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Abstract

Conventional wisdom on Model-Driven Engineering suggests that metamodels

are crucial elements for modeling environments consisting of graphical editors,

transformations, code generators, and analysis tools. Software repositories are

commonly used in practice for locating existing artifacts provided that a clas-

sification procedure is available. However, the manual classification of meta-

model in repositories produces results that are influenced by the subjectivity

of human perception besides being tedious and prone to errors. Therefore, au-

tomated techniques for classifying metamodels stored in repositories are highly

desirable and stringent. In this work, we propose memoCNN as a novel ap-

proach to classification of metamodels. In particular, we consider metamodels

as data points and classify them using supervised learning techniques. A con-

volutional neural network has been built to learn from labeled data, and use

the trained weights to group unlabeled metamodels. A comprehensive exper-

imental evaluation proves that the proposal effectively categorizes input data

and outperforms a state-of-the-art baseline.
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1. Introduction

Model-Driven Engineering [1] (MDE) helps tame the complexity of nowa-

days large-scale software development by using models to capture relevant

knowledge of the problem domain. Models are typically specified in terms

of concepts formalized in metamodels, and they are manipulated via auto-5

mated transformations to achieve superior automation, whether it be refactor-

ing, simulation, or code generation. As in other knowledge-intensive domains,

repositories are large depots of unstructured resources that permit to store ex-

perience (in terms of developed artifacts) and to make it available for later use.

While the relevance of software repositories is often recognized, the difficulties10

in building effective, scalable, and useful tools are often underestimated [2].

Leveraging the informative structure within a repository, which comprehends

insights, know-how, and generally, accumulated and distributed knowledge,

requires the ability to locate and make existing artifacts amenable to reuse,

analysis, and documentation (among others) [3]. Over the last decade, sev-15

eral model repositories have been proposed by both academia and industry,

e.g., [4, 5, 6, 7], just to mention a few. However, unless repositories permit

modelers to easily discover and retrieve the artifacts that satisfy their needs,

the potential benefits related to the availability of such resources can be sig-

nificantly compromised. Clustering and classification approaches have already20

been proposed to categorize the metamodel repositories automatically [8, 9]. In

contrast, manual procedures to classify artifacts are typically time-consuming,

prone to errors, and might lead to accuracy problems. Clustering techniques

have been employed in order to group similar metamodels in an unsupervised

manner [8]. Unfortunately, the performance of clustering techniques heavily25

relies on the chosen similarity measure, and two main problems that hinder its

effectiveness are namely: (i) timing performance; and (ii) the identification of

the appropriate number of clusters [9].

Recently, Machine Learning (ML) gained an interest in the scientific com-

munity as it promises to yield unprecedented results and performance compared30

with conventional approaches [10]. The core principle of an ML algorithm is

2



that it attempts to simulate the learning activities of human beings [11]. As a

result, ML systems are capable of autonomously extracting meaningful patterns

from real-world examples, like humans [12, 13]. Recently, the AURORA tool [9]

has been proposed to classify metamodel repositories using neural networks au-35

tomatically. By learning from a training set consisting of labeled metamodels,

it classifies incoming unlabeled ones based on well-established techniques. Even

though the approach has been validated on a dataset consisting of more than

500 metamodels, it has some performance issues as detailed later in this paper.

In this work, metamodels are considered as data points and they are classi-40

fied by means of supervised learning techniques. In particular, we exploit con-

volutional neural networks (CNNs) [14] to learn from labeled data, and use the

trained weights to group unlabeled metamodels. Such networks have been suc-

cessfully employed in various domains, such as imaging applications [15, 16, 17],

and natural language processing [18]. By means of supervised learning, we over-45

come the main limitation of different unsupervised clustering techniques where

it is necessary to specify the number of clusters in advance. Meanwhile, with

supervised learning the number of clusters depends on the training data, and

it has been specified ex-ante in the labeled data. In our experiment, we used a

dataset with nine categories, however such a number can easily be changed if50

there are more categories previously classified. In this respect, there is no need

to dictate any number in advance with our approach.

The rationale behind the selection of a CNN is as follows. To choose a suit-

able network for classifying metamodels, we performed an investigation into

various techniques, namely recurrent neural networks (RNNs), long short-term55

memory (LSTM) neural networks [19], and CNNs. As a matter of fact, RNNs

and LSTMs are suitable for working with time series data such as weather fore-

cast or pedestrian trajectory [15]. We anticipate that they can be used to solve

other tasks in MDE, e.g., recommendation of model repairs, or for assisting the

specification of metamodels. For classification, we select CNNs as they have60

been designed to successfully work with images. The recent development of

disruptive deep neural networks which are based on a CNN has enabled a large
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number of applications in different domains. Thus, the deployment of a CNN to

classify metamodels allows us to take advantage of a well-founded background

related to many technological breakthroughs, which have been proven through65

a series of work in image classification.

By mimicking the human visual system [20], the approach (named mem-

oCNN hereafter) considerably improves the accuracy of AURORA by out-

performing the baseline for different quality metrics as demonstrated by the

experiments. Moreover, the analysis reveals that memoCNN becomes more70

effective and efficient when there is more data available for training. In this

respect, the contributions of the work can be summarized as follows: (i) a repre-

sentation scheme to transform metamodels into a CNN-processable format; (ii)

a convolution neural network for automatic classification of metamodel repos-

itories; (iii) an empirical evaluation with different experimental configurations75

to study the proposed approach’s performance; and finally (iv) a memoCNN

prototype together with the metadata used in our evaluation is released to the

benefit of future research.1

Outline. The structure of the paper is as follows. Section 2 presents a back-

ground for our work. The proposed approach is illustrated in Sect. 3. The80

next section explains the evaluation settings used to study the approach’s per-

formance. The experimental results are reported and analyzed in Sect. 5. In

Sect. 6, we discuss the outcomes of the experiments and highlight the probable

threats to validity. Section 7 reviews the related work and associates them with

our approach. Finally, Sect. 8 outlines possible future work and draws some85

conclusions.

2. Background

Section 2.1 provides an introduction to metamodels. Afterward, Sect. 2.2

describes the problem of classification as a machine learning task. We introduce

1https://github.com/MDEGroup/memoCNN/
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Figure 1: An excerpt of the ecore metamodel.

classification of metamodels in Sect. 2.3. Finally, a brief introduction to CNNs90

is provided in Sect. 2.4, highlighting the most relevant aspects.

2.1. A brief introduction to metamodels

A metamodel defines the abstract concepts of a domain where concepts, as

well as the relationships among them, are expressed by modeling infrastruc-

ture [1]. The Eclipse Modeling Framework (EMF)2 provides modelers with95

an infrastructure to design, define and edit models. EMF includes Ecore as a

meta-metamodel for describing metamodels. Figure 2.1 depicts a simplification

of the Ecore metamodel. All the represented meta classes are named elements.

EPackage is composed of subpackages as well as classes, while EClass consists

of EStructuralFeatures, i.e., EAttributes and EReferences. Moreover, EClass100

can inherit structural features from other classes. EAttribute and EReference

inherit the lowerbound and upperbound attributes in order to define the car-

dinalities of structural features. EReference links the container to EClass by

eReferenceType reference. Moreover, containment is a boolean attribute, which

allows one to specify if the linked EClass is contained, e.g., to trigger cascade-105

deletion, or not in the container being modeled. EAttributes are typed as

EDataType instance by eAttributeType reference. The encoding schema that

we are going to present in Sect. 3.2 relies on the Ecore simplification depicted

in Fig. 2.1.110

2https://www.eclipse.org/modeling/emf/
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2.2. Classification as a supervised learning task

Classification belongs to supervised learning where training data is used to

identify recurrent patterns, which in turn are used to classify new instances.

