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Chapter 1

Introduction

Metzler matrices are an important tool for applied mathematics. They
play a crucial role in the modelling of the continuous positive linear systems,
linear switching and dynamical systems [3, 4, 5|. Their array of applications
spans across wide variety of fields: biology, medicine, electrodynamics, eco-
nomics, social studies and many more [8, 9, 10]. Non-negative matrices rep-
resent the most well-known and well-studied subset of Metzler matrices [1].
Their spectrum of applications is even greater. The most famous examples
include applications to the linear difference equations, Markov chains, discrete
dynamical systems and graph theory [12, 13, 14, 15, 16, 17].

Non-negative and, more general, Metzler matrices are in the focus of the
presented work. To put it less vaguely, we are concerned with optimizing
their leading eigenvalues, their stability, and finding their closest (un)stable
counterparts. Before starting out a formal exposition, we give a brief thesis
overview. Along with this, we present the problems and the related work which
are the foundation of the thesis.



1.1 Thesis overview

Regarding the non-negative matrices and their application, a consider-
able body of research is devoted to the following two problems:

N1: Optimizing the spectral radius on a given family of non-negative matrices;
N2: Finding the closest Schur weakly (un)stable non-negative matrix in a given
norm (Schur (de)stabilization).

In general, both problems are notoriously hard. Spectral radius is neither
convex nor concave function, nor is Lipschitz. Because of this, many points
of local extrema might occur when searching for the closest (un)stable matrix.
To make things worse, they can be quite difficult to identify [18]. However, for
matrix families with special structure, i.e. product (or uncertainty) structure,
it is possible to find an efficient algorithm for optimizing the spectral radius
[20, 21]. These families have an application in varous fields such as graph the-
ory, asynchronous systems, biology, economy, etc [15, 22, 23, 24]. In [25] and
[27] two algorithms were introduced for optimizing the spectral radius on non-
negative product families: spectral simplex method and spectral greedy method.
Independently, a policy iteration algorithm was devised in [28], which works
in the same fashion as the greedy method. The aforementioned algorithms
work faultlessly on positive product families. In Chapter 2 we implement and
compare simplex and greedy method by conducting numerical experiments,
demonstrating that greedy method is strikingly more efficient.

Extending to the non-negative product families, both greedy and simplex
methods may fail due to cycling, or may give a wrong answer. This is especially
apparent when dealing with very sparse matrices. Both methods can be mod-
ified to accommodate for the (sparse) non-negative families, as it was done
in [25, 27]. Unfortunately, these modifications come with several setbacks.
Primarily, they considerably complicate fairly straightforward procedures. In
addition, the modified greedy method can only be used for minimization of
the spectral radius. To overcome this, we introduce selective greedy method
in Chapter 3, which is one of the thesis central parts. This novel method is
as efficient as the spectral greedy method for positive product families. We
theoretically confirm its efficiency by proving its local quadratic convergence.



As already mentioned, the problem of Schur (de)stabilization is, in gen-
eral, hard [18, 19]. However, in L., L; and max- norms either an explicit
solutions or an efficient algorithms can be provided, as shown in [27]. There,
an algorithm based on the spectral greedy method was constructed to solve
the Schur stabilization problem. In Chapter 4 we present a modification of this
algorithm which, combined with the selective greedy method, significantly im-
proves the computational time.

Further in Chapter 4 we demonstrate an application of Schur stabiliza-
tion to graph theory. We present an algorithm for finding the closest acyclic
directed subgraph. We take things a bit further and use this algorithm to
tackle the problem of finding a mazimum acyclic subgraph (MAS). This is a
famous NP-hard problem that has inspired a large body of literature [29, 30].
Equivalent to this problem is the minimum feedback arc set problem, which
has found its way in numerous applications [32, 33]. Our approach to approx-
imating MAS is time efficient, and we believe it is as competitive as the latest
algorithms when it comes to edge-preserving of the starting graph.

Moving on from non-negative matrices, we can set the analogues to the
N1 and N2 problems for Metzler matrices. They are formulated as:

M1: Optimizing the spectral abscissa on a given family of Metzler matrices;
M2: Finding the closest Hurwitz weakly (un)stable Metzler matrix in a given
norm (Hurwitz (de)stabilization).

