
The Journal of Systems & Software 191 (2022) 111385

T
a

b

c

t
t
h
t

(
(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Mutation-based analysis of queueing network performancemodels✩

homas Laurent a,∗, Paolo Arcaini b, Catia Trubiani c, Anthony Ventresque a

Lero & University College Dublin, Dublin, Ireland
National Institute of Informatics, Tokyo, Japan
Gran Sasso Science Institute, L’Aquila, Italy

a r t i c l e i n f o

Article history:
Received 22 November 2021
Received in revised form 13 May 2022
Accepted 27 May 2022
Available online 5 June 2022

Keywords:
Queueing Networks
Mutation
Model-based performance analysis

a b s t r a c t

Performance models have been used in the past to understand the performance characteristics of
software systems. However, the identification of performance criticalities is still an open challenge,
since there might be several system components contributing to the overall system performance.
This work combines two different areas of research to improve the process of interpreting model-
based performance analysis results: (i) software performance engineering that provides the ground for
the evaluation of the system’s performance; (ii) mutation-based techniques that nicely supports the
experimentation of changes in performance models and contribute to a more systematic assessment of
performance indices. We propose mutation operators for specific performance models, i.e., queueing
networks, that resemble changes commonly made by designers when exploring the properties of a
system’s performance. Our approach consists in introducing a mutation-based approach that generates
a set of mutated queueing network models. The performance of these mutated networks is compared
to that of the original network to better understand the effect of variations in the different components
of the system. A set of benchmarks is adopted to show how the technique can be used to get a deeper
understanding of the performance characteristics of software systems.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Evaluating the performance characteristics of software sys-
ems is a problem recognised by both researchers and prac-
itioners as of high relevance, to the extent that performance
as emerged, among other extra-functional properties, as con-
ributing to the new correctness (Harman and O’Hearn, 2018).
Indeed, if performance requirements are not met, negative conse-
quences may arise, e.g., damaged customer relations resulting in
economic loss. Concrete examples of performance requirements
are: a system response time not larger than 10 s, a service
throughput not lower than 5 requests/second, and a utilisation of
hardware devices not higher than 90%. To verify the fulfilment
of these requirements, many techniques have been developed
in the software performance engineering community (Smith and
Williams, 2002; Petriu et al., 2012; Cortellessa et al., 2011; Bondi,
2014), and there is a growing interest in the early validation of
requirements to prevent design errors from propagating to the
end system (Haskins et al., 2004).

✩ Editor: Burak Turhan.
∗ Corresponding author.

E-mail addresses: thomas.laurent@ucd.ie (T. Laurent), arcaini@nii.ac.jp
P. Arcaini), catia.trubiani@gssi.it (C. Trubiani), anthony.ventresque@ucd.ie
A. Ventresque).
ttps://doi.org/10.1016/j.jss.2022.111385
164-1212/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a
The complexity of the problem is exacerbated when consid-
ering that the openness, heterogeneity, and versatility of mod-
ern and software-intensive systems entail the specification of
different types of uncertainties, all having an impact on the
performance behaviour of the system. Uncertainties may span
several dimensions; for instance, it is very unlikely that the work-
load is uniquely determined, and several fluctuations may be
observed when the system is in operation. Other types of un-
certainties may manifest as: (i) operational profile, i.e., users
requiring different services with uncontrolled temporal ordering;
(ii) service demands, in case software services require more/less
resources depending on load conditions; (iii) hardware settings,
in case some failures happen, and software needs redeployment
on different platforms.

To deal with different types of system uncertainties, perfor-
mance models are of key relevance, since they allow to reflect
uncertainties in the specification of their input parameters (Aleti
et al., 2018; Pinciroli et al., 2017; Mishra and Trivedi, 2011). This
work focuses on Queueing Networks (QNs) (Lazowska et al., 1984;
Kleinrock, 1975) as target performance model, one of many such
modelling techniques (Koziolek, 2010). QNs are a well-assessed
formalism in the software performance engineering community;
moreover, they are recognised as especially suited to resource-
sharing contexts (Balsamo and Marzolla, 2005; Smith et al., 2010)
and as having good prediction accuracy when analysing real
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2022.111385
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111385&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:thomas.laurent@ucd.ie
mailto:arcaini@nii.ac.jp
mailto:catia.trubiani@gssi.it
mailto:anthony.ventresque@ucd.ie
https://doi.org/10.1016/j.jss.2022.111385
http://creativecommons.org/licenses/by/4.0/

T. Laurent, P. Arcaini, C. Trubiani et al. The Journal of Systems & Software 191 (2022) 111385

s
e
s
d

u
b
t
t
t
b
s
u
u
o
t
h
i
s

w
a
b
i
f
m
p
i
a
a
a

g
t
t
o

t
e
o
e

d
m
i
n

ystems (Urgaonkar et al., 2005; Casale et al., 2016; Dipietro
t al., 2016; Incerto et al., 2021). Furthermore, they have been
hown to properly model the uncertainties inherent to system
esign (Antonelli et al., 2020).
Interpreting performance analysis results is critical, since sim-

lation results only give a snapshot of the system’s performance
ut do not provide any hint of why these results are obtained, and
heir root causes. System designers need to know which parts of
he system contribute to negative performance results; namely,
hey are interested in identifying which system elements lead to
ad system performance, or are unnecessarily set to expensive
oftware/hardware settings, increasing the overall system cost. To
nderstand root causes of performance issues, system designers
sually need to manually modify the network (e.g., by increasing
r decreasing the number of servers in a node) to check whether
hese changes affect the system performance. Such an approach
as several problems: it requires performance-based expertise,
t is tedious, and it may also be error-prone. Thus, this process
hould be automated.
The goal of this paper is to provide an automated frame-

ork that can assist designers in assessing the performance of
system and sizing its resources, by identifying performance
ottlenecks, challenging workloads, and possibilities for refactor-
ng/design changes. We build such a framework by joining the
orces of two different areas of research. First, software perfor-
ance engineering techniques are adopted as the ground for the
erformance evaluation of software systems. Second, we take
nspiration from mutation analysis (Papadakis et al., 2019), and
pply changes to performance models to automatically consider
lternative designs in terms of performance and cost trade-off
nalysis.
This work introduces a novel mutation-based approach that

enerates a set of mutated queueing network models, and uses
hem to better understand the performance of the original sys-
em and of alternative designs. To this end, we define mutation
perators resembling the network modifications that are usually

performed by designers when tuning the performance of the
system and assessing cost. Moreover, we define a way to compare
the performance results produced by these mutants with those of
the original model under the same workload.

The framework helps get a better understanding of the sys-
em’s performance and of the effect of the different design el-
ments. For example, it can highlight elements central to the
verall performance of the system, or that the system is over-
quipped.
The approach was applied to a benchmark set of five QNs

eveloped by practitioners or proposed in the literature. Experi-
ental results confirm the relevance of the proposed framework

n understanding the involvement of each of the system’s compo-
ents, and their effect on the different aspects of the performance.
To summarise, the main contributions of this work are:

• a mutation-based approach for analysing the performance
results from queueing network models, and the associated
system costs required to meet them — see Section 3.2;

• the specification of mutation operators that resemble the
typical design changes that can be performed to run a
trade-off analysis between cost and performance — see
Section 3.3;

• a framework implementing and automating the application
of the approach – see our publicly available replication
package (Laurent et al., 2022);

• a set of experiments illustrating the benefits of applying
the approach to support designers in the understanding of
performance and cost evaluation vs model components —

see Section 4.

2

The paper is organised as follows. Section 2 presents back-
ground information on queueing networks and describes an il-
lustrative example QN model. Section 3 explains the proposed
approach and provides details on the mutation operators. Sec-
tion 4 presents the experiments we conducted to evaluate the
proposed approach, and Section 5 provides a critical discussion
of the work. Section 6 discusses some threats that may affect the
validity of the approach and steps taken to mitigate them. Finally,
Section 7 reviews related work, and Section 8 reports concluding
remarks and possible research directions for future work.

2. Background and illustrative example

We here provide background concepts on which this work is
built. Section 2.1 introduces the minimal necessary definitions ex-
pressing Queueing Network models and background on mutation
analysis. Section 2.2 illustrates an example of QN model.

2.1. Background

Queueing Networks (QNs) have been widely applied to rep-
resent and analyse resource sharing systems (Kleinrock, 1975). A
QN model can be defined as a collection of interacting processing
nodes representing system resources, a set of customer classes
that refer to the different system requests, and structural nodes
representing the flow of requests.

Processing nodes are of two types. The first type are service
centres, which are composed of a Server and a Queue. Queues
can be characterised by a finite or an infinite size. Each server,
contained in a service centre, picks the next job from its queue
(if not empty), processes it, and routes the processed request
to another node. The second type of processing nodes are delay
centres, that differentiate from the service centres in not having
an associated queue.

Service and delay centres are connected through links that
form the network topology. A routing node can be introduced
to route customer classes to different branches (b1, . . . , bn) ac-
cording to some given probabilities (p1, . . . , pn), assuming that
pi ∈ [0, 1] and

∑n
i=1 pi = 1.

In other words, the QN representation is a direct graph whose
nodes are service/delay centres and their connections are rep-
resented by the graph edges. Jobs go through the graph’s edge
set on the basis of the behaviour of customers’ service requests.
Moreover, there might be fork nodes that are used to express
parallelism, i.e., one task is split into multiple activities executed
in parallel and synchronised through the join node. To regulate
the parallelism, there exist finite capacity regions that explicitly
express the maximum number of requests that can run in parallel.

The time spent in every processing node by each request is
modelled by probability distributions, e.g., exponential or de-
terministic distributions. Delay centres are described only by a
service time that denotes how long jobs are delayed before pro-
ceeding in further delay or queueing centres. Service centres also
include the specification of service times needed to process the
different types of requests, along with the policy to manage the
requests waiting in the queue, e.g., first-come-first-served (FCFS).
The incoming workload can be modelled as open (i.e., specified by
an arrival rate λ) or closed (i.e., a constant number N of requests
specified as the population size). In case of open workload, re-
quests are generated by source nodes connected with links to the
rest of the QN, and terminate in sink nodes when all tasks have
been performed.

Due to system uncertainties (such as fluctuating workload,
operational profile, resource demand of services, service time of
hardware devices), setting the input parameters of QN models

has been recognised as particularly critical (Trubiani et al., 2013),

T. Laurent, P. Arcaini, C. Trubiani et al. The Journal of Systems & Software 191 (2022) 111385

i

s
f
c
o

r
n
L
i
q
T
c
t

3

b
N
t
p
a
a
s
t

3

p
A
l
m
p
t
(
t
w
p
q
o
f
a

e
q
f
(
p
b
i
c

3

m
b
a
t
s
t
o
2

Fig. 1. QN model example (from ShicaoUW (2017)).

and recently some approaches have been defined that foster sen-
sitivity analysis (e.g., multiple load tests) as fundamental in the
process of software performance engineering (Bondi, 2014). The
approach described in this work takes inspiration from sensitivity
analysis, in that it uses performance results in order to better
understand how the system reacts to different changes.

Mutation analysis is a test criterion that introduces some
changes mimicking faults in a system under test, i.e., it mutates
the systems under test, and measures the capability of the tests to
detect these changes, or mutants (DeMillo et al., 1978; Papadakis
et al., 2019). If the tests do not detect the mutants then a gap
in the test suite has been highlighted. Mutants normally aim at
changing the semantics of the system under test by modifying
it, by syntactically altering the source code of the application, or
the model that is being used for testing. However, some mutants
– called equivalent mutants – remain semantically equivalent to
the original system, no test could ever detect them. Equivalent
mutants are usually seen as a hindrance in mutation analysis. It
seems like there is a gap in the test suite, even though there is
none. However, this work relies on equivalent mutants, as we
want to compare the performance of design alternatives of a
system that achieve the same functionality, in order to better
understand the effect of each design element on the performance
results. This means that we are interested in changes to the
queueing network performance model that do not alter what the
modelled system does (in terms of processing operational steps),
but may affect the overall system performance. For instance, the
addition of a processing node can indicate a further service to be
managed by the software system, and the resulting QN model
is not functionally equivalent. As opposite, changing the policy
by which queued requests are served can speedup or delay the
processing, but the system functionality is not affected.

2.2. Illustrative example

Fig. 1 provides, as an illustrative example, a publicly available
QN model (ShicaoUW, 2017). There is a source node, namely
Requests, that represents an open workload of jobs coming into
the system. Two different types of requests have been defined:
(i) Class0 follows an hyper exponential distribution, and (ii) Class1
presents an exponential distribution. Both classes are routed to
the RAID0 fork node and the finite capacity region called Apache
− MaxClients = 100. Each request routed to the RAID0 fork node
s transformed to three tasks that are forwarded to the next
3

queueing network centres, i.e., Disk 1, Disk 2, and Disk 3, each
howing a certain service time distribution. The completion of
orked tasks is regulated by the join node Join0. This latter node is
onnected to the Reply sink node that determines the completion
f such requests.
Each request routed to the finite capacity region follows its

ules; specifically, the region capacity is set to 100, that means
o more that one hundred requests are allowed to reach the
oadBalancer routing station at a time. A strategy of routing
s set for each job class; for instance, Class0 joins the shortest
ueue, and Class1 follows the shortest response time criterion.
wo queueing centres (i.e., Web Server 1 and Web Server 2) are
onnected to the routing station in order to balance the load that
erminates in the Reply sink node.

. Mutation-based analysis of queueing networks

This section describes our main contribution, i.e., a mutation-
ased approach to performance analysis by means of Queueing
etworks. First, Section 3.1 introduces performance analysis and
he typical use case in which it is applied. Then, Section 3.2
rovides an overview of the proposed mutation-based analysis
pproach, and the following sections detail the mutation oper-
tors (Section 3.3), the performance metrics (Section 3.4), the
imulation process (Section 3.5), and the methods for comparing
he original and mutated model’s performance (Section 3.6).

.1. Current practice in model-based performance analysis

Queueing Networks (QNs) are used to analyse the system
erformance, often through simulation (Lazowska et al., 1984).
system can be modelled with a QN and then different work-

oads can be simulated for such a system. Several performance
etrics can be collected during the simulation to represent the
erformance of the system. Performance analysis can fulfil mul-
iple goals. A typical use case is Operational Profile Assessment
OPA): knowing the workloads the system will encounter, and
he performance requirements that it needs to meet, OPA checks
hether the system meets the requirements, and can help find
ossible modifications of the system, either to meet violated re-
uirements, by adding additional resources, or to minimise costs
f the system, by removing unnecessary resources. This work
ocuses on OPA as a use case of Queueing Network, and thus
ssumes the system’s typical workloads are known.
The current practice involves substantial manual (subject to be

rror-prone) analysis by performance experts in order to answer
uestions like ‘‘which elements in the system are responsible
or performance issues?’’, ‘‘which elements are under-utilised
i.e., they are oversized)?’’, or ‘‘how do different workloads affect
erformance results?’’. The next section describes a mutation-
ased approach to analyse these results in a more systematic way,
n order to more easily gain insights on the performance and the
ost of the system.

.2. Overview of the approach

This work tackles the problems related to model-based perfor-
ance analysis stated above. The proposed approach is inspired
y mutation analysis (Papadakis et al., 2019), where modifications
re seeded into a system to better understand its code, and to find
ests that capture these modifications. Although mutation analy-
is is usually applied to seed faults in the system to check whether
he tests are strong enough to capture the faults, a different line
f work also uses mutation to repair the system (Gazzola et al.,
019), i.e., seeding modifications that could remove some faults

T. Laurent, P. Arcaini, C. Trubiani et al. The Journal of Systems & Software 191 (2022) 111385

o
o

m
s
i
m
s
t
p
s
T
o
m

p
s
u
i
s
p
t
a

I
i
b
(

f
p
t
s

i
t
(
t

Fig. 2. Mutation-based analysis of queueing networks.
r improve the system. In our approach, we embrace both usages
f mutation analysis, and we use them together.
Namely, we propose a mutation-based approach for perfor-

ance analysis that introduces modifications (e.g., larger or
maller queue size, different queueing strategy, etc.) in a Queue-
ng Network model to better understand the system’s perfor-
ance. Introducing these variations in performance models and
tudying their effect on the system’s performance helps explain
he contribution of the system’s different elements to the overall
erformance, and highlights opportunities for refactoring the
ystem, either by increasing or decreasing its used resources.
o the best of our knowledge, this work is the first application
f mutation-based concepts to better understand performance
odels and analysis results.
Fig. 2 gives an overview of the mutation-based approach to

erformance analysis. As described above, a QN model of the
ystem under analysis and a set of workloads are traditionally
sed for performance analysis. These elements are also present
n the proposed mutation-based approach, where workloads are
imulated (as described in Section 3.5) on the model to produce
erformance results over the different metrics described in Sec-
ion 3.4. The mutation-based approach differs from the traditional
pproach in that not only the original system’s model is used.Mu-

tant models are generated from the system’s model by applying
the mutation operators described in Section 3.3, that introduce
modifications in the model. The workloads are simulated on these
mutant models as well and produce other performance results.

