
A Prototype for Data Race Detection in CSeq 3⋆

(Competition Contribution)

Alex Coto, Omar Inverso, Emerson Sales�, and Emilio Tuosto

Gran Sasso Science Institute, L’Aquila, Italy
{alex.coto,omar.inverso,emerson.sales,emilio.tuosto}@gssi.it

Abstract. We sketch a sequentialization-based technique for bounded
detection of data races under sequential consistency, and summarise the
major improvements to our verification framework over the last years.

Keywords: Bounded model checking · Context-bounded analysis · Se-
quentialization · Data races · Reachability · Concurrency · Threads

1 Verification Approach

Our approach is based on lazy sequentialization [7]. The idea is to convert the
concurrent program P of interest into a non-deterministic sequential program
Qu,k that preserves all feasible executions of P up to unwinding bound u and
k rounds (or execution contexts [8]). Among different techniques [6], we choose
bounded model checking [3] to analyse Qu,k. In this section, we briefly overview
lazy sequentialisation, and sketch a novel extension to detect data races. Further
elements of novelty w.r.t. engineering of our tool are discussed in the next section.

Lazy Sequentialization. We unwind all loops and inline all functions in P ,
except the main function and those from which a thread is spawned, obtaining a
bounded program Pu that preserves all feasible executions of P up to the unwind-
ing bound u. We then transform each function of Pu into a thread simulation
function where each visible statement is assigned a numerical label and a guard,
and each call to a concurrency-specific function is replaced by a call to a function
that models the same intended semantics; for each simulation function, we add
a global variable to represent the program counter, initially set to zero.

A thread’s execution context of Pu is simulated by invoking the corresponding
thread simulation function of Qu,k that executes from the first statement to a
non-deterministically selected label, updates the program counter, and returns.
Further execution contexts are simulated by re-invoking the simulation function,
where the guards ensure that the control is repositioned to the correct numerical
label via a sequence of jumps, and so on. To retain consistency of the local state of
the thread across different invocations of the simulation functions, static storage

⋆ This work has been partially funded by MIUR project PRIN 2017FTXR7S IT-
MATTERS and MUR project FISR2020IP 05310 MVM-Adapt.

2 E. Sales et al.

is enforced for all local variables. We drive the overall simulation of Pu from the
main function ofQu,k, by invoking the thread simulation functions appropriately.

Data Race Detection. A program contains a data race if it can execute two
conflicting actions (i.e., one thread modifies a memory location and another
one reads or modifies the same location), at least one of which is not atomic,
and neither happens before the other [9]. Consider two threads performing the
operation v = v + 1 on a shared variable initialised to zero. Both threads try
to modify the data at the memory location reserved for v, but the necessary
sequences of memory accesses are not synchronised, and thus may interleave. If
a context-switch happens between the memory read and write operations in the
thread that runs first, both threads will read 0, and at the end of the execution
the value of v will be 1. To detect such situation, we alter the encoding from Pu

k:
void *w addr = &v;
assert(w addrs[1] != w addr);
w addrs[0] = w addr;
v = v + 1;

k+1:
w addrs[0] = 0;

to Qu,k by (i) adding a shared array w addrs that
stores a pointer to the memory location targeted
by a write operation for each thread, (ii) injecting
additional control code at each visible statement,
and (iii) splitting the modified sequentialised en-
coding of the visible statement into two separate

sequentialised statements to allow in-between context switching. The code frag-
ment shows the modified sequentialised encoding (no guards for simplicity, in-
jected code greyed out) for the statement v = v + 1 of the first thread of the
program described above. We store in w addr the address of the variable being
written, and then assert that the other thread is not writing to the same location;
in the same (simulated) execution context, we store w addr in w addrs, so that
the assertion can be checked within the other thread too. We reset w addrs right
after the statement under consideration. Note the label k+1 that allows thread
pre-emption. Now, one of the threads can execute the simulated statement at
label k and context-switch at label k+1 while w addrs still points to v; this makes
it possible to schedule the other thread, and fail the assertion in there.

In the general case, handling multiple memory write accesses for a single
statement requires a slightly different tracking mechanism for write addresses,
or decomposition into simpler statements. Statements with read-only shared
memory access are handled without updating w addrs. Programs with more
than two threads require multiple assertions.

2 Software Architecture

CSeq is a framework for quick development of static analysis and program trans-
formation prototypes. For parsing the input program CSeq relies on pycparserext
(pypi.org/project/pycparserext), an extension of pycparser (github.com/
eliben/pycparser), which in turn is built on top of PLY (www.dabeaz.com/
ply), a Python implementation of Lex and Yacc. All the mentioned components
as well as CSeq are entirely written in Python.

We combined several groups of modules in CSeq, namely (i) program sim-
plification, (ii) program unfolding, (iii) sequentialization, (iv) instrumentation,

http://www.pypi.org/project/pycparserext
github.com/eliben/pycparser
github.com/eliben/pycparser
www.dabeaz.com/ply
www.dabeaz.com/ply

A Prototype for Data Race Detection in CSeq 3 3

and (v) backend invocation and counterexample generation. For the analysis of
the sequentialised program we rely on CBMC (www.cprover.org/cbmc), that in
turn embeds the DPLL-style MiniSat SAT solver (minisat.se).

CSeq 3.0 incorporates a significant number of enhancements. At an architec-
tural level, the main element of novelty is in the modularity between the general-
purpose functionalities of the framework and the specific lazy sequentialization,
which opens up to the possibility of prototyping different static analysers for
other applications (e.g., [11,10]) as well as improving older sequentialization-
based prototypes (e.g., [4,12,13] and variations thereof). The enhancements to
the framework include: Python 3 support, support for GNU C compiler exten-
sions, a fully re-implemented symbol table, revised general-purpose modules such
as constant propagation, function inlining, and loop unrolling, and a custom-
built version of CBMC (not used in the competition) for SAT-solving under
assumptions. For the competition we include (experimental) enhanced constant
propagation, and simplified function inlining. Besides the data race checking
extension, the sequentialization modules include improvements from earlier im-
plementations [5,8,6] and for different editions of SV-COMP up to date, in
particular: extended pthread API support (conditional waiting, barriers, and
thread-specific data management), context-bounded analysis, and a major code
overhaul.

3 Strengths and Weaknesses

The table below summarises the performance of our tool on the 764 cases of the
Concurrency category and the 162 cases of the data race demo category.

Overall instances 764 162

Correct
safe 202 37
unsafe 320 61

Unknown

reject 9 19
internal error 18 17
out of time 159 20
out of memory 56 2

Incorrect
safe 0 0
unsafe 0 6

Our technique excels at hunting bugs, as shown
by the number of correct unsafe (incl. 17 mal-
formed witnesses and 50 unconfirmed witnesses),
but gets quickly expensive with larger bounds,
hitting the resource limits. The additional context-
switch points and the use of pointers for data race
detection introduce further overhead. The other

failures are due to limiting assumptions or glitches in the implementation. All
the false positives are due to corner cases in the encoding.

4 Setup and Configuration

We competed in the ConcurrencySafety category and in the data race detection
demo category. CSeq 3.0 is available at https://github.com/omainv/cseq/

releases.
Installation instructions are in the README file within the package. A wrap-

per script (lazy-cseq.py) invokes CSeq up to three times, with the options
-l lazy for lazy sequentialisation, --sv-comp to enable the required violation
witnesses format, --atomic-parameters to assume atomic passing of function

www.cprover.org/cbmc
http://www.minisat.se
https://github.com/omainv/cseq/releases
https://github.com/omainv/cseq/releases

4 E. Sales et al.

arguments, --nondet-condvar-wakeups for non-deterministic spurious condi-
tional variables wake-up calls, --deep-propagation for experimental constant
folding and propagation, --32 for 32-bit architectures, --threads 100 to limit
the overall number of threads, --data-race-check when required, and --backend
cbmc to use CBMC 5.4 for sequential analysis.

For reachability checking, on different invocations the script adds different pa-
rameters: -r2 -w2 -f2, -r4 -w3 -f5, and -r20 -w1 -f11, where r is the number
of rounds, and f and w are the unwind bounds for for (i.e., potentially bounded)
and while (i.e., potentially unbounded) loops, respectively; on the last invoca-
tion --softunwindbound and --unwind-for-max 10000 are also added to fully
unfold for loops if a static bound can be found, up to the given hard bound. For
data race detection, the above parameters are replaced with -c4 -u2, -c10 -u10,
and -c50 -w20 -f20 with --unwind-for-max 100. Note that in this case the
bound is on the number of execution contexts rather than rounds (-c vs. -r),
and -u is used as a shorthand for -f and -w.