In other words, classification relies on the existence of predefined classes of

objects and aims to assign a new item to a class. In this respect, labeled115

training data is needed to guide the learning process which is conducted to refine

the constituent weights and biases, by introducing all the training instances.

Meanwhile, testing is to predict a label for an input instance by means of the

weights and biases previously obtained from learning. Several machine learning

algorithms can be exploited for classification, e.g., Decision Trees, Random120

Forrest, or Support Vector Machines [21]. Among others, neural networks have

been widely used for classification [22], due to their effectiveness.

Classification offers a wide range of applications, covering different domains.

The most prominent use cases include speech recognition [23], biometric iden-

tification [24], document classification [25], to name but a few. In image pro-125

cessing, the extraction of low-level features from images and videos have been

extensively investigated [26], and recently the focus has been shifted to auto-

matically classify images and videos into semantically meaningful categories.

For instance, HTML documents have been classified into a hierarchy of cate-

gories [27] to support Web documents sharing in a groups of users with common130

interests. Classification is also useful when the intent is to automatically and

efficiently group images as static diagrams, e.g., UML diagrams. The automatic

classification of images has been also successfully and extensively applied on

medical images [28] to automate a process of pattern recognition related to

some diseases. In recent years, the research community has been increasingly135

interested in categorizing large volumes of unstructured text, given the prolif-

eration of social networks [29].

2.3. Classification of metamodels

Open-source software platforms typically provide developers with guidance

to locate software artifacts to be reused through various built-in facilities. Un-140

fortunately, finding relevant information in a repository presents technical dif-
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ficulties as the stored artifacts need to be accurately classified before they can

be detected. Until recently, such classification has been operated manually by

annotating the artifacts with metadata whose granularity is adapted to the

level of accuracy dictated by the problem at hand. Like other hand-operated145

activities, the manual classification of items stored in repositories is tedious,

time-consuming, and prone to error. To this end, clustering has demonstrated

to be a workable solution to the problem [8]. However, clustering techniques

suffer from a low efficiency as well as the difficulty in selecting an appropriate

number of clusters [9].150

AURORA represents the first approach in the domain of automated classifi-

cation of metamodels with machine learning techniques [9]. The system works

on the premise that the prescribed information related to metamodels and their

categories can be used to train a supervised classifier. The approach is based

on a feed-forward neural network, and it learns from a training data consisting155

of labeled metamodels and classifies unknown ones. An empirical evaluation [9]

on a dataset of manually classified metamodels showed that the system obtains

a considerably high prediction performance.

Nevertheless, AURORA has its own drawbacks. Though it performs well

on the given dataset, which consists of a small number of metamodels, i.e.,160

555 (see Sect. 4.2), it is less efficient on larger datasets as it is the case with

feed-forward neural networks [30]. As a consequence, with larger metamodels,

the network performs slowly, and the learning process could take longer to

converge, i.e., the accuracy can only be increased after several epochs. In

this respect, convolutional neural networks (CNN) may be a natural choice165

to obtain a scalable classification procedure. Indeed, such kind of networks

is characterized by a degree of accuracy that improves with larger dataset

populations. In the next subsection, we introduce the technical background of

CNNs as a base for further discussions.
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2.4. Convolutional neural networks170

Ordinary neural networks connect all the neurons of a layer to the next layer.

In this way, the number of weights and biases increases exponentially with the

number of layers. Such a structure is not suitable for working with images since

it adds up to a huge number of parameters. CNNs [20] have been specifically

designed for working on images, and they attempt to capture the spatial and175

temporal structures, which are intrinsic features of an image. Furthermore,

CNNs also minimize the number of parameters by using convolutional filters.

A filter or kernel is a small square matrix used to capture specific features from

an input image, e.g., nodes and edges. In practice, several kernels can be used

to extract various types of features from images. Given a convolutional layer,180

each perceptron gets input from a certain part from the previous layer, which

is called a receptive field. The convolution operation is performed by sliding

the filter along the width and height of a feature map, which is either the input

image, or the result of the convolution operation. An output feature map of one

layer becomes the input feature map of the succeeding layer. A CNN consists185

of three types of layers, i.e., convolutional, pooling, and fully-connected layers,

whose functionalities are explained below:

• Convolution layer: it performs most of the computation within a CNN

to extract important features of an input image;

• Pooling layer: it downsamples a feature map by taking the maximum190

value within a window, preferably a square one, to reduce the number of

parameters [20]. The layer also extracts rotational and positional invari-

ant features from a feature map;

• Fully-connected layer: the layer works as a conventional perceptron, each

of its neurons is fully connected to the previous layer.195

For illustration purpose only, we take an example in Fig. 2 where there

is an excerpt of a CNN. A tensor of size 96 × 96 × 3 represents an input

image, and the number 3 corresponds to the three color channels in images,
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Figure 2: Filtering and pooling.

i.e., Red (R), Green (G), and Blue (B). A 4D filter of size 5 × 5 × 3 × 32 is

convolved with the input feature map to produce an output feature map of size200

96× 96× 1× 32. To elaborate on the computation, we consider only a slice of

the 4D filter, corresponding to a matrix k(u, v). Given an input feature map

fim(u, v), the output feature map fom(u, v) is created by convolving k(u, v)

with fim(u, v):

fom(u, v) = (fim ∗ k)(u, v) =
!

i

!

j

fim(i, j).k(u− i, v − j) (1)

205
Pooling is performed by means of Maxpool 2× 2 to reduce the resulted feature

map’s width and height to a half, yielding a new feature map of size 48× 48×

1× 32.

Furthermore, in a CNN there are the following features:

• Dropout : it is a parameter used to distribute the learned representation210

across all the neurons. It is an effective measure to minimize overfit-

ting [31];

• Softmax : the last fully-connected layer of a CNN normally uses Softmax

as the activation function and it converts a set of real numbers to prob-

abilities which sum to 1.0 [20]. Given C classes, and yk is the output of215

the kth neuron, the final prediction is the class that gets the maximum

probability, i.e., ŷ = argmax pk, k ∈ 1..C, where pk is computed below.

pk =
exp(yk)"C
k=1 exp(yk)

(2)

• Rectified Linear Units (ReLU): convolutional layers use ReLU as the ac-

tivation function, which returns 0 given a negative input, and returns the
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input itself if it is larger than 0, f(x) = max(0, x).220

3. memoCNN: A convolutional neural network to classify metamod-

els

In an attempt to simulate humans’ cognition towards the relationship be-

tween metamodels and their categories, we conceptualized the usage of a well-225

defined deep learning technique, i.e., convolutional neural networks. In this

section, we present memoCNN, an approach to classification of metamodels

exploiting a Convolutional Neural Network. Section 3.1 presents the con-

ceived architecture to realize memoCNN. An explanatory example showing

how metamodels are encoded is presented in Sect. 3.2. Finally, Sect. 3.3 illus-230

trates a concrete configuration of a memoCNN network.

3.1. Architecture

Figure 3.1 shows the main components of the memoCNN architecture sup-

porting two main phases, i.e., training and deployment. Metamodels can be

collected from different sources, and in the scope of this paper we make use235

of GitHub as the main data source, since the platform offers a large number

of metamodels repositories. Afterward, expert modelers are asked to inspect

the metamodels and manually classify them into independent groups based on

their experience. By means of labeled data including metamodels and labels

assigned by humans, the training process is in charge of identifying the right240

weights to configure the CNN classifier component. Finally, the weights

obtained by CNN classifier are then utilized to classify metamodels given

as input to the deployment process.