The performance of the original model and of the mutant
models are then compared using the method described in Sec-
tion 3.6. If the performance results of the original model and
of a mutated model are different, then the workloads show the
difference in the mutant, and we say the mutant was triggered.
nstead, if the results are similar, it means that the modification is
rrelevant for the workloads. At this stage, a triggering matrix can
e produced, showing which workloads trigger which mutants
and with regards to which metric).

This matrix is then analysed for insights on the system’s per-
ormance and the workloads used. The output of the mutation
rocess brings valuable insights, no matter the effect of the mu-
ants on the performance results. Depending on the effect ob-
erved, the insights can be of a different nature.
On the one hand, if a mutant is not triggered, then it shows

t does not impact the different performance metrics for any of
he workloads considered. If the system designer wants to modify
usually improve) the system’s performance, then they know that
he type of modification introduced by the mutant will have no
4

effect, and they can focus their redesigning efforts on other parts
of the system. However, if the goal of the designer is to save
costs, and if the mutant represents a cost-saving modification
(e.g., a smaller queue), then they know that the type of change
represented by the mutant does not impact the performance, and
is a viable cost-saving modification.

On the other hand, if a mutant is triggered by a workload,
then it shows it had an effect on the system’s performance under
these circumstances. If the system designer wants to modify the
system’s performance, then this result highlights a component
of the system they can focus on to achieve this. They can then
examine the details of the performance results achieved by the
mutant model to determine if they want to apply the type of
change represented by the mutant. For example, the designer
can check whether the mutant improved or degraded perfor-
mance, and w.r.t. which metrics (one metric could be improved
while another is degraded), and if the changes to the system’s
performance can justify the change in the cost of the system.

Although some cases, such as a mutant implying a reduction
in the cost of the system and having a positive effect on its
performance, would be very easy to analyse, some degree of ex-
pertise is still required to balance the overall trade-offs involved
in designing systems. However, the mutation-based approach
systematically and automatically explores possible changes to
the system, a task that would usually be done manually, only
relying on ‘‘rules of thumb’’ and the designer’s domain knowl-
edge. Furthermore, the approach provides a condensed view of
the effect of all changes (the triggering matrix), that highlights
particular changes the designer can focus on to achieve their
goals, preventing waste of the expert’s time on dead ends.

3.3. Mutation operators

This section describes possible mutation operators for QNs. We
focus on common-practice design changes that have been applied
to performance models (Petriu, 2021; Xu, 2012) and give insights
into the causes for poor performance and how to fix them (e.g., by
removing bottlenecks). The goal of mutation operators is to cover
well-assessed system changes; these changes are motivated by
users that can benefit from the understanding of the system
design and its correlated performance fluctuations. Hence, this
work investigates three design elements whose configuration can
have an impact on different performance results, and also require

diverse costs when implementing the system. Namely, these are:

T. Laurent, P. Arcaini, C. Trubiani et al. The Journal of Systems & Software 191 (2022) 111385

Q

C

3

u
p
a
a
(
t
o

t
a
s

r
U
m
o
s
i
v
u

a
a
r
c
b
t
r
N

a
w
P
m
o
c

3

.
s
c

s
o
s
r
m

r
m
s

ueue size. It relates to the capacity of queueing stations to host
a number k of requests waiting to be served. The mutation
operators focus on creating finite queues, in order to use
the request drop rate as an indicator of busy times for
resources.

Queueing strategy. It refers to the policy of queueing stations to
handle requests waiting to be served. There are multiple
options that can be selected from, e.g., (i) (ii) First Come
First Served (FCFS), i.e., customers are served in the same
order in which they arrive at the station; (iii) Last Come
First Served (LCFS), i.e., an arriving customer jumps ahead
of the queue and will be served first. We focus on these
two strategies in the experiments.

Queue parallelism. It is meant to regulate the capacity of queue-
ing stations when handling multiple requests in parallel.
This way, we can consider a number of servers that scales
up or down according to the workload that needs to be
managed. In general, such a number can be also infinite to
model no contention of resources. However, in our case,
we are interested in verifying which resources are actually
needed to avoid performance issues, and this is the reason
why we consider a finite number of servers.

These three elements represent different aspects that are of
key relevance for the design of QN models and the performance
of the system. The operators in this work target these design
elements.

The operators must affect the performance of the model with-
out affecting its semantics, i.e., while the performance of the
modelled system should be affected by the mutations introduced
by the operators, its functionality must be preserved. This ensures
that the mutation analysis process gives insights only on the
performance of the model, i.e., by comparing how functionally
equivalent models behave under the different workloads. Thus,
we need to guarantee that the functional part of the system is not
subject to variations, and we do not consider mutation operators
that modify the structure of the networks such as adding or
removing nodes, rerouting requests, etc. Such mutations could
lead, under certain circumstances, to equivalent functionality,
for example by merging two parallel nodes that represent the
same functionality (e.g., merging the two web servers in Fig. 1
and removing the load balancer). However, performing struc-
tural changes to the model without affecting the functionality
of the system requires knowledge of the nodes’ semantics (the
functionality they represent, the potential dependencies between
them). Without this information, the mutation could merge two
nodes that represent different functionalities, and thus change
the semantics of the model. As this knowledge on elements’
semantics is not encoded in the model, automating these changes
is unfeasible. However, if we could guarantee the preservation
of the system’s functionality (possibly through semantic annota-
tions in the model), we could envision more mutation operators
targeting other queueing network model elements. We leave this
aspect as part of our future research.

In this work, we propose the following operators:

Change Queue Size (CQSi): it creates a mutant for each node in
the model, modifying the size of its queue. Different ver-
sions of this operator decrease or increase the queue size
in different ways. CQSi∗0.5 divides the queue size by 2,
and CQSi−1 removes one unit; instead, CQSi∗2 doubles the
queue size, and CQSi+1 adds one unit. For infinite queues,
only CQSi∗0.5 is applied, and the queue is given an arbitrary
finite size (10 in this work).
5

Change Queue Strategy (CQSt): it creates a mutant for each node
in the model, modifying the queueing strategy of its queue.
The FCFS and LCFS strategies are swapped, giving the op-
posite strategy from the original to the mutated queues.

hange Number of Servers (CNS): it creates a mutant for each
processing node in the model, modifying its number of
servers (processing units). Similarly to CQSi, different ver-
sions of the operator modify the number in different ways:
CNS∗0.5, CNS−1, CNS∗2, and CNS+1.

.4. Performance metrics

The performance of a particular model QN can be assessed
sing different metrics, that consider different aspects of the
erformance. This work considers system response time, drop rate,
nd utilisation, as they represent the metrics most used to assess
system’s performance with QNs (Jain, 2008). Other metrics

e.g., queue length – the number of requests present in the queue
hrough the simulation – and throughput) could be used without
therwise altering the approach.
System response time (SRT) is defined as the time interval be-

ween a user’s request of a service and the response of the system,
nd usually upper bounds are defined as business requirements by
takeholders.
Utilisation (UT) is defined as the ratio of busy time of a

esource and the total elapsed time of the measurement period.
sually, upper bounds are defined as part of system require-
ents by system engineers on the basis of their experience,
r constraints introduced by other concurrent software systems
haring similar hardware characteristics. Note that the utilisation
s computed at the component level, i.e., there is an utilisation
alue for each node of the network. We identify with UT N the
tilisation of a given node N .
Drop rate is more specific to the QN formalism, and is defined

s the rate at which the customers’ requests are dropped from
station or a region because of a constraint, such as a queue

eaching its maximum capacity, or the maximum number of
ustomers in a region under analysis. Note that the drop rate can
e computed both at the component level (i.e., for each node of
he network), and at the system level. We call the former drop
ate (DR), and we identify with DRN the drop rate of a given node
; we call the latter system drop rate (SDR).
A performance metric PM can be evaluated with respect to

ll the customer classes, or for a particular one. We identify
ith PMAll the evaluation for all the customer classes, and with
Mcc the evaluation for a given class cc . Note that both types of
easurements are valuable, as they can highlight global problems
r problems arising for particular types of requests (customer
lasses).

.5. Simulation formalism

Given a queueing network QN with customer classes cc1,
. . , ccm, a workload w = [λcc1 , . . . , λccm] is an assignment of
ervice requests, where λcci is the inter-arrival time for customer
lass cc i, regulated by a probability distribution.
A queueing network is simulated using a simulator. It allows to

pecify an input workload w, and to select performance metrics
f interest; for each performance metric, the designer can also
pecify the Maximum Relative Error ϵ that identifies the precision
equired in the simulation. It runs until all the performance
etrics obtain results in the required maximum relative error ϵ.
We identify with QNPM (w) = [ml,mm,mu] the simulation

esults for performance metric PM , where ml and mu are the
inimum and maximum values observed for PM during the
imulation, and m is the mean value.
m

T. Laurent, P. Arcaini, C. Trubiani et al. The Journal of Systems & Software 191 (2022) 111385

n
a
w

3

a
m
v
s
k
I
m
O
r

t
m

r

Since the mutants could behave differently from the original
etwork QN , they could take more or less time than QN . Thus, to
void that the simulation of a mutant QN ′ takes too much time,
e impose a timeout T on its execution.

.6. Assessing mutant triggering

A necessary (but not sufficient) condition for stating there is
significant change in performance between the original and
utated model is that the difference between the two mean
alues of PM is greater than a given threshold γ . This threshold
hould be specified by the designer according to their domain
nowledge, considering the precision specified for the simulation.
f this is not the case, the simulation results for performance
etric PM are considered the same and the evaluation stops.
therwise, we consider the simulation results different if the two
anges of values produced for PM do not overlap.1

We introduce the following predicate to assess whether a mu-
ant has been triggered by a workload w for a given performance
etric PM

triggered(QN,QN ′, w, PM) =
|m′

m−mm|

mm
> γ ∧ (mu < m′

l ∨ m′
u < ml)

(1)

where QNPM (w) = [ml,mm,mu] and QN ′

PM (w) = [m′

l , m
′
m, m

′
u].

4. Experiments

This section describes the experiments we conducted to evalu-
ate the approach. Replication data, as well as the implementation
of the framework are available in the replication package (Laurent
et al., 2022).

4.1. Research questions

We identify the following Research Questions (RQs) to assess
the approach:

RQ1 (Effectiveness of the mutation operators): Are the propo-
sed operators effective? I.e., do they introduce changes that
the workloads detect?

RQ2 (Effect on the different metrics): Which metrics are more
affected by the mutation operators? I.e., which are the
metrics that more often allow to detect the mutant? Which
is the amount of change in the metrics?

RQ3 (Example of insights from the mutation analysis): What
kind of conclusions can be drawn by the practitioners?

4.2. Benchmarks and tools used

As tool for QN representation and simulation we use JMT
(Casale et al., 2018) ver. 1.1.1; in particular, we use JSIMgraph
(the engine part of JMT) to run QN model simulations and collect
the performance indices of interest (see Section 3.4).

In order to experiment the approach on real-world case stud-
ies, we collected different benchmark QNs from GitHub, that are
summarised in Table 1.

The table reports, for each benchmark QN, the original source,
the number of workloads used, the number of mutants generated
for each mutant operator, and the number of performance metrics
for each category. In order to experiment with all our mutation

1 Note that it could happen that the intervals do not overlap, but the absolute
elative change |m′

m−mm |/mm is lower than the noise. So, checking overlapping is
not enough, and the property on the percentage difference must also be checked.
 a

6

Table 1
Benchmark QNs.

ID Source |W |
mutants # performance metrics

CQSi CQSt CNS UT SRT DR/SDR

B1 (Comi, 2020), link 3 12 3 12 6 2 8
B2 (Comi, 2020), link 3 8 2 8 6 3 9
B3 (ShicaoUW, 2017), link 3 20 5 20 15 3 18
B4 (ShicaoUW, 2017), link 9 16 4 16 16 4 20
B5 Arcelli (2020), link 3 36 9 36 189 21 210

operators, we made the queue sizes finite and increased the
number of servers of the original networks, setting both to 10
for all the nodes. The replication package (Laurent et al., 2022)
contains the modified models.

Each benchmark QN only had one workload specified by the
original developers. Therefore, in order to obtain a fuller picture
of the behaviour of the models, and results that would more
closely match a real use case (where a system would be simulated
under different workloads), for each QN we proceeded as follows.
Given a total workload w = [λcc1 , . . . , λccm], for each workload
λcci for the customer class cc i, we multiplied it by 2 and 0.5
and we built two tests w′

i = [λcc1 , . . . , λcci ∗ 2, . . . , λccm] and
w′′

i = [λcc1 , . . . , λcci ∗ 0.5, . . . , λccm] with the modified values.
Moreover, we also build two tests in which we double and halve
all the customer classes’ loads, i.e., w′

= [λcc1 ∗2, . . . , λcci ∗2, . . . ,
λccm ∗ 2] and w′′

= [λcc1 ∗ 0.5, . . . , λcci ∗ 0.5, . . . , λccm ∗ 0.5]. So,
in total there are 3 + 2 × m workloads for the network QN , with
m the number of customer classes of QN (using an exponential or
deterministic distribution.2 We collected all the workloads in the
set W .

4.3. Experimental setup

For each benchmark Bi and its workloads W , an experiment is
as follows. Bi is simulated with each w in W and all performance
metrics are collected. Then, for each mutant M of Bi:

• M is simulated using the workloads in W , and the perfor-
mance metrics are collected. For a given workload w, the
mutant execution is stopped if it times out (after T). In case
of timeout, the mutant is considered triggered by w, but no
information of the performance metrics can be provided;

• if the timeout for a workload w did not occur, the perfor-
mance results of Bi and M are compared as described in
Section 3.6.

4.4. Results

This section presents the experimental results, and discusses
them in light of the three RQs described in Section 4.1.

4.4.1. RQ1: Effectiveness of the mutation operators
This RQ assesses if the proposed operators can affect system

performance. Table 2 reports aggregated experimental results. For
each benchmark network and each mutation operator, it reports
the proportion of simulations of the mutated networks that were
detected as different (DM), i.e., the proportion of times that the
predicate in Eq. (1) was true. We observe that, for all mutation
operators of type CNS (i.e., CNS∗0.5, CNS−1, CNS∗2, and CNS+1),
all the obtained mutants are almost always detected. This means
that these are mutation operators that can greatly affect (posi-
tively or negatively) the performance of the network, highlighting

2 Note that when there is only one customer class, w′
= w′

1 and w′′
= w′′

1 ,
nd so there are only 3 workloads in total.

https://github.com/comidan/Computer-Science-Engineering/blob/master/Master%20Level%20Degree/Computing%20Infrastructures/Lectures/JMT-Examples/3_CapacityplannnigIntranet_WHATIF.jsimg
https://github.com/comidan/Computer-Science-Engineering/blob/master/Master%20Level%20Degree/Computing%20Infrastructures/Lectures/JMT-Examples/4_facial_recognition_system_lambda1_singlerun.jsimg
https://github.com/HOMlab/QN-ACTR-Release/blob/master/QN-ACTR%20Java/examples/2cl_10stat_fcr_fork_whatif.jsimg
https://github.com/HOMlab/QN-ACTR-Release/blob/master/QN-ACTR%20Java/examples/3cl_6stat_open.jsimg
https://github.com/davewilsonfbc/smapeaqn.moo/blob/master/CCIS-replication-package/SMAPEA-QN-emergency-handling.jsimg

T. Laurent, P. Arcaini, C. Trubiani et al. The Journal of Systems & Software 191 (2022) 111385
Table 2
RQ1: Effectiveness of the mutation operators.
Perf. metrics triggering the mutants (Metr) Triggered mutants (DM)

CNS∗0.5 , CNS−1 , CQSt , CQSi+1 CNS∗0.5 , CNS−1 , CQSi−1 , CQSt ,
ID CNS∗2 , CNS+1 CQSi∗0.5 CQSi−1 CQSi∗2 ID CNS∗2 , CNS+1 CQSi∗0.5 CQSi+1 CQSi∗2

B1 0.12 0 0 0 B1 1 0 0 0
B2 0.14 0.17 0 0 B2 1 0.50 0 0
B3 0.07 0 0 0 B3 1 0.40 0 0
B4 0.10 0.28 0.01 0 B4 1 0.75 0.03 0
B5 0.01 0.01 0 0 B5 0.59 0.07 0 0
a
p
c
C
t
e
t
r

o
t
o
i
i
t

p

Table 3
RQ2 — Minimum and maximum relative change (in %) of each metric created by
any mutant under any workload for each system. Grey cells identify the results
that actually lead to consider a mutant triggered.

