Gran Sasso Science Institute

PHD PROGRAMME IN MATHEMATICS IN NATURAL, SOCIAL AND LIFE
SCIENCES

Cycle XlI - 2016/2019

Models for coupled active—passive

population dynamics: mathematical analysis
and simulation

PHD CANDIDATE
Thi Kim Thoa Thieu

ADVISORS:

Prof. Dr. habil. Adrian Muntean

Karlstad University, Sweden
Assoc. Prof. Dr. Matteo Colangeli
University of LAquila, ltaly

G GRAN SASSO
SCIENCE INSTITUTE

| SCHOOL OF ADVANCED STUDIES
Scuola Universitaria Superiore




Gran Sasso Science Institute

PHD PROGRAMME IN MATHEMATICS IN NATURAL, SOCIAL AND
LIFE SCIENCES

Cyecle XII - 2016/2019

Models for coupled active—passive population
dynamics: mathematical analysis and simulation

PHD CANDIDATE
Thi Kim Thoa Thieu

ADVISORS:
Prof. Dr. habil. Adrian Muntean
Karlstad University, Sweden

Assoc. Prof. Dr. Matteo Colangeli
University of L’Aquila, Italy

G GRAN SASSO
SCIENCE INSTITUTE

I SCHOOL OF ADVANCED STUDIES






Thesis Jury Members
Prof. Azmy S. Ackleh (University of Louisiana at Lafayette, USA)
Prof. Grigorios A. Pavliotis (Imperial College London, UK)
Prof. Emilio N. M. Cirillo (Sapienza University of Rome, Italy)
Prof. Corrado Lattanzio (University of L’Aquila, Italy)
Dr. Paolo Antonelli (GSSI, Italy)

Thesis Referees
Prof. Azmy S. Ackleh (University of Louisiana at Lafayette, USA)
Prof. Grigorios A. Pavliotis (Imperial College London, UK)



Contents

Abstract 7
1 Introduction 9
1.1 Background . . . . . . ... 9

1.2 Outline of the dissertation . . . . . .. .. ... .. ... ..... 10

2 Modeling 12
2.1 Background . . . .. ..o 12
2.1.1 Lattice gasmodels . . . . . .. .. ... 0L 12

2.1.2 A fluid-like driven system . . . . . . . ... .. ... ... 13

2.1.3 A system of stochastic differential equations . . . . . . .. 14

2.2 Lattice gas dynamics . . . . . . .. ..o Lo 15
221 Latticegas. . . . . . . . . . 15

2.2.2 A lattice model for active—passive pedestrian dynamics . . 15

2.2.3 A simple exclusion process for bi-directional pedestrian flows 19

2.3 A fluid-like driven system . . . . . . ... oL 22
2.4 A system of stochastic differential equations . . . . . ... .. .. 22
241 Geometry . . . ... 23

2.4.2 Active population . . . . .. ..o 24

2.4.3 Passive population . . . ... ..o 24

2.5 Discussion . . . . ... 25

3 A lattice model for active—passive pedestrian dynamics 27
3.1 Imtroduction . . . . . . . ... 27
3.2 Themodel . . . . . . . .. ... 29
3.3 The evacuation time . . . . . ... ..o 32
3.3.1 Theemptyroomcase. . . . ... ... .. ... ...... 33

3.3.2 The room with an obstacle . . . . . . ... ... ... ... 36

3.4 The stationary flux . . . . . .. ... oo 37
3.4.1 The empty roomcase . . . . .. ... ... ... ... ... 38

3.4.2 The room with an obstacle . . . . . .. ... ... ..... 40

3.5 Discussion . . . . . . ... 41



4 When diffusion faces drift: consequences of exclusion processes

for bi—directional pedestrian flows 44
4.1 Introduction . . . . . . . . . ... 44
4.2 Model description . . . . .. ..o 46
4.3 Numerical results . . . . . . . . . ... 49

4.3.1 The corridor model . . . . . . . ... ... ... 49

4.3.2 Room model: effect of thedoors . . . . . . ... ... ... 53
4.4 DiIScusSSion . . . . . ... 57

5 A fluid-like driven system for active—passive pedestrian dynam-

ics 58
5.1 Imtroduction . . . . . . . .. .. ... 58
5.2 Some background on the problem (5.1) . . . ... ... ... ... 60
5.3 Preliminaries. List of assumptions . . . . . . . . . ... ... ... 61
5.3.1 Assumptions. . . . . .. ... 64
5.3.2 Statement of the mainresult . . . . . . ... .. ... ... 65
5.4 Emnergy estimates . . . .. . ... oo 66
54.1 LY-L%?estimates . . . . . . . . ... ... ... ... ... 66
5.4.2 Gradient and time derivative estimates . . . . . . . . . .. 69
5.5 Proof of Theorem 5.11 . . . . . .. .. . ... ... ... ..... 74
5.6 Proof of Theorem 5.12 . . . . . . . ... ... ... ... ..... 7
5.7 Proof of Theorem 5.13 . . . . . . . . . . ... ... ... ..... 79
5.8 Proof of Theorem 5.14 . . . . . . . . . . .. ... ... ...... 82
5.9 Discussion . . . . . ... 89
6 Solvability of a coupled nonlinear system of Skorohod-like stochas-
tic differential equations modeling active—passive pedestrians dy-
namics through a heterogeneous domain and fire 90
6.1 Introduction . . . . . . . . ... ... 90
6.2 Related contributions. Main questions of this research . . . . . . . 91
6.3 Setting of the model equations . . . . . . . . . ... ... ... .. 92
6.3.1 Geometry . . . . .. ... 92
6.3.2 Active population . . . . .. ..o 92
6.3.3 Passive population . . . . ... ... 0oL 94
6.4 Technical preliminaries and assumptions . . . . . . ... ... .. 94
6.4.1 Technical preliminaries . . . . . .. . ... ... ... ... 94
6.4.2 Assumptions. . . . . . . ... ... 96
6.5 The Skorohod equation . . . . . . . ... ... ... ... 96
6.5.1 Concept of solution . . . . . .. ... ... ... 96
6.6 Solvability of Skorohod-like system . . . . . .. . ... ... ... 98
6.6.1 Statement of the main results . . . . . .. ... ... ... 99
6.6.2 Structure of the proof of Theorem 6.3 . . . . . . . ... .. 99
6.6.3 Proof of Theorem 6.3 . . . . . . .. ... .. ... ..... 101
6.7 Discussion . . . . . . ... 107



7 On a pore-scale stationary diffusion equation: Scaling effects and

correctors for the homogenization limit 109
7.1 Introduction . . . . . . . .. .. 109
7.1.1 Background and statement of the problem . . . . . . . .. 109

7.1.2 Maingoals. . . . .. ... 110

7.1.3 Outline . . ... ... ... 112

7.2 Preliminaries . . . . . . .. . ... o 112
7.2.1 Geometrical description of a perforated medium . . . . . . 112

7.2.2 Notation and assumptions on data . . . . . . ... .. .. 113

7.3 Weak solvability of (P.) . . ... .. ... ... ... ...... 114
7.4 Asymptotic behaviors and convergence results . . . . .. ... .. 119
7.4.1 Volume reaction and surface reaction . . . . .. .. .. .. 119

7.4.2 Volume-surfaces reactions . . . . . . ... ... ... ... 130

7.4.3 A numerical example . . . . .. ..o 135

7.5 Discussion . . . . . ..o 138

8 Concluding remarks. Outlook 140
8.1 Summary . . . . ... 140
82 Outlook . . . . . . . 141
Appendix 144
A.1 Rigorous definition of the active—passive dynamics in Chapter 4 144
A.2 Regularized Eikonal equation for motion planning . . . . . . . . 145
A.3 Nondimensionalization of the system of SDEs (2.5) and (2.8) . . . 146
A.4 Higher regularity estimates for the smoke concentration . . . . . 147
Acknowledgement 158
List of publications 160
My contributions to the manuscripts 161
List of Figures 163
List of Tables 167



Abstract

In this dissertation, we study models for coupled active—passive pedestrian dy-
namics from mathematical analysis and simulation perspectives. The general aim
is to contribute to a better understanding of complex pedestrian flows. This work
comes in three main parts, in which we adopt distinct perspectives and concep-
tually different tools from lattice gas models, partial differential equations, and
stochastic differential equations, respectively.

In part one, we introduce two lattice models for active—passive pedestrian
dynamics. In a first model, using descriptions based on the simple exclusion
process, we study the dynamics of pedestrian escape from an obscure room in a
lattice domain with two species of particles (pedestrians). The main observable
is the evacuation time as a function of the parameters caracterizing the motion
of the active pedestrians. Our Monte Carlo simulation results show that the
presence of the active pedestrians can favor the evacuation of the passive ones.
We interpret this phenomenon as a discrete space counterpart of the so-called
drafting effect. In a second model, we consider again a microscopic approach
based on a modification of the simple exclusion process formulated for active—
passive populations of interacting pedestrians. The model describes a scenario
where pedestrians are walking in a built environment and enter a room from two
opposite sides. For such counterflow situation, we have found out that the motion
of active particles improves the outgoing current of the passive particles.

In part two, we study a fluid-like driven system modeling active—passive pedes-
trian dynamics in a heterogenous domain. We prove the well-posedness of a non-
linear coupled parabolic system that models the evolution of the complex pedes-
trian flow by using special energy estimates, a Schauder’s fixed point argument
and the properties of the nonlinearity’s structure.

In the third part, we describe via a coupled nonlinear system of Skorohod-
like stochastic differential equations the dynamics of active—passive pedestrians
dynamics through a heterogenous domain in the presence of fire and smoke. We
prove the existence and uniqueness of strong solutions to our model when reflect-
ing boundary conditions are imposed on the boundaries. To achieve this we used
compactness methods and the Skorohod’s representation of solutions to SDEs
posed in bounded domains. Furthermore, we study an homogenization setting
for a toy model (a semi-linear elliptic equation) where later on our pedestrian
models can be studied.

MSC 2020: 35Q35, 35K55, 76505, 60H10, 60H30, 82C20, 82C80



PACS: 05.10Ln, 05.90.+m, 63.90+t

Key words: pedestrian dynamics, simple exclusion process, Forchheimer flows,
Skorohod equations, nonlinear coupling, heterogenous domain, homogenization,
drafting, evacuation



Chapter 1

Introduction

1.1 Background

In the literature, many models have been proposed to describe pedestrian dynam-
ics in different scenarios. Some researchers consider macroscopic models, where
the density and speed of the flow are accounted for, while others study micro-
scopic models in which each individual is represented separately as a moving
particle, hence, systems of interacting particles are considered. Pedestrians have
a complex psychologic and sociologic behavior which is often only considered in
simplified ways in the various approaches. This dissertation focuses on studying
three different pedestrian models from three different perspectives: lattice gas
models, a fluid-like driven system and stochastic differential equations. Here, we
account for the same sociologic feature in which our crowd is assumed to be a mix
of informed pedestrians (active) and uninformed pedestrians (passive). This type
of mixed pedestrian dynamics is originally proposed in [RJM19] by considering
the crowd motion in a complex geometry in the presence of a fire as well as of a
slowly spreading smoke curtain.

We start off with microscopic crowd models of lattice types. Omne of our
models describes the evacuation of pedestrian populations from an obscure room,
while another model presents a scenario of pedestrians walking in a building
environment and entering from opposite sides. Such a lattice-based approach
is a modeling tool from statistical physics which was able to reproduce realistic
phenomena for pedestrian flows (see e.g. [CFL09, KLSDO08|). Our evacuation
models always refer to a geometry (in which the dynamics takes place) that is
partly unknown and possibly also with limited visibility. For more information
on the topic, we refer the reader, for instance, to [ABCK16, FRNF13, MWS14,
WS14,XJJS16, CCCM18,ZLX11| and references cited therein.

From a macroscopic perspective, by employing the idea of percolating fluids
through a structured porous media, we are interested in a fluid-like driven sys-
tem for active—passive pedestrian dynamics. We consider a system of parabolic
equations consisting of a double nonlinear parabolic equation of Forchheimer
type coupled with a semilinear parabolic equation. Some of the mathematical
properties related to this type of equations have been already investigated for



scalar equations modeling Forchheimer flows in porous media; see for instance,
in [HI11,ABHI09, CHK16, BZK60|.

From the stochastic differential equations point of view, we are interested in
a system of Skorohod-like stochastic differential equations modeling our active—
passive pedestrians dynamics through a heterogenous domain this time in the
presence of fire and smoke. In particular, the active—passive pedestrian dynamics
is posed in a two dimensional bounded perforated domain, i.e. obstacles are
part of the geometry. Therefore, boundary conditions must be specified for this
particular class of stochastic differential equations. We decided to work with
the classical Skorohod’s formulation of SDEs with reflecting boundary conditions
to obtain a correct dynamics of such pedestrians close to the boundary of the
interior obstacles. We refer the reader, for instance, to [Lio84,Sai87, Sko61, 009)
for related problems. In addition, we also prepare an homogenization playground
where later on our microscopic pedestrian dynamics can be studied.

The main questions we are addressing in this dissertation are:

Q1: How to describe the evolution of a crowd, where different sub-populations
(e.g. passive and active) interact and move differently?

Q2: Can we induce modifications of the dynamics of the active population to
improve the outgoing current of the passive population?

Q3: What would be a possible way to describe macroscopically the motion of
active and passive populations in an heterogeneous domain?

Q4: How to model in a well-posed manner the microscopic interactions with
the interior boundaries (of a built environment) of the pedestrians stochastically
interacting with each other?

1.2 Outline of the dissertation

e In Chapter 2, we provide the background and the settings of three models
that we develop throughout this dissertation.

e In Chapter 3, we study the evacuation dynamics from an obscured room
using a lattice gas model with two species of particles. Specifically, active
species performs a symmetric random walk on the lattice, while the passive
species is subject to a drift guiding the particles towards the exit. The nu-
merical results show that the presence of the active pedestrians favors the
evacuation of the passive ones. We interpret this phenomenon as a discrete
space counterpart of the drafting effect typically observed in a continuum
set-up as the aerodynamic drag experienced by pelotons of competing cy-
clists.

e In Chapter 4, based on the simple exclusion process, we study the dynamics
of two populations of particles, mimicking pedestrians walking in a built
environment entering a room from two opposite sides. In particular, passive
particles belong to a group performing a symmetric random walk, while
active particles have information on the local geometry in the sense that
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as soon as particles enter a visibility zone, a drift activates them. The
numerical results show that the dynamics of the active particles can improve
the outgoing current of the passive particles.

e In Chapter 5, we consider a fluid-like driven system modeling active—passive
pedestrian dynamics posed in a hetetogenous environment. We study the
question of well-posedness of parabolic equations consisting of a double
nonlinear parabolic equation of Forchheimer type coupled with a semilinear
parabolic equation.

e In Chapter 6, we study the solvability of a coupled nonlinear system of
Skorohod-like stochastic differential equations with reflecting boundary con-
ditions modeling active—passive pedestrian dynamics through a heteroge-
nous domain in the presence of fire. We use compactness methods together
with the Skorohod’s representation of solutions to SDEs.

e In Chapter 7, we consider a semilinear elliptic equation posed in periodically
perforated domains and associated with a Fourier-type condition on inter-
nal interfaces. We provide a linearization scheme that allows us to prove
the weak solvability of the microscopic model. Based on classical results for
homogenization of multiscale elliptic problems with periodic coefficients, we
design a modified two-scale asymptotic expansion to derive the correspond-
ing macroscopic equation, when the scaling choices are compatible. Also,
we prove high-order corrector estimates for the homogenization limit.

e In Chapter 8, we present briefly the results which obtained in this disserta-
tion (in relation to questions Q1-Q4 from Section 1.1). We also provide a
list of open issues for forthcoming considerations.

The notation used in each chapter is consistent within the respective chapter.
The notation slightly changes from chapter to chapter.
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Chapter 2
Modeling

In this chapter, we introduce three models that we use throughout this disser-
tation. In particular, one of the models is a lattice-gas-type approach based on
Monte Carlo stochastic dynamics, another model employs a fluid-like driven sys-
tem, while a third model is a system of stochastic differential equations of a Sko-
horod type. This part is based on [CCMT19, TCM19, TCM20, CCMT20, TM20].

The approaches chosen in this dissertation are in line with and extend [Corl5,
Evel5|.

2.1 Background

The modeling of pedestrian flows offers many challenging questions to science
and technology in general. It would be of great practical relevance for instance
to know how fast human crowds evacuate complex urban buildings. Unlike fluid
flows, pedestrian flows are rarely uniform. Hence, their motion is difficult to
predict accurately. In this work, we aim at presenting active—passive pedestrian
dynamics models from different perspectives: lattice gas models, fluid-like driven
system and SDEs. This is our attempt towards understanding how complex
crowds move within complex environments.

2.1.1 Lattice gas models

Pedestrian dynamics and social human behavior are closely connected. The de-
tailed behavior of human is already complicated, being caused by many physio-
logical and psychological processes, still largely unknown. The statistical physics
approach for social dynamics is offering a possible route for investigations. From
the modeling point of view, the investigation of models of social dynamics in-
volves two levels of difficulty. The first challenge is defining good microscopic
models. The second challenge is the usual issue of inferring the macroscopic phe-
nomenology out of the microscopic dynamics of such models. We are observing
the microscopic dynamics of active-passive pedestrian populations by considering
lattice gas models. In particular, for the first model, using the descriptions based
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on the simple exclusion process, we study the pedestrian escape from an obscure
room using a lattice gas model with two species of particles!. One species, called
passive, performs a symmetric random walk on the lattice, whereas the second
species, called active, is subject to a drift guiding the particles towards the exit.
The drift mimics the awareness of some pedestrians of the geometry of the room
and of the location of the exit. In the second model, we consider again a micro-
scopic approach based on a modification of the classical simple exclusion process
formulated for two different active—passive populations of interacting pedestrians
(particles). Unlike the first model, two populations of particles, mimicking pedes-
trians walking in a built environment, enter now the room from two opposite sides
with the intention to cross the room and then exit from the door on the opposite
side.

Furthermore, these models belong to a recent research direction handling the
evacuation behavior of crowds of pedestrians where the geometry in which the
dynamics takes place is partly unknown and possibly also with limited or no
visibility. Such crowd scenarios can be considered when catastrophic situations
occur in urban environments, such as tunnels, underground spaces or in forests
in fire. For more information, we refer the reader, for instance, to [ABCKI16,
FRNF13,MWS14, WS14,XJJS16, CCCM18| and references cited therein. In this
context, the experimental information is provided, for instance, in [vKS17| and
[OP17], which are also connected to the so-called "faster-is-slower" effect.

2.1.2 A fluid-like driven system

Looking at a heterogenous environment (e.g. a complex office building), we ex-
ploit the idea of percolating fluids through a structured porous media to tackle our
pedestrian dynamics. See also Figure 2.5, where we make the analogy with flow
in a structured porous media, inspired by an idea by Barenblatt and co-authors
cf. [BZK60]. Like in Section 2.1.1, the standing assumption is that the crowd of
pedestrian is composed of two distinct populations: active agents that follow a
predetermined velocity field and passive agents that have no preferred direction of
motion. In particular, we imagine that the active population of pedestrians have
velocities similar to a non-Darcy flow, namely, to a generalized Forchheimer flow
as formulated for slightly compressible fluids (see e.g. [ABHI09, HI11, CHK16]).
On the other hand, we consider the flow of the passive population as a diffu-
sion process, hence no predetermined flow directions are prefered. Mathemat-
ically, this is an about evolution system where a Forchheimer-like equation is
nonlinearly-coupled to a diffusion-like equation. For more details on the model-
ing of the situation, we refer the reader to Section 2.3 and references mentioned
there.

IThe pedestrian is perceived in this context as a moving particle on a lattice, interacting
with the other neighboring particles.
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2.1.3 A system of stochastic differential equations

In crowd dynamics studies, the movements of pedestrians must directly be related
to their decision making processes. Hence, the characteristics of pedestrian flows
are apparently affected by decisions of pedestrians. This influence is necessary
in order to model the processes properly. Stochastic tools become important to
capture the essence of the interactions among the pedestrians, specially when a
consensus is not available. It is clear that the dynamics of pedestrians can either
be deterministic or stochastic. In the deterministic case, the behavior of pedes-
trians at a certain time is completely determined by the present state and can
be predicted accordingly, while in the stochastic case the pedestrian behavior is
governed by certain probabilities such that the pedestrians can react differently
in the same situation. We turn our attention to consider a coupled nonlinear
system of Skohorod-like stochastic differential equations modeling the dynamics
of pedestrians through heterogenous domain in the presence of fire. In particular,
our interest in this context is to study the role the internal geometry plays for
mixed pedestrian flows where the dynamics of interacting particles stems from
two distinct populations: an active population — these pedestrians are aware of
the details of the environment and move towards the exit door, and a passive pop-
ulation — these pedestrians are not aware of the details of the geometry and move
randomly to explore the environment and eventually to find the exit. Both pop-
ulations wish to escape the geometry because they sense a smoke density which
indicates the presence of a fire in the building. We use a suitable over-damped
Langevin model for the movement of all pedestrians, which will be described in
Section 2.4. Hence, our model belongs to the class of social-velocity models for
crowd dynamics (see e.g. in [CPT14]). This pedestrian dynamics model is posed
in a two dimensional multiple connected region D, containing obstacles with a
fixed location together with the presence of a fire. Moreover, we assume that this
fire is stationary placed within the geometry. Then, the pedestrians can choose a
proper own velocity such that they evacuate and avoid the smoke caused by the
fire.

On the other hand, in order to have a more realistic model, the overall dy-
namics is restricted to a bounded "perforated" domain, i.e. the obstacles are
seen as impenetrable regions. The geometry is described in Subsection 2.4.1; see
Figure 2.6 to fix ideas. Note that our interacting particles system is posed in a
continouous two dimensional multiple connected region D, containing obstacles
with a fixed location, a fire that produces smoke which is also seen as an obstacle.
Hence, the stochastic differential equation system is restricted to a fixed bounded
domain. For this particular class of stochastic differential equations, boundary
conditions must be specified. We consider the case of reflecting boundary condi-
tions. In order to achieve a correct description of the dynamics of the pedestrians
close to the boundary of the interior obstacles, we refer to works on the classical
Skorohod’s formulation of SDEs (see e.g. in [Sko61, Lio84,Sai87|). In addition,
we describe the movement behavior active pedestrians who are able to avoid col-
lisions with the obstacles by using a motion planning map (a priori given paths
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— solution to a suitable Eikonal-like equation; cf. Appendix A.2).
In the sequel, we provide more details about the setting model equations for
each model.

2.2 Lattice gas dynamics

We start off with the lattice gas models for active—passive pedestrian dynamics.
We provide the following two different pedestrian dynamics models that describe
the joint evolution of such active and passive populations. One of the model is a
lattice model for searching the drafting/aerodynamic drag effects, while an other
model employs a simple exclusion process for bi—directional pedestrian flows.

2.2.1 Lattice gas

A lattice gas are particles jumping at random on a lattice (see in e.g. [Spo91]).
We assume that the position of particles are restricted to a discrete subset of
R¢(d € N*). In general, this subset is taken to be the d-dimensional cubic lattice

2% = {i=(i1,...,iq) ER? i, € Zforeach k € {1,...,d}}. (2.1)

We call a lattice A = Z< and a state space for the lattice gas is a configuration
n € Q = {0,1}*. Since the dynamics of the lattice gas consists of a sequence of
jumps. In order to keep track the number of particles, we introduce the so-called
occupation number 7; of particles at lattice site 7. In addition, n; taking values
in {0, 1} such that

(2.2)

_J 0 if the site 7 is vacant,
1 1 if the site ¢ is occupied.

For given the rates we construct the dynamics of lattice gas in the standard
fashion. We consider a finite volume A, with |A| < oo, where |A| represents the
number of points in the lattice A. Hence, the state space consists of a finite
number of configurations. Therefore, the generator of Markov jump process acts
on a function f : Q2 — R is given by

L) =Y conm)f ) — f(n),

n'e

where ¢(n,n’) are the rate of exchange of the occupancies from the configuration
n ton'.

2.2.2 A lattice model for active—passive pedestrian dynam-
ics

In this subsection, we introduce a lattice gas model model for active—passive
pedestrian dynamics. The room is the square lattice
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Figure 2.1: Schematic representation of our lattice model. Blue and red disks
denote passive and active particles, respectively. The rectangle of sites delimited
by the red contour denotes the exit. Black and red arrows (color online) denote
transitions performed with rates 1 and 1 + €, respectively.

A={1,....,L} x{1,..., L} C Z? of side length L, with L an odd positive integer
number, see Figure 2.1. An element x = (x1,z5) of the room A is called site or
cell. Two sites z,y € A are said nearest neighbor if and only if |z —y| = 1. We
conventionally call horizontal the first coordinate axis and wertical the second
one. The words left, right, up, down, top, bottom, above, below, row, and column
will be used accordingly. We call exit a set of we, pairwise adjacent sites, with wey
an odd positive integer smaller than L, of the top row of the room A symmetric
with respect to its median column. In other words, the exit is a centered slice
of the top row of the room mimicking the presence of an exit door. The number
Wex Will be called width of the exit. Inside the top part of the room we define
a rectangular interaction zone, namely, the wvisibility region V', made of the first
L, top rows of A, with the positive integer L, < L called depth of the visibility
region. By writing L, = 0, we refer to the case in which no visibility region is
considered.

We consider two different species of particles, i.e., active and passive, mov-
ing inside A (we shall sometimes use in the notation the symbols A and P to
respectively refer to them). Note that the sites of the external boundary of the
room, that is to say the sites z € Z? \ A such that there exists y € A nearest
neighbor of z, cannot be accessed by the particles. The state of the system will
be a configuration n € C = {—1,0,1}* and we shall say that the site z is empty
if n, = 0, occupied by an active particle if n, = 1, and occupied by a passive
particle if n, = —1. The number of active (respectively, passive) particles in
the configuration 7 is given by na(n) = >, cx O1m. (resp. np(n) = > cr0-1m.),
where ¢.. is Kronecker’s symbol. Their sum is the total number of particles in
the configuration 7.

The dynamics in the room is modeled via a simple exclusion random walk
with the two species of particles undergoing two different microscopic dynamics:

16



the passive particles perform a symmetric simple exclusion dynamics on the whole
lattice, while the active particles, on the other hand, perform a symmetric simple
exclusion walk outside the visibility region, whereas inside such a region they
experience a drift pushing them towards the exit. In other words, the whole
room is obscure for the passive particles, while, for the active ones, only the
region outside the visibility region is obscure.

What concerns this precise setup, the dynamics is incorporated in the contin-
uous time Markov chain 7n(¢) on C with rates ¢(n,n’) defined as follows: Let € > 0
be the drift; for any pair © = (z1,22),y = (y1, y2) of nearest neighbor sites in A
we set €(z,y) = 0, excepting the following cases in which we set €(z,y) = e:

— x,y € V and ys = x5 + 1, namely, x and y belong to the visibility region
and x is below y;

—z,y€Vand y; =21+ 1 < (L +1)/2, namely, = and y belong to the left
part of the visibility region and z is to the left with respect to y;

—z,yeVand yy =21 —1 > (L+1)/2, namely, x and y belong to the right
part of the visibility region and x is to the right with respect to y.

Next, we let the rate c¢(n,n’) be equal

— to 1 if i can be obtained by 7 by replacing with 0 a —1 or a 1 at the exit
(particles leave the room);

— to 1 if ' can be obtained by n by exchanging a —1 with a 0 between two
neighboring sites of A (motion of passive particles inside A);

— to 1+ €(x,y) if ’ can be obtained by n by exchanging a +1 at site  with
a 0 at site y, with x and y nearest neighbor sites of A (motion of active
particles inside A);

— to 0 in all the other cases.

The infinitesimal generator L acts on continuous bounded functions f : {2 —

R as
L) = cln,m)f(0) = F)). (2:3)
n' e
The probability measure induced by the Markov chain started at 7 is denoted by
P, and the related expectation is denoted by E,. We refer to [Pav14,Spo91| where
similarly—in—spirit models are described mathematically in a rigorous fashion.
The initial number of active (respectively, passive) particles is denoted by
Na = na(n-(0)) (respectively, Np = np(n,(0))). We also let N = Nj + Np be
the initial total number of particles.
For any choice of the initial configuration 7(0) in 2, the process will eventually
reach the empty configuration 0 corresponding to zero particles in the room which
is an absorbing point of the chain.
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Figure 2.2: Configurations of the model sampled at different times (increasing in lex-
icographic order). Parameters: L = 15, wex = 7, Ly = 5, and ¢ = 0.3. Red pixels
represent active particles, blue pixels denote passive particles, and gray sites are empty.
In the initial configuration (top left panel) there are 70 active and 70 passive particles.
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Figure 2.3: As in Figure 2.2, the obstacle is a centered 5 x 5 square. This fixed obstacle
is depicted with white pixels.
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As alternative working scenario, we will study the dynamics described above
also in the presence of a solid obstacle hindering the pedestrian flow in the room.
The obstacle is made of an array of sites permanently occupied by fictitious
particles. In such a way these sites are never accessible to the actual interacting
particles within our system.

The dynamics in both the presence and in the absence of the obstacle is the
same and all the parameters have the same meaning and take similar values. In
other words, we are implicitly assuming that the presence of the obstacle does
not affect the pedestrian behavior: the obstacle is simply a barrier that must be
avoided by the walking pedestrian.

Although, in principle, there is no restriction on the choice of the obstacle
geometry, in this framework we always consider centered squared obstacles. A
thorough investigation of the effect of the choice of obstacle geometry on the evac-
uation time for mixed pedestrian populations moving thorough partially obscure
rooms deserves special attention and will be done in a forthcoming work.

The main goal of the work is to detect drafting in pedestrian flows, namely,
identify situations when the evacuation of passive particles is favored by the pres-
ence of the active ones, even if no leadership or other kind of information exchange
is allowed. We expect that this phenomenon will be effective, provided the active
particles will spend a sufficiently long time in the room. This seems to help effi-
ciently passive particles to escape. This effect is illustrated in the Figures 2.2 and
2.3, where we show the configuration of the system at different times both in the
absence, and respectively, in the presence of an obstacle. Indeed, the sequences of
configurations show that, though the evacuation of active particles is faster than
that of the passive ones, even at late times the fraction of active particles is still
reasonably high.

2.2.3 A simple exclusion process for bi—directional pedes-
trian flows

In this subsection, we consider a square lattice A = {1,..., L} x{1,..., L} with L
a positive odd integer. The set A is referred in this context as room and its points
r = (x1,x9) as sites. Two sites at Euclidean distance one are called nearest
neighbors. We call horizontal and wvertical the first and the second coordinate
axes, respectively. The horizontal and the veritical axes are, respectively, right
and up oriented.

The doors are the sets made of wy, and wg neighboring sites in the left-most
and right—most columns of the room, respectively, and symmetric with respect
to its median row. This mimics the presence of two distinct doors on the left and
right boundary of the room. The odd positive integers wy,, wg smaller than L will
be called width of the doors. Inside the room we define a rectangular driven zone,
namely, the visibility region V', made of the first L, left columns of A, with the
positive integer L, < L called depth of the visibility region. By writing L, = 0,
we refer to the case in which no visibility region is considered.
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The dynamics will be defined so that particles will be able to exit the room

only from sites belonging to the doors: jumps from other sites to the exterior of
A will be forbidden.

Ly

-9
-9

L

Figure 2.4: Schematic representation of our lattice model. Blue and red disks
denote passive and active particles, respectively. The rectangles of sites delimited
by the red contour denote the exit doors. Black and red arrows (color online)
denote transitions performed with rates 1 and 1+ €7 or 1 + €9, respectively.

We consider two different species of particles, i.e., active and passive (we shall
sometimes use in the notation the symbols A and P to refer to them), moving
inside A with different dynamics. The interaction of particles inside the room is
modelled via a simple exclusion random walk.

The passive particles enter through the left door and exit through the right
door. They perform a symmetric simple exclusion dynamics on the whole lattice.
Simultaneously, the active particles enter through the right door and exit through
the left door. They perform a symmetric simple exclusion walk outside the vis-
ibility region, whereas inside such a region they experience also a drift pushing
them towards the left door. In other words, the whole room is obscure? for the
passive particles, while, for the active ones, only the region outside the visibility
region® is obscure. The model also includes two external particle waiting lists,
each of which is designed to collect particles of a given species when these move
out from the lattice A through their exit door and to reinsert them back on the
lattice through their entrance door.

More precisely, we consider N, active particles and Np passive ones randomly
distributed in the room at time zero, one per site. The motion of the particles
is described by a continuous time Markov chain that is rigorously defined in the
Appendix. In more simple words, the dynamics is defined as follows: we first pick
two non—negative numbers 1,65 > 0 called the horizontal and the vertical drift

2We refer the reader to [CKMvS16b|, where the authors discuss the gregarious behavior of
crowds moving in the dark.
3The concept of visibility region was introduced by the authors in [CCMT19].
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and, for any pair © = (x1,22),y = (y1,y2) of nearest neighbor sites in A we set
e(z,y) = 0, excepting for the following cases:

— €(z,y) = e, if x,y € V and y; = x; — 1, namely, = and y belong to the
visibility region and x is to the right with respect to y;

—€(x,y) =g if z,y € V and yo = 29 + 1 < (L + 1)/2, namely, x belongs to
the bottom part of the visibility region and z is below y;

—e(x,y) = ey if z,y € V and yo = x9 — 1 > (L + 1)/2, namely, = belongs to
the top part of the visibility region and x is above y.

Next, we assume that particles move with the following rates:
— a passive particle leave the room from a site in the right door with rate 1;
— an active particle leave the room from a site in the left door with rate 1+4€q;

— if the number ny of active particles in the room is smaller than N, and
the number of empty sites mg in the right door is not zero then an active
particle is added to a randomly chosen empty site of the right door with
rate [Na — na)/mg;

— if the number np of passive particles in the room is smaller than Np and
the number of empty sites mp, in the left door is not zero then a passive
particle is added to a randomly chosen empty site of the left door with rate

[Np — np|/my;

— a passive particle moves inside A from a site to one of its empty nearest
neighbors with rate 1;

— an active particle moves from the site = inside A to its empty nearest neigh-
bor y inside A with rate 1+ e(z,y).

We note that the quantities Ny — na and Np — np represent the number of
active, and, respectively, passive particles that exited the room and entered their
own waiting list at the considered time, whereas my;, > 0 and mg > 0 are the
number of empty sites of the left and right doors at the same time.

The system will reach a stationary state, since passive particles exiting the
domain via the right door are introduced back in one site randomly chosen among
possible empty sites of the left door, while active particles leaving the system
through the left door are introduced back also at one random site chosen among
possible empty sites of the right door. The total number of active and passive
particles in the room A is only approximatively constant during the evolution. It
slightly fluctuates due to the fact that particles may enter waiting lists. On the
other hand, the total number of particles N in the system (considering both the
room and the waiting lists) is conserved.

In the study of this dynamics, the main quantity of interest are the stationary
outgoing fluxes or currents of active and passive particles which are the values
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approached in the infinite time limit by the ratio between the total number of
active and passive particles, respectively, that in the interval (0, ¢) exited through
the left and the right door and entered the waiting lists and the time ¢. In
order to discuss and to understand the behavior of currents with respect to the
model parameters, we shall also look at the active and passive particles occupation
number profiles of active and passive particles, namely, we evaluate the stationary
mean value of the occupation numbers of active and passive particles which is
equal to one if a site is occupied by a particle of the considered species or zero
otherwise.

2.3 A fluid-like driven system

In this section, we introduce a fluid-like driven system for active—passive pedes-
trian dynamics. In this model, the active population of pedestrians have veloc-
ities similar to a non-Darcy flow, namely, a generalized Forchheimer flow as for
slightly compressible fluids. Let a bounded set Q # (), Q C R? a domain such
that 9Q = TV UTE TN NTE = () with H(TY) # 0 and H(I'E) # (), where H
denotes the surface measure on I'V, I'® and take S = (0, 7). Find the pair (u,v),
where © : S x Q@ — R? and v : S x Q@ — R?, satisfying the following model
equations

(0,(u?) + div(— K1 (|Vu|)Vu) = —b(u —v) in S x Q,

0w — KoAv = b(u —v) in S x Q,

—Ki(|[Vu|)Vu -n = pu* at S x I'E,

—Ki(|Vu|)Vu-n=0 at S x 'V, (2.4)
—KoVo-n=0 at S x 09,

u(t =0,2) = up(x), © € Q,

v(t =0,7) = vy(x), v € Q.

\
Here Ky > 0, while the function K is linked to the derivation of a nonlinear
version of Darcy’s law involving a polynomial with non-negative coefficients in
velocities. This choice is rather non-standard, see e.g. the works [HI11]|, [ABHI09],
[CHK16| and references cited therein for more details in this sense. In addition,
A € (0, 1] is a fixed number and b(+) is a sink/source term. The nonlinear structure
of K is described in Section 5.3 together with the remaining model parameters
entering (2.4) which are not explained here, as well as with the assumptions
needed to ensure the existence of solutions to our problem.

2.4 A system of stochastic differential equations

In this section, we introduce a coupled nonlinear system of Skohorod-like stochas-
tic differential equations modeling the dynamics of pedestrians through a het-
erogenous domain in the presence of fire. We provide the detail geometry as well
as the setting of model equations.
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Figure 2.5: Sketch of a distributed flow through a fissured rock, scenario mimick-
ing Fig.1 from |[BZKG60]|. The fissured rock consists of pores and permeable blocks,
generally speaking blocks are separated from each other by a system of fissures.
Through the fissures, the flow is faster compared to the rest of the media.