The story is the same as with the non-negative case: both of these prob-
lems are hard in general [34]. However, when working with Metzler product
families (M1) and L., L; and max- norms (M2), they can be effectively solved.
This is another central part of the thesis, and it is discussed throughout Chap-
ters 5 and 6. In Chapter 5 we modify the selective greedy method to handle
the optimization of spectral abscissa on Metzler families, while in Chapter 6
we deal with the Hurwitz (de)stabilization.

Some applications of the Hurwitz (de)stabilization are discussed in Chap-
ter 7. We use Hurwitz stabilization to look for the closest stable Metzler
sign-matriz. Metzler sign-matrices and sign-stability are interesting concepts
with many applications [35, 38, 40]. We then demonstrate the application of
sign-stabilization for stabilization of the linear switching systems.



All the algorithms presented in the thesis are supplemented with the cor-
responding numerical experiments. The experiments are performed on a stan-
dard laptop and coded in Python using NumPy and ScyPy packages. The
codes can be found and downloaded on:
https://github.com /ringechpil /thesis_codes.

We should remark the change of the objective function in the optimiza-
tion problems N1 and M1. This change is due to the Perron-Frobenius theory.
For non-negative matrices spectral radius and spectral abscissa coincide, and
spectral radius acts as a Perron (leading) eigenvalue. For Metzler matrices
with negative entries this is not true. In this case the spectral abscissa takes
over the role of the Perron eigenvalue. Since the presented procedures actu-
ally optimize the leading eigenvalue and just exploit the fact that the spectral
radius (abscissa) coincide with it, we make the aforementioned change.

Most of the thesis results were first presented in [41] and [42]. The main
topic of [41] is introducing the selective greedy method for non-negative sparse
families. [42] is primarily concerned with extending the applicability of the
selective greedy method to Metzler families, and its use on dynamical system.

Throughout the thesis we will assume, unless stated otherwise, that all our
matrices are d x d square, and all the vectors are from R%. If A is some matrix,
a; will denote its row, and a;; its entry; if v is some vector, v; denotes its entry.

Now we define some concepts fundamental to the thesis development.

Definition 1.1 A matriz is said to be Metzler if all its off-diagonal elements
are non-negative. We denote the set of all Metzler matrices by M.

Definition 1.2 A Metzler matriz is non-negative if all of its elements are
non-negative. A non-negative matriz is strictly positive if it contains no zero
entry. If A is a non-negative matriz we write A > 0, and if A is strictly
positive we write A > 0.

For two matrices A and B we write A > Bif A— B > 0, and A < B if
B — A > 0. Analogously, we define strict relations A > B and A < B. We
define those relations for the vectors in the same manner.



Definition 1.3 Spectral radius of a matriz A, denoted by p(A), is the largest
modulus of its eigenvalues, that is:

p(A) = max{ |A| | A is an eigenvalue of A}.

Definition 1.4 Spectral abscissa of a matriz A, denoted by n(A), is the largest
real part of its eigenvalues, that is:

n(A) = max{ Re(A) | A is an eigenvalue of A}.

Definition 1.5 A family A of matrices is called a product family® if there
exist compact sets F; C R, i =1,...,d, such that A consists of all possible
matrices with i-th row from F;, for all i = 1,...,d. The sets F; are called
uncertainty sets.

The matrices belonging to the product families are constructed by in-
dependently taking ¢th row from the uncertainty set J;. Moreover, product
families can be topologically seen as product sets of their uncertainty sets:
F = F; x -+ x Fyq. For the rest of the text we will always assume that our
uncertainty sets are either finite or have a polyhedral structure, meaning that
they can be represented as a convex combinations of their vertices.

Example 1.6 Family of directed graphs where each vertex has prescribed
number of edges can be viewed as a product family. To each vertex ¢ having
r; edges we can associate an uncertainty set JF;, containing all possible config-
urations of r; outgoing edges from the vertex i.

If we observe the graph’s adjacency matrix, then its rows represent the
vertices, and corresponding uncertainty sets JF; sets of all (0,1)-vectors with
ones in r; places. Optimizing the spectral radius on such product families of
(0,1)-matrices F = F; x --- X Fy is a problem found in literature [22, 45],
which we will address later. o

!Since in this work we primarily deal with product families, we will usually refer to
product families (of matrices) simply as families (of matrices), meaning the same.