ID DR/SDR SRT UT

min max min max min max

B1 0 0 0 0 −50 100
B2 0 +∞ −0.72 0.28 −50 101.74
B3 0 +∞ −1.09 2.1 −50.22 102.81
B4 −100 +∞ −6.38 2.37 −51.35 105.82
B5 −100 +∞ −2.02 1.94 −53.64 123.4

parts of the model that are important to the performance. For
CQSi∗0.5, instead, mutants are detected less often, and, in some
cases, they are never detected. This mutation operator does not
change the network so drastically, and so it is more difficult to
detect. Finally, for some mutation operators (i.e., CQSi−1, CQSi+1,
CQSt , and CQSi∗2), the mutants are (almost) never detected. In
this case, the perturbations introduced by the operators are so
minimal that they do not significantly impact the performance.
Note that a different reason for not detecting a mutant could be
that the set of workloads W does not contain a suitable load that
triggers the difference. This does not exclude that there might be
another workload that would be able to trigger such a difference.
In this work, we assume that the typical set of workloads of the
system is given (see Section 3.1), and we are not interested in
its quality; instead we are concerned about the relative level of
difficulty in detecting the mutants across the different types of
operators: using the same set of workloads for all the mutants
allows to assess this.

Table 2a reports aggregated experimental results regarding
the performance metrics. For each benchmark network and each
mutation operator, it reports the proportion of metrics that
showed a significant difference, i.e., for which the mutated net-
works were detected. We observe that, in almost all the cases
in which at least one mutant is detected (see Table 2b), a small
percentage of the metrics is responsible for the detection (up
to 28% of the metrics). This means that the mutants result in
specific changes to the performance, rather than affecting the
performance of the system in all its aspects. The next research
question looks more closely at how the different metrics are
affected.

4.4.2. RQ2: Effect on the different metrics
This RQ identifies which metrics are more sensitive to the mu-

tations introduced by the mutation operators, i.e., which metrics
usually detect the mutants, and which are the changes in their
values.

Table 3 reports, for each benchmark and each type of metric
PM , the minimum and maximum relative change m′

m−mm/mm be-
tween the average value mm of PM for the original QN and the
average value m′

m for a mutant, across all the mutants.
The table reports in grey the results that are, in their absolute

value, above the threshold γ = 5% that identifies the percentage
7

change that is necessary in order to assess that a mutant is
triggered (see Eq. (1)).

For DR/SDR and SRT in B1, there is no percentage difference
for any mutant, meaning that these metrics were not affected by
the mutation. For DR/SDR in B2 and B3, the change is only in the
positive direction, meaning that the mutants were only able to
increase the value of the performance metric.

We note that the system response time, although almost al-
ways slightly affected, is significantly affected only for B4. This can
be explained by the fact that the system response time is a global
metric and the effect of local modifications only partially affect
the whole system. Indeed, often such local modifications have a
high local effect that is, however, masked and compensated at the
global level.

On the other hand, the utilisation can always be significantly
affected both positively and negatively by some mutants. The
reason is that utilisation is a local metric and, as such, it is more
sensitive to modifications.

For drop rate and system drop rate, we notice that, for four
benchmarks, the maximum value is +∞, meaning that there
were no requests dropped in the original model and requests
were dropped in the mutated model. This means that the original
models have the correct amount of resources (i.e., they are not
over-equipped), as modifying them reduces the performance.

4.4.3. RQ3: Example of insights from the mutation analysis
To better illustrate how the proposed approach is able to assist

designers in their performance analysis, we provide complete
results for one of the benchmark models and discuss the insights
they would provide to the system’s designer. We select bench-
mark B4 (taken from ShicaoUW (2017)), as it is relatively simple
nd we can present and discuss its results in the space of the
aper. The basic idea of this benchmark is to model a source of
ustomers making three types of requests, i.e., Class0, Class1, and
lass2, and regulated by different inter-arrival time distributions,
hat interact with a WebServer. The server processes the differ-
nt incoming requests and then dispatches the result between
hree storage entities Storage1, Storage2, and Storage3. Finally the
equests reach the sink node.

Tables 4 to 8 report, for each metric PM and each mutation
perator MO, the minimum and maximum difference between
he PM values of the original network and those of the mutants
btained with MO. In the tables, the symbol – means that there
s no change in the performance metric. Cells highlighted in grey
dentify the metric/mutant pairs for which at least one workload
riggered the mutant w.r.t. the metric.

These results provide the following insights about the system’s
erformance:

• there exist a correspondence between metrics on a spe-
cific node and operators acting on that node. For example,
utilisation of Class0 in WebServer is affected by the CNS
operator applied on WebServer. More specifically, we can
observe that when halving the number of servers, the util-
isation is subject to a variation of around 100% (Table 6),
i.e., increasing to a large extent. As expected, decreasing the

T. Laurent, P. Arcaini, C. Trubiani et al. The Journal of Systems & Software 191 (2022) 111385
Table 4
RQ3 – Results for B4 – CQSi reducing.
measureDescr CQSi∗0.5Storage1 CQSi∗0.5Storage2 CQSi∗0.5Storage3 CQSi∗0.5WebServer CQSi−1Storage1 CQSi−1Storage2 CQSi−1Storage3 CQSi−1WebServer

Timeout – – – – - - - -

DRClass0Storage1 0 ; +∞ – – – – – – –
DRClass0Storage2 0 ; +∞ +∞; +∞ – – – – 0 ; +∞ 0 ; +∞

DRClass0Storage3 – – 0 ; +∞ – – – – –
DRClass0WebServer 0 ; +∞ – – +∞; +∞ – – 0 ; +∞ 0 ; +∞

DRClass1Storage1 0 ; +∞ – – – – – – –
DRClass1Storage2 – +∞; +∞ – – – 0 ; +∞ – –
DRClass1Storage3 – – +∞; +∞ – – – – –
DRClass1WebServer – – 0 ; +∞ +∞; +∞ – – – 0 ; +∞

DRClass2Storage1 0 ; +∞ – – – – – – –
DRClass2Storage2 – +∞; +∞ – – – 0 ; +∞ – –
DRClass2Storage3 – – 0 ; +∞ – – – – –
DRClass2WebServer 0 ; 79343.49 −100 ; 0 −28.6 ; 0 43218.46 ; +∞ −100 ; 0 0 ; 2869.8 0 ; 98.53 0 ; 64.33
DRAllStorage1 0 ; +∞ – – – – – – –
DRAllStorage2 0 ; +∞ +∞; +∞ – – – 0 ; +∞ 0 ; +∞ 0 ; +∞

DRAllStorage3 – – +∞; +∞ – – – – –
DRAllWebServer 0 ; 590.6 −100 ; 0 −35.2 ; 0 63308.79 ; +∞ −100 ; 0 0 ; 1247.65 0 ; 20.12 0 ; +∞

SDRClass0 0 ; +∞ +∞; +∞ 0 ; +∞ +∞; +∞ – – 0 ; +∞ 0 ; +∞

SDRClass1 0 ; +∞ +∞; +∞ +∞; +∞ +∞; +∞ – 0 ; +∞ – 0 ; +∞

SDRClass2 0 ; +∞ 16849.49 ; +∞ 0 ; +∞ 43219.2 ; +∞ −100 ; 0 0 ; 65.67 0 ; 98.53 0 ; 64.33
SDRAll 0 ; +∞ 21085.98 ; +∞ 10051.32 ; +∞ 54250.37 ; +∞ −100 ; 0 0 ; 23.51 0 ; +∞ 0 ; +∞

SRTClass0 −0.59 ; 0.57 −2.6 ; −0.55 −0.75 ; 0.5 −4.56 ; 0.05 −0.97 ; 1.13 −1.08 ; 1.51 −0.82 ; 1.34 −1.35 ; 0.71
SRTClass1 −1.58 ; 1.48 −2.94 ; 1.61 −1.96 ; 1.78 −6.38 ; −0.49 −1.08 ; 1.04 −0.81 ; 1.85 −1.95 ; 1.24 −0.91 ; 0.5
SRTClass2 −0.78 ; 1.28 −2.19 ; 0.65 −0.22 ; 0.9 −3.66 ; 0.86 −0.74 ; 1.03 −0.98 ; 1.43 −1.01 ; 1.35 −0.53 ; 1.07
SRTAll −1.86 ; 0.6 −2.71 ; 0.84 −2.18 ; 0.94 −5.42 ; 0.05 −1.81 ; 1.08 −1.35 ; 1.55 −1.61 ; 1.76 −1.75 ; 1.53

UTClass0
Storage1 −2.82 ; 0.66 −2.87 ; 0.77 −2.15 ; 1.65 −6.03 ; 0.37 −0.36 ; 1.74 −0.73 ; 1.18 −1.15 ; 1.49 −1.22 ; 1.44

UTClass0
Storage2 −0.35 ; 0.88 −4.29 ; −1.25 −1.65 ; 1.24 −4.94 ; 0 −0.75 ; 1.81 −1.86 ; 1.92 −1.51 ; 2.45 −1.24 ; 1.65

UTClass0
Storage3 −0.96 ; 0.56 −1.33 ; −0.43 −1.98 ; 1.89 −4.78 ; 0.24 −1.21 ; 2.03 −1.89 ; 2.57 −0.97 ; 0.73 −2.2 ; 2.02

UTClass0
WebServer −2.03 ; −0.07 −2.63 ; 0.28 −0.79 ; 0.52 −4.87 ; −0.08 −1.92 ; 3.03 −1.45 ; 2.67 −2.21 ; 1.35 −1.29 ; 0.37

UTClass1
Storage1 −0.82 ; 2.8 −3.15 ; −1.37 −2.36 ; 3.97 −6.01 ; 1.64 −0.53 ; 3.01 −1.81 ; 1.39 −1.62 ; 2.45 −1.48 ; 2.59

UTClass1
Storage2 −2.3 ; 1.12 −3.98 ; 0.63 −2.04 ; 3.07 −8.12 ; 0.62 −2.69 ; 2.82 −0.77 ; 3.59 −2.42 ; 1.96 −1.17 ; 1.65

UTClass1
Storage3 −2.38 ; 1.34 −2.58 ; −0.32 −3.47 ; 1.99 −7.14 ; 0.29 −1.32 ; 1.75 −5.13 ; 1.47 −1.62 ; 1.59 −1.29 ; 1.5

UTClass1
WebServer −1.34 ; 1.34 −3.41 ; 0.42 −2.24 ; 2.24 −7.52 ; 1.02 −1.6 ; 2.84 −3.03 ; 1.45 −2.96 ; 2.7 −1.27 ; 2.25

UTClass2
Storage1 −1.44 ; 1.1 −1.61 ; 0.58 −0.42 ; 0.84 −3.45 ; 0.56 −1.87 ; 1.71 −0.96 ; 1.56 −2.27 ; 3.6 −0.45 ; 1.53

UTClass2
Storage2 −1.26 ; 0.52 −4.53 ; 0.64 −0.7 ; 1.3 −6.2 ; 0.81 −3.92 ; 2.38 −1.41 ; 2.85 −2.19 ; 3.51 −0.68 ; 1.66

UTClass2
Storage3 −2.21 ; 1.39 −1.24 ; 2.12 −0.76 ; 1.99 −4.27 ; 3.42 −2.1 ; 2.22 −1.14 ; 1.46 −1.11 ; 2.26 −0.3 ; 1.88

UTClass2
WebServer −1.25 ; 1.64 −1.59 ; 2.22 −1.56 ; 1.57 −5.4 ; 0.39 −1.01 ; 1.45 −1.57 ; 2.17 −1.56 ; 1.58 −0.34 ; 2.67

UTAll
Storage1 −1.23 ; 1.34 −2.76 ; 0.51 −1.3 ; 1.6 −6.6 ; −0.03 −1.37 ; 0.97 −1.76 ; 2.28 −1.19 ; 3 −0.54 ; 1.94

UTAll
Storage2 −2.04 ; 1.97 −5.05 ; 2.23 −2 ; 1.79 −5.9 ; 0.76 −2.04 ; 2.1 −1.48 ; 3.19 −3.64 ; 2.69 −0.47 ; 2.26

UTAll
Storage3 −0.61 ; 0.85 −1.84 ; 1.81 −1.1 ; 1.97 −4.68 ; 0.43 −0.34 ; 1.27 −1.07 ; 2.13 −0.6 ; 2.14 −0.44 ; 1.91

UTAll
WebServer −2 ; 0.72 −2.11 ; 1.93 −2.2 ; 1.15 −7.89 ; 0.27 −2.07 ; 2.15 −1.92 ; 1.81 −2.02 ; 2.49 −1.88 ; 2.01
number of servers of 1 unit only, instead, has an impact but
the utilisation only increased around 11%.

• a similar correspondence is observed when operators are
meant to improve the system performance. For example,
the utilisation of WebServer decreases by roughly 50%
when doubling the number of servers (Table 7), whereas
it is observed that augmenting of 1 unit the number of
servers brings an improvement of 9% approximately.

• regarding CQSi (see Tables 4 and 5), we observe no signifi-
cant difference for the operators increasing the queue size
(Table 5), meaning that the network has enough resources
to store incoming requests. It is worth remarking that the
operator ‘‘increasing the queue size’’ acts on the capacity of
the system to queue requests; however, it does not mean
that the actual queue length will necessarily increase, it
depends on the ability of the system to manage requests
in time and avoid queueing. By contrast, the operators
halving the queue size (Table 4) lead to significant changes,
including requests being dropped, showing that this type
of change has a strong impact when applied, lowering the
8

performance, and is thus not a desirable change to make.
On the other hand, the operators reducing of one unit
the queue size, are (except for one case) never detected,
meaning that the network is slightly over-equipped and
some queue sizes could be reduced to save system cost,
maintaining similar performance results.