2.4.1 Geometry

Figure 2.6: Basic geometry for our active-passive pedestrian model. Initially,
pedestrians occupy some random position within a geometry with obstacles Gy.
Because of the presence of the fire F', and presumably also of smoke, they wish
to evacuate via the exit door F while avoiding the obstacles G and the fire F'.

We consider a two dimensional domain, which we refer to as Q. As a building
geometry, parts of the domain are filled with obstacles. Their collection is denoted
by G = Ugi‘i Gy, forall k € {1,..., Nops € N}. A fire F' is introduced somewhere
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in this domain and is treated in this context as an obstacle for the motion of the
crowd. Moreover, the domain has the exit denoted by E. Our domain represents
the environment where the crowd of pedestrians is located. The crowd tries
to find the fastest way to the exit, avoiding the obstacles and the fire. Let
D := O\(GU EUF) C R? with the boundary 9D such that 00 N dG; = 0,
00N IG, = 0 and F NGy = 0, we also denote S = (0,T) for some T € R,.
Furthermore, N4 is the total number of active agents, Np is the total number of
passive particles with N := Ny + Np and Ny, Np, N € N.

2.4.2 Active population

Fori € {1,...,Na} and t € 5, let x,, denote the position of the pedestrian i
belonging to the active population at time t. We assume that the dynamics of
active pedestrians is governed by

dxq,;(t) Vo(xq, (1))
{ & = —T(S(Xai (t))m (pmax - p(xai (t)a t)) + (I)l7

X4, (0) = Xay,

(2.5)

where x,,, represents the initial configuration of active pedestrians inside D. In
(2.5), V¢ is the minimal motion path of the distance between particle positions
x,, and the exit location E (it solves the Eikonal-like equation). The function
¢(+) encodes the familiarity with the geometry; see also [YJQH16| for a related
setting. We refer to it as the motion planning map. In this context, p(x,t) is the
local discomfort (a realization of the social pressure) so that

Pt =) [ S ol () (2:6)

for {x., } = {Xa,} U{xp,} fori e {1,... Na},k€{l,...,Np},j€{l,...,Na+
Np}. In (2.6), ¢ is the Dirac (point) measure and B(x,d) is a ball center x with
small enough radius 6 such that § > 0. Hence, the discomfort p(x,t) represents
a finite measure on the bounded set D N B(x,4). In addition, we assume the

following structural relation between the smoke extinction and the walking speed
(see in [Jin97], [RN19]) as a function T : RY — R? such that

T(z) = —Cx +), (2.7)

where (,n are given real positive numbers. The dependence of the model co-
efficients on the local smoke density is marked via a smooth relationship with
respect to an a priori given function s(x,t) describing the distribution of smoke
inside the geometry at position = and time ¢. Moreover, ®; entering (2.5) is a
associated process to ensures the reflecting process.

2.4.3 Passive population

For k € {1,...,Np} and ¢t € S, let x,, denote the position of the pedestrian
k belonging at time t to the passive population. The dynamics of the passive
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pedestrians is described here as a system of stochastic differential equations as
follows:

{dxpk (t> - Z;V:I %W(LX:CJ' - ka|7 S(kaa t))dt + B(S(kaa t>>dB(t) + (I)27

Xpye (0) = Xpros

(2.8)

where x,,, represents the initial configuration of passive pedestrians inside D and
€ > 0. In (2.8), w is a Morse-like potential function (see e.g. Ref. [CMP13] for a
setting where a similar potential has been used).We take w : R x R? — R? to
be

w(z,y) = —By) (OAe‘ﬁ + CRe‘ﬁ) , for 7,y € R x R? (2.9)

while C'y > 0, Cg > 0 are the attractive and repulsive strengths and £4 > 0, (g >
0 are the respective length scales for attraction and repulsion. Moreover, the co-
efficient (3 is the Heaviside step function. As in Subsection 2.4.2; the dependence
of the model coefficients on the smoke is marked via a smooth relationship with
respect to an a priori given function s(z,t) (the smoke concerntration, cf. Ap-
pendix A.4) describing the distribution of smoke inside the geometry at position
x and time t. In additions, ®, is a associated process to ensure the reflecting
process. Note that the passive pedestrians do not posses any knowledge on the
geometry of the walking space. In particular, the location of the exit is unknown;
see [CP19| for a somewhat related context.

2.5 Discussion

We presented three conceptually different crowd dynamics models that describe
the joint evolution of active—passive populations.

In Section 2.2, we introduced two different lattice models for the active—passive
pedestrian dynamics: one of the models describes the evacuation of pedestrian
populations from an obscure room, while another model employs the scenario
of pedestrians walking in a built environment and entering a room from two
opposite sides. The descriptions are based on a simple exclusion process. From
the statistical physics perspective, there are potential open directions that would
need further discovery. A large scale model with a more complexity geometry (e.g.
stadium, airport, ...) can be studied. The idea of mixed pedestrian flows brings
in a lot interesting questions in the field of pedestrian evacuation studies, one of
them is the topic of "exit choices". Also, it would be interesting to build a more
realistic crowd model where the active pedestrians can transmit the information
of the geometry to the passive pedestrians. Within this framework, one can
consider an intelligent design of building interiors to provide a basis for smart
evacuation signaling systems.

In Section 2.3, we presented a fluid-like driven system modeling the active—
passive pedestrian dynamics in a heterogenous domain. It would be interesting
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if we can extend the current model for a more complex geometry involving the
presence of fire, smoke, obstacles as well as exit doors. From a micro-to-macro
perspective, it is worth studying whether a generalized Forchheimer flow model
(i.e. the first partial differential equation in (2.4)) can be obtained in principle
via homogenization techniques (like in [LLPWI11]|, e.g.), but it is not clear at
this stage how a suitable microscopic model defined at the level of the geometry
depicted in Figure 2.5 would look like.

In Section 2.4, we decided to consider a system of stochastic differential equa-
tions of Skohorod type modeling again the dynamics of active—passive pedestrian
dynamics in a heterogenous domain. In order to have a more realistic model,
it would be interesting to extend the scenario with including exit doors, where
absorbing boundary conditions are defined. This brings in the question how to
define mixed reflecting and absorbing boundary conditions in the Skorohod setup.

In order to connect microscopic and macroscopic time and length scales, it
would be instructive to formulate hybrid pedestrian dynamics in complex geome-
tries where there is a feedback mechanism between population dynamics at micro
and macro scales and their surrounding environment. A multiscale setting where
deterministic partial differential equation would need to be coupled with SDEs.
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Chapter 3

A lattice model for active—passive
pedestrian dynamics

In this chapter, we study the pedestrian escape from an obscure room using
a lattice gas model with two species of particles. One species, called passive,
performs a symmetric random walk on the lattice, whereas the second species,
called active, is subject to a drift guiding the particles towards the exit. The drift
mimics the awareness of some pedestrians of the geometry of the room and of the
location of the exit. We provide numerical evidence that, in spite of the hard core
interaction between particles — namely, there can be at most one particle of any
species per site — adding a fraction of active particles in the system enhances the
evacuation rate of all particles from the room. A similar effect is also observed
when looking at the outgoing particle flux, when the system is in contact with an
external particle reservoir that induces the onset of a steady state. We interpret
this phenomenon as a discrete space counterpart of the drafting effect typically
observed in a continuum set—up as the aerodynamic drag experienced by pelotons
of competing cyclists. This is based on [CCMT19].

3.1 Introduction

This work is part of a larger recent research initiative oriented towards investi-
gating the evacuation behavior of crowds of pedestrians where the geometry in
which the dynamics takes place is partly unknown and possibly also with limited
visibility. Such scenarios are encountered for instance when catastrophic situa-
tions occur in urban environments (e.g., in large office spaces), in tunnels, within
underground spaces and/or in forests in fire. We refer the reader, for instance,
to [ABCK16, FRNF13, MWS14, WS14, XJJS16| and references cited therein, as
well as to our previous results; see e.g. [CCCM18|. Experimental information
in this context is provided, for instance, in [vKS17] and [OP17] (also in connec-
tion with what is usually referred to as "faster-is-slower" effect). In the current
framework, our hypothesis is that the crowd under consideration is always het-
erogeneous in the sense that some part of the population is well informed about
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the details of the geometry of the location and corresponding exits as well as
of the optimal escape routes and consequently adapts its motion strategy, while
the rest of the population has a passive attitude and move without following a
precise strategy. This is exactly the standing assumption we have investigated
in [CMRT19,RIJM19] for a dynamics in smoke scenario.

It turns out that in situations where the information can only difficultly be
transmitted from pedestrian to pedestrian (like when large crowds are present
and/or if the geometry of the evacuation is largely unknown or invisible and/or
groups are not able to act rationally), the use of leaders to guide crowds towards
the exists might not always be possible, or it works inefficiently. In such cases,
leadership is not essential to speed up evacuation'. So, what can then be still
done to improve evacuations for such unfavorable conditions, i.e. to decrease
the evacuation time of the overall crowd? One of the main points we want to
make here is the following: Even if information cannot be transmitted within the
crowd, simply having a suitable fraction of informed pedestrians speeds up the
overall evacuation time.

We study the typical time needed by a heterogeneous crowd of pedestrians to
escape a dark room. The heterogeneity of the crowd is incorporated in the fact
that we consider two pedestrian species, the active and the passive one, i.e., those
who know the location of the exit and those who do not. Using a lattice—type
model, we show that the presence of pedestrians aware of the location of the exit
helps the unaware companions to find the exit of the room even in absence of any
information exchange among them. This effect will be called drafting and it has
a twofold interpretation: i) active particles, quickly moving towards the exit, will
leave a wake of empty sites in which the unaware particles can jump in, so that
they are guided to the exit; ii) active pedestrians, in their rational motion towards
the exit, push their passive companions to the exit as well. People belonging to
the same group do not necessarily have to move together or coherently, for they
only share the same dynamical rules. In other words, the motion of one pedestrian
is not directly affected by the motion of the pedestrians belonging to the same
group. The sole interaction we consider here is the hard—core repulsion between
any pair of pedestrians, regardless of their group. In this sense the situation we

!This is contrary to situations like those described on [[DCLO05|, where leadership
is an efficient crowd management mechanism. Yet, often in pedestrian crowds there
are no obvious leaders, such as those present, for instance, in political demonstrations.
There is contrary evidence concerning the efficiency of the leadership in managing
crowds. For instance, sometimes artists (who could be seen as leaders of crowds) have
wrongly been accused of working against safety personnel or police. A famous example
is that of the band Pearl Jam at the Roskilde Festival in 2001. A number of people
died and responsibility was placed on the band and their actions. The inquiry that
came later then altered this view. See some information on this matter can be found via
https://uproxx.com/music/pearl-jam-roskilde/. Another example dates back to the 1989
Hillsborough Disaster. Using Hillsborough literature, police accused the crowds in the wake of
the tragic event but, almost 30 years later, all accusations were dropped and blame was heavily
placed on police and organisation. This article seems to cover it: https://www.tandfonline.
com/doi/full/10.1080/14660970420002352097casa_token=07xM8m5HQScAAAAA:
AUSDN18LPnuSv5a01w0iw3WXEXA2AHDEOSM7szy6WAkzoql4v0c2Niv44wQK5WC1leDg_qYbNFJPLLA.
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have in mind is different from the one considered in some experiments, where
people in the same social group move coherently and not independently [vKS17].

We refer the reader to for instance to [ACK15, BCGT16, CPT14| for some
level of details on crowd dynamics modelling and to [CC18, CKMvS16b, CP17]
for relevant works regarding the handling of the presence of the obstacles and the
way they affect the pedestrian motion. Mind also that similar situations appear
frequently also in soft matter physics cf. e.g. [DAMI11].

The reminder of the chapter is organized as follows. In Section 3.2 we de-
fine the model. Section 3.3 is devoted to the study of the evacuation time. In
Section 3.4 a slightly modified version of the model is considered, so that a not
trivial stationary state is reached. For such a model the stationary exit flux is
thus studied. In Section 3.5, we summarize our conclusions and give a glimpse of
possible further research.

3.2 The model

The room is the square lattice A = {1,..., L} x{1,..., L} C Z? of side length L,
with L an odd positive integer number, see Figure 3.1. An element = = (xy, z5)
of the room A is called site or cell. Two sites x,y € A are said nearest neighbor if
and only if |z —y| = 1. We conventionally call horizontal the first coordinate axis
and vertical the second one. The words left, right, up, down, top, bottom, above,
below, row, and column will be used accordingly. We call exit a set of we, pairwise
adjacent sites, with we, an odd positive integer smaller than L, of the top row of
the room A symmetric with respect to its median column. In other words, the
exit is a centered slice of the top row of the room mimicking the presence of an
exit door. The number we, will be called width of the exit. Inside the top part
of the room we define a rectangular interaction zone, namely, the visibility region
V', made of the first L, top rows of A, with the positive integer L, < L called
depth of the visibility region. By writing L, = 0, we refer to the case in which no
visibility region is considered.

We consider two different species of particles, i.e., active and passive, mov-
ing inside A (we shall sometimes use in the notation the symbols A and P to
respectively refer to them). Note that the sites of the external boundary of the
room, that is to say the sites z € Z? \ A such that there exists y € A nearest
neighbor of z, cannot be accessed by the particles. The state of the system will
be a configuration n € Q = {—1,0,1}* and we shall say that the site = is empty
if n, = 0, occupied by an active particle if n, = 1, and occupied by a passive
particle if n, = —1. The number of active (respectively, passive) particles in
the configuration 7 is given by na(n) = >, cx 01n, (resp. np(n) = > cr0-11.),
where ¢.. is Kronecker’s symbol. Their sum is the total number of particles in
the configuration 7.

The dynamics in the room is modeled via a simple exclusion random walk
with the two species of particles undergoing two different microscopic dynamics:
the passive particles perform a symmetric simple exclusion dynamics on the whole
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Figure 3.1: Schematic representation of our lattice model. Blue and red disks
denote passive and active particles, respectively. The rectangle of sites delimited
by the red contour denotes the exit. Black and red arrows (color online) denote
transitions performed with rates 1 and 1 + €, respectively.

lattice, while the active particles, on the other hand, perform a symmetric simple
exclusion walk outside the visibility region, whereas inside such a region they
experience a drift pushing them towards the exit. In other words, the whole
room is obscure for the passive particles, while, for the active ones, only the
region outside the visibility region is obscure.

What concerns this precise setup, the dynamics is incorporated in the con-
tinuous time Markov chain 7n(t) on Q with rates ¢(n,n') defined as follows: Let
e > 0 be the drift; for any pair x = (x1,22),y = (y1,y=2) of nearest neighbor sites
in A we set e(x,y) = 0, excepting the following cases in which we set €(z,y) = e:

- x,y € V and y» = x5 + 1, namely, x and y belong to the visibility region
and z is below y;

—xz,y € Vand y; =21 + 1 < (L+1)/2, namely, = and y belong to the left
part of the visibility region and x is to the left with respect to y;

—z,y€Vand y; =x; — 1> (L+1)/2, namely, = and y belong to the right
part of the visibility region and x is to the right with respect to y.

Next, we let the rate c¢(n,n’) be equal

— to 1 if 1’ can be obtained by 7 by replacing with 0 a —1 or a 1 at the exit
(particles leave the room);

— to 1 if ' can be obtained by n by exchanging a —1 with a 0 between two
neighboring sites of A (motion of passive particles inside A);

— to 1+ €(x,y) if ’ can be obtained by n by exchanging a +1 at site  with
a 0 at site y, with x and y nearest neighbor sites of A (motion of active
particles inside A);
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Figure 3.2: Configurations of the model sampled at different times (increasing in lex-
icographic order). Parameters: L = 15, wex = 7, Ly = 5, and ¢ = 0.3. Red pixels
represent active particles, blue pixels denote passive particles, and gray sites are empty.
In the initial configuration (top left panel) there are 70 active and 70 passive particles.

— to 0 in all the other cases.

The infinitesimal generator L acts on continuous bounded functions f : Q —

R as
L) =" eln)f ) — F(n)]. (3.1)
n'e
The probability measure induced by the Markov chain started at 7 is denoted by
P, and the related expectation is denoted by E,. We refer to [Pav14,Spo91| where
similarly—in—spirit models are described mathematically in a rigorous fashion.

The initial number of active (respectively, passive) particles is denoted by
Na = na(n:(0)) (respectively, Np = np(n,(0))). We also let N = Nj + Np be
the initial total number of particles.

For any choice of the initial configuration 7(0) in €2, the process will eventually
reach the empty configuration O corresponding to zero particles in the room which
is an absorbing point of the chain.

As alternative working scenario, we will study the dynamics described above
also in the presence of a solid obstacle hindering the pedestrian flow in the room.
The obstacle is made of an array of sites permanently occupied by fictitious
particles. In such a way these sites are never accessible to the actual interacting
particles within our system.

The dynamics in both the presence and in the absence of the obstacle is the
same and all the parameters have the same meaning and take similar values. In
other words, we are implicitly assuming that the presence of the obstacle does
not affect the pedestrian behavior: the obstacle is simply a barrier that must be
avoided by the walking pedestrian.

Although, in principle, there is no restriction on the choice of the obstacle
geometry, in this framework we always consider centered squared obstacles. A
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Figure 3.3: Asin Figure 3.2, the obstacle is a centered 5 x 5 square. This fixed obstacle
is depicted with white pixels.

thorough investigation of the effect of the choice of obstacle geometry on the evac-
uation time for mixed pedestrian populations moving thorough partially obscure
rooms deserves special attention and will be done in a forthcoming work.

We simulate this process using the following scheme: at time ¢ we extract
an exponential random time 7 with parameter the total rate > ., c(n(t), () and
set the time equal to t + 7. We then select a configuration using the probability
distribution c(n(t),n)/ > ¢eq c(n(t), ¢) and set n(t +7) = 7.

As we have already pointed out in Section 3.1, the main goal of the paper
is to detect drafting in pedestrian flows, namely, identify situations when the
evacuation of passive particles is favored by the presence of the active ones, even
if no leadership or other kind of information exchange is allowed. We expect
that this phenomenon will be effective, provided the active particles will spend a
sufficiently long time in the room. This seems to help efficiently passive particles
to escape. This effect is illustrated in the Figures 3.2 and 3.3, where we show
the configuration of the system at different times both in the absence, and re-
spectively, in the presence of an obstacle. Indeed, the sequences of configurations
show that, though the evacuation of active particles is faster than that of the

passive ones, even at late times the fraction of active particles is still reasonably
high.

3.3 The evacuation time

Consider the dynamics defined in Section 3.2, given a configuration n € C. We
let 7, be the first hitting time to the empty configuration, i.e.

T, = inf{t > 0: n(t) =0}, (3.2)
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for the chain started at 7. Given a configuration n € C, we define the evacuation

time starting from 7 as

We have defined the evacuation time as the time needed to evacuate all the
particles initially in the system, that is to say the evacuation time is the time at
which the last particle leaves the room. In this section as well as in the next one,
we study numerically the evacuation time for a fixed initial random condition and
then produce various realizations of the process for specific values of the initial
drift € and of the visibility depth L,. To this end, we consider two geometrically
different situations: (i) the empty roomand (ii) the room with a squared obstacle
positioned at the center.

3.3.1 The empty room case

We consider the system defined in Section 3.2 for L = 15 (side length of the
room), we, = 7 (exit width), Np = 70 (initial number of passive particles) Ny =
0,70 (initial number of active particles) L, = 2,5,7,15 (visibility depth), and
e =10.1,0.3,0.5 (drift). More details are provided in the figure captions.

All the simulations are done starting the system from the same initial config-
uration chosen once for all by distributing the particle at random with uniform
probability. More precisely, two initial configurations are considered, one for the
case Np = 70 and Ny = 0 and one for the case Np = 70 and Ny = 70, chosen
in such a way that in the two cases the initial positions of the passive particle is
the same, see Figure 3.4 for a schematic illustration.

We then compute the time needed to evacuate all the particles initially in
the systems and, by averaging over 10° different realizations of the process, we
compute a numerical estimate of the evacuation time (3.3) for the chosen initial
condition. Results are reported in Figure 3.5.

The main result of our investigation is the following: the evacuation time 7},
corresponding to the initial configuration with active particles (see the illustration
(b) in Figure 3.4) is less than that corresponding to the initial configuration with
sole passive particles (see the illustration (a) in Figure 3.4). This result is non—
trivial since our lattice dynamics is based on a hard core exclusion principle
[Spo91| — the motion of particles towards the exit is hindered by the presence
of nearby particles. In the context of this work, we refer to this phenomenon as
drafting, marking this way the analogy with the drafting or aerodynamic drag
effect encountered by pelotons of cyclists racing towards the goal; we refer the
reader, for instance, to |[BvDTT18, BTvDA18| and references cited therein, for
wind tunnel and computational evidence on drafting. It is crucial to note that
the presence of active particles is essential for the onset of this phenomenon: if
all active particles in the configuration (b) in Figure 3.4 (represented by the red
pixels) were replaced by passive ones (blue pixels), the evacuation time would
clearly become larger than with the configuration (a). This is essentially due to
the exclusion constraint of the lattice gas dynamics.
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Figure 3.4: Two initial configurations for the lattice gas dynamics. Blue and
red pixels represent, respectively, passive and active particles. The thick dashed
line surrounding a large fraction of the grid denotes the presence of reflecting
boundary conditions. The exit door is located in presence of the missing segment
of dashed line. In (a) only Np passive particles are present. In (b), the passive
particles occupy the same initial positions as in (a), and N, active particles are
also included (we fix No = Np). We shall compare the evacuation time relative
to the two configurations in (a) and (b).

In the left panel in Figure 3.5, the dependence of the evacuation time on the
drift € is shown. Open symbols refer to the evacuation time for Np = 70 and
Na = 70; for each value of € we repeat the measure of the evacuation time also for
a system in which only passive particles are present. We then obtain the sequence
of solid disks reported in the figure which is approximatively constant, since the
dynamics of the passive particles does not depend on €. We observe that the small
fluctuations visible in the data represented by solid disks Figure 3.5 come from
considering averages over a finite number of different realizations of the process
(all starting from the given initial configuration).

Since the number particles in the initial configuration in the experiments with
the presence of active particles is double with respect to that considered in the
case of only passive particles, one would expect a larger evacuation time. This
is indeed the case for a small visibility depth, i.e. for L, = 2. In such a case,
it is worth noting that the evacuation time decreases when the drift is increased
as it is in fact reasonable since a larger drift favors the fast evacuation of active
particles, but it remains larger than the evacuation time in absence of active
particles for all the values of € that we considered. On the other hand, for larger
values of the visibility depth, as long as the drift is large enough, the evacuation
time in the presence of active particles becomes smaller than the one measured
in the presence of only passive particles.

This effect is rather surprising. It can interpreted by saying that the presence
of active particles, which have some information about the location of the exit,
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Figure 3.5: Evacuation time in an empty room for L = 15, we, = 7, Ny = 0 and
Np = 70 (solid disks) and Ny = Np = 70 (open symbols). Left panel: L, = 2
(open triangles), L, = 5 (open circles), L, = 7 (open pentagons), L, = 15 (open
squares). Right panel: ¢ = 0.1 (open triangles), ¢ = 0.3 (open circles), e = 0.5
(open squares).

helps passive particles to evacuate the room even if no information exchange is
allowed, and, mostly, even in presence of the exclusion constraint of the lattice
gas dynamics. Indeed, passive particles continue their blind symmetric dynamics,
nevertheless their evacuation time is reduced. The sole interaction among passive
and active particles is the exclusion rules, hence one possible interpretation of this
effect is that active particles, while walking toward the exit, leave behind a sort
of empty sites wake. Passive particles, on the other hand, can benefit of such an
empty path and be thus blindly driven towards the exit. A different interpretation
is that passive particles, due to the exclusion rule, are pushed by active particles
towards the exit.

In the right panel of Figure 3.5, for the same choices of parameters and initial
conditions, we show the evacuation time as a function of the visibility depth L,
for several values of the drift e. Data can be discussed similarly as we did for
those plotted in the left panel of the same figure: for small drift, and for any
choice of the visibility length, the evacuation time in presence of active particles
is larger than the one measured with sole passive particles. But, if the drift is
increased, for a sufficiently large visibility depth, the evacuation time in presence
of active particles becomes smaller than the one for sole passive particles though
the total number of particles to be evacuated is doubled. As before we interpret
these data as an evidence of the presence of the drafting effect.

Remarkably, for sufficiently large drift €, the evacuation time is not monotonic
with respect to the visibility depth. In other words, there is an optimal value of
L, which minimizes the evacuation time. The fact that for L, too large, i.e.,
comparable with the side length of the room, the evacuation time increases with
L, can be explained remarking that if active particles exit the system too quickly
then passive particles, left alone in the room, evacuate it with their standard time.
Hence, the drafting effect is visible as long as the parameters ¢ and L, make the
motion of the active particles towards the exit enough faster than that of passive
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Figure 3.6: Evacuation time in an empty room for L = 15, wex = 7, Ny = 0
and Np = 70 (solid disks), Nao = 35 and Np = 70 (open triangles), Ny = 70 and
Np = 70 (open circles) and Ny = 0 and Np = 140 (open squares). Left panel:
L, = 2. Right panel: L, =T7.

particles, but not too fast. Indeed, if the active particles move too slowly, they
behave as passive ones: this would make the evacuation time larger, due to the
standard exclusion constraint of our lattice gas dynamics. On the other hand,
if the active particles move too fast, passive particles remain soon alone on the
lattice, therefore the evacuation time relative to the configuration of type (b) in
Figure 3.4 reduces to that relative to the configuration of type (a).

Before concluding this Section, we shall also highlight the effect of varying
the relative amount of active and passive particles in the initial configuration.
In Figure 3.6 we also present the average evacuation times for the cases with
Np = 70, Ny = 35 and Np = 140, Ny = 0, for two different values of L,.
One readily notices that when the number of passive particles is doubled (case
Np = 140 and N = 0) the evacuation time increases and it obviously results to
be independent of ¢ and L,. For small visibility depth (L, = 2 in the left panel
in Figure 3.6) the evacuation time for the case Ny = 35 and Np = 70 is smaller
than the one mesured in the case Ny = 70 and Np = 70 for any € and shows a
monotonic decrease. The results are more interesting for larger visibility depth
(Ly = 7 in the right panel in Figure 3.6): if the drift € is large enough, namely,
larger than about 0.2, the total evacuation time in presence of active particles
becomes smaller than the one measured for sole passive particles both for the case
Ny = 35 and Np = 70 and Ny = 70 and Np = 70, that is to say, in both cases
the drafting effect shows up. More interestingly, the evacuation time is smaller in
the case in which more active particles are present (open circles in the picture):
this is a sort of signature of the drafting effect.

3.3.2 The room with an obstacle

Simulations similar with those described in Section 3.3.1 have been run in presence
of a centered square obstacle made of 5 x 5 sites of the room not accessible by
both active and passive particles. As before, we have computed the evacuation
time in such a case and results are reported in Figure 3.7.
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Figure 3.7: Evacuation time in a room with a 5 x 5 squared centered obstacle for
L =15, wex =7, No = 0 and Np = 70 (solid disks) and Ny = Np = 70 (open
symbols). Left panel: L, = 2 (open triangles), L, = 5 (open circles), L, = 7
(open pentagons), L, = 15 (open squares). Right panel: e = 0.1 (open triangles),
e = 0.3 (open circles), ¢ = 0.5 (open squares).

It is immediate to remark that plots in Figure 3.7 are very similar to those
shown in Figure 3.5. Our interpretation of the results is then the same. We just
mention that the vertical scale is slightly different and we notice that, in presence
of an obstacle, the drafting effect is slightly increased. The fact that the presence
of an obstacle with suitable geometry can favor the evacuation of a room is a fact
already established in the literature, see, e.g., [CCCM18,CC18,CKMvS16b,CP17]
and references therein.

3.4 The stationary flux

To detect non—trivial behaviors as time elapses beyond a characteristic walking
timescale, we consider now a modified version of the model proposed in Sec-
tion 2.2.2. Essentially, the current situation is as follows: Particles exiting the
system are introduced back in one site, randomly chosen among the empty sites
of the room so that the total number of active and passive particles is approxi-
matively kept constant during the evolution. This way, the system reaches a final
stationary state and in such a state we shall measure the flux of exiting active
and passive particles.

The main idea is to add a reservoir in which particles exiting the room are
collected. Particles in the reservoir are then introduced inside A with rates de-
pending on the number of particles in such a reservoir and on the number of
empty sites in the room.

More precisely, recall the definition of the number of active and passive parti-
cles na(n) and np(n) in the configuration n and fix two non—negative integer num-
bers Ny and Np. Consider the Markov process defined in Section 2.2.2 with an
initial configuration with total number of active and passive particles respectively
equal to Na and Np and rates c¢(n,n’), for n,n" € C, defined as in Section 2.2.2
with the following modification:
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— if ' can be obtained by 1 by adding a +1 at an empty site = then c¢(n,n") =
[No — na(n)]/(L? — na(n) — np(n)) (moving an active particle from the
reservoir to an empty site in the room);

— if i’ can be obtained by 1 by adding a —1 at an empty site = then c¢(n,n') =
[Np — np(n)]/(L* — na(n) — np(n)) (moving a passive particle from the
reservoir to an empty site in the room).

At time ¢, the quantities Ny —na (n(t)) and Np—np(n(t)) represent the number
of active, and respectively, passive particles in the reservoir at time ¢, whereas
L? — na(n(t)) — np(n(t)) is the number of empty sites of the room at time t.

With these changes in the definition of the rate, the total number of particles
in the system (considering the room and the reservoir) is conserved. The number
of particles in the room, on the other hand, will fluctuate due to the fact that
particles can accumulate in the reservoir.

In the study of this dynamics, the main quantity of interest is the stationary
outgoing flur or current which is the value approached in the infinite time limit
by the ratio between the total number of particle that in the interval (0, ¢) jumped
from the exit to the reservoir and the time ¢.

3.4.1 The empty room case

We consider the system defined in Section 3.4 for L = 15 (side length of the
room), We, = 7 (exit width), Np = 70 (number of passive particles) Ny = 0,70
(number of active particles) L, = 2,5, 7,15 (visibility depth), and e = 0.1,0.3,0.5
(drift). More details on the selected parameters regimes are provided in the figure
captions.

As in Section 3.3.1, all the simulations share the same initial configuration
obtained by distributing the particle at random with a uniform probability. More
precisely, two initial configurations are considered, one for the case Np = 70 and
Nx = 0 and one for the case Np = 70 and Np = 70, chosen in such a way
that in the two cases the initial positions of the passive particle is the same, see
Figure 3.4.

We then let the system evolve and compute the ratio of the number of particles
jumping from the exit to the reservoir to time. We consider, in particular, the flux
of passive particles, in absence and in presence of the active ones. This observable
fluctuates until it approaches a roughly constant value after about k = 6.36 x 107
MC steps (corresponding, approximately, to time 328342) is reached. Our results
are reported in Figure 3.8.

We show the dependence of the stationary flux of passive particles on the drift
¢ in the left panel of Figure 3.8. Open symbols refer to the flux for Np = 70 and
Np = 70; for each value of € we repeat the measure of the flux time also for a
system in which only passive particles are present. We then obtain the sequence
of solid disks reported in the figure which is approximatively constant, since the
dynamics of the passive particles does not depend on .
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Figure 3.8: Stationary flux of passive particles in an empty room for L = 15, we, =
7, N» = 0 and Np = 70 (solid disks) and Ny = Np = 70 (open symbols). Left
panel: L, = 2 (open triangles), L, = 5 (open circles), L, = 7 (open pentagons),
L, = 15 (open squares). Right panel: ¢ = 0.1 (open triangles), ¢ = 0.3 (open
circles), ¢ = 0.5 (open squares).

In the right panel of Figure 3.8, for the same choices of parameters and initial
conditions, we show the stationary flux as a function of the visibility depth L,
for several values of the drift e.

Both figures exhibit firstly an increase of the flux in presence of active particles
at zero drift or zero visibility depth with respect to the case in which only passive
particles are present (filled disks in Figure 3.8. This situation can be understood
by considering that, despite the exclusion constraint of the lattice gas dynamics,
doubling the number of particles can justify the increase of the flux at zero drift, if
no complete clogging is reached. It is instructive to follow the sequence of empty
symbols in Figure 3.8 for increasing values of € or L,. Note that an increase of
the drift yields a monotonic increase of the stationary flux as long as the visibility
depth is not too large. In fact, the monotonic increase of the flux is not observed
with L, = 15 (see the open squares in the left panel). This means that in the
presence of such a large visibility depth the evacuation of the passive particles
can be hindered by the presence of active particles if the drift is not large enough.

A quite interesting and a priori unexpected fact is the non—monotonicity of
the stationary flux with respect to the visibility depth: this can be seen by looking
at the different curves in the left panel and it is also put in evidence in the plots
of the right panel.

It is also worth looking at the behavior of the transient fluxes as functions
of time in the same evacuation set-up discussed earlier in Sec. 3.3, in which no
external particle reservoir is included. To this aim, for a given initial condition, we
averaged the flux of passive particles over 10? different realizations of the process.
Coherently with the behavior observed for the stationary fluxes in Fig. 3.8, we
notice once more that the presence of active particle enhances the outgoing flux
of passive particles, for all the considered values of € and L,, this being again a
trace of the underlying drafting phenomenon.

To get a deeper insight in this interesting effect, we show in Figure 3.10 the
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Figure 3.9: Transient flux of passive particles in an empty room for L = 15,
Wex = 7, No = 0 and Np = 70 (solid disks) and Npo = Np = 70 (open symbols).
In the various panels, shown are the cases with € = 0.1 (empty triangles), ¢ = 0.3
(empty circles) and e = 0.5 (empty squares). Different values of L, are considered:
L, = 2 (top left panel), L, =5 (top right panel), L, = 7 (bottom left panel), and
L, =15 (bottom right panel).

stationary occupation number profile. To obtain these results, we have run the
dynamics for a sufficiently long time (order of 6.36 x 107 MC steps) so that the
system reaches the stationary state. Starting off from that time, we have averaged
the occupation number |n,(t)| over time at each site of the room. The resulting
function takes values between zero and one; see Figure 3.10 for an illustration.

The plots indicate that for large drift and large visibility depth that clogging
along the median vertical line can take place. the occurrence of such clogging
situations partly explain the not—monotonic behavior of the stationary flux with
varying the visibility depth.

The emergence of the central clogging is related to the large value of the drift
pointing towards the central direction. This phenomenon reminds the faster—is—
slower behavior already pointed out in the literature [HFV00, KS02|, even if in
this case the origin of the phenomenon can be traced back to the intensity of the
drift rather than to the pedestrian speed.

3.4.2 The room with an obstacle

Simulations similar with those described in Section 3.4.1 have been run in presence
of a centered square obstacle made of 5 x 5 sites of the room not accessible by
both active and passive particles. As before, we have computed the stationary
flux and our results are reported in Figure 3.11.

The results plotted in Figures 3.11 and 3.12 are very similar to those shown in
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Figure 3.10: Occupation number profile at stationarity for L = 15, wex = 7, Tex =
5, Ny = Np =70, e =0.1,0.3,0.5 (from the top to the bottom), L, = 2,5,7,15
(from the left to the right).

Figure 3.8 and 3.10. Our interpretation of the results is essentially the same. Mind
though that, in order to reach the stationary state, we had to run the dynamics
for a larger time than in the case of the empty room model (i.e., of order of
9.0 x 10" MC steps). Also from the point of view of the computed stationary flux
measures, our results suggest that the presence of the obstacle slightly favors the
exit of particles from the room. This was noted in Section 3.3.2 in connection with
the evacuation time measurements; see also [CCCM18,CC18, CKMvS16b,CP17].
Comparing Figures 3.8 and 3.11 one realizes that the dependence of the sta-
tionary flux on the drift and on the visibility depth is milder. This fact can be
explained remarking that the phenomenon of accumulation of particles along the
median vertical line of the room discussed in Section 3.4.1 is less evident. Again,
the obstacle seems to be keeping particles far apart so that clogging is reduced.

3.5 Discussion

We studied the problem of the evacuation of a crowd of pedestrians from an
obscure region. We start from the assumption that the crowd is made of both
active and passive pedestrians. The hazardous motion of pedestrians due to lack
of light and, possibly, combined also to a high level of stress is modeled via a simple
random walk with exclusion. The active (smart, informed, aware, ...) pedestrians,
which are aware of the location of the exit, are supposed to be subject to a given
drift towards the exit, while the passive (unaware, uninformed) pedestrians are
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Figure 3.11: Stationary flux in a room with a 5 x 5 squared centered obstacle for
L =15, wex = 7, Ny = 0 and Np = 70 (solid disks) and Ny = Np = 70 (open
symbols). Left panel: L, = 2 (open triangles), L, = 5 (open circles), L, = 7
(open pentagons), L, = 15 (open squares). Right panel: e = 0.1 (open triangles),
e = 0.3 (open circles), e = 0.5 (open squares).
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Figure 3.12: Occupation number profile at stationarity in presence of a 5 x 5
centered obstacle for L = 15, wex = 7, Texy = 5, No = Np =70, ¢ = 0.1,0.3,0.5
(from the top to the bottom), L, = 2,5,7,15 (from the left to the right).
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performing a random walk within the walking geometry and eventually evacuate
if they accidentally find the exit. The particle system is interacting via the site
exclusion principle — each site can be occupied by only a single particle.