The Training phase starts with collecting metamodels from public repos-

itories like GitHub by means of the Crawler component 1 . NLP Proces-245

sor 2 applies Natural Language Processing steps (i.e., stop words removal,

stemming, and lemmatization) on all the named elements, which are contained

in the collected metamodels. Data Encoder 3 takes as input the manipu-

lated metamodels and encodes them as matrixes enabling the subsequent phases
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Figure 3: memoCNN’s system architecture.

of the approach. To identify the properties to be included in the encoding, we250

followed a feature engineering process that started with considering only terms

of the metamodels (uni-gram), we subsequently added containment informa-

tion (bi-gram), up to including all the missing metamodel properties, including

relation cardinalities, typing information, etc. (n-gram). In particular, with

the uni-gram encoding scheme, only the terms contained in the metamodels255

being processed are considered. All the aspects related to metamodel struc-

ture are discarded. With the bi-gram scheme, information about containment

relations between named elements is also encoded. The n-gram scheme fully

encodes the input metamodels by enriching the bi-gram scheme by including

all the properties of the represented structural features (e.g., typing informa-260

tion, relations cardinalities, etc.). The whole approach has been evaluated by

considering the different encoding schemes individually.

The proposed architecture allows for both offline and online training 4 .

By the former, one can train the network on a PC or a laptop installed with

TensorFlow and Keras. By the latter, the code is executed directly on Google265

Colaboratory3 connecting to metadata stored into Google Drive.4 The final

outcome of the training process is a set of weights and biases, which then can

be used to deploy the network.

The Deployment phase shown in Fig. 3.1 refers to the adoption of a previ-

ously trained and deployed CNN classifier 7 to automatically classify input270

3https://colab.research.google.com/
4https://drive.google.com/
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Figure 4: The Library metamodel.

metamodels. To this end, as also done in the training phase, the metamodels

of interest have to be manipulated by means of NLP steps 5 and properly

represented by means of one of the encoding scheme previously discussed 6 .

memoCNN has been implemented on top of TensorFlow and Keras,5 two well-

founded Machine Learning frameworks. To facilitate future research, we made275

available online the memoCNN tool and the metadata used in the evaluation.

3.2. Metamodel encoding

We propose a method to transform a metamodel into a picture by making

use of its modeling elements such as metaclasses, packages, and attributes. In

other words, we attempt to picturize a metamodel, exploiting its constituent280

features. Starting from a set of metamodels, we construct a set of terms and

use it to convert all the metamodels into vectors.

To illustrate how the data processing works, we consider the Library meta-

model in Fig. 4. This metamodel can be used for defining models, where a

Library can be composed of a set of Books and Writers. A writer can edit285

books, and then a book can be written by a set of writers. A writer is defined

in terms of its firstname and lastname, whereas a book is characterized by its

title and the number of pages.

5Keras has been integrated into TensorFlow and provides to developers a higher abstract

level, and thus a more user-friendly programming interface. Meanwhile, TensorFlow offers a

greater flexibility in managing a network’s settings. We exploited them both to build mem-

oCNN, thereby earning different degrees of granularity for the experimental configurations.
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The lexical terms in the metamodel are extracted and encoded as prescribed

by the above encoding schemes. Table 1 summarizes the outcome by presenting290

all lexical terms in the metamodel, and the corresponding encodings for both

the raw and normalized feature vectors. For the sake of presentation, each

metamodel element name is given with an identifier and its metamodel type.

For instance, the package name library is (i) individually encoded in uni-grams;

(ii) in bi-grams as part of the terms of the metaclasses #2, #6 and #10 ; and295

(iii) in n-grams as part of the terms of the structural features #3, #4, #5, #7,

#8, #9, #11, #12 and #13. In addition, the encodings related to normalized

feature vectors require the term to be subject to stemming, lemmatization,

and stop words removal. Thus, the term books is translated into book and

comprises both the metaclass Book and the feature books. Moreover, additional300

information about cardinalities, e.g., 0.1 and whether the node is subject to

containment, e.g., TRUE, is appended.

With the aim of giving a flavour of the NLP steps that are applied by NLP

Processor depicted in Fig. 3.1 (see 2 and 5 ), the normalized feature vectors

shown in Table 1 represent the output of stemming, lemmatization, and stop305

words removal tasks applied on the raw feature vectors. For Step 5 , we make

use of the nltk python library6 to perform the required NLP steps. First, a

term is tokenized into subterms by using as delimiters any non-alphabetical

character and blank spaces. After that, the nltk Wordnet Lemmatizer module

is invoked to squeeze the inflected subterms to the root English term. Then, the310

Porter stemmer algorithm [32] reduces the subterms by removing the common

English endings from them. Afterward, English stop words which form the list

of subterms are also removed. Finally, the resulting subterms are concatenated

to create features.

6https://www.nltk.org/
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By analyzing all the input metamodels, the corresponding terms are col-315

lected and used as indexes of vectors each encoding a corresponding metamodel.

To illustrate how the encoding paradigm works, we take an explanatory exam-

ple in Fig. 5(a). For the sake of presentation, we consider a corpus with a total

of 16 terms.7 In the considered example, there are 13 of them related to the

bi-gram encoding of the Library metamodel previously discussed. In Fig. 5(a),320

the blank cells represent no occurrences of the related terms, or in other words

the corresponding value is equal to 0. Nevertheless, we refrain from using the

one-hot vector encoding scheme, since such a representation neglects the impor-

tance of each constituent term. Thus, in our encoding scheme, the cells with a

dot contain real numbers which quantify the occurrences of the corresponding325

terms in the encoded metamodel using the TF-IDF function. In particular, we

normalized such values with respect to the most occurred terms in the dataset

by min-max feature scaling [33]. This allows us to keep a notionally common

scale among the metamodel features representations.

Starting from the vector in Fig. 5(a), we serialize it into a matrix, preferably330

a square one as shown in Fig. 5(b). By traversing a vector from its beginning

to the end, each time we select four consecutive entries to populate a row for

the matrix. In this sense, the size of the vector needs to be a square number.

So if the size is lower than the closest square number, then we pad the missing

elements with zeros to constitute a square matrix. With this representation,335

we attempt to capture features by employing a unified structure across all the

metamodels: each cell in the matrix represents a specific term, and adjacent

cells with a dot form patterns like nodes and edges, as we find in images. In

this respect, we hypothesize that metamodels within a same categories would

share common pictorial patterns.340

In real usage, even when the dataset becomes bigger, we can always apply

the same process to parse and represent the data. A set of training meta-

models is parsed using all the aforementioned steps, resulting in a corpus of

7In practice, the number of terms is much larger.
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(a) Class 0 (b) Class 1 (c) Class 2

(d) Class 3 (e) Class 4 (f) Class 5

(g) Class 6 (h) Class 7 (i) Class 8

Figure 7: Examples of the metamodels after being transformed into images.

the terms that appear in the dataset. Different from the previous work about

AURORA [9], in this work we do not use any cut-off value but make use of345

all the parsed terms. Given a big dataset, each metamodel is then serialized

into a vector, albeit with several entries. The final matrix will be populated

accordingly, which is much bigger compared to the example one in Fig. 5(b).

In this way, we have a matrix of M×M size, where M can be hundreds, or

thousands, like in image classification with high resolution images.350

To demonstrate how the resulting pictures look like in practice, we exploit

a real dataset whose characteristics are described in detail in Sect. 4.2. We
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represent them in the bitmap format following the proposed representation (cf.

Fig. 5(a)) and Fig. 5(b)). We select for each class a metamodel and show the

corresponding images, which are all of size 148×148, in Fig. 7(a)–7(i). From355

the figures, it is evident that each class has a different distribution, and thus

the density of dots across an image. For instance, Class 2 and Class 5 are much

denser compared to Class 6 or Class 7. As a matter of fact, CNNs are highly

suitable for capturing this type of features, e.g., nodes or edges [14], since they

use the convolution operation to filter and retain features from input images. In360

this respect, we suppose that our proposed representation scheme will facilitate

the recognition of metamodels. We are going to validate this hypothesis with

concrete experiments in Sect. 5.