Example 1.7 Let A be some non-negative matrix. An L. ball of non-
negative matrices of radius 7 around A

Bi(4) = {X>0|1X - Az 7}

is a product family with the polyhedral uncertainty sets

d
B .(A) = {a: eR% ’ Z\:Uj — a;;|< T}.
j=1

Similarly, an L., ball of Metzler matrices B,(A) around a Metzler matrix
A is also a product family. Minimizing the spectral radius (abscissa) on the B
(i.e. B;) will be a crucial point for finding the closest non-negative (Metzler)
matrix, which we will see later on. o
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Chapter 2

Positive product families

In this chapter we deal with the optimization of spectral radius on positive
product families. We present two algorithms spectral simplex method and
spectral greedy method. In essence, these methods are iterative procedures
which bring the spectral radius closer to the optimal value with each iteration.

Definition 2.1 A product familiy is positive product family if it contains only
strictly positive matrices

The presented methods rely heavily on the spectral properties of positive ma-
trices, which are characterised by the following theorems:

Theorem 2.2 ([14]) Let A be a positive matriz. Then, there exist an eigen-
value r such that:

1° r>0;

2° r > |\, for every eigenvalue \ # r;

3° 1 is a simple eigenvalue;

4° r can be associated with a strictly positive (right) eigenvector v;

5° v 15 a simple eigenvector, i.e. it 1s unique up to a multiplicative constant.
O

Definition 2.3 Let A be a positive matriz. An eigenvalue r characterized by
Theorem 2.2 is called Perron (leading) eigenvalue. Its corresponding eigenvec-
tor v is called Perron (leading) eigenvector.

Looking at Definition 1.3 for spectral radius, we easily conclude:

Proposition 2.4 For a positive matrix, its spectral radius is its Perron eigen-
value. O

11



The next definition introduces a concept essential for determining if a
given matrix is optimal.

Definition 2.5 Let F be a positive product family. A matriz A € F is said
to be maximal in each row with the respect to its leading eigenvector v if
(a;,v) = maxp,cr (b;,v), i = 1,...,d. It is minimal in each row w.t.r. to its
leading eigenvector v if (a;,v) = ming,cz, (b;,v) for alli=1,...,d.

Proposition 2.6 [25] Let F be a positive product family. If a matriz A € F
is mazimal (minimal) in each row w.t.r. to its leading eigenvector, then it has
the mazximal (minimal) spectral radius among all matrices from F. O

2.1 Simplex and greedy method: an overview

Spectral simplex method originated in [21]. An algorithm for its imple-
mentation on positive and non-negative product families was constructed in
[25]. We describe its version for positive families below:

Alg. SP: Spectral simplex method for maximizing spectral radius
over positive product families

Initialization. Let F = F; X --- X Fy; be a positive product family. Tak-
ing arbitrary a; € F;, ¢ = 1,...,d, form the matrix A; € F with rows

agl), e ,a((il). Take its leading eigenvector v;.

Main loop; the kth iteration. We have a matrix Ay € F composed of
rows al(k) e Fi,i = 1,...,d. Compute its leading eigenvector v;. Starting

from 7 = 1 do:

Find a solution a; € F; to the problem

(a;,v) — max
a; © -Fz

If (af,vi) = (aﬁk),vk), set aEkH) = al(k). Then, if i < d, set ¢ = i + 1.
Else, if ¢ = d, stop the algorithm; the matrix A, is maximal in each row, and

therefore the optimal solution with p(Ax) = pmax-

12



If (af,vy) > (agk),'vk), set aEkH) = a; and a§k+1) = ag-k) for j =

i+1,...,d. Then move onto the (k+ 1)st iteration. o

The simplex method makes row-by-row checks to determine whether the
current matrix is the optimal one. If the check fails in some row, the algorithm
goes back to the row one. The greedy method, on the other hand, checks all
the rows at once, and then changes the non-optimal ones. It was first intro-
duced in [27], and we formally present it below:

Alg. GP: Spectral greedy method for maximizing spectral radius
over positive product families

Initialization. Let F = F; X --- X Fy be a positive product family. Taking
arbitrary a; € F;, i = 1,...,d, form a matrix A; € F with rows agl), e ,aﬁll).

Take its leading eigenvector v;.