• regarding CNS (see Tables 6 and 7), we observe that all
its operators (increasing and decreasing the number of
servers) are detected by the utilisation metric, which is
to be expected given the relation between utilisation and
number of servers (the workload being processed by more
or fewer servers). On the one hand, putting the effects
of these changes on the utilisation in relation to those
on the drop rate in Table 6 shows that the system does
not support these reductions in the number of servers,
as requests get dropped. On the other hand, looking at
Table 7, it shows that adding servers can reduce the drop
rate (since more requests are processed in a lower amount
of time, i.e., the number of requests waiting decreases) as

T. Laurent, P. Arcaini, C. Trubiani et al. The Journal of Systems & Software 191 (2022) 111385
Table 5
RQ3 – Results for B4 – CQSi increasing.
measureDescr CQSi∗2_Storage1 CQSi∗2_Storage2 CQSi∗2_Storage3 CQSi∗2_WebServer CQSi+1_Storage1 CQSi+1_Storage2 CQSi+1_Storage3 CQSi+1_WebServer

Timeout – – – – – – – –

DRClass0Storage1 – – – – – – – –
DRClass0Storage2 – – 0 ; +∞ – – – 0 ; +∞ 0 ; +∞

DRClass0Storage3 – – – – – – – –
DRClass0WebServer −82.27 ; 0 −100 ; 0 −23.15 ; 0 −100 ; 0 0 ; 679.92 −100 ; 0 −100 ; 0 −100 ; 0
DRClass1Storage1 – – – – – – – –
DRClass1Storage2 −100 ; 0 −100 ; 0 −100 ; 0 −100 ; 0 −100 ; 0 −100 ; 0 −100 ; 0 −100 ; 0
DRClass1Storage3 – – – – – – – –
DRClass1WebServer – – 0 ; +∞ – – – 0 ; +∞ –
DRClass2Storage1 – – – – – – – –
DRClass2Storage2 −100 ; 0 −100 ; 0 −78.28 ; 0 −100 ; 0 −100 ; 0 −100 ; 0 −63.27 ; 0 −100 ; 0
DRClass2Storage3 – – – – – – – –
DRClass2WebServer −100 ; 0 −100 ; 0 −100 ; 0 −100 ; 0 0 ; 83.89 −100 ; 0 −100 ; 0 −100 ; 0
DRAllStorage1 – – – – – – – –
DRAllStorage2 −100 ; 0 −100 ; 0 −68.9 ; 0 −100 ; 0 −100 ; 0 −100 ; 0 −43.12 ; +∞ −21.86 ; 0
DRAllStorage3 – – – – – – – –
DRAllWebServer −61.08 ; 0 −100 ; 0 0 ; 124.9 −100 ; 0 0 ; 145.19 −100 ; 0 −23.6 ; 0 −100 ; 0

SDRClass0 −77.43 ; 0 −100 ; 0 −48.92 ; 0 −100 ; 0 0 ; 679.92 −100 ; 0 −63.97 ; +∞ −20.04 ; 0
SDRClass1 −100 ; 0 −100 ; 0 −49.93 ; 0 −100 ; 0 −100 ; 0 −100 ; 0 −40.77 ; 0 −100 ; 0
SDRClass2 −100 ; 0 −100 ; 0 −51.08 ; 0 −100 ; 0 0 ; 22.59 −100 ; 0 −17.27 ; 0 −100 ; 0
SDRAll −50.51 ; 0 −100 ; 0 0 ; 40.3 −100 ; 0 0 ; 91.76 −100 ; 0 0 ; +∞ 0 ; 37.25

SRTClass0 −1.65 ; 1.49 −1.07 ; 0.88 −1.72 ; 0.78 −1.34 ; 0.15 −1.52 ; 0.9 −1.32 ; 0.77 −1.28 ; 0.99 −2.45 ; 1.5
SRTClass1 −1.13 ; 1.6 −1.65 ; 1.75 −0.91 ; 1.01 −1.58 ; 1.1 −1.21 ; 1.38 −0.76 ; 1.02 −1.15 ; 0.77 −1.26 ; 1.82
SRTClass2 −1.29 ; 1.15 −1.21 ; 2.37 −1.12 ; 1.3 −2.03 ; 2.01 −1.33 ; 0.91 −1.35 ; 1.33 −1.33 ; 1.55 −1.26 ; 1.68
SRTAll −1.37 ; 1.27 −1.01 ; 0.99 −1.31 ; 1.26 −1.74 ; 0.5 −1.42 ; 1.4 −1.19 ; 0.9 −1.47 ; 0.4 −1.16 ; 1.06

UTClass0
Storage1 −0.94 ; 0.85 −1.3 ; 3.77 −0.92 ; 2.45 −1.35 ; 1.35 −1.39 ; 2.68 −2.28 ; 1.78 −1.92 ; 1.91 −1.82 ; 2.57

UTClass0
Storage2 −2.86 ; 2.23 −2.7 ; 1.66 −1.16 ; 1.65 −3.56 ; 0.69 −1.99 ; 1.53 −1.94 ; 1.49 −1.33 ; 1.96 −4.9 ; 1.84

UTClass0
Storage3 −1.37 ; 1.49 −0.94 ; 1.67 −1.9 ; 1.8 −2.45 ; 1.4 −1.41 ; 2.02 −2.06 ; 1.77 −1.17 ; 1.11 −2.82 ; 2.23

UTClass0
WebServer −1.12 ; 1.62 −1.08 ; 3.27 −1.42 ; 2.01 −2.03 ; 1.9 −1.22 ; 2.19 −1.5 ; 1.44 −0.97 ; 1.57 −1.55 ; 1.82

UTClass1
Storage1 −1.15 ; 2.16 −2.26 ; 1.47 −1.52 ; 1.65 −2.06 ; 2.64 −2.54 ; 1.95 −1.97 ; 1.72 −4.39 ; 1.33 −1.98 ; 2.23

UTClass1
Storage2 −2.79 ; 2.17 −2.91 ; 2.12 −1.88 ; 1.53 −1.9 ; 1.81 −1.78 ; 1.94 −2.49 ; 2.01 −2.6 ; 0.48 −2.94 ; 3.24

UTClass1
Storage3 −2.05 ; 2.62 −0.77 ; 2.23 −1.43 ; 1.42 −0.9 ; 2.08 −0.62 ; 2.06 −1.06 ; 1.12 −0.8 ; 1.59 −0.9 ; 2.41

UTClass1
WebServer −1.38 ; 1.03 −1.36 ; 3.7 −1.11 ; 0.9 −1.56 ; 0.53 −2.73 ; 1.36 −1.56 ; 0.88 −2.77 ; 2.5 −0.88 ; 2.61

UTClass2
Storage1 −1.53 ; 1.57 −2.25 ; 2.08 −2.23 ; 1.12 −2.42 ; 1.27 −2.59 ; 2.11 −3.84 ; 1.34 −3.08 ; 0.56 −1.43 ; 2.7

UTClass2
Storage2 −1.19 ; 1.19 −1.23 ; 2.02 −1.1 ; 1.5 −1.24 ; 3.42 −1.35 ; 1.59 −2.01 ; 1.09 −1.43 ; 1.69 −1.1 ; 1.15

UTClass2
Storage3 −1.99 ; 1.9 −1.27 ; 1.43 −1.71 ; 0.8 −1.82 ; 1.5 −1.26 ; 1.54 −1.12 ; 1.32 −0.98 ; 1.62 −2.69 ; 1.88

UTClass2
WebServer −1.67 ; 3.03 −2.13 ; 2.18 −1.19 ; 2.43 −3.78 ; 1.93 −0.69 ; 2.28 −3.38 ; 2.2 −1.11 ; 1.64 −2.42 ; 2.04

UTAll
Storage1 −0.57 ; 2.01 −1.66 ; 2.98 −2.54 ; 2.04 −1.87 ; 1.44 −1.61 ; 1.22 −2.62 ; 1.93 −1.06 ; 1.1 −0.68 ; 1.63

UTAll
Storage2 −1.07 ; 1.29 −0.17 ; 2.1 −1.09 ; 4.39 −1.31 ; 1.29 −1.16 ; 1.49 −2.38 ; 1.34 −2.58 ; 0.62 −1.25 ; 1.59

UTAll
Storage3 −0.78 ; 2.11 −1.39 ; 2.39 −2.45 ; 3.23 −1.52 ; 2.44 −1.3 ; 2.13 −1.38 ; 1.49 −1.37 ; 2.56 −1.18 ; 3.25

UTAll
WebServer −2.37 ; 2.61 −2.37 ; 1.44 −2.98 ; 1.74 −2.06 ; 1.86 −1.34 ; 2.47 −1.06 ; 1.46 −1.43 ; 2.18 −1.74 ; 2.94
well as the utilisation, and thus could be considered as a
refactoring.

• regarding CQSt (see Table 8), we note that changing the
queueing strategy never leads to significant improvement
or deterioration of the performance. This means that the
designers can consider changing the queueing strategy, if
this leads to other advantages (e.g., lower implementation
cost).

• regarding the specific performance metrics, we note that
drop rate (both DR and SDR) is significantly changed only
for CQSi∗0.5 (see Table 4), meaning that only such modifi-
cation leads to strong drop rate changes. Instead, for other
modifications that are detected by utilisation (see Tables 6–
7), all the requests are still satisfied and the drop rate is not
affected.

• the results also allow to get insights for specific nodes of
the network. For example, from Table 4, we observe that
halving the queue size for WebServer leads to a significant
change of utilisation (for some customer class) of all the
other network nodes, of the drop rate for Storage3, of
the system drop rate, and of the system response time.
 a

9

This means that WebServer is a central component of the
network, and other components depend on it for their
performance. Therefore, particular care should be taken
when designing it, and deciding its resources.

5. Discussion

This section provides a more general discussion of the pro-
posed approach.

First of all, the approach can be computationally expensive, as
it requires generating many mutants and performing long sim-
ulations on them. However, the approach can be made scalable
in different ways. First of all, the designer can decide to consider
only some mutation operators, depending on the type of modifi-
cations they are interested in. Moreover, they can also select only
some nodes of the network as target of the mutations, namely
those that they think are more critical and may require a redesign.
Finally, a prioritisation can be imposed over the assessment of
mutants, avoiding the execution of some mutants; for example,
mutant CQSi−1 of a node can be executed before mutant CQSi∗0.5

nd, if mutant CQSi−1 is triggered, we can avoid checking mutant

T. Laurent, P. Arcaini, C. Trubiani et al. The Journal of Systems & Software 191 (2022) 111385

m
w

p
a
g
d

6

s

Table 6
RQ3 – Results for B4 – CNS reducing.
measureDescr CNS∗0.5_Storage1 CNS∗0.5_Storage2 CNS∗0.5_Storage3 CNS∗0.5_WebServer CNS−1_Storage1 CNS−1_Storage2 CNS−1_Storage3 CNS−1_WebServer

Timeout - - - - - - - -

DRClass0
Storage1 – – – – – – – –

DRClass0
Storage2 – 0 ; +∞ – – – 0 ; +∞ – 0 ; +∞

DRClass0
Storage3 – 0 ; +∞ – – – – – –

DRClass0
WebServer – – 0 ; +∞ 0 ; +∞ – – – –

DRClass1
Storage1 – – – – – – – –

DRClass1
Storage2 – – 0 ; +∞ – 0 ; +∞ – – –

DRClass1
Storage3 – – 0 ; +∞ – – – – –

DRClass1
WebServer – – 0 ; +∞ 0 ; +∞ – – 0 ; +∞ 0 ; +∞

DRClass2
Storage1 – – – – – – – –

DRClass2
Storage2 0 ; +∞ 0 ; +∞ – – – – – –

DRClass2
Storage3 – – 0 ; +∞ – – – – –

DRClass2
WebServer 0 ; 85.15 −100 ; 0 −100 ; 0 0 ; +∞ 0 ; 81.13 0 ; 149.09 −100 ; 0 −100 ; +∞

DRAll
Storage1 – – – – – – – –

DRAll
Storage2 0 ; +∞ 0 ; +∞ 0 ; +∞ – 0 ; +∞ 0 ; +∞ – 0 ; +∞

DRAll
Storage3 – 0 ; +∞ 0 ; +∞ – – – – –

DRAll
WebServer −15.98 ; 0 −100 ; 0 −34.07 ; +∞ 0 ; +∞ −17.8 ; 0 0 ; 13.03 0 ; 1019.92 −18.6 ; +∞

SDRClass0 – 0 ; +∞ 0 ; +∞ 0 ; +∞ – 0 ; +∞ – 0 ; +∞

SDRClass1 – – 0 ; +∞ 0 ; +∞ 0 ; +∞ – 0 ; +∞ 0 ; +∞

SDRClass2 0 ; 192.72 0 ; +∞ 0 ; 27.58 0 ; +∞ 0 ; 81.13 0 ; 149.09 −100 ; 0 −100 ; +∞

SDRAll 0 ; 13.86 0 ; +∞ 0 ; +∞ 0 ; +∞ 0 ; 40.91 0 ; 128.55 0 ; 859.93 0 ; +∞

SRT Class0
−1.23 ; 0.92 −0.43 ; 1.41 −1.96 ; 0.35 −0.72 ; 1.03 −1.44 ; 0.95 −0.86 ; 1.2 −1.19 ; 1.33 −0.88 ; 1.24

SRT Class1
−1.28 ; 1.39 −1.53 ; 0.66 −1.76 ; 1.69 −1.77 ; 0.95 −1.81 ; 0.78 −1.04 ; 1.33 −1.76 ; 1.24 −1.46 ; 0.87

SRT Class2
−1.46 ; 1.66 −1.68 ; 2.06 −0.61 ; 2.03 −1.86 ; 1.38 −1.93 ; 1.98 −0.57 ; 1.06 −0.21 ; 2.16 −0.58 ; 1.43

SRT All
−2.23 ; 0.92 −1.54 ; 1.22 −1.95 ; 1.5 −1.46 ; 1.29 −0.89 ; 1.43 −0.68 ; 1.56 −2.09 ; 0.74 −0.48 ; 1.8

UT Class0
Storage1 97.56 ; 105.82 −0.81 ; 1.69 −2.09 ; 2.08 −1.49 ; 1.51 9.46 ; 13.16 −2.05 ; 3.8 −1.34 ; 2.73 −1 ; 2.25

UT Class0
Storage2 −0.65 ; 1.72 97.42 ; 104.81 −2.03 ; 0.92 −0.35 ; 1.83 −1.08 ; 2.27 9.57 ; 13.63 −1.49 ; 1.15 −3.17 ; 1.39

UT Class0
Storage3 −1.13 ; 1.51 −1.89 ; 1.71 96.76 ; 102.13 −1.35 ; 1.84 −1.95 ; 1.91 −2.57 ; 1.72 8.84 ; 13.58 −2.09 ; 2.04

UT Class0
WebServer −1.33 ; 0.95 −1.92 ; 1.09 −2.11 ; 1.15 96.69 ; 103.2 −1.33 ; 1.64 −1.67 ; 1.81 −2.21 ; 1.14 9.32 ; 12.58

UT Class1
Storage1 96.35 ; 104.13 −1.07 ; 1.99 −1.55 ; 2.12 −0.44 ; 2.08 9.06 ; 13.7 −1.81 ; 1.55 −2.46 ; 2.31 −1.07 ; 1.4

UT Class1
Storage2 −0.7 ; 3.12 96.72 ; 102.96 −2.12 ; 3.43 −1.58 ; 2.26 −0.79 ; 1.76 8.97 ; 13.32 −4.55 ; 2.83 −1.17 ; 2.71

UT Class1
Storage3 −2.33 ; 1.19 −2.58 ; 1.89 94.96 ; 103.47 −1.63 ; 1.21 −2.24 ; 0.84 −1.33 ; 1.48 8.84 ; 11.74 −1.9 ; 0.86

UT Class1
WebServer −1.95 ; 1.58 −2.17 ; 1.45 −2.33 ; 2.57 95.81 ; 104.09 −1.72 ; 1.78 −2.42 ; 1.84 −2.22 ; 2.94 9.67 ; 12.63

UT Class2
Storage1 96.72 ; 104.18 −2.58 ; 2.06 −1.99 ; 2.66 −1.66 ; 2.98 9.58 ; 13.44 −1.37 ; 1.53 −1.98 ; 1.94 −0.4 ; 1.97

UT Class2
Storage2 −1.01 ; 1.86 97.32 ; 105.34 −0.48 ; 1.1 −1.25 ; 2.03 −2.76 ; 2.26 9.89 ; 13.31 −2.6 ; 1.57 −0.59 ; 1.79

UT Class2
Storage3 −2.87 ; 1.83 −2.68 ; 2.46 99.37 ; 104.42 −1.46 ; 1.38 −2.14 ; 2.59 −2.16 ; 1.78 9.3 ; 13.14 −1.19 ; 1.81

UT Class2
WebServer −0.57 ; 1.55 −1.98 ; 2.66 −0.82 ; 2.07 96.36 ; 104.02 −1.17 ; 1.46 −1.27 ; 1.43 −1.66 ; 2.15 9.65 ; 13.55

UT All
Storage1 97.3 ; 103.93 −1.65 ; 2.76 −1.83 ; 2.44 −2.19 ; 1.74 9.48 ; 12.25 −0.43 ; 2.73 −1.71 ; 1.81 −1.48 ; 2.34

UT All
Storage2 −2.23 ; 2.3 97.26 ; 103.68 −1.31 ; 2.35 −1.51 ; 2.25 −0.04 ; 1.95 10 ; 14.24 −2.69 ; 1.69 −1.49 ; 3.38

UT All
Storage3 −0.92 ; 2.35 −1.54 ; 2.95 98.31 ; 105.04 −1.33 ; 2.04 −0.89 ; 1.42 −0.4 ; 2.37 8.92 ; 13.19 −1.51 ; 4.09

UT All
WebServer −2.05 ; 1.47 −2.69 ; 1.18 −1.82 ; 2.99 97.23 ; 104.3 −1.29 ; 2.28 −2.63 ; 2.26 −2.92 ; 1.83 9.74 ; 14.09
v
C
u
a
o
t
i
a
h
t
C

CQSi∗0.5, as we know that reducing the queue size has a significant
effect.