3.3. An example of memoCNN network

Figure 6 illustrates an example of a memoCNN network. The input layer365

corresponds to an input metamodel which is represented as a 2D image of size

96× 96. There are three convolutional layers, i.e., Layer #1, #2, #3 and two

fully connected (FC) layers, i.e., Layer #4 and Layer #5. While the number

of neurons of the 1st FC layer can be experimentally configured, the number

of neurons of the 2nd FC layer is set to the number of categories. For each370

transition from one layer to the next one, a convolution filter is applied on the

input feature map, resulting in an output feature map. For example, by Layer

#3, a filter of size 5× 5× 64× 64 is convolved with the input feature map, and

this yields an output feature map of size 24 × 24 × 1 × 64. Within the layer,

pooling is conducted to reduce the dimension, producing an output feature375

map of size 12×12×1×64. From the left to the right side of Fig. 6, the size of

the feature maps decreases, whilst the number of filters increases. The network

was the result of a series of experiments on the given dataset. We suppose that

such a configuration is subject to change in practice, depending on the input

data. For a larger dataset, we expect a deeper and/or wider network, which is380

generally the case with image datasets [34].
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During the experiments conducted to evaluate memoCNN, we changed the

number of layers as well as the number of filters to create different configura-

tions and they are going to be clarified in the next section.

4. Evaluation385

This section presents the experimental evaluation conducted to analyze the

performance of memoCNN. Section 4.1 introduces the research questions be-

ing addressed in this paper. The dataset and the metrics used to evaluate

the proposed approach are illustrated in Sect. 4.2 and Sect. 4.3, respectively.

Afterward, Sect. 4.4 highlights the experimental configurations.390

4.1. Research questions

By using a series of experiments on a dataset that has been manually clas-

sified, we aim to answer the following research questions:

• RQ1: How effective is memoCNN at classifying the considered cate-

gories? It is of great importance to know if memoCNN can accurately395

classify metamodels into their correct categories.

• RQ2: Which network configuration contributes to a better performance? We

investigate whether the approach yields scalable performance by analyz-

ing how a more complex network helps enhance the prediction accuracy

on the given dataset.400

• RQ3: How does memoCNN compare with AURORA? Finally, using a

common dataset, we evaluate memoCNN against AURORA to ascertain

whether the proposed approach gives a better prediction performance

compared to the baseline.

4.2. Dataset405

In the evaluation, we made use of the same dataset that was exploited to

evaluate AURORA [35]. The dataset consists of metamodels related to domain

specific languages (DSLs) collected from GitHub. All the metamodels were
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inspected and manually classified by an expert modeler based on his experi-

ence [35]. The final dataset consists of 555 metamodels distributed in nine410

independent categories. A summary of the categories and their cardinality is

provided in Fig. 8(a). The most populous category is State machine DSLs

with 159 metamodels, accounting for 29% of the total amount. Meanwhile, the

smallest category is Issue Tracker DSLs with only seven metamodels. Such a

category may render the classification difficult since there is a limited amount of415

data for training. The distribution of metamodels with respect to the number

of metaclasses, attributes, and references is depicted in Fig. 8(b), where most

of the metamodels contain a low number of metaclasses as well as attributes

and references. The metamodels are concentrated on the bottom left corner

of the tensor. Only those of the category Review system DSLs contain a large420

number of metaclasses, and they are scattered across the 3D space. In sum-

mary, the dataset exhibits a variety of categories with different characteristics

and cardinalities. To identify possible cloned metamodels in the dataset, we

exploited the match-based similarity function, which has been devised in one

of our previous work [8]. In particular, the function takes two metamodels as425

input, i.e., mm1 and mm2, and it returns 1 if every element of mm1 exactly

matches with one element of mm2, and vice versa. By computing the similarity

among all metamodels pairs, we detected 60 clones, accounting for 10.8% of

the dataset. In practice, modeling repositories commonly include many model

clones as it has been pointed out in a recent work [36], where the authors con-430

ducted an empirical study on 4.5 millions of GitHub repositories to identify

code file duplicates. The study reveals that more than 40% of the code files

are duplicated. Due to this reason, we believe that maintaining a controlled

number of metamodel clones in the dataset helps resemble a real repository

scenario. As a result, we decided to keep cloned metamodels in the dataset.435

4.3. Metrics

As seen in the dataset (Sect. 4.2), there are nine categories in total, and

in the scope of this work we deal with multi-class (or multinomial) classifica-

tion [37], i.e., each instance of the data needs to be classified into one of the
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(a) The categories and their cardinality

(b) Distribution of metamodels

Figure 8: A summary of the dataset.

nine categories. To thoroughly study the performance of our approach, we440

employed cross-validation [38] for evaluating the classification outcomes. For

each of the categories mentioned in Sect. 4.2, we measured the relevance of

the ground-truth data, i.e., the metamodels and their corresponding labels,

with the classified results obtained by running the systems, i.e., AURORA and

memoCNN. We are interested in understanding how well the produced classes445

match with the ground-truth data, considering the fact that the dataset is im-

balance. Thus, blanced accuracy, precision, recall, F1-score, ROC, and AUC
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are utilized to study the systems’ performance as detailed below. First, given

a category, the following definitions are considered:

• True positive (TP): the metamodels being correctly classified;450

• False positive (FP): the classified metamodels which actually do not

match with the ground-truth data;

• False negative (FN): the metamodels that should have been classified

since they belong to the ground-truth data, but they are not;

• True negative (TN): the metamodels that are not classified and they also455

do not belong to the ground-truth data.

Then, the metrics are defined as follows:

4.3.1. Precision and Recall

Precision and recall are used to quantify the level of relevance of the clas-

sified items to the ground-truth data as given below. Precision measures the460

fraction of correctly classified items to the total number of items, while Recall

(or True positive rate, TPR) is defined as the fraction of actual positive cases

that are correctly classified.

P =
TP

TP + FP
(3) R = TPR =

TP

TP + FN
(4)

4.3.2. F1-score465

It is a harmonic average of precision and recall.

F1 =
2 · P ·R
P +R

(5)

In the context of multi-class classification, macro-averaged F1-score (macro-

F1 for short) is computed as the average of the F1-scores of all categories.

4.3.3. False positive rate (FPR)

It is the ratio of the falsely classified items to the total number of items.470

FPR =
FP

TN + FP
(6)
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4.3.4. Balanced accuracy

As seen in Sect. 4.2, the dataset is imbalanced and thus we use balance

accuracy to measure the performance as defined below:

Accuracy =
TPR+ FPR

2
× 100% (7)

4.3.5. ROC curve and AUC475

A receiver operating characteristic (ROC) curve represents the relationship

between FPR (false positive rate) and TPR (true positive rate, Recall) [39].

Such a curve is sketched in a 2D space where the x-Axis and the y-Axis cor-

respond to FRP and TPR, respectively. In this respect, an ROC curve spans

from (0,0) to (1,1) in the space. Furthermore, the area under the ROC curve480

(AUC) is used as an explicit indication of how good a classifier can be. A

dummy classifier, i.e., the one that randomly assigns a label to metamodels,

would have an AUC value of 0.5. In contrast, a perfect classifier would have

an AUC value of 1.0. In this sense, an ROC curve being closer to the upper

left corner accounts for a better prediction performance, compared to another485

one that is closer to the lower right corner in the 2D space.