Main loop; the kth iteration. We have a matrix Ay € F composed of
rows agk) e Fi,i = 1,...,d. Compute its leading eigenvector v, and for

t=1,...d, find a solution a; € F; of the problem

(a;,vx) — max
a; € .E

For each i =1,....d, do:

(k1) _ (k)
Otherwise, if (a},vy) > (a(k) (k+1) _ g*

7 7 7"

If (af,vg) = (az(»k),vk), set a

, V), set a

Form the corresponding matrix Aj,;. If the first case took place for all

1=1,...,d, ie. if Ap.1 = Ag, finish the procedure; the matrix Ay is maximal
in each row, and therefore the optimal solution with p(Ay) = pmax. Otherwise,
go to (k+1)st iteration. o

Remark. Both simplex and greedy method for minimizing the spectral radius

are exactly the same as above, except that we change the row if (a},vy) <

(a’z(k)a ’U].;;).

13



Let pr = p(Ax), where Aj is the matrix obtained in the kth iteration of
Algorithm SP (GP). The described algorithms are strict relaxation schemes,
in other words:

Proposition 2.7 [25] For both the simplex and greedy method algorithms we
have pri1 > pr for every k. Analogously, for the minimization we have pyyq <
pr for every k. O

The maximal scalar product (a;,vy) over all @ € F; is found by solving
the corresponding convex problem over co(F;). If the uncertainty set F; is
finite, this is done merely by exhaustion of all the elements of F;. If F; is
a polyhedron, then we find aEkH) among its vertices solving an LP problem
by the (usual) simplex method. Each matrix Ay is therefore a vertex of the
product set F. From the fact that we have finite number of vertices, and that
the spectral radius strictly increases with each iteration, we have

Theorem 2.8 [25, 27] Algorithms SP and GP find an optimal solution in the
finite number of iterations. The same is true for the minimization. O

2.2 Simplex vs. greedy method: a comparison

In this section we compare how simplex and greedy methods perform on
positive product families, as the dimension d and cardinality of uncertainty
sets N are varied. All the product sets are randomly generated. The results
are presented in the tables below.

Simplex method Greedy method
N\d| 25 100 250 N\d|[25 100 250
50 |[43.5 1858 463 50 [3 3 3
100 | 45.3 195.6 502 100 | 3 32 3

Table 2.1.1: Simplex vs. Greedy, maximization, avg. number of iterations

14



Simplex method Greedy method

N\d| 25 100 250 N\d| 25 100 250
50 |0.15s 3.61s 35.1s 50 [0.02s 0.11s 0.36s
100 | 0.27s 6.06s 52.11s 100 | 0.04s 0.21s 0.58s

Table 2.1.2: Simplex vs. Greedy, maximization, avg. running time

Simplex method Greedy method
N\d| 25 100 250 N\d |25 100 250
50 | 50 190 24333 50 [32 31 32
100 | 57.7 2222 5183 100 |34 32 31

Table 2.2.1: Simplex vs. Greedy, minimization, avg. number of iterations

Simplex method Greedy method
N\d| 25 100 250 N\d| 25 100 250
50 [0.16s 4.17s 18.42s 50 [0.02s 0.13s 0.55s
100 | 0.34s 6.97s 56.18s 100 | 0.05s 0.21s 0.61s

Table 2.2.2: Simplex vs. Greedy, minimization, avg. running time

It is not hard to see that the greedy method considerably outperforms
the simplex method. For d = 250 and N = 10 the simplex method takes

just a less than a minute to finish, while greedy method does it in less than a

second. Nevertheless, a credit must be given to the spectral simplex method
for being the original optimization method of this kind, and from which the

greedy method was derived. Moreover, we will later make a comeback to the

simplex method to prove its global linear convergence.

To further emphasize the efficiency of the greedy method, we performed
additional experiments for the dimension of up to 2000, and for bigger uncer-

tainty sets.
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avg. number of iterations avg. running time

N\ d | 500 1000 2000 N\d| 500 1000 2000
50 [ 31 3 3.1 50 | 1.07s 4.63s 20.69s
100 | 3.2 3.1 3 100 | 1.55s 6.36s 25.44s
250 | 31 32 3.1 250 | 2.8s 8.64s 390.27s

Table 2.3: Greedy method, maximization

avg. number of iterations avg. running time
N\d | 500 1000 2000 N\d| 500 1000 2000
50 | 3.2 3.1 3 50 | 1.06s 4.57s 19.39s
100 | 3.1 3 3 100 | 1.64s 4.89s  24.6s
250 3 31 31 250 | 2.52s 7.29s 447.09s