The main observable is the evacuation time as a function of the parameters
caracterizing the motion of the aware pedestrians. We have found that the pres-
ence of the active pedestrians favors the evacuation of the passive ones. This is
rather surprising since we explicitly do not allow for any communication among
the pedestrians. This seems to be due to some sort of drafting effect. A drag
seems to arise due to the empty spaces left behind by the active pedestrians
moving towards the exit and naturally filled by the completely random moving
unaware pedestrians.

We have also remarked that too smart active pedestrians can limit the drafting
effect: indeed, if they exit the room too quickly the unaware pedestrian do not
have the time to take profit of the wakes of empty side that they left during their
motion towards the exit.

A promising research line concerns the investigation of evacuation times when
different species of particles are assumed to choose among different exit doors.
Such topic is relevant not only for urban situations but also for tunnel fires or for
forrest fires expanding towards the neighborhood of inhabited regions.

The main open question in this context is the model validation. A suitable
experiment design is needed to make any progress in this sense. This will be our
target in forthcoming work.

With regards to the building up of the aerodynamic drag, it would also be
interesting to verify the onset of the drafting phenomenon in lattice gas models
in the presence of non-standard transport regimes leading to uphill diffusion
of particles; see [CMP17] (and references cited therein) for the study of such
transport mechanisms.
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Chapter 4

When diffusion faces drift:

consequences of exclusion processes
for bi—directional pedestrian flows

Stochastic particle-based models are useful tools for describing the collective
movement of large crowds of pedestrians in crowded confined environments. Us-
ing descriptions based on the simple exclusion process, two populations of par-
ticles, mimicking pedestrians walking in a built environment, enter a room from
two opposite sides. One population is passive — being unaware of the local en-
vironment; particles belonging to this group perform a symmetric random walk.
The other population has information on the local geometry in the sense that
as soon as particles enter a visibility zone, a drift activates them. Their self-
propulsion leads them towards the exit. This second type of species is referred
here as active. The assumed crowdedness corresponds to a near—jammed scenario.
The main question we ask in this chapter is: Can we induce modifications of the
dynamics of the active particles to improve the outgoing current of the passive
particles? To address this question, we compute occupation number profiles and
currents for both populations in selected parameter ranges. Besides observing
the more classical faster—is—slower effect, new features appear as prominent like
the non—monotonicity of currents, self-induced phase separation within the active
population, as well as acceleration of passive particles for large—drift regimes of
active particles. This is based on [CCMT20).

4.1 Introduction

The pedestrian flows in agglomerated urban environments and the dynamics of
microscopic constituents in cellular membranes, glasses, or supercooled liquids
share an important feature: the dynamics takes place in a crowded environment
with obstacles that are often active (i.e., not necessarily fixed in space and time).
The management of the dynamics in these kinds of systems is far from being
understood mainly due to the fact that the interplay between transport and
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Figure 4.1: Qualitative description of the model: red and blue dots represent
active and passive particles, respectively. Active particles are pushed toward
the exit in the visibilty zone. Outside the visibility region all particles move
isotropically. Active particles enter the room through the right door and exit
through the left one, while passive particles enter through the left door and exit
trough the right one.

particle—particle as well as particle-obstacle interactions is very complex; see,
e.g., [GCM15,SLH09, CCMT19, WWLS19| and references cited therein.

Exploring by means of computer simulations is an efficient tool to shed light
on the qualitative behavior of systems experiencing countercurrent—like behavior,
that are found extensively in nature (think, for instance, of the heat exchange
mechanism, called rete mirabile, in biological systems) and are advocated in a
variety of engineering applications, e.g. in liquid chromatography (in which the
stationary phase is held in place by an external force field), and in membrane—
based gas separation technologies.

Depending on the level of observation, the modeling descriptions refer to
micro—, meso—, macro—levels, or to suitable (multiscale) combinations thereof
(see, e.g., IMCKB,E11]). In this framework, we consider a microscopic approach
based on a modification of the classical simple exclusion® process formulated for
two different populations of interacting pedestrians (particles). Essentially, two
populations of particles, mimicking pedestrians walking in a built environment,
enter a room from two opposite sides with the intention to cross the room and
then exit from the door on the opposite side of the room.

Because of its own unawareness or lack of prior knowledge of the local environ-
ment, one population is passive, and hence particles belonging to this population
perform a symmetric random walk. On the other hand, the second population
has information on the local geometry, in the sense that as soon as particles enter
a visibility zone, a drift activates them by sending them towards the exit door,
see Figure 4.1. This type of particles is referred here as active. The assumed
crowdedness corresponds to a near—jammed scenario. To fix ideas, the number of

LA simple exclusion process refers to the stochastic motion of interacting particles on a lattice
where the interaction is given by the exclusion (excluded “volume" constraints) property, i.e.,
two particles may not occupy the same site simultaneously. We refer the reader to [MPS89]
for rigorous comnsiderations on the simple exclusion model and its hydrodynamic limits and
to [GFP16] for a basic modeling perspective.
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occupied sites in the room is chosen to be of the order of the 60% from the total
number of available sites?.

In an evacuation due to an emergency situation (like fire and smoke propa-
gating in the building), the a priori knowledge of the environment is certainly an
advantage (cf., e.g., [RJM19]). Hence, from this perspective, if a quick evacua-
tion is needed, then the passive population has a disadvantage compared to the
active population. We are wondering whether we can compensate at least partly
this drawback, by managing intelligently the motion of the active population. In
other words, the main question we ask in this chapter is:

Q. Can we induce modifications of the dynamics of active parti-
cles to improve the outgoing current of passive particles?

The ingredients we have at our disposal are alterations either in the drift pa-
rameter of the active particles, or in their visibility zone by fine-tuning a param-
eter for a nonlocal interaction that activates the drift—towards—exit. It is worth
noting that the latter feature is different from the nonlocal shoving of particles
proposed in [APHL15|.

To address the above question, we compute occupation number profiles and
currents for both populations in selected parameter ranges. Our numerical results
exhibit the classical faster—is—slower effect (see, e.g., [GZP114] for experimental
evidence and [STU13| for numerical simulations exhibiting this effect using Hel-
bing’s social force model) and point out as well new prominent features like the
non—monotonicity of currents, the self-induced phase separation within the active
population, as well as an acceleration of passive particles induced by a large drift
and a large visibility zone of active particles.

This research was initiated in [CKMvS16b, CKMvS16a|, motivated by our in-
tention to estimate the mean residence time of particles undergoing an asymmetric
simple exclusion within a room in perfect contact with two infinite reservoirs of
particles. Recent developments reported in [CCMT19| brought us to study draft-
ing effects via the dynamics of mixed active—passive pedestrian populations in
confined domains with obstacles and exit doors, which mimicks a built complex
environment.

4.2 Model description

We consider a square lattice A = {1,..., L} x {1,..., L} with L a positive odd
integer. The set A is referred in this context as room and its points z = (x1, z2)
as sites. Two sites at Euclidean distance one are called nearest neighbors. We
call horizontal and vertical the first and the second coordinate axes, respectively.
The horizontal and the veritical axes are, respectively, right and up oriented.

2Museums in highly touristic cities are examples of crowded areas; compare, e.g., with the
situation of Galleria Borghese in Rome as described in [CCCO19).
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The doors are the sets made of wy, and wg neighboring sites in the left—most
and right—most columns of the room, respectively, and symmetric with respect
to its median row. This mimics the presence of two distinct doors on the left and
right boundary of the room. The odd positive integers wy,, wg smaller than L will
be called width of the doors. Inside the room we define a rectangular driven zone,
namely, the visibility region V', made of the first L, left columns of A, with the
positive integer L, < L called depth of the visibility region. By writing L, = 0,
we refer to the case in which no visibility region is considered.

The dynamics will be defined so that particles will be able to exit the room

only from sites belonging to the doors: jumps from other sites to the exterior of
A will be forbidden.

L,
’ ’
Y Y
-9 T
wr, WR
[ Sia l
L

Figure 4.2: Schematic representation of our lattice model. Blue and red disks
denote passive and active particles, respectively. The rectangles of sites delimited
by the red contour denote the exit doors. Black and red arrows (color online)
denote transitions performed with rates 1 and 1+ €; or 1 + €9, respectively.

We consider two different species of particles, i.e., active and passive (we shall
sometimes use in the notation the symbols A and P to refer to them), moving
inside A with different dynamics. The interaction of particles inside the room is
modelled via a simple exclusion random walk.

The passive particles enter through the left door and exit through the right
door. They perform a symmetric simple exclusion dynamics on the whole lattice.
Simultaneously, the active particles enter through the right door and exit through
the left door. They perform a symmetric simple exclusion walk outside the vis-
ibility region, whereas inside such a region they experience also a drift pushing
them towards the left door. In other words, the whole room is obscure® for the
passive particles, while, for the active ones, only the region outside the visibility
region? is obscure. The model also includes two external particle waiting lists,
each of which is designed to collect particles of a given species when these move

3We refer the reader to [CKMvS16b|, where the authors discuss the gregarious behavior of
crowds moving in the dark.
4The concept of visibility region was introduced by the authors in [CCMT19].
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out from the lattice A through their exit door and to reinsert them back on the
lattice through their entrance door.

More precisely, we consider N, active particles and Np passive ones randomly
distributed in the room at time zero, one per site. The motion of the particles
is described by a continuous time Markov chain that is rigorously defined in the
Appendix. In more simple words, the dynamics is defined as follows: we first pick
two non—negative numbers €1,c9 > 0 called the horizontal and the vertical drift
and, for any pair x = (x1,22),y = (y1,y2) of nearest neighbor sites in A we set
€(z,y) = 0, excepting for the following cases:

— €(z,y) = e if z,y € V and y; = x; — 1, namely, = and y belong to the
visibility region and x is to the right with respect to y;

—€(r,y) = ifx,y € Vand yo = v+ 1 < (L + 1)/2, namely, = belongs to
the bottom part of the visibility region and z is below y;

— €(r,y) =g if x,y € Vand yp = 29 — 1 > (L + 1)/2, namely, x belongs to
the top part of the visibility region and x is above y.

Next, we assume that particles move with the following rates:
— a passive particle leave the room from a site in the right door with rate 1;
— an active particle leave the room from a site in the left door with rate 1+¢4;

— if the number ny of active particles in the room is smaller than N, and
the number of empty sites mg in the right door is not zero then an active
particle is added to a randomly chosen empty site of the right door with
rate [Na — na)/mg;

— if the number np of passive particles in the room is smaller than Np and
the number of empty sites mp, in the left door is not zero then a passive
particle is added to a randomly chosen empty site of the left door with rate

[Np — np|/my;

— a passive particle moves inside A from a site to one of its empty nearest
neighbors with rate 1;

— an active particle moves from the site x inside A to its empty nearest neigh-
bor y inside A with rate 1 + ¢(z,y).

We note that the quantities Ny — na and Np — np represent the number of
active, and, respectively, passive particles that exited the room and entered their
own waiting list at the considered time, whereas m; > 0 and mg > 0 are the
number of empty sites of the left and right doors at the same time.

The system will reach a stationary state, since passive particles exiting the
domain via the right door are introduced back in one site randomly chosen among
possible empty sites of the left door, while active particles leaving the system
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through the left door are introduced back also at one random site chosen among
possible empty sites of the right door. The total number of active and passive
particles in the room A is only approximatively constant during the evolution. It
slightly fluctuates due to the fact that particles may enter waiting lists. On the
other hand, the total number of particles N in the system (considering both the
room and the waiting lists) is conserved.

In the study of this dynamics, the main quantity of interest are the stationary
outgoing fluxes or currents of active and passive particles which are the values
approached in the infinite time limit by the ratio between the total number of
active and passive particles, respectively, that in the interval (0, ¢) exited through
the left and the right door and entered the waiting lists and the time ¢. In
order to discuss and to understand the behavior of currents with respect to the
model parameters, we shall also look at the active and passive particles occupation
number profiles of active and passive particles, namely, we evaluate the stationary
mean value of the occupation numbers of active and passive particles which is
equal to one if a site is occupied by a particle of the considered species or zero
otherwise.

4.3 Numerical results

We compute the currents by applying directly the definition given at the end of
Section 4.2 and the occupation number profiles as follows: we run the dynamics
for a sufficiently long time (order of 9 x 107 MC steps) so that the system reaches
the stationary state and then we average the occupation numbers for each site of
the room for the following 9 x 10” MC steps; we thus obtain a function of x € A
taking values in the interval [0, 1].

The presence of two species fighting to get to opposing exit doors reasonably
reduces the intensity of the current that we would expect to measure if a single
species were present in the room. We have tested this fact by running simulations
for one single species with the some dynamics as the one defined above and with
the same choice of parameters and we have found currents that are typically three
or four time larger.

In the following discussion the parameters are L. = 30 and Ny = Np = 280
and all of the simulations are done starting the system from the same initial
configuration chosen once for all by distributing the particles at random with
uniform probability. With such a choice of the parameters the number of occupied
sites in the room is of the order of the 60% of the total; indeed, our study, as
explained in the introduction, aims at understanding the behavior of the model
in a crowded regime.

4.3.1 The corridor model

In this subsection, the width of the doors is set equal to the size of the lattice,
namely, wy, = wg = L. In this case, it is natural to limit the discussion to the

49



06 T T T T T 7 06T

051 1 05

outgoing flux
outgoing flux

outgoing flux
outgoing flux

Figure 4.3: Corridor model: wide doors. Stationary currents of active (empty
circles) and passive particles (solid disks) and cumulative current (empty squares)
as functions of L, for ¢ = 0.05,0.1,0.15,0.2 (lexicographical order). The black
dashed lines are eye guides showing the value measured in the zero drift case.

scenario in which €5 = 0, namely only the horizontal (longitudinal with respect
to the position of the doors) component of the drift is considered. To simplify
the notation, we shall also denote the longitudinal drift €, simply by ¢.

Among the different interesting results that we will discuss in this section, we
want to single out a very peculiar behavior: since only active particles experience
the drift, changes of the parameters L, and e act directly only on the active
species. Nevertheless, due to the exclusion interaction between the two different
species, also the passive particles behavior will be affected. In particular, we will
see that a robust increase of the visibility length L, and the longitudinal drift e
will induce a significant increase of the passive particle current.

In Figure 4.3, we plot the passive and active particle currents for four different
values of the drift, i.e., ¢ = 0.05,0.1,0.15,0.2, when the visibility length L, is
varied from 0 to L. We note that the active particles current (open circles)
increases with L, up to some value where it attains a maximum. This effect is
visible in all of the panels of Figure 4.3, but the position and size of the maximum
changes. This effect is more prominent for the largest value of considered ¢ (see
bottom right panel in Figure 4.3). Moreover, excepting the smallest value of the
drift € = 0.05, soon after the active particle current reaches its maximum, the
passive and active particle currents intersect so that, for the largest value of the
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Figure 4.4: Corridor model: wide doors. Occupation number profile of passive
(top row) and active (bottom row) particles at stationarity for e = 0.15 and
L, = 20,25,30 (from left to right).

visibility length, the transport of passive particles becomes more efficient than
that of active ones.

This behavior is interesting and not trivial for two reasons: i) only active
particles are driven and, hence, the parameters we play with directly act only
on their dynamics; ii) when € and L, are increased, the active particle transport
throughout the corridor is expected to become more and more efficient. To explain
such an effect, we look at the stationary occupation profiles. In particular, we
focus our attention to the case ¢ = 0.15, namely, we closely analyze the bottom
left panel in Figure 4.3 and the corresponding occupation number profiles plotted
in Figure 4.4. In this figure, we have considered the cases L, = 20, 25,30 since
the switch in the active and passive particle currents is observed around L, = 25.

Looking at Figure 4.4, we note that for L, = 20, passive and active particles
mainly distributed close to their relative entrance doors, namely, passive particles
on the left and active particle on the right. Nevertheless, a small depletion layer in
the active particle distribution can be observed around x = 20, which is precisely
the place where those particles enter the visibility regions. This is an expected
behavior: active particle entering such a region from the right are accelerated
towards the left and start to accumulate when they meet the passive particles
standing at their left entrance. This behavior becomes more and more prominent
when the visibility length is increased; see the panels corresponding to L, =
25,30, where the presence of the depletion region and the accumulation of the
active particles in the middle of the room is more evident. As a consequence,
when the visibility length is increased, the right entrance is no more occupied
by active particles. This explains the observed increase in the passive particle
current.

Similar occupation profiles are found for the other values of the longitudinal
drift considered in Figure 4.3. Hence, the behavior of currents can be explained
similarly. We do not report such pictures because they do not add anything new
to the understanding of the behavior of our model.
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Figure 4.5: Corridor model: wide doors. Stationary currents of active (empty
circles) and passive particles (solid disks) and cumulative current (empty squares)
as functions of ¢ for L, = 7,15,23,30 (lexicographical order). The black dashed
lines are as in Figure 4.3.

In Figure 4.5, we consider larger values of ¢ for a fixed visibility length
L, = 7,15,23,30. If L, is smaller than 15, the passive and, respectively, ac-
tive particle currents decrease and increase monotonically with respect to the
drift € € [0,1]. Moreover, to a high current of active particle it corresponds a
small current of passive ones. This behavior is coherent with the occupation num-
ber profiles reported in Figure 4.6. We see an accumulation of active particles at
the right door, which prevents high passive particle currents, as well as a rather
spread distribution of passive particles in the left part of the room with minor
accumulation at the entrance, which allows high active particle currents.

The scenario changes drastically for larger values of the visibility length, see
the bottom panels in Figure 4.5 and, in particular, focus the attention on the left
one corresponding to L, = 23. Currents are not anymore monotonic functions
of the drift, and, at very low values of ¢, the active particle current is higher
than the passive particle one, as soon as the drift exceeds a certain value the
latter overtakes the former. Consequently, we see again that by increasing the
drift of active particles, the transport of passive ones is favored. This behavior
can be explained as before referring to the occupation number profiles reported
in Figure 4.7. The first three columns are similar to those shown in Figure 4.4 so
that the phenomenon can be explained similarly. However, in the fourth column
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Figure 4.6: Corridor model: wide doors. Occupation number profile of passive
(top row) and active (bottom row) particles at stationarity for L, = 15 and
e =10.2,0.4,0.48 (from left to right).

| 2 0§

Figure 4.7: Corridor model: wide doors. Occupation number profile of passive
(top row) and active (bottom row) particles at stationarity for L, = 23 and
e =0,0.18,0.25,0.35 (from left to right).

corresponding to € = 0.35, a supplementary increase in the occupation number
profile of the active particles in the middle region of the room is observed and
this explains why for € large also the passive particle currents becomes negligible.
In this regime, a clogged configuration is eventually reached.

4.3.2 Room model: effect of the doors

In this section, we discuss the effect of the doors on the dynamics of our model.
In the sequel, the width of the doors is taken to be smaller than the side length
of the lattice. In particular, we consider the case in which the doors have equal
widths wy, = wr = 14, hence their capacity is reduced compared to the corridor
model described in Subsection 4.3.1. Longitudinal and transversal (i.e., vertical)
components of the drift, namely, €; and €5 are chosen equal and will be simply
denoted by e.

Since the results are similar to those that we have found in the corridor case
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Figure 4.8: Room model: smaller doors. Stationary currents of active (empty
circles) and passive particles (solid disks) and cumulative current (empty squares)
as functions of L, for ¢ = 0.05,0.1,0.15,0.2 (lexicographical order). The black

dashed lines are as in Figure 4.3

Figure 4.9: Room model: smaller doors. Occupation number profile of passive
(top row) and active (bottom row) particles at stationarity for ¢ = 0.15 and
L, =21,25,30 (from left to right).

of Subsection 4.3.1, we do not repeat the discussion in detail. Instead, we bound
ourselves to highlight the few key differences that can be observed.

Figures 4.8 and 4.9 are analogous to Figures 3.5 and 4.4. The only difference
is the shape of the region where particles accumulate which is strongly influenced
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Figure 4.10: Room model: smaller doors. Stationary currents of active (empty
circles) and passive particles (solid disks) and cumulative current (empty squares)
as functions of ¢ for L, = 7,15,23,30 (lexicographical order). The black dashed
lines are as in Figure 4.3.

by the presence of the door and by the presence of the transversal drift. The
door gives the rounded shape to the occupation number profile of active particles
close to their entrance, whereas the transversal drift induces the formation of a
“droplet" in the central region of the room.

"
mom

Figure 4.11: Room model: smaller doors. Occupation number profile of passive
(top row) and active (bottom row) particles at stationarity for L, = 15 and
e =0,0.15,0.35,0.45 (from left to right).
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Figure 4.12: Room model: smaller doors. Occupation number profile of passive
(top row) and active (bottom row) particles at stationarity for L, = 23 and
e =0,0.15,0.2,0.3 (from left to right).

Figures 4.10-4.12 are analogous to Figures 3.7-4.7. It appears that active
particles separate in two distinct groups. It looks to be a self-induced phase
separation within the own population. The shape of the droplet is very much
affected by the geometry of the room and the size of the door.

N - -

Figure 4.13: Room model: smaller doors. Occupation number profile at sta-
tionarity in a simulation without passive particles. Top row: ¢ = 0.8 and L, =
7,15,23,30 (from left to right). Bottom row: L, = 23 and ¢ = 0,0.15,0.5,0.8
(from left to right).

As a final comment, we report that, as we already mentioned at the very
beginning of Section 4.3, we have performed some simulations of the model in
absence of passive particles, namely, when just active particles are present in
the lattice. The behavior of the current that we find is absolutely standard: the
current increases monotonically both with respect to the drift and to the visibility
length.

We find an interesting effect to point out, see Figure 4.13: due to the transverse
component of the drift, we see particles tending to accumulate in the central part
of the room. Moreover, depending on the visibility length, they can form a
central droplet detached from the inlet right door. Additionally, we also remark
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that it would be worth investigating the highlighted sensitivity of the stationary
currents to changes of either the drift parameter or the length of the visibility
region from the point of view of statistical mechanics. In particular, an open
question is whether the observed presence of a non—monotonicity in the behavior
of the current as a function of € and L, is compatible with the validity of standard
fluctuation-response relations [MPRV08, CR12].

As closing note for this discussion, we mention the reference [CMLT16|. Here
the authors have collected pedestrian traffic data in a railways station which
contains detailed information on the dynamics of single and bi-directional flows.
As further research, it would be interesting not only to attempt to identify based
on the recorded Kinect images from [CMLT16], which pedestrian is active and
which one is in fact passive, but also to measure in a suitable way the overall effect
of the dynamics of active pedestrians on the passive ones. A suitable clustering of
such sets of data could provide us with a concrete framework to bring our model
towards the experimental range opening up this way possibilities for an automatic
pedestrian traffic management designed for mixed populations of pedestrians.

4.4 Discussion

Based on the results detailed in Section 4.3, we see that if active particles undergo
a non—zero drift and the visibility zone is sufficiently large, then the outgoing
flux of passive particles improves. This is essentially the answer to the question
Q. posed in the introduction. It is due to the fact that, in this regime, active
particles move quickly far from their entrance door. In this way their entrance
door becomes a free exit for the passive particles. The dynamics is still slow
mainly because active particles succeed to jam around the center part of the
room, slowing down the overall dynamics.

The population of active particles segregates in two different structures: one
is an agglomeration located in the proximity of the entrance door, the other
is a droplet in the center of the visibility zone. This is a consequence of the
combined action of longitudinal and transversal drifts. On the other hand, if the
transversal drift is not active, we still have an agglomeration in the central part
of the visibility region, as we have observed in the corridor model. Its shape is
not anymore a droplet but a vertical strip.

The fact that the flux of passive particles can be controlled via the active
particle dynamics has been observed for a specific geometry and for a specific
dynamics. The same kind of analysis can be done for concrete urban geometries,
multiple populations of pedestrians, and different dynamics, providing potentially
useful information for large crowd management.
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Chapter 5

A fluid-like driven system for
active—passive pedestrian dynamics

In this chapter, we study the question of well-posedness for a nonlinear coupled
parabolic system that models the evolution of a complex pedestrian flow. The
main feature is that the flow is composed of a mix of densities of active and passive
pedestrians that are moving with different velocities. We rely on special energy
estimates and on the use a Schauder’s fixed point argument to tackle the existence
of solutions to our evolution problem. Moreover, the structure of the nonlinearity
of the coupling allows us to prove the uniqueness of solutions. We provide also
the stability estimate of solutions with respect to selected parameters. This is
based on [TCM19| and [TCM20].

5.1 Introduction

In this chapter, we study well-posedness of a coupled system of parabolic equa-
tions which are meant to describe the motion of a pedestrian flow in a het-
erogeneous environment. From the crowd dynamics perspective, the standing
assumption is that our pedestrian flow is composed of two distinct populations:
an active population — pedestrians are aware of the details of the environment
and move rather fast, and a passive population — pedestrians are not aware of the
details of the environment and move therefore rather slow. See also Figure 5.1,
where we make the analogy with flow in a structured porous media, following an
idea by Barenblatt and co-authors cf. [BZK60]. Mathematically, we investigate
an evolution system where a Forchheimer-like equation is nonlinearly-coupled to
a diffusion-like equation. For more details on the modeling of the situation, we
refer the reader to Section 2.3 and references mentioned there.

Let a bounded set  # (0, Q C R? a domain such that 9Q = I'N U I'E,
Y NTE = @ with H(TY) # 0 and H(T'E) # 0, where H denotes the surface
measure on I'V, T'® and take S = (0, 7). Find the pair (u,v), where u : S x Q —
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R? and v : S x  — R?, satisfying the following model equations

(0,(u?) + div(— K1 (|Vu|)Vu) = —b(u—v) in S x Q,

0w — KyAv = b(u —wv) in S xQ,

—Ki(|[Vu|)Vu-n = pu* at S x ',

~Ki(|Vu|)Vu-n=0 at S x I'V, (5.1)
—KoVo-n=0 at S x 09,

u(t =0,2) = up(x), = € Q,

v(t =0,7) = vo(x), x € Q.

\
Here K5 > 0, while the function K; is linked to the derivation of a nonlinear
version of Darcy’s law involving a polynomial with non-negative coefficients in
velocities. This choice is rather non-standard, see e.g. the works [HI11|, [ABHI09|,
[CHK16| and references cited therein for more details in this sense. In addition,
A € (0,1] is a fixed number and b(-) is a sink/source term. The nonlinear structure
of K is described in Section 5.3 together with the remaining model parameters
entering (5.1) which are not explained here, as well as with the assumptions
needed to ensure the existence of solutions to our problem.

In model (5.1), the dynamics of interacting pedestrians involves the evolution
of two distinct populations behaving very differently from each other. Seen at a
microscopic level, the motion takes place in an heterogeneous domain - obstacles
are obstructing the sight of the exit. The active pedestrians follow a predeter-
mined velocity field (the map of the location is known), while the passive agents
that have no preferred direction of motion. We assume that the size of the overall
population is significantly large so that using macroscopic models makes sense. In
this context, we consider that the active population of pedestrians follows velocity
fields similar to a generalized Darcy flow, namely, a Forchheimer flow typically
applicable for slightly compressible fluids in porous media, while the passive pop-
ulation is governed macroscopically by some averaged diffusion equation. To build
this model, we took inspiration from the field of reactive flows in porous media
(see, e.g., [Bea72|). It is worth pointing out that both reactive flows in porous
media as well as pedestrian flows in heterogeneous domains are able to produce
coherent flow patterns, manifestation of some sort of built-in self-organization
mechanisms. Cf. e.g. [DHJWO05, ECT15]|, either uniform or not, pedestrian flows
can form collective patterns of motion. For instance, one notices circulating flows
at intersections, lane formation, local clogging due a complex geometry (typi-
cally caused by walls and obstacles under normal walking conditions or when
the evacuation of pedestrians takes place during an emergency situation). If the
pedestrian flow is composed of mixed active-passive populations, then we see
that often groups of passive pedestrians block the motion of the active ones. This
effect was pointed out by the numerical results reported in [RJM19, CCMT19|
and [CCMT20]. Of course, to get the needed trust in our model, equations (5.1)
have to be approximated numerically and the corresponding numerical output
has to be confronted with suitable statistics of experimental results. This will be
one of our next steps in this investigation, which will be studied elsewhere.
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Figure 5.1: Sketch of a distributed flow through a fissured rock, scenario mimick-
ing Fig.1 from |[BZKG60]|. The fissured rock consists of pores and permeable blocks,
generally speaking blocks are separated from each other by a system of fissures.
Through the fissures, the flow is faster compared to the rest of the media.

5.2 Some background on the problem (5.1)

The modeling, analysis and simulation of pedestrian flows offers many challenging
questions to science and technology in general, and to mathematics in particular.
Our interest in this context is to study mixed pedestrian flows where the dynamics
of interacting agents stems from two distinct populations: active agents that
follow a predetermined velocity field and passive agents that have no preferred
direction of motion.

There are several ways to approach such scenarios. One possible route has
been studied in [RJM19, CMRT19|, where the authors considered a non-linear
system SDEs coupled with a linear parabolic equation to describe the escape
evacuation dynamics of active and passive pedestrians moving through smoke (i.e.
through regions with reduced visibility). A lattice model is explored in [CCMT19]
to search for eventual drafting/aerodynamic drag effects.

In this chapter, we imagine that the active population of pedestrians have
velocities similar to a non-Darcy flow, namely, a generalized Forchheimer flow as
for slightly compressible fluids. Some of the mathematical properties of this type
of flow have been already investigated, for instance, in [ABHI09, HI11, CHK16],
and we are benefitting here of this background. On the other hand, we consider
flow of the passive population as a diffusion process, hence no predetermined
flow directions are prefered. The coupling between the two flows is done like
in [BZK60].

From a micro-to-macro perspective, it is worth also noting that a generalized
Forchheimer flow model (i.e. the first partial differential equation in (5.1)) can
be obtained in principle via homogenization techniques (like in [LLPW11], e.g.),
but it is not clear at this stage how a suitable microscopic model, defined at the
level of the geometry depicted in Figure 5.1, would look like.
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The aim of this chapter is to complete the proof of the well-posedness of the
system (5.1) by showing the existence, uniqueness and stability of solutions with
respect to parameters. In particular, we rely on special energy estimates and on
the use a Schauder’s fixed point argument to tackle the existence of solutions to
our evolution problem. The nonlinear structure in the transport term where the
Forchheimer polynomial appears, allows us to establish the wanted uniqueness
and stability estimates. This work focuses on the structural stability of solu-
tion with respect to initial and boundary data, nonlinear coupling coefficient,
and to the difussion coeficient from the semi-linear equation. We also provide a
stability-like estimate for the gradient of the solutions. To obtain such control
on the gradients, the structure of the system has an important degenerate mono-
tonicity property!, which allows us to compare the difference between pairs of
parametrized solutions and their gradients (see in [HI11]).

A number of relevant results are available on structural stability topics. In par-
ticular, standard nonlinear energy stability results have been presented in [Str14]
for convection problems, where the author dealt with an integral inequality tech-
nique referred to as the energy method. The structral stability of solutions
to generalized Forchheimer equations (introduced in [CHK16]) has been pro-
vided in [ABHI09|, where the authors investigated the uniqueness, the Lyapunov
asymptotic stability together with the large time behavior features of the cor-
responding initial boundary value problems. A structural stability with respect
to boundary data and the coefficients of Forchheimer is considered in [HI11].
In [WN19|, a stability estimate is introduced by considering a nonlinear drag
force term corresponding to the Forchheimer term in a Navier—Stokes type model
of flow in non-homogeneous porous media. Such investigations on stability esti-
mates not only contribute to the understanding of the well-posedness of model
equations, but also can point out inherent delimitations of the parameters regions
outside which it makes no sense to search for solutions, see e.g. [VVM19].

5.3 Preliminaries. List of assumptions

We list in this section a couple of preliminary results (mostly inequalities and
compactness results) as well as our assumption on data and parameters.

Lemma 5.1. Let x,y > 0. Then the following elementary inequalities hold:
(x+y)? < 2P(aP + yP) for allp > 0, (5.2)
(x4+y)P <zP+9P forall0<p<1, (5.3)
(z+y)P < 207N aP +yP) for allp > 1, (5.4)
2 <z 427 forall0<a<p<n, (5.5)
2 <1427 forall0< B <. (5.6)

!This terminalogy is taken from [HI11] and refers to the assumption (As).
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Lemma 5.2 (A trace inequality). Let A € (0,1], 6 =1—X, a € (0,1), a > 0,
a>2-68, a<2 u=229 q =D

1—a’ 2—a and

1
0= 0= =y € O (5.7)

Then it exists C' > 0 such that the following estimate holds

/FR ulodo < 25/ 52| V2 + Ol G

+Ce 1= EI|U|IQ+”°)+C€ “2 | oty (5.8)
where
14+60(1—a
[ = 0 = MO( ( ))7 (59)
1—-6
1 0(2 —a
Ho = Hog i= + ( ) ) (5.10)

l—a (1-0)(1—-a)

For the proof of Lemma 2.2, see Lemma 2.2 in [CHK16]. Here a = ;24 €
(0,1), with apy cf. (5.11).

Theorem 5.3 (Rellich-Kondrachov Compactness Theorem [Eva98]). Sup-
pose § is a bounded open subset of RY and the boundary 0 is C'. If 1 < p < d,

then WHP(Q) << LI(Q) for each 1 < q < p* with p* = pdp

Theorem 5.4 (Aubin-Lions compactness Theorem [Aub63]). Let Ey ——
E — E; be three Banach spaces. Suppose that Ey is compactly embedded in E
and E s continuously embedded in E,. Then

W = {u € LP(S; Ey) and u; € LI(S; E1)}
is compactly embedded into LP(S; F).

Theorem 5.5 (Schauder’s Fixed Point Theorem [Zei86]). Let B be a
nonempty, closed, bounded, convexr subset of a Banach space X, and suppose:
T : B — B is a compact operator. Then T has a fixed point.

In the sequel, we recall some definitions on the constructions on the nonlinear
Darcy equation and its monotonicity properties as they have been presented in
[ABHIO9|. First of all, we introduce the function K; : Rt — R* defined for
§>0by Ky(§) = m being the unique non-negative solution of the equation

sg(s) = &, where g : R™ — R* is a polynomial with positive coefficients defined
by

g(8) = aps® + a1s™ + ...+ ays™ for s >0, (5.11)
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where o € Ry with k € {0,..., N}.

The function ¢ is independent of the spatial variables. Thus, we may have
G([v]) = g(Jv)lv] = |Vpl, (5.12)

where G(s) = sg(s) for s > 0. From now on we use the following notation for the
function G and its inverse G~!, namely, G(s) = sg(s) = £ and s = G71(£). To
be successful in the analysis below, we impose the following condition, referred
to as (G).

(G1) g€ C(]0,00)) NC(0,00)) such that

g(0) > 0 and ¢'(s) > 0 for all s > 0.
(Go) Tt exists 6 > 0 with g € C([0,00)) N C*((0,00)) such that
g(s) > 0sg'(s) for all s > 0. (5.13)

To be able to ensure the uniqueness of solution to the system (2.4), we use the
monotonicity properties of the function £ : R — R% such that F(y) = K1(|y|)y.
This is related to the nonlinear Darcy structure (5.12). Furthermore, we recall
the following basic essential ingredients:

Definition 5.6. Let F : RY — R? be a given mapping.

e F is monotone if
(F() = F(y)-(y' —y) 20 for ally/,y € R". (5.14)
o F is strictly monotone if there is ¢ > 0, such that
(F() = F(y)- (¢ —y) > cly’ —y|? for all y',y € RY. (5.15)

o [ is strictly monotone on bounded sets if for any R > 0, there is a positive
number cg > 0, such that

(F(/)=FW) -/ —y) > crly —y|* for all |y/| <R, |y| < R.  (5.16)

See Definition 111.3 in [ABHI09] for more details.

We introduce a useful formulation by defining the following function ® : R¢ x
R? — R as follow

(y,y") = (K (ly'N)y' — Ki(lyl)y) - (v —y) for y,y' € R™. (5.17)

Proposition 5.7. Let g satisfy (Gy). Then F(y) = Ki(|y|)y is monotone, hence
O(y,y') >0 for all y,y' € RY, where ® is defined as in (5.17).

For the proof of Proposition 5.7, see Proposition II1.4 in [ABHI09].
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Lemma 5.8. Let g satisfies (G1). The function K;(-) = Ki4(-) = g(sl(_)), is well
defined, belongs to C'([0,00)), and is decreasing. Moreover, for any & > 0, let

s =G (€), then one has

q'(s)
)+ () = (5.18)

For the proof of Lemma 5.8, see Lemma II1.2 in [ABHI09].

Ki(&) = —K1<f)

Proposition 5.9. Let g satisfies (G1) and (Gs). Then F(y) = Ki(|y|)y is strictly
monotone on bounded sets. More precisely,

A
Dy, y) > mKl(maX{lyl, DY —yl? for all y,y' € R™ (5.19)

For the proof 5.9, see Proposition II1.6 in [ABHI09].

5.3.1 Assumptions

We make the following choices on the structure of the nonlinearities.

(Ay) The structure of K;(§) has the following properties hold K; : [0,00) —
(0, aio] such that K is decreasing and

(5.20)

ds(€7" = 1) < K1()€ < do®  for all € € [0,00).  (5.21)

In (5.20), dy,ds,ds are strictly positive constants depending on g¢(s) and
ae(0,1).