Since ROC curves are dedicated for binary classification, in our work, we

transform the multi-class problem into binary classification using the following

method. Given one among the nine considered categories, i.e., Ci, we consider

it as the positive class, while all the remaining eight categories are considered490

as a single class, or negative. That means, if an instance is correctly classified

into its category, we count it as a true positive. In contrast, if it is classified

into any of the negative classes, then it is counted as a false negative. In this

way, we are able to derive an ROC as like for binary classification.
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4.4. Configurations495

In order to thoroughly study the performance of memoCNN, we considered

different experimental settings as given in Table 2. The configurations are built

by customizing various parameters, i.e., encoding schemes, the number of layers

(depth), the number of filters (width), and kernel’s size. Each change in the

parameters aims to investigate possible effects on the final classification. By500

each configuration, the first layer’s input tensor corresponds to the input image,

and its size may vary depending on the encoding scheme. Three configurations

namely C1, C2, C3 are used to address RQ1 and RQ3. Four configurations,

namely C1, C4, C5, and C6, are used to answer RQ2. To study the perfor-

mance of memoCNN in comparison to AURORA, we set up only one layer505

for memoCNN, and this is the reason why there is no information for Layer

#2 and Layer #3 in Table 2, i.e., the corresponding cells are left blank. The

number of nodes for the 2nd fully-connected layer corresponds to the number of

categories, as shown in Fig. 8(a), and this explains why the number is always

9 throughout the table.510

All the configurations have been built using Keras except C6 that has been

made with TensorFlow since the framework allows for more control over the

network. It is worth noting that the Dropout value has been empirically set to

0.5 or 0.6 [31]. By all, except the 2nd fully-connected layer, the activation func-

tion ReLU is used. The Softmax function is selected for the output layer as it515

is suitable for classifying inputs into multiple categories (see Sect. 2.4). More-

over, we used the cross entropy loss function [40] and the Adam optimizer [41]

throughout the experiments as these two functions have been widely exploited

in various classification scenarios. We are going to give more details for each

configuration in Sect. 5.520

5. Experimental Results

Although memoCNN supports both offline and online training (see Fig. 3.1),

in the scope of this paper, we opt for the latter since Google offers a robust

platform that helps accelerate the computation with memoCNN. In particular,
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we uploaded the related metadata to Google Drive to feed the network, which525

is then executed on Google Colab. This section reports and analyzes the results

in detail by answering the research questions in Sect. 4.1.

5.1. RQ1: How effective is memoCNN at classifying the considered categories?

First, we ran experiments following the ten-fold cross-validation technique,

using three configurations C1, C2, C3, and the number of epochs was set to 15530

(cf. Table 2). We computed class-wise average precision, recall, and F1-score

and show them in Table 5.1. The results in Table 5.1 demonstrate that all

the considered encoding schemes help gain a considerably high precision. For

example, the highest precision is 1.000, obtained for Class 1 by both C1 and

C2. The lowest precision is 0.736 by Class 4. Concerning recall, we can see that535

uni-gram brings the best prediction for Class 1 and 2. With respect to macro-

F1 and balanced accuracy, we also see that C1 yields the best performance.

Altogether, it is evident that using uni-gram as the encoding scheme (C1)

helps obtain the best classification performance compared to bi-gram (C2) and

n-gram (C3).540

Class (see Fig. 8 for greater detail)

Metric 0 1 2 3 4 5 6 7 8

C
1

(u
n
i-
gr

am
)

Precision 0.924 1.000 0.950 0.875 0.904 0.968 0.988 0.937 0.868

Recall 1.000 1.000 0.780 0.843 0.990 0.857 0.969 0.969 0.901

F1 0.960 1.000 0.860 0.857 0.945 0.909 0.978 0.952 0.884

macro-F1 0.927

Accuracy 0.897

C
2

(b
i-
gr

am
)

Precision 0.883 1.000 0.923 0.983 0.736 0.936 0.963 0.867 0.885

Recall 0.852 0.682 0.670 0.921 0.913 0.738 0.827 0.899 0.676

F1 0.867 0.810 0.748 0.951 0.815 0.805 0.889 0.882 0.767

macro-F1 0.842

Accuracy 0.782

C
3

(n
-g

ra
m

)

Precision 0.900 0.958 0.885 0.851 0.837 0.936 0.964 0.891 0.852

Recall 0.859 0.817 0.791 0.901 0.892 0.822 0.890 0.722 0.663

F1 0.879 0.882 0.835 0.875 0.836 0.875 0.925 0.797 0.740

macro-F1 0.853

Accuracy 0.821

Table 3: Precision, recall, and F1-score.
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Afterward, we performed additional experiments to study how well memo-

CNN classifies the metamodels into the classes presented in Fig. 8. Further-

more, to better observe the change in performance, the number of epochs was

increased to 30.

For this evaluation, ROC and AUC are employed to measure the out-545

comes as they give a greater insight into each classified category [42]. Fig-

ures 9(a), 9(b), and 9(c) depict the ROC curves together with their corre-

sponding AUC values obtained from the experiments for all the considered

categories. For uni-gram, we see that most of the ROC curves are close to the

upper left corner (0,1), implying that the tool can properly classify the meta-550

models into their original categories. Similarly, it is evident that using bi-gram

and n-gram to encode the metamodels also brings benefits to the classification,

though a bit worse compared to using uni-gram. In particular, memoCNN

gets AUC values ranging from 0.95 to 1.0 for all the categories, indicating a

high match rate.555

Given an ML model, it is essential to understand whether it is either under-

fitting or overfitting, since none of them is useful for the final deployment. A

model is considered to be underfitting if it fails to learn from data. In contrast,

if it learns too well on the training data but performs poorly on the validation

data, then it becomes overfitting. To combat overfitting, the common practice560

is to introduce regularization, for example by adding L1 and L2. However, in

most cases, we realized that these methods did not seem to work as expected,

e.g., we still witnessed overfitting here and there. We anticipate that this hap-

pened due to the small dataset used in our evaluation. It is our assumption

that the countermeasures to mitigate overfitting take effect only when there is565

a larger number of metamodels.

To investigate if memoCNN can be good fit, i.e., it is neither underfitting

nor overfitting, starting from the data divided by the ten-fold cross-validation

technique, we further split each training fold into two parts: 80% for training

and 20% for validation. The accuracy and loss recorded during the experiments570

are shown in Fig. 9(d), 9(e), and 9(f). We see that while the training accuracy
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and validation accuracy are almost concordant with each other, the training

loss and validation loss are not. A common pattern for the validation plots is

that after a dramatic fall, they start to decrease slowly once a certain threshold

has been reached, e.g., after three epochs. Furthermore there is always a gap575

between the plot of validation loss and that of the training loss. In other words,

the model appears to be slightly overfitting by the current configuration. We

assume that this happens, again, due to the limited amount of data used for

training [20]. Thus, to further examine the model, we increased the amount

of data for training by specifying the following ratio: 95% of the data is used580

for training and only 5% is used for validation. The resulted learning curves

for this setting are depicted in Fig. 10(a), 10(b), and 10(c). In these figures, a

clear pattern can be seen: The curves for validation loss and training loss stay

close and they are nearly identical. In this respect, we come to the conclusion

that with more data used for training, the model becomes less overfitting and585

almost good fit.

The dataset used in the present paper is considerably small and imbalanced.

While we see that some types of neural networks perform well on small dataset,

e.g., feed-forward neural networks, we believe that the advantages of a CNN for

the classification of metamodels can be better showcased, only if there is a fairly590

large as well as balanced dataset. In this sense, it is important to experiment

on a dataset with more metamodels for each category, and we consider the

issue as our future work.

Answer to RQ1: memoCNN effectively classifies the testing metamodels

into their original categories. When it comes to a larger dataset for training,

the system turns to be good fit.

595

5.2. RQ2: Which network configuration contributes to a better performance?

A CNN can be characterized with different dimensions, as shown in Fig. 6:

Depth (D) is the number of layers, including the fully connected ones; Width

(W) corresponds to the number of filters (kernels) for each convolutional layer.
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In recent years, several attempts have been made to increase the prediction600

performance of a CNN by extending it in different directions [43].