Table 2.4: Greedy method, minimization

In all the cases, except for the last one, we have an amazing performance
time: less then a half of a minute. As for the big blow-up in the d = 2000
and N = 250 case, we believe it is due to the combinatorics of the problem,
since we have significantly more vectors to check for maximality (minimality)
compared to the N = 100 size sets. Aside from this 'very big case’, the most
computationally demanding task is computing the leading eigenvector v;. The
running times are therefore in big part determined by the numerical procedure
for obtaining v,. We used the built-in method of the NumPy Python pack-
age. Using a more efficient method may further improve the running times.
The choice of the method for computing the leading eigenvector plays even a
greater role. As we will see in the following chapter, this choice can even affect
the convergence of the greedy procedure and broaden its scope of application.
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Chapter 3

Non-negative product families

Impressive performance of the greedy method on positive families gets
overshadowed by the fact that strictly positive matrices occur seldom in ap-
plications. In real applications one needs to deal with sparse non-negative
matrices. Unfortunately, the greedy method may fail in this case.

Definition 3.1 A product family is non-negative product family if it contains
only non-negative matrices.

We introduce the concept of irreducibility, which will occasionally show up in
the further text.

Definition 3.2 A non-negative matriz is irreducible if it does not have a non-
trivial invariant coordinate subspace, i.e. a subspase spanned by some elements
e; of the canonical basis.

Definition 3.3 A matriz family A is irreducible if its matrices do not share
a common invariant subspace.

From Definition 3.2, we see that having at least one irreducible matrix
A € A implies that the whole family A is irreducible. Positive families are the
special case of irreducible non-negative families.

3.1 Greedy method for non-negative families

The Perron eigenvalue of a non-negative matrix loses some properties it
has for the positive matrices. This is why the greedy method may fail when
operating on non-negative product families.

17



Theorem 3.4 ([14]) Let A be a non-negative matriz. Then, there exist an
eigenvalue r such that:

1° r>=0;

2° r = |\|, for every eigenvalue \;

3° r can be associated with a non-negative (right) eigenvector v. O

Definition 3.5 Let A be a non-negative matriz. An eigenvalue r character-
ized by Theorem 3.4 is called Perron (leading) eigenvalue. Its corresponding
eigenvector v is called Perron (leading) eigenvector.

Proposition 3.6 For a non-negative matriz, its spectral radius is its Perron
eigenvalue. O

Comparing Theorems 2.2 and 3.4 we see that the Perron eigenvalue of a
non-negative matrix is neither simple nor unique, and may contain zero entries.
Moreover, there might exist several leading eigenvectors. All this can cause
trouble when implementing the greedy method on non-negative families. In
this case we may have cycling, or get the wrong answer.

Definition 3.7 A subspace spanned by all the leading eigenvectors of a non-
negative matriz 1s called Perron subspace.

With a slight (but essential) modification, we extend the notions of maximal-
ity /minimality in each row, given in Definition 2.5.

Definition 3.8 Let F be a non-negative product family. A matrizc A € F is
said to be maximal in each row w.t.r. to its leading eigenvector v if v > 0 and
(a;,v) = maxp,cr (b;,v), i = 1,...,d. It is minimal in each row w.t.r. to its
leading eigenvector v if (a;,v) = ming,cz (b;,v) for alli=1,...,d.

Note that, in the non-negative case, these notions are not completely anal-
ogous: the minimality in each row is defined with the respect to an arbitrary
leading eigenvector v > 0, while the maximality needs a strictly positive v.
Having this in mind, Proposition 2.6 can be extended to non-negative families
[25].

We now present the modified version of Algorithm GP for use on non-
negative product families, and discuss under which conditions it is safe to use
it.

18



Alg. GNN: Spectral greedy method for maximizing spectral radius
over non-negative families

Initialization. Let F = F; X --- X F4 be a non-negative product family.
Taking arbitrary a; € F;, ¢ = 1,...,d, form a matrix A; € F with rows
agl), e ,a((jl). Take its leading eigenvector vy (or take any of them, if it is not
unique).

Main loop; the kth iteration. We have a matrix Ay € F composed of

rOwWS agk) € F;,i=1,...,d. Compute and choose one of its leading eigenvec-

tors vy, and for ¢ = 1,...d, find a solution a;} € F; of the problem

(a;,v) — max
a; € E

For each i =1,...,d, do:

(h+1) _ (k)
Otherwise, if (af, vy) > (a(-k) Ekﬂ) =a;.