(As) The function b : R — R satisfies the following structural condition: it
exists ¢ > 0 such that b(z) < ¢|z|7, with o € (0, 1).

(A3) The source term b : R — R is globally Lipschitz continuous.
(A4) The boundary data satisfies p € L>°(T'V).
(A5) K satisfies the degeneracy type
Ci(1+8) " < Ki(§) < G(1+ 877
where C; and C5 are constants.

Assumptions (A;)-(As) are all technical. The choice of (A;) was inspired by
Theorem II1.10 in [ABHI0O9] and the choice of (Aj) corresponds to the setting
in [HIL1].

We can now define the following concept of solutions to (2.4).
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Definition 5.10. Find
(u,0) € (LY(S; L*(Q)) N L*7(S; WH74(Q))) x L*(S; WH*(92))
satisfying the identities

/Q('?t(uA)zMx+/QK1(\Vu|)Vuvwda:+/

'R

ouMpdy = — / b(u — v)dz
Q
(5.22)

and

/ Owodr + / KyVoVedr = / b(u —v)pdx (5.23)
Q Q Q
for a.et € S and for allp € L*(Q), ¢ € WH2(Q).

5.3.2 Statement of the main result

The main result of this paper is stated in Theorem 5.11, Theorem 5.12, Theorem
5.13 and Theorem 5.14.

Theorem 5.11. Assume that (A;)-(Az) hold. Let A € (0,1], § =1 -\, a =
a;’;’il € (0,1),a>6,a>2-6a<2 0<5, 0¢e(0,1) anduy € L*(Q),
vo € L*(Q)). Then the problem (2.4) has at least a weak solution

(u,v) € (L2(S; L)) N L*>~2(S; Wh2(Q))) x L*(S; W1%(Q)) in the sense of
Definition 5.10.

Theorem 5.12. Assume that (A1)-(As) hold. Let a = %5 € (0,1), a > 4,
a>2—-6,a<2ando <%, o€ (0,1). Then, the problem (2.4) admits at most
a weak solution in the sense of Definition 5.10.

We look for the case when the coupling is linear, i.e b : R — R is a given
function such that b(s) = rB(s), where r € (0,00). Here, B is fixed and B is taken
such that (A2) and (As) are satisfied. We call S; = (0,7}), S, = (0,73) and S =
(0, min{Ty,T>}) = (0, 7). Let (u;,v;) be weak solutions to (2.4) corresponding to
the choices of data (D, ;, i, i, voi), @ € {1,2}. We define a triplet (u;, v;, D;),
where (u;,v;) € (L*(S; L*(2)) N L*2(S; Wh272(Q))) x L*(S; W2(Q)) and D; =
(D;, i, ugs, vo;) € (0,00) x (0,00) x L) x L*(R2). To avoid the use of multiple
indices, we denote D := K, where K > 0 is entering (2.4). We give stability
estimates of the solutions with respect to initial and boundary data, nonlinear
coupling coefficient r; and the diffusion coefficient D.

Theorem 5.13. Assume that (Ay)-(As) hold, where (As) and (As) hold for the
function B(s). For i € {1,2}, (D;, 1, ug;,v0;) belong to a fized compact subset
K C (0,00) x (0,00) x L) x L*(Q), X = 1, 7 > |ry —ry| > 0. Then, the
following stability estimate holds

[ur — ta]| oy + llvr — val[F2(q) < eC@AEDITT2E

[uor — uo2[|Teq)
+llvor = voall72) + Ct(ID1 = Daf + |1 = ra| = llpr = @2llieeony)) |, (5:24)

forteS.
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Theorem 5.14. Assume that (A1)-(As) hold, where (As) and (As) hold for the
function B(s). Fori € {1,2}, let (D;, r;, uoi, vo;) belong to a fized compact subset
K C (0,00) x (0,00) x L*(Q) x L*(Q), 7 > |ry — 2| > 0. Let (us,v;) be weak
solutions to (2.4) corresponding to the choices of data (D;,r;, ug;, vo;). Then, the
following estimate holds

/ |Vu, — Vuy|* “dx +/ Vv, — VuPde < C + C(|Dy — Dy|—
Q Q

1 é o
1 — 902Hioo(rR)) + ((t + 5) + |r = 7"2’2—77) eClaAenin 2|t<HUo1 - U02H%2(Q)

Hlvor = voallZaqy + Ct (1D1 = Dol + Iy = 72l = llpr = alliemy) )
(5.25)
forteS.

The proofs of Theorem 5.11, Theorem 5.12, Theorem 5.13 and Theorem 5.14
are given in Section 5.11, Section 5.6, Section 5.7 and Section 5.8, respectively.

5.4 Energy estimates

In this section, we provide the energy estimates for the solutions in the sense of
Definition 5.10 to our problem (2.4). This is a crucial step, which in fact allows
the Schauder-fixed point Theorem to work in our case.

5.4.1 L - [? estimates

Proposition 5.15. Assume that (A;)-(A2) hold and let X € (0,1], § = 1 — A,
a=25€(01),a>6,a>2-0,a<2 0<% 0€(0,1) and uy € L*(Q),
vo € L*(Q). Then, for any t € S, the following estimates hold

d 3
%/ |u|*dx +/ V> u|*2de < C) + <—é—|—
0 0

205
Gl + 5l (5:26)
/Q]u‘adx—i—/QUdeﬁeCst (1—{—||u0||%a(g)—i— Hv0|y§2(m), (5.27)
T T
/ /]u\o‘”z\Vu\zadxdt—i-/ /\VU|2d:cdt§C5+
0 Q 0 Q
+Cs (luollgncsizo@y + olssszay ), (5:28)
where Cy = d?’(ac;;‘)JréKH, Cy == min {2,ds(a — \)}, C3 := max {2c¢|Q], 2¢¢},

Cst

. R . Cat .
04 = mln{a_)\vKQ}a C(5 = %C|Q| + QTCC—i3, and 06 = 2ee=50

& with ¢ :=

—27%} and ¢ as in (As), respectively.

min
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Proof. To prove (5.27), we proceed as follows. We consider firstly the following
sub-problem to which we refer to as (P;): For a given v € L*(S; L*(Q2)), search
for u € L*(S; L*(Q2)) N L>~¢(S; W27%(Q)) such that (5.29) is fulfilled, viz.

Or(u) + div(— K, (|Vu|)Vu) = —b(u —v) in S x Q,
—Ki(|[Vu|)Vu-n = pu* at S x ',
~K(|[Vu|)Vu-n=0 at S x I'V,

u(0,2) = ug(z) for all z € Q.

(5.29)

Multiplying both sides of the first equation in (P;) by |u|**°~! and integrating
the result over €2, we obtain

/ B, (u) |ul* " dx + / div(— K, (|Vu|) V) |ul 0 de = — / b(u — v)|ul*T* 1 dz.
Q Q Q
Integrating by parts the last identity, and using the boundary conditions, it yields:

adt/ ulodz + (@ — A /K1 (IVu|)|Vul2ue+2da

—I—/ |u|%pdy = —/ b(u — v)|u|*H 1 da.
TR Q

Using (A,), we get the following estimate:
Ad
——/ lu|“dz + (o — N) / K (|Vu)) | Vul?[u]*2de < / élu — v|7|u|* " dx
dt Jo 0 Q
< / élu + v|7|ul* T de
Q
< é/ |u|”|u|o‘+5_1dx+é/ 0|7 |u|* " du, (5.30)
Q Q
where we used the inequality |u+ v|7 < |u|” + |v|? for o € (0, 1).

By choosing 0 = 1 — 4§ and ¢ < § such that 0 € (0,1) and 1 < o < 2, the
inequality (5.30) becomes

adt/ ul*de + (@ — A /K1 V) [Vul2[u|*+2da

;/(1+]u\ )dx—i—z/(l—ir\v\ d:c+c/|u|°‘d:c

| /\

<3 ’Q"" /!u\adx—i-c/ |u|*dx + = ’Q’+ /’U| dr
S é‘Q‘ + EHu”%O‘(Q) + §HUHL2(Q) (531)
(5.31) also leads to
ds A) + ¢
_/ |u]o‘dx+/ |Vu|2 a’U‘QM 2dx < ﬁml
Cy
3 N d3(CY — )\) o é )
i (2C26 " Cy lullZe ) + 2_02”7)HL2(Q)7 (5.32)
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where we use the property of K as indicated in (5.20).
Now, we consider a second sub-problem which prefer to as (FP»): For given
u € L¥(S; L*(Q)), search for v € L*(S; W'%(Q2)) such that
0w — KoAv = b(u —v) in § x
—K)Vu-n=0 at S x 99, (5.33)
v(0,7) = vo(z) for all z € Q.

Multiplying the first equation of (P) by v and integrating the result over € lead

to
/&vvdw—/KgAvvdaj:/b(u—v)vdx.
Q Q Q

Integrating by parts this expression and using the corresponding boundary con-
ditions ensure the identity:

2dt/ |v| da:—l—Kg/ Vol da:—/ b(u — v)vdx. (5.34)

Then, by (Asy), we have the following estimates

1d

< —
o7 v dm—i—KQ/ |Vo|*dx /c|u v|%vdx

< é/ |u|”vdx+é/ |v|7vdx
/|u|2"dx+ / 2dx+é/(1+1)2)dx
Q

< £ [+ e+ Lol + o)

3
< §C|Q\ + —||U||La + eVl (5.35)
Combining (5.31) and (5.35) together with neglecting the gradient terms from
both these inequalities, we have

| /\

adt/| |*dx -I———/ lv|*dz < —c|Q|+20||u||La +20||v||L2 (5.36)
Setting ¢ := min {2, 1}, we rewrite (5.36) as

d N d 9 d_, calla 1@ SNTITE:

a ), [ul*dz + — i o dz < SeelQf + 2¢¢||ul|Zo(q) + 2] 0llza),  (5:37)

where ¢ : 1 .

For any te S, take V(t) := 1+ [,(Jul* + v*)dz and C5 := max {2ce||, 2¢¢}.
Then the inequality (5.37) becomes

%V(t) < O3V (t) forallt e S. (5.38)
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(5.38) leads to

t
V(t) < V(0)exp (/ ngs> , and hence, we get
0

/Q |U|O‘dl' —|— /QUQdZL' S €C3t (1 + ||u0||%a(Q) —|‘ ||'U0||%2(Q)> . (539)

Now we prove (5.28). Combining (5.31) and (5.35) yields

d d
—/ |u|°‘d:v+—/ |U|2dx+(a—)\)/K1(|Vu|)|Vu|2|u|°‘+5_2dx
d ., e )
+s [ [VoPds < 2600 + 2 ullfuey + 2l0lrey. (540
Set Cy := min{a — A\, K»}. Using (5.27) and integrating (5.40) over the time
interval S, we are led to

T T T 2T ¢ Cst
/ /K1(|Vu|)|Vu|2|u|a+‘5_2dxdt+/ /|Vv|2dxdt§ ST g 4 21Ce
o Jo o Jo 20,y o

2ceC! N 5
) ([[uol|Fe s Loy + llvollz2(s,r2@))-

Therefore, the inequality (5.28) holds. [

5.4.2 Gradient and time derivative estimates
We consider the following function H : 2 — R given by
52
H() = Ki(V/s)ds for £ > 0. (5.41)

0

We have the following structural inequality between H (&) and K;(£)E?, i.e.
K (6 < H(€) < 2K,(£)€? for all £ > 0. (5.42)
By combining (5.20) and (5.42), we deduce also that
d3(€77" = 1) < H(€) < 2dp8*°, (5.43)

where dy, d3 and a are defined as in (A;).

Proposition 5.16. Assume that (A;)-(As) hold. Let A € (0,1], 6 = 1 — A,
a = %, a>0,a>2-9, a<?2ando < 5. Furthermore, suppose that
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Vug € L) N L*7(Q), ug € L*(Q), vo € HY(Q) and ¢ € L=(T'R). Then, for
any t € S, the following estimates hold

/ \Vu|2_“dx+/ (Vo|dr < C(e, )\, a)
0 Q

t
A(0) + / (L4 8y ds

/ ||v||L2(Q)ds+// |31 dods /|VU0| dx

|Q|t+ C SOt (1+||uO||La(s,La(Q) + Jlvol|22 S,LQ(Q))) (5.44)

L+ (1 [fullfag)” + lol72 )

/\ )] dx—l—/ v 2dz < C(é, ), a)

T / o5 do
FR

where C(¢, \,a) > 0 is a constant and

62 62 Cst o 2
100+ e (1 uolzeiey + leollEaey) . (5.49)

A+1
A0) = 2F /H |Vu0|)dx+/|u0|o‘dx

Proof. We begin with studying the sub-problem (P;) for a given choice of v €

L?(S; L*(S2)). Multiplying the first equation in (P;) by u, = 5(u*)u'™ (note

that §(u*)u!™ = $Au* ! ™ = u;) and integrating the result over Q, we have
/at(u’\)utdx—l— / div(— K1 (|Vu|)Vu)udr = —/ b(u — v)ude. (5.46)
Q Q Q

By integrating (5.46) by parts and using the property of the function H as stated
n (5.42), yields:

1

X/Q wn(u )dx+2dt/H |Vu|)dx+/F ou utda——/ﬂb(u—v)utdx.
(5.47)

Using the assumption (As) together with the integration by parts the term
er putu,do and by applying afterwards the Cauchy-Schwarz’s inequality, we
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get the upper bound

/]ut \dx+2d /H \Vu|)dz < — / gouAutda+é/|u—v|"utdx
t R 0
< _/ ol \ut]da+é/ Ju+ 0] |ugldz
TR

1 d A1 A
d tod
A+ 1dt |u’ ¢U+A+1 |u| prdot
/|u| |ut|dx+c/|v| |ug|d
d A+l A+l 2%

—1—250/ ]ut| dx + — /|v|2"d:€

< _ a M M1, g

= A+1dt |u’ S00+A+1 |u| i

+£]Q] +£/ lu|*dx + £/ |v| dx—i—Zeé/ |ug|*dov. (5.48)

28 48 Q 46 Q Q

Multiplying the inequality (5.48) by A+ 1 and applying Young’s inequality to the
term 115 [rn [u*oido yield the estimate

A+1 A+1
i /| I (w2 + — (L/H(|Vu|)dx+/ |u\’\+1<pda>
2 (e} TR
g/ |u|ada+/ |¢t|a—x—1da+i|Q|(A+1)+(A+1)i/|u|adg;
'R 'R 2¢e 4e Q
+(A+1)£/|v|2dx+(/\+1)2eé/ 2z, (5.49)
4e Q Q
Using the trace inequality (5.8), we obtain
/FR [ul*do < 25/ V22l 2 + Cuf[ e

+CE T ul[ e + O lu|5 T (5.50)

By (5.50) and (5.49), we obtain

A+ A+
h /| 1 (), P + (%/H(Wubdx—k/R |u|>‘+1g0do)
r

< 25/ | V> || 0~ 2de 4 Cllul|fa) + CE ™ a||u||°‘+”O + C& ”2Hu\|0‘+“1

C
a1 — QN+ 1 A+1)— “d
+ [ el de+ 010+ )+ (D [ oo

Q

+(A + 1)£/ lv|*dz + (X + 1)266/ |, |2da.
4e Q Q
(5.51)
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We denote

1
A(t) == AT /H |Vul) dx+/ |u|*dz for all t € S.

A+l
i /H Vo) dx+/\u0| d.

Then, by using (5.26), we have the following estimate

Note that

A+1 A+1 d
S [P e - 2025 [P )P+ A
ds(a — A A1
+(1 _25)/ |u|°‘+5—2|Vu|2_“dm S ( 3( )+C + ( + ) ) |Q|
Q Cg 2e
3 . dila—X) (A+1)e N ¢ e(A+1) 9
+ <QCQC+ 02 +C + de ”UHLQ(Q) + 202 + Az ”UHLQ(Q)

— 6% ~— (0% —a
+C& T [lul| 72t + CE 2 |lull it + /F ez do

Based on (Aj3), after choosmg E=7 and €= 1 , we obtain
[l uds + A < €A )1+ Nellog + ol
gt + lelsty + [ lelmao). 652
TR

We denote 8 := o + i1, and 3 is the maximum allowed power of |[u||L«() When
considering the right hand side of (5.52). Now, using the inequality (5.6) leads
to

/| Pz + A(><c<é,A,a> L+ (14 [[ufl ey’

‘|‘||'U||%2(Q) + /FR |g0t|&—(i—1 do‘] . (553)

Integrating (5.53) over the time interval (0,¢), we are led to

1
//| Yl?dz +i/H|vu|dx+/|u|adx<C( A a)
t t t o
+/(1+||u||%a(g))5ds+/ ||v||%z(9)ds—l—// |g0t|a—A—1dads]. (5.54)
0 0 0 'R

This fact also implies

//| ydx+/H|w d:z:+/]u\o‘d:v<0( M a)
—i—/(l—i—HuHLa(Q) ﬁds+/ ol ds+// oy 5 ldads] (5.55)
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Employing (5.43) yields

//| |dx+/|vu\2 “dy < C(6,\, a)
/||v||L2 ds+// |g0t|akld0d5]

(5.56)

MO+ [0+ fulleq)ds

Now, we consider the sub-problem (P): Take a fixed u € L*(S; L%(2)). By
multiplying the first equation of (FP) by v; and then integrating the result over
2, we have

/|Ut|2d$+——/ Vol dx—/ b(u — v)vd. (5.57)
o 2 dti

By using (As) together with (5.3) and (5.6), it results in

+£/ |v|2dx+265/ e da. (5.58)
4e Q Q

If we choose & = - such that 1 — 2e¢ > 0, then (5.58) becomes

1
5/ |vt|2dx+7di/ (Vo2 dz < 2¢3|Q| + ¢ /|u|adx+62/ lv?dz.  (5.59)
Q 0

Putting C5 := min {%, %}, we get the following estimate

d ¢ ¢? é?
vzdx—i——/ Vollde < —|Q +—/uadx+—/v2dx. 5.60
[ wbde+ [ wopae < Ziol+ & [ lrde+ & [ oPan .00

Applying (5.27) to the right hand side of (5.60), we obtain

d & & .
/Q|vt]2dm + %/Q\w?da: < G100+ 55 (14 TuolZeqey + looliam))-
(5.61)
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The inequality (5.61) implies
¢ o
| e < 2100+ 5oe® (14 ke + luollag) - (562)
On the other hand, (5.61) also leads to
& [ 1veRar < 01+ 2o (14 ol + loollen) . 569
dt /g Cy 20,

Integrating (5.63) over the time interval (0,¢), we obtain the upper bound

-2
/Q|Vv(t)\2dx§/Q]Vvo\zdx—l—é—z]mt
-2

c (64
+ o e (1 Nolasemy + lolasanay) - (5:64)

Combining (5.56) and (5.64), we obtain

MO+ [+ ) s

/ H’U”L2(Q d8+/ / |§0t’a 5= 1d0’d8]

/yvvo\ dr + — ]Q]t
2

/\Vu\z “da:—l—/ |Vo|?dx < C(e, )\, a)

+ 2_02 - (1 + [[wol| Za(size @) + 1v0ll22(s;L20 ))) '

(5.65)
Combining (5.54) and (5.62), we obtain
Ll ubde+ [ ufde < €1+ 0+ o) + [0l + | lod=5do]
62 é Cgt 2
190+ e (1t ol + el )
(5.66)
This completes the proof of the theorem. O

5.5 Proof of Theorem 5.11

Proof. By using Schauder’s fixed point argument (see e.g. Theorem 5.5), we show
that there exist a pair (u,v) of weak solutions to problem (2.4) in the sense of
Definition 5.10. First of all, let us define the operators:

Ti: L2(S; L(Q) n Wh4(Q)) — L*(S; L*(2))
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by 71(u) = v and
Ty : L2(S; L*(Q)) — L*(S; L*(Q) n WhH24(Q))

by T2(v) = w. Then, consider the operator T : L*(S; L*(2)) — L*(S; L*(2) N
Wi2=e(Q)) defined by

T(w) = Ta(Ti(u) = w. (5.67)

Indeed, the estimates reported in Proposition 5.15 and Proposition 5.4.2 imply
that the operators 77 and 75 are well-defined. Hence, the operator T is also
well-defined.

In order to show the existence of solution to the problem (2.4), we wish to
show that 7 admits a fixed point. Then, using Schauder’s fixed point Theorem
5.5, we shall prove that there exits a set B such that

(1) T : B — B is a compact operator;
(2) B is convex, closed, bounded set such that 7(B) C B.

In particular, to obtain the compactness of 7 = 75 o Ty, it is sufficient to demon-
strate that 77 is compact and that 75 is continuous.
Recall that we have

Ti: L(S; L(Q) N Wh279(Q)) — L(S; L*(2)).

We assume in Proposition 5.15 that for given u € L*(S; L%(£2)), we obtain 71 (u) =
v e LA(S; Wh2(Q)) with v, € L?(S; L*(Q2)). Hence,

Ti(L*(S; L(Q) N L*(Q))) C V,
where
V={p:peL*(S;L*(Q) nWH(Q)), 0up € L*(S; L*())}.
By using Rellich-Kondrachov’s Theorem (Theorem 5.3), we obtain
L*(Q) N W2%(Q) s L*(9).

Applying Theorem 5.4 gives V << L?*(S;L?(Q)). Thus, for any bounded set
M C L*(S; L*(Q)), then we have T;(M) C V. Since V is compactly embedded
in L?(S; L*(Q)), then we have T;(M) is precompact in L?(S; L*(€2)). Therefore,
71 is a compact operator.

Now, we prove that 75 is sequentially continuous. We proceed in a similar
manner as in [AC10]. We recall first that

To: L2(S; L*(Q)) — L*(S; L*(Q) n WH*%(Q)).

Let v, — v in L?*(S; L*(Q))) as n — oo and with u, = T (v,) and u = T (v).
We show that uw,, — u in LY(S; L*(2)) as n — oo.
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We denote
E:={p:pec L¥S;L*(Q))N L**(S; WH*7(Q))}.

Since L*(Q2) and W27%(Q)) are reflexive Banach spaces, then also the Bochner
spaces L%(S; L*(Q)) and L?>~%(S; W127%(Q))) are reflexive Banach spaces. Thus,
E is a reflexive Banach space. We know that from a bounded sequence in a
reflexive Banach space F/, one can extract a subsequence that converges weakly
in E in the weak topology (cf. Theorem 3.18, [Brell]). Indeed, since we have
(u,) is bounded in £ and v, — v as n — oo in L*(S; L*(Q2)), then we have
U, —~uasn—ooin FE.

By the estimates (5.27), (5.44) and (5.45), we can extract two subsequences
(un, ) and (vy, ), still labeled by n instead of ny, for simplicity, such that as n — oo
it holds:

Vu, — Vo in L*(S; L*(Q)),

(vn)e = v, in L*(S; L*(9)),
U, — u in F,

(un)e = (u*); in L*(S; L*(92)),

Vu, — Vu in L*(S; WH%(Q)).

Then, by using (A;) and (A4,) and the fact that b(u, — v,) and K{(|Vu,|)|Vu,|*
are bounded in F, it leads to

b(u, —v,) = blu—v) in E,
K ([Vu, )| Vu,|* = K (|Vu|)|[Vul? in E.

We re-write (2.4) formulated for the sequences (u,) € L*(S; L*(2)) and (v,) €
L2(S; L*())
(0,(w) + div(— K, (|Vun|) V) = —b(u, — v,) in S x

Oyvn, — K Av, = b(u, —v,) in S x £,

—K1(|[Vu,|)Vu, -n = pu) at S x I'E,

—Ki(|[Vu,|)Vu, -n=0 at § x TV, (5.68)

—KyVu, -n=0 at .S x 09,

Ut = 0,) = g, (x), = € 9,
(vn(t =0,2) =v,(2), z € Q.

Clearly, if n — oo in the weak form of (5.68) recovers the weak form of (2.4).
Essentially, we have shown that u, — u in E. Moreover, the embedding £ —
L*(S; L*(Q2)) is compact, this implies that u,, — w in L*(S; L*(2)). Therefore,
75 is continuous.

Let us fix K > 0 to be specified later and we denote by By the collection of
functions u € L*(S; L*(Q2) N W1?7%(Q))) such that

max{ ||u| e (s;Le (@), |Vullr2-e(s;z2-a))} < K.
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For each choice of K, the set
By C L*(S; L*(Q) n Wh*4(Q))

is convex, closed, and bounded. We aim to show that we may select a K > 0
such that
T(B K) C Bg.

Indeed, by using the estimates (5.27), (5.44) as well as the fact that
L*(S; L*(Q) nWH74(Q)) € (L(S; L*(0)) N L*(S; W7(Q)))

together with knowing that 7;(By) is bounded subset of L?*(S; L?*(€2)) and that
T2(Ti(u)) is a bounded subset of L*(S; L*(Q2) N W279(Q)), we have

max{ ||ul| La(s;z0 (@), | VUullL2-a(s;z2-a@) } < K.
Here K > 0 is chosen such that
K 1= max {7 (14 oo o 7,0y + o0z ) -

C(e, A a)[A(0) +/ (1+ ullo o) ds

0
t t
+/ ||UH%2(Q)ds+/ / \g0t|a—§—1dads] +/ |Vo|2dz
0 o Jrr Q
2 2

c c N
+ G190+ 5 (L4 luolfeoanan + IollEaorzz) |- (569

Hence, T(Bk) C Bg.

We have shown that 7 : B, — By, is a compact operator with By a convex,
closed, bounded set and also that 7(Bgk) C Bg. Then, by Theorem 5.5 there
exists at least a pair

(u,v) € (L*(S; L*(Q)) N L**(S; WH7(Q))) x L*(S; WH*(Q))

satisfying the problem (2.4) in the sense of Definition 5.10. O

5.6 Proof of Theorem 5.12

Proof. To prove the uniqueness of solutions in the sense of Definition 5.10, we
adapt the arguments by E. Aulisa et. al (cf. Section IV, [ABHI09]) to our setting.
Essentially, we are using the monotonicity properties of the term K;(y)y as stated
in Proposition 5.7 and Proposition 5.9.

Let (u;,v;),1 € {1,2} be two arbitrary weak solutions to problem (2.4) in the
sense of Definition 5.10, where the initial data is take w;(t = 0,2) = u;(z) and
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vi(t = 0,7) = vi(x) for all z € Q. We denote w = u; — up and z = v; — vy. If we
substitute the pair (w, z) into (5.22)-(5.23), we obtain

/&;(@ — up)de + / 8tz¢d:r+/ (K1 (|Vui|)Vuy, — K, (|Vug|)Vuy) Vipdo+
Q Q Q

+K, /Q V2Vodr = — /FR o(u} — ud)hdy — /Q(b(m —v1) — b(ug — v2))(Y — ¢)dx
(5.70)

Now, choosing the test function
(¥, ¢) = (Jw]** 7, 2) € ((L2(Q)NWH(Q)) x WH*(9))
leads to
a - 2
adt/ lw| da:+ z dx+
/ (Kl(\VulDVul - K1<|vu2|>vu2)vw|w|a+5—2dx+K2/ V2 [2da
Q Q

o [ etut =)y = = [ = 0) = s = ) (o = 2
(5.71)

Using assumption (Aj) to handle the right hand side of (5.71), we have the
following estimate

adt/| —|——— 2dx+/@(Vul,Vu2)|w|°‘+5_2dx
LK, / V2|2 + / il — ]y

< | [ (b = o0) = b = ) (0l =

< / (It — ol + [or — o) (] = 2)de
Q

< /\w|“+5dx—/]sz\dx—/]vl—ngwla*a1dx+/z2dx
Q Q Q 0
1
§/|w|a+5dx—|—2/ Jw|? @Dz 4 = /|w| dx+C/ %dx. (5.72)
Q Q

Since ®(Vuy, Vug) > 0, (5.72) becomes

1
@] - 2d < a+5d _/ 2(a+5—1)d
adt/|w| x—l— z x_/ﬂ|w| x+2 Q|w| x

+C’/|w\2da:+0/\z|2dx. (5.73)
0 0
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We set § = 0 and use the inequality (5.5) to rewrite (5.73) as

%(/ﬂ |w|°‘dx+/gz2da:) < Ca, ) + Cla ) (/Q |w|adx—|—/922dx>. (5.74)

It is convenient to introduce the notation:
Wi(t) := / |w|*dx +/ |z|?dx for t € S.
Q Q

Hence, the inequality (5.74) becomes

d

W () = Cla, YW (), (5.75)
for t € S with W(0) = [, |wo|*dx + [, |20[*dz, where wy := ug; — ug2 and
2 = Vo1 — Vpz. Here we consider ugy, ugz € L*(2) and vg1, voe € L*(Q).

By using Gronwall’s inequality, (5.75) yields

W(t) < W(0)et@N for all t € S. (5.76)

This also implies
[ toprda+ [ [Pds < (ool + lalfaq)e . 6.7
Clearly, if wg = zp = 0, then the weak solution of (2.4) is unique. O

5.7 Proof of Theorem 5.13

Proof. Let us recall the weak formulation corresponding to the different choices
of data: (ug;,voi, Di,i),0 € {1,2}. We denote D = Dy — Dy, & = 1 — o,
r =1y — 7Ty, Uy = Uyr — Uz and Uy = vg; — vg2. We denote also w = u; — us
and z := v; — vy. Multiplying the first and the second equations of (2.4) with
Y = |w|**71 ¢ = z, respectively and interating the result by parts over Q
together with combining the two equations, one gets

/Q Oy () — u)yda + /Q Oy (01 — v2)ddr + /Q (Ki(IVer ) Ve

- Kl(\VuQ\)VW)de:U + / (D1Vvy — DyVuy) Vda + / (pruy — w2u3) thdy
Q TR

=~ [ 1Bl =)0 = ) = reBlus = w2)(w = 9] do, (5.78)

Regarding (5.78), note that

/ (D1VU1 — DQVUQ) V(;ﬁdx = D1||V¢||%2(Q) -+ (Dl - Dz)/ vavqbdl', (579)
Q Q
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[ (ot = ) vy = [ it~y + [ (o - pdudy (5.50)
ke 'R 'R

and

/Q [r1B(ur — v1) (Y — ¢) — roB(ugz — v2) (¥ — ¢)] dx

= /97“1 (B(upr —v1) — B(ug — v2)) (¢ — ¢)dx + (r1 — 12) /Q B(uy — v2) (¢ — ¢)dz.
(5.81)

Using now (5.79), (5.81), as well as Young’s inequality applied to the last terms

of (5.79), (5.80) together with the assumption (As) and (Aj), we use that (5.78)
becomes

adt/ ’Ul —UQ’ dr + 2dt/¢2dx+/ Vul,Vug)]ul—uﬂaM Qde"—
+D1/ V4| dx+/ o[ —u2\wd7§051/ V6 |2dz+
Q TR Q

1
01Dy = Dof [ [Vufido =5 [ o - P lusfPn
Q re

1
-5 g — g2 Dy 4 / r1(Jur — us| + |v1 — v2]) (¥ — @)dx
e Q
¢
+ |1 — 7“2‘;/ |ug — a7 (¢ — p)d. (5.82)
Q

Using the inequality (5.3), (5.82) receives the form

adt/ |uy — ug|“dz + 2dt/¢2da:—l—/ (Vur, Vug)uy — ug|* T 2da+
+D1/ V4| dac+/ o —u2|1/1d7§(]51/ Vo |2dzt
Q TR Q

1
1Dy = Dof [ [Vusfido =3 [ o - s
Q R

1
— = luy — u2]2(a+5’1)d7 + / ri|uy — ugltbdr — / r1|uy — ug|pdr+
2 Jrr Q Q
é g o
/ r1|vr — va|tbdx — / rilvy — va|tbdx + |1y — r2|% /(\qu + va|”) (Y — ¢)d.
Q Q Q

(5.83)
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Applying the trace inequality (5.8) together with Cauchy-Schwarz’s inequality,
we obtain the following estimate

adt/ | — uo|“dx + th/gb dx—l—/ (Vuy, Vug)|uy — up|*H2dx
+Dy [ [Vofdo+ | il = vy < Cer [ [Vodar
Q IR
1
+C\D1—D2|/ |Vv2|2dx—§/ o1 — ol Py
Q IR

1
— —(252/ \Vu; — Vu2|2_“|u1 — u2|a+5_2dx—|—0/ luy — ug|“dx

2 Q Q

+ C/ |ug — ug|*THodx + C/ luy — uﬂ‘”’“dz)
0 0

+ 7’1/ lug — u2|a+5dx — T—l/ |uy — ug|Pdx — E/ [v1 — vo|*d
r r
+ 51/ |U1 — Ug|2dI + —1/ |U1 — U2|2(a+6_1)dl‘ — 7"1/ |'U1 — 1)2|2d:L‘
Q Q

~

P .
+|T1—T2|—r/ |U,2|20dl’+|7"1 —T2|—/ |’LL1 U2|2 (o= l)dl'
— | —T2|—/ lug|* dx — |ry —7’2|—/ lv1 — vy|*d
+ |ry — r2|—_/ lve|*7dx + |ry — 7‘2|—_/ |uy — ug| @ Vdx
27" [¢) 2’)" Q
~lr = ralgs [ flode = n =l [ o= P, (5.84)
2r Jq 27 Jo

Choosing ¢, = % and €9 = 1, we have

adt/|u1—u2| dx+ /¢2dx<C]D1 D2|/\Vv2| do—
1
5/ |901_<P2| || )\d7+7"1/ |U1—U2|a+5d$—§/ |u1—u2| dx
'R Q Q

—i—ﬂ/ iy — ug] @ Vg — 7’1/ |v1 — vo|*dar
2 Jg 0

c _ c
—H’f'l — 7“2‘:/ ‘Ul — UQ’Q(OH_& Ddl’ — ’7’1 — 7“2’:/ ’Ul — 02‘2611'. (585)
rJa rJa

Moreover, if we assume that § = 0, then the maximum allowed power of ||w|| is a.
As next step, we use the inequality (5.6) together with the energy estimates (5.27),
(5.44) to deal with the terms [, [us|“dx, [, |v2|*dz and [, [Vus|*dz. Furthermore,
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we use also the trace inequality (5.8). It yields
d
—(/ juy — g +/ oy~ wadr) < Cla L&, 7) (D1 — Dol + fry — o

o = @allE o) + Cla A Py = 7l oy = gy + lor = oy ) -

(5.86)
Denoting
= / lup — uo|“dx +/ lv; — vo|*dx for any t € S, (5.87)
Q Q
The expansion (5.86) can be rewritten as follows
d
7 Z(t) < Cla, A\, &,7)(|D1 = Do + |r1 = o] = llgr = @2llfomy)
+C(a, N, ¢,T)|r1 — ro] Z(t), (5.88)

for t € S. It holds Z(O) = fQ |U01 — U02|adl‘ + fQ |U01 — ’U02|2d$.
Appying the Gronwall’s inequality to (5.87), we obtain

Z(t) < elo C(Q’A’é’mhf@ds / Cla T)(| D1 — Da| + |r1 — 72|

_”901 - SOQH%OO(FR))dS} . (589)
(5.89) implies

[ur — ual|Faq) + llv1 — /UQH%Q(Q) < eClarenin—raft |

|[uor — uoz[| e
+vor = 02320 + CHIDL = Dl + 1y = 72| = o1 = @allfeom))] s (5:90)

which is precisely the kind of stability estimate with respect to data and param-
eters we are looking for. O]

5.8 Proof of Theorem 5.14

Proof. We keep the same notations as in Theorem 5.13. Multiplying the first and
the second equation of (2.4) with ¢ := (u; —usg); and ¢ := (v — v), respectively.
Integrating the results by parts over 2 and combining the two equations, we
obtain

/Qat(u? - u%)@bd&: + /Qat(vl - Ug)¢d$ +/S; (K1<|VU1|>VU1

_ K1(|vu2|)w2>wdx n / (D1Vor, — DoV Vda
Q

+ [ ot =) vy == [ [nBla - w)v-0)
1o B(us — v)(t) — ¢)] dz. (5.91)
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Note that
/(D1VU1 — DgVUQ)V(ﬁdl’ = / D1V ’U1 — UQ)V(bdiC + /(Dl — DQ)VUQV¢d$
Q

th / D1]V V1 _’UQ)’ diﬂ"‘/(Dl DQ)V'UQV¢d[I?
(5.92)

/ (11 — ooy = / o1 () — W)y + / (01— )by (5.93)
and
/Q By — v) (6 — ) — raB(uz — v2) (4 — 6)] da =

/er(B(ul — 1) — Blu — ) (¥ — $)dx + (r1 — 1) /Q Blus — 2)(t — ¢)da.
(5.94)

Then, (5.91) becomes

d 0
E (Ul — ’LLQ)2dZL‘ +/(K1(|VU1|)VU1 — K1(|VU2|)VU2) . a—(Vul - VUQ)dI’
+§E/ |vr — vg d:):+/(D1VU1 DgVUg)V@de—i—/ (pru} — pouy)thdy

- /Q [r1B(wy — 01) (@ — 6) — raBlus — v2) (4 — ¢)] da

(1 — 1) /Q Blus — ) (16 — d)da.
(5.95)
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Using (5.92)-(5.94), as a result of applying the Young’s inequality to the last
terms of the right hand side of (5.92) and (5.93), we have

d 0 9
(1= ) da:+/K1 V)V - (vul)dx+/f<1(|vu2\)vu2.—<vu2)dx
dat ot 0 ot
P P
—/K1(|Vu1])Vu1-a—(VUQ)dx—/K1(|Vu2|)Vu2-a—(Vul)dx

+§£/ |v1 — vo|*da + th/DﬂV v — vg)| d:1:+/F o1 |ut — uy|vdy
§ Céga/ |V’U1 — V’U2|2d$ + C|D1 — D2|/ |VU2| dx
Q

1
- 5”@1 — 2l[Foormy /FR |us|[*dry — 5@/ ur — us|*dy + / r1B(u; — v1)Ydz
— / r1B(uy — vy)pdx — / roB(ug — vo)hdx

Q Q
+ / TQB(’LLQ — U2>¢d$ + |7”1 - T2| / B(Ug — U2>¢d$

Q Q
— |ry — o] / B(ug — va)pdx. (5.96)

Q

By the assumption (Aj), we are led to

d
pr (ul — uy) d:v—l——/Kl |Vu|)|Vu | d:z:+—/K1 (Vs |) | Vue|*dx

o / Ki(|Vui])Vuy - Vugde — — / K (|Vug|)Vuy - Vuydx
+——/|v1—v2| da:—l— /D1|V v — vg)| dm—i—/ ©1|uy — uylpdy
2dt IR
S O€3E/ |VU1 — V’Ugl dx + C’Dl — D2|/ ‘VU2| dx
Q
1
~ 5ler = alleeny [ aPdr =55 [ =l
+ / r1(B(u; —v1) — B(ug — v9))dz + / r1(B(u; —v1) — B(us — v9))odx
Q Q
¢ ¢
+ —|ry — o] / |ug — vo|“Wdx — = |11 — 73| / |ug — vo|” pdx (5.97)
r Q r Q
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By using the assumption (Ajy) together with (5.3), it leads to

d

dt (u1 —Ug) de"——/Kl \Vul\)|Vu1]2dx+—/K1 ‘VUQ‘NVUQ’ dx

pr / Ki([Vur|)Vuy - Vugdr — — / Ki(|Vus|)Vuy - Vuydx

th/ |vg — vy da:—l—th/DlW v — v9)| d:)s+/r o1 |uy — ud|pdy

S nga/ |VU1 - VU2|2dI + C|D1 — D2|/ |VU2| dx
Q

1

~ 5o = ealleeny [ ey =55 [ =l
c

+ / 7‘1’@61 — U1 — U9 —|—U2|I/}d$ + / 7‘1|u1 — U1 — U2 +U2|¢d$—|— j|7”1 — 7"2| /(‘U2|g

Q Q r Q

¢
Hleal"Yodz = Sfri = ol [ (al” +]eal") o (5.98)
Q

Then, via Cauchy-Schwarz’s inequality, we obtain the following estimate

d
dt |,

d
- — / K1<|VU1|>VU1 . VUQdI - — / Kl(’VUZDVUQ . Vulda:

+§%/ | — vg| da:+2dt/D1|V V1 — V)| dfCJF/F prluy — w3y

§C€3%/ |V01—VU2’ d$+C|D1—D2‘/ ’VUQl dx
Q

1 2 2
- 5lon = ealleny [ ey = 5% [ -y
—H“l/ |u1—u2]¢dx+r1/ ]vl—v2|¢dx+rl/|u1—u2]¢dx+r1/|v1—v2|q§dx

Q Q Q Q

C C d
+%|’f’1—7“2|/Q|u2|2"d:c+4%|7”1—r2|a/glu1—u2\2d:c

C C d
+2%\7’1—7°2\/Q!112|2"dx+§]r1—rz!a/glul—ugﬁdx

c 1% d
— —_|r1 —7"2|/ ]u2|2"da:— —_|7"1 —Tg]d—/ vy —112|2dx
t
——|7«1—r2|/ |vg|2"dx——|r1—r2| /|v1—v2| da. (5.99)

(w1 — ua) dx+—/K1 |Vu1|)|Vu1|2dx+—/K1 (Vo)) Vg 2z
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In other words, (5.98) can be written as follow

d

—/K1(|Vu1])Vu1-Vqua:——/Kl(\Vug\)Vug-Vuld:c

2dt/ |U1—U2| dx+2dt/D1|V U1—02)| dl‘—F/F 901|U1 —U2|’17Z)d’)/

S 053—/ |VU1 —V112| d[E+C|D1 —D2|/ |V'UQ| dx
Q

1d
- —||901 S02||Loo(rR / 2 Py — 2di |U1 —U2|2d7+7”1/ ur — us*da

2dt/|u1—u2| dx+r1/|vl—v2| dx + th/]vl—v2| dz
+|7’1—r2\2 dt/ luy — uy? dx—|r1—r2|2 dt/|vl—v2| dr. (5.100)

Using the property of H in (5.43), (5.100) becomes

d 1d
i |, (u1 — uy)? dx—|—§% (H(|Vu1]) + H(|Vusz|) dx+2dt/]vl—v2| dx
9 a/ ’VUl VUQ‘ d:L‘< —/K1 \Vul\)Vul VUgdl’
+—/K1(]Vu2|)Vu2Vu1d$+053—/ ‘V’Ul—V”UQ' dx
dt /o dt Jq

1
1 C|D, - Dyl / P / s Ay

—§£/ \ul—u2|d”y—i—rl/]ul—ug\dx+2dt/|u1—u2]da:

d
+r /Q\vl—vgl dx + th/]vl—vg| dx + |r — 7"2]2 dt/\ul—u2]2dx
¢ d
= [re = el dt/|vl—vz\ dx. (5.101)

86



Integrating (5.101) over time interval (0,t), it yields
1
[ = wsPde 5 [ (H(Vw]) + H(Vaa]))do
0 Q
D
+ 71/ IVuy — Vug|?dr < / Ki(|Vuy|)Vuy - Vugdz
Q Q

+ / Kl(\Vug\)Vug - Vuydr + 083/ !V% - va\zd:c
Q Q

t 1 t
+ C|Dy — D2|/ / Vo[ dads — sller = 902||2L00(FR)/ / |ug|*dryds
0 Q 0 TR

1 t 1
— —/ |uy — ug|2dry + 7’1/ / |uy — ug|*dxds + —/ |uy — ug|*dx
2 Jrr 0o Ja 2 Jg

t ~
r ¢
—1—7’1/ /|vl —v2\2d:1:d3+—1/ ]Ul—vg\Qd:U—i—m —r2|—_/ \ul—u2|2dx
0o Jo 2 Ja 21 Jq

¢
— I =l /Q |1 — vy (5.102)

Next, we estimate the first term of the right hand side of (5.102) by using as-
sumption (Aj) together with Holdér’s inequality, one obtains

/ Kl(]VulDVul : VUQd.CC
Q

< c/ V| V| da
Q

C (/ \Vu1|2“d:c) o (/ Vu2|2“dx> o
0

Q
l—a 1
2—a

<C (/Q<H(|vu1|> +1)d$) (/Q|Vu2\2“dx)

IN

+C ( ]Vu2]2“dx)
Q

SE/H(|VU1|)da:—I—C/ |Vus|* *dx
Q 0

+C (/ ng“m) o (5.103)
Q

By using the same procedure for the second term of the right hand side of (5.102),
we have

/ K1<|VU/2|>VU2 . Vuldx
Q

§6/H(!Vu2|)dx+0/ |V, > *dw
Q Q

+C ( / \Vu1|2—ad:c> T (5a04)
Q
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Applying trace inequality (5.8) and using (5.103), (5.104), we obtain the following
estimate

9 1
/Q(u1 ~ws)Pdr + /Q(H(]Vul\)  H(|Vw)))ds
+ 5 [ 1Vi = VuPde < ¢ [ (V) + H(Vu))is

1

C/ \Vu, > *dz + C (/ \Vul\zadx) h

Q Q

+C/ V|2 dz + C (/ |Vu2|2_“dx) )
Q Q

t
+ 053/ |VU1 - VU2|2dZL‘ + C|D1 — D2|/ / |VU2|2dl’d8—
Q 0 JQ

1 ! 1 Y
§H<P1 - 902”%00({‘1?)/ / g dryds — 5(284/ |Vuy — Vug|* “dx
0 JIR Q

+C’/ |u1—u2|°‘dx—|—0/ |u1—u2|a+“°dx+0/ |u1—u2|°‘+’“dx>
Q Q Q

t t
1
+ 7"1/ / luy — ug|*dads + —/ luy — ug|*dx + 7“1/ / vy — vo|*dads
0o Ja 2 /o 0o Ja
™ 2 é 9
+—/|01—U2‘ dx+|T1_T2|__/‘U1—U2| dx
2 (9] 2T o)

¢
— ‘7"1 — 7"2‘2—77 /Q ’Ul — UQ|2d.Z'. (5105)

Choosing ¢ = %, €3 = and €4 = 1, we are led to

4C’

/ |Vu, — Vuy|*“dx +/ Vv, — Vu|2de < 5/(H(]Vu1]) + H(|Vuy|))dz
Q Q Q

+C/ |Vu, > %dx + C </ |Vu1|2“da:> h

0 0

+ C/ |Vuy|**dx + C (/ |VuQ|2_ad:B> E
0 0

t 1 t
+O\D1—D2]/ /|Vv2|2d:cds——”gol—go2||iw rR) // |ug|* dryds

+7“1/ /|u1—u2| dxds + = /|u1—u2| dx—i—rl/ /|vl—v2\ dxds+
/|U1—U2| d:l:—l—\r1—7’2|—/ luy — up|*dw — |7’1—r2|—/ |v1 — vo|?de.
T Q 7” QO

(5.106)
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Now, we use the energy estimates (5.27), (5.44) and the stability-like estimate
(5.24), we finally obtain the following structural-stability-like estimate

/ |Vu, — Vuy|* “dx +/ Vv, — Vuy2de < C + C(|Dy — Dy|—
QO Q

1 ¢ o\ G, T)|r1—r
||901 - QDQH%oo(FR)) + ((t+ 5) + |T1 - T2|§) GC( A eI 2|t<||U01 - u02||%2(9)

v = w0220y + Ct (1D1 = Dol + 11 = 72l = o1 = @ l3eery ) )-
(5.107)

]

5.9 Discussion

In this chapter, we have shown the well-posedness of a system of parabolic equa-
tions consisting of a double nonlinear parabolic equation of Forchheimer type
coupled with a semilinear parabolic equation. The system describes a fluid-like
driven system for active-passive pedestrian dynamics. Specifically, the pedestrian
flow is composed of a mix of densities of active and passive pedestrians that are
moving with different velocities. We used Schauder’s fixed point argument to
tackle the existence of solutions to the system. We proved the uniqueness of so-
lutions by using the structure of the nonlinearity of the coupling. We provided
also stability estimates of solutions with respect to selected parameters.

Note that our stability estimate for the gradient of the solutions is not optimal.
This stability estimate can be eventually improved by studying the structural sta-
bility with respect to the Forchheimer polynomial Ki(-) (see e.g. [HI11]). From
a micro-to-macro perspective, it is worth also noting that a generalized Forch-
heimer flow model can be obtained in principle via homogenization techniques
(like in [LLPW11], e.g.). It would be interesting to see if we can build a suitable
microscopic model defined at the level of the geometry depicted in Figure 2.5.
An open question here would be to investigate the large time behavior of the
solutions to our evolution system. Also, a convergent numerical approximation
of solutions to (5.1) needs to be proposed. We plan to investigate these research
directions in future works.

From a micro-to-macro perspective, it would be interesting to explore whether
the structure of the nonlinearity arising in the Forchheimer polynomial can be re-
lated via a suitable hydrodynamic or mean-field limiting process to an interacting
particle system. Such an investigation route would most probably use statisti-
cal mechanics-based techniques like the ones presented, for instance, in [Pre09].
Should such an approach be successful, then direct connections between micro-
scopic (discrete, stochastic) models for pedestrian flows and macroscopic (con-
tinuum) models for pedestrian flows like the one presented in this chapter, will
become clear.
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Chapter 6

Solvability of a coupled nonlinear
system of Skorohod-like stochastic
differential equations modeling
active—passive pedestrians dynamics
through a heterogeneous domain
and fire

In this chapter, we study the existence and uniqueness of solutions to a coupled
nonlinear system of Skorohod-like stochastic differential equations with reflecting
boundary condition. The setting describes the evacuation dynamics of a mixed
crowd composed of both active and passive pedestrians moving through a domain
with obstacles, fire and smoke. As main working techniques, we use compactness
methods and the Skorohod’s representation of solutions to SDEs posed in bounded
domains. This functional setting is a new point of view in the field of modeling
and simulation pedestrian dynamics. The main challenge is to handle the coupling
and the nonlinearities present in the model equations together with the multiple-
connectedness of the domain and the pedestrian-obstacle interaction. This is
based on [TM20].

6.1 Introduction

In this chapter, we study the solvability of a coupled nonlinear system of Skorohod-
like stochastic differential equations modeling the dynamics of pedestrians through
a heterogenous domain in the presence of fire. From the modeling perspective,
our approach is novel, opening many routes for investigation especially what con-
cerns the computability of solutions and identification of model parameters. The
standing assumption is that the crowd of pedestrians is composed of two distinct
populations: an active population — these pedestrians are aware of the details
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of the environment and move towards the exit door, and a passive population —
these pedestrians are not aware of the details of the geometry and move randomly
to explore the environment and eventually to find the exit. All pedestrians are
seen as moving point particles driven by a suitable over-damped Langevin model,
which will be described in Section 6.3. Our model belongs to the class of social-
velocity models for crowd dynamics. It is posed in a two dimensional multiple
connected region D, containing obstacles with a fixed location. Furthermore, a
stationary fire, which produces smoke, is placed within the geometry forcing the
pedestrians to choose a proper own velocity such that they evacuate. The fire is
seen, as a first attempt, as a stationary obstacle.

To keep a realistic picture, the overall dynamics is restricted to a bounded
"perforated" domain, i.e. all obstacles are seen as impenetrable regions. The
geometry is described in Subsection 6.3.1; see Figure 6.1 to fix ideas. In this
framework, we consider reflecting boundary conditions and plan, as further re-
search, to treat the case of mixed reflection—flux boundary conditions so that the
exits can allow for outflux. In this framework, we focus on the interior obsta-
cles. To achieve a correct dynamics of dynamics of the pedestrians close to the
boundary of the interior obstacles, we choose to work with the classical Skoro-
hod’s formulation of SDEs; we refer the reader to the textbook [Pill4] for more
details on this subject. Note that this approach is needed especially because of
the chosen dynamics for the passive particles, as the active pedestrians are able
to avoid collisions with the obstacles by using a motion planning map (a priori
given paths — solution to a suitable Eikonal-like equation; cf. Appendix A.2).

6.2 Related contributions. Main questions of this
research

A number of relevant results are available on the dynamics of mixed active-
passive pedestrian populations. As far as we are aware, the first questions in
this context were posed in the modeling and simulation study [RJM19] while
considering the evacuation dynamics of a mixed active-passive pedestrian pop-
ulations in a complex geometry in the presence of a fire as well as of a slowly
spreading smoke curtain. From a stochastic processes perspective, various lattice
gas models for active-passive pedestrian dynamics have been recently explored
in [CCMT19,CMRT19]. See also [TCM19] for a result on the weak solvability of
a deterministic system of parabolic partial differential equations describing the
interplay of a mixture of fluids for active—passive populations of pedestrians.
The discussion of the active-passive pedestrian dynamics at the level of SDEs
is new and brings in at least a twofold challenge: (i) the evolution system is
nonlinear and coupled and (ii) pedestrians have to cross a domain with forbidden
regions (the obstacles). Various solution strategies have been already identified for
deterministic crowd evolution equations. We mention here the two more promi-
nent: a granular media approach, where collisions with obstacles are tackled with
techniques of non-smooth analysis cf. e.g. [FM15], and a reflection-of-velocities
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approach as it is done e.g. in [KvMY19|. If some level of noise affects the dy-
namics, then both these approaches fail to work. On the other hand, there are
several results for stochastic differential equations with reflecting boundary con-
ditions, one of them being the seminal contribution of Skorohod in [Sko61|, where
the author provided the existence and uniqueness to one dimensional stochastic
equations for diffusion processes in a bounded region. A direct approach to the
solution of the reflecting boundary conditions and reductions to the case includ-
ing nonsmooth ones are reported in [Lio84]. Extending results by Tanaka, the
author of [Sai87| proves the existence and uniqueness of solutions to the Skorohod
equation posed in a bounded domain in R? where a reflecting boundary condition
is applied.

The main question we ask in this chapter is whether we can frame our crowd
dynamics model as a well-posed system of stochastic evolution equations of Sko-
rohod type. Provided suitable restrictions on the geometry of the domain, on the
structure of nonlinearites as well as data and parameters, we provide in Section
6.6 a positive answer to this question. This study opens the possibility of explor-
ing further our system from the numerical analysis perspective so that suitable
algorithms can be designed to produce simulations forecasting the evacuation
time based on our model. A couple of follow-up open questions are given in the
conclusion; see Section 6.7.

6.3 Setting of the model equations

6.3.1 Geometry

We consider a two dimensional domain, which we refer to as A. As a building
geometry, parts of the domain are filled with obstacles. Their collection is denoted
by G = Uivji Gy, forall k € {1,..., Nops € N}. A fire F' is introduced somewhere
in this domain and is treated in this context as an obstacle for the motion of the
crowd. Moreover, the domain has the exit denoted by E. Our domain represents
the environment where the crowd of pedestrians is located. The crowd tries
to find the fastest way to the exit, avoiding the obstacles and the fire. Let
D = A\(GUFUF) C R? with the boundary 9D such that A N 0G}, = 0,
IANOG, =0 and F NGy = (), we also denote S = (0,T) for some T' € R,. We
refer to D x S as Dy, note that D denotes the closure of D. Furthermore, N4
is the total number of active agents, Np is the total number of passive particles
with N := Ny + Np and Ny, Np, N € N.

6.3.2 Active population

For i € {1,...,N4} and t € S, let x,, denote the position of the pedestrian i
belonging to the active population at time t. We assume that the dynamics of
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Figure 6.1: Basic geometry for our active-passive pedestrian model. Initially,
pedestrians occupy some random position within a geometry with obstacles Gy.
Because of the presence of the fire F', and presumably also of smoke, they wish
to evacuate via the exit door E while avoiding the obstacles Gy, and the fire F.

active pedestrians is governed by

dxq;(t) Vo(xq,(t))
{—dt = =T (s(xq, (t))m (Pmax — P(Xa, (1), 1)) ,

X4, (0) = Xay,

(6.1)

where x,,, represents the initial configuration of active pedestrians inside D. In
(6.1), V¢ is the minimal motion path of the distance between particle positions
Xq, and the exit location E (it solves the Eikonal-like equation). The function
¢(-) encodes the familiarity with the geometry; see also [YJQH16] for a related
setting. We refer to it as the motion planning map. In this context, p(x,t) is the
local discomfort (a realization of the social pressure) so that

0 /D . Z 5(y — x.,(£))dy, (6.2)

for {x.,} = {xa,} U{xp,} forie{1,...,Na}, ke {l,....,Np},je{l,...,Na+
Np}. In (6.2), ¢ is the Dirac (point) measure and B(x,4) is a ball center x with
small enough radius & such that & > 0. Hence, the discomfort p(x,t) represents
a finite measure on the set D N B(x, 5) In addition, we assume the following

structural relation between the smoke extinction and the walking speed (see in
[Jin97], [RN19]) as a function T : R? — R? such that

T(z) = —Cx +), (6.3)
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where (,n are given real positive numbers. The dependence of the model co-
efficients on the local smoke density is marked via a smooth relationship with
respect to an a priori given function s(x,t) describing the distribution of smoke
inside the geometry at position x and time t.

6.3.3 Passive population

For k € {1,...,Np} and ¢t € S, let x,, denote the position of the pedestrian
k belonging at time t to the passive population. The dynamics of the passive
pedestrians is described here as a system of stochastic differential equations as
follows:

{dxpk (1) = S0 (e, = Xl (ks 1)t + By, 1) AB(D),

Xpy (0) = Xppo>

(6.4)

where x,,, represents the initial configuration of passive pedestrians inside D and
€ > 0. In (6.4), w is a Morse-like potential function (see e.g. Ref. [CMP13] for a
setting where a similar potential has been used). We take w : R x R? — R? to
be

w(z,y) = —pP(y) (CAe_ﬁ + C’Re_é> for z,y € R x R?, (6.5)

while C'y > 0, Cg > 0 are the attractive and repulsive strengths and ¢4 > 0,0 >
0 are the respective length scales for attraction and repulsion. Moreover, the
coefficient [ is a regularized version of the Heaviside step function. As in Subsec-
tion 2.4.2, the dependence of the model coefficients on the smoke is marked via a
smooth relationship with respect to an a priori given function s(x,t) describing
the distribution of smoke inside the geometry at position x and time ¢. Note
that the passive pedestrians do not posses any knowledge on the geometry of the
walking space. In particular, the location of the exit is unknown; see [CP19] for
a somewhat related context.

6.4 Technical preliminaries and assumptions

6.4.1 Technical preliminaries

We recall the classical Ascoli-Arzela Theorem:
A family of functions U C C(S;R9) is relatively compact (with respect to the
uniform topology) if

i. for every t € S, the set {f(t); f € U} is bounded.
ii. for every e > 0 and t,s € S, there is 6 > 0 such that

[f() = f(s)] <e, (6.6)

whenever |t — s| < § for all f C U.
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For a function f : S — R? we introduce the definition of Hélder seminorms as

[f(t) = f(s)]

[fleasray = sup P (6.7)
t#£s;t,s€S ’t - S|
for a € (0,1) and the supremum norm as
1f | oo sy = esssup [ f(2)]. (6.:8)

tesS

We refer to [AF03] and [GT77] for more details on these spaces.
Using Ascoli-Arzela Theorem starting from the facts:

i”. there is My > 0 such that || f[|fe(g;rey < M, for all f € U,

ii’. for some a € (0,1), there is an My > 0 such that [f]ce(g.rey < Ms for all
fel,

we infer that the set
K, = {f € C(S;RY; || fllpoe(simay < M, [floa(gmey < Mo} (6.9)

is relatively compact in C'(S;R%).
For a € (0,1), T > 0 and p > 1, the space W*P(S;R?) is defined as the set
of all f € LP(S;R?) such that

T T . D
[flwor(sra 12/0 /0 %dtdg < 0.

p
This space is endowed with the norm
| fllwersiray = [ fllosiray + [flwor(sgray-
Moreover, we have the following embedding
WeP(S;RY) ¢ C7(S;RY)  for ap — > 1

and [f]cv(siray < Cyapllfllwer(sre). Relying on the Ascoli-Arzela Theorem, we
have the following situation:

ii”. for some o € (0,1) and p > 1 with ap > 1, there is My > 0 such that
I:f:IWa,p(S;Rd) S MQ for all f eU.

If i’ and ii” hold, then the set

Ko, = {f € C(S;RY; | £l e (s:ray < Mi, [flwar(smay < Mo} (6.10)

is relatively compact in C'(S;R?), if ap > 1 (see e.g. [FG95], [CMRT19]).
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6.4.2 Assumptions

To be successful with our analysis, we rely on the following assumptions:

(A1) The functions b : Dy x Dy — R? x R? and 0 : Dp X Dp — R?*? x R?*x2
satisfy |o(z,t)] < L, |b(z,t)] < Lforallz € D x D and t € S. Here o
and b incorporate the right-hand sides of the SDEs (6.1) and (6.4) in their
respective dimensionless form indicated in Appendix A.3.

(A) Pmax = N|D|, where |D| denotes the area of D.

(A3) T,w,B € CHR?).

(Ay) s € CHS;R?).

(A5) 0D is C** with « € (0,1), or at least satisfying the exterior sphere condi-
tion.

It is worth mentioning that assumptions (A;) and (As) correspond to the
modeling of the situation, while (A3)-(Ajs) are of technical nature, corresponding
to the type of solution we are searching for; clarifications in this direction are
given in the next Section.

6.5 The Skorohod equation

6.5.1 Concept of solution

Take x € 0D arbitrarily fixed. We define the set N, of inward normal unit vectors
at x € 9D by
N = UpsoNe s
Ner={neR*:|n|=1,Bx—rm,r)ND =0}, (6.11)
where B(z,7) = {y € R? : |y — 2| < r},z € R* r > 0. Mind that, in general, it

can happen that N, = (0. In this case, the uniform exterior sphere condition is
not satisfied (see, for instance, the examples in [CFLPL16], Fig. 5 and in [Cho16],

page 4).
We complement our list of assumptions (A;)—(As) with three specific conditions
on the geometry of the domain D:

(Ag) (Uniform exterior sphere condition). There exists a constant ro > 0 such
that
N, =N.,, # 0 for any z € ID.

(A7) There exits constants ¢ > 0 and ¢’ € [1,00) with the following property:
for any x € 0D there exists a unit vector 1, such that

(l,,n) > 1/4 for any n € U Ny,

y€B(x,0)NOD

where (-, ) denotes the usual inner product in R2.
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(Ag) There exist ¢ > 0 and v > 0 such that for each 2y € 0D we can find a
function f € C?(R?) satisfying

1
(y =@, m) + —(Vf(z),m)ly —z|" > 0, (6.12)
for any = € B(z¢,6") N ID,y € B(xg,8") NdD and n € N.
Let W(R?) and W (D) be the space of continuous paths in R? and D, respec-

tively. The following relation is called the Skorohod equation: Find (£, ¢) € W (R?)
such that

§(t) = w(t) + o(t), (6.13)

where w € W(R?) is given so that w(0) € D. The solution of (6.13) is a pair
(&, ¢), which satisfies the following two conditions:

(a) € € W(D);
(b) ¢ € C(S) with bounded variation on each finite time interval satisfying
»(0) =0 and
t
o) = [ (oo,
t
ol = [ on(€(w)dlol, (6.14)
0
where
n(y) € Ney) if (y) € 9D, (6.15)
|¢|: = total variation of ¢ on [0, ]
ny
= sup Y [o(tk) — oty — 1. (6.16)
TeG([0,t]) =1

In (6.15), we denote by G([0,¢]) the family of all partitions of the interval
[0,¢] and take a partition T ={0 =1ty <t; <...<t, =t} € G([0,]). The
supremum in (6.15) is taken over all partitions of type 0 =ty < t; < ... <
t, =1.

Conditions (a) and (b) guarantee that ¢ is a reflecting process on D.

Theorem 6.1. Assume conditions (a) and (b). Then for any w € W(R?) with
w(0) € D, there exists a unique solution £(t,w) of the equation (6.13) such that
E(t,w) is continuous in (t,w).

For the proof of this Theorem, we refer the reader to Theorem 4.1 in [Sai87].
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To come closer to the model equations for active-passive pedestrian dynamics
described in Section 6.3, we introduce the mappings

bIDTXDT—>R2X]R2, UiDTXDT—>R2X2XR2X2
and consider a Skorohod-like system on the probability space (2, F, P)
dX; = b(Xy(t))dt + o(Xy(t))dB(t) + ddy, (6.17)

or (6.17) can be written component-wise as

2
dX" = b(X, (1) 1dt + Y opy(X,()dB (1) +ddV, for 1 <T<4,1<J <2
J=1

with

X(0)= X, € D, (6.18)
where the inital value X, is assumed to be an Fy—measurable random variable
and B(t) is a 2—dimensional F;—Brownian motion with B(0) = 0. Here, {F;} is
a filtration such that F; contains all P—negligible sets and F; = N.~9Fi1-. The
structure of (6.17) is provided in Section 6.6.2. Similarly to the deterministic

case, we can now define the following concept of solutions to (6.17). More details
of the structure of (6.17)-(6.18) are listed in Section 6.6.2.

Definition 6.2. A pair (X, ®;) is called solution to (6.17)—(6.18) if the following
conditions hold:

(i) X; is a D—valued F;—adapted continuous process;

(ii) ®(t) is an R*—valued F;—adapted continuous process with bounded variation
on each finite time interval such that ®(0) = 0 with

B(t) = / n(y)d|2],.
], = / Lon (X ())d|®],. (6.19)

(111) m(s) € NX(S) € 0D.

Note that the Definition 6.2 ensures that X; entering (6.17) is a reflecting
process on D.

6.6 Solvability of Skorohod-like system

In this section, we establish the solvability of the Skorohod-like system by showing
the existence and uniqueness of solutions in the sense of Definition 6.2 to the
problem (6.17)—(6.18). It turns out that for completing the well-posedness study
of our system, more work is required. We comment on this matter in Remark

6.7.
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6.6.1 Statement of the main results

The main results of this chapter are stated in Theorem 6.3 and Theorem 6.4. In
the frame of this chapter, the focus lies on ensuring the existence and uniqueness
of Skorohod solutions to our crowd dynamics problem.

Theorem 6.3. Assume that (A1)-(Az7) hold. There exists at least a solution to
the Skorohod-like system (6.17)—(6.18) in the sense of Definition 6.2.

Theorem 6.4. Assume that (Ay)-(Ag) hold. There is a unique strong solution
to (6.17)~(6.18).

These statements are proven in the next two subsections.

6.6.2 Structure of the proof of Theorem 6.3

For convenience, we rephrase the solution to the system (13) and (14) in terms
of the vector X', n € N, such that

X{ = (X2 (), Xp () forie{l,...,Na},ke{l,...,Np}, (6.20)
ST (- O), (620
Vg o(Xg ()] Ve — Pttt |

N
Xo(t) — X5, (1)
Fy(X7 1) =& T
Z e+ Xz (1) = X5, (1)

B(XT ) = wT(S(Xg. (1))

w(|Xg (1) = X5 (0], S(X5, (1), 1)),

(6.22)
F(XP 1) = KB(S(XD(0),1),1). (6.23)
Furthermore, we set
n - F1<thvt> n N
b(X[,t) = {F2<th7t) and o(X]',t) == FIE (6.24)
with
_ 00 5. |0 012
0:= [O O} and [ := [621 622} , (6.25)
where 675 := (6(X}", 1))y for 1 < I,J <2 and the initial datum is
Xa:0
X™0) := Xo:= | "] . 6.26
0 =% = [0 (626
We denote by {®}} the associated process of {X]'} as in (6.17), viz.
‘D”(t))}
op = | 1 . 6.27
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We use the compactness method together with the continuity result of the
deterministic case stated in Theorem 6.1 for proving the existence of solutions to
(6.17)-(6.18). We follow the arguments by G. Da Prato and J. Zabczyk (2014) (cf.
|[PZ14], Section 8.3) and a result of F. Flandoli (1995) (cf. [FG95]) for martingale
solutions. The starting point of this argument is based on considering a sequence
{X}} of solutions of the following system of Skorohod-like stochastic differential
equations

dXr = b(Xt”(h”_(t))dt + o (X (h"(t))dB(t) + do}, (6.28)
X"(0) = X, € D, '
where X' € D is given, and
h"(0) =0, (6.29)

R*(t)=(k—1)27", (k—1)2"<t<k2™™ k=12,...,nandn > 1.
(6.30)

Moreover, by Theorem 6.1, we have a unique solution of (6.28). Hence, X}’
obtained for 0 <t < k27" and for k27" < ¢t < (k + 1)27™ is uniquely determined
as solution of the following Skohorod equation

Xi =X (R27") + (X[ (R27")(t — k27") + o( X[ (k27")){B(t) — B(k2™")} + D}

(6.31)
Let us call
t t
Ve X [ G0yt [ oCGr W)L, (632
0 0
We define the family of laws
{P(Y/");0<t<T,n>1}. (6.33)

(6.33) is a family of probability distributions of Y;*. Let P™ be the laws of Y,".

The compactness argument proceeds as follows. We begin with Y,",n € N,
given cf. (6.32). The construction of Y;" is investigated on a probability space
(Q, F, P) with a filtration {F;} and a Brownian motion B(t). Next, let P™ be the
laws of Y;” which is defined cf. (6.33). Then, by using Prokhorov’s Theorem (cf.
[Bil99], Theorem 5.1), we can show that the sequence of laws {P"(Y;")} is weakly
convergent as n — oo to P(Y;) in C(S;R? x R?). Then, by using the “Skorohod
Representation Theorem”(cf. [PZ14], Theorem 2.4), this weak convergence holds
in a new probability space with a new stochastic process, for a new filtration. This
leads to some arguments for weak convergence results of two stochastic processes
in two different probability spaces together with the continuity result in Theorem
6.1 that we need to use to obtain the existence of our Skorohod-like system (6.17).
Finally, we prove the uniqueness of solutions to our system.
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6.6.3 Proof of Theorem 6.3

Let us start with handling the tightness of the laws {P"} through the following
Lemma.

Lemma 6.5. Assume that (Ay)-(As) hold. Then, the family {P"} given by (6.33)
is tight in C(S,R? x R?).

Proof. To prove the wanted tightness, let us recall the following compact set in
C(S,R? x R?)

KM1M2 = {f € C(S’ RQ X RQ) : “fHL"O(S;R?XRQ) < M17 [f]Ca(S';]RQXRQ) < M2}~

(6.34)
Now, we show that for a given € > 0, there are My, M, > 0 such that
P(Y"™ € Kyym,) < e, forall n € N. (6.35)
This means that
P([[Y;"[| oo (sirexrzy > My or [Y]casrexrz) > Ma) <e. (6.36)
A sufficient condition for this to happen is
PV (s xry > My) < 5 and P(IY"]ou(smexen) > Ma) < 5, (6.37)

where Y. denotes either Y; or Y.
We consider first P(||Y."||poo(sr2xr2) > Mi) <
(see e.g. [JPO4], Corollary 5.1), we get

5. Using Markov’s inequality

1
P(IY{ | o (simexme) > M) < 5= Elsup [Y,"]], (6.38)
1 tes

but

t
sup |Y;" :sup{ Xai,0+/ Fl(X;"”(h”(y)))dy‘
tes tes 0

t

Y

ka,o+/0 Fz(X;"‘(h"(y)))der/o U(X;"‘(h”(y)))dB(y)‘ } (6.39)

We estimate

[ ey

sup 7 = sup { Xuvol +
€

tesS t

[Xyuol + \ / t F2<X;<h"<y>)>dy] ¥ \ / to(XJ(h”(ymdB(y)] } (6.40)
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Since F}, Fy are bounded, then we have

| Reger < cma [ Regere)w<e 6

Taking the expectation on (6.40), we are led to

E {sup \Y;"q <C+E {sup

tes tes

/Ot“(Xél(h”(y)))dB(y)H . (6.42)

On the other hand, the Burlkholder-Davis-Gundy’s inequality ! implies

1/2

| [ otxgorwman|| < B[ [ lecuramra) e

tesS

Then, we have the following estimate

plswivy] <o+ B[ [ g urwral Teo e

tesS

Hence, for € > 0, we can choose M; > 0 such that P(||Y;" || pe(s;r2xr2) > M;) <
In the sequel, we consider the second inequality P([Y""]co(g,r2xr2) > M2) <
this reads

NN

Yyr—-yvynr
P lowsners > M) = P (s B2 ) <

g
—. 6.45
t#rit,reS |t - Tla -2 ( )

Let us introduce another class of compact sets now in the Sobolev space
WeP(0,T; R? x R?) (which for suitable exponents ap — v > 1 lies in C7(S;R? x
R?)). Additionally, we recall the relatively compact sets K}, ;. defined as in
Section 6.4, such that

Ky = {f € C(S;R* X R?) : || fllpo(sirexre) < Mu, [flwen(srexre) < Ma} .
(6.46)

A sufficient condition for K}, ;, to be a relative compact underlying space is
ap > 1 (see e.g. [FGI95], [CMRT19|). Having this in mind, we wish to prove that
there exits a € (0,1) and p > 1 with ap > 1 together with the property: given
e > 0, there is My > 0 such that

P([Y"wanr(smexrz) > My) < g for every n € N. (6.47)

1See e.g. [KS00|, Theorem 3.28 (The Burlkholder-Davis-Gundy’s inequality). Let M €
Me1¢ and call M = maxo<s<¢ |[Ms|. For every m > 0, there exists universal positive constants
km, K (depending only on m), such that the inequalities

kn E((M)7 < B[(M7)*™] < K E((M)T)

hold for every stopping time 7. Note that M®!°¢ denotes the space of continuous local mar-
tingales and (X) represents the quadratic variance process of X € M®1oc,
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Using Markov’s inequality, we obtain

R
P([Y"lwar(srexr2) > M) < —E [/ / [t = rJior ———————dtdr

\Y” Y]
dtd 6.48
MZ/ / (e A (649)
For t > r, we have

n_yn _ fFl y)))dy 0
Y [f B(X <h (y)))dy]+{f:a(X;(h”(y)))dB(y)] (6.49)

Let us introduce some further notation. For a vector v = (u,us), we set |u| :=
|u1| + |ug|. At this moment, we consider the following expression

vr-vel=|f t F1<X;(h”<y>>>dy'

| [ ROGEr ey + [ e wiBw]. (650)

Taking the modulus up to the power p > 1 together with applying Minkowski
inequality, we have

- = (

- / Fz(XS(h”(y)))der/ U(Xﬁ(h"(y)))dB(y)D

<c(

a (X2 () dy

t

F1<X§<h“<y>>>dy\

p

p

/ (X () )y

p
_l’_

/ o (X(h"(4)))dB(y)

c( / R (0" () Pdy + / B (" (y))) Py

p). (6.51)

Taking the expectation on (6.51), we obtain the following estimate

+ / o (Xp(h"(y)))dB(y)

By - v2P < -y e || [ atquranasw)| | o
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Applying the Burkholder-Davis-Gundy’s inequality to the second term of the
right hand side of (6.52), we obtain
t p/2
(L)

d

On the other hand, if a < %, then

/ / r|1+(“_*) ———————dtdr < o0. (6.54)

Consequently, we can pick o < % Taking now p > 2 together with the constraint
ap > 1, we can find My > 0 such that

[ otxzarwmas| | <ce <Clt-rp (653)

P([}/tn]wa,p(s';]RQXRQ) > MQ) < (655)

DO | M

This argument completes the proof of this Lemma. O

From Lemma 6.5, we have obtained that the sequence {P"} is tight in C'(S; R?x
R?). Applying the Prokhorov’s Theorem, there are subsequences {P"} which
converge weakly to some P(Y;) as n — oo. For simplicity of the notation, we
denote these subsequences by {P"}. This means that we have {P"} converging
weakly to some probability measure P on Borel sets in C'(S;R? x R?).