The research question is particularly relevant for investigating the influence

of the network configurations. In particular, we study whether an increase

in the number of layers, as well as the number of filters, helps improve the

overall accuracy on the given dataset. To this end, four configurations are605

considered, namely C1, C4, C5, and C6, as shown in Table 2. For the sake of

simplicity, in these configurations, we used uni-gram as the encoding scheme,

as it has demonstrated itself, through RQ1, to obtain the best performance

among others. As mentioned before, C1 consists of only one convolutional

layer. By C4, there are two convolutional layers, and the width of the first and610

the second layer is 16 and 32, respectively. Compared to C4, C5 has one more

layer with width 64. Finally, C6 is one layer deeper than C5, and it is also wider

by all the convolutional layers. By the first layer, there are 32 filters, while the

second and the third layer consist of 64 filters. For the 2nd fully-connected

layer, we used twice the number of nodes compared to C5, i.e., 256 instead of615

128 nodes. Furthermore, the size of the filters is also larger than that of the

other configurations: C6 employs filters of size 5 × 5, instead of size 3 × 3 as

by C4 and C5. Altogether, it is evident that the network by C6 is not only

wider and deeper, but also bigger (in filters’ size) in comparison with the other

experimental settings. To further study RQ1, different amounts of data are620

considered. First, we used 80% of the original training data for training and

20% for validation. Second, 100% of each training fold is used for training, no

data is exploited for validation.

The final accuracies we got for the considered configurations are shown in

Fig. 11. Overall, the figure suggests that using a more complex network causes625

a reduction in accuracy. For example, with C4, the accuracy is 90.29%, which

is higher than that of C5 and C6, i.e., 89.20%, and 85.17%, respectively. This is

interesting since we expect that a broader and deeper network would bring in

a performance gain [43]. However, the results in this experiment clearly show
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Figure 11: Accuracy for C1, C4, C5, and C6.

that the converse is true. We are going to give some explanations for such an630

outcome in Sect. 6.1.

The results reported in Fig. 11 further support our findings in RQ1: mem-

oCNN is more effective when it is fed with more training data. In Fig. 11,

given each configuration among C1, C4, C5, and C6, when we compare the first

column with the second one, we see that using more data to feed memoCNN635

induces a higher accuracy. Take as an example, for C5, the accuracy increases

from 83.14% to 89.20% when more metamodels are used to train memoCNN.

Furthermore, we spot a remarkable pattern: complex network structures fa-

vor more data. In particular, when we move from the left to the right side of

Fig. 11, the gap between the performance of the two bars representing different640

levels of input data becomes more significant. For instance, by C1, the accu-

racies are 93.13% and 95.10%, meanwhile by C6, the corresponding scores are

81.15% and 85.17%. This indicates that deeper and broader networks suffer a

setback when they are fed with a small amount of data. Altogether, we con-

clude that complex networks are supposed to achieve a better performance if645

we incorporate more data for the training process.
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Answer to RQ2: An increase either in the network’s width or depth re-

duces memoCNN’s prediction accuracy on the given dataset. Given that a

small amount of data is used to train complex networks, such a reduction

becomes more evident.

5.3. RQ3: How does memoCNN compare with AURORA?

To aim for a reliable comparison with AURORA, we exploited the repli-

cation package which is already available online.8 Furthermore, we ran the650

experiments with AURORA using the settings presented in the original pa-

per [9] that yield the best performance. For memoCNN, three configurations

have been employed, i.e., C1, C2, and C3 as specified in Table 2. Moreover,

the ten-fold cross-validation technique is applied on both systems: the dataset

is divided into ten equal parts, and the validation is done ten times: each time655

one fold is used for testing, while the other nine folds are used for training.

The accuracy as well as the precision, recall, and macro-F1 scores obtained

by both systems for different encoding schemes, i.e., uni-gram, bi-gram, and n-

gram are shown in Table 4. The table demonstrates that the baseline achieves

a good performance as it has been previously claimed [9]. In particular, AU-660

RORA has an accuracy being larger than 82% for all encoding schemes. Fur-

thermore, our experiments also confirm that using uni-gram to feed AURORA

yields the best accuracy, compared to using bi-gram and n-gram. In compari-

son with the baseline, memoCNN achieves a better accuracy with respect to

all three encoding schemes. When encoding with uni-gram, our proposed ap-665

proach gets an accuracy of 93.72% while the corresponding score of AURORA

is 92.25%. Similarly, for other encodings, memoCNN outperforms AURORA

in terms of accuracy.

We consider the precision, recall, macro-F1 scores by both AURORA and

memoCNN as shown in Table 4. With C1, memoCNN can provide better670

precision and recall, for example memoCNN gets a recall of 0.95 compared to

8https://github.com/MDEGroup/AURORA
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0.89 by AURORA. This also applies to the outcomes obtained by using bi-

gram to provide input. As a consequence, our proposed approach gets a better

sensitivity than AURORA does. The final macro-F1 scores demonstrate that

memoCNN achieves superior performance than that of the baseline. By C3,675

memoCNN outperforms AURORA by all metrics. For example, memoCNN

gets 0.87, 0.84, and 0.86 as precision, recall, and macro-F1, respectively; while

the corresponding scores by AURORA are 0.75, 0.62, and 0.69, respectively.

The results obtained by our approach appear to be encouraging at first

sight. However, by carefully examining the outcomes presented in Table 4, we680

noticed that the difference in performance between the two approaches is not

significantly big. For instance, with accuracy, in comparison with AURORA,

memoCNN gets more than 1% and less than 2% performance gain typically,

e.g., 82.23% compared to 81.20% (with n-gram), or 85.11% compared to 83.12%

(with bi-gram). The same trend can also be witnessed with other quality in-685

dexes, i.e., precision, recall, and macro-F1. It is necessary to ascertain the

cause of this outcome, and thus we came across the following question: “Is

memoCNN only capable of narrowly surpassing AURORA, or is it because

of the dataset?” If the former were the case, then the novelty of memoCNN

would become questionable, as no-one is willing to sacrifice the simplicity and690

compactness of AURORA, as shown in Sect. 2.3, to get a moderate gain in

performance. However, our intuition is that the outcome happens due to the

Configuration

System C1 C2 C3

Precision
AURORA 0.92 0.84 0.75

memoCNN 0.95 0.88 0.87

Recall
AURORA 0.89 0.75 0.62

memoCNN 0.95 0.85 0.84

macro-F1

AURORA 0.92 0.81 0.69

memoCNN 0.95 0.86 0.86

Accuracy (%)
AURORA 92.25 83.12 81.20

memoCNN 93.72 85.11 82.23

Table 4: Precision, recall, F1-score, and accuracy.
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considerably small dataset, and thus there is limited data available for training.

In fact, a CNN generally consumes a large amount of data to tune its inter-

nal parameters [30, 44]. Furthermore, as we have shown in RQ1 and RQ2,695

memoCNN favors a bigger dataset for obtaining a better performance.

Testing-Training

System 50%-50% 40%-60% 30%-70% 20%-80% 10%-90%

AURORA 85.20 84.23 89.25 89.14 92.52

memoCNN 89.32 91.38 92.15 94.50 96.10

Table 5: Accuracy for various hold-out settings (%).

Thus, to validate our hypothesis, we conducted additional experiments by

specifying different ratios of testing to training data through hold-out valida-

tion [45]. Moreover, to simplify the comparison, we exploited only uni-gram

to provide input for both systems since the encoding facilitates the best per-700

formance among the other encoding schemes as we already showed by means

of RQ1 and RQ2. In particular, we increased by 10% for training data per

each experiment, resulting in five different settings, as given in Table 5 which

reports the results we got for different hold-out settings. While in general,

AURORA gains an increase in performance, albeit small, when we change the705

amount of training data, it is clear that memoCNN outperforms AURORA by

all the considered configurations. The most significant difference in accuracy

is seen when we set 40% of the dataset as testing and the remaining 60% as

training, i.e., AURORA gets 84.23%, and memoCNN gets 91.38% correctly

classified metamodels. Furthermore, memoCNN obtains better accuracy if710

there is more data available for training. Starting from 89.22%, the accuracy

gradually grows up to 96.10% when 10% of the data is used for testing, and

90% is used for training.