One may wonder whether the approach is really useful. First
of all, the approach reflects a type of analysis that is done, in
the current practice, in a manual manner; automatising such an
approach is a contribution per se. Moreover, in RQ3, we showed
that the approach can indeed lead to some insights that could
help in redesigning the network. However, how easy the method
is to use has not been assessed. Measuring the usability of the
ethod to practitioners would require extensive user studies,
hich are left as future work.
Note that the domain knowledge of the designer is still im-

ortant in choosing the alternative design choices. Therefore,
lthough in this paper we experimented with operators using
iven levels of alteration, these operators can be adapted by
esigners who can decide which alteration levels to use.

. Threats to validity

The validity of the proposed methodology could be affected by
ome threats. We discuss them using the classical classification of
10
construct validity, conclusion validity, internal validity, and external
alidity (Wohlin et al., 2012).
onstruct validity. A threat of this type is that the metrics we
se in the evaluation of the approach do not reflect what we
re investigating. First of all, we give a quantitative evaluation
f the approach (RQ1 and RQ2): to this aim, we have shown
o what extent the different performance metrics are effective
n detecting mutants, and, so, if they are really needed in the
pproach. Moreover, since we are proposing a methodology, we
ave also done a qualitative evaluation (RQ3) showing which are
he benefits for designers in using our approach.
onclusion validity. A threat of this type is related to the reliability

of the measures that are collected (Wohlin et al., 2012). First of
all, all the experiments have been run on the same machine, using
the same version of JMT. Moreover, the condition for assessing
a mutant as triggered (see Eq. (1)) is quite strong, and so it is
unlikely that we wrongly deem a mutant as triggered because of
errors in measurement.

Another conclusion validity threat could be the selected time-
out T for mutant execution. When a mutant times out for a
workload, we can not record the performance results it would

T. Laurent, P. Arcaini, C. Trubiani et al. The Journal of Systems & Software 191 (2022) 111385
Table 7
RQ3 – Results for B4 – CNS increasing.
measureDescr CNS∗2_Storage1 CNS∗2_Storage2 CNS∗2_Storage3 CNS∗2_WebServer CNS+1_Storage1 CNS+1_Storage2 CNS+1_Storage3 CNS+1_WebServer

Timeout - - - - - - - -

DRClass0Storage1 – – – – – – – –
DRClass0Storage2 0 ; +∞ 0 ; +∞ – 0 ; +∞ 0 ; +∞ 0 ; +∞ – –
DRClass0Storage3 – – – – – – – –
DRClass0WebServer −100 ; 0 −18.49 ; 0 −100 ; 0 −100 ; 0 −100 ; 0 −100 ; 0 −100 ; 0 −63.79 ; +∞

DRClass1Storage1 – – – – – – – –
DRClass1Storage2 −100 ; 0 −100 ; 0 −100 ; 0 −64.93 ; 0 −100 ; 0 −100 ; 0 −48.55 ; 0 −100 ; 0
DRClass1Storage3 – – – – – – – –
DRClass1WebServer – 0 ; +∞ – – 0 ; +∞ – 0 ; +∞ 0 ; +∞

DRClass2Storage1 – – – – – – – –
DRClass2Storage2 −100 ; 0 −100 ; 0 −100 ; 0 −100 ; 0 −100 ; 0 −100 ; 0 −100 ; 0 −100 ; 0
DRClass2Storage3 0 ; +∞ – – – – – – –
DRClass2WebServer −27.25 ; 0 −100 ; 0 −100 ; 0 −100 ; 0 −100 ; 0 −29.7 ; 0 −100 ; 0 −100 ; 0
DRAllStorage1 – – – – – – – –
DRAllStorage2 0 ; +∞ −56.07 ; 0 −100 ; 0 −64.93 ; 0 −40.52 ; 0 −42.22 ; 0 −74.28 ; 0 −100 ; 0
DRAllStorage3 0 ; +∞ – – – – – – –
DRAllWebServer −51.5 ; 0 0 ; 6.61 −100 ; 0 −100 ; 0 −66.2 ; 0 −53.13 ; 0 0 ; 10.19 0 ; +∞

SDRClass0 0 ; +∞ −39.29 ; 0 −100 ; 0 0 ; 40.55 −39.13 ; 0 −40.88 ; 0 −100 ; 0 −63.79 ; +∞

SDRClass1 −100 ; 0 −51.65 ; 0 −100 ; 0 −64.93 ; 0 −69.9 ; 0 −100 ; 0 0 ; 2.89 −59.47 ; 0
SDRClass2 −3 ; 0 −100 ; 0 −100 ; 0 −100 ; 0 −100 ; 0 −53.13 ; 0 −100 ; 0 −100 ; 0
SDRAll 0 ; +∞ −1.94 ; 0 −100 ; 0 −38.4 ; 0 −45.1 ; 0 −45.02 ; 0 −9.64 ; 0 −6.78 ; +∞

SRTClass0 −3.54 ; 1.12 −1.28 ; 0.48 −1.65 ; 1.17 −1.48 ; 1.29 −1.66 ; 1.19 −1.54 ; 1.49 −2.32 ; 2.34 −1.67 ; 2.31
SRTClass1 −0.99 ; 1.05 −1.22 ; 0.79 −0.86 ; 1.11 −0.66 ; 1.34 −1.78 ; 1.28 −2.02 ; 0.67 −1.18 ; 0.95 −1.15 ; 1.62
SRTClass2 −1.15 ; 0.68 −1.84 ; 1.78 −0.58 ; 0.52 −1.84 ; 0.91 −1.58 ; 1.03 −1.07 ; 1.22 −1.39 ; 1.25 −1.08 ; 1.54
SRTAll −1.15 ; 1.53 −1.2 ; 1.28 −2.01 ; 0.57 −1.42 ; 1.04 −1.44 ; 0.44 −2.16 ; 0.95 −1.1 ; 0.73 −1.28 ; 0.99

UTClass0
Storage1 −50.57 ; −49.12 −1.59 ; 1.56 −0.5 ; 1.44 −2.09 ; 2.78 −11.06 ; −6.96 −1.12 ; 2.99 −2.12 ; 3.23 −1.5 ; 1.66

UTClass0
Storage2 −1.2 ; 1.98 −51.35 ; −49.22 −2.06 ; 2.47 −1.81 ; 1.75 −2.41 ; 0.53 −10.88 ; −7.58 −3.2 ; 1.33 −4.21 ; 2.01

UTClass0
Storage3 −3.47 ; 1.44 −1.53 ; 1.84 −51.07 ; −48.83 −2.36 ; 1.54 −1.33 ; 1.15 −1.4 ; 1.84 −10.89 ; −6.98 −1.65 ; 2.76

UTClass0
WebServer −1.97 ; 2.72 −1.92 ; 1.48 −1.63 ; 3.04 −50.74 ; −48.82 −1.41 ; 1.83 −1.16 ; 1.79 −1.69 ; 2.42 −10.41 ; −8.07

UTClass1
Storage1 −51.01 ; −49.16 −0.77 ; 0.72 −0.29 ; 2.26 −1.31 ; 1.38 −9.36 ; −7.91 −3.19 ; 3.17 −1.24 ; 2.3 −1.14 ; 1.69

UTClass1
Storage2 −2.36 ; 1.69 −51.24 ; −49.25 −2.5 ; 2.61 −2.06 ; 1.85 −2.91 ; 1.22 −10.97 ; −7.4 −1.41 ; 1.45 −2.69 ; 1.79

UTClass1
Storage3 −1.99 ; 1.78 −1.41 ; 1.58 −50.49 ; −49.31 −1.28 ; 1.49 −1.06 ; 1.63 −1.12 ; 2.51 −10.2 ; −7.74 −1.42 ; 1.6

UTClass1
WebServer −1.39 ; 1.58 −2.01 ; 0.7 −1.39 ; 1.95 −50.4 ; −48.89 −1.12 ; 1.34 −2.74 ; 1.52 −1.08 ; 1.2 −10.46 ; −8.12

UTClass2
Storage1 −50.82 ; −49.03 −3.78 ; 1.76 −1.59 ; 0.66 −2.28 ; 0.67 −11.2 ; −7.74 −1.46 ; 1.56 −3.1 ; 1.94 −1.27 ; 2.43

UTClass2
Storage2 −1.46 ; 0.89 −50.97 ; −49.36 −3.72 ; 1.9 −1.58 ; 0.48 −2.11 ; 2.64 −9.95 ; −7.82 −1.57 ; 2.76 −1.96 ; 1.14

UTClass2
Storage3 −2.27 ; 1.46 −1.25 ; 1.51 −50.87 ; −48.58 −1.24 ; 1.05 −1.91 ; 1.89 −1.24 ; 0.66 −10.51 ; −7.71 −1.44 ; 1.44

UTClass2
WebServer −1.08 ; 2.02 −3.39 ; 2.22 −2.22 ; 1.79 −50.99 ; −49.21 −1.3 ; 2.16 −2.37 ; 2.45 −3.12 ; 1.52 −10.17 ; −6.92

UTAll
Storage1 −50.25 ; −48.44 −4.16 ; 2.19 −1.4 ; 1.28 −3.02 ; 3.61 −10.62 ; −8.11 −0.9 ; 1.68 −1.79 ; 1.71 −0.73 ; 1.72

UTAll
Storage2 −1.76 ; 1.03 −50.8 ; −49.74 −2 ; 1.3 −0.76 ; 1.01 −1.58 ; 1.17 −10.16 ; −8.05 −2.58 ; 1.86 −2.36 ; 1.72

UTAll
Storage3 −1.46 ; 1.73 −1.73 ; 2.63 −51.16 ; −49.24 −2.52 ; 2.17 −1.64 ; 1.4 −1.1 ; 1.53 −10.74 ; −6.76 −0.59 ; 2.14

UTAll
WebServer −0.94 ; 2.49 −2.11 ; 0.79 −1.52 ; 1.86 −50.78 ; −48.7 −2.23 ; 1.82 −1.02 ; 2.01 −2.33 ; 1.67 −11.19 ; −6.93
have achieved. In this case, the mutant is considered triggered,
as the original network did not time out on the same workload,
and so it is likely that the simulation result would be different. In
any case, to have more confidence that the mutant really affects
the performance results, the user should consider to increase the
timeout of some workloads.
Internal validity. A threat of this type could be to identify a
causal relationship between the workloads and performance
metrics used, and the triggered mutants, while the triggering is
determined by other factors. For example, a very sensitive detec-
tion mechanism could see differences where there are any, just
because of the variability of the simulation results: as discussed in
Section 6, we defined a restrictive condition on mutant triggering
(see Eq. (1)), so as to avoid this problem. As another problem,
the variation of the performance results could be due to a wrong
implementation of the mutants: to address this problem, we
carefully tested our implementation, and we checked that all the
produced mutants can be parsed correctly by the JMT tool that
we used for simulation.
11
External validity. A threat of this type is that the approach could
not be applicable to other case studies. We acknowledge that
we experimented the approach on few benchmark QNs. How-
ever, the lack of benchmarks in performance modelling is recog-
nised (Smith et al., 2018; Smith, 2015; Petriu, 2015). Moreover,
our approach has been devised for queueing networks, and it is
not clear whether it is applicable to other types of performance
models (e.g., stochastic Petri Nets, Markov processes, stochas-
tic Process Algebras, etc.). However, all these notations have
concepts similar to workload, performance metric, etc.; therefore,
as future work we plan to investigate how our approach can be
extended and/or adapted for these formalisms.

7. Related work

This section first reviews works related to load assessment
in performance analysis (see Section 7.1), that are more closely
related to the proposed approach. Then, it reviews works re-
lated to mutation analysis, in particular those related to mod-
elling notations and non-functional properties, as the approach
takes inspiration from this research area (see Section 7.2). Finally,

T. Laurent, P. Arcaini, C. Trubiani et al. The Journal of Systems & Software 191 (2022) 111385

b

Table 8
RQ3 – Results for B4 – CQSt .
measureDescr CQSt_Storage1 CQSt_Storage2 CQSt_Storage3 CQSt_WebServer measureDescr CQSt_Storage1 CQSt_Storage2 CQSt_Storage3 CQSt_WebServer

Timeout - - - - Timeout - - - -

DRClass0
Storage1 – – – – SRT Class0

−0.53 ; 1.19 −1.48 ; 1.22 −1.56 ; 0.84 −0.99 ; 0.59
DRClass0

Storage2 – – – 0 ; +∞ SRT Class1
−1.77 ; 0.68 −1.31 ; 0.56 −1.64 ; 1.12 −1.63 ; 1.31

DRClass0
Storage3 – 0 ; +∞ – – SRT Class2

−0.57 ; 1.46 −0.56 ; 1.28 −0.73 ; 0.86 −0.75 ; 2.02
DRClass0

WebServer 0 ; +∞ 0 ; +∞ 0 ; +∞ 0 ; +∞ SRT All
−1.94 ; 2.06 −1.35 ; 1.27 −1.27 ; 1.24 −1.71 ; 0.97

DRClass1
Storage1 – – – – UT Class0

Storage1 −1.36 ; 2.04 −1.49 ; 2.15 −1.41 ; 1.39 −1.27 ; 1.41
DRClass1

Storage2 – – 0 ; +∞ – UT Class0
Storage2 −1.73 ; 2.17 −1.84 ; 2.62 −1.19 ; 1.74 −1.57 ; 1.36

DRClass1
Storage3 – – – – UT Class0

Storage3 −1.55 ; 1.02 −2.71 ; 3.55 −2.14 ; 1.4 −1.98 ; 0.49
DRClass1

WebServer – – – 0 ; +∞ UT Class0
WebServer −1.79 ; 1.21 −3.22 ; 1.59 −1.18 ; 0.38 −1.1 ; 0.89

DRClass2
Storage1 – – – – UT Class1

Storage1 −1.58 ; 2.06 −1.71 ; 1.59 −1.82 ; 2.56 −2.1 ; 2.77
DRClass2

Storage2 – – – – UT Class1
Storage2 −2.57 ; 1.45 −1.39 ; 1.36 −2.16 ; 3.27 −1.07 ; 2.68

DRClass2
Storage3 – 0 ; +∞ – – UT Class1

Storage3 −1.13 ; 0.67 −2.98 ; 1.53 −2.51 ; 1.73 −1.42 ; 1.38
DRClass2

WebServer −100 ; 0 −100 ; 0 −33.44 ; 0 −100 ; 0 UT Class1
WebServer −3.89 ; 2.26 −2.59 ; 1.99 −3.74 ; 2.08 −1.82 ; 0.92

DRAll
Storage1 – – – – UT Class2

Storage1 −1.43 ; 1.49 −1.08 ; 1.71 −1.3 ; 0.94 −1.08 ; 1.89
DRAll

Storage2 – – 0 ; +∞ 0 ; +∞ UT Class2
Storage2 −1.06 ; 1.45 −0.99 ; 2.35 −3.04 ; 1.32 −0.88 ; 2.03

DRAll
Storage3 – 0 ; +∞ – – UT Class2

Storage3 −1.3 ; 2 −0.74 ; 2.94 −2.05 ; 1.8 −1.5 ; 2.21
DRAll

WebServer 0 ; 10.14 −47.15 ; 0 −24.55 ; 0 −34.01 ; 0 UT Class2
WebServer −1.71 ; 1.42 −1.58 ; 1.9 −1.14 ; 1.82 −0.44 ; 2.31

SDRClass0 0 ; +∞ 0 ; +∞ 0 ; +∞ 0 ; +∞ UT All
Storage1 −0.96 ; 3.65 −1.01 ; 2.6 −0.95 ; 2.36 −1.17 ; 1.88

SDRClass1 – – 0 ; +∞ 0 ; +∞ UT All
Storage2 −1.51 ; 1.75 −0.85 ; 1.89 −2.27 ; 2.56 −1.52 ; 2.42

SDRClass2 −100 ; 0 0 ; 94.5 −33.44 ; 0 −100 ; 0 UT All
Storage3 0.28 ; 2.97 −0.64 ; 3.44 −1.81 ; 1.95 −0.82 ; 2.16

SDRAll −5.6 ; 0 0 ; 35.91 −22.39 ; 0 −24.31 ; 0 UT All
WebServer −2.05 ; 3.65 −2.69 ; 1.48 −2.27 ; 1.77 −1.77 ; 2.31
Table 9
Related work: a brief summary.
Approach Scope Model #Operators Automated

∗This paper∗ Mutation-based analysis of performance models QN 3 ✓

Fang et al. (2021), 2021 Parametric model checking on model fragments MC –
Zhao et al. (2020), 2020 Estimation of interval values for Markov chain parameters MC 2
Calinescu et al. (2021), 2019 Analysis of QoS characteristics for patterns of service-based systems MC 3
Aleti et al. (2018), 2018 Machine learning applied for performance robustness ML –
Calinescu et al. (2018), 2018 Sensitivity analysis with tolerance levels from designers MC –
Incerto et al. (2017), 2017 Performance-based control through parametric queueing networks QN 3 ✓

Su et al. (2016), 2016 Statistical inference methods for the accuracy of results MC –
Filieri et al. (2016), 2016 Self-adaptation driven by non-functional analysis MC 2
Moreno et al. (2015), 2015 Latency-aware adaptation under uncertainty MC 2
it reviews work around system tuning that, although it shares
some similarities with our approach, shows some fundamental
differences (see Section 7.3).