Since we have that P"(Y;") converges weakly to P(Y}) as n — oo, by using the
“Skorohod Representation Theorem”, there exists a probability space (Q F, P)
with the filtration {F;} and Y}, ; belonging to C(S;R? x R?) with n € N, such
that 73( ) =PY), P(Y”) = P(Y;"), and Y* — Y; as n — oo, P—a.s. Moreover,
let (X7, ®7) and (X,, ®;) be the solutions of the Skorohod equations

Xp =87,
X, =Y, + (6.56)

respectively. Then the continuity result in Theorem 6.1 implies that the sequence
(X7, ®") converges to (X, ;) € C(S; D x D) x C(S) uniformly in ¢ € S, P—as
as n — 00. Hence, we still need to prove that Y" converges to Y; in some sense,
where we denote

=Ko+ [ WS 0y + [ oS aBL).  ©65)
and
Tom Kot [ 00+ [ oK (@)iBw). (6.58)

To complete the proof of the existence of solutions to the problem (6.17)-(6.18)
in the sense of Definition 6.2, we consider the following Lemma.
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Lemma 6.6. The pair (X;, ;) € C(S; D x D) x C(S) ¢f. (6.56) is a solution of
the Skorohod-like system

£ = %ot /0 bR () dy + /O (R, () dB(y) + (6.59)

with XO €D.

Proof. We consider the term fot o (X7 (hn(y))dB(y) with the step process /(X" (hn(y)).
Approximating this stochastic integral by Riemann-Stieltjes sums (see e.g. [Eval3|),
it yields

n—1

/0 o (Xy (ha(9))dB(y) = Y o (X[ (ha(t))(B(tjs1) — B(1}))- (6.60)

k=0
This gives by taking the limit n — oo in (6.60)
t

lim [ (X () dBy) = lim 3 o (R () (B(EL,) — BUER)

n—oo 0

= U(Xt(t))(B(tkH)—B(tk))2/0U(Xy(y))dé(y)- (6.61)

k=0

By the fact that (X7, ®7) converges to (X;, ®;) € C(S; D x D) x C(S) uniformly
inte[0,7] P—a.s as n — oo together with (6.61), we obtain that

X=X+ | R () dy + /[ (KB + B (662)

converges to

,(¥)dB(y) + ®;, P —asasn — oco.
(6.63)

K= %o+ [ 080+ [ o

]

Proof of Theorem 6.4

Proof. We take X;, X] € C(S;D x D) two solutions to (6.17)-(6.18) with the
same initial values X (0) = X'(0).

Moreover, suppose that the supports of b and ¢ is included in the ball B(zy, d)
for some zo € 0D. We use the proof idea of the Lemma 5.3 in [Sai87|. Let us
recall the assumption (Ag), where D satisfies the following condition: It exists
a positive number v such that for each xy € dD we can find f € C*(R? x R?)
satisfying

(y—2,m) + (Y (x),m}ly ol > 0.
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for any z € B(z¢,8') N 0D,y € B(xy,8") NdD and n € N,. Then, we have
(X, — XL, d®, — @) — 1| X, ~ X/P(Ld®, — d2))
= —((X, — X_,d®,) + %|Xs — X/|*(1,d®,))
(X~ X, d20) + X, — XIP(L %)) <O (6.64)
where 1 is the unit vector appearing in Condition (A7).

Using similar ideas as in [Lio84], Proposition 4.1, we have the following esti-
mate

X - xiPe { - (@06) - #00)) | <

2<exp {-@) - oeont [ eom) - sxma

1
22X, = X}, 0) =~ X, — X;P) o,

1
(2(Xy = X)) = |, - X;P) o
2
14

~2006) - (X)) bty
# [ (206 =200 - 2 - xR e { L@t - ) b,

+ /Ot (2<Xy — X!, 1) - %!Xy - X{,F) exp {—%(‘D(Xy) - ‘P’(Xy))} AP,
(6.65)

On the other hand, taking the expectation are both sides of (6.65) and using the
Lipschitz condidion to the first term of the right hand side together with (6.64),
we are led to

B (1x - xipen { Lot - e} ) <

o [ B(1x, - e {2006 000 )y
(6.66)
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This also implies that

t
BIX, - X1 < € | BX, - Xy (6.67)
0

Hence, X; = X] for all t € [0,T]. Then, the pathwise uniqueness of solutions to
(6.17) holds true. On the other hand, combining the Lemma 6.6 together with
the fact that the pathwise uniqueness implies the uniqueness of strong solutions
(see in [IW81], Theorem IV-1.1). Therefore, there is a unique solution (X, ®;) €
C(S; D x D) x C(S) of (6.17). O

Remark 6.7. What concerns the stability with respect to data and parameters of
our concept of solution to the Skorohod-like system, we can show the stability with
respect to the initial data via standard arguments (see e.g. [Eval3[). However,
more work is needed, for instance in terms of energy-like estimates, to prove the
structural stability with respect to the model nonlinearities and coefficients as there
are no general known results in this direction. We expect however our problem to
be well-posed in Hadamard’s sense.

6.7 Discussion

In this chapter, we have shown the existence and uniqueness of solutions to a sys-
tem of Skorohod-like stochastic differential equations modeling the dynamics of a
mixed population of active and passive pedestrians walking within a heterogenous
environment in the presence of a stationary fire. Due to the discomfort pressure
term as well as to the Morse potential preventing particles (pedestrians) to over-
lap, our model is nonlinearly coupled. The main feature of the model is that the
dynamics of the crowd takes place in an heterogeneous domain, i.e. obstacles
hinder the motion. Hence, to allow the SDEs to account for the presence of the
obstacles, we formulate our crowd dynamics scenario as a Skorohod-like system
with reflecting boundary condition posed in a bounded domain in R2. Then we
use compactness methods to prove the existence of solutions. The uniqueness of
solutions follows by standard arguments.

There are a number of open issues that are worth to be investigated for our
system:

1. To obtain a better insight on how the solution of the SDEs behaves and
how close is this behaviour to what is expected from standard evacuation scenar-
ios, a convergent numerical approximation of solutions to (6.17)-(6.18) needs to
be implemented. One possible route is to design an iterative weak approximation
of the Skorohod system as it is done e.g. in [BGT04], [NO10|, and in the ref-
erences cited therein. The main challenge is to get fast and accurate numerical
approximation of solutions so that an efficient parameter identification strategy
can be proposed.

2. We did assume that the fire is a stationary obstacle, i.e. OF' is independent
on t. But, even if not evolving, this fire-obstacle should in fact have a time
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dependent boundary. Using the working technique from [NO10]|, we expect that
it is possible to handle the case of a time-evolving fire, provided the shape of the
fire OF (t) is sufficiently regular, fixed in space, and a priori prescribed.

3. From a mathematical point of view, the situation becomes a lot more chal-
lenging when there is a feedback mechanism between the pedestrian dynamics and
the environment (fire and geometry). Empirically, such pedestrians-environment
feedback was pointed out in [RN19]. An extension can be done in this context
using the smoke observable s(z,t). As a further development of our model, we
intend to incorporate the "transport" of smoke eventually via a measure-valued
equation (cf. e.g. [EHM16]), coupled with our SDEs for the pedestrian dynamics.
In this case, besides the well-posedness question, it is interesting to study the
large-time behavior of the system of evolution equations. Instead of a measure-
valued equation for the smoke dynamics, one could also use a stochastically per-
turbed diffusion-transport equation. In this case, the approach from [CJK18] is
potentially applicable, provided the coupling between the SDEs for the crowd
dynamics and the SPDE for the smoke evolution is done in a well-posed manner.
However, in both cases, it is not yet clear cut how to couple correctly the model
equations.

4. From the modeling point of view, it would be very useful to find out
to which extent the motion of active particles can affect the motion of passive
particles so that the overall evacuation time is reduced. Note that our crowd
dynamics context does not involve leaders, and besides the social pressure and
the repelling from overlapping, there are no other imposed interactions between
pedestrians. In this spirit, we are close to the setting described in [CTB*18],
where active and passive particles interplay together to find exists in a maze.
Further links between maze-solving strategies and our crowd dynamics scenario
would need to be identified to make progress in this direction.

5. Another interesting perspective would be to investigate systems of SDEs
of mean-field type that model pedestrian motion. Based on the very recent work
[AD20], it seems to be possible to consider a mean-field approach to our system
of SDEs of Skorohod type where the pedestrians spend time at and move along
walls by means of sticky boundaries and boundary diffusion.

6. It would be interesting to consider a hydrodynamic limit of our system of
SDEs of Skorohod type to obtain a continuum system of PDEs. To study such
PDEs, the boundary conditions need to be specific. For instance, in [FK17|, there
is an attempt to set boundary conditions for a swarming model in a continuum
setup.
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Chapter 7

On a pore-scale stationary diffusion
equation: Scaling effects and
correctors for the homogenization
limit

In this chapter, we consider a microscopic semilinear elliptic equation posed in
periodically perforated domains and associated with the Fourier-type condition
on internal micro-surfaces. The first contribution of this work is the construction
of a reliable linearization scheme that allows us, by a suitable choice of scaling
arguments and stabilization constants, to prove the weak solvability of the mi-
croscopic model. Asymptotic behaviors of the microscopic solution with respect
to the microscale parameter are thoroughly investigated in the second theme,
based upon several cases of scaling. In particular, the variable scaling illuminates
the trivial and non-trivial limits at the macroscale, confirmed by certain rates of
convergence. Relying on classical results for homogenization of multiscale ellip-
tic problems, we design a modified two-scale asymptotic expansion to derive the
corresponding macroscopic equation, when the scaling choices are compatible.
Moreover, we prove the high-order corrector estimates for the homogenization
limit in the energy space H'!, using a large amount of energy-like estimates. A
numerical example is provided to corroborate the asymptotic analysis. This is
based on [KTI20].

7.1 Introduction

7.1.1 Background and statement of the problem

We assume that a porous medium Q° C R? (d € N*) possesses a uniformly peri-
odic microstructure whose length scale is defined by a small parameter (microscale
parameter) 0 < ¢ < 1. In practice, € is defined as the ratio of the characteristic
length of the microstructure to a characteristic macroscopic length. In this chap-
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ter, the porous medium of interest contains a large amount of very small holes
and thus can be viewed as a perforated domain. Largely inspired by [KMK15],
our work aims at understanding the spread of concentration of colloidal particles
u. - O — R in a saturated porous tissue Q° with a cubic cell Y = [0,1]%. This
kind of tissues can be illustrated in Figure 7.1 as a schematic representation of
a natural soil. Since the constitutive properties of the microstructure repeat pe-
riodically, the molecular diffusion coefficient A : Y — R is assumed to vary
in the cell or in a material point x € Q°. Accordingly, it can be expressed as
A (z/e). We consider the presence of a volume reaction R : R — R combined
with an internal source f : Q2° — R. Moreover, we also consider a chemical re-
action § : R — R for the immobile species along with deposition coefficients at
the internal boundaries, denoted by I'*. On the other hand, the colloidal species
stay constant at the exterior boundary, denoted by I'**. Mathematically, the
governing equations describing this process is given by

V- (=A(x/e)Vu.) +*R (u.) = f(x) in 2,
(P:): { —A(z/e)Vu, -n = &S (u.) across ¢
u. =0 across [,

2es

land surface
unsaturated zone %

water table

Figure 7.1: A schematic representation of a natural soil. The figure is followed from
[Ray13].

Typically, the prototypical problem (P.) forms the standard model for dif-
fusion, aggregation and surface deposition of a concentration in a porous and
highly heterogeneous medium; cf. [HJ91, KAM14, KMK15]. Starting from the
heat conduction problem in composite materials with inclusions (cf. [CJ99]),
much of the current literature on the analysis of this elliptic model pays meticu-
lous attention to different contexts involving rigorous mathematical treatments,
physical modelling (e.g., [DHS16, SPPK12, GM18|) and numerical standpoints
(e.g., [VS06]). Especially, understanding the asymptotic behaviors of solution of
(P.) is essential in the studies of the classical spectral problems as investigated
in, e.g., [CM12, Mel95].

7.1.2 Main goals

It is well known that due to the fast oscillation in the diffusion coefficient A (z/¢),
the number of mesh-points at any discretization level is of the order e~¢, which
consequently reveals a huge complexity of computations as ¢ N\, 07. Therefore,
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when dealing with such multiscale problems, one usually targets the upscaled
models where the oscillation is no longer involved, using different techniques of
asymptotic analysis with respect to €. In this work, our main finding is to point
out the trivial and non-trivial macroscopic models, depending on every single
case of a and . Note that the major mathematical challenge we meet here
is that «, 0 are real constants. We mention some physical implications of these
parameters, although these variable scalings stem from our mathematical interest.
The case a < 0 and # > 0 implies that the volume reaction is large, while the
surface reaction of the concentration is slow. Thus, u. can be expected to be
slowly changing on I'*. When a < 0 and S > 0, we have a dominant surface
reaction and the volume reaction is negligible. Meanwhile, on I'*; this means
that u. is rapidly changing. As to the literature on this topic, the reader can be
referred to [RMK12, Ray13, KM19,FRK11,RvNFK12|, where the variable scaling
has been considered earlier in complex diffusion problems of charged colloidal
particles. Besides, the case o > 0 can be related to the context of low-cost
control problems on perforated domains in [MN09].

The variable scaling not only requires a careful adaptation of classical homog-
enization results for elliptic problems, but also needs a particular investigation
into the macroscopic problems obtained after the homogenization limit. When
the limit function is non-trivial, we particularly design a new asymptotic expan-
sion, which is needed by the presence of the scaling parameters. Aside from
the derivation of the macroscopic problem, we delve into having the high-order
corrector estimates, driven by a large amount of energy estimates. In the same
manner, rates of convergence to the trivial limit function are under scrutiny. As
the inception stage of this asymptotic analysis, we only focus on the speed of
convergence when ¢ \, 0%, while the regularity assumptions may not be minimal.

The high-order corrector estimates we prove in this chapter are involving
the presence of the scaling parameters. This is the extended follow-up result
of our earlier works [KM16a, KM16b, Khol7|, where we wish to estimate the
differences between micro-macro concentrations and micro-macro concentration
gradients in the energy space of perforated domains. It is also in the same line
with the theoretical findings in [KL18,CP99, AGK16,AA99,OV07,0V12, Gri04].
Our preceding works show that the macroscopic problem can be self-linear, albeit
the semilinear microscopic problem. We find that this is caused by the scaled
structure of the involved nonlinear reaction, which sometimes leads to the self-
iterative auxiliary problems. However, there are somehow the cases that the
auxiliary problems remain semilinear and thus, the fixed-point homogenization
argument is required.

Another novelty we present here is the exploration of a linearization scheme
for (P.) under a scaled Hilbert space. This scheme not only proves the weak
solvability of (P:), but also provides an insight to expect the asymptotic analysis,
due to the a priori estimates we obtain after the iteration limit. As far as the
linearization-based algorithm is concerned, it has been profoundly developed for
a long time in numerical methods for nonlinear PDEs. It is worth mentioning
that the Jager-Kacur scheme (see, e.g., [Kac99|) was investigated as the very first
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contribution in this branch. It plays a vital role in solving some classes of one-
dimensional parabolic problems, but it is not really effective in high dimensions.
Using the same idea, Long et al. [LDD02]| rigorously proved the local existence
and uniqueness of a weak solution of a Kirchoff-Carrier wave equation in one-
dimension. We also recall the linearization by the monotonicity of iterations,
for example, introduced in the monograph [Pao93| involving the concepts of sub-
and super-solution. However, its drawback comes from the way the initial loop is
chosen, which must be far away from the true solution, whilst in general it can
be taken by the already known initial or boundary information.

7.1.3 Outline

Our chapter is structured as follows. In Section 7.2, we provide the essential
notation and working assumptions on data used in the analysis. In Section 7.3,
we design a linearization scheme to prove the weak solvability of the microscopic
model, where the main result in this part is stated in Theorem 7.5. In Section
7.4, we design several two-scale asymptotic expansions, corresponding to some
particular microscopic models contained in (P.). Accordingly, we obtain distinc-
tive convergence results. We conclude this paper by some numerical discussions
included in Section 7.4.3.

7.2 Preliminaries

7.2.1 Geometrical description of a perforated medium

Let Q2 be a bounded, open and connected domain in R? with a Lipschitz boundary.
Typically, we can consider it as a reservoir in three dimensions. Now, let Y be
the unit cell defined by

d
Y::{ZA@:0<A¢<1},

i=1

where &; denotes the ith unit vector in R?. In addition, we assume that this
cell is made up of two open sets: Y; — the liquid part and Y, — the solid part
which is impermeable to solute concentrations satisfy YUY, =Y and Y, NY, =
0,Y;NY, =T possessing a non-zero (d — 1)-dimensional measure. On the other
hand, suppose that the solid part Y, stays totally inside in the cell Y, i.e. it
does not intersect the cell’s boundary 0Y. Consequently, the liquid part Y] is
connected.

Let Z C R? be a hypercube. For X C Z we denote by X* the shifted subset

d
XFi= X+ ki,
=1

where k = (ky, ..., kq) € Z¢ is a vector of indices.
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Figure 7.2: A schematic representation of the scaling procedure within a natural soil
and the corresponding sample periodically perforated domain with its unit cell.

We scale this reservoir by a parameter ¢ > 0 which represents the ratio of
the cell size to the size of the whole reservoir. Often, this scale factor is small.
We further assume that 2 is completely covered by a regular mesh consisting of
three e-scaled and shifted cells: the scaled liquid, solid parts and boundary. More
precisely, the solid part is defined as the union of the cell regions €Y*, i.e.

05 = J eV,

kezd

while the liquid part is given by

o= v,

kezd

and we denote the micro-surface by I'® := 9.

Note that we now assume 90 = I'*** and our perforated domain € is bounded,
connected and possesses C%-internal boundary. We also denote throughout this
paper n := (nq,...,nq) as the unit outward normal vector on the boundary I'.
In Figure 7.2, we show an illustration of scales from a soil structure and the
perforated domain with its unit cell. The representation of the periodic geometries
is in line with [KM16a, RMK12| and references therein.

7.2.2 Notation and assumptions on data

We denote by = € Q° the macroscopic variable and by y = x/¢ the microscopic
variable representing fast variations at the microscopic geometry. With this con-
vention, we write A(z/e) = A.(x) = A(y). Let us define the function space

Ve = {ve H'(Q)|v =0 on '™},

which is a closed subspace of the Hilbert space H'(€F), and thus endowed with

the semi-norm
d
ol = (Z /
i=1 Y4

ov
8ZL'Z‘

) 1/2
dx) for all v € Ve,
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Obviously, this norm is equivalent (uniformly in €) to the usual H'-norm by the
Poincaré inequality (cf. [CJ99, Lemma 2.1]).
Let us define the function space W, := L*(I'°)N L*(Q)) with the inner product

(u, v)w, = (U, v) r2(re) + (U, V) 1200 for u,v € W.,

and with the corresponding norm |[[ul[},, := ||u||%2(re) + ||u||%2(95). Then for each

e > 0 we introduce the function space W. equipped with the following inner
product

(u, V)35, = (Vu, Vv) 200y + (€% + P (u, v)y,  for u,v € WL,

and the corresponding norm is given by ||u||2WE = ([ V|72 g0 + (% +7) [[ulf5y,.
This space can be considered as the intersection between V° and the e-scaled WV..
Hereby, W. is a Hilbert space. L

We introduce a bilinear form a : W. x W. — R by

a(u,p) := A (z)Vu-Vedz. (7.1)

Qe

To be successful with our analysis below, we need the following assumptions:

(A1) The diffusion coefficient A(y) € L>®(R?) is Y-periodic and symmetric. It
satisfies the uniform ellipticity condition, i.e there exists positive constants
7,7 independent of e such that

Z|§|2 < A(y)&& <7 ¢ for any € € R™.

(A3) The reaction terms & : R — R and R : R — R are Carathéodory functions
and globally Lipschitz.

(A3) S and R do not degenerate, i.e there exist positive constants &y and ¢;
independent of € such that 0 < §p < S, R’ < d; a.e. in R.

(A4) The internal source f is a smooth function in €.

In the sequel, all the constants C' are independent of the scale factor €, but
their precise values may differ from line to line and may change even within a
single chain of estimates.

7.3 Weak solvability of (FP.)

Obviously, solvability of microscopic problems is of great importance in math-
ematical analysis; see e.g. [OSY92, PBL78,Sch13|. In this section, we design a
linearization scheme in line with [Slo01] to investigate the well-posedness of ().
To do so, we accordingly need to derive the weak formulation of (P.). Multiply-
ing (P.) by a test function ¢ € )7\//5 and using Green’s formula, we arrive at the
following definition of a weak solution of (P).
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Definition 7.1. For each ¢ > 0, u. € 17\75 is a weak solution to (P.), provided
that

a(ue, @) + 55(8(%), ©)r2rey + X (R(ue), @) 1205y = (f> @) 120y for all ¢ € 17\/;.
(7.2)

Let us now introduce the definition of an approximation of (7.2).
Definition 7.2. For each € > 0, a linearization scheme for the weak formulation
in Definition 7.1 is defined by

(PE) : a(ul, ) + L{ut, @) r2rey + M (ul, ©) 120
= (f, @) r2(e) + L™, @) 2 (7.3)
+ MuE @) r2gas) — €7 (S(uh™), @) r2re) — e (R(UET), 0) 1200

for all p € VNVE and k € N* with the initial guess u® € W. chosen as 0 and the
stabilization constants L, M > 0 chosen later.

Lemma 7.3. Suppose (A1) and (A4) hold. Assume further that there exist con-
stants c;,¢r, cpry x> 0 independent of € such that

cr(e®+ &%) < L <ep(e*+eP), cp(e®+ %) < M < (e +&P). (7.4)
Denote by (P2) the first-loop problem for (P¥) defined in Definition 7.2. Then it

admits a unique solution uw € W. for each € > 0.

Proof. Due to (A4) and the choice of u?, the problem (P!) reads as

CL(U;, ®) + L<u;, 90>L2(rs) + M@;, 90>L2(Qe)
= (f,¢)12(05) — €(S(0), ©) r2(rey — €*(R(0), ) r2(0e)

for all ¢ € WE. Let us put K. : Wg X We — R given by
Ks(uv 90) = CL(U7 QO) + L<u7 §0>L2(F5) + M<u7 30>L2(Qe) for u,p € Wa‘

Clearly, this form is bilinear in WE and its coerciveness is easily guaranteed.
Therefore, by the Lax—Milgram argument there exists a unique v € W. satisfies

(P2). O

As a consequence of Lemma 7.3, the sequence {u’g}k oy 18 well-defined in Wa
under condition (7.4). The notion of having this assumption is transparent in the
next theorem, where the choice of our stabilization terms is included.

Theorem 7.4. Assume (A1)—(A4) hold. There exists a choice of L and M such
that (7.4) holds and the sequence of solution {uF}ren+ to (PF) defined in (7.2) is

Cauchy in W.. Moreover, the following estimate holds
"1—n")C

n
£y, < T

I
where n € (0,1) is e-independent and k,r € N*.
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Proof. Define v := uf —uF~1 € W. where u* and u*~* correspond to the solution
of (P*) and (P*!), respectively. Then we have the following difference equation

CL(U?, 90) + L<U§7 §0>L2(F5) + M<U§7 90>L2(QE) - —€B<S<U§_1) - S<u§_2)7 30>L2(1"€)
(7.5)

e (R(uF) = R(uF2), ) p2(0ey for all o € W
Choosing a test function ¢ = v* € W. in (7.5), we see that

2 _
: Ao () VoL | dw + DYoL |7 0ey + ML |72 0e) = (S (ul™?) (7.6)

—SuE™), v ) 2rey + e (R(uE?) = R(ut™), v5) r2(00).

£

Now, we define h(t) := ¢°S(t) — Lt and g(t) := e*R(t) — Mt. Then taking the
first-order derivative of h and g with respect to ¢, we get

W (t) =e’S'(t) — L and ¢'(t) = e*R/(t) — M. (7.7)

Notice that because of the structure of h and g, (7.6) becomes

o A.(z) ‘va|2 dx + L||U§||2L2(I‘€) + M||vf||%2(95) (7.8)
= —(h(uf™) = h(ul™?),08) 20y — (9(u™) = g(ul™?), 0F) 1200y
At this stage, we have to choose L and M such that
L > 6, and M > 6,2°. (7.9)
As a result, A’ and ¢’ computed in (7.7) can be bounded with the help of (A3) by
P — L <P (t) <0,6%6— M < ¢g'(t)<0 aeinR,
or it is equivalent to
IW(t)| < L—¢e8 and |¢'(t)| < M —£°6, aeinR. (7.10)
Combining (7.10) and (A;), (7.8) leads to the following estimate:

1\|V’U§H%2(Qs) + LHUSH%W&) + MH“?H%%QE)
< (L = Goe”) [0E M 2oy [lE |2 ey + (M = 8o2”) [0 | p2g0e) 10| 20y

Using the Cauchy—Schwarz inequality, we have that

L+ 506’8 M + 5Q€a
1||VU§H%2(QE) + TH”?H%Z(FE) + THUZ:CH%Q(QE) (7.11)
L —6® M — dpe® |
< 0 ety + O e
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Omitting the first term of the left-hand side of (7.11), we obtain

102172 ey + 021|720y < L=t [0E M I e (7.12)
e llL2(Te) ellL?(Qe) = min{L + 6P, M + e} ¢ (Te)
M — 50€a

k=112
+miH{L+5O€B;M+60€a}||U6 ||L2(Qs).
Rewriting (7.12), we thus have
N O Y (o T R o %) I AT

where we have denoted by

( {L — (5086 L — 50€ﬁ M — (50€a M — (50€a }) 1/2
max .

ne(a, ) = L+ 00e®" M + 602" M + 6pe®” L + 6yeP

According to the linearization procedures, we need to find an e-independent
bound for 7. in (7.13) such that it is strictly less than 1. Accordingly, we choose
the stabilization constants L and M such that n. < 1 for all e > 0 and «a, 8 € R.
Now, we may write 7. = 7, i.e. it is independent of ¢ by suitable choices of L, M.
Note that

(7.14)

because of the choice (7.10). Therefore, we target the following cases:

L—(S()EB M—(S()éfa
— <1 d —— < 1.
M + 6e° R Jp g

From (7.14), a suitable choice of L, M is taking
M + 50€a Z L+ 5065 and L+ 5085 Z M—F(S()é‘a,

which leads to M — L = §y(e” —&%). Hence, in accordance with (7.9) the suitable
choice we eventually obtain is provided as follows:

L—L() = §16% + 6 (62— £7) ifa < B, (7.15)
B R if > 8, '

51€a if S 67

7.16
5167 + 8o (¢ —e*) ifa>p. (7.16)

M=M ) := {

Interestingly, this choice works for all real scaling parameters «, 3. It also
agrees with (7.9) and guarantees the positivity of such stabilization constants. In
addition, we now observe that (7.15) and (7.16) are well-suited to the condition
(7.4) in Lemma 7.3, where the well-posedness of the first-loop problem of (PF) is
proven. Collectively, we have demonstrated that there exists a choice of L and
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M satisfying (7.9) such that n. = n < 1 for all scaling factor £ > 0 and scaling
parameters o, 5 € R.

As a consequence of (7.13) and (7.15)—(7.16), we conclude that for every ¢ > 0
and k& € N*, the following estimate holds

(e + MLy, < m*(e® + D) lET .- (7.17)
On the other hand, for any k,r € N* we have

Ver + el [[ult —ul||w. (7.18)
< Ve + Blult —uET T o+ Ve B Jult —

k r
T, n(l—n
<Ver BT ) |luk = . < —(1 — )\/ea + &B|ul{y. .

From now on, it remains to estimate the difference gradient we omitted in
(7.11). Once again, it follows from (7.11) and (7.15)—(7.16) that

M — (5o€a

o ey + = o B

L — 508ﬂ
VNVOE([72 0 < —

01+ 00, _
< BTN )k,

We then combine this with (7.17) to get

5,01+ 8o
2y

Ve Lo o) < (e + eIy,

and as a by-product, it yields

01 + 0o
ot < o (1)

At this moment, we proceed as in (7.18) to arrive at

k T 1/2
r n (1 -7 ) 51 + (50
[kt — UI;HHVNVE < e < > +1 ||u;||V~VE (7.19)
This completes the proof of the theorem. n

It is worth noting that from (7.18), the iterative sequence {u”}en- is Cauchy
in W, for any € > 0 when v = § = 0. From (7.19), this sequence is Cauchy in W..

—

Consequently, there exists a unique u. € W. such that u* — u. as k — oo and
for each € > 0. On the other side, using the Lipschitz properties of the volume
and surface reaction rates assumed in (Aj), we have

S (uf) — €S (u.) strongly in L* (), (7.20)
e*R (ul) = £*R (u.) strongly in L* (%) as k — oo. (7.21)
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Hence, u,. is a unique solution of the microscopic model (F;) in the sense of
Definition 7.1. Besides, when taking r — oo in (7.19), its stability is confirmed
by

luf = el < O™ Dl
As a result, we state the following theorem.

Theorem 7.5. Assume (A;)—(A4) hold. Then for each ¢ > 0 there exists a
unique solution of (P:) in the sense of Definition 7.1.

Remark 7.6. Compared to the mild restriction in [KM16b, KM16a/, we no longer
rely on the Poincaré constant and the lower bound of the diffusion. However,
information of reaction terms in this context is further required as specified in

(As).

7.4 Asymptotic behaviors and convergence results

7.4.1 Volume reaction and surface reaction

In this subsection, we aim to see the asymptotic behaviors of the microscopic
solution of (P.), when the volume and surface reactions are involved separately.
In other words, as the starting point we consider the following problems:

V- (=A(zx/e)Vu.) +e*R (u:) = [ in Q°,
(PF): S —A(x/e)Vu. -n=0 across 1'%,

u. =0 across [,

V- (-A(x/e)Vu.) = f in Q°,
(P?): { —A(2/e) Vu, -n =S (u.) across [,

u. =0 across [t

Volume reaction
The case a > 0

Given a natural constant 6 > 2, we define the index set
Mao:={k1€]0,0] :ka+1>1and k+1<0}. (7.22)

The asymptotic expansion we consider here is structured as follows:

ue () = ug (x,y) + %y —1 (x,y) + Z "ty (z,y) + O (7)), (7.23)
(k1) eMao

where z € 0%,y € Y} and all components uy; are periodic in y.
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Remark 7.7. This ansatz essentially mimics the standard two-scale asymptotic
expansions used in the homogenization theory for second-order elliptic equations.
Since the diffusion coefficient of the PDE s periodic in y, it is reasonable to
require that all uy; are periodic functions of y. For e < 1 the microscopic variable
y changes much more rapidly than x and heuristically, the macroscopic variable
can be viewed as a “constant”, when looking at the microscopic problem. This
15 why the method is expected to treat the “slow” variable x and the “fast” one y
independently. Furthermore, this way the gradient operator and the gradient of the
fluzes can be evaluated according to the rule V = V,+e'V,. With this essence in
mind, our designation of asymptotic expansions in this work are such that we are
able to handle variable scalings o and (8 in the PDE in the rigorous asymptotic
analysis. From the physical point of view, the use of asymptotic expansions in
understanding size effects in periodic media was studied in e.g. [TB96].

Assume that there exists a Lipschitz-continuous function R such that
R(u) = R(ug) + e*R(u1_1) + Z eMOTDHR (g ) + O, (7.24)
(k,)eMq.0
This corresponds to the fact that there exists Lz > 0 such that
IR () -

U)HLQ(QE) < Lz [lu = v 12(qe) foru,v €R. (7.25)

Remark 7.8. In the sequel, our new assumptions (7.24) and (7.25) on the reac-
tion rate R are termed as (As) and (Ag), respectively. It resembles the definition
of almost additive functions with positive homogeneity in stochastic processes (see,

e.g., [SSV17]).
Due to the simple relation V =V, + 7V, it follows that
Vu, = e 'Vyug +e*'Vyur 1 + €% (Voug + Vyuo)

+ e (Vyur 1+ Vyurg) + Z " (Vg + Vi) + O (€7)
(k1) ENG 0

where NV, g = Map\ {(0,1)}. Hereafter, the diffusion term involved in (PF) is
expressed as
V- (_A (y) Vu,
=V, (A

) (7.26)
(y) Vyuo) + 5a72vy (—A(y) Vyui,-1)
+e7 (Vo (A (y) Vyuo) + Vy - (A (y) (Vauo + Vyuoa)))
+e 7N (Ve (A (y) Vyur,—1) + Vy - (A (y) (Vour, -1 + Vyurg)))
+ &% (Ve (=A (y) (Vouo + Vyugy)) + Vy - (—A (y) (Vaeuor + Vyuo2)))
+ &% (Ve (A (y) (Vaur,-1 + Vyuro)) + Vy - (A (y) (Vauro + Vyur)))
+ Y T, (A (y) (Votrs + Vi)

(k1) ENG,0
+V, - (A (y) (Vo + Vyurgs2))] + O (771,
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while relying on (As), the reaction term can be decomposed as

e R(uf) = e*R(ug) + e**R(uy 1) + Z Pt DR (1) + O,
(k1) eMao
(7.27)

In the same vein, the term on internal micro-surfaces are determined by

—A(y)Vu. -n=—"A(y)ug-n—e* AV, u; _; -n (7.28)
— 50A(y)(Vmu0 + Vyuoa) -n—e*A(y)(Vaur,—1 + Vyuip) - n
— €A(y) (Vxlb(],l + Vyuw) cn — €a+1A<y) (V1U1,0 + Vyum) N

— Y FOIHA®Y) (Vauks + Vyures) -0+ O(E7),
(k,1)eEKq 0

where Ko 9 = Mo p\{(1,0)}. From now on, we set:

Ay =V, (—A)V,). (7.20)
Al = Va: ' (_A(y)vy) + Vy ’ (_A(y)vax)a

We obtain the following auxiliary problems from (7.26) and (7.28):

(Aoug=0 inY,

(€?): {—A@Vyu-n=0 onT, (7.30)
[ ug is periodic in y,

(A()Ul,_l =0 n }/l,

(e*7%) —A(y)Vyu;—1-n=0 onl, (7.31)
| u1,-1 is periodic in y,

'«40“0,1 =—-Auy inY,

(€™ : {—A®y)(Vauo+ Vyupy) - n=0 onT, (7.32)

| uo,1 1s periodic in y,
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(AOUI,O =-Aju; inY,

G E —A(y)(Vyur,—1+ Vyuip) - n=0 onl, (7.33)
| u1,0 1s periodic in y,

I-Aouog =f—Aups — Ay inY,

() { —A®Y)(Vouos + Vyugs) n=0 onT, (7.34)
| uo,2 1s periodic in y,

’«40“1,1 = —A1U1,0 - Azul,—l in Y;,

(") QS —AY)(Vouro+ Vyur1) - n=0 onT, (7.35)

(w11 18 periodic in .

Aouk,l—i—Q = _Aluk,l-H - AQUM in Y],
(e L A(y)(Vattksin + Vytks2) 1 =0  onT, (7.36)

Uy, 1+2 1s periodic in y,

for all pairs (k,1) € K4 9-2.

By classical arguments in homogenization procedures, one has from (7.30) and
(7.31) that ug and u; _; are independent of y. Without loss of generality, we take
uy,—1 = 0 and by substitution, we also get u; o = 0 in (7.33). Besides, we write

uo(z,y) = to(x). (7.37)

Therefore, the auxiliary problem (7.32) is solvable with respect to ug ;. Plugging
all auxiliary solutions that have been deduced above into (7.34) and (7.35), we
easily obtain ug 2 and u; ;. On the whole, we repeat the same strategy and ensure
the solvability of the high-order auxiliary problem (7.36). From e.g. [CJ99]|, the
existence and uniqueness results for (7.32) are trivial and the solution ug; is
sought in the sense of separation of variables. In other words, we have that

ug1(2,y) = —Xo0,1(y) - Valig(w). (7.38)

Hereby, the following cell problem for the field x¢1(y) is obtained:

. OA,; .
AOX{) 1= ! m YZ;

S 9 7.39
~A(y) Vb, n=A(y)-n; onl, (7.39)

Xp,1 is periodic,

where A;; are elements of the second-order tensor A with 1 < 4,7 < d and
Xé,l = Xg’l(y) are elements in the cell vector-valued function x(;. Remarkably,
classical results provide that xo1 € [H4(Y;)/R]? exists uniquely in these cell
problems.

From the cell function yo; in (7.38), we obtain the limit equation by taking
into account the auxiliary problem (7.34). In fact, the limit equation is of the
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following structure:

_ Y,
—AA, iy = % in €, (7.40)

where the coefficient |Y;| /Y] is referred to as the volumetric porosity and A
given by

- 1

A=—

is the effective diffusion coefficient corresponding to A with I being the identity
matrix.

Obviously, this limit equation is supplemented with the zero Dirichlet bound-
ary condition on I'** and A satisfies the ellipticity condition (cf. [CJ99, Proposi-
tion 2.6]).

Remark 7.9. We recall from [Kho17] that when oo = 0, the limit equation becomes
semi-linear, 1i.e.

Y|

R (p) =0 in €, (7.42)

where we have omitted f, for simplicity. Based on the Lax—Milgram argument, the
limit problem (7.42) with the homogeneous Dirichlet boundary condition admits
a unique solution ty € H(Q) due to the Lipschitz reaction term. Moreover,
from [GMRLO09, Lemma 5/, it is essentially bounded and the following estimate
holds

ol (@) < Clltoll2(@) + 1)

Accordingly, these results can be applied to the limit problem (7.40), including
the existence and uniqueness of ug € H(Q) for any f € L*(Q). From [GTS3,
Corollary 8.11], if f € C*(RQ), this solution Uy belongs to C*°(£2).

Due to the structure of the auxiliary problems (7.30)—(7.36), we get uy; =0
for all £ > 1 and (k,) € Kyp. In line with [Khol7], we obtain when k& = 0 that

o = (—1)xou(y) - Viio(x). (7.43)

Thus, we obtain the following high-order cell problems in this case:

V- (=A(y) (VyXourz — Xou+1)) VE2ag

= (—1)l 7—\_), ((—1)l XoJVﬁCfLQ) — (A (y) — ]I) VyXO,lJer?_Qﬁo in Yz,
—A (y) (VyXo+2 — Xou+1) VP -0 =0 on I,
Xo,+2 1s periodic.

(7.44)
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Combining (7.37), (7.38) and (7.43) we recover the structure of the asymptotic
expansion for v defined in (7.23), as follows:

() = to(z) — €xo,1 (g) V. tio(7) + 29: )'e'xo, ( ) - Vi () + O(e")
- (7.45)

with the cell functions yo; for 1 < [ < 6 satistying the cell problems defined in
(7.39) and (7.44).

At this point, we have derived the structure of two-scale asymptotic expan-
sions where the scaling parameter « is positive. In the following, we show that the
speed of convergence can be accelerated if the high-order asymptotic expansion
is chosen appropriately. In addition, this questions how much regularity on the
involved data we require to achieve the desired order of expansion as well as the
rate of convergence.

We introduce a smooth cut-off function m® € D() such that 0 < m® <1
with

. {0 if dist (v,00) <e, Ve < €

1 if dist (z,082) > 2,
for which the following helpful estimates hold (cf. e.g. [CJ99)]):

11— mll gy < o2, e[ Vil o) < Ce. (7.46)

Remark 7.10. The use of this cut-off function to prove the convergence rates
1s not only seen in elliptic problems that we have taken into consideration, but
also can be found in some particular multiscale models. Aside from our earlier
works [Kho17, KM16a/, this technique is applied in the works [Sch12, KM19] for a
nonlinear drift-reaction-diffusion model in a heterogeneous solid-electrolyte com-
posite and in [SK17] in the context of phase field equations. Besides, we single out
the survey [ZP16] and the work [Sus13] for a concrete background of the so-called
operator corrector estimates related to this approach.

Given a natural number p € [0, — 1], we define the function . by

~ § : k 1)+l § : k 1)+
¢5 = U — | ug + 9 (a+1)+ Uk, —m° £ (et 1)+ Uk,1-
(k1) EMa (kD) EMa 0\ Map

Observe that 1. can be decomposed further as

wa = u, — G — Z sk(o‘ﬂ)ﬂum + (1 _ ma) Z 5k(a+1)+lukl )

)

(k,l)E./\/layg (k,l)GMayg\Ma,“
:;:05 1;;'5
(7.47)

Now, we state our convergence result.
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Theorem 7.11. Assume (A1), (As) and (Ag) hold. Furthermore, suppose that
feC>(Q) and let Mg be defined as in (7.43) for given parameters o > 0 and
2 <6 eN. Let u. and uy be unique weak solutions of the microscopic problem
(PaR) and the limit problem (7.40), respectively. Let uy,; be defined as in (7.43)

for (k,1) € Myg. Then, for any p € [0,60 — 1] the following high-order corrector
estimate holds:

U — Tig — § : gk(a—i-l)—i-luk’l —me § gk(a—i-l)—i-luk’l

(k‘,l)EMa,p, (k7Z)EM&,9\MQ7V’ Ve
S C (69—1—&-04 + <,_:;H—l/2> )

Proof. From the auxiliary problems (7.30)—(7.36) and the operators defined in
(7.29), one can deduce, after some rearrangements, the following equation for ¢,
in (7.47), which we refer to as the first difference equation:

Vo (—A(2)Vee) = "Rluc) — Y FOtDHReR () (7.48)
(k,l)GMa}g
1<6-—2
. Z gk(a+1)+l(-/41uk,l+1 +A2uk,l) _ Z €k(a+1)+l¢42uk7l,
(k1)EMq 0 (k,)EMq 0
1=6—1 =60

associated with the boundary condition at I'®:

- Aa (x)v% -
= A (2)Vuc -n—A(x) Y IV + Vi) on (7.49)
(k1) eMa6
1<6—1
— A () Z AR VRTI R
(k1) eMa0
1=6

From the auxiliary problem (7.36), the first term and the second term of the
right-hand side of (7.49) vanishes naturally on the micro-surface I'*. Thus, it
yields

—A.(z)Vep. -n=—A.(x) Z AR VRTIRE (7.50)

(kul) EM&,G
=0

Multiplying (7.48) by a test function ¢ € V¢, integrating the resulting equa-
tion by parts and then using the boundary information (7.50) together with the
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zero Dirichlet exterior condition, we get

a(pe, @) = <€QR(UE) - IR ), 90> (7.51)
(k) EM o 0,1<0—2 12(0%)

N J
-

=T

- Z chla+1)+l <A1Uk,l+1 + AQUk,h SO>L2(Qe)
(k1)EM 0,l=0—1

-~

:=T1s

B Z gk(a+1)+l <A2Uk,l7 @)LQ(QS)
(k,1)EM o 0,1=0

J

'

=73

+/ Z MOt DHA_(2)Vuy, - npdS..,
I (k)eMa,

[\

-~

=14

where a : V= x V€ — R is the bilinear form defined in (7.1).

In order to find the upper bound of 1., we need to estimate from above all
terms on the right-hand side of (7.51). We begin with the estimate for Z; by the
following structural inequality:

Hﬁ(uk’l)HL%Qs) S LRHuMHLz(QE) -+ H’]?,(O)”Lz(ge) for all (l{, l) € Maﬁ: (752)

by virtue of the globally Lipschitz function R. Due to (7.52), one can estimate
from above Z; by

T <Le > Ol e + RO 2 )l @ll2@s  (7.53)

(kvl)EMa,G
I=6-1

FLp DD g oy + (RO 2o 2@

(k,l)eEMq0
=6

< O
By the definition of the operators A; and Ay, we get for (k,1) € Mg,

Ay Uk, 1+1

o if k £ 0,
D AW Vyxown (¥) + Vi (—A W) x0a(y))] - Vi2ag(z) if k= 0.
(7.54)

0 if k # 0,
_ 7.5
s {<—1>l+1A<y>xO,l<y>v;+%o<x> itk =0 o

As stated in Remark 7.9, we only need the source f to be very smooth,
says f € C*(Q), to guarantee the uniform bound (with respect to ¢) of all the
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involved derivatives of g in (7.54) and (7.55). We combine this with the fact
that xr; € HL(Y;)/R and the assumptions (A;) and Py, € W?*>(Q) for all
(k,1) € Myyp to get

1Ty + Ts| < Ce¥71 ||y for all p € VE, (7.56)

where we have used the Poincaré inequality.
To estimate Z,, we note that by the change of variables © = ey, the following
estimate holds

J.

Since [©2] > €%Y| (due to our choice of perforated domains that €Y C Q)
together with the fact that the trace inequality in Y] is uniform with respect to
€, we estimate the above inequality as

J.

Combining (7.57) with assumption (A;), the trace inequality (cf. [ADN59,
Lemma 2.31]) for I'* and the Poincaré inequality, we obtain

T ~ 2 -
Xo0.0 (g) Viio(r) -n| dS. < Ce™™! / [xo.0(y)*dS,.
r

x N 2 _ _
xoo (£) Vo iio(2) -n| dS. < Cexoslingy < Ce (7.57)

1Z4| < %llx06 Vot o - 0| 2rey |0l L2rey < CHlo|ve. (7.58)

It now remains to estimate the second part o. of the decomposition (7.47).
Similar to the above estimates of ¢., we consider the following quantity (o, ©)y-
for any ¢ € V. Observe that by the definition of V¢ and by using the simple
chain rule of differentiation, the estimate for o, is given by

<(1 —m°) Z gty 1, <,0> (7.59)
(kD)

Mo 6\ Mo Ve

<C 30 VA=)l ey
(k,)eMa,0\Ma,u

+C Y I —mf| o) el
(kD)EM a0\ Ma,pu

<C Z (gk(a+1)+l71/2 + 5k(a+1)+l+1/2)”90”\/5-
(k1) EMa,0\Ma,u

Consequently, we finalize the estimate in (7.59) by

<<1—m€> > <>uw> < (2 4 g
(k‘,l)EMa,G\Ma,u Ve

(7.60)
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Thanks to the triangle inequality, we combine (7.51), (7.53), (7.56), (7.58)
and (7.60) to get

(e, p)ye| < C(e971F 4 P2 L i H3/2))| || e for any o € VE.
By choosing ¢ = 1. and then by simplifying both sides of the resulting esti-
mate, we complete the proof of the theorem. ]
The case a < 0

Recalling Theorem 7.5, we have u, € W, for each ¢ > 0, ie. HUEH% < C.
Note that our the underlying problem (PZ) is associated with the zero Neumann

boundary condition on the micro-surfaces. Thus, the structure of Wg—norm re-
duces to

luellfy = IVtelZ2(0e) + &%lluellze) < C. (7.61)
As a result of (7.61), we get
el p2(e) < Ce%, (7.62)

which proves the strong convergence in L?(QF) of u. to zero as a < 0 and £ \, 0T.
Moreover, by using the trace inequality for hypersurfaces I'® (cf. [HJ91, Lemma
3]), which reads as

el|ue|22pey < C (HUEH;(QE) + g2||w€||32(95)> for any £ > 0, (7.63)
we combine (7.62) with the fact that HVuEH%Q(QE) < C from (7.61) to obtain
sHuEH%Q(FE) <C(e+¢€7). (7.64)
Consequently, it follows from (7.64) that

(at1)

|tz L2rey < C' max {5_ 2 ,5%} for any ¢ > 0. (7.65)

In conclusion, combining (7.62) and (7.64) we claim the following theorem for

the limit behavior of solution to problem (PZ) in the case a < 0.

Theorem 7.12. Assume (A1)—(Ay) hold. Suppose that f € L*(QF) and o < 0.

—

Let u. be a unique solution in W. of the problem (P®). Then it holds:
el L2y + \/gHUeHm(re) <C (5’% + 6) .

Remark 7.13. From (7.65), u. converges strongly to zero in L*(T¢) when a <
—1 and € \, 0. We also remark that the internal source f in Theorem 7.12
Just belongs to L*(QF), which is quite different from the very smoothness of f in
Theorem 7.11. It is because in Theorem 7.11 we need the boundedness of all the
high-order derivatives of g that solves (7.40), while the linearization in Section
7.3 only requires f € L*(QF) to fulfill the estimate (7.61) by the Lax—Milgram-
based argument.
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Surface reaction

For the problem (P?), we can proceed as in [CP99]. If 8 > 1 we consider the

€
following asymptotic expansion:

Ua(l') = Uo(l', y) + 6/B_lu'l,—l(xv y) + Z 6kﬁ+luk,l(x7 y) + O(€6+1)7
(k,1)eQp.0

where z € Q°,y € V), uy,; are periodic in y and for 2 < 0 € N, we define
Qpo:={(k,1)€[0,0] :kf+1>1and k+ [ <6} (7.66)

Taking assumptions on S as in (A5)—(Ag) and the fact that uy; can be obtained
by a family of linear partial differential equations for (k,l) € Qg g, we thus state
the following result.

Theorem 7.14. Assume that (Ay) holds. Suppose that f € C*(Q) and let Qg g
be defined in (7.66) for given parameters B > 1 and 2 < 0 € N. Let u. and @y
be unique weak solutions of the microscopic problem (PR) and the limit problem

(7.40), respectively. For any p € [0,0 — 1] the following higher-order corrector
estimate holds

e — g — Z Pty me Z By,
(k)EQp,u (k:)€Qs,0\Mp,pu Ve

<C (€9+572 + 8u+1/2) ‘

One has immediately, by the same argument as in (7.62), that u. converges
strongly in L?(2°) to zero if 3 < 0 and hence, a similar result to Theorem 7.12
can be obtained. Moreover, it remains to derive the convergence for 0 < g < 1.
If for any fi, fo € H'(Q°) N L>®(Q°) with 0 < ¢ < fi, fo» < ¢ < oo, we can find a
function f3 € L*(€°) such that

[ fude= [ pStuds.+ e (7.67)
Qe Ie

then one can prove that (cf. [KM17, Lemma 3.4]) for any ¢ € H'(QF),

frupde —< [ S () gds.
FE

S CS <H(10HH1(QE) + HfSHLoo(Qg)) . (768)

QE
Using (7.67) as an assumption, we state the following theorem.

Theorem 7.15. Assume (A1)—(A4) and (7.67) hold. Suppose that f € L*(Q°)

—

and 8 < 1. Let u. be a unique solution in W. of the problem (P?). Then it holds:

18 1
[uell L2 ey + VelluellL2wey < C (8 2 42 +5> .
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Proof. By a simple decomposition with the choice ¢ = u., one thus has

fivide =¢ | foS (u)u.dS. + | fiuidr —e | foS (u)ucdS.  (7.69)
FE

Qe Ie Qe

€ f2S (ue) uedS: + Ce (HUEHHl(QE) + ||f3||Loo(QE)> :
Te
We turn our attention to the weak formulation for (P°), which reads as

A, () Vu. -Veodr +¢° | S(u.)pdS. = fodx  for any p € V°.

Qe Ie Qe

Therefore, by choosing ¢ = u. and (A;), one can estimate that

[ 1S (o) e < O (Il Ielzzgary + T el ) - (7-70)

Combining (7.69) and (7.70) and thanks to the trace inequality (7.63), we
obtain the corrector result for (P5). O

7.4.2 Volume-surfaces reactions

This part is devoted to tackling the pore-scale elliptic problem (FP.), based upon
the analysis we have done above. Let us start off with the case a > 0,3 > 1 and
consider

ue(2) = uo(w,y) + e uro_1(z,y) + &’ tugr 1 (2, y) (7.71)
+ Z k(a+1 +lﬁ+nUkln($ y) —i—(’)( 9+1)7
(ky,n)eMy

where z € 0,y € Y} and all components uy;, are periodic in y. For 6 > 2 we
define the set My as

Mg :={(k,l,n) €[0,0] : k(a+1)+I8+n>1and k+1+n <0}, (7.72)

inspired very much by (7.22) and (7.66). Moreover, we assume there exist
Lipschitz-continuous functions R and S such that

R(ue) = R(uo) + e*R(u10,-1) + 86—17%(710 1-1)
+ Y TR () + O,

S(Ug) = S(Uo) + €QS(U1707_1) + 6'8_15(110717_1)

+ Z 8k(a+1)+w+n3(uk717n) + O<89+1).
k,l,n)eEMp

—

To avoid repeating cumbersome computations and unnecessary arguments, we
only state the auxiliary problems and the limit system below, while the others
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are left to the interested reader. Using the convention in (7.29), the auxiliary
problems are given by

%)

(g7

(Aoup =0 inY,

—A(y)Vyup-n=0 onTl,

| up is periodic in y,

(AOUO,O,I =—Ajuy inYj,

—A(y)(Vaouo + Vyugp1) n=0 onl,
| 20,0,1 18 periodic in y,

(AOUO,OQ = f—Ajugor — Aug  in Y,
—A(y)(Vauoo,1 + Vyugpe) - n=0 onT,
| 20,02 18 periodic in y,

(Apurp-1=0 inY,
—A(y)Vyu190-1-1=0 onl,

| u1,0,—1 18 periodic in y,
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(-Aoul,o,o = —A1U1,0,71 in Y},

(€a—1) : _A(y)<vxul,0,—1 + vaLo,o) -n=0on F, (777)
uy,0,0 is periodic in ¥,

Aoui1 + R(uo) = —Ajui 0 — Agtr o1 in Y,

(€)1 ¢ —A(y)(Vaui00+ Vyuip1) - n=0 onT, (7.78)
| U1,0,118 periodic in y,

Aoug1—1 =0 inY,

(7)1 4 —A(y)Vyup1—1 =0 onT, (7.79)

| uo,1,—1 1s periodic in y,

\

(AOUO,LO = —5aR(U0,1,71) - -Aluo,l,fl in Y;,

(5[372) T4 —A(y)<V$UO717,1 + VyU071,0) -n =0 on F, (780)
| 20,1,0 18 periodic in y,

(-AOUO,LI = —A1U0,1,0 - -/42U0,1,71 inY;,

(65_1) . —A(y)(sz07170 + VyuOJ’l) ‘N = S(UO) on F, (781)

| ¢o,1,1 18 periodic in y,

'Aouk,l,nJrQ = A1 — AgUpr, 0 Y,
(6k(a+1)+l5+”) : _A(y)<vxuk,l,n+1 —+ vyuk,l,n+2) .n=0 on 1“7 (782)

| Ukin 18 periodic in y,

for all pairs (k,l,n) € Ky := My_2\ {(1,0,0);(0,1,0); (0,0,1)}.

Once again, we obtain from (7.73) that ug(z,y) = Go(z), and hence the prob-
lems (7.74) and (7.75) are solvable in g1 and ug 2, respectively. On the other
hand, from (7.76) and (7.79), we may take uy0_1 and ug ;1 as zero functions,
without loss of generality. From (7.77) and (7.80), we have uy 99 = ug 10 = 0 in
accordance with (As) and so is the function ug;, in (7.81). Therefore, we con-
clude that the family of cell problems can be solved up to the high-order problems
(7.82). As a consequence, the corresponding cell problems can be obtained.

From the auxiliary problems (7.73)—(7.75), we know that ug01(z,y) = —X0,01(¥y)-

V. io(x), where xo0.1(y) is a field of cell functions whose cell problems are given
by

AOX%,O,I — 8—‘7 in )/27
IYi
~A(y)VyXbo1 - n=A(y) n; onl, (7.83)

Xb,0.1 1s periodic,

which resembles the problem (7.39). These cell problems admit a unique weak
solution xo0.1 € [HL(Y:)/R]%.

As in (7.43), we get for k =1 = 0 that v, = (—1)"x00n(y) - V2ie(z), and
then the high-order cell problems for this case are also determined, similar to
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(7.44). In this context, the limit problem remains unchanged and can be recalled
from (7.40)—(7.41) with the zero Dirichlet boundary condition for the exterior
boundary.

Let us now turn our attention to the corrector estimate in this case.

Theorem 7.16. Assume (A1), (As) and (Ag) hold. Assume that f € C(£2) and
let My be defined as in (7.72) for given parameters o >0, 5> 1 and 2 < 0 € N.
Let u. and 1o be the unique weak solutions of the microscopic problem (P.) and
the limit problem (7.40), respectively. Let uy,, be solutions to the cell problems
determined by the auxiliary problems (7.73)—(7.82) for (k,l,n) € My. Then, for
any p € (0,0 — 1] the following high-order corrector estimate holds:

u. — 710 . § 5k(a+1)+lﬁ+nuk,l,n —me E 8k(a+1)+l,8+nuk7l,
(k,ln)emM,, (k,ln)eMp\ M, Ve
S 0(56_1+a + 69—1—5—2 + 5,u—&—mln{,ua,O}—&—1/2).

Proof. We set ¢, := . + 0., where

o ~ k(a+1)+I18+n
Pe = Ueg — Up — E 5( J+iB Ukl

(k‘J,n)EMg

o = (1 —m°) Z Mot DHET .
(k,lm)eMo\M,

Therefore, we derive the difference equation for ¢. as in (7.48), while the
associated boundary condition is

_AE('I)V<)0€ ‘n = _AE<I> Z 8k(OZJrl)erJrnV:}:uk:,l,n -1
(kyl,n)EMg

n=0

+ 55 <S(U5) . Z 8lc(oz-l—l)-l-lﬁf—l-n(g(uk’lm)) )

For a test function ¢ € V¢, one can get the weak formulation of the difference
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equation for ., as follows:

a(pe, ) = <€“R(us) - > €k(“+1)+lﬁ+”+ﬂ7€(uk,z,n),90>
(kyyn)EMg,l<0—2 L2(QF)
— Z ghlatDH1p+n (A1 + Aot in, @)Lz(gg)
(k,,n)eEMg,n=0—1

k(a+1)+I18+
_ E £ (a+1)+lB+n <A2uk7l,n, (p>L2(QE)
kylan €M9’n 0

/ Z Mot D+ A (1) Vg, - npdS.

k‘,l,n)EMG
T <€ﬁ (S(UE) _ Z 8k(a+1)+l5+n3(uk717n>> : 90> . (784)
(k,,n)eMy
n<f—2 L2(T¢)

At this stage, we observe that (7.84) resembles (7.51) except the last term on
the right-hand side. Thus, it remains to estimate it from above. Clearly, using
the Lipschitz property of S with the Poincaré inequality and the trace inequality
on hypersurfaces, one gets

<€ﬁ8(us) _ Z 8k(a+1)+l,8+n+67 <,0> < C€0+,8—2H90HV6_ (7.85)

(k7l7n)€M9
n<6-2 1.2 (1"5)

Following the same argument as for the estimate (7.60), we can bound the
inner product of o. from above:

<(1—m5) > 5k(“+1)+w+”uk,l,n,so>
(

k,lin)eMo\ M,
< C<€u+min{ua,0}+l/2 + €,u+min{,ua,0}+3/2>' (786)

Thanks to the triangle inequality. By choosing ¢ = 1., we combine (7.84),
(7.85) and (7.86) to get the corrector estimate

||¢6||V5 < 0(6071+a +89+672 _'_€u+min{ua,0}+1/2 +€,u+rnin{,ua,0}+3/2).

Hence, we complete the proof of the theorem. n

When either a@ < 0 or § < 0 is satisfied, the asymptotic limit of u. is close to
zero. Indeed, we recall from Section 7.2 that

2 a 2 2
IVuel72 g0y + (6 +€7) (HUaHH(QE) + HUEHB(FE)) <C. (7.87)
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Thanks to the elementary Bunyakovsky—-Cauchy—-Schwarz inequality, we de-
duce from (7.87) that

o B8 B o
€2 [Jue| ey + €2 uellp2rey < € €7 (el 2qey + €2 [|uel|p2pey < C.

Henceforth, the theorems for these cases can be stated as in Theorem 7.12.

When a@ > 0 and 0 < [ < 1, we proceed as in Subsection 7.4.1: for any
fi, f2 € HY(QF) N L>®(QF) with 0 < ¢ < fi, fo < ¢ < 00, assume that we can find
a function f3 € L*°(£2F) such that (7.67) holds. Then we are led to the estimates
(7.68) and (7.69). Recalling the weak formulation of (P.), which reads as

A.(2)Vu, -Vodr +&° | S(u)pdS. +e* | R(u)edr = | feod
QF Te Qe Qe

for any ¢ € H'(QF), by choosing ¢ = u. and (A;)-(A4) one can get

o [ S(uuds. <SPl + 81 e B + 1l el 200
E (7.88)
Combining (7.69) and (7.88), we obtain
uell7z0e < Ce™P(1+£%) +e). (7.89)

Applying the trace inequality (7.63) to (7.89), we can finalize the corrector
results for (P.) by the following theorem.

Theorem 7.17. Assume (A1)~(As) hold. Suppose that f € L*(F) and o >

0,0 < B < 1. Let u. be a unique solution in W. of the problem (P.). Then, the
following estimate holds:

1-8 o 1
el z2(ey + Velluel z2ey < C (5 2 (1 +52)+55> . (7.90)

7.4.3 A numerical example

Here, we illustrate the asymptotic behaviors of the microscopic problem for differ-
ent values of the scaling factors 1, B2 € R. For simplicity, we consider (P.) in two
dimensions with the linear mappings R, S of the form R(z) = C1z,58(z) = Cyz
for ¢4 > 0 and Cy > 0. Taking C'y = 1, we arrive at a modified Helmholtz-type
equation. We choose the unit square 2 = (0,1) x (0,1) the domain of interest
and the oscillatory diffusion as

1
2+ con (220 o (5]
Moreover, we consider the unit cell Y = (0,1) x (0,1) with a reference circular
hole of radius r = 0.4 and take the volumetric source f = 1 and define the volume

porosity as |V} = 1 — mr? & 0.497. According to (7.83), the effective diffusion
coefficient is computed as

_ [ 0191613 2.025 x 107?
2025 x 107 0.191613

A(x/e) =

A
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Figure 7.3: Comparison between the homogenized solution and the microscopic solution
for € € {0.25,0.05,0.025}.

Comments on numerical results

To verify our theoretical results, we divide the scale factors 5; and 5 into three
cases:

1. When £y > 0 and (5 > 1, u. converges to uy of the homogenized problem
(7.40)—(7.41).

2. When either 5; < 0 or 85 < 0, u. converges to 0.
3. When 8; > 0 and 0 < B3 < 1, u. converges to 0.

Suppose we take Cy = 1. We consider the first case by fixing 5, = 1 and
By = 2. Here, we use the standard linear FEM with a mesh discretization,
which is much more smaller than e to solve the microscopic problem for various
values of ¢ € {0.25,0.05,0.025,0.01,0.005}. In Figure 7.3, we compare the ho-
mogenized solution @y with the microscopic solution u. at some chosen values of
e € {0.25,0.01,0.025}. It can be seen that the microscopic solution converges to
the homogenized solution as € tends to 0. This confirms the usual performance of
our homogenization procedure. Based on Table 7.1, it can also be seen that the
homogenized solution %, is the excellent approximation candidate when ¢ gets
smaller and smaller.

For the second case, we verify the sub-cases f; = —1,8; =1 and f; =1, =
—1, respectively. As depicted in Figure 7.4, we find that u. converges to 0 as
e\, 0T, which agrees with Theorem 7.12. Moreover, we have tabulated in Table
7.2 the smallness of the microscopic solution in #?-norm of these cases at various
e € {0.25,0.025,0.00125,0.001}. In the same spirit, choosing 8; = 1 and 5 = 1/2
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Figure 7.4: Behavior of the microscopic solution u. for the sub-cases f1 = —1,0; = 1

and f1 = 1,8, = —1 at e = 0.25 (top) and £ = 0.025 (bottom).

the convergence to 0 of u,. is guaranteed by Theorem 7.17 and this is verified by
the numerical results tabulated in Table 7.3.

It is worth mentioning that we can also corroborate the case §; < —1 discussed
in Remark 7.13 where u. converges to 0 at the micro-surfaces. Indeed, taking
Cy = 0 and f; = —2 we obtain the numerical results in Table 7.4, which are
consistent with Theorem 7.12.

The convergence rates in Tables 7.1, 7.2, 7.3 and 7.4 are also depicted in
Figure 7.5, where we show log-log plots of the numerical errors.

€ 0.25 0.05 0.025 0.01 0.005
lus — ||,z | 0.015219 | 0.003079 | 0.001550 | 0.000266 | 9.623x10~°

Table 7.1: Numerical results in the ¢?>-norm of u, in the microscopic domain for
B1 =1, 3, = 2 and choices of ¢.
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Figure 7.5: Convergence results in the #?-norm of u. in the microscopic domain for
various combinations of the parameters 1,52 and choices of €. First panel: 5, =
1,82 = 2. Second panel: 54 = —1,02 = 1 (dashed square) and 1 = 1,8, = —1
(solid diamond). Third panel: f1 = 1,82 = 1/2. Fourth panel: convergence at the
micro-surfaces for g1 = —2,Cy = 0.

e | 025 [ 002 [ 000125 |  0.001
fr=—-1,0=1
Juell. [ 0.0333]  0.0114  [2.9938x107° | 2.1528x10°°
=10 =-1
[ucll [ 0.0072 [ 9.6755%10~° [ 8.789x10~° [ 5.0318x10~°

Table 7.2: Numerical results in the ¢?>-norm of u. in the microscopic domain for
b1 =—1,p=1and 5 = 1,5, = —1 and choices of ¢.

€ 0.25 | 0.025 | 0.00125 0.001
[ucl,» | 0.0311 | 0.0150 | 1.6029%x10 * | 1.2887x 10

Table 7.3: Numerical results in the ¢2>-norm of u. in the microscopic domain for
p1=1,0; =1/2 and choices of ¢.

e 025 | 0.025 | 0.00125 0.001
[ucllporey | 0.10589 | 0.00596 | 2.474x10°° | 1584x 10~

Table 7.4: Numerical results in the £?>-norm of u. at the micro-surfaces for 3, =
—2, 02 =0.

7.5 Discussion

We studied a microscopic semilinear elliptic equation posed in periodically perfo-
rated domains. The structure of a linearization scheme together with a suitable

138



choice of scalings and stabilization constants allow us to prove the existence of
the microscopic model. In this work, as main finding we point out the structure
trivial and non-trivial macroscopic models, depending on the choice of 5; and (5.
Moreover, we designed a new asymptotic expansion, which accounts for the pres-
ence of the scaling parameters. The high-order corrector estimates we provided
in this chapter are involving the presence of such scaling parameters.

Note that our active—passive pedestrian dynamics discussed in Chapter 6 can,
in principle, be formulated in a multiscale setting in perforated domains. Hence,
this work basically gives us a fundamental homogenization background to study
the asymptotics of a class of Langevin equations posed in perforated domains
using the Skorohod formulation. In this context, we refer to the methods of
averaging and of homogenization for SDEs (see e.g. in [PS07]) to tackle the
following microscopic Langevin equations

dX7 = b(X7, t)dt + o(X7,1)dB, + dP;, (7.91)

where b is a random force in terms of a confining potential representing the effect
of interacting particles, while o represents the diffusion coefficient. In addition,
®, is an associated process so that X is a reflecting process and B, is a standard
Brownian motion.

A related possible direction is to study the combined mean field and homoge-
nization limits for a system of interacting diffusions in a two-scale potential (see
e.g. in [GP18]). We refer the reader also to [OP11,LW18] for remotely related
settings.
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Chapter 8

Concluding remarks. Outlook

In this dissertation, we studied various models aimed at describing crowds of
mixed active—passive populations moving inside heterogenous environments. We
addressed the subject from three different perspectives, driven by our main ques-
tions discussed in Chapter 1. Following these questions, the thesis is structured
into three main parts in which we adopt approaches inspired by lattice gas models,
a fluid-like driven system and by a system of Skorohod-like stochastic differential
equations. This is the moment to review briefly what we have done in this thesis
and point out to what remains to be done.

8.1 Summary

In Chapter 2, we introduced what we mean by the dynamics of active—passive
pedestrian populations. Also, we provided our motivation to study this scenario
as well as the mathematical structure of the involved models.

In Chapter 3, we studied the problem of the evacuation of a crowd of pedes-
trians from an obscure region. We started from the assumption that the crowd is
made of both active and passive pedestrians. The hazardous motion of pedestri-
ans due to lack of visibility and, possibly, combined also to a high level of stress
is modeled via a simple exclusion process on a two-dimensional lattice equipped
with appropriate boundary conditions. The particle system modeling the crowd
is strongly interacting via the simple exclusion principle — each site can be occu-
pied by only a single particle. The main observable is the evacuation time as a
function of the parameters caracterizing the motion of the active pedestrians. We
have found that the presence of the active pedestrians favors the evacuation of
the passive ones. This is a rather surprising effect since we explicitly do not allow
for any communication among the pedestrians. A similar effect is also observed
when looking at the outgoing particle flux, when the system is in contact with an
external particle reservoir that induces the onset of a steady state. We interpret
this phenomenon as a discrete space counterpart of the so-called drafting effect,
which typically is observed in a continuum set-up.

In Chapter 4, based again on the simple exclusion process, we studied the
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dynamics of two populations of active—passive particles, mimicking pedestrians
walking in a building environment, entering a room from two opposite sides. We
see that if active particles undergo a non—zero drift and the visibility zone is
sufficiently large, then the outgoing flux of passive particles improves.

We decided to study in Chapter 5 a macroscopic formulation of the dynam-
ics of active—passive pedestrians. We provided the well-posedness of a system of
parabolic equations consisting of a double nonlinear parabolic equation of Forch-
heimer type for the active population coupled with a semilinear parabolic equa-
tion for the passive population. The system describes the motion of a fast "fluid"
combined with a "slow" fluid. We relied on special energy estimates and on the
use a Schauder’s fixed point argument to tackle the existence of weak solutions to
our evolution problem. The structure of the nonlinearity of the coupling allowed
us to prove also the uniqueness of solutions. Moreover, the stability estimates of
solutions with respect to selected parameters are provided.

We turned the attention in Chapter 6 to a microscopic formulation of the
active—passive population dynamics in a heterogenous environment with fire and
smoke. We showed the existence and uniqueness of strong solutions to a coupled
system of Skorohod-like stochastic differential equations with reflecting boundary
condition. We used compactness methods together with the Skorohod’s represen-
tation of solutions to ensure the solvability of the system. The proof of uniqueness
of solutions is based on standard arguments.

In Chapter 7, we started to prepare a homogenization setting where later
on our microscopic pedestrian dynamics can be studied. To fix ideas, we con-
sidered a semilinear elliptic equation posed in periodically perforated domains
and associated with a Fourier-type condition on internal interfaces. In such a
continuum-level description, this is seen as a microscopic problem to be upscaled.
We provided a linearization scheme which by a suitable choice of scaling argu-
ments and stabilization constants allowed us to prove the weak solvability of the
microscopic model. Based on classical results for homogenization of multiscale el-
liptic problems, we designed a modified two-scale asymptotic expansion to derive
the corresponding macroscopic equation, when the scaling choices are compatible.
Furthermore, we proved high-order corrector estimates that involve the explicit
presence of the scaling parameters. A numerical example is provided to confirm
the asymptotic analysis.

8.2 Outlook

There are a few open questions that would need further investigation. We enu-
merate them here.
1. From the perspective of lattice models:

e The topic of "exit choices" is one of the interesting problems in the field
of pedestrian evacuation. It would be e.g. interesting to find out to which
extent the choice of the exit affects the overall evacuation time.
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In order to describe a realistic scenario, it would be very useful to find
out an extended model where the active pedestrians can transmit to the
passive population the information of the geometry, hoping that this way
the evacuation time can be reduced.

The model validation is an open question in this context. A suitable
experiment design is needed to make any progress in this sense (see in
e.g. [LRR*20]).

The flux of passive particles can be controlled via the active particle dynam-
ics. This fact has been observed for a specific geometry and for a specific
dynamics. Can perhaps our investigation be extended to concrete urban ge-
ometries, multiple populations of pedestrians, and different dynamics? This
could provide potentially useful information for large crowd management.

It would be interesting to study the inclusion of non-local interactions
among particles, where the interaction range is considered as mesoscopic,
namely it is much larger than the microscopic lattice unity (conventionally
taken as the unity in statistical mechanics) and much less than the macro-
scopic size of the system. One promising candidate is the so-called Kac
potential (see e.g. in [Pre09]) in which we may find the way to analytic
calculations.

Another open direction is the investigation of the hydrodynamic limit of
the lattice dynamics (that might in fact be quite complicated due to the
presence of two different species of particles and the geometry).

. From the perspective of fluid-like driven systems:

The structural stability with respect to the Forchheimer polynomial K;(-)
can be improved. Specifically, the estimate (5.25) needs to be much stronger
to provide a full control on the gradient.

A generalized Forchheimer flow model can inprinciple be obtained via ho-
mogenization techniques. Therefore, the structure of such models could be
studied further for periodic geometries.

We could formulate the model such that the pedestrian populations can
interact with their surrounding environment (geometry, fire, smoke). For-
mulating this relationship mathematically would allow for an optimization
approach, potentially in a multiscale setting.

Like for all evacuation problems, the large time behavior of the weak solu-
tion to our fluid-like driven system would need to be investigated.