By measuring the execution time for both systems, we realized that mem-

oCNN is more efficient in timing compared AURORA, i.e., 82 seconds to 90715

seconds for the same unit of input data. However, this is only a marginal differ-

ence, and this happens due to the fact that we have a limited amount of data.
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Generally, feed-forward neural networks will be more time consuming if we run

them on a larger dataset, i.e., containing more metamodels. This is the reason

why no subtle difference between the timing performance of AURORA and720

memoCNN is seen. Meanwhile, CNNs can maintain a linear increase in tim-

ing for a denser dataset, thanks to its convolution operations, which attempt

to reduce the number of pairwise multiplications. Thus, we suppose that the

difference in timing will be more evident given a dataset with a large number

of metamodels.725

Answer to RQ3: memoCNN outperforms AURORA with respect to ac-

curacy, precision, recall, macro F1, and timing. Furthermore, memoCNN

improves its prediction performance when being trained with more data.

6. Discussions

The lessons learned from the experiments are discussed together with future

developments in Sect. 6.1. The next section discusses the threats to validity.

6.1. Lessons learned and provisions730

The experience of preparing the experimental evaluation and the corre-

sponding results provided us with invaluable insights. The most remarkable

lessons include:

⊲ Data is the cure. By considering RQ1 and RQ2 together, we realized that

data augmentation helps tackle two different issues: low accuracy and overfit-735

ting. memoCNN is less overfitting and more accurate if being fed with more

training data. Our work also confirms that adding data is an effective measure

to combat overfitting [44].

⊲ Deeper and wider networks can be useful down the road. The results in RQ2

show that on the considered dataset (see Sect. 4.2), memoCNN configurations740

related to complex networks do not bring any improvements in performance.

This lack of progress is understandable at the light of the following arguments.

Deepening allows a network to approximate the target function with increased

nonlinearity, thereby getting better feature representations. Nevertheless, it

35



also adds up to the complexity of the network, which makes the network more745

difficult to optimize and susceptible to overfitting. For example, given a train-

ing metamodel, the model memorizes well the target class, and thus it fails to

generalize from data. So a question arises at the moment: “Are deeper and

wider networks not useful at all?” The experimental results in Fig. 11 give

evidence that complex networks suffer a setback given a small amount of data750

used for training. Moreover, as it has been found out by related studies [30, 44],

CNNs favor more data due to the massive number of parameters. This capa-

bility essentially means that deeper/wider network structures can be beneficial

under certain circumstances. In summary, the answer to the above question

is: “Yes, deeper and wider networks are useful to a big dataset for enhancing755

prediction accuracy.”

⊲ Combination of AURORA and memoCNN. To the best of our knowledge,

the proposed approach is the first attempt that represents metamodels using

matrices and exploits a convolutional neural network to classify them. Though

memoCNN obtains a better performance compared to AURORA, we do not760

undermine the elegance of the baseline. The tool is suitable for working with

a small dataset, and it obtains an excellent performance. In this respect, we

suppose that a combination of both AURORA and memoCNN would be a

complementary system.

Apart from the lessons, based on the current results, we envisage that there765

are the following future developments.

⊲ Application to classify documents. The approach proposed by Kim [46] works

on sentences; however it may not apply to long documents since the represen-

tation matrix becomes enormous, which in turn places a burden on the compu-

tational performance. The fact that memoCNN performs well on metamodels770

implies that we can use it to classify documents. First, uni-gram, bi-gram, and

n-gram are used to parse documents, as it is done with metamodels, then mem-

oCNN can be used to classify the metadata. In a broader sense, our proposed

approach can also be applied to group Stack Overflow posts into categories.
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⊲ Incorporating more input dimensions. During the evaluation, we made use775

of one-channel input tensors. However, we could think of extending it to more

channels by incorporating various features. Referring to the Computer Vision

domain, images are typically represented using three color channels, namely R,

G, B (see Fig. 2). We anticipate the usage of a 3D input tensor by making use

of the three encoding schemes together, i.e., uni-gram, bi-gram, and n-gram.780

The final aim is to better capture the features of a metamodel by taking into

consideration different representation schemes.

⊲ Transfer learning. For CNNs, it is crucial to collect enough data for training.

However, labeled data can only be obtained through a manual process, which is

both time-consuming and prone to error. To this end, transfer learning has been785

devised as a practical solution to export the knowledge extracted from a mature

source domain to a novice target domain [47]. Transfer learning facilitates the

re-use of convolution weights from a model trained on large datasets for training

new models with a limited amount of labeled items. Compared to using only

random weights (as done with memoCNN in this paper), transfer learning is790

still useful even when the target domain is quite different from the original

one where the weights are obtained [48]. We suppose that the application of

transfer learning to memoCNN is beneficial to the final classification since

our representation scheme allows for the transformation of a metamodel into

a picture-like format. This hypothesis needs to be properly validated, and795

we consider it as future work. Furthermore, once we have a larger dataset,

we would be interested in embedding an auto-encoder, as this would possibly

enhance the classification performance.

6.2. Threats to validity

In this section a discussion of validity threats, which might harm the ex-800

perimental evaluation is given.

Internal validity. Such threats are the internal factors that may affect the

outcomes. A probable threat that could be seen through the results obtained

for the categories with a considerably low number of items for training and

testing. While the threat is partly mitigated by some of the categories in the805
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given dataset as they contain a significant number of metamodels, we believe

that the threat can be completely eliminated only if there is a fairly large as

well as balanced dataset. In this sense, it is necessary to consider a bigger

dataset with more metamodels for each category, and we consider the issue as

our future work. Another threat is related to the coverage of metamodel con-810

straints. The definition of a metamodel is often endowed with constraints that

impose additional properties to the conforming models. In order to consider

constraints in the proposed classification technique, the metamodel encoding

should encompass constraints as well. However, while it should not pose too

many difficulties, it must be investigated whether (i) it is possible to distin-815

guish, for instance, two versions of the same metamodel, each associated with

a different constraint, and (ii) it makes sense at all because a constraint might

not have enough informative content to the end of the classification.

External validity. The main threat to external validity pertains to the gen-

eralizability of our findings, i.e., if they are still valid outside the scope of this820

study. We confronted the issue by evaluating AURORA and memoCNN using

different validation scenarios, aiming to simulate an actual usage of the sys-

tems. Moreover, we also performed different trials of the same experiments to

examine if there is any subtle difference among the outcomes obtained by each

trial. Overall, we have seen that the obtained results are consistent with those825

presented in this paper.

Construct validity. The threats are related to the simulated setting used to

evaluate the tools. The evaluation has been conducted on a training set and

a test set, modeling a real application scenario. Depending on the purpose,

we used two different settings, namely hold-out validation and ten-fold cross-830

validation. Furthermore, to aim for a reliable comparison of memoCNN with

AURORA, we made use of the original implementation of AURORA without

touching its internal design.

Conclusion validity. Validity threats may be related to whether the ex-

periment methodology is related to the outcome, or there may also be other835

38



parameters that may have influenced it. The evaluation metrics, i.e., accuracy,

precision, recall, F1-score, ROC, and AUC might pose a threat to conclusion

validity. The same metrics were employed to evaluate both systems as a miti-

gation measure.

7. Related Work840

The primary technical advantages claimed by the approach presented in this

paper are related to the adoption of ML techniques in MDE. Thus, we review

some of the most notable related work on the adoption of such cognitive ap-

proaches in the context of MDE, and the categorization of models. Afterward,

we discuss some prominent applications of CNNs, as well as the attempts made845

to improve CNNs’ prediction performance by dimension extension and transfer

learning.