7.1. Performance analysis

We here review works related to ours.
Table 9 briefly summarises the most relevant work ordered

y year of publication and distinguished by discussing their scope
along with the indication of the adopted formal model, the num-
ber of operators applied, and if the proposed approach is fully
automated.

Zhao et al. (2020) use interval Markov chains (MCs), i.e., mod-
els with transition probabilities or rates specified as intervals,
to verify reliability and performance properties of software sys-
tems affected by parametric uncertainty. Two types of changes
are applied to MC models, specifically probabilities and rates
are adapted through estimators that aim to detect false alarms
and missed changes. Calinescu et al. (2021) present an efficient
parametric model checking method for the analysis of QoS-based
properties, and it is exploited to tune different patterns and their
effect on the system parameters under analysis. Three patterns
(i.e., sequential, parallel, and probabilistic) for scheduling services
are investigated to evaluate their effect on performance and
reliability.

In our previous work (Aleti et al., 2018), we investigated ro-
bustness focusing on software performance and used polynomial
chaos expansion to predict the correlation between uncertain
12
input parameters and performance output results. As opposite
to Aleti et al. (2018), in this paper we are interested in identifying
which portions of the performance model are more critical than
others and whose change in parameters may lead to performance
hinders or improvements.

The efficient synthesis of parametric continuous-time Markov
chains is tackled in Calinescu et al. (2018) where designers set
tolerance levels and sensitivity analysis is executed accordingly.
Probabilistic model checking is exploited for multi-objective syn-
thesis to produce Pareto-based solutions.

The focus on the performance characteristics of software sys-
tems subject to uncertainties is given in Incerto et al. (2017),
where parametric queueing networks (QNs) are used to control
the fulfilment of performance requirements at runtime. The prob-
lem is encoded through efficient model predictive control, and
the solution consists of values assigned to adaptation knobs of
three different types: number of servers, routing probabilities,
and service rates. QNs translate into Ordinary Differential Equa-
tions (ODE) that enjoy an efficient analysis technique, i.e., fluid
approximation (Tribastone, 2013). We share the same formalism
for performance models, but we do not formulate an optimi-
sation problem, and our operators are aimed at deriving the
relationships of model vs performance results’ changes.

Su et al. (2016) make use of parametric model checking and
investigate its reliability for run-time Quality-of-Service (QoS)
evaluation. Two statistical inference methods are proposed and
applied to a cloud server management problem.

T. Laurent, P. Arcaini, C. Trubiani et al. The Journal of Systems & Software 191 (2022) 111385

b
m
t
t
a

e
t
a
t
n
t

7

t
a
2
P
q
t
i
r

t
a
a
b
s
1
m
m
1
s
m
h

o
t
c
t
t
s
h
f
t
m
e

t
t
s
a
o
p
t
a
e
e
d
a
s
t
a

s
t
t
a
r
d
(
i
a
t
p

t
m
m
t
t
c
t
t
d
t
b
t
i
b
a

t
t
T
o
d

m
t
e
t
P
s
u
w
‘
s
n
e
i
a
t
m

7

a
a
i
p
t
t
s

f
c
t
d

The verification of QoS-based characteristics is tackled also
y Filieri et al. (2016), where temporal properties of Markov
odels are controlled through a probabilistic model-checking

echnique. The proposed sensitivity analysis is based on the sys-
em parameters that are of two different types, i.e., probabilities
nd transition rates of Discrete-Time Markov chains (DTMCs).
A proactive approach is pursued by Moreno et al. in Moreno

t al. (2015), where there is a look-ahead horizon to look for
he adaptation maximizing the expected utility and taking into
ccount the uncertainty of the environment. Two types of adap-
ation tactics have been defined, specifically: (i) (ii) change the
umber of servers, and (iii) modify the dimmer, i.e., the service
ime of handling requests.

.2. Mutation analysis

Mutation analysis has been originally proposed for assessing
he quality of test suites in program testing (DeMillo et al., 1978),
nd it has become a mature field, with several tools (Kintis et al.,
018), and industrial adoption (Petrović and Ivanković, 2018;
etrović et al., 2021; Beller et al., 2021). In mutation analysis, the
uality of a test suite is determined by the percentage of mutants
hat are detected (killed in the mutation analysis terminology),
.e., that produce results different from the expected ones. Please
efer to Papadakis et al. (2019) for an extensive survey.

In our approach, we apply mutation analysis to models. In
he literature, different works have proposed mutation operators
nd corresponding mutation analysis approaches for models, such
s Finite State Machines (Fabbri et al., 1994), Circus models (Al-
erto et al., 2017), Z specifications (Aydal et al., 2009), Estelle
pecifications (De Souza et al., 1999), Petri nets (Fabbri et al.,
995), Simulink models (Matinnejad et al., 2016), models for
odel checkers (Arcaini et al., 2015a; Lee and Hsiung, 2004), UML
odels (Krenn et al., 2015), algebraic specifications (Woodward,
993), feature models (Arcaini et al., 2015b), and regular expres-
ions (Arcaini et al., 2019). All the previous approaches apply
utation to functional specifications, and the applied mutations
ave the aim of affecting the system’s behaviour.
Few approaches have been proposed for mutation analysis

f non-functional properties, as we do in our work. Most of
hese non-functional mutation works focus on mutation of source
ode. For example, Lisper et al. (2017) introduced the concept of
argeted mutation, which consists in mutating the part or the code
hat is more likely to affect the non-functional property under
tudy, worst-case execution time in their case. Some approaches
ave been proposed to target specific non-functional properties
or code. For example, Loise et al. (2017) proposed to use muta-
ion analysis for security, and they introduced 15 security-aware
utation operators for Java code, showing that they are more
ffective in testing security aspects of applications.
The application of mutations to models for non-functional

esting (as we do in our work), has already been proposed in
he past, in particular for timed automata modelling real-time
ystems. Aichernig et al. (2013) proposed a mutation testing
pproach for timed automata; they provided different mutation
perators for timed automata, and a test case generation ap-
roach that generates tests able to kill the mutants. While most of
he proposed mutation operators are functional ones (e.g., change
ction or change guard), others are more related to the temporal
xecution of the automaton (e.g., change invariant). AbouTrab
t al. (2013) tested real-time embedded systems (namely a pro-
uction cell system) in a conformance testing setting using timed
utomata: first, mutations resembling possible faults of the corre-
ponding C implementation are injected into the timed automa-
on acting as specification; then, these mutated timed automata
re used to measure the fault detection capability of the test
13
uite. Ortiz Vega et al. (2018) provided a survey on mutation
esting for timed systems, those using explicit clocks, such as
imed automata, and those using implicit clocks, such as Simulink
nd Lustre. Starting from the surveyed works, they presented a
esearch agenda where they identified, as possible future research
irections, (i) model-in-the-loop to reduce the simulation effort,
ii) more research on the definition of mutation operators for
mplicit clock models, and (iii) research on the detection of equiv-
lent mutants. Detection of equivalent mutants is also relevant to
he context of this work, as an equivalent mutant constitutes a
ossible valid refactoring of the model.
Our work has some similarities with performance mutation

esting (PMT) (Delgado-Pérez et al., 2021). Similarly to classical
utation testing, PMT mutates the program under test with some
utation operators that produce functional-equivalent mutants

hat, however, have a lower performance. Such mutants are used
o assess the quality of the test suite for the original system. Our
ontext is different from PMT, as we assume that the provided
est suite has a good quality (i.e., the set of workloads charac-
erises the typical load of the system), and we use mutations to
iscover bottlenecks or over-equipment of the system, and iden-
ify possible refactoring actions. However, our approach could
e easily adapted to perform model-based PMT, and we leave
his as future work. Indeed, the theoretical setting as described
n Delgado-Pérez et al. (2021) is similar to ours: mutants must
e functionally equivalent, and a mutant is considered killed if it
ffects the performance in a significant way.
Temple et al. (2021) start from the observation that defining

he killing of a performance mutant using absolute numbers is not
oo significant, as this does not consider the difficulty on the task.
herefore, they propose multimorphic testing in which the quality
f a test suite is given in terms of its ability to discriminate among
ifferent mutants (called morphs in their work).
In classic mutation testing for functional testing, equivalent

utants are a problem: since they cannot be killed by any test,
hey reduce the mutation score for no reason. Therefore, differ-
nt techniques have been proposed to identify equivalent mu-
ants (Papadakis et al., 2015; Schuler and Zeller, 2013; Offutt and
an, 1997; Madeyski et al., 2014), so as to remove them from the
et of considered mutants; note that the problem is, in general,
ndecidable (Budd and Angluin, 1982). However, recently some
orks advocate the use of equivalent mutants to improve the

‘quality’’ of code and models (Arcaini et al., 2016), to remove
tatic anomalies to improve qualities like readability, compact-
ess, efficiency an so on. Such an idea has been pursed by López
t al. (2018) who proposed to use equivalent mutants for improv-
ng source code optimisation. Our work also goes in the direction
dvocated in Arcaini et al. (2016): indeed, the mutation opera-
ors we propose generate, by definition, functionally equivalent
utants, with the aim of improving the system’s performance.

.3. System tuning

The proposed approach has similarities with approaches that
im to find the best configuration for configurable optimisation
lgorithms, whose performance depends on the setting of their
nput parameters. For example, López-Ibáñez et al. (2016) pro-
ose irace, an approach that iteratively samples configurations of
he algorithm, and compares them using different instances of
he problem to be optimised; comparisons are performed using
tatistical tests.
The main differences of irace with ours are as follows. irace

ocuses on the improvement of the system and so it discards
hanges that worsen the performance; in our case, instead, al-
ernative configurations that are worse are still shown to the
esigners, so that they can understand which nodes are important

T. Laurent, P. Arcaini, C. Trubiani et al. The Journal of Systems & Software 191 (2022) 111385

a
a
S
a
t
c
a
p
t
c
h
a

8

f
c
a
u
s
o
m
a
a
p
w
m
d
i
f
d
o

i
w
b
t
t
l
c
p
1
c
f
r

c
i
H
i
m
p
t
m
t

m
N
u
p

p
a
i
r

V
P
d

nd not over/under-equipped; in this sense, our approach aims
lso at providing some ‘‘explanation’’ of the system performance.
till in this direction, our approach, differently from irace, only
pplies single changes, as the designer can better understand
he impact of a single change rather than multiple simultaneous
hanges. This way, designers are more confident in applying
refactoring action suggested by a change that improves the
erformance. As a minor note, approaches such as irace tend
o assess a much larger number of configurations (hence more
omputationally expensive) than those assessed in our approach;
owever, we acknowledge that they could also be executed using
number of configurations similar to that used in our approach.

. Conclusion

Queueing networks have been successfully applied in the past
or performance analysis. This type of evaluation usually aims at
hecking whether the system meets performance requirements,
nd whether the cost of building the system is justified, i.e., to
nderstand if the system is over-equipped or not. To this end, a
ystem designer usually tries different model versions by adding
r removing resources from the model to check whether perfor-
ance results are affected. This work automatises such a manual
pproach, by means of a mutation-based framework. We propose
set of mutation operators that reflect the modifications usually
erformed by the designers, and define a technique to check
hether the simulation results of the original model and of a
utant are different. The framework automatically evaluates the
ifferent mutants, and provides information on how the mutants
mpact the different performance metrics of interest; such in-
ormation can be analysed by the designer, who can eventually
ecide how to modify the system based on the mutants’ impact
n the performance.
It is worth remarking that we consider ‘‘first order mutation’’

n this paper. Running combinations (i.e., higher order mutation)
ould result in a combinatorial number of mutants which might
e too expensive, and possibly preventing the adoption of the
echnique itself. The interaction among operators, although an in-
eresting problem, is out of scope for this work. Our method high-
ights interesting queueing network changes that the designer
an then manually combine and test. Furthermore, a founding
rinciple of mutation analysis, i.e., the coupling effect (Offutt,
989, 1992), suggests that the insights from first order mutants
ould subsume those of the higher order mutants, although veri-
ying that this principle holds when mutating queueing networks
emains as future work.

The set of proposed mutation operators is aimed to trigger
hanges that, by construction, preserve the system functional-
ty, as this is required for the performance-based comparison.
owever, as future work we plan to explore the possibility of
ntroducing ad-hoc annotations in queueing network models that
ay lead to the specification of new mutation operators targeting
re-defined model elements. As further investigation, we need
o study the required effort of annotating queueing network
odels and the impact of subsequent allowed changes, in order

o understand the benefit of this future research direction.
This work considered queueing networks as performance

odel notation. However, other notations such as stochastic Petri
ets, Markov processes, stochastic Process Algebras, could be
sed for performance modelling; exploring the applicability of the
roposed approach to those formalisms is future work.
The approach has been experimented on a set of QNs from

ublic repositories. In order to draw more definitive conclusions,
larger set of benchmarks would be required, which, however,

s missing in the research community. One solution could be to
ely on synthetic benchmarks that, however, would only allow to
14
assess quantitative aspects such as the scalability of the approach,
but not how meaningful the insights from the method are (as the
synthetic networks would be meaningless). A different approach
could be to translate, when possible, models developed in other
performance notations to QNs; we plan to explore such direction
as future work.

As in any model-based approach, the fidelity of the model
determines the accuracy of the performance predictions w.r.t. the
real system; as such, model fidelity is not a limitation intrinsic
to our approach. However, our approach suggests modifications
that, at the model level, show some advantage (e.g., reduced cost),
and that should be later reflected in the implementation; it is
not clear whether these modifications preserve model fidelity, or
they introduce some noise. As future work, we plan to integrate
a real target implementation in the approach to assess to what
extent the benefit estimated by the modification on the model
is reflected in a real performance improvement on the actual
implementation.

CRediT authorship contribution statement

Thomas Laurent: Conceptualization, Methodology, Software,
alidation, Investigation, Visualization, Writing – original draft.
aolo Arcaini: Conceptualization, Methodology, Software, Vali-
ation, Investigation, Visualization, Writing – original draft. Ca-

tia Trubiani: Conceptualization, Methodology, Software, Valida-
tion, Investigation, Visualization, Writing – original draft. An-
thony Ventresque: Conceptualization, Methodology, Software,
Validation, Investigation, Visualization, Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

We would like to thank the Editor and the anonymous review-
ers for their valuable feedback. This work was supported, in part,
by Science Foundation Ireland grant 13/RC/2094_P2. P. Arcaini
is supported by Engineerable AI Project (No. JPMJMI20B8), Japan
Science and Technology Agency; and ERATO HASUO Metamath-
ematics for Systems Design Project (No. JPMJER1603), Japan Sci-
ence and Technology Agency, Funding Reference number:
10.13039/501100009024 ERATO. This work has been partially
funded by MIUR project PRIN 2017TWRCNB SEDUCE (Designing
Spatially Distributed Cyber-Physical Systems under Uncertainty).

References

AbouTrab, M.S., Brockway, M., Counsell, S., Hierons, R.M., 2013. Testing real-time
embedded systems using timed automata based approaches. J. Syst. Softw.
86 (5), 1209–1223. http://dx.doi.org/10.1016/j.jss.2012.12.030.

Aichernig, B.K., Lorber, F., Ničković, D., 2013. Time for Mutants — Model-based
mutation testing with timed automata. In: Tests and Proofs. Springer Berlin
Heidelberg, pp. 20–38. http://dx.doi.org/10.1007/978-3-642-38916-0_2.

