slightly larger CPU time.

7.4. An example of control of the Stokes problem. We consider an example
from [15], which arises in the discretization of the 2-dimensional Stokes problem on
a uniform quadratic grid. Setting 25 grid points on both sides of the square, we get
a sparse matrix A (J − R in the notation of [15]) which has dimension n = 1824,
while we choose the control matrices B and C = B⊤ to have size n × k and l × n,
respectively with k = l = 40, randomly i.i.d. entries and unit Frobenius norm.

The matrix A has the rightmost eigenvalue λ = −6.4343098 ·10−4, which suggests
a non-robust Hurwitz stability.

Although Assumption 4.1 is not fulfilled we succesfully execute the rank-1 al-
gorithm. Running it on this example, we find the structured stability radius to be
0.0384039, which is 60 times larger than |λ|.

Since the matrix is sparse we can exploit favorably the matrix vector products of
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the form (with p ∈ Rn the vector, Z = uv∗ ∈ M1, and ρ the normalization factor)(
A+ ερB B†ZC†C

)
p,

whose cost is linear in n.
In Table 7.3 we show the Newton iteration where the number of eigentriplets eval-

uation is again indicated by neig. The quadratically convergent behavior is evident.

k εk ϕ(εk) # eigs

0 0 −6.4343098 · 10−4 1
1 0.02 −3.1062242 · 10−4 23
2 0.0385299 2.1414201 · 10−6 26
3 0.0384039 9.7779625 · 10−11 18

Table 7.3
Iterates for computing the structured stability radius for the Stokes problem matrix with range-

and corange-constrained perturbations; the optimal perturbation size ε∗ is where ϕ(ε∗) = 0.

8. Use of the projected gradient system (2.19) for eigenvalue optimiza-
tion with perturbation matrices of prescribed range and co-range. We con-
sider the (complex) structure space S of (2.5), which only allows for perturbations of
given range and co-range. We recall that the orthogonal projection onto S is given by
ΠSZ = BB†ZC†C. In this case, the set MS

1 = ΠSM1 of structure-projected rank-1
matrices equals the submanifold of rank-1 matrices that have the prescribed range
and co-range:

MS
1 = {E ∈ Cn,n : E = ρuv∗ with ρ > 0, u ∈ Ran(B), v ∈ Ran(C)} ⊂ M1.

For such an E = ρuv∗ with u and v of unit norm and in the range of B and C,
respectively, the orthogonal projection PS

E onto the tangent space TEMS
1 turns out

to be given by the same expression as in (3.3):

PS
E (Z) = Z − (I − uu∗)Z(I − vv∗).

This has important consequences:
– On the theoretical side, it allows us to use the same argument as in the proof of

part (b) of Theorem 3.1 to show, under the non-degeneracy condition PS
EGS(E) ̸= 0,

that every stationary point of the gradient system (2.19) on MS
1 is also a stationary

point of the gradient system (2.15) on S; hence, there are no (non-degenerate) spurious
stationary points.

– On the computational side, for a solution E(t) = u(t)v(t)∗ ∈ MS
1 of unit

Frobenius norm of the differential equation (2.19) we therefore obtain differential
equations for the factors u and v of unit norm that are formally the same as in
Lemma 3.2: with the projected gradient GS = ΠSG(E) for short,

u̇ = −(I − uu∗)GSv − i
2 Im (u∗GSv)u,

v̇ = −(I − vv∗)(GS)∗u+ i
2 Im (u∗GSv)v.

Note that here u̇ and v̇ are in the range of B and C, respectively, so that u and v
stay in these ranges. In order to obtain a further compression we set u = Bp and
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v = C∗q with p ∈ Ck and q ∈ Cl. In this way - with G = Gε(E) - we obtain for
E = uv∗ = Bpq∗C the differential equations

ṗ = −B†GC∗q + pp∗B∗GC∗q − i
2 Im (p∗B∗GC∗q)p

q̇ = −(C∗)†G∗Bp+ qq∗CG∗Bp + i
2 Im (p∗B∗GC∗q)q.

With the rank-1 matrix G = Gε(E) = 2fλ xy
∗ (see Lemma 2.4) and with α = p∗B∗x,

β = q∗Cy and γ = 2fλ, we thus obtain the differential equations (cf. (3.4))

ṗ = αβγ p− βγ B†x− i
2 Im (αβγ)p

q̇ = αβγ q − αγ (C∗)†y − i
2 Im (αβγ)q.

(8.1)

This system of differential equations is treated numerically in the same way as de-
scribed in Section 5, using a splitting between the first two terms on the right-hand
side and the third term.

We present numerical results for the Stokes example of Section 7.4, now treated
with the above implementation of the gradient system (2.19) for comparison.

k εk ϕ(εk) # eigs

1 0.02 −3.1061082 · 10−4 26
2 0.0386113 4.3234455 · 10−5 33
3 0.0384036 8.2212343 · 10−10 16

Table 8.1
Iterates for computing the structured stability radius for the Stokes problem matrix with range-

and corange-constrained perturbations with inner iteration realized integrating (8.1).
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