7.1. Machine Learning in MDE

The MDE community has made considerable progress in recent years as

regards adopting various ML algorithms to solve different issues [49, 50]. Kus-850

menko et al. [51] implement MontiAnna, a holistic deep learning modeling

framework where deep neural networks can be designed, trained, and integrated

into Component & Connector systems. Afterward, MontiAnna has been ex-

tended using Reinforcement Learning (RL) [52]. By exploiting RL algorithms,

two systems [53, 54] can repair errors in a set of broken models, which have855

been introduced by conflicting changes. Various studies [55, 56] use ML tech-

niques to automatically infer model transformation rules from sets of source

and target models. Meta-learning is a technique that aims at using ML it-

self to automatically learn the most appropriate algorithms and parameters for

an ML problem. Hartmann et al. [57] demonstrate the parallelism between860

metamodeling and meta-learning, and they envision a notation for describing

meta-learning processes.

Learning algorithms have been successfully applied to solve different prob-

lems in the MDE scenario. Nevertheless, the adoption of cognitive techniques
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in this domain does not seem to have received attention being commensurate865

with its potential. In this respect, memoCNN proved to advance the existing

approaches in the classification of metamodels.

7.2. Categorization of metamodels

Classification and clustering techniques have been employed to categorize

metamodels for a diversity of purposes, not excluded reuse [8, 58, 59]. In partic-870

ular, an agglomerative hierarchical clustering technique has been employed to

organize metamodels in repositories [8] automatically. Hierarchical clustering

techniques are the main engine to perform metamodel comparison, analysis,

and visualization [58, 59]. In these approaches, metamodel named elements

are converted into lexical terms and represented as a vector space model. This875

encoding enables the usage of hierarchical clustering algorithms to group simi-

lar objects and represent it as a dendrogram. The approaches mentioned above

[58, 59] share the same intent of this paper even though they are based on unsu-

pervised learning techniques, whereas our work follows the supervised learning

strategy. Lopez et al. [60] present a domain-oriented approach for software re-880

quirements reuse. First, requirements captured from semiformal diagrams are

injected into models, which are then analyzed to check for any probable quality

issues. Finally, a mechanism to cluster the requirements is applied to allow the

domain requirements patterns to be identified and reused. Reuser [61] is a tool

used to automatically retrieve related UML artifacts and propose them to the885

modeler. A search algorithm is applied to find similar artifacts by classifying

them into a concept lattice. Then it compares the input artifact query against

the concept lattice, to retrieve the closest set of matching artifacts.

Jiang et al. [62] discuss different characteristics of UML metamodel exten-

sion mechanisms according to a four-level classification. Each level of meta-890

model extension has different features in (contrasting) aspects such as read-

ability, expression capability, use scope, and tool support. The paper aims at

providing modelers with a reliable theoretical base for selecting the right level

to extend the metamodel to find the right trade-off of the above aspects. A
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classification model for UML stereotypes has been developed [63], where the895

artifacts are analyzed according to their potential to alter the syntax and se-

mantics of the base language to be able to control their application practice.

Feature-based criteria for classifying approaches according to the type of spatial

relation involved have been widely discussed [64].

UML class diagrams are commonly used to specify the designs of systems,900

which then can be used to guide the construction of software [65]. There

are two main types of UML diagrams: (i) FwCD diagrams are hand-made

as part of the forward-looking development process; (ii) RECD diagrams are

reverse engineered from the source code. Osman et al. [65] propose a supervised

machine learning algorithm to build an automated classifier for classifying UML905

digrams. The approach can be used to classify a diagram into either an FwCD

or an RECD, and it has been evaluated using a test set of 999 class diagrams

obtained from open source projects. By running experiments with different

machine learning algorithms, the authors concluded that Random Forest is the

most suitable algorithm for their classification tasks.910

To our knowledge, AURORA [9] is the first effort to classify metamodels

using a feed-forward neural network. Despite its simplicity, the tool is efficient,

and on a considerably small dataset, it classifies the metamodels, obtaining

high accuracy. In this work, we improved AURORA by employing a CNN,

which is supposed to learn better on a large dataset.915

7.3. Application and extension of CNNs

CNNs were originally designed to work with images, and thus they have

been widely used to solve various recognition tasks. To name but a few, CNNs

have been applied to detect fruits [34, 66], to classify images [14, 20], allowing

for the transfer of well pre-trained hyper-parameters to a new application. The920

success of CNNs in Computer Vision is a source of inspiration for applications

in other domains. For instance, CNNs have been exploited to classify DNA

sequences [67], sentences [46], or to process natural language [18]. To the best

of our knowledge memoCNN is the first attempt to bring CNNs into a new
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domain, i.e., MDE [1]. By developing memoCNN on top of a convolutional925

neural network, we inherit a well-founded background of knowledge to solve

the problem of metamodel classification. This also paves the way for deploying

transfer learning, which allows for increasing both efficiency and effectiveness.

As seen in Fig. 6, a CNN can be characterized with width, depth, resolu-

tion, and filter size. So far, various approaches have been proposed to boost930

up the performance of a CNN by extending it in these dimensions. Two of the

most recent studies of this type are EfficientNet and MixNet. The EfficientNet

family [43] improves performance by extending the original network in depth,

width, and resolution. It decreases the learning rate of the network, given that

the number of layers reaches a high value. By relying on width scaling, it is935

possible to capture features more definitely, easing the training process. How-

ever, the scalability of the approach is questionable because of reduced precision

over high-level features. The memory cost represents the main hindrance as

the network achieves a higher accuracy with a high-quality resolution. Like

this, the compound scaling method does not expose the limitations of tradi-940

tional techniques that tend to act on a single dimension at once. MixNet [68]

is a family of neural networks that combines multiple kernel sizes in a single

convolution, thus allowing for recognizing various types of patterns from input

images. MixNet has demonstrated itself to outperform some state-of-the-art

CNNs significantly. As we already pointed out in RQ3, and Sect. 6.1, the ex-945

pansion of memoCNN in different dimensions may bring benefits. However,

the performance depends much on the input data: given a small amount of

training data, enlarging the network turns out to be counterproductive.

7.4. Transfer learning

The technique has been widely used by imaging applications to improve950

the learning performance of CNNs [47, 48]. Several studies adopt weights pre-

trained using the ImageNet dataset, which consists of a huge number of images

covering various categories [69]. Some notable studies that make use of Ima-

geNet are: the work by Razavian et al. to classify images [70], or the one by
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Karpathy et al. [71] to generate natural language descriptions for images. The955

accuracy obtained by employing ImageNet is better than that by using random

learning. We assume that transfer learning would be beneficial to the training

of memoCNN. Compared to using only random weights, as we have done with

memoCNN in this paper, transfer learning is still helpful, also when the target

domain is quite different from the original one where the weights have been960

obtained [48].

8. Conclusions and future work

memoCNN has been proposed as a novel approach to the classification of

metamodels by adapting a deep learning technique that has gained considerable

traction in other domains. The comparison with AURORA, a state-of-the-art965

baseline, on a manually classified dataset demonstrates that memoCNN ob-

tains a better performance with respect to different quality metrics. Our future

plan is to investigate whether transfer learning is beneficial to memoCNN by

adopting pre-trained weights using the ImageNet dataset. Moreover, we believe

that the performance of memoCNN can be better judged when there is more970

data for training. Thus, we will invest time and efforts to populate a larger

dataset, aiming to empower the classification capability. We plan to collect

metamodels from GitHub using the dedicated API, and then manually classify

them by involving expert modelers to build a training set. Last but not least,

we are going to deploy the framework to other domains, such as the classifica-975

tion of documents and Stack Overflow posts to support software development

activities.
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