(2

If (a},vg) = (agk),'vk), set a

, V), set a

Form the corresponding matrix Ajy;. If the first case took place for all
i=1,...,d,ie. if Ay 1 = Ay, go to Termination. Otherwise, go to (k+ 1)st
iteration.

Termination. If vy > 0, finish the procedure; the matrix A; is maximal in
each row, and therefore the optimal solution with p(Ax) = pmax- If vi has
some zero components, then the family F is reducible, and we need to exit the
algorithm and factorize F (see Section 3.6 below). Otherwise, we can get the
estimate for p.., from Proposition 3.9 given bellow. o

Remark. The procedure for minimizing the spectral radius is exactly the
same, except that we change the row if (a},vy) < (az(-k), vy), and we omit the
requirement that v, > 0.

Greedy method for non-negative families is also a relaxation scheme but,
unlike for the positive families, we do not have a strict increase in spectral
radius with every iteration. Because of this the algorithm may get stuck,
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making the optimal value unreachable. If this happens the algorithm can be
interrupted at an arbitrary step, after which we apply the a posteriori esti-
mates for ppn. defined below.

Denote vy, = (Ug1,...,Vka), SO (az(»k),'uk) = prUg;. Then for for an
arbitrary matrix A and its leading eigenvector vy, we define the following
values.

s(A) = 4 BEE w7 T ) = max si(4) (3.1)
+00 D Vg = O, i=1,...,d

Thus, s;(A) is the maximal ratio between the value (a,vy) over all @ € F; and
the ith component of vy. Similarly, for the minimum:

t(A) = {mm S0 min a(4) (3.2)

i=1,...,d

beF; Yk,
+0o0 ;o Ukg = 05

Then the following obvious estimates for ppa.x (and ppnin) are true:

Proposition 3.9 [25] For the greedy method implemented on non-negative
product families (for maximization and for minimization respectively), we have
in kth iteration:

Pk < Pmax < S(AR) ; t(Ar) < pmin < Pk (3.3)

O
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3.2 The (in)applicability of the greedy method

As stated, the greedy method may cycle for general non-negative product
families. We illustrate that by the following

Example 3.10 Consider the product family F of 3 x 3 matrices defined by
the three uncertainty sets:

Taking the first row from each set we compose the first matrix A; (which is
positive, hence the family is irreducible) and the algorithm runs as follows:
Al — A2 = Ag, where

’U2:(29271)T

1 11 0 5 10 STy 0 10 5
v1=(1,1,2)T

1 11 — 0 10 O 0 10 O

1 1 3 0 0 10 V3=(2,1,2)7 0 0 10

The matrix A; has a unique eigenvector v; = (1,1,2)7. Taking the maximal
row in each set JF; with the respect to this eigenvector, we compose the next
matrix As. It has a multiple leading eigenvalue A = 10. Choosing one of its
leading eigenvectors vy = (2,2,1)7, we make the next iteration and obtain the
matrix Ag. It also has a multiple leading eigenvalue A = 10. Choosing one of
its leading eigenvectors vy = (2,1,2)7, we make the next iteration and come
back to the matrix As. The algorithm cycles.

We see that the greedy method is stuck on the cycle Ay & A3 and on the

value of the spectral radius p = 10. However, the maximal spectral radius ppax
for this family is not 10, but 12. The value ppax is realized for the matrix
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—_
N}

Ay =

[ —
—_—_ o
w = O

which is missed by the algorithm.

The algorithm never terminates and, when stopped, gives a wrong solu-
tion: p(A2) = p(As) = 10 instead of pyax = 12. The a posteriori estimate (3.3)
gives 10 < pmax < 12.5. The error is 25 %, and this is the best the greedy
method can do for this family. o

The presented example rises a natural question: is the idea of the greedy
algorithm in the end applicable for strictly positive matrices only? Can it
be modified to work with sparse matrices? In [27] one such modification was
given, but not without drawbacks. This modification somewhat complicates
the greedy procedure and it can be used for the minimization only. To find
another approach, we first need to reveal the difficulties caused by sparsity,
and then to see how to treat them.

We saw that if some vectors from the uncertainty sets have zero compo-
nents, then the greedy method may cycle and, which is still worse, may miss
the optimal matrix and give a quite rough final estimate of the optimal value.
Indeed, numerical experiments show that cycling often occurs for sparse ