
A Model-driven Approach to Catch Performance

Antipatterns in ADL Specifications

Martina De Sanctisa, Catia Trubianib, Vittorio Cortellessac,
Antinisca Di Marcoc, Mirko Flamminjc

aFondazione Bruno Kessler, Trento, Italy
bGran Sasso Science Institute, L’Aquila, Italy

cUniversity of L’Aquila, L’Aquila, Italy

Abstract

Context: While the performance analysis of a software architecture is a
quite well-assessed task nowadays, the issue of interpreting the performance
results for providing feedback to software architects is still very critical. Per-
formance antipatterns represent effective instruments to tackle this issue,
because they document common mistakes leading to performance problems
as well as their solutions.

Objective: Up today performance antipatterns have been only studied
in the context of software modeling languages like UML, whereas in this
manuscript our objective is to catch them in the context of ADL-based soft-
ware architectures to investigate their effectiveness.

Method: We have implemented a model-driven approach that allows the
automatic detection of four performance antipatterns in Æmilia, that is a
stochastic process algebraic ADL for performance-aware component-oriented
modeling of software systems.

Results: We evaluate the approach by applying it to three case stud-
ies in different application domains. Experimental results demonstrate the
effectiveness of our approach to support the performance improvement of
ADL-based software architectures.

Conclusion: We can conclude that the detection of performance antipat-

Email addresses: msanctis@fbk.eu (Martina De Sanctis),
catia.trubiani@gssi.infn.it (Catia Trubiani), vittorio.cortellessa@univaq.it
(Vittorio Cortellessa), antinisca.dimarco@univaq.it (
Antinisca Di Marco), mirko.flamminj@univaq.it (Mirko Flamminj)

Preprint submitted to Information and Software Technology March 30, 2021



terns, from the earliest stages of software development, represents an effective
instrument to tackle the issue of identifying flaws and improving system per-
formance.

Keywords: Architecture Description Languages, Performance Antipatterns,
Model-Driven Engineering, Æmilia ADL, Software Performance Analysis

1. Introduction

The need of early non-functional analysis of software architecture is nowa-
days well-assessed, as it generates positive effects on the whole software de-
velopment process [1]. In fact, early detection of violations of non-functional
requirements allows developers to save a lot of effort in the testing phases
where bugs are hard and expensive to fix [2]. In fact, the investigation of
non-functional attributes in software architectures helps to compare different
alternatives that are equivalent from a functional viewpoint, thus introducing
an additional value in the decisional process of software architects [3, 4, 5].

In the last two decades the performance analysis of a software architec-
ture has become a well-assessed task. Several modeling languages (like UML)
allow models to be annotated with performance input parameters, then an-
notated models can be transformed into performance models (like Queueing
Networks), and analysis tools can be used to obtain performance indices.
Syntax and semantics of several Architecture Description Languages (such
as Æmilia [6]) allow performance parameters of a software architecture to
be specified, and their supporting tools can analyze the architecture perfor-
mance (besides the typical functional analysis) without needing to transform
the architecture description into a performance-specific language.

In the literature, several approaches have been proposed for the perfor-
mance analysis at the software architectural design level [7, 8, 9], whereas
the issue of interpreting the performance results for providing architectural
refactorings to software architects is still very critical. This is mostly due to
the gap between performance results – i.e., mean values, variances, and-or
probability distributions of indices like throughput, response time, etc. – and
expected refactorings, like architectural alternatives, that can help to remove
possible problems identified during the performance analysis phase. In most
cases, software analysts (with no expertise in performance) build different
architectural alternatives to try overcoming performance problems or, in the
best case, performance experts provide suggestions based on their previous

2



experience.
Therefore, further approaches are necessary to support and facilitate the

process of performance results interpretation and software refactoring gener-
ation. Moreover, automation in this process would be breakthrough for this
task. Up to now only bottleneck analysis [10] has been used for this goal. It
allows the identification of cases where the performance of a software system
is limited by a number of overloaded software components and–or hardware
resources. However, it falls short to identify more complex cases.

Performance antipatterns [11, 12, 13] represent effective instruments to
tackle the issue of interpreting performance results, because they document:
(i) common mistakes leading to performance problems and (ii) solutions in
terms of software refactorings. Their effectiveness has been demonstrated,
among others, by our recently consolidated results: (i) we formalized the
representation of antipatterns by means of first-order logic rules that express
a set of system properties under which an antipattern occurs [14]; (ii) we
introduced a methodology to prioritize the detected antipatterns and solve
the most promising ones [15].

In the literature performance antipatterns have been only studied in the
context of UML-like software modeling languages [16, 17], whereas in this
paper we tackle the problem of identifying their occurrences in ADL-based
software architectures. The main goal is to close a round-trip process that
allows the performance analysis of an architecture and the results interpreta-
tion and architectural refactoring. This would contribute to an easier adop-
tion of analysis practices in the daily life of software architects. Performance
antipatterns are defined in terms of their own specific vocabulary [12], and
they are founded on different aspects of a software system referring to static,
behavioral, and deployment characteristics [14] as well as on performance
measures. As a consequence, the ADLs suitable for the detection of per-
formance antipatterns are those that better fit these characteristics, namely
the ones that better overlap with the antipatterns vocabulary and that allow
performance analysis of a software architecture.

Various ADLs allow performance analysis (e.g., ABACUS [18], OSAN
[19], EAST-ADL [20]). Nevertheless, none of their supporting environments
allows the interpretation of performance results. Based on our experience and
supported by the software performance engineering community [11, 12, 13],
the most promising ADLs for performance antipatterns detection are Æmilia
[6] and AADL [21].

Æmilia is an ADL aimed (among other) at the performance evaluation

3



of software systems. It allows a software architecture to be specified from a
functional viewpoint as well as performance parameters (such as rates and
probabilities of actions) and to evaluate performance indices of interest (such
as throughput, response time and utilization) to be defined. Æmilia is very
powerful in the specification of performance measures because it relies on
rewards that can be assigned to architectural elements, and performance
analysis co-exists with functional verification, such as the reachability of a
certain state or deadlock-freeness. AADL is an ADL designed (among other
things) for the specification and analysis of software systems. It supports,
in fact, both performance analysis and functional simulation. AADL allows
latency analysis on flow specifications of components and connections to be
performed [22]. However, such analysis is limited to worst and best cases,
whereas the reward-based mechanism of Æmilia enables a much wider range
of performance specifications. On the basis of these considerations, we have
adopted the Æmilia language as the ADL for this work because of its stronger
ability in the specification of performance measures, while we defer AADL
for our future work.

This paper is an extension of [23] where we have shortly illustrated an ap-
proach for performance antipatterns detection on Æmilia specification, which
enables the actual usage of first-oder logic rules [14] in a concrete ADL-based
software architecture. In detail, our approach starts by converting an Æmilia
textual description into an Æmilia model conforming to an enriched Æmilia
metamodel that we define in the following. The Æmilia model is subsequently
annotated with performance results provided by the performance evaluation
executed by means of the tool TwoTowers [24], which is the Æmilia support-
ing environment. At this point, the performance antipatterns detection is
performed by our engine that analyzes the annotated Æmilia model using a
set of OCL rules that model the detectable performance antipatterns. A list
of detected antipattern occurrences, if any, is given as a result. Each antipat-
tern includes in its definition the corresponding solutions that are alternative
architectures allowing their removal. Æmilia allows to represent a subset of
performance antipatterns, in particular its expressiveness enables the (full or
partial) detection of seven performance antipatterns, as it will be illustrated
later.

The choice of the OCL language for the definition of rules modeling the
performance antipatterns is founded on the expressivity of OCL as compared
to first-order logic with which performance antipatterns have been formally
represented without the possibility of automating their detection [14]. From

4



[25], it follows that the expressive power of OCL is no lower than first-order
logic, we do not loose expressivity by defining OCL rules for performance
antipatterns. In addition, OCL is well suited for implementation purposes,
being applicable, for example, to Eclipse Modelling Framework-based models,
as it has been done in this work.

The novel contributions of this paper are: (i) a detailed description of an
Æmilia metamodel enriched with performance antipatterns-related concepts;
(ii) the automation of the performance results annotation that allows the
inclusion of performance values in Æmilia models; (iii) an extended exper-
imentation that includes further details on the original case study and two
additional ones; (iv) a comparison of the antipatterns-based process with the
bottleneck analysis.

As future work, we plan to apply our approach on other formalisms,
starting from AADL that appears as the most promising one among the
ADLs. Moreover, we intend to introduce automation in the application of
antipatterns solutions. Lastly, we plan to experiment our approach on real
systems coming from industrial experiences.

The paper is organized as follows: related work is discussed in Section 2.
Section 3 provides background information on Æmilia and presents a prelim-
inary study that has brought us to identify which performance antipatterns
are detectable in Æmilia descriptions. Section 4 describes the whole approach
of representation and detection of performance antipatterns in Æmilia. Val-
idation results are reported in Section 5, where our approach is applied to
three case studies. Section 6 discusses the open issues raised by the proposed
approach and Section 7 argues the threats to validity. Finally, Section 8
concludes the paper with final considerations and directions for future work.

2. Related work

The broader scope of this paper is the analysis of non-functional concerns
at the architecture level. In the literature, the analysis of quality properties at
the architectural level has been discussed from different perspectives, includ-
ing modeling strategies (e.g., architecture viewpoints and perspectives [5, 26])
that enable analysis methods [27, 28, 29]. There are two main streams of ap-
proaches in this direction: (i) qualitative (e.g., scenario-based architecture
analysis [30], architecture trade-off analysis [31]) and (ii) quantitative (e.g.,
costs and benefits of architectural decisions [32], metric-based architecture
optimization [33]). In the following, we focus on quantitative performance

5



analysis of software architecture because we are interested in collecting a set
of figures, such as resource utilization, service throughput and response time,
thus to estimate the system quality with the support of quantitative results.

In the literature there are some ADLs that allow the specification of per-
formance parameters for the goal of carrying out performance indices (ABA-
CUS [18], OSAN [19], EAST-ADL [20]). However, none of their supporting
environments allows the interpretation of such indices, nor do they make di-
rect use of them. One exception is represented by AADL [21], which supports
the performance verification [34]; five real-time design patterns (i.e., Syn-
chronous data-flow, Ravenscar, Blackboard, Queued buffer and Unplugged)
have been recently applied to enable schedulability analysis on AADL models
[35]. However, no feedback is generated to improve the performance indices.

Differently from patterns, antipatterns look at the negative features of a
software system and describe solutions to commonly occuring problems that
generate negative consequences [36, 37].

Performance antipatterns deal with the performance issues of software
systems. In the literature, the main source of performance antipatterns is
the work done across years by Smith and Williams [11, 12, 13] that have
ultimately defined 14 notation- and technology- independent antipatterns.
The benefit of using these antipatterns is that they offer solutions in forms of
alternative architectures to performance flaws and several works recently have
demonstrated their usefulness [38, 39, 40]. Other sources of antipatterns focus
on technology- specific problems, e.g., in [41, 42] antipatterns are expressed
in terms of Java’s trouble spots for programming, such as too much data in
JSP sessions, problematic stateful session beans, etc.

Enterprise technologies and EJB antipatterns are analyzed in [43]: an-
tipatterns are represented as a set of rules loaded into a detection engine.
The matching between pre-defined rules and application properties is per-
formed to detect EJB (i.e., technology specific) antipatterns. However, these
antipatterns operate at the level of code, whereas our approach intends to
work at the architectural level.

In [44], performance problems are identified before the implementation
of the software systems, but they only refer to bottlenecks and long paths.
The analysis is conducted on Layered Queueing Network (LQN) performance
models. The main limitation of such approach is that it only applies to LQN
models, hence its portability to other notations is yet to be proven and it
may be quite complex.

In [45], meta-heuristic search techniques are used for improving different

6



non functional properties of component based software systems: evolutionary
algorithms search the architectural design space for optimal trade-offs. The
main limitation of such approach is that it is quite time-consuming because
the design space may be huge.

In [46], a performance antipatterns detection approach, called Perfor-
mance Problem Diagnostics (PPD), is presented. The goal of this approach
is to find the root causes of the identified performance problems by means
of a decision tree derived from a Performance Problem Hierarchy. To detect
specific antipatterns, detection strategies encapsulating heuristics have been
defined. This approach can only capture implementation details as sources
of performance problems, hence it is applied late in the software development
process. In contrast, our approach can detect antipatterns occurrences early
during the design phase.

In [47], the authors present DECOR (DEtection and CORrection), a
method characterizing the required steps (i.e., description analysis, specifica-
tion, processing, detection and validation) for the specification and detection
of both code and design smells. Moreover, as an instantiation of the DECOR
method, the authors present a detection technique called DETEX (DETec-
tion EXpert). Briefly, DETEX starts from a taxonomy and classification
of smells from a domain analysis phase. Smells are then specified using a
rule-based and declarative DSL; a set of rules (i.e., rule card) describe the
properties that a class must have to be considered a smell. Subsequently,
detection algorithms are automatically generated from the models of each
smell and then applied on systems models. In this approach, 29 smells are
studied. However, the focus is more on code smells (21 types), which are
more related to the implementation, than on design antipatterns (8 types),
which could be detected early at design phase. In contrast, our approach is
focused on design antipatterns leading to performance flaws.