. From the perspective a stochastic differential equations of Skorohod type:

142



e A convergent numerical approximation of solutions to (6.17)-(6.18) needs
to be implemented. One possible route is to design an iterative weak ap-
proximation of the Skorohod system as it is done e.g. in [BGT04|, [NO10],
and in the references cited therein.

e We supposed that the fire is stationary, i.e. F is independent on t. Trusting
ideas from [NO10], we expect that it is possible to handle the case of a time-
evolving fire, provided the shape of the fire 0F(t) is sufficiently regular and
it is a priori prescribed.

e From a mathematical point of view, the situation becomes a lot more chal-
lenging when there is a feedback mechanism between the pedestrian dynam-
ics and the environment (fire and geometry) (see e.g. in [RN19]). Taking
into account the smoke observable s(z,t), an extension can be done in this
context. As a further development of our model, it would be interesting to
study the "transport" of smoke eventually via a measure-valued equation
(cf. e.g. [EHM16]), coupled with our SDEs for the pedestrian dynamics.
The well-posedness of such model needs to be investigated. Again, it is
also interesting to study the large-time behavior of the system of evolu-
tion equations. In this context, another direction is the use of a stochas-
tically perturbed diffusion-transport equation instead of a measure-valued
equation for the smoke dynamics. The coupling between the SDEs for the
crowd dynamics and the SPDE for the smoke evolution potentially offers
new challenges (see e.g. in [CJK18]). However, in both cases, it is not yet
clear cut how to couple correctly the model equations.

e In our crowd dynamics model, besides the social pressure and the repelling
from overlapping, there are no other imposed interactions between pedes-
trians. It would be interesting to build a model where there are additional
interactions between active—passive pedestrians; we refer for instance to the
setting described in [CTB™ 18|, where active and passive particles interplay
together to find exits in a maze.

e Note that our crowd dynamics can be formulated in a multiscale setting for
instance in perforated domains. Based on the methods of averaging and
of the homogenization for SDEs (see e.g. in [PS07]), the asymptotic of a
class of Langevin equations posed in perforated domains using a Skorohod
formulation could be obtained. Some other possible directions would be a
combine mean field and homogenization limits for a system of interacting
diffusions in a two-scale potential (see e.g. in [GP18]); see also [OP11,LW1§]
for related situations.

e A novel trend promoted e.g. in [AD20], it would be interesting to take a
mean-field game approach to our system of SDEs of Skorohod type that
models pedestrian motion.
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Appendix

A.1 Rigorous definition of the active—passive dy-
namics in Chapter 4

The state of the system is a configuration n € C = {—1,0,1}* and we say that
the site x is empty if n, = 0, occupied by an active particle if n, = 1, and occupied
by a passive particle if n, = —1. The number of active (respectively, passive)
particles in the configuration 7 is given by na(n) = > ,.) 01, (respectively,
np(n) = Y ,cp0—1,.), Where d.. is Kronecker’s symbol. Their sum is the total
number of particles in the configuration 7.

Picked the positive integers Ny and Np and set N = Nj + Np, the dynamics
is the continuous time Markov chain 7n(t) on  with initial configuration 7(0)
such that na(n(0)) = Na and np(n(0)) = Np and rates ¢(n,n’) defined as follows
(recall the function €(z,y) is defined in Section 2.2.2): we let the rate ¢(n,n’) be
equal

— to 1 if ' can be obtained by n by replacing with 0 a —1 at the right door
(passive particles leave the room);

— to 1+ €(x,y) if ' can be obtained by n by replacing with 0 a 1 at the left
door (active particles leave the room);

— to [Na —na(n)]/mg if the number of empty sites in the right door is mg > 0
and 7' can be obtained by 7 by adding a 1 at one of the empty sites of the
right door;

— to [Np — np(n)]/my, if the number of empty sites in the left door is my, > 0
and 1’ can be obtained by 1 by adding a —1 at one of the empty sites of
the left door;

— to 1 if ' can be obtained by n by exchanging a —1 with a 0 between two
neighboring sites of A (motion of passive particles inside A);

— to 1+ €(x,y) if ’ can be obtained by n by exchanging a +1 at site « with
a 0 at site y, with x and y nearest neighbor sites of A (motion of active
particles inside A);

— to 0 in all the other cases.
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We stress that, at time ¢, the quantities Ny — na(n(t)) and Np — np(n(t))
represent the number of active, and, respectively, passive particles that exited
the room and entered their own waiting list at time ¢, whereas m; > 0 and
mg > 0 are the number of empty sites of the left and right doors at time ¢.

We simulate the model introduced above and in Section 2.2.2 using the follow-
ing scheme: at time ¢, we extract an exponential random time 7 with parameter
the total rate D . c(n(t),() and set the time equal to ¢ + 7. We then select
a configuration using the probability distribution ¢(n(t),€)/ > ccq c(n(t),¢) and
then set n(t + 1) =¢&.

A.2 Regularized Eikonal equation for motion plan-
ning

To describe how the active population moves within D, we use a motion planning
in terms of the solution of the following regularized Eikonal equation:

—GAdp, + ’v¢<‘2 = f2 in D,
¢< =0 at E, (1>
Vo, - n=0 at 00O\ (FUEUF)),

where ¢ > 0 given sufficiently small. In fact, |V¢.| plays the role of a priori known
guidance (navigation information). Inspired very much from the implementation
of video games, this is a strategy commonly used in most major crowd evacuation
softwares, i.e. the map of the building to be evacuated is built-in. An alternative
motion guidance strategy is suggested in [YDW14].

We point out the existence and uniqueness of classical solutions to the problem
(1) in the following Lemma.

Lemma A.l. Assume that f € C*(D) with 0 < @ < 1. Let D C R? be a
bounded domain_with 9D U 0G € C*>*. Then the problem (1) has a unique
solution ¢, € C(D) N C*(D).

Proof. The idea of this proof comes from Theorem 2.1, p.10, in [Sch06] for the
case of the Dirichlet problem. In fact, the semilinear viscous problem (1) can be
transformed into a linear partial differential equation via w, : D — R given by

Wa(P) = eXp(—C_lgbg) -1, (2)
where a = L. Then w, € C (D)NC?(D) becomes a solution of the following linear
partial differential equation with mixed Dirichlet-Neumann boundary conditions:

—Aw, + f2a*w, +a*=0 in D,
we =0 at F, (3)
Vw, n=0 at 0D U JG.

Futhermore, there is a unique solution w, € C(D) N C?*(D) of the problem (3)
(see in Theorem 1, [Lie86]). This also implies that there is a unique solution
¢. € C(D) N C?*(D) to the problem (1). O
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A.3 Nondimensionalization of the system of SDEs
(2.5) and (2.8)

In this section, we nondimensionalize the system (2.5)-(2.8). By this procedure,
we aim to identify the relevant characteristic time and length scales involved

: : : : : ref ,.ref ref gref
in this crowd dynamics scenario. We introduce z%, x,0", Tre and €57, £ trer as
possible characteristic length and time scales, respectively. We choose
o e (1) T (t) .z o tay oty ot
Xai (trefT) - x(rleif 5 ka (trefT) — m;ekf 5 Z = Trof and T = t‘rleif — t;?cf — trcf

where 25" = 219 = 2y and 1 = £ = t,r. Then, equations (2.5) and (2.8)
become

. ~ GretV as (g(xre X“i (tre T))
Lol i)((M (trefT) = TrefsrefT<S(IrefXai (trefT))) o ; f

| (Pmax

tref dr Qbref‘vXai Qg(l'refXai (trefT))
_prefﬁ(xrefXai (trefT)a 2frefT))? (4)
Xa.
Xai (O) - mr:fo )
where

p(xai (t)a t) = prefﬁ(xrefXai (trefT)a ZfrefT)

N
- ,urefﬂ(trefTai) / Z 5(yrefy - xrech]- (tref7—>yrefdy (5>

DmB(xrefXai :Srefg) 7j=1

Z‘refi _ N xrefXCj _wreprk ~
ref AT ka (trefT) - Z.]Zl 6‘eref)(cj' *xreprk ‘ wrefw( |xrechj

_:Cref)(p;C |7 S(xreprka trefT)) .
+ﬁrefﬁ(5(xreprk ) trefT))) dT%\/%_fT)u
X, (0) =

Lyef ’

~+

where

_ Yref¥ _ Yret¥
W(% Z) - Wrefaj<yrefg7 Zrefg) - _Brefﬁ(zrefg) (CA@ fa + CRG ‘R ) ) (7)

1, if yeeM < Ser,

B(y) = /Brefﬁ(yrefM) = {0’ if yrefM > Ser-

Multiplying (4) by % we are led to

ref

YreftrefSref Y ¢revag”L- ¢(xrefX0~L' (trefT))
(%'Xai (trefT) - %T(S(:ﬂref‘){ai (trefT) )) ¢ref|xrevaa. (Z)(Xa' (trefT))l (pmax
_prefﬁ(l‘refXa,- (trefT)a trefT) )7 (9)
Xa,
Xai (0) - Téfo .
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Similarly, we obtain

i _ Wreftref N zrefXCj 71’reprk ~
dr ka (trefT) - Tref ijl 5+|$refX5j —xreprk |w(’$rechJ

_xreprk |7 S(Ireprka trefT)) }
L L ) T
Xp
ka (0) = Ir:fo )

From (9) and (10) the following dimensionless numbers arise:

Treftrefsrefpmax Treftrefsrefpref wreftref 5reftref

) ) )
Lref Lref Lref Lref

(11)

These dimensionless numbers indicate four different choices of the characteristic
time scale t.s. This is due to the complexity of our system: active and passive
agents interplay within the domain geometry as well as the propagation of the
smoke. The choice of the corresponding time scale can be the characteristic
time capturing relation between the smoke extinction, the walking speed and the
discomfort level to the overall population size or the local discomfort, the one
for the drift from the smoke propagation, the one for the drift produced by the
action of active and passive pedestrians and the one for the amplifying factor on
the noise. Therefore, in order to cover the physical relevance of the whole system,
we introduce the following rate

(12)

Treftref SrefPmax Treftref SrefPref wreftref 6 reftref
K 1= max , , , .
Lref Tref Lref Tref

On the other hand, a typical choice for the reference length scale is x,.; = £, where
¢ := diam(D). Finally, we obtain the following nondimensionalized equations

Vxq, #(Xa,; (7))
LX, (1) = KT(S(XW(T)))m@m — p(Xq,(7), 7)), (13)
X, (0) =Xg0,i€{1,...,Na}.
Xe,—Xp
%ka(T) = HZj‘V:I W__Xl;k”w(HXCj - kaHv S<ka7 T))
+48(S(X,,,7), 7)dB(7), (14)
X,, (00 =X,0, ke{l,...,Np}.

A.4 Higher regularity estimates for the smoke con-
centration

In this framework, we require the following assumptions:

(A1) The smoke matrix diffusion coefficient D = D(z) € W">((2) satisfies the
uniform ellipticity condition, i.e. there exists positive constants €, 6 such
that

01¢)? < D(2)&¢&; < OI¢[* for any € € Q.

147



(A) The smoke interface exchange coefficient on the boundary of our domain
A= A(z) € W™>(0Q) is such that there exist positive constants ~,7
satisfying B

—I€]* < Mx)&&; < 7€ for any € € 99

Changing the functional framework will naturally lead to a reconsideration of
these assumptions.

We introduce the evolution of fire throughout a diffusion-dominated convec-
tion process. The production and spreading of smoke, with the smoke density
s(x,t), are described as the following diffusion-drift-reaction equation:

(9,5 + div(—DV's + vgs) = y,H(x,t) in D x (0,T],
—DVs+vgs) -n=0 on 0D UOG x (0,17, (15)
—DVs—+vgs) -n=\s at OE x (0,77,

| s(z,0) = so in D x {t =0},

where D is the smoke diffusive coefficient, vy is a given drift corresponding (e.g.
wind’s velocity,. .. ), ys is a smoke production coefficient, while H represents the
shape and intensity of the fire. The center of the fire location is denoted by xq
with radius rq. H reads

Hix.t) = R(x,t) if |x — xo| < ro, (16)
7 0 otherwise ,

where R(x,t) is defined by

R(x.t) = c(t) exp (—m@> .

Here, k is the convection heat transfer constant coefficient, c¢(t) is a constant
function depending on ¢, L is the typical length of a stationary temperature
distribution within the geometry and A is an interface exchange smoke coefficient.
For convenience, in order to take the gradient of H, we consider H. a suitable
mollification of H. In our case, from now on, we consider the coefficient y, as a
constant ¢, and put f(x,t) := ¢,H(z,t), then (15) becomes

(9,5 + div(—DVs + vgs) = f(x,t) in D x (0,7,
—DVs+vgs) -n=0 on 0D UOG x (0,77,
—DVs+vys)-n=A\s at OE x (0,77, 17)
[ s(x,0) = s in D x {t =0},

In order to have a well-posed dynamics of pedestrians model, we need the solution
of (17) to belong to C([0,T];C*(D)). Since the pedestrian dynamics system
couple one way with the smoke equation, the solution s of (17) should be Lipschitz
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to guarantee the well-posedness of the system. In the next part, we adapt the
approach in [PMO05| to get a short proof of increased parabolic regularity for a
bounded domain D in R?. Moreover, from now on, we assume the boundaries
0D UOG and OF are C? (or, at least, they satisfy the exterior sphere condition).

Theorem A.2. [Lower-order regularity] Assume (A;) and (As) hold. Suppose
f € HY(D) and vy € W'>*(D). Then, for any T > 0, t € (0,T], there exists a
unique

s € C([0,T); HY(D)) and s' € L*(0,T; H'(D))

that solves (17). Furthermore, the following a priori estimates hold

SUP} ||S||%2(D) <Cr <||50||2L2(D) + ||f||2L2(D)> and ||V5||%2(D)

telo, T
Cr

< e (“SOH%Q(D) + HfH?{l(D)) :

Proof. We adapt the arguments from [PMO05]| to our setting and split the proof
into fourth steps:

e Step 1: Galerkin approrimation

Firstly, we assume that the functions wy, = wi(z)(k € N) are smooth and
that

{wy,}32, is an orthonormal basis of H*(D). (18)

We are looking for an approximation of (17) in the form

m

Sm(t) == dh(tywy, (19)

k=1

where the coefficients d*, satisfy the following system

(st k) 120y + (DV 8, V) £2(py — (Vasm, V) r2(py
(XS W) r208) = (f, Wk) L2(D), (20)
Sm(0) = Sop with E =1...m,

where
m
Som = Zcfnwk — S0 (21)
k=1

strongly in L?(D).
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e Step 2: A priori estimates

The goal of this step is to obtain some useful a priori estimates. Multiplying
(20) by dF (t), taking the summation for k& € {1,...,m}. Then recalling
(19), using Green’s formula together with the mixed boundary condition,
we arrive at

1d

m ()72 m - DVspd /)\zd E
il Ol + [ Vs DVsudr+ [ Aot

= / SmVd - VSmdl' +/ medx (22)
D D

Thanks to Cauchy-Schwarz’s inequality € for an £ > 0, we have
1d

3l O+ [ T DVsude+ [ Astdo(E) <
D OFE
1 1
IValloo (SllsmlEoy + <IVsmliZay) + 5 (1 120y + sl -

Next, by using the ellipticity property of the diffusion coefficient D and the
assumption on the interface exchange coefficient, we obtain

1d 1
5 g lsmOliew) < —0lVsmlizw) + dllsmllzz@m + Ivalh (gHSmHiz(D)

1
+5HVSmH%2(D)> + 5 (Hf”%Z(D) + HSMH%Q(D)> :
(23)
By the trace inequality applied to ||s,||? T2(om)» (23) reads

1d 1
5 7 1smOlz20) < =V smllz (o) + C@ sl p) +||lelloo<g||8ml|iz<z>)

1
+e||Vsm||%z<D>> + 5 (I120) + Ismlacoy ) -
By choosing & = 0(2||vall1.00) ", we get the following estimate

1d 0
3 lm Ol < € (1 + smlEn) + (€@ = £) 1950l
21

Multiplying with ¢ = 0,s,, (17) differentiated with respect to =, we obtain
after integrating by part that

1d . R
5% —||0s sm||L2(D / V0,8 - DVO,s,dx + / V0,8, - 0, DV s,,dx
Q D

—/ V&Esm~vd8zsmdx—/ V@xsm-axvdsmdx—l—/ N Opsm|*do(E)
D D

OF

+ 8x()\sm)8wsmdo(E):/ O fOrsmd.
D

oF
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This leads to

1d R R
5% — |0 sm||L2 (D) = / V0,8, - DVO,8,dx — / V0,8 - 0y DV s,,dx
D D

+/ V@xsm-vdé?xsmda:—l—/ V@xsn-ﬁxvdsmdx—/ N Opsm|*do(E)
D D

OF
— O (ASm) Oz Smdo (E) +/ Op fOrsmdz.
O D
(25)

Using the assumptions on D and X as well as Cauchy-Schwarz’ inequality
for the right-hand side of (25), we obtain the following estimate

1d

5 g 10esmlzz(p) < =01V OesmllLz () + [1Dllwr <€1HV(9szHiZ(D)

1 1
+5—1Hv5muim> +1vd (eyuva ST+ —10uslEo)

Valline (szuva Wy + - lsl m) Y usmlZeom,
M1 I0s 5l o) + 5 (Ha T2 + 19e5ml32(09 )
By choosing ¢, = Q(4||D||1,oo)*1, £y = Q(8C)*1, €9 = Q(8||Vd||17oo)*1 to-

gether with the use of the trace inequality to handle the boundary terms,
we arrive at

1d

sy < ~ 21V Bus ) + Ol + Cllduslogo)

+ CllsmlZaoy + C) (105mllE20) + 9 0usmll30))
45 (10:7 130y + 105ml3eco))

< (~5+0@) IVl

+C (I9sml32(0) + 10smllEo) + IsmlZmy) - (26)

Taking the summation over all first order derivatives, we have

9 2 2 2
51Vl < (€)= §) I9%smlia + € (Isnlco + 1 o)

Let us introduce a linear expansion in t as follow

C(0,7)t
Gi(t) = lsmllZ2(py + T‘!IVSmI\%2(D)- (27)
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Taking the derivative of (27) with respect to ¢, we obtain

d ) C(8,7) ) C(0, )t d )
G(t) = EHSm“B(D) + 9 ||V3m||L2(D) + T@HVSWHLQ(D)‘

Combining (24) and (26), we are led to the following estimate

/ 0
60 < 2C (1o + lomlBen) =2 (€)= £ ) 1Vl

C(0,7) (8,7t 0
S 21Vl + =52 | (00 - §) IVl
+C <||Sm||§{1(D) + ”f”%—l%D)) ] :
Choosing ¢,y such that —% + C(y) < 0 and put —% + C(y) = =C(8,7),
we obtain
(1) < Cr (1 Iy +<(1)) for ae. € (0,7). (28)

Applying Gronwall’s inequality to (28), we have the following estimate

¢ < Cr (6O + 1/ Iwy) = Cr (IsollEaoy + I Iy) - (29)
Combining (27) and (29) gives
lsm @32y < Cr (IlsollEoy + 1 W) (30)
and
C
195l < 7 (Is0l3zay + 11 o)) (31)

The estimates (30) and (31) imply that s,, is a bounded sequence in H'(D)
and a.e t € (0,7).

Step 3:  Passage to the limit m — oo
Using the a priori estimates (30) and (31), we obtain the following inequality

g 1d 2 g 2 g 2 2
| 5 gilsm @t + [ 19smliait < Cr [ (1o + IsolEann) -
0 0 0

This implies that (s,,) is a bounded sequence in L?(0,T; H'(D)).

On the other hand, in order to use Aubin-Lions’s lemma, we additionally
need to prove s, € L*(0,T; H '(D)). Take an arbitrary v € H'(D), with

||| 1py < 1. We can deduce for a.e. 0 < ¢ < T that

(S1m V) 22(D) = (s v) L2(D) + (Vasm, V) £2(p) — (DV i, VU) 12(D) = (ASim, ) 12(98)-

152



Then, we get

[(sys )| < Cllsmll 1oy + Cllf Il e2(p)- (32)

for [|v||w12(py < 1. Moreover, (32) implies that

Istullz-10y < C (Ismllerr oy + 1l 22(py) - (33)

Integrating (33) on (0,7), we obtain the following estimate

T T
| Ushlsodt < € [ sl + 1ot
< C (Isollao) + 1 flzorzzoy) - (34)
Thus, s/, € L*(0,T; H~'(D)). Therefore, we conclude that

Sm — s weakly in L?(0,7; H' (D)),
§'m — 8 weakly in L?(0,T; H-(D)).

Relying on Aubin-Lions lemma in [BF12| with p,q = 2,
Ay=H' (D), A=1L*Q), A =HYD)

together with Rellich theorem (cf. [Eva97|, Section 5.7, Theorem 1) for the
compactness embedding H!(D) C L*(D), we have that the sequence {s,,} is
relatively compact in L?(0,T; L?(D)) in the strong topology. This sequence
is also weakly relatively compact in L?(0,7; H'(D)) and weakly star rela-
tively compact in C([0,T]; L?(D)). Hence, there exists a subsequence s,
(just for simplicity of notation, let us denote it by s,,) which converges
to a function s belonging to L*(0,T; H'(D)) and C([0,T]; L*(D)). There-
fore, we can conclude that there exists a solution s € L?(0,T; H'(D)) U
C([0,T]; L*(D)) satisfying (17).

Step 4: Uniqueness of solutions

Assume that (17) admits 2 solutions s; and sy belonging to
L*(0,T; HY(D))uC([0,T); L*(D)). Denote w = s; — s. Then (17) becomes

opw + div(—ﬁVw +vqw)=0 in D x (0,T],
(=DVw +vqw) -n=0 ondDUIG x (0,T],
(=DVw+ vaw) -n= w at 0F x (0,7,
w(t=0)=0 inD x {t=0},

Recalling (20), we note that

1d

—— w2dx—i—/ ﬁle|2dx+/ )\wzda(E):/wvd~dex,
2dt Jp D O

D
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which leads to

d - _
= (Iwlap) ) + BNVl +Twlor) < Cllwliap).

This also implies

d
= (Il < Cllwleoy. (35)

Integrating (35) on (0,7), gives

t
HWH%%D) < Hw(O)H%Q(D) +C/O HW’%(D)-
Gronwall’s lemma ensure
wll72p) < llw(0)]|72p) (1 + Cte™),

which for w(0) = 0, gives ||w||z2(py = 0. So, w = 0 a.e. in 2 and everywhere
in [0, T, which ensures the desired uniqueness.

Now, let us show that s € C([0,T]; H*(D)). We consider w,(t) = s(t+r) —
s(t), then w,(t) satisfies (17) with f =0, w(0) = so — s(r) and As(t + r) —
As(t) = Aw,(t). By using a similar argument, we obtain

C(0,7)t
=V (1) 32() < Cr (lls0 = s ) -

||wr(t)||2L2(D) +

Since we have s € C([0,T]; L*(D)), then lim, . |[s(t +7) — s(¢)|| = 0 and
lim, o ||Vs(t + 1) — Vs(t)]| = 0 for t > 0. Therefore, we obtain s €
C([0,71; H'(D)).

]

Theorem A.3. [High-order reqularity] Assume (A;) and (As) hold. Suppose
f € H™(D) and vz € W™>(D) for every m € N, and so € L*(D). Then, for
any T >0, t € [0,T], the solution of (17) satisfies the following estimate

Cr
I8l < 5 (solifzqo) + 1 o)) for b =0,1,...,m.

Proof. We use the method of induction on m € N, using the fact that we have
done the first case m = 1 mathematically in Theorem A.2. We define the gradient
of a function s as follows:

Hka”%Z(D) = Z ||855H%2(D)-

lof <k
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Now, taking the k—order derivative with respect to = for & € N which is
denoted by 02 of (17), multiplying by 0%s and integrating the results by parts
together with using Green’s theorem for the equation, we obtain

> dt||aa W22 / Voe's Z S (g)afjbva;sdx

3=0 |8|=j,B+r=a
/ Vs Z 3 (g)@fvdﬁgsdx—l— | OesADsdo(E)
=0 |B|=j,f+7=a B

+ [ 0% (As) - 0ysdo(E) = / o0 foy sdx,
D

OF

and thus

Qg o @\ 98 Ho Y
2dtna £)]132p) /va Z 3 (ﬂ)axDVQEsdx

J=0 |8|=4,8+y=a

/ VoSs Z 3 (g)aﬁjvdagsdx— 9% s\ sdo (E)

3=0 |B|=5,8+y=c oF
—/ 0% (As) -8§3d0(E)+/ 0y fOy sdx. (36)
OE D

Denote

/ Vs Z 3 <g>a§jbva;sdx

J=0 |B|=3,6+y=c

_ / Ves - DV sda — / Vs Z S (g)afbvagsdx.
D

J=118l=4,f+v=a
We can estimate |A| from above:
|Bi] < =0IVg 5|20y + CllIDI1 <€1||V3a8||p o) T o ||S||§1k—1 D))
< - ||V5(’“8||L2 0y T Cllislz (37)

where we choose g1 = 0(4C|| D] m.00) " Set

By = / Vo' Z 3 <g)afvda;sdx,

J=0 |8|=3,6+y=c

and obtain the upper bound

. 1
| Ba| < Cllvallm,co <€2HV3 sllZ2p) +- H@ sl D)> : (38)

155



Now, let us label the third and fourth terms in the right hand side of (36) as
follow

C:=— [ 0%M%do(E)— | 9%(\s)-9%sdo(E).

oF oF

Using the assumptions on A together with applying Cauchy’s inequality, trace
inequality for C', we have the following estimate:

< 088l 20m) + IMlmoc 1055113208y < C) (1Y) + 108511 32)) -
(39)

Finally, we estimate the last term of (36), by using Cauchy’s inequality, we obtain

(0% (63 1 (63 (6%
[ oesomsan < 5 (1081 oy + 10251 (10)
D

Combining (37)-(40) and choosing &3 = 0(4C||v4|l1.00) ", we have the following
estimate
fel _Q feY reY
2dt“a s(t )H%Q(D) < THV@SH%%D) + CHSHJ%Ik*l(D) + CH&I;SH%I’CA(D)
CIVIT STy + I1f ey
Now, summing all of first-order derivatives, we obtain

0
5 V5O < ()= §) 195 sy + € (I + Wl

(41)
Now, we aim to find s € C([0,T], H™" (D)) using the induction hypothesis under

the assumptions f € H™ (D) and D, \,vq € W™>(0,T; D). Using the same
argument as in the case m = 1, we define

" (C8,y
o) =3 CCD Gue (42)

2k k)
k=1
Taking the derivative of (42) with respect to t, we obtain

" (C(8, 7))kt
a0 = 3 SR Il + Y- S G

k=1
= G1 + GQ.
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" 0
<> i (@I slaiwy + C (I oy + lslecon ) )
" (C(0,7))
- _22 Z;CI—WHV’CHSH%%D)
+CZ 2%, (!Ifl!Hk(D>+|! [
2(C(0, 7))t

2m+1m|

+CZ zkk, (!Ifl!Hk(D+|! ey - (43)

On the other hand, the 1nduction hypothesis gives the following inequality

R (s Y (44)
Combining (43) and (44) we obtain

=y S (||f||Hk +||3H§fk(D)>
§0T<Hf|!?qm Z 2k,{;.
b or
1

< Cr <||f||%1m(D) + G(t) Z Qkkl th=

< Cr (1 1im oy + IsollZ2o) + G(8))

Gronwall’s inequality yields

G(t) < Cr (I Fmo) + I50l22(0) + 2(0)) < Cr (I Bimioy + sl ) -
The bound on (5(t) gives the following estimate

—2G, —

V™ s 22 )

k

[HV]CSH%%D) + Hsleqkl(D)])

[Hf”?{kfl(m + ||80||%2(D)]>

Vm 2 <
|| 8||L2(D) = (C(_,l)t)m7
which completes the induction proof. O O

Remark A.4. From Theorem A.3, for m = 3, D C R? with d = 2, there
exists a unique solution s € C([0,T];CY(D)) and s € L*(0,T; H *(D)) that
solves (17). By the same arguments as in Theorem A.2, this also implies that
s € C([0,T]; H™(D)). In our model, we consider our domain in D C R with
d = 2. Moreover, assume D satisfies the strong locally Lipschitz condition (cf.
[AF03], Theorem 4.12), taking m = 3, hence H*(D) compact embedding into
CY(D), i.e. H¥(D) C CY(D). As a conclusion, we obtain s € C([0,T]; C*(D)).
This property ensures that the smoke concentration field s is Lipschitz with respect
to the space variable — a fact needed to handle the well-posedness of our SDEs.
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exit. Black and red arrows (color online) denote transitions
performed with rates 1 and 1+ ¢, respectively. . . . . . ..
Configurations of the model sampled at different times (increas-
ing in lexicographic order). Parameters: L = 15, wex = 7,
L, =5, and € = 0.3. Red pixels represent active particles, blue
pixels denote passive particles, and gray sites are empty. In the
initial configuration (top left panel) there are 70 active and 70
passive particles. . . . . . . . . .. ..o
As in Figure 3.2, the obstacle is a centered 5 x 5 square. This
fixed obstacle is depicted with white pixels. . . . . . . . . ..
Two initial configurations for the lattice gas dynamics. Blue
and red pixels represent, respectively, passive and active
particles. The thick dashed line surrounding a large frac-
tion of the grid denotes the presence of reflecting boundary
conditions. The exit door is located in presence of the miss-
ing segment of dashed line. In (a) only Np passive particles
are present. In (b), the passive particles occupy the same
initial positions as in (a), and N, active particles are also
included (we fix Ny = Np). We shall compare the evac-
uation time relative to the two configurations in (a) and

Evacuation time in an empty room for L = 15, we, = 7,
N = 0and Np = 70 (solid disks) and Ny = Np = 70 (open
symbols). Left panel: L, = 2 (open triangles), L, = 5
(open circles), L, = 7 (open pentagons), L, = 15 (open
squares). Right panel: ¢ = 0.1 (open triangles), ¢ = 0.3
(open circles), e = 0.5 (open squares). . . . . . ... ...
Evacuation time in an empty room for L = 15, we, = 7,
Na =0 and Np = 70 (solid disks), No = 35 and Np = 70
(open triangles), Ny = 70 and Np = 70 (open circles) and
Ny =0 and Np = 140 (open squares). Left panel: L, = 2.
Right panel: L, =7. . . . . ... .. ... ... ...
Evacuation time in a room with a 5 X 5 squared centered
obstacle for L = 15, wex = 7, Ny = 0 and Np = 70 (solid
disks) and Ny = Np = 70 (open symbols). Left panel:
L, = 2 (open trlangles) L, = 5 (open circles), L, = 7
(open pentagons), L, = 15 (open squares). Right panel:
e = 0.1 (open trlangles) e = 0.3 (open circles), ¢ = 0.5
(open squares). . . . ...
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Figure 3.8:

Figure 3.9:

Figure 3.10:

Figure 3.11:

Figure 3.12:

Figure 4.1:

Figure 4.2:

Stationary flux of passive particles in an empty room for
L = 15, wex = 7, Ny = 0 and Np = 70 (solid disks)
and Ny = Np = 70 (open symbols). Left panel: L, =
2 (open triangles), L, = 5 (open circles), L, = 7 (open
pentagons), L, = 15 (open squares). Right panel: ¢ =
0.1 (open triangles), ¢ = 0.3 (open circles), ¢ = 0.5 (open
SQUATES).  © « v
Transient flux of passive particles in an empty room for
L =15, wex =7, Ny = 0 and Np = 70 (solid disks) and
Na = Np = 70 (open symbols). In the various panels,
shown are the cases with ¢ = 0.1 (empty triangles), e = 0.3
(empty circles) and ¢ = 0.5 (empty squares). Different
values of L, are considered: L, = 2 (top left panel), L, =5
(top right panel), L, = 7 (bottom left panel), and L, = 15
(bottom right panel). . . . . . ... ... oL
Occupation number profile at stationarity for L = 15, we, =
7, Tex =D, Na = Np =70, ¢ = 0.1,0.3,0.5 (from the top
to the bottom), L, = 2,5,7,15 (from the left to the right).
Stationary flux in a room with a 5 x 5 squared centered
obstacle for L = 15, wex = 7, Npo = 0 and Np = 70 (solid
disks) and Ny = Np = 70 (open symbols). Left panel:
L, = 2 (open triangles), L, = 5 (open circles), L, = 7
(open pentagons), L, = 15 (open squares). Right panel:
e = 0.1 (open triangles), ¢ = 0.3 (open circles), ¢ = 0.5
(Open Squares). . . . . ...
Occupation number profile at stationarity in presence of
a b5 X b centered obstacle for L = 15, wex = 7, Tex = 5,
Ny = Np = 70, ¢ = 0.1,0.3,0.5 (from the top to the
bottom), L, = 2,5,7,15 (from the left to the right).

Qualitative description of the model: red and blue dots rep-
resent active and passive particles, respectively. Active par-
ticles are pushed toward the exit in the visibilty zone. Out-
side the visibility region all particles move isotropically. Ac-
tive particles enter the room through the right door and exit
through the left one, while passive particles enter through
the left door and exit trough the right one. . . . . . . . ..
Schematic representation of our lattice model. Blue and
red disks denote passive and active particles, respectively.
The rectangles of sites delimited by the red contour denote
the exit doors. Black and red arrows (color online) denote
transitions performed with rates 1 and 1 + &1 or 1 + &9,
respectively. . . . . .. ..
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Figure 4.4:

Figure 4.5:

Figure 4.6:

Figure 4.7:

Figure 4.8:

Figure 4.9:

Figure 4.10:

Figure 4.11:

Figure 4.12:

Corridor model: wide doors. Stationary currents of ac-
tive (empty circles) and passive particles (solid disks) and
cumulative current (empty squares) as functions of L, for
e = 0.05,0.1,0.15,0.2 (lexicographical order). The black
dashed lines are eye guides showing the value measured in
the zero drift case. . . . . . . ... ...
Corridor model: wide doors. Occupation number profile
of passive (top row) and active (bottom row) particles at
stationarity for ¢ = 0.15 and L, = 20, 25,30 (from left to
right). . . ...
Corridor model: wide doors. Stationary currents of ac-
tive (empty circles) and passive particles (solid disks) and
cumulative current (empty squares) as functions of e for
L, =7,15,23,30 (lexicographical order). The black dashed
lines are as in Figure 4.3. . . . .. .. ... ... ... ..
Corridor model: wide doors. Occupation number profile
of passive (top row) and active (bottom row) particles at
stationarity for L, = 15 and ¢ = 0.2,0.4,0.48 (from left to
right). . . . ..
Corridor model: wide doors. Occupation number profile
of passive (top row) and active (bottom row) particles at
stationarity for L, = 23 and ¢ = 0,0.18,0.25,0.35 (from
left to right). . . . . . . ...
Room model: smaller doors. Stationary currents of ac-
tive (empty circles) and passive particles (solid disks) and
cumulative current (empty squares) as functions of L, for
e = 0.05,0.1,0.15,0.2 (lexicographical order). The black
dashed lines are as in Figure 4.3 . . . . . ... ... ...
Room model: smaller doors. Occupation number profile
of passive (top row) and active (bottom row) particles at
stationarity for ¢ = 0.15 and L, = 21,25,30 (from left to
right). . . ...
Room model: smaller doors. Stationary currents of ac-
tive (empty circles) and passive particles (solid disks) and
cumulative current (empty squares) as functions of e for
L, =7,15,23,30 (lexicographical order). The black dashed
lines are as in Figure 4.3. . . . . .. ... ... ...
Room model: smaller doors. Occupation number profile
of passive (top row) and active (bottom row) particles at
stationarity for L, = 15 and ¢ = 0,0.15,0.35,0.45 (from
left toright). . . . .. ...
Room model: smaller doors. Occupation number profile
of passive (top row) and active (bottom row) particles at
stationarity for L, = 23 and ¢ = 0,0.15,0.2,0.3 (from left
toright). . . . ...



Figure 4.13: Room model: smaller doors. Occupation number profile at

Figure 5.1:

Figure 6.1:

Figure 7.1:

Figure 7.2:

Figure 7.3:

Figure 7.4:

Figure 7.5:

stationarity in a simulation without passive particles. Top
row: ¢ = 0.8 and L, = 7,15,23,30 (from left to right).
Bottom row: L, = 23 and € = 0,0.15,0.5,0.8 (from left to
right). . ...

Sketch of a distributed flow through a fissured rock, sce-
nario mimicking Fig.1 from |[BZK60|. The fissured rock
consists of pores and permeable blocks, generally speaking
blocks are separated from each other by a system of fis-
sures. Through the fissures, the flow is faster compared to
the rest of the media. . . . . . . ... ... ... ... ...

Basic geometry for our active-passive pedestrian model.
Initially, pedestrians occupy some random position within
a geometry with obstacles GG).. Because of the presence of
the fire F', and presumably also of smoke, they wish to
evacuate via the exit door F while avoiding the obstacles
Gy and the fire . . . . . ...

A schematic representation of a natural soil. The figure is fol-
lowed from [Ray13]. . . . . . . .. . ...
A schematic representation of the scaling procedure within a
natural soil and the corresponding sample periodically perfo-
rated domain with its unit cell. . . . . . . . .. o000 L
Comparison between the homogenized solution and the micro-
scopic solution for £ € {0.25,0.05,0.025}. . . . . .. ... ..
Behavior of the microscopic solution u. for the sub-cases g1 =
—1,82=1and ;1 = 1,8, = —1 at e = 0.25 (top) and € = 0.025
(bottom). . . . ...
Convergence results in the ¢2-norm of u. in the microscopic
domain for various combinations of the parameters (51, 82 and
choices of €. First panel: 81 = 1,82 = 2. Second panel:
B1 = —1,82 = 1 (dashed square) and 1 = 1,8, = —1 (solid
diamond). Third panel: 81 = 1,02 = 1/2. Fourth panel: con-
vergence at the micro-surfaces for g1 = —=2,Co =0. . . . . . .
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