Alberto, A., Cavalcanti, A., Gaudel, M.-C., Simão, A., 2017. Formal mutation testing
for Circus. Inf. Softw. Technol. 81, 131–153. http://dx.doi.org/10.1016/j.infsof.
2016.04.003.

Aleti, A., Trubiani, C., van Hoorn, A., Jamshidi, P., 2018. An efficient method for
uncertainty propagation in robust software performance estimation. J. Syst.
Softw. 138, 222–235. http://dx.doi.org/10.1016/j.jss.2018.01.010.

Antonelli, F., Cortellessa, V., Gribaudo, M., Pinciroli, R., Trivedi, K.S., Trubiani, C.,
2020. Analytical modeling of performance indices under epistemic uncer-
tainty applied to cloud computing systems. Future Gener. Comput. Syst. 102,
746–761. http://dx.doi.org/10.1016/j.future.2019.09.006.

Arcaini, P., Gargantini, A., Riccobene, E., 2015a. Using mutation to assess fault
detection capability of model review. Softw. Test. Verif. Reliab. 25 (5–7),

629–652. http://dx.doi.org/10.1002/stvr.1530.

http://dx.doi.org/10.1016/j.jss.2012.12.030
http://dx.doi.org/10.1007/978-3-642-38916-0_2
http://dx.doi.org/10.1016/j.infsof.2016.04.003
http://dx.doi.org/10.1016/j.infsof.2016.04.003
http://dx.doi.org/10.1016/j.infsof.2016.04.003
http://dx.doi.org/10.1016/j.jss.2018.01.010
http://dx.doi.org/10.1016/j.future.2019.09.006
http://dx.doi.org/10.1002/stvr.1530

T. Laurent, P. Arcaini, C. Trubiani et al. The Journal of Systems & Software 191 (2022) 111385

A

A

A

A

A

B

B

B

B

C

C

C

C

C

C

D

D

D

D

F

F

F

F

rcaini, P., Gargantini, A., Riccobene, E., 2019. Fault-based test generation for
regular expressions by mutation. Softw. Test. Verif. Reliab. 29 (1–2), e1664.
http://dx.doi.org/10.1002/stvr.1664.

rcaini, P., Gargantini, A., Riccobene, E., Vavassori, P., 2016. A novel use of
equivalent mutants for static anomaly detection in software artifacts. Inf.
Softw. Technol. 81, 52–64. http://dx.doi.org/10.1016/j.infsof.2016.01.019.

rcaini, P., Gargantini, A., Vavassori, P., 2015b. Generating tests for detecting
faults in feature models. In: Proceedings of the International Conference
on Software Testing, Verification and Validation. ICST, IEEE, pp. 1–10. http:
//dx.doi.org/10.1109/ICST.2015.7102591.

rcelli, D., 2020. A multi-objective performance optimization approach for self-
adaptive architectures. In: Proceedings of European Conference on Software
Architecture. ECSA, Springer, Cham, pp. 139–147. http://dx.doi.org/10.1007/
978-3-030-58923-3_9.

ydal, E.G., Paige, R.F., Utting, M., Woodcock, J., 2009. Putting formal specifi-
cations under the magnifying glass: Model-based testing for validation. In:
Proceedings of the International Conference on Software Testing Verification
and Validation. ICST, IEEE Computer Society, USA, pp. 131–140. http://dx.doi.
org/10.1109/ICST.2009.20.

alsamo, S., Marzolla, M., 2005. Performance evaluation of UML software ar-
chitectures with multiclass queueing network models. In: Proc. of the 5th
International Workshop on Software and Performance. In: WOSP ’05, ACM,
New York, NY, USA, pp. 37–42. http://dx.doi.org/10.1145/1071021.1071025.

eller, M., Wong, C.-P., Bader, J., Scott, A., Machalica, M., Chandra, S., Meijer, E.,
2021. What it would take to use mutation testing in industry-a study
at Facebook. In: Proceedings of the IEEE/ACM International Conference
on Software Engineering: Software Engineering in Practice. ICSE-SEIP, pp.
268–277. http://dx.doi.org/10.1109/ICSE-SEIP52600.2021.00036.

ondi, A., 2014. Foundations of Software and System Performance Engineer-
ing: Process, Performance Modeling, Requirements, Testing, Scalability, and
Practice. Addison Wesley.

udd, T.A., Angluin, D., 1982. Two notions of correctness and their relation to
testing. Acta Inform. 18 (1), 31–45. http://dx.doi.org/10.1007/BF00625279.

alinescu, R., Češka, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N., 2018.
Efficient synthesis of robust models for stochastic systems. J. Syst. Softw.
143, 140–158. http://dx.doi.org/10.1016/j.jss.2018.05.013.

alinescu, R., Paterson, C., Johnson, K., 2021. Efficient parametric model checking
using domain knowledge. IEEE Trans. Softw. Eng. 47 (6), 1114–1133. http:
//dx.doi.org/10.1109/TSE.2019.2912958.

asale, G., Personé, V.D.N., Smirni, E., 2016. QRF: An optimization-based
framework for evaluating complex stochastic networks. ACM Trans. Model.
Comput. Simul. 26 (3), http://dx.doi.org/10.1145/2724709.

asale, G., Serazzi, G., Zhu, L., 2018. Performance evaluation with java modelling
tools: A hands-on introduction. SIGMETRICS Perform. Eval. Rev. 45 (3),
246–247. http://dx.doi.org/10.1145/3199524.3199567.

omi, D., 2020. Exercises for course on ‘‘computing infrastructures’’. https:
//github.com/comidan/Computer-Science-Engineering/tree/master/Master%
20Level%20Degree/Computing%20Infrastructures/Lectures/JMT-Examples.

ortellessa, V., Di Marco, A., Inverardi, P., 2011. Model-Based Software
Performance Analysis. Springer.

e Souza, S.D.R.S., Maldonado, J.C., Fabbri, S.C.P.F., De Souza, W.L., 1999. Mutation
testing applied to estelle specifications. Softw. Qual. Control 8, 285–301.
http://dx.doi.org/10.1023/A:1008978021407.

elgado-Pérez, P., Sánchez, A.B., Segura, S., Medina-Bulo, I., 2021. Performance
mutation testing. Softw. Test. Verif. Reliab. 31 (5), e1728. http://dx.doi.org/
10.1002/stvr.1728, e1728 stvr.1728.

eMillo, R.A., Lipton, R.J., Sayward, F.G., 1978. Hints on test data selection: Help
for the practicing programmer. Computer 11 (4), 34–41. http://dx.doi.org/10.
1109/C-M.1978.218136.

ipietro, S., Casale, G., Serazzi, G., 2016. A queueing network model for
performance prediction of apache cassandra. In: Proceedings of the Inter-
national Conference on Performance Evaluation Methodologies and Tools.
VALUETOOLS, http://dx.doi.org/10.4108/eai.25-10-2016.2266606.

abbri, S.C.P.F., Delamaro, M.E., Maldonado, J.C., Masiero, P.C., 1994. Mutation
analysis testing for finite state machines. In: Proceedings of International
Symposium on Software Reliability Engineering. pp. 220–229. http://dx.doi.
org/10.1109/ISSRE.1994.341378.

abbri, S.C.P.F., Maldonado, J.C., Masiero, P.C., Delamaro, M.E., Wong, E., 1995.
Mutation testing applied to validate specifications based on Petri nets. In:
Proceedings of the IFIP TC6 Eighth International Conference on Formal
Description Techniques VIII. Chapman & Hall, Ltd., GBR, pp. 329–337. http:
//dx.doi.org/10.1007/978-0-387-34945-9_24.

ang, X., Calinescu, R., Gerasimou, S., Alhwikem, F., 2021. Fast parametric model
checking through model fragmentation. In: Proceedings of the IEEE/ACM
International Conference on Software Engineering. ICSE, pp. 835–846. http:
//dx.doi.org/10.1109/ICSE43902.2021.00081.

ilieri, A., Tamburrelli, G., Ghezzi, C., 2016. Supporting self-adaptation via
quantitative verification and sensitivity analysis at run time. IEEE Trans.
Softw. Eng. 42 (1), 75–99. http://dx.doi.org/10.1109/TSE.2015.2421318.
15
Gazzola, L., Micucci, D., Mariani, L., 2019. Automatic software repair: A survey.
IEEE Trans. Softw. Eng. 45 (1), 34–67. http://dx.doi.org/10.1109/TSE.2017.
2755013.

Harman, M., O’Hearn, P., 2018. From start-ups to scale-ups: opportunities and
open problems for static and dynamic program analysis. In: Proceedings
of IEEE International Working Conference on Source Code Analysis and
Manipulation. SCAM, pp. 1–23. http://dx.doi.org/10.1109/SCAM.2018.00009.

Haskins, B., Stecklein, J., Dick, B., Moroney, G., Lovell, R., Dabney, J., 2004.
Error cost escalation through the project life cycle. In: INCOSE International
Symposium, Vol. 14. (1), pp. 1723–1737. http://dx.doi.org/10.1002/j.2334-
5837.2004.tb00608.x.

Incerto, E., Napolitano, A., Tribastone, M., 2021. Learning queuing networks via
linear optimization. In: Proceedings of the International Conference on Per-
formance Engineering. ICPE, pp. 51–60. http://dx.doi.org/10.1145/3427921.
3450245.

Incerto, E., Tribastone, M., Trubiani, C., 2017. Software performance self-
adaptation through efficient model predictive control. In: Proceedings of
the IEEE/ACM International Conference on Automated Software Engineering.
In: ASE 2017, IEEE Press, pp. 485–496. http://dx.doi.org/10.1109/ASE.2017.
8115660.

Jain, R., 2008. The Art of Computer Systems Performance Analysis. John Wiley
& Sons.

Kintis, M., Papadakis, M., Papadopoulos, A., Valvis, E., Malevris, N., Le Traon, Y.,
2018. How effective are mutation testing tools? An empirical analysis of java
mutation testing tools with manual analysis and real faults. Empirical Softw.
Engg. 23 (4), 2426–2463. http://dx.doi.org/10.1007/s10664-017-9582-5.

Kleinrock, L., 1975. Theory, Volume 1, Queueing Systems. Wiley-Interscience,
New York, NY, USA.

Koziolek, H., 2010. Performance evaluation of component-based software sys-
tems: A survey. Perform. Eval. 67 (8), 634–658. http://dx.doi.org/10.1016/j.
peva.2009.07.007.

Krenn, W., Schlick, R., Tiran, S., Aichernig, B., Jobstl, E., Brandl, H., 2015.
MoMut::UML model-based mutation testing for UML. In: IEEE International
Conference on Software Testing, Verification and Validation. ICST, IEEE
Computer Society, Los Alamitos, CA, USA, pp. 1–8. http://dx.doi.org/10.1109/
ICST.2015.7102627.

Laurent, T., Arcaini, P., Trubiani, C., Ventresque, A., 2022. Replication package
for the paper ‘‘Mutation-based Analysis of Queueing Network Performance
Models’’. Zenodo, http://dx.doi.org/10.5281/zenodo.6545506.

Lazowska, E.D., Zahorjan, J., Scott Graham, G., Sevcik, K.C., 1984. Computer sys-
tem analysis using queueing network models. Prentice-Hall, Inc., Englewood
Cliffs.

Lee, T.-C., Hsiung, P.-A., 2004. Mutation coverage estimation for model checking.
In: Automated Technology for Verification and Analysis. In: Lecture Notes
in Computer Science, vol. 3299, Springer, pp. 354–368. http://dx.doi.org/10.
1007/978-3-540-30476-0_29.

Lisper, B., Lindström, B., Potena, P., Saadatmand, M., Bohlin, M., 2017. Targeted
mutation: Efficient mutation analysis for testing non-functional properties.
In: IEEE International Conference on Software Testing, Verification and
Validation Workshops. ICSTW, pp. 65–68. http://dx.doi.org/10.1109/ICSTW.
2017.18.

Loise, T., Devroey, X., Perrouin, G., Papadakis, M., Heymans, P., 2017. Towards
security-aware mutation testing. In: IEEE International Conference on Soft-
ware Testing, Verification and Validation Workshops. ICSTW, pp. 97–102.
http://dx.doi.org/10.1109/ICSTW.2017.24.

López, J., Kushik, N., Yevtushenko, N., 2018. Source code optimization
using equivalent mutants. Inf. Softw. Technol. 103, 138–141,
https://doi.org/10.1016/j.infsof.2018.06.013.

López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.,
2016. The irace package: Iterated racing for automatic algorithm configu-
ration. Oper. Res. Perspect. 3, 43–58. http://dx.doi.org/10.1016/j.orp.2016.09.
002.

Madeyski, L., Orzeszyna, W., Torkar, R., Józala, M., 2014. Overcoming the equiv-
alent mutant problem: A systematic literature review and a comparative
experiment of second order mutation. IEEE Trans. Softw. Eng. 40 (1), 23–42.
http://dx.doi.org/10.1109/TSE.2013.44.

Matinnejad, R., Nejati, S., Briand, L.C., Bruckmann, T., 2016. Automated test
suite generation for time-continuous Simulink models. In: Proceedings of
the International Conference on Software Engineering. ICSE, In: ICSE ’16,
ACM, New York, NY, USA, pp. 595–606. http://dx.doi.org/10.1145/2884781.
2884797.

Mishra, K., Trivedi, K.S., 2011. Uncertainty propagation through software de-
pendability models. In: Proceedings of the IEEE International Symposium on
Software Reliability Engineering. In: ISSRE ’11, IEEE Computer Society, USA,
pp. 80–89. http://dx.doi.org/10.1109/ISSRE.2011.14.

Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B., 2015. Proactive self-adaptation
under uncertainty: A probabilistic model checking approach. In: Proceedings
of the Joint Meeting on Foundations of Software Engineering. In: ESEC/FSE
2015, ACM, New York, NY, USA, pp. 1–12. http://dx.doi.org/10.1145/2786805.
2786853.