Recently, the need of automatic antipatterns detection approaches has
emerged also in the Service Oriented Computing (SOC) field. In [48], the
authors describe the impact of REST antipatterns on the increasingly used
RESTful services. Because RESTful systems evolve continuously, to adapt to
the dynamic context in which they operate, these evolutions may cause the
introduction of REST antipatterns, that are added to those that can be intro-
duced at design phase. A heuristics-based approach called SODA-R (Service
Oriented Detection for Antipatterns in REST) for detecting antipatterns in
RESTful systems is presented. By analysing the antipatterns descriptions,
relevant static and dynamic properties are extracted and then combined for

7



the definition of detection heuristics for each antipattern. Heuristics can be
applied as detection algorithms on both the requests from clients and the re-
sponses from servers on different REST APIs. Furthermore, in [49], authors
investigate RESTful APIs design from a linguistic point of view to define and
detect linguistic (anti)patterns affecting the understandability and reusability
of software systems. To this aim, the authors introduce the DOLAR (De-
tection Of Linguistic Antipatterns in REST) approach, which combines both
syntactic and semantic analyses for the detection of linguistic (anti)patterns.

Related work Late (/code) Early (/model)
Architectural

Feedback
B. Dudney et al. [41]

√

B. Tate et al. [42]
√

J. Xu et al. [44]
√

A. Koziolek et al. [45]
√ √

A. Wert et al. [46]
√

N. Moha et al. [47]
√

F. Palma et al. [48] [49]
√ √

T. Parsons et al. [43]
√

Our approach
√ √

Table 1: Overview of related works.

Table 1 provides an overview of the presented related works. Approx-
imately half of the approaches apply late in the development process (i.e.,
at the code level) and the remaining ones deal with early model abstrac-
tions. Only two approaches among the latter ones (i.e., [45] and [48, 49])
give feedback to support software architects, like we do in our approach. In
particular, the type of feedback provided by our approach is similar to the one
in [48, 49], because it consists in a list of detected performance antipatterns
that may cause (more or less severe) performance problems. As opposite, the
approach in [45] searches for all available architectural alternatives and then
checks if they lead to improved performance. The latter approach has to be
preferred when a simple search engine can be implemented and an unpre-
dictable searching time can be afforded. The effort of implementing a more
sophisticated antipattern-based detection engine is payed back by a deeper
control of the refactoring process. In this case, in fact, the process can be
driven by specific performance problems (e.g., because they concern critical
subsystems), instead of searching for refactored architectures on the basis of
a synthetic fitness function that flattens performance problems into a simple
metric.

The main advantage that our approach provides with respect to these lat-

8



ter ones is the independence from any architectural paradigm, whereas [45]
targets component-based systems and [48, 49] targets service-oriented archi-
tectures. At the same time, its main limitation is that the ability to detect
and remove antipatterns depends on the syntax and semantics of Æmilia.
Hence, the results presented in this paper are a first experience applied to an
ADL, although this limitation would have been obviously encountered with
any other ADL.

3. Reasoning on Performance Antipatterns in Æmilia

In this section, we provide an overview of the performance antipatterns
that can be specified in Æmilia. Section 3.1 first provides basic informa-
tion on Æmilia, then Section 3.2 reports on the detection and solution of
antipatterns in Æmilia.

3.1. An Architecture Description Language: Æmilia

The architectural description language Æmilia [6] is based on the stochas-
tic process algebra EMPAgr [50], and, similarly to other ADLs, it provides
a formal architectural description of complex software systems.

The Æmilia specification describes how a system is structured: (i) the
software architecture structure (topology) is specified by components, con-
nectors, channels, and ports; (ii) the software architecture dynamics (behav-
ior) is specified by states, transitions, and interactions. The study of the
properties of Æmilia specifications is conducted with the TwoTowers tool
[24] that enables functional verification via model checking or equivalence
checking, as well as performance evaluation through the numerical solution
of continuous-time Markov chains [51] or discrete-event simulation [52].

In the following, we report some of the Æmilia concepts that are relevant
for antipatterns detection and solution, while a complete description can be
found in [6].

ARCHI_TYPE <name and formal parameters >

ARCHI_ELEM_TYPE

<architectural element types:

behaviors and Interactions >

ARCHI_TOPOLOGY

ARCHI_ELEM_INSTANCES <architectural element instances >

ARCHI_INTERACTIONS <architectural interactions >

ARCHI_ATTACHMENTS <architectural attachments >

Listing 1: Structure of the Æmilia architectural specification.

9



Listing 1 reports the structure of the Æmilia architectural specification.
There are three main concepts: (i) Architectural Type, i.e., an intermediate
abstraction between a system and an architectural style; it contains the spec-
ification of formal parameters; (ii) Architectural Element Type (AET), i.e.,
a component or a connector type that describes the internal behaviors and
the interactions of the component; (iii) Architectural Topology contains the
specification of Architectural Element Instances (AEI), i.e., an instance of a
given AET type, their Architectural Interactions and Architectural Attach-
ments, i.e., communication links among instances modeled as synchronization
actions.

The performance evaluation of an Æmilia specification is executed by
means of the tool TwoTowers [24]. It has been realized, besides other pur-
poses, also for the performance evaluation of software systems modelled with
the Æmilia language. The Performance Evaluator of the TwoTowers tool can
generate, by starting from an Æmilia Architectural Specification, a perfor-
mance model represented as a Markov chain. On this model, it calculates
a set of instant-of-time, stationary/transient performance measures specified
through state and transition rewards [53]. It can also estimate the values of
the mean, variance and distribution of some performance measures specified
as extensions of the state and transition rewards with the number and length
of the simulation intervals.

Listing 2 reports a simple example of the Æmilia performance specifica-
tion that defines the throughput measure by assigning a transition reward
equal to 1.0 to an architectural element instance (AEI) interaction under
analysis.
MEASURE throughput IS

ENABLED

(AEI.interaction) -> TRANS_REWARD (1.0)

Listing 2: A simple example of the Æmilia Performance Specification.

Listing 3 reports a simple example of the Æmilia performance results
stored in a .val file: the value of the average throughput is equal to 12.
Value of measure "throughput ":

12

Listing 3: A simple example of the Æmilia Performance Results.

3.2. Performance Antipatterns in Æmilia at a Glance

The management of performance antipatterns is limited by the expres-
siveness of the target ADL, because antipatterns have a notation-independent

10



representation [14] that must be adapted to the actual ADL under analysis.
Hence, depending on the target ADL, there are antipatterns that can be
detected and solved, others that can be partially detected and-or partially
solved, and finally some others that are neither detectable nor solvable.

Performance antipatterns are very complex (as compared to software pat-
terns) because they are founded on different characteristics of a software sys-
tem, spanning from static to behavioral to deployment, and they additionally
include values of performance indices [14]. As consequence, depending on
the ability of the target ADL to model the software system features needed
to define each performance antipattern, we can have different detection ca-
pabilities. In Æmilia, deployment features cannot be modeled leading to a
partial capability of antipatterns detection and solution, as detailed in the
following.

Type Antipattern Detectable Solvable

S
n

a
p

sh
o
t

Blob ' '

Unbalanced

Concurrent Processing Systems × ×

Processing
Pipe and Filter Architectures

√ √

Extensive Processing
√ √

Circuitous Treasure Hunt × ×

Empty Semi Trucks × ×

Tower of Babel × ×

One-Lane Bridge ' '

Excessive Dynamic Allocation ' ×

E
v
o
lu

ti
o
n

Traffic Jam
√ √

The Ramp
√

×

More is Less × ×

Table 2: Detectable and solvable performance antipatterns in Æmilia (symbols
√

, ×, '
mean yes, no, and partially, respectively).

Table 2 lists the most common performance antipatterns that we exam-
ine (from [12]). Such list has been enriched with an additional attribute:
the Snapshot antipatterns are detectable by looking at mean, max or min
values of performance indices, whereas the Evolution antipatterns need, to

11



Antipatterns Textual Descriptions

Blob It is an antipattern whose bad practice is on a single software component
either performs all of the work of an application or holds all of the applica-
tion’s data. Either manifestation results in excessive message traffic that can
degrade performance [12].

Circuitous
Treasure Hunt

It is an antipattern whose bad practice is on an efficient management of
database systems, in particular an object must look in several places to find
the information it needs [12]. The inner organization of database systems
cannot be modeled in Æmilia.

Concurrent Pro-
cessing Systems

It is an antipattern whose bad practice is on the unbalanced assignment of
processing to the available processors [12], but in Æmilia no hardware prop-
erties can be specified.

Empty Semi
Trucks

It is an antipattern whose bad practice is on an inefficient use of available
bandwidth [12], but in Æmilia the communication flow is more abstract and
does not include information on bandwidth.

Excessive Dynamic
Allocation

It is an antipattern whose bad practice is on the excessive memory storage
due to objects that are rarely used: an object is created when needed and
immediately destroyed afterwards. It may happen that an application un-
necessarily creates and destroys large numbers of objects during its execution
[12].

Extensive
Processing

It is an antipattern whose bad practice is represented by a long running
process that monopolizes a processor and prevents a set of other jobs to be
executed until it finishes its computation. Unlike the pipe and filter, other
work does not have to pass through this stage before proceeding, hence it is
particularly problematic if the extensive processing is on the processing path
that is most frequently executed [12].

More is Less It is an antipattern whose bad practice is on the overhead spent by the system
in thrashing, as compared to accomplish the real work, because there are
too many processes in comparison to the available resources [12]. Currently
thrashing cannot be modeled in Æmilia.

One-Lane Bridge It is an antipattern whose bad practice is on concurrent systems when the
mechanisms of mutual access to a shared resource are badly designed. The
problem appears in all cases of mutual access to resources, or in the case of
multiple processes making synchronous calls in a non multi-threaded environ-
ment [12].

Pipe and Filter
Architectures

It is an antipattern whose bad practice represents a manifestation of the
unbalanced processing antipattern [12]. It occurs when the throughput of the
overall system is determined by the slowest filter. It means that there is a
stage in a pipeline which is significantly slower than all the others, therefore
most stages have to wait the slowest one to terminate.

The Ramp It is an antipattern whose bad practice is on the amount of processing required
by a system to satisfy a request since it increases over time. It is due to the
growing amount of data the system stores and, as the time goes on, the data
grow and the processing time required to perform an operation on such data
becomes unacceptable [12].

Tower of Babel It is an antipattern whose bad practice is on the translation of information
into too many exchange formats, i.e. data is parsed and translated into an
internal format, but the translation and parsing is excessive [12]. In Æmilia
the data flow is more abstract and it does not include information on data
formats.

Traffic Jam It is an antipattern whose bad practice is on the observation of a significative
variability in response time. It is due to different causes, and the problem
also occurs when a large amount of work is scheduled within a relatively small
interval [12].

Table 3: Performance Antipatterns textual description [12].

12



be detectable, to look at the trend or evolution of the performance indices
along the time. Table 2 is organized as follows: each row represents a spe-
cific antipattern and it is characterized by three fields (one per column), that
are: the antipattern name, detectable and solvable that specify the degree of
detection and solution in the Æmilia ADL. Such attributes can be of three
different values:

√
meaning that the antipattern is fully detectable and solv-

able, ' meaning that the antipattern is partially detectable and solvable,
and × if we think that the antipattern cannot be detected and cannot be
solved.

Table 2 points out that the most interesting antipatterns in Æmilia are:
Pipe and Filter Architectures, Extensive Processing, Traffic Jam and The
Ramp (see Table 3 for their textual description).

The first three antipatterns can be referred as solvable antipatterns, be-
cause they can be detected and solved. In particular, the Pipe and Filter
Architectures and the Extensive Processing antipatterns are defined by con-
sidering static features of the software system and performance indices values,
which belong to any Æmilia model. The Pipe and Filter Architectures is de-
tected by identifying the slowest filter component whose execution limits the
throughput of the overall system. The Extensive Processing is detected by
identifying a process whose execution absorbs a processor, thus starving other
jobs and leading to very high response time. The Traffic Jam antipattern is
defined by considering behavioural feature of the software system along with
performance indices over time, which again belong to any Æmilia model. The
detection of this antipattern is based on identifying excessive variabilities of
response time values in subsequent time slots.

In contrast, The Ramp can be referred as detectable antipattern, be-
cause it can be detected by observing the trend of the response time and the
throughput over time [12]. The solution of such antipattern refers to the se-
lection of algorithms or data structures based on maximum size or the usage
of algorithms that adapt to the size [12], hence it cannot be solved because
it refers to an abstraction layer not included in the current Æmilia language.

Table 2 reveals that there are three antipatterns (i.e., Blob, One-Lane
Bridge, and Excessive Dynamic Allocation) that can be partially detected.