We leave the analysis running to completion every time. When the result is
TRUE, the scripts restarts the analysis with the next set of parameters. As soon
as the script gets FALSE, it returns FALSE. Only if the analysis using the last set
of parameters is finished and the result is TRUE, then the script returns TRUE.

Data Availability Statement. All data of SV-COMP 2022 are archived as described

in the competition report [1] and available on the competition web site. This includes

the verification tasks, results, witnesses, scripts, and instructions for reproduction.

The version of our verifier as used in the competition is archived together with other

participating tools [2].

References

1. Beyer, D.: Progress on software verification: SV-COMP 2022. In: Proc. TACAS.
Springer (2022)

2. Beyer, D.: Verifiers and validators of the 11th Intl. Competition on Software Verifi-
cation (SV-COMP 2022). Zenodo (2022). https://doi.org/10.5281/zenodo.5959149

3. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs.
In: TACAS. Lecture Notes in Computer Science, vol. 2988, pp. 168–176. Springer
(2004). https://doi.org/10.1007/978-3-540-24730-2 15

4. Fischer, B., Inverso, O., Parlato, G.: Cseq: A concurrency pre-processor
for sequential C verification tools. In: ASE. pp. 710–713. IEEE (2013).
https://doi.org/10.1109/ASE.2013.6693139

5. Inverso, O., Nguyen, T.L., Fischer, B., Torre, S.L., Parlato, G.: Lazy-cseq: A
context-bounded model checking tool for multi-threaded c-programs. In: ASE. pp.
807–812. IEEE Computer Society (2015). https://doi.org/10.1109/ASE.2015.108

6. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded verifica-
tion of multi-threaded programs via lazy sequentialization. ACM Trans. Program.
Lang. Syst. 44(1) (dec 2021). https://doi.org/10.1145/3478536

7. Inverso, O., Tomasco, E., Fischer, B., Torre, S.L., Parlato, G.: Bounded model
checking of multi-threaded C programs via lazy sequentialization. In: CAV.
Lecture Notes in Computer Science, vol. 8559, pp. 585–602. Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9 39

https://sv-comp.sosy-lab.org/2022/
https://doi.org/10.5281/zenodo.5959149
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1109/ASE.2013.6693139
https://doi.org/10.1109/ASE.2015.108
https://doi.org/10.1145/3478536
https://doi.org/10.1007/978-3-319-08867-9_39

A Prototype for Data Race Detection in CSeq 3 5

8. Inverso, O., Trubiani, C.: Parallel and distributed bounded model check-
ing of multi-threaded programs. In: PPoPP. pp. 202–216. ACM (2020).
https://doi.org/10.1145/3332466.3374529

9. ISO/IEC: ISO/IEC 9899:2018: Information technology – Programming languages
– C (Jun 2018)

10. Simic, S., Bemporad, A., Inverso, O., Tribastone, M.: Tight error analysis in fixed-
point arithmetic. In: IFM. Lecture Notes in Computer Science, vol. 12546, pp.
318–336. Springer (2020). https://doi.org/10.1007/978-3-030-63461-217

11. Simic, S., Inverso, O., Tribastone, M.: Bit-precise verification of discontinuity er-
rors under fixed-point arithmetic. In: SEFM. Lecture Notes in Computer Science,
vol. 13085, pp. 443–460. Springer (2021). https://doi.org/10.1007/978-3-030-92124-
8 25

12. Tomasco, E., Inverso, O., Fischer, B., Torre, S.L., Parlato, G.: Verifying concurrent
programs by memory unwinding. In: TACAS. Lecture Notes in Computer Science,
vol. 9035, pp. 551–565. Springer (2015). https://doi.org/10.1007/978-3-662-46681-
0 52

13. Tomasco, E., Nguyen, T.L., Inverso, O., Fischer, B., Torre, S.L., Parlato, G.: Lazy
sequentialization for TSO and PSO via shared memory abstractions. In: FMCAD.
pp. 193–200. IEEE (2016). https://doi.org/10.1109/FMCAD.2016.7886679

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3332466.3374529
https://doi.org/10.1007/978-3-030-63461-2_17
https://doi.org/10.1007/978-3-030-92124-8_25
https://doi.org/10.1007/978-3-030-92124-8_25
https://doi.org/10.1007/978-3-662-46681-0_52
https://doi.org/10.1007/978-3-662-46681-0_52
https://doi.org/10.1109/FMCAD.2016.7886679
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A Prototype for Data Race Detection in CSeq 3