http://dx.doi.org/10.1002/stvr.1664
http://dx.doi.org/10.1016/j.infsof.2016.01.019
http://dx.doi.org/10.1109/ICST.2015.7102591
http://dx.doi.org/10.1109/ICST.2015.7102591
http://dx.doi.org/10.1109/ICST.2015.7102591
http://dx.doi.org/10.1007/978-3-030-58923-3_9
http://dx.doi.org/10.1007/978-3-030-58923-3_9
http://dx.doi.org/10.1007/978-3-030-58923-3_9
http://dx.doi.org/10.1109/ICST.2009.20
http://dx.doi.org/10.1109/ICST.2009.20
http://dx.doi.org/10.1109/ICST.2009.20
http://dx.doi.org/10.1145/1071021.1071025
http://dx.doi.org/10.1109/ICSE-SEIP52600.2021.00036
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb14
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb14
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb14
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb14
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb14
http://dx.doi.org/10.1007/BF00625279
http://dx.doi.org/10.1016/j.jss.2018.05.013
http://dx.doi.org/10.1109/TSE.2019.2912958
http://dx.doi.org/10.1109/TSE.2019.2912958
http://dx.doi.org/10.1109/TSE.2019.2912958
http://dx.doi.org/10.1145/2724709
http://dx.doi.org/10.1145/3199524.3199567
https://github.com/comidan/Computer-Science-Engineering/tree/master/Master%20Level%20Degree/Computing%20Infrastructures/Lectures/JMT-Examples
https://github.com/comidan/Computer-Science-Engineering/tree/master/Master%20Level%20Degree/Computing%20Infrastructures/Lectures/JMT-Examples
https://github.com/comidan/Computer-Science-Engineering/tree/master/Master%20Level%20Degree/Computing%20Infrastructures/Lectures/JMT-Examples
https://github.com/comidan/Computer-Science-Engineering/tree/master/Master%20Level%20Degree/Computing%20Infrastructures/Lectures/JMT-Examples
https://github.com/comidan/Computer-Science-Engineering/tree/master/Master%20Level%20Degree/Computing%20Infrastructures/Lectures/JMT-Examples
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb21
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb21
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb21
http://dx.doi.org/10.1023/A:1008978021407
http://dx.doi.org/10.1002/stvr.1728
http://dx.doi.org/10.1002/stvr.1728
http://dx.doi.org/10.1002/stvr.1728
http://dx.doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.4108/eai.25-10-2016.2266606
http://dx.doi.org/10.1109/ISSRE.1994.341378
http://dx.doi.org/10.1109/ISSRE.1994.341378
http://dx.doi.org/10.1109/ISSRE.1994.341378
http://dx.doi.org/10.1007/978-0-387-34945-9_24
http://dx.doi.org/10.1007/978-0-387-34945-9_24
http://dx.doi.org/10.1007/978-0-387-34945-9_24
http://dx.doi.org/10.1109/ICSE43902.2021.00081
http://dx.doi.org/10.1109/ICSE43902.2021.00081
http://dx.doi.org/10.1109/ICSE43902.2021.00081
http://dx.doi.org/10.1109/TSE.2015.2421318
http://dx.doi.org/10.1109/TSE.2017.2755013
http://dx.doi.org/10.1109/TSE.2017.2755013
http://dx.doi.org/10.1109/TSE.2017.2755013
http://dx.doi.org/10.1109/SCAM.2018.00009
http://dx.doi.org/10.1002/j.2334-5837.2004.tb00608.x
http://dx.doi.org/10.1002/j.2334-5837.2004.tb00608.x
http://dx.doi.org/10.1002/j.2334-5837.2004.tb00608.x
http://dx.doi.org/10.1145/3427921.3450245
http://dx.doi.org/10.1145/3427921.3450245
http://dx.doi.org/10.1145/3427921.3450245
http://dx.doi.org/10.1109/ASE.2017.8115660
http://dx.doi.org/10.1109/ASE.2017.8115660
http://dx.doi.org/10.1109/ASE.2017.8115660
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb35
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb35
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb35
http://dx.doi.org/10.1007/s10664-017-9582-5
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb37
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb37
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb37
http://dx.doi.org/10.1016/j.peva.2009.07.007
http://dx.doi.org/10.1016/j.peva.2009.07.007
http://dx.doi.org/10.1016/j.peva.2009.07.007
http://dx.doi.org/10.1109/ICST.2015.7102627
http://dx.doi.org/10.1109/ICST.2015.7102627
http://dx.doi.org/10.1109/ICST.2015.7102627
http://dx.doi.org/10.5281/zenodo.6545506
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb41
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb41
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb41
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb41
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb41
http://dx.doi.org/10.1007/978-3-540-30476-0_29
http://dx.doi.org/10.1007/978-3-540-30476-0_29
http://dx.doi.org/10.1007/978-3-540-30476-0_29
http://dx.doi.org/10.1109/ICSTW.2017.18
http://dx.doi.org/10.1109/ICSTW.2017.18
http://dx.doi.org/10.1109/ICSTW.2017.18
http://dx.doi.org/10.1109/ICSTW.2017.24
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb45
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb45
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb45
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb45
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb45
http://dx.doi.org/10.1016/j.orp.2016.09.002
http://dx.doi.org/10.1016/j.orp.2016.09.002
http://dx.doi.org/10.1016/j.orp.2016.09.002
http://dx.doi.org/10.1109/TSE.2013.44
http://dx.doi.org/10.1145/2884781.2884797
http://dx.doi.org/10.1145/2884781.2884797
http://dx.doi.org/10.1145/2884781.2884797
http://dx.doi.org/10.1109/ISSRE.2011.14
http://dx.doi.org/10.1145/2786805.2786853
http://dx.doi.org/10.1145/2786805.2786853
http://dx.doi.org/10.1145/2786805.2786853

T. Laurent, P. Arcaini, C. Trubiani et al. The Journal of Systems & Software 191 (2022) 111385

O

O

O

O

P

P

P

P

P

P

P

P

S

S

S

S

ffutt, A.J., 1989. The coupling effect: Fact or fiction. SIGSOFT Softw. Eng. Notes
14 (8), 131–140. http://dx.doi.org/10.1145/75309.75324.

ffutt, A.J., 1992. Investigations of the software testing coupling effect. ACM
Trans. Softw. Eng. Methodol. (TOSEM) 1 (1), 5–20. http://dx.doi.org/10.1145/
125489.125473.

ffutt, A.J., Pan, J., 1997. Automatically detecting equivalent mutants and infea-
sible paths. Softw. Test. Verif. Reliab. 7 (3), 165–192. http://dx.doi.org/10.
1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U.

rtiz Vega, J.J., Perrouin, G., Amrani, M., Schobbens, P.-Y., 2018. Model-based
mutation operators for timed systems: A taxonomy and research agenda.
In: 2018 IEEE International Conference on Software Quality, Reliability and
Security. QRS, pp. 325–332. http://dx.doi.org/10.1109/QRS.2018.00045.

apadakis, M., Jia, Y., Harman, M., Le Traon, Y., 2015. Trivial compiler equiva-
lence: A large scale empirical study of a simple, fast and effective equivalent
mutant detection technique. In: Proceedings of IEEE/ACM International
Conference on Software Engineering, Vol. 1. ICSE, pp. 936–946. http://dx.
doi.org/10.1109/ICSE.2015.103.

apadakis, M., Kintis, M., Zhang, J., Jia, Y., Le Traon, Y., Harman, M., 2019. Chapter
six - mutation testing advances: An analysis and survey. In: Memon, A.M.
(Ed.), In: Advances in Computers, vol. 112, Elsevier, pp. 275–378. http:
//dx.doi.org/10.1016/bs.adcom.2018.03.015.

etriu, D.C., 2015. Challenges in integrating the analysis of multiple non-
functional properties in model-driven software engineering. In: Proceedings
of the 2015 Workshop on Challenges in Performance Methods for Software
Development. In: WOSP ’15, ACM, New York, NY, USA, pp. 41–46. http:
//dx.doi.org/10.1145/2693561.2693566.

etriu, D.C., 2021. Integrating the analysis of multiple non-functional properties
in model-driven engineering. Softw. Syst. Model. 20 (6), 1777–1791. http:
//dx.doi.org/10.1007/s10270-021-00953-3.

etriu, D.C., Alhaj, M., Tawhid, R., 2012. Software performance modeling. In:
Formal Methods for Model-Driven Engineering: International School on
Formal Methods for the Design of Computer, Communication, and Software
Systems (SFM). Advanced Lectures. Springer Berlin Heidelberg, pp. 219–262.
http://dx.doi.org/10.1007/978-3-642-30982-3_7.

etrović, G., Ivanković, M., 2018. State of mutation testing at Google. In:
Proceedings of the International Conference on Software Engineering: Soft-
ware Engineering in Practice. In: ICSE-SEIP ’18, ACM, New York, NY, USA,
pp. 163–171. http://dx.doi.org/10.1145/3183519.3183521.

etrović, G., Ivanković, M., Fraser, G., Just, R., 2021. Does mutation testing
improve testing practices? In: Proceedings of the IEEE/ACM International
Conference on Software Engineering. ICSE, pp. 910–921. http://dx.doi.org/
10.1109/ICSE43902.2021.00087.

inciroli, R., Trivedi, K., Bobbio, A., 2017. Parametric sensitivity and uncertainty
propagation in dependability models. In: Proceedings of the EAI Interna-
tional Conference on Performance Evaluation Methodologies and Tools. In:
VALUETOOLS, pp. 44–51. http://dx.doi.org/10.4108/eai.25-10-2016.2266529.

chuler, D., Zeller, A., 2013. Covering and uncovering equivalent mutants. Softw.
Test. Verif. Reliab. 23 (5), 353–374. http://dx.doi.org/10.1002/stvr.1473.

hicaoUW, 2017. Examples for ‘‘QN-ACTR cognitive architecture’’. https://github.
com/HOMlab/QN-ACTR-Release/tree/master/QN-ACTR%20Java/examples.

mith, C.U., 2015. Software performance engineering then and now: A position
paper. In: Proceedings of the 2015 Workshop on Challenges in Performance
Methods for Software Development. In: WOSP ’15, ACM, New York, NY, USA,
pp. 1–3. http://dx.doi.org/10.1145/2693561.2693567.

mith, C.U., Cortellessa, V., Gómez, A., Kounev, S., Lladó, C., Woodside, M., 2018.
Challenges in automating performance tool support. In: Companion of the
ACM/SPEC International Conference on Performance Engineering. ICPE, In:
ICPE ’18, ACM, New York, NY, USA, pp. 175–176. http://dx.doi.org/10.1145/
3185768.3186410.
16
Smith, C.U., Lladó, C.M., Puigjaner, R., 2010. Performance model interchange
format (PMIF 2): A comprehensive approach to queueing network model
interoperability. Perform. Eval. 67 (7), 548–568. http://dx.doi.org/10.1016/j.
peva.2010.01.006.

Smith, C.U., Williams, L.G., 2002. Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software. Addison-Wesley.

Su, G., Rosenblum, D.S., Tamburrelli, G., 2016. Reliability of run-time quality-of-
service evaluation using parametric model checking. In: Proceedings of the
International Conference on Software Engineering. In: ICSE ’16, ACM, New
York, NY, USA, pp. 73–84. http://dx.doi.org/10.1145/2884781.2884814.

Temple, P., Acher, M., Jézéquel, J.-M., 2021. Empirical assessment of multimor-
phic testing. IEEE Trans. Softw. Eng. 47 (7), 1511–1527. http://dx.doi.org/10.
1109/TSE.2019.2926971.

Tribastone, M., 2013. A fluid model for layered queueing networks. IEEE Trans.
Softw. Eng. 39 (6), 744–756. http://dx.doi.org/10.1109/TSE.2012.66.

Trubiani, C., Meedeniya, I., Cortellessa, V., Aleti, A., Grunske, L., 2013. Model-
based performance analysis of software architectures under uncertainty.
In: Proceedings of the International Conference on Quality of Software
Architectures. ACM, New York, NY, USA, pp. 69–78. http://dx.doi.org/10.1145/
2465478.2465487.

Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A., 2005. An analyti-
cal model for multi-tier internet services and its applications. In: Proceedings
of the 2005 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems. In: SIGMETRICS ’05, ACM, New York, NY,
USA, pp. 291–302. http://dx.doi.org/10.1145/1064212.1064252.

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B., Wessln, A., 2012. Ex-
perimentation in Software Engineering. Springer, http://dx.doi.org/10.1007/
978-3-642-29044-2.

Woodward, M.R., 1993. Errors in algebraic specifications and an experimental
mutation testing tool. Softw. Eng. J. 8 (4), 211–224. http://dx.doi.org/10.1049/
sej.1993.0027.

Xu, J., 2012. Rule-based automatic software performance diagnosis and improve-
ment. Perform. Eval. 69 (11), 525–550. http://dx.doi.org/10.1016/j.peva.2009.
11.003.

Zhao, X., Calinescu, R., Gerasimou, S., Robu, V., Flynn, D., 2020. Interval change-
point detection for runtime probabilistic model checking. In: Proceedings of
the IEEE/ACM International Conference on Automated Software Engineering.
In: ASE ’20, ACM, New York, NY, USA, pp. 163–174. http://dx.doi.org/10.1145/
3324884.3416565.

Thomas Laurent is a postdoctoral research fellow at University College Dublin,
Ireland. His main research interests are test criteria and mutation analysis.

Paolo Arcaini is project associate professor at the National Institute of Informat-
ics (NII), Japan. His main research interests are related to search-based testing,
fault-based testing, software product lines, and automatic repair. His home page
is https://group-mmm.org/~arcaini/.

Catia Trubiani is assistant professor at the Gran Sasso Science Institute (GSSI),
Italy. Her main research interests are related to. performance modelling and
analysis of interacting heterogeneous distributed systems. Her home page is
https://cs.gssi.it/catia.trubiani/.

Dr Anthony Ventresque founded and leads the UCD Complex Software Lab. Dr
Ventresque received his Ph.D. degree in Computer Science from the University
of Nantes and INRIA France in 2008. He is currently a Lecturer in the School
of Computer Science at University College Dublin, Ireland, and a Funded
Investigator with Lero, the SFI Irish Software Research Centre.

http://dx.doi.org/10.1145/75309.75324
http://dx.doi.org/10.1145/125489.125473
http://dx.doi.org/10.1145/125489.125473
http://dx.doi.org/10.1145/125489.125473
http://dx.doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
http://dx.doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
http://dx.doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
http://dx.doi.org/10.1109/QRS.2018.00045
http://dx.doi.org/10.1109/ICSE.2015.103
http://dx.doi.org/10.1109/ICSE.2015.103
http://dx.doi.org/10.1109/ICSE.2015.103
http://dx.doi.org/10.1016/bs.adcom.2018.03.015
http://dx.doi.org/10.1016/bs.adcom.2018.03.015
http://dx.doi.org/10.1016/bs.adcom.2018.03.015
http://dx.doi.org/10.1145/2693561.2693566
http://dx.doi.org/10.1145/2693561.2693566
http://dx.doi.org/10.1145/2693561.2693566
http://dx.doi.org/10.1007/s10270-021-00953-3
http://dx.doi.org/10.1007/s10270-021-00953-3
http://dx.doi.org/10.1007/s10270-021-00953-3
http://dx.doi.org/10.1007/978-3-642-30982-3_7
http://dx.doi.org/10.1145/3183519.3183521
http://dx.doi.org/10.1109/ICSE43902.2021.00087
http://dx.doi.org/10.1109/ICSE43902.2021.00087
http://dx.doi.org/10.1109/ICSE43902.2021.00087
http://dx.doi.org/10.4108/eai.25-10-2016.2266529
http://dx.doi.org/10.1002/stvr.1473
https://github.com/HOMlab/QN-ACTR-Release/tree/master/QN-ACTR%20Java/examples
https://github.com/HOMlab/QN-ACTR-Release/tree/master/QN-ACTR%20Java/examples
https://github.com/HOMlab/QN-ACTR-Release/tree/master/QN-ACTR%20Java/examples
http://dx.doi.org/10.1145/2693561.2693567
http://dx.doi.org/10.1145/3185768.3186410
http://dx.doi.org/10.1145/3185768.3186410
http://dx.doi.org/10.1145/3185768.3186410
http://dx.doi.org/10.1016/j.peva.2010.01.006
http://dx.doi.org/10.1016/j.peva.2010.01.006
http://dx.doi.org/10.1016/j.peva.2010.01.006
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb68
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb68
http://refhub.elsevier.com/S0164-1212(22)00107-8/sb68
http://dx.doi.org/10.1145/2884781.2884814
http://dx.doi.org/10.1109/TSE.2019.2926971
http://dx.doi.org/10.1109/TSE.2019.2926971
http://dx.doi.org/10.1109/TSE.2019.2926971
http://dx.doi.org/10.1109/TSE.2012.66
http://dx.doi.org/10.1145/2465478.2465487
http://dx.doi.org/10.1145/2465478.2465487
http://dx.doi.org/10.1145/2465478.2465487
http://dx.doi.org/10.1145/1064212.1064252
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1049/sej.1993.0027
http://dx.doi.org/10.1049/sej.1993.0027
http://dx.doi.org/10.1049/sej.1993.0027
http://dx.doi.org/10.1016/j.peva.2009.11.003
http://dx.doi.org/10.1016/j.peva.2009.11.003
http://dx.doi.org/10.1016/j.peva.2009.11.003
http://dx.doi.org/10.1145/3324884.3416565
http://dx.doi.org/10.1145/3324884.3416565
http://dx.doi.org/10.1145/3324884.3416565
https://group-mmm.org/~arcaini/
https://cs.gssi.it/catia.trubiani/
https://csl.ucd.ie
https://csl.ucd.ie
https://csl.ucd.ie
https://csl.ucd.ie
https://csl.ucd.ie
https://csl.ucd.ie
https://csl.ucd.ie
https://csl.ucd.ie
https://csl.ucd.ie
https://csl.ucd.ie
https://csl.ucd.ie
https://csl.ucd.ie
https://csl.ucd.ie
https://csl.ucd.ie
https://csl.ucd.ie
https://csl.ucd.ie
https://csl.ucd.ie
https://csl.ucd.ie
https://csl.ucd.ie
https://csl.ucd.ie
https://csl.ucd.ie

	Mutation-based analysis of queueing network performance models
	Introduction
	Background and illustrative example
	Background
	Illustrative example

	Mutation-based analysis of queueing networks
	Current practice in model-based performance analysis
	Overview of the approach
	Mutation operators
	Performance metrics
	Simulation formalism
	Assessing mutant triggering

	Experiments
	Research questions
	Benchmarks and tools used
	Experimental setup
	Results
	RQ1: Effectiveness of the mutation operators
	RQ2: Effect on the different metrics
	RQ3: Example of insights from the mutation analysis

	Discussion
	Threats to validity
	Related work
	Performance analysis
	Mutation analysis
	System tuning

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