Blob and One-Lane Bridge can be referred as semi-solvable antipatterns,
because they can be partially detected and solved. Their detection is based on
static and behavioral features of the system as well as on deployment aspects.
In particular, to detect the Blob antipattern we must identify, from a static
point of view, a single software component that either performs all the work

13



of an application or holds all the application data [12]. Either manifestation
results, from a behavioral perspective, in an excessive message traffic with
several other software components. In addition, the Blob antipattern depends
on the deployment of software components, because its manifestation can
degrade the utilization of hardware resources that cannot be modelled in
Æmilia. Because the Blob antipattern is also founded on deployment aspects,
it is semi-solvable. The One-Lane Bridge antipattern occurs in concurrent
systems whose mechanisms of mutual access to a shared resource are badly
designed. It also arises in the case of multiple processes making synchronous
calls in a non multi-threaded environment [12]. It is detected by analyzing,
for each software component in the system, the number of synchronous calls
it receives for one of its services and how this affects the service response time.
Moreover, it is also required to measure both the service time and the waiting
time of the process nodes on which the software components are deployed.
The Blob and One-Lane Bridge antipatterns are semi-detectable and semi-
solvable because they can be partially modeled in Æmilia specifications, since
the deployment constraints required for their detection are left out.

Excessive Dynamic Allocation can be referred as semi-detectable antipat-
tern, because it can be partially detected by observing the system response
time. Its manifestation also depends on the overhead caused by a high num-
ber of creation and destruction of objects, which cannot be modeled in the
Æmilia specification [12]. The solution of such antipattern refers to the recy-
cle of objects or the avoidance of creating new objects [12], hence it cannot
be solved because it refers to an abstraction layer not included in the current
version of the Æmilia language.

Eventually, Table 2 indicates that there are five antipatterns (i.e., Con-
current Processing Systems, Circuitous Treasure Hunt, Empty Semi Trucks,
Tower of Babel, and More is Less) neither detectable nor solvable in Æmilia.
For each of these performance antipatterns, their detection cannot be per-
formed because they rely on particular static and/or behavioral features of
software systems that are intrinsically difficult to model in any specifica-
tion, even in Æmilia. Going more into details, the Concurrent Processing
Systems antipattern stems from the unbalanced assignment of processing to
the available processors [12]. It relies on hardware properties, such as the
queue length of the involved platform devices, as well as their utilization,
that Æmilia cannot model. Looking at other ADLs, this antipattern can be
partially detected if EAST-ADL [20] is employed. In fact, such language
allows hardware modelling with which it is possible to define the utilization

14



of devices, whereas it lacks the concept of queue length. The Circuitous
Treasure Hunt antipattern reports the inefficient management of database
systems occurring when an object must look in several places to find the
information that it needs, thus causing additional overhead that degrades
performance [12]. However, it is not always possible to identify a specific
elemType as a database, as well as it is not possible to distinguish the mes-
sages sent to databases from all the other ones. This antipattern cannot be
detected with other ADLs because, to the best of our knowledge, it is not
possible to explictly model database components in ADL specifications. The
Empty Semi Trucks antipattern is the result of an inefficient use of the avail-
able bandwidth. This happens especially in message-based systems, when
a huge load of messages is exchanged over the network [12]. For the detec-
tion of the Empty Semi Trucks antipattern, information on the bandwidth
utilization is needed, together with deployment information referring to the
number of instances deployed on remote nodes. Again, deployment features
cannot be modeled in Æmilia. Looking at other ADLs, this antipattern
can be partially detected if AADL [21] is employed. In fact, such language
allows hardware modelling with which it is possible to define communica-
tion networks, whereas it lacks the concept of bandwidth used for message
passing. The Tower of Babel antipattern is triggered when information is
translated into many exchange formats, thus requiring additional overhead
for converting, analyzing, and translating data in a common exchange for-
mat (e.g., XML) [12]. This is a typical problem in distributed data-oriented
systems, where the same information is translated several times. However,
in Æmilia, the data flow does not include information on data formats. This
antipattern cannot be detected with other ADLs because, to the best of our
knowledge, it is not possible to explictly define data formats in ADL specifi-
cations. Finally, the More is Less antipattern is detected when there are too
many processes in comparison to the available resources, thus causing over-
head [12]. For example, the system spends more time in running secondary
processes (e.g., trashing, connecting to databases and web services) with re-
spect to the execution of the actual work. Also in this case, deployment
features are needed to detect this antipattern, i.e., the deployment of soft-
ware components on platform nodes, how they communicate, and how many
messages they exchange. Moreover, the amount of available resources with
respect to the running processes has to be known. Looking at other ADLs,
this antipattern can be partially detected if EAST-ADL [20] and AADL [21]
are employed, in fact: (i) EAST-ADL includes failure modelling thus it is

15



possible to define internal and external faults that are either propagated to
system failures or masked; (ii) AADL supports fault propagation analysis by
specifying the fault category (benign, tolerated, catastrophic) and recovery
actions. However, both these two ADLs lack the concept of database and
web services connections.

Summarizing, our study on the detection of performance antipatterns in
Æmilia demonstrates that there are some concepts that are intrinsically more
difficult to express both in Æmilia and in other ADLs. As future work, we
plan to deal with these specific concepts. A solution may be to augument
the Æmilia metamodel with this information and let the designer manually
annotate these values.

4. Representing and Detecting Performance Antipatterns in Æmilia

In this section, we present our model-driven approach to catch the per-
formance antipatterns in the Æmilia ADL. Figure 1 illustrates the round-trip
performance analysis process that we envisage considering the Æmilia con-
text, where shaded boxes represent the main contributions of this paper.
The presented approach is tool supported, we developed an Eclipse-based
tool used to automatically detect the performance antipatterns. Our tool
can be downloaded on-line [54].

Figure 1 is partitioned in two parts: the M1:Models part contains activi-
ties and artifacts (i.e., textual specifications and models of the software sys-
tem under analysis) implementing the process, whereas the M2:Metamodels
part contains grammars, metamodels, and OCL rules.

The lower side has been partitioned in three phases: Modeling, Analy-
sis and Refactoring. In the Modeling phase an Æmilia specification of the
software architecture, conforming to the Æmilia grammar, is produced. In
the Analysis phase the performance evaluation activity takes as input the
architecture, along with the performance parameters and the specification of
indices of interest (also conforming to the Æmilia grammar), and it produces
as output the values of specified indices (such as throughput and response
time). These two phases are carried out within the TwoTowers [24] tool, that
is the Æmilia supporting environment.

The Refactoring phase is the core of this paper. The approach that we
adopt to detect performance antipatterns in an Æmilia architectural specifi-
cation is based on our previous work on antipatterns. In particular, we base
on [14, 55] to introduce here a set of OCL rules that encode performance

16



P
er

fo
rm

an
ce

E
va

lu
at

io
n

M
od

el
in

g
A

na
ly

si
s

R
ef

ac
to

ri
ng

Te
xt

-t
o-

M
od

el
Tr

an
sf

or
m

at
io

n

D
et

ec
te

d
P

er
fo

rm
an

ce
A

nt
ip

at
te

rn
s

A
E

m
il

ia
M

od
el

A
E

m
il

ia
G

ra
m

m
ar

co
nf

or
m

 to

D
et

ec
ti

on
 o

f
P

er
fo

rm
an

ce
 

A
nt

ip
at

te
rn

s

A
E

m
il

ia
A

rc
hi

te
ct

ur
al

 S
pe

ci
fi

ca
ti

on
(f

il
e.

ae
m

)

A
E

m
il

ia
P

er
fo

rm
an

ce
 S

pe
ci

fi
ca

ti
on

(f
il

e.
re

w
/ f

il
e.

si
m

)

A
E

m
il

ia
P

er
fo

rm
an

ce
 R

es
ul

ts
(f

il
e.

va
l)

M2: Metamodels M1: Models

co
nf

or
m

 to

E
nr

ic
he

d 
A

E
m

il
ia

M
et

am
od

el

co
nf

or
m

 to

So
lu

ti
on

 o
f

P
er

fo
rm

an
ce

 
A

nt
ip

at
te

rn
s

P
er

fo
rm

an
ce

R
es

ul
ts

A
nn

ot
at

io
n

co
nf

or
m

 to

O
C

L
 r

ul
es

G
ra

m
m

ar
2M

et
am

od
el

us
e

us
e

us
e

F
ig

u
re

1:
R

ou
n

d
-t

ri
p

p
er

fo
rm

a
n

ce
a
n

a
ly

si
s

p
ro

ce
ss

in
Æ

m
il

ia
.

17



antipatterns and allow their detection on models conforming to the Æmilia
metamodel we have defined.

The Refactoring phase starts with a Text-to-Model Transformation from
an Æmilia architectural specification to an Æmilia model, where the lat-
ter conforms to the enriched Æmilia metamodel (described in Section 4.1).
Because antipatterns insist on performance indices, beside architectural char-
acteristics, Performance Results Annotation activity is devised to enrich an
Æmilia Model with performance parameters and indices as coming from the
Analysis phase. An Annotated Æmilia Model, again conforming to the en-
riched Æmilia Metamodel, is thus ready for the Detection of Performance
Antipatterns.

The detection activity produces a list of performance antipatterns occur-
rences identified in the Æmilia model of the software system under analysis.
This list represents a relevant instrument to guide software architects while
looking for causes of performance problems, as shown in Section 5. The
round-trip process is closed by the performance antipatterns solution activ-
ity that appropriately removes antipatterns in the Æmilia specification to
achieve better performance.

Hereafter, we define a metamodel (Section 4.1) that defines the model
elements used in the specification of antipatterns. Hence, the Æmilia speci-
fication and its performance evaluation can be represented as a model (Sec-
tion 4.2) conforming to the metamodel. Such representation is suitable to
automatically detect the performance antipatterns (Section 4.3). Finally, we
discuss precision and recall metrics (Section 4.4).

4.1. A metamodel for Æmilia
Figure 2 reports the Enriched Æmilia metamodel. An AEmiliaSpecifica-

tion specifies (and hence contains) an ArchiType defining a family of archi-
tectures sharing the same structure and behavior. An ArchiType has a name
(atName) and is composed of three elements: i) an AT Header representing
the name of the architectural type and specifying a set of constant parame-
ters (e.g., rates and instances number); ii) the ArchiElemTypes specifying a
set of ElemTypes; and iii) the ArchiTopology defining the topology of the
running system at the architectural level.

ElemType is denoted by an etName and defines a new type of software
component by specifying its header (ET Header), its internal Behavior1 and

1AT Header and ET Header are detailed in the Headers package, Behavior is detailed

18



Figure 2: Enriched Æmilia metamodel.

its interactions (i.e., InputInteraction and OutputInteraction). The
interactions allow the ElemType instances to communicate with other in-
stances. In particular, the InputInteraction (OutputInteraction) models
the LocalInteraction incoming (respectively outcoming) the ElemType. A
LocalInteraction is denoted by an intName and it could be of three types
(UNI, AND, OR) defining one-to-one, broadcast and client/server communi-
cations.

ArchiTopology specifies the architecture configuration of the running
system. It is composed of (possible zero) ArchitecturalInteractions,
ArchiElemInstances, and Attachments. An ArchiElemInstance models an
instance of an ElemType. It is denoted by an instanceName and the list of ac-
tualParam that provides the actual parameters for the formal ones specified
in the ElemType’s header. ArchitecturalInteraction is exclusively needed
in case of the hierarchical specification of the system. It has a name attribute
and it models the interactions that the modelled (sub)system has with its sur-
roundings specified in an external AEmiliaSpecification. It is provided by
an ArchiElemInstance and it corresponds to one of the LocalInteractions
defined in the ArchiElemInstance’s ElemType. An Attachment models a
communication link between two ArchiElemInstances. The communication
is oriented and goes from an output interaction of an instance (modeled by

in the Behavior package of the metamodel. The interested reader can refer to [54] for more
details on them.

19



the FROM element) to an input interaction of a different instance (modeled by
the TO element).

To allow the detection of performance antipatterns, Interaction and
ArchiElemInstance classes of the Æmilia metamodel have been enriched
with attributes that permit to annotate the model with performance anal-
ysis results obtained with the TwoTowers tool [24]. The results that can
be used to annotate an Interaction or an ArchiElemInstance are: the
throughput (throughput), the response time (responseTime), the utilization
(utilization), and their distributions (annotated in throughputDistr, respTi-
meDistr and utilDistr attributes for the interaction, and instanceThDistr, in-
stanceRespTimeDistr, and instanceUtilDistr attributes for the architectural
element instance).

Finally, we have implemented a set of OCL rules [54] to code some con-
straints imposed by the Æmilia ADL (such as each local interaction must
be involved in at least one attachment). Such rules check the validity of the
Æmilia model before performing the detection of performance antipatterns.

4.2. Transforming an Æmilia specification into an Æmilia model

The process of transforming an Æmilia specification into an Æmilia model
is carried out by two operational steps (see Figure 1): 1) a text-to-model
transformation step that produces an Æmilia model; 2) a performance results
annotation step that annotates the model with the results obtained from the
performance analysis.

4.2.1. Text-to-Model Transformation

After a metamodel for the Æmilia ADL has been defined, a text-to-model
transformation converts an Æmilia textual specification into a model. This
text-to-model transformation is performed by using Gra2Mol (Grammar to
Model Language), i.e., a domain specific transformation language that de-
fines the relationships between grammar elements and metamodel elements
[56]. Indeed, the approach is based on the definition of a grammar-to-model
transformation language, that is Gra2Mol. It is oriented to extract models
conforming to a target metamodel, starting from source programs conforming
to a specific grammar.

The Gra2Mol transformation process starts by building a syntax tree
from both the source grammar and the source code. The defined Gra2Mol
transformation interacts with the syntax tree and, by exploiting the source
grammar, it defines the nodes types of the syntax tree. Finally, the model

20



conforming to the target metamodel is defined by applying the transforma-
tion rules.

As already introduced, Gra2Mol is a rule-based language. Each rule
defines a relation between a grammar element and a metamodel element. A
rule is made by four parts, namely (i) from specifies the non-terminal source
grammar symbol, (ii) to specifies the destination meta-class, (iii) queries
contains a set of queries that allow the engine to navigate the syntax tree
in order to retrieve the information sought, and (iv) mapping contains a set
of associations which assign a value to the properties of the elements of the
target model (an example of a transformation rule is reported in Listing 5).

In Figure 3, we report the detail of Gra2Mol execution process contextu-
alized to our work. The parameters of a Gra2Mol transformation are:

- the source grammar, i.e., the ÆmiliaGrammar.g file, in which the
grammar of the source language is defined in EBNF format, as required
by Gra2Mol;

- the source code, i.e., the ÆmiliaSpec.aem files, to be transformed;

- the target metamodel, i.e., the enriched Æmilia metamodel, which
the resulting model must conform to;

- the definition of the Gra2Mol transformation, i.e., the ÆmiliaTran-
formation.g2m file, in which the rules for the transformation between
source elements (grammar) and target elements (metamodel) are de-
fined.

The text-to-model transformation has been realized as a standalone project.
We have first defined the EBNF format of the Æmilia ADL grammar and,
then, we have defined all the transformation rules to automate the Æmilia
models generation.

An excerpt of an Æmilia Architectural Specification (see Figure 3) is re-
ported in Listing 4. An Archi Type contains a set of Archi Elem Types, e.g.,
a mobile application of the travel domain (MA Type) has the following behav-
ior: (i) generates a request for the best path (i.e., generate best path req);
(ii) transmits the request for the best path (i.e., transmit best path req); (iii)
waits until receiving the best path (i.e., receive best path). Moreover, the
Archi Type specifies also the Archi Topology of the running system at the
architectural level.

21



Grammar
AemiliaGrammar.g

Source Code
AemiliaSpec.aem

Gra2Mol definition
AemiliaTransformation.g2m

Gra2Mol Engine Model
AemiliaSpec.mmaemilia

Metamodel
Enriched Aemilia metamodel

<conforms>
<conforms>

Figure 3: The execution process of Gra2Mol [56].

ARCHI_TYPE gbp(<name and formal parameters >)

ARCHI_ELEM_TYPES

ELEM_TYPE MA_Type(void)

BEHAVIOR

MobileApp(void; void) =

<generate_best_path_req , inf > .

<transmit_best_path_req , inf > .

<receive_best_path , _> . MobileApp ()

INPUT_INTERACTIONS

UNI receive_best_path; UNI generate_best_path_req

OUTPUT_INTERACTIONS

UNI transmit_req_best_path

ELEM_TYPE NetDown_Type (..)

ELEM_TYPE NetUp_Type (..)

ELEM_TYPE Balancer_Type (..)

ELEM_TYPE Server_Type (..)

ELEM_TYPE DB_Type (..)

ARCHI_TOPOLOGY

...

END

Listing 4: A simple example of an Æmilia Architectural Specification.

Listing 5 reports a simple example of a rule that defines how to map
the Æmilia architectural specification to the Æmilia model. In particular,

22



the mapping is performed from the elem type of the Æmilia specification
to the ElemType metamodel element, and queries support the retrieval of
ElemType features by traversing the syntax tree (i.e., the header, the input
and output interactions, and the behavior).

rule ’mapElemTypes ’

from elem_type et

to ElemType

queries

name : /#et;

elemHeader : /et/# et_header;

inputInt : /et// interaction_list_input //# interactionInput;

outputInt : /et// interaction_list_output //# interactionOutput;

behavior : /et/# behavior_equation_list;

mappings

etName = name.WORD;

elemHeader = elemHeader;

...

end_rule

Listing 5: A simple example of a Text-to-Model Transformation Rule.

Figure 4 shows the Æmilia Model (see Figure 3) automatically obtained
through the defined text-to-model transformation rules [54] applied to the
Æmilia Architectural Specification in Listing 4. In such a model the per-
formance results are omitted for sake of readability, for example the shaded
input interaction generate best path req has a throughput (i.e., a performance
index specified in the metamodel, see Figure 2) set to zero.

In the following section, we will see how the Æmilia model generated
by the text-to-model transformation process is annotated with the results
obtained from the performance analysis.

4.2.2. Performance Results Annotation

The process of annotating an Æmilia model with performance results
gives as output the Annotated Æmilia Model (see Figure 1), i.e., the model
representation suitable for the detection of antipatterns.

Listing 6 reports a simple example of the Æmilia performance specifi-
cation that defines the measure MA throughput for all mobile applications
by assigning a transition reward equal to 1.0 for the generate best path req
interaction.

MEASURE MA_throughput IS

FOR_ALL i IN 1.. ma_num

ENABLED

(MA[i]. generate_best_path_req) -> TRANS_REWARD (1.0)

Listing 6: A simple example of the Æmilia Performance Specification.

23



Figure 4: A simple example of the Æmilia Model.

Listing 7 reports a simple example of the Æmilia performance results
stored in a .val file (see Figure 1): the value of the measure MA throughput

as defined in Listing 6 is equal to 36.5841. Once the performance evaluation
of an Æmilia specification has been executed, the resulting values of the per-
formance measures can be used to annotate the Æmilia model. For example,
the value stored in the .val file of the Listing 7 has been annotated to the
input interaction generate best path req (see Figure 4) where the throughput
is set to 36.5841.

Value of measure "MA_throughput ":

36.5841

Listing 7: A simple example of the Æmilia Performance Results.

We implemented a wizard to support software architects in the task of
annotating the specified measures with the actual performance indices to
which they refer. In particular, the wizard shows all possible mappings among
instances, their actions and the obtained performance indices. By selecting
the proper matching we are able to automatically annotate the Æmilia model
without incurring on wrong interpretations of measures specified with the
Æmilia grammar.

Figure 5 reports all the alternative mappings for the example specification
at the top of the Figure: the first three lines denote the system (response time,
utilization, throughput) indices; the last three lines are related to a specific

24



IndexActionElement Instance

Figure 5: Screenshot of the wizard mapping Æmilia measures to performance indices.

action, i.e., deliver req best path a. The checkbox on the last line indicates
that in this case the measure refers to the throughput of the specific action
belonging to the LB element instance. In this way, designers are supported
in the activity of matching performance results to architectural actions under
analysis.

Figure 6 shows the wizard that represents the summary of all specified
mappings. In this way we are able to fully annotate the Æmilia model.

4.3. Detection of Performance Antipatterns

The Model-Driven Engineering (MDE) approach has been widely used
with the aim (among many others) of simplifying the design process of soft-
ware systems, e.g., through the construction and the analysis of domain-
specific models. By following a MDE approach, in this work, we have first
introduced an enriched Æmilia metamodel, with the aim of providing an
Æmilia conceptual model as a basis for reasoning on software architectures
defined through the Æmilia language. After transforming an Æmilia textual
specification into an Annotated Æmilia model, we exploit it for applying the
automatic detection of performance antipatterns. In this section, we describe

25



Figure 6: Screenshot of the wizard: summary of all defined mappings.

the performance antipatterns detection process: we have defined OCL rules
to analyze the (Annotated) Æmilia Model, with the aim to look for perfor-
mance antipatterns. OCL rules implement the notation-independent rules
that we have defined in [14], where a technique based on first-order logic
has been introduced to formalize antipatterns. We use the OCL language
because it is currently considered a standard rule-based validation language
[57]. Moreover, OCL can be straightforwardly applied to Eclipse Modelling
Framework (EMF)-based models. It allows developers to define unambiguous
constraints that cannot be expressed by the metamodel itself, thus augment-
ing its expressivity.

Detection rules contain parameters that must be set on a specific software
architecture whose performance indices have been already obtained. In fact,
each antipattern is defined with a set of thresholds that basically represent
systems features, in particular they may refer to upper/lower bounds for:
(i) design properties (e.g., excessive message traffic); (ii) performance results
(e.g., high, low utilization). Numerical values can be assigned by software
architects basing on heuristic evaluations or they can be set on the basis of
system monitoring information. Threshold values affect the detection and

26



solution of performance antipatterns. In fact the set of detected antipatterns
may change while varying the threshold values, as discussed in Section 6.

As introduced in Section 3.2, performance antipatterns can be classified
into two categories: the Snapshot antipatterns are detectable by looking at
mean, max or min values of performance indices, whereas for the detection
of Evolution antipatterns it is needed to look at the trend or evolution of
the performance indices along the time. In the following, we give the OCL
rules for the detection of Snapshot antipatterns and Evolution antipatterns
respectively2.

As regard the detectable antipatterns in the Æmilia language, in the first
category (Snapshot) we have the Pipe & Filter antipattern and the Extensive
Processing antipattern.

1 def: pipeAndFilterPA(service: ArchitecturalInteraction) : Boolean =

2 let serviceThLB : Real = <threshold numerical value > in

3 let opResDemUB : Real = <threshold numerical value > in

4 let elemTypeName : ElemType = service.fromInstance.TypeOf in

5 if (isServiceExpOrInf(service) and service.throughput < serviceThLB) then

6 checkOpResDemand(service , opResDemUB)

7 else

8 false

9 endif

Listing 8: OCL code for the Pipe and Filter Architectures antipattern.

Listing 8 reports the OCL rule to detect Pipe & Filter antipattern that is
identified in services that represent architectural interactions (line 1). Two
threshold values are defined (lines 2-3): (i) serviceThLB denotes the lower
bound for the service throughput; (ii) opResDemUB denotes the upper bound
for the operation resource demand. The antipattern occurs if there exists a
service whose throughput is lower than the serviceThLB threshold (line 5),
and if the function checkOpResDemand finds an operation (executed within
the service) having a resource demand greater than the opResDemUB thresh-
old (line 6).

Listing 9 reports the OCL rule to detect Extensive Processing antipattern
that is identified in services that represent architectural interactions (line 1).
Three threshold values are defined (lines 2-4): (i) respTimeUB denotes the
upper bound for the service response time; (ii) opResDemLB denotes the
lower bound for the operation resource demand; (iii) opResDemUB denotes
the upper bound for the operation resource demand. The antipattern occurs

2For sake of space in the sequel of this section we report the most representative OCL
rules as examples, however the complete set of OCL rules can be found in [54].

27



if there exists a service whose response time is greater than the respTimeUB
threshold (line 6), and if the function unbalancedOpResDemand finds two
operations (executed within the service), i.e. op1 and op2, having an un-
balanced resource demand: the resource demand of op1 is lower than the
opResDemLB threshold, whereas the resource demand of op2 is greater than
the opResDemUB threshold (line 7).

1 def: extensiveProcessingPA(service: ArchitecturalInteraction) : Boolean =

2 let respTimeUB : Real = <threshold numerical value > in

3 let opResDemLB : Real = <threshold numerical value > in

4 let opResDemUB : Real = <threshold numerical value > in

5 let elemTypeName : ElemType = service.fromInstance.TypeOf in

6 if (isServiceExpOrInf(service) and service.responseTime > respTimeUB) then

7 unbalancedOpResDemand(service , opResDemLB , opResDemUB)

8 else

9 false

10 endif

Listing 9: OCL code for the Extensive Processing antipattern.

In the second category (Evolution), instead, we found the Traffic Jam
antipattern and The Ramp antipattern. These antipatterns can be detected
by observing the trend of the response time and-or the throughput over time.

Listing 10 reports the OCL rule to detect Traffic Jam antipattern that is
identified in actions that represent the behavior of ElemType instances (line
1). One threshold value is defined (line 2): respTimeUB denotes the upper
bound for the action response time.

The antipattern occurs if a significative variability in the response time
of the action is observed. The function calcIndexVariability (see Listing 11
for its implementation) takes as input the responseTimeDistr attribute of an
action and it calculates the response time variability for that action, even in
several subsequent time intervals (line 6 of Listing 10).

1 def: trafficJamPA(action: Behavior :: Action) : Boolean =

2 let respTimeUB : Real = <threshold numerical value > in

3 let respTimeDistr : Sequence(Real) = action.actRespTimeDistr ->

4 collect(x:String | x.toReal ()) in

5 if (respTimeDistr -> size() <> 0) then

6 let diffArray : Sequence(Real) = calcIndexVariability(respTimeDistr) in

7 if(diffArray -> exists(value: Real | value > respTimeUB)) then

8 trafficJamSearch(diffArray , respTimeUB)

9 else

10 false

11 endif

12 else

13 false

14 endif

Listing 10: OCL code for the Traffic Jam antipattern.

28



1 def: calcIndexVariability(set: Sequence(Real)) : Sequence(Real) =

2 let result : Sequence(Real) = Sequence {} in

3 if(set -> size() <> 0)then

4 if(set -> size() > 1) then

5 let secondElem : Real = set -> at(set -> indexOf(set -> first()) + 1) in

6 let firstElem : Real = set -> first () in

7 let diff : Real = secondElem - firstElem in

8 let absValue : Real = diff.abs() in

9 result -> including(absValue) -> union(calcIndexVariability(set ->

excluding(firstElem)))

10 else

11 result

12 endif

13 else

14 result

15 endif

Listing 11: OCL code for the calcIndexVariability function.

Then, the existence of a peak value in the response time distribution greater
than respTimeUB is verified (line 7 of Listing 10). If it exists, then the
function trafficJamSearch verifies if there are occurrences of the traffic jam
antipattern for the current action on the basis of its performance values and
on its observed response time variability.

Listing 12 reports the OCL rule to detect The Ramp antipattern that is
identified in actions that represent the behavior of ElemType instances (line
1). Two threshold values are defined (line 2-3): (i) respTimeUB denotes
the upper bound for the action response time; (ii) throughputUB denotes
the upper bound for the action throughput. The antipattern occurs if the
amount of processing required by a system to satisfy a request increases over
time. The function calcAveragePI, applied both on the performance value
respTimeDistr and throughputDistr (lines 9-10), measures the observed trend
of the response time and the throughput over time, respectively.

1 def: theRampPA(action: Behavior :: Action) : Boolean =

2 let respTimeUB : <threshold numerical value > in

3 let throughputUB : <threshold numerical value > in

4 let respTimeDistr : Sequence(Real) = action.actRespTimeDistr ->

collect(x:String | x.toReal ()) in

5 let throughputDistr : Sequence(Real) = action.actThDistr -> collect(x:

String | x.toReal ()) in

6 if(respTimeDistr -> size() <> 0 and throughputDistr -> size() <> 0) then

7 calcAveragePI(calcIndexVariability(respTimeDistr)) > respTimeUB and

8 calcAveragePI(calcIndexVariability(throughputDistr))> throughputUB

9 else

10 false

11 endif

Listing 12: OCL code for the The Ramp antipattern.

29



If there exists an action having both a response time growing more than the
respTimeUB and a throughput decreasing more than the throughputUB (line
9-10), then an occurrence of The Ramp antipattern is detected.

The antipattern detection is performed by launching an OCL checker
that takes in input the predefined antipatterns rules and analyzes the Anno-
tated Æmilia model. As a result, a wizard listing the snapshot or evolution
antipatterns rules that have been checked is shown. For each rule, the tool
highlights if occurrences of the corresponding antipattern have been detected
(represented by the

√
symbol, see Figure 9) or if no occurrences have been

found (represented by the × symbol, see Figure 10). Moreover, after select-
ing a detected antipattern’s rule, a new wizard will show more details about
it, such as the analyzed architectural elements, the involved ones because of
their performance indices values. For example, in Figure 7 we can notice that
there are five architectural interactions (i.e., MA1, . . . , MA5) and three of
them are detected as Pipe and Filter antipattern occurrences.

Figure 7: Pipe & Filter antipattern occurrences.

4.4. Precision and Recall for Performance Antipatterns

The set of detected performance antipatterns may change while varying
the threshold values. To investigate this change, in [58] we have associated a

30



recall metric to the detection activity and a precision metric to the refactor-
ing activity. However, these metrics cannot be straightforwardly applied to
the case of performance antipatterns because they are not based on determin-
istic values (such as the number of nested loops in a C-based software code),
but mostly on stochastic values (such as the utilization of a CPU). There-
fore, they have been re-defined as follows. Recall has been defined as the
standard ratio between the number of detected antipatterns and the existing
ones, but the latter quantity is considered as the number of all performance
antipatterns that can be detected while varying the thresholds within pre-
defined ranges. Precision has been defined as the ratio between the number
of detected antipatterns that actually improve the system performance once
removed and the total number of detected antipatterns. Precision and recall
values are calculated at each step of antipatterns detection and solution, but
their values change in an unpredictable manner across different solution steps.
In fact, antipattern-based refactorings do not guarantee a priori performance
improvements because the entire process is based on stochastic performance
evaluation. After applying refactorings, we evaluate new systems in terms
of performance, thus we get new precision and recall values that cannot be
significant of any improvement/worsening when compared to values of the
previous performance evaluation due to the heterogeneous sets of detected
and solved antipatterns. In the next section, we show the application of these
metrics on one of the presented case studies.

5. Validation

In this section, we present our approach at work on three examples to
demonstrate that the process actually induces performance improvements
on ADL-based software architectures3. To demonstrate the usefulness of
the antipattern-based process, we compare our experimental results with the
ones obtained by means of the well-known bottleneck analysis [10]. The first
case study is extensively described to clearly explain the whole process, the
second case study illustrates the precision and recall metrics, the third case
study is used as support for the validation, and the description of the two
last case studies is intentionally shortened.

3These examples have been modelled by graduate students of the Advanced Software
Engineering course at the University of L’Aquila as part of their homeworks.

31



5.1. Case study 1: Bus on Air

The case study has been selected from a Business-Plan Competition, and
it is a system called “Bus on Air” (BoA) [59]. It is aimed at developing a set
of services for public transportation targeting both the end-users (passengers)
and the suppliers (transportation agencies). In the following, we concentrate
on the receiveBestPath service4, i.e., the potential passenger arrives at the
bus stop and she/he has access to information on the best path to reach a
destination, such as lines that cover a path, how long to wait, etc.

MA[1]: MA_Type
transmitReqBestPath receiveBestPath

MA[n]: MA_Type
transmitReqBestPath receiveBestPath

...

ND: NetDown_Type
forward

receive

NU: NetUp_Type
forward

receive

LB: Balancer_Type
deliverReqBestPath_A

captureReqBestPath

SA: Server_Type
reqData

transmitResultBestPathreceiveReqBestPath

receiveData

DB: DB_Type
receiveDataReq transmitData

SB: Server_Type
reqData

transmitResultBestPathreceiveReqBestPath

receiveData

deliverReqBestPath_B

Figure 8: BoA - Flow Graph representation of the software architecture.

Modeling. Figure 8 shows a graphical representation of the BoA soft-
ware architecture. Each request of one of the n passengers, i.e., mobile appli-
cation instances (MA: MA Type), flows through the download network (ND:
NetDown Type) and is forwarded to a load balancer (LB: Balancer Type).
Requests are distributed between two servers (SA: Server Type, SB: Server -
Type) that retrieve data from a database (DB: DB Type) and send data to

4The complete Æmilia architectural specification of the BoA system (BoA.aem) along
with its performance specification (BoA.rew) and the performance results (BoA.val) have
been reported in [54].

32



the upload network (NU: NetUp Type). This latter network finally forwards
the response to the mobile applications.

Analysis. Table 4 summarizes the performance analysis of the BoA soft-
ware architecture. The first column reports the performance requirements,
and the second column the corresponding predicted value, as obtained from
the analysis of the BoA specification with the TwoTowers tool [24].

The performance requirements we consider in our experimentation are:
the utilization of the DB must be lower than 0.6; the throughput of re-
ceiveBestPath must be greater than 200 requests/second; the throughput
of deliverReqBestPath A and deliverReqBestPath B services must be greater
than 100 requests/second, the response time of receiveBestPath must be lower
than 2 seconds. All these requirements must be fulfilled under a workload
of 250 requests/second, generated by an estimated total number of 2,000
end-users. Numerical values of performance requirements represent the goals
to be achieved by architects for the software system under development and
such values can be modified according to end-users expectations. Table 4
shows that all performance indices do not fulfill the required ones, hence we
apply our approach to refactor the BoA software architecture by detecting
and solving performance antipatterns.

Performance Analysis
Performance Requirements BoA

U(DB) < 0.6 0.99
Th(receiveBestPath) > 200 reqs/sec 36.58 reqs/sec
Th(deliverReqBestPath A) > 100 reqs/sec 24.39 reqs/sec
Th(deliverReqBestPath B) > 100 reqs/sec 12.19 reqs/sec
RT(receiveBestPath) < 2 sec 2.73 sec

Table 4: Analysis of the performance requirements in the BoA software architecture.

Antipattern-based Refactoring. The Æmilia architectural specifica-
tion of the BoA system is automatically transformed into an Æmilia model
and the performance results are manually annotated, thus to get an An-
notated Æmilia model (that has been reported in [54]). This latter model
is given as input to our detection tool to look for performance antipattern
occurrences.

Detection rules must be parameterized, hence Table 5 reports the thresh-
old values used for our case study. For example, for the Pipe and Filter
Architectures antipattern two threshold values (see Listing 8) must be eval-
uated: (i) serviceThLB denotes the lower bound for the service throughput,
and it is 200 (see Table 5) as stated in the requirements; (ii) opResDemUB

33



denotes the upper bound for the operation resource demand, and it is the
average value for the resource demand of all operations in the BoA system,
i.e. 12682 (see Table 5).

Performance
Antipattern Threshold Value

Pipe and Filter serviceThLB 200
Architectures opResDemUB 12682
Extensive respT imeUB 4
Processing opResDemLB 11000000

opResDemUB 19000000
Traffic initInterval 0
Jam endInterval 23000

sizeInterval 1000
respT imeGapUB 2

... ... ...

Table 5: BoA - threshold numerical values.

The detection tool gives as output the occurrence of three antipattern oc-
currences: Pipe and Filter Architectures (P&F ), Extensive Processing (EP),
and Traffic Jam (TJ ). In Figure 9, we can see the wizard showing the result
of the Snapshot antipatterns’ detection. The

√
symbols on the result col-

umn indicate that occurrences of the P&F and EP antipatterns have been
detected.

Figure 9: Screenshot of the wizard: detection result for Snapshot antipatterns.

In particular, the P&F antipattern has been detected in the receiveBest-
Path service where the DB architectural element occurrence represents the
slowest filter; the EP antipattern has been detected in the receiveBestPath
service where the LB architectural element instance has two operations (de-
liverReqBestPath A, deliverReqBestPath B) with an unbalanced resource de-
mand.

Figure 11 illustrates how the TJ antipattern has been detected. On the
x-axis the simulation time is reported and on the y-axis the response time of

34



 

 

 

 

 

 

 

Figure 10: Screenshot of the wizard: detection result for Evolution antipatterns.

the receiveBestPath service is depicted. Single points in the graph (denoted
with the × symbol) represent the observed values, whereas the line depicts
the average trend.

0

1

2

3

4

5

6

7

8

9

10

11

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

17
00

0

18
00

0

19
00

0

20
00

0

21
00

0

22
00

0

23
00

0

R
T

 -
 r

ec
ei

ve
B

es
tP

at
h 

(s
ec

)

simulation time (sec)

observed values
average trend

Figure 11: BoA - graphical representation of the Traffic Jam antipattern occurrence.

The antipattern has been detected while looking at simulation intervals
of 1,000 sec (sizeInterval, see Table 5) starting from 0 (initInterval, see Table
5) up to 23,000 (endInterval, see Table 5): we can notice that there are RT
gaps among multiple intervals larger than 2 sec (respTimeGapUB, see Table
5). For example, in the [0, 1000] simulation time interval the average RT is
1.35 sec, whereas in the subsequent [1000, 2000] interval the average RT is
3.74 sec, hence the gap among these two intervals is equal to 2.39 sec, i.e.,
larger than the defined threshold.

The detected antipattern occurrences have been solved on the basis of
their solution specifications [12]. Figure 12 illustrates the refactorings that
have been applied to the BoA system: the P&F antipattern has been solved

35



SA: Server_Type
reqData receiveData

DB: DB_Type
receiveDataReq transmitData

SB: Server_Type
receiveDatareqData

[not in cache]
[not in cache]

(a) Pipe and Filter Architectures refactoring.

LBA: Balancer_Type
deliverReqBestPath_A

captureReqBestPath

SA: Server_Type
transmitResultBestPathreceiveReqBestPath

LBB: Balancer_Type
deliverReqBestPath_B

captureReqBestPath

SB: Server_Type
transmitResultBestPathreceiveReqBestPath

(b) Extensive Processing refactoring.

(c) Traffic Jam refactoring.

Figure 12: BoA - representation of the antipattern refactorings.

36



by introducing a cache that decreases the database accesses, in particular the
retrieval of data from servers to the database is conditioned by the presence of
such data in the cache (see Figure 12(a)); the EP antipattern has been solved
by introducing a further instance of balancer (LBA, LBB: Balancer Type)
that privileges the processing of fast requests despite slower ones (see Fig-
ure 12(b)); the TJ antipattern has been solved by increasing the processing
power of the database (data fetch rate), thus speeding up the data retrieval
(see Figure 12(c)). All these separate refactorings give rise to new Æmilia ar-
chitectural specifications of the BoA system (BoA-P&F.aem, BoA-EP.aem,
BoA-TJ.aem, reported in [54].

Performance Analysis
Performance Requirements BoA BoA r {P&F} BoA r {EP} BoA r {TJ}
U(DB) < 0.6 0.99 0.31 0.99 0.99
Th(receiveBestPath) >
200 reqs/sec 36.58 reqs/sec 240.91 reqs/sec 36.58 reqs/sec 54.99 reqs/sec
Th(deliverReqBestPath A) >
100 reqs/sec 24.39 reqs/sec 120.35 reqs/sec 18.29 reqs/sec 36.66 reqs/sec
Th(deliverReqBestPath B) >
100 reqs/sec 12.19 reqs/sec 120.35 reqs/sec 18.29 reqs/sec 18.33 reqs/sec
RT(receiveBestPath) < 2 sec 2.73 sec 0.41 sec 2.73 sec 1.82 sec

Table 6: Analysis of the performance requirements across different refactorings of the BoA
software architecture.

Table 6 summarizes the performance results obtained across different
refactorings of the BoA software architecture, after solving the detected an-
tipatterns. The first two columns of Table 6 respectively report the perfor-
mance requirements and the analysis of the BoA architecture (as already
shown in Table 4). All the remaining columns refer to refactored archi-
tectures, each identified with BoA followed by the name of the removed
antipattern.

In Table 6, we can notice that some refactorings do not lead actual ben-
efits to performance indices of interest, e.g., BoAr {EP} slightly improves
the throughput of the deliverReqBestPath B service (from 12.19 to 18.29),
but the throughput of the deliverReqBestPath A service becomes worse (from
24.39 to 18.29). Other refactorings are beneficial to some performance indices
of interest, e.g., BoAr {TJ} improves the response time of the receiveBest-
Path service (from 2.73 to 1.82) but it is not beneficial for other requirements.
Finally, other refactorings may be beneficial to all performance indices of in-
terest, e.g., BoAr {P&F} allows all requirements to be fulfilled.

In this last case, the removal of P&F antipattern allows performance

37



indices to be significantly improved. In Table 7, we report such improve-
ments in percentage. In particular, the highest improvement is observed in
the throughput of three key system activities (receiveReqBestPath, deliver-
ReqBestPath A, and deliverReqBestPath B) that permitted to reduce the re-
sponse time of the main BoA service (receiveBestPath). Table 7 additionally
reports the architectural elements involved in the P&F antipattern: requests
for the receiveBestPath service are delivered from the LB: Balancer Type

to the server instances, which are SA: Server Type and SB: Server Type,
and then forwarded to the database instance (DB: DB Type) representing the
slowest filter.

Performance Analysis
Performance Requirements BoA BoA r {P&F} Improvement (%)

U(DB) < 0.6 0.99 0.31 68.69
Th(receiveBestPath) >
200 reqs/sec 36.58 reqs/sec 240.91 reqs/sec 558.58
Th(deliverReqBestPath A) >
100 reqs/sec 24.39 reqs/sec 120.35 reqs/sec 393.44
Th(deliverReqBestPath B) >
100 reqs/sec 12.19 reqs/sec 120.35 reqs/sec 887.28
RT(receiveBestPath) < 2 sec 2.73 sec 0.41 sec 84.98

LB: Balancer Type, SA: Server Type,
Architectural Elements SB: Server Type, DB: DB Type

Table 7: Performance improvement gained with the antipattern-based refactoring process
in BoA case study.

Performance Analysis
Performance Requirements BoA Bottleneck Improvement (%)

U(DB) < 0.6 0.99 0.97 2.02
Th(receiveBestPath) >
200 reqs/sec 36.58 reqs/sec 53.73 reqs/sec 46.88
Th(deliverReqBestPath A) >
100 reqs/sec 24.39 reqs/sec 35.82 reqs/sec 46.86
Th(deliverReqBestPath B) >
100 reqs/sec 12.19 reqs/sec 17.91 reqs/sec 46.92
RT(receiveBestPath) < 2 sec 2.73 sec 2.54 sec 6.96

Architectural Element DB: DB Type

Table 8: Performance improvement gained with the bootleneck removal in BoA case study.

Bottleneck-based Refactoring. Bottleneck analysis identifies the data-
base as bottleneck for the BoA system and its mitigation is performed by
duplicating the DB architectural element instance into two instances (i.e.,

38



DB1 and DB2, both of DB Type), thus to balance the incoming requests.
Table 8 reports the performance results obtained after applying this archi-
tectural change aimed at achieving the bottleneck removal. The utilization
and the response time requirements slightly improves (due to load balancing
of requests), however they are both not fulfilled. Throughput requirements
improve of a considerably notable percentage even if their fulfillment is not
achieved. Comparing these results with the ones reported in Table 7, we can
conclude that for this case study the antipattern-based refactoring process
outperforms the bottleneck removal for all the requirements. Table 8 ad-
ditionally reports the architectural element recognized as bottleneck of the
system, which is the database instance (DB: DB Type).

5.2. Case study 2: Vacation Planning System

Vacation Planning System (VPS) is a system for managing trips planned
by users. For example, a user starts searching for a location that may be
close enough to where she/he lives (e.g., within x miles). Moreover, the user
starts searching a nice and comfortable hotel, good restaurants and places
to see close to the chosen location. The user may want to book tickets for
a couple of museums and reserve a table in a restaurant. After planning
the trip, the user starts downloading the plan she/he had created and all the
reservations. Before leaving, the user also needs a map and the best itinerary
to reach the place.

Performance Analysis
Performance Requirements V PS V PS r {P&F} V PS r {EP} V PS r {TJ}
U(V acationP lanner) < 0.5 0.67 0.59 0.49 0.66
Th(getDestinationDetails) >
0.1 reqs/sec 0.07 reqs/sec 0.03 reqs/sec 0.08 reqs/sec 0.12 reqs/sec
RT(createV acationP lan) < 5 sec 6.89 sec 3.33 sec 24.37 sec 4.09 sec

Table 9: Analysis of the performance requirements across different refactorings of the VPS
software architecture.

Table 9 summarizes the performance results obtained across different
refactorings of the VPS software architecture, after solving the detected an-
tipatterns. The first two columns of Table 9 respectively report the perfor-
mance requirements and the analysis of the VPS architecture. All the re-
maining columns refer to refactored architectures, each identified with V PS
followed by the name of the removed antipattern.

In Table 9, we can notice that V PS r {P&F} slightly improves the
utilization of the VacationPlanner (from 0.67 to 0.59), and well optimizes

39



Performance Analysis
Performance Requirements V PS V PS r {TJ} Improvement (%)

U(V acationP lanner) < 0.5 0.67 0.66 1.49
Th(getDestinationDetails) >
0.1 reqs/sec 0.07 reqs/sec 0.12 reqs/sec 71.43
RT(createV acationP lan) < 5 sec 6.89 sec 4.09 sec 40.64

VP: VacationPlanner Type, D: Destination Type,
Architectural Elements L: Location Type, H: Hotel Type

Table 10: Performance improvement gained with the antipattern-based refactoring process
in VPS case study.

the response time of the createVacationPlan (from 6.89 to 3.33), but the
throughput of the getDestinationDetails service becomes worse (from 0.07
to 0.03). V PS r {EP} improves the utilization of the VacationPlanner
(from 0.67 to 0.49), but it is not beneficial for the response time require-
ment. V PS r {TJ} improves the throughput of the getDestinationDetails
service (from 0.07 to 0.12), but it is not beneficial for the utilization re-
quirement. For this case study, the antipattern-based refactoring does not
help to fulfill all the stated requirements. Further analysis is needed and
other iterations of the process are required to successfully get the perfor-
mance improvement. However, considering the removal of the TJ antipat-
tern, two over three requirements are satisfied and, as showed in Table 10,
improvements are obtained for all performance indices. In particular, we
can observe that the throughput of getDestinationDetails improves of the
71.43% and the response time of createVacationPlan shows an improvement
of 40.64%. The improvement found for the utilization of VacationPlanner
(only 1.49%) is insufficient to satisfy the stated performance requirement.
Table 10 additionally reports the architectural elements involved in the TJ
antipattern. To accomplish the getDestinationDetails service, requests are
delivered from the VP: VacationPlanner Type instance to the destination
(D: Destination Type) instance, thus experiencing a backlog of jobs while
forwarding requests to L: Location Type and H: Hotel Type instances that
manage location search and hotel booking, respectively.

Bottleneck-based Refactoring. Bottleneck analysis identifies the Va-
cationPlanner as bottleneck for the VPS system and its mitigation is per-
formed by splitting the functionalities of the VacationPlanner architectural
element instance. In particular, the search of the location is disjointed by the
booking of the hotel. This solution implies to concurrently perform these two
functionalities: user requests for location search can be executed while other

40



Performance Analysis
Performance Requirements V PS Bottleneck Improvement (%)

U(V acationP lanner) < 0.5 0.67 0.44 34.32
Th(getDestinationDetails) >
0.1 reqs/sec 0.07 reqs/sec 0.08 reqs/sec 14.28
RT(createV acationP lan) < 5 sec 6.89 sec 5.28 sec 23.37

Architectural Element VP: VacationPlanner Type

Table 11: Performance improvement gained with the bottleneck removal in VPS case
study.

users are performing the reservation of the hotel. Table 11 reports the results
obtained with the bottleneck removal. The utilization improves of a quite
remarkable percentage. It fulfills the corresponding requirement, whereas
the throughput and response time requirements are not fulfilled. Table 11
additionally reports the architectural element recognized as bottleneck of the
system, that is the VacationPlanner instance (VP: VacationPlanner Type).
Compared to the antipattern-based refactoring process (see Table 10), the
two techniques are complementary: bottleneck removal is effective for the
utilization requirement only whereas antipattern refactorings are beneficial
for throughput and response time requirements. In [38], we explored the
synergies between bottleneck analysis and performance antipatterns by exe-
cuting these two techniques alternatively. We found that their combination
may lead to better performance results.

Table 12 reports the TJ antipattern occurrences that are detected while
varying threshold values. In particular, with the original thresholds, we moni-
tored system services from 0 (initInterval) to 23, 000 sec (endInterval) while
considering intervals of 1, 000 sec (sizeInterval) and with a response time
variation fixed to 2 sec (respT imeGapUB), we detected one TJ occurrence,
i.e., the getDestinationDetails service. While decreasing the threshold for the
response time variation (respT imeGapUB) to the values of {1.5, 1, 0.5} sec,
we detected further occurrences of TJ antipattern, i.e., bookHotel, searchLo-
cation, retrieveDestination services, respectively.

Table 12 summarizes the performance results obtained across different
refactorings of the VPS software architecture, after solving each of the newly
detected antipattern. For example, U(V acationP lanner) drops to 0.66 sec
while refactoring the original detected antipattern (see Table 9), whereas
it drops to {0.78, 0.76, 0.67} values while refactoring the newly detected
antipatterns. Hence, the recall is increasing but the precision is not af-

41



fected as none of the detected antipatterns is helpful to fulfill the stated
requirement. In this case, the precision is always equal to zero because
the original antipattern is not helpful for the corresponding requirement,
i.e., U(VacationPlanner), and all other occurrences of the same antipattern
(originated while moving the threshold values) are even less helpful than
the original one. On the contrary, for the other two requirements, we ob-
serve that, while moving antipattern thresholds, the recall increases because
a larger set of antipattern occurrences are detected, but the precision de-
creases. For example, for the response time requirement, the precision is
decreasing from 1 to 1/4 because the original antipattern is helpful for the
corresponding requirement, whereas all other occurrences have values larger
than the stated requirement.

TJ antipattern occurrences
Performance getDestina- book search retrieveDe-
Requirements tionDetails Hotel Location stination

U(V acationP lanner) < 0.5 0.66 0.78 0.76 0.67

(Precision, Recall)

(0, 1/4)
(0, 2/4)

(0, 3/4)
(0, 4/4)

Th(getDestinationDetails) > 0.1 reqs/sec 0.12 0.09 0.08 0.07

(Precision, Recall)

(1/1, 1/4)
(1/2, 2/4)

(1/3, 3/4)
(1/4, 4/4)

RT(createV acationP lan) < 5 sec 4.09 5.45 5.62 5.95

(Precision, Recall)

(1/1, 1/4)
(1/2, 2/4)

(1/3, 3/4)
(1/4, 4/4)

Table 12: TJ antipattern occurrences to measure precision and recall.

5.3. Case study 3: Line Plus System

Line Plus System (LPS) is a system for managing lines of people in public
places (e.g., post offices, public administration offices, shops, etc.) whose
main goal is to reduce the waiting time. There are two main actors: (i)
Service Provider (SP), i.e., the person/organization that is providing some
kind of service to some clients that justifies the presence of a line; (ii) Client,
i.e., the person that has to be in line to receive the services provided by the
SP. The basic idea behind LPS is that the SP installs the system in its offices,
and then clients use a (mobile) application to know in real-time what is the

42



status of the queue in the office they have to go. In this specific scenario,
a Wireless Sensor Network (WSN) must be used in the office to get all the
possible information about the status of the line. At the same time, the
mobile application used by the clients can act as a virtual ticket for keeping
the right order of the clients in line, and for notifying each client that his/her
turn is coming.

Performance Analysis
Performance Requirements LPS LPS r {P&F} LPS r {EP} LPS r {TJ}
U(DB) < 0.7 0.84 0.52 0.93 0.78
Th(displayNextUser) >
0.1 reqs/sec 0.06 reqs/sec 0.13 reqs/sec 0.07 reqs/sec 0.08 reqs/sec
RT(sendQueueStatus) < 10 sec 32.33 sec 8.72 sec 29.21 sec 23.33 sec

Table 13: Analysis of the performance requirements across different refactorings of the
LPS software architecture.

Performance Analysis
Performance Requirements LPS LPS r {P&F} Improvement (%)

U(DB) < 0.7 0.84 0.52 38.09
Th(displayNextUser) >
0.1 reqs/sec 0.06 reqs/sec 0.13 reqs/sec 116.67
RT(sendQueueStatus) < 10 sec 32.33 sec 8.72 sec 73.03

D: Display Type,
Architectural Elements S: Server Type, DB: DB Type

Table 14: Performance improvement gained with the antipattern-based refactoring process
in LPS case study.

Table 13 summarizes the performance results obtained across different
refactorings of the LPS software architecture, after solving the detected an-
tipatterns. The first two columns of Table 13 respectively report the per-
formance requirements and the analysis of the LPS architecture. All the re-
maining columns refer to refactored architectures, each identified with LPS
followed by the name of the removed antipattern.

In Table 13, we can notice that LPS r {EP} slightly improves the
throughput of the displayNextUser service (from 0.06 to 0.07) and the re-
sponse time of the displayNextUser service (from 32.33 sec to 29.21 sec),
but the utilization of the database becomes worse (from 0.84 to 0.93). Also
for this system the solution of the Pipe and Filter Architectures antipattern
is beneficial for all requirements, in fact, after its removal, the throughput,
utilization, and response time requirements are all fulfilled.

43



Table 14 reports the percentage of performance improvement gained by
removing the P&F antipattern. The index that obtains the highest improve-
ment is the throughput of displayNextUser with an improvement of 116.67%,
followed by the response time of the sendQueueStatus reaching an improve-
ment of 73.03%. Table 14 additionally reports the architectural elements
involved in the P&F antipattern: requests for the displayNextUser service
are delivered from D: Display Type to the server instance S: Server Type,
and then forwarded to the database instance (DB: DB Type) representing the
slowest filter.

Performance Analysis
Performance Requirements LPS Bottleneck Improvement (%)

U(DB) < 0.7 0.84 0.35 58.33
Th(displayNextUser) >
0.1 reqs/sec 0.06 reqs/sec 0.11 reqs/sec 83.33
RT(sendQueueStatus) < 10 sec 32.33 sec 7.84 sec 75.75

Architectural Element DB: DB Type

Table 15: Performance improvement gained with the bottleneck removal in LPS case study.

Bottleneck-based Refactoring. Bottleneck analysis identifies the data-
base as bottleneck for the LPS system, and its mitigation is performed by
replacing the DB architectural element instance with one performing ten
times faster. Table 15 reports the results from the bottleneck removal, where
we can see that all requirements are fulfilled. This refactoring shows a quite
considerable improvement in all requirements because it consists in the in-
crease of computing power. It is a rather simplicistic refactoring, in fact
the software architecture is not modified. Comparing these results with the
ones reported in Table 14, both the antipattern-based refactoring process
and the bottleneck removal are beneficial, even though the largest percent-
age of improvement (116.67%) is obtained for the throughput requirement
with antipattern refactorings. Table 15 additionally reports the architectural
element recognized as bottleneck of the system, that is the database instance
(DB: DB Type).

6. Discussion

The approach presented in this paper highlights the complexity of de-
tecting performance antipatterns in ADL-based software architectures. In
the following we discuss some key points raised by this work.

44



Early vs. late performance analysis. There is a trade-off between
carrying on performance analysis in the early lifecycle phases, where detected
problems are cheaper to fix but the amount of information is limited, and late
performance analysis (possibly on running artifacts), where the results are
much more accurate but more constraints have been imposed on the struc-
tural and behavioral aspects of a software system. Performance antipatterns
that occur at the architectural phase are obviously related to architectural as-
pects and elements, such as components, connectors, and interactions. More-
over, as already mentioned, the syntax and semantics of any ADL affects the
capability to detect antipatterns. Hence, although early performance an-
tipattern detection helps to build a better performing software architecture
of the system, this does not exclude that more performance antipatterns can
manifest themselves later in the lifecycle. This can occur because in the later
phases the software artifacts includes more details originated from design de-
cisions. Such details can give rise to performance antipatterns by themselves
or by their combination with predefined software characteristics. This is
even more obvious if we observe the design and implementation languages,
which are obviously richer than ADLs. Hence, non-detectable antipatterns
in the architectural phase can certainly emerge in later design phases, when
the missing information will be defined. Besides these ones, other (possi-
bly language-specific) performance antipatterns can appear too, because the
software evolves during the development process. To tackle this problem,
antipattern detection engines for software artifacts of later lifecycle phases
should be introduced.

Using Æmilia as reference ADL. The rationale of using Æmilia as
reference ADL to catch performance antipatterns relates to its powerful spec-
ification of performance measures. Æmilia relies on a semantic model that is
a continuous- or discrete-time Markov chain and a set of instant-of-time, sta-
tionary/transient performance measures can be specified through state and
transition rewards associated to architectural elements. In addition, Æmilia
supports security analysis that, through an analyzer, detects violations to se-
curity levels. The support provided by Æmilia to security analysis opens to
future performance vs. security trade-off analyses in the same notation. Al-
ternative ADLs that could be considered to detect performance antipatterns
are ABACUS [18], OSAN [19], EAST-ADL, and AADL [21]. Among them,
AADL seems the one that most suitably supports the specification of perfor-
mance properties and in fact it is possible to perform a latency analysis on
flow specifications of components and connections [22]. Such analysis is how-

45



ever limited to worst and best cases, whereas the reward-based mechanism
of Æmilia enables a much wider range of performance specifications.

Expressivity of OCL. The choice of OCL language has been driven by
the fact that it currently is a standard rule-based validation language. In [25],
the authors conducted a study on the expressive power of OCL. From this
study, it follows that the expressivity of OCL is higher than first-order logic,
because transitive closures over object relations can be expressed in OCL
whilst they cannot be expressed in first-order logic. This property implies
that we do not lose expressiveness by defining OCL rules for performance an-
tipatterns that were formalized in first-order logic. Furthermore, antipatterns
detection rules are defined also in terms of thresholds that represent systems
features and they are assigned by software architects usually based on heuris-
tic evaluations and on their expertise. An issue concerning the verification of
OCL rules is that the checker does not take into account the quality of data.
Indeed, data defined by software architects derive from system monitoring
information and from the domain knowledge, thus they may not be accurate.
In this context, it would be interesting to consider some fuzzy measures when
defining OCL rules. A way to manage fuzziness is provided by an extension
of OCL [60] that exploits the concept of fuzzy sets and allows the definition
of error margins and data range. Possible alternatives to the use of OCL can
be Schematron [61] and the Alloy specification language [62], although sev-
eral others exist. Schematron is a rule-based validation language that allows
developers to define assertions checking for patterns instances in XML trees.
It is expressed in XML and XPath and for this reason it is more suitable
for XML trees than for architectural specifications. Alloy is a model spec-
ification language based on first-order logic that can be used by developers
to create models and check their correctness by means of the Alloy Analyzer
tool. It requires that both the model and the validation rules are expressed
in the Alloy language. Furthermore, Alloy does not manage fuzziness, as
stated in [63], whereas a valid alternative to Schematron is represented by
FuzzyXPath [64] that has been introduced to provide support to fuzzy XML
querying. Differently from these alternative languages, one of the advantages
of using OCL is that it straightforwardly applies to EMF-based models.

Threshold values in the specification of antipatterns. As discussed
in [14], thresholds cannot be avoided in performance antipatterns definition.
The assignment of concrete numerical values to thresholds is a critical task.
In this paper, we used existing heuristics [14] to set such values. However,
they can be refined if other sources of information are available. In [58], we

46



showed that thresholds multiplicity and estimation accuracy heavily influ-
ence both the detection and the refactoring activities. In [65], we assigned
probability and effectiveness values to the detected antipattern occurrences
and available refactoring actions, respectively, thus to more accurately study
the impact of threshold values.

Complexity of performance antipatterns solution. The process of
solving performance antipatterns is very complex because it may happen that
several occurrences of antipatterns are detected and many architectural alter-
natives are defined for the solution of each occurrence. In [15], we introduced
a ranking methodology to decide which antipatterns must be solved, among
the detected ones, to quickly achieve requirements’ satisfaction. We have also
validated the ranking process as support to the antipatterns solution step. In
particular, in [15], we found that the introduction of a ranking methodology
greatly benefits the process, because between 45% and 64% of architectural
alternatives are discarded without compromising the convergence towards
the desired performance improvement. Furthermore, the introduction of a
semantic factor refining the score of antipatterns additionally benefits the
ranking methodology by reducing the number of architectural alternatives
by up to 77%. However, the process of solving antipatterns can not be fully
automated because it must be driven by analysts’ expertise. In fact some
decisions may not be machine-processable due to different reasons, such as
legacy constraints, budget limits, etc.

7. Threats to validity

A threat to the internal validity is that our current implementation allows
the detection of antipatterns that strictly conform to our interpretation of the
literature [12]. Indeed several other feasible interpretations of antipatterns
can be provided. This unavoidable gap is an open–issue in this domain
and certainly requires a wider investigation to consolidate the antipatterns’
definitions. However, different interpretations of antipatterns can be added
in our tool by translating them in OCL rules.

A threat to the external validity is that the results have been obtained
on a set of sample case studies modelled by graduate students. To increase
the representativeness of input models to our approach, more expert software
architects should be involved in a wider experimentation.

The results of our experimentation are repeatable because we use open–
source programs that can be freely downloaded from the web. Our imple-

47



mentation and all its results are available in [54].

8. Conclusion

In this paper, we have introduced a model-driven approach to detect
performance antipatterns in an ADL-based software architecture. To the best
of our knowledge, this is the first paper that works on ADL like Æmilia to
introduce automation in the investigation of the causes of poor performance
and the results that we have reported are promising.

This experience has allowed us to widen the scope of our research that
focused on UML-like languages [15, 16], because typical ADL specifications
are very different from UML-like models. The major difference that we have
found, in this case, is the fact that Æmilia lacks of information about com-
ponent deployment. As an immediate consequence, several performance an-
tipatterns cannot be detected on an Æmilia architecture. This is not a draw-
back, it highlights that an Æmilia architecture contains less information than
an UML model, hence the performance analysis is carried out at a higher level
of abstraction.

The experimentation conducted on three different case studies allowed us
to consolidate: (i) the scalability of the approach because the operational
steps do not take more than few seconds each, and (ii) the effectiveness of
using performance antipatterns in removing performance flaws on software
systems specified by means of ADL. In particular, we showed that the so-
lution of performance antipatterns significantly improves the performance
indices of the specified systems: two of the three case studies (i.e., BoA and
LPS) achieved the fulfillment of performance requirements with the solution
of one antipattern, whereas in one case study (i.e., VPS) two of the three
performance requirements are satisfied. Hence, the antipattern-based analy-
sis is actually useful to support software architects in the process of selecting
design alternatives, because such design differences are quantified on the ba-
sis of numerical results. Moreover, the detection of performance antipatterns
allows the observation of multiple architectural elements, thus to highlight
the ones contributing to bad performance results. On the contrary, bottle-
neck analysis is a traditionally consolidated technique aimed at identifying
a single critical element, thus often hiding the actual sources of performance
flaws.

Six main tasks represent our future work agenda, that are: (i) studying
the usability of our approach by exposing the developed tool [54] to users

48



with different levels of experience; (ii) experimenting the approach on real
systems coming from industrial experiences; (iii) introducing automation in
the last activity of the round-trip process, by devising a technique to refactor
Æmilia specifications upon antipattern solution; (iv) augumenting the Æmilia
metamodel to include antipattern-based specific concepts to extend the set
of detectable ones; (v) investigating how the support provided by Æmilia
to security analysis opens to performance/security trade-off analyses in the
same notation, and (vi) experiencing a similar approach on other ADLs (such
as AADL, etc.) to compare their capabilities in this domain.

Acknowledgements

We would like to thank the anonymous reviewers for their constructive
feedback that helped us to improve the paper quality.

References

[1] D. C. Petriu, Challenges in integrating the analysis of multiple non-
functional properties in model-driven software engineering, in: Proceed-
ings of the Workshop on Challenges in Performance Methods for Soft-
ware Development, (WOSP-C), 2015, pp. 41–46.

[2] P. Mohan, A. U. Shankar, K. JayaSriDevi, Quality flaws: Issues and
challenges in software development, Computer Engineering and Intelli-
gent Systems 3 (12) (2012) 40–48.

[3] A. Jansen, J. Bosch, Software architecture as a set of architectural design
decisions, in: Working IEEE / IFIP Conference on Software Architecture
(WICSA, 2005, pp. 109–120.

[4] A. Alebrahim, D. Hatebur, M. Heisel, Towards systematic integration
of quality requirements into software architecture, in: European Con-
ference on Software Architecture ECSA, 2011, pp. 17–25.

[5] B. Tekinerdogan, H. Sözer, Defining architectural viewpoints for quality
concerns, in: European Conference on Software Architecture ECSA,
2011, pp. 26–34.

[6] M. Bernardo, P. Ciancarini, L. Donatiello, Architecting families of soft-
ware systems with process algebras, ACM Trans. Softw. Eng. Methodol.
11 (2002) 386–426.

49



[7] V. Cortellessa, A. D. Marco, P. Inverardi, Model-Based Software Per-
formance Analysis, Springer, 2011. doi:10.1007/978-3-642-13621-4.
URL http://dx.doi.org/10.1007/978-3-642-13621-4

[8] H. Koziolek, Performance evaluation of component-based software sys-
tems: A survey, Perform. Eval. 67 (8) (2010) 634–658.

[9] S. Balsamo, M. Bernardo, M. Simeoni, Performance evaluation at the
software architecture level, in: Formal Methods for Software Architec-
tures, Springer, 2003, pp. 207–258.

[10] G. Franks, D. Petriu, M. Woodside, J. Xu, P. Tregunno, Layered bot-
tlenecks and their mitigation, in: Third International Conference on
Quantitative Evaluation of Systems (QEST), 2006, pp. 103–114.

[11] C. U. Smith, L. G. Williams, Software performance antipatterns for
identifying and correcting performance problems, in: International Com-
puter Measurement Group Conference, 2012.

[12] C. U. Smith, L. G. Williams, More new software antipatterns: Even
more ways to shoot yourself in the foot, in: Int. CMG Conference, 2003,
pp. 717–725.

[13] C. U. Smith, L. G. Williams, Performance and scalability of distributed
software architectures: An SPE approach, Scalable Computing: Practice
and Experience 3 (4) (2000).

[14] V. Cortellessa, A. Di Marco, C. Trubiani, An approach for modeling and
detecting software performance antipatterns based on first-order logics,
Software and System Modeling 13 (1) (2014) 391–432.

[15] C. Trubiani, A. Koziolek, V. Cortellessa, R. H. Reussner, Guilt-based
handling of software performance antipatterns in palladio architectural
models, Journal of Systems and Software 95 (2014) 141–165.

[16] V. Cortellessa, A. Di Marco, R. Eramo, A. Pierantonio, C. Trubiani,
Digging into UML models to remove performance antipatterns, in: ICSE
Workshop Quovadis, 2010, pp. 9–16.

[17] C. Trubiani, A. Koziolek, Detection and solution of software perfor-
mance antipatterns in palladio architectural models, in: ICPE, 2011,
pp. 19–30.

50



[18] K. Dunsire, T. O’Neill, M. Denford, J. Leaney, The ABACUS Architec-
tural Approach to Computer-Based System and Enterprise Evolution,
in: ECBS, 2005, pp. 62–69.

[19] A. Kamandi, J. Habibi, Toward a New Analyzable Architectural De-
scription Language based on OSAN, in: ICSEA, 2007, p. 20.

[20] ATESST2, EAST-ADL Domain Model Specification (2010).
URL http://www.east-adl.info

[21] B. A. Lewis, P. H. Feiler, Multi-dimensional Model Based Engineering
Using AADL, in: IEEE International Workshop on Rapid System Pro-
totyping, 2008.

[22] Carnegie mellon software engineering institute (sei), architecture
analysis and design language (aadl) - latency analysis.
URL https://wiki.sei.cmu.edu/aadl/index.php/Latency_

Analysis

[23] V. Cortellessa, M. De Sanctis, A. Di Marco, C. Trubiani, Enabling per-
formance antipatterns to arise from an adl-based software architecture,
in: Joint Working IEEE/IFIP Conference on Software Architecture and
European Conference on Software Architecture (WICSA/ECSA), 2012,
pp. 310–314.

[24] M. Bernardo, Twotowers 5.1 user manual (2006).
URL http://www.sti.uniurb.it/bernardo/twotowers

[25] L. Mandel, M. V. Cengarle, On the expressive power of ocl, in:
FM’99—Formal Methods, Springer, 1999, pp. 854–874.

[26] N. Rozanski, E. Woods, Software systems architecture: working with
stakeholders using viewpoints and perspectives, Addison-Wesley, 2012.

[27] R. Kazman, L. Bass, M. Webb, G. Abowd, Saam: A method for analyz-
ing the properties of software architectures, in: International Conference
on Software Engineering (ICSE), IEEE Computer Society Press, 1994,
pp. 81–90.

[28] L. Dobrica, E. Niemelä, A survey on software architecture analysis meth-
ods, IEEE Transactions on Software Engineering 28 (7) (2002) 638–653.

51



[29] B. Tekinerdogan, Asaam: Aspectual software architecture analysis
method, in: Working IEEE/IFIP Conference on Software Architecture
(WICSA), IEEE, 2004, pp. 5–14.

[30] R. Kazman, G. Abowd, L. Bass, P. Clements, Scenario-based analysis
of software architecture, Software, IEEE 13 (6) (1996) 47–55.

[31] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J. Car-
riere, The architecture tradeoff analysis method, in: IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS),
IEEE, 1998, pp. 68–78.

[32] R. Kazman, J. Asundi, M. Klein, Quantifying the costs and benefits of
architectural decisions, in: International Conference on Software Engi-
neering (ICSE), 2001, pp. 297–306.

[33] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, I. Meedeniya, Soft-
ware architecture optimization methods: A systematic literature review,
IEEE Trans. Software Eng. 39 (5) (2013) 658–683.

[34] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, M. Roveri,
Safety, Dependability and Performance Analysis of Extended AADL
Models, Comput. J. 54 (5) (2011) 754–775.

[35] V. Gaudel, F. Singhoff, A. Plantec, S. Rubini, P. Dissaux, J. Legrand,
An Ada design pattern recognition tool for AADL performance analysis,
in: ACM SIGAda International Conference on Ada, 2011, pp. 61–68.

[36] W. J. Brown, R. C. Malveau, H. W. McCormick III, T. J. Mowbray, An-
tiPatterns: Refactoring Software, Architectures, and Projects in Crisis,
1998.

[37] P. A. Laplante, C. J. Neill, AntiPatterns: Identification, Refactoring
and Management, 2005.

[38] C. Trubiani, A. D. Marco, V. Cortellessa, N. Mani, D. C. Petriu, Explor-
ing synergies between bottleneck analysis and performance antipatterns,
in: ACM/SPEC International Conference on Performance Engineering
(ICPE), 2014, pp. 75–86.

52



[39] T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, P. Flora,
Detecting performance anti-patterns for applications developed using
object-relational mapping, in: Proceedings of the International Confer-
ence on Software Engineering, ACM, 2014, pp. 1001–1012.

[40] V. S. Sharma, S. Anwer, Detecting performance antipatterns before mi-
grating to the cloud, in: IEEE International Conference on Cloud Com-
puting Technology and Science (CloudCom), Vol. 1, IEEE, 2013, pp.
148–151.

[41] B. Dudney, S. Asbury, J. K. Krozak, K. Wittkopf, J2EE Antipatterns,
John Wiley and Sons, 2003.

[42] B. Tate, M. Clark, B. Lee, P. Linskey, Bitter EJB, Manning, 2003.

[43] T. Parsons, J. Murphy, Detecting performance antipatterns in compo-
nent based enterprise systems, Journal of Object Technology 7 (3) (2008)
55–90. doi:http://www.jot.fm/issues/issue 2008 03/article1/.

[44] J. Xu, Rule-based automatic software performance diagnosis and im-
provement, in: WOSP, 2008, pp. 1–12.

[45] A. Koziolek, H. Koziolek, R. Reussner, Peropteryx: automated applica-
tion of tactics in multi-objective software architecture optimization, in:
QoSA, 2011, pp. 33–42.

[46] A. Wert, J. Happe, L. Happe, Supporting swift reaction: automatically
uncovering performance problems by systematic experiments, in: Inter-
national Conference on Software Engineering, ICSE, 2013, pp. 552–561.

[47] N. Moha, Y. Guéhéneuc, L. Duchien, A. L. Meur, DECOR: A method for
the specification and detection of code and design smells, IEEE Trans.
Software Eng. 36 (1) (2010) 20–36.

[48] F. Palma, J. Dubois, N. Moha, Y. Guéhéneuc, Detection of REST
patterns and antipatterns: A heuristics-based approach, in: Service-
Oriented Computing - 12th International Conference, ICSOC 2014,
Paris, France, November 3-6, 2014. Proceedings, 2014, pp. 230–244.

[49] F. Palma, J. Gonzalez-Huerta, N. Moha, Y. Guéhéneuc, G. Trem-
blay, Are restful apis well-designed? detection of their linguistic

53



(anti)patterns, in: Service-Oriented Computing - 13th International
Conference, ICSOC 2015, Goa, India, November 16-19, 2015, Proceed-
ings, 2015, pp. 171–187.

[50] M. Bernardo, M. Bravetti, Performance measure sensitive congruences
for markovian process algebras, Theor. Comput. Sci. 290 (1) (2003) 117–
160.

[51] W. J. Stewart, Introduction to the numerical solution of Markov Chains,
Princeton University Press, 1994.

[52] P. Welch, The Statistical Analysis of Simulation Results, Academic
Press, 1983.

[53] R. Howard, Dynamic Probabilistic Systems, John Wiley & Sons, 1971.

[54] M. De Sanctis, C. Trubiani, V. Cortellessa, A. Di Marco, M. Flamminj,
PANDA-AEmilia open source project.
URL https://github.com/CatiaTrubiani/panda-aemilia

[55] C. Trubiani, A model-based framework for software performance feed-
back, in: MoDELS Workshops, 2010, pp. 19–34.

[56] J. L. C. Izquierdo, J. S. Cuadrado, J. G. Molina, Gra2MoL: A domain
specific transformation language for bridging grammarware to model-
ware in software modernization, in: MODSE Workshop, 2008.

[57] Api for ocl syntax, package org.eclipse.emf.ocl.parser.
URL http://archive.eclipse.org/modeling/mdt/ocl/javadoc/1.

1.0/org/eclipse/emf/ocl/parser/package-summary.html

[58] D. Arcelli, V. Cortellessa, C. Trubiani, Experimenting the influence of
numerical thresholds on model-based detection and refactoring of per-
formance antipatterns, ECEASST 59 (2013).

[59] I. Malavolta, M. Di Marcello, F. Gallo, L. Iovino, S. Pace, Bus on Air,
Business-Plan Competition (2010).
URL http://www.busonair.eu

[60] D. Troegner, Combination of fuzzy sets with the object constraint lan-
guage (OCL), in: Informatik 2010: Service Science - Neue Perspektiven

54



für die Informatik, Beiträge der 40. Jahrestagung der Gesellschaft für
Informatik e.V. (GI), Band 2, 27.09. - 1.10.2010, Leipzig, Deutschland,
2010, pp. 705–710.

[61] R. Jelliffe, The Schematron Assertion Language 1.6, Academia Sinica
Computing Centre (2002).
URL http://xml.ascc.net/resource/schematron

[62] D. Jackson, Alloy: a lightweight object modelling notation, ACM Trans.
Softw. Eng. Methodol. 11 (2) (2002) 256–290.

[63] R. Hähnle, Many-valued logic, partiality, and abstraction in formal spec-
ification languages, Logic Journal of the IGPL 13 (4) (2005) 415–433.

[64] E. Damiani, S. Marrara, G. Pasi, Fuzzyxpath: Using fuzzy logic an
IR features to approximately query XML documents, in: Foundations
of Fuzzy Logic and Soft Computing, 12th International Fuzzy Systems
Association World Congress, IFSA 2007, Cancun, Mexico, June 18-21,
2007, Proceedings, 2007, pp. 199–208.

[65] D. Arcelli, V. Cortellessa, C. Trubiani, Performance-based software
model refactoring in fuzzy contexts, in: Fundamental Approaches to
Software Engineering FASE, 2015, pp. 149–164.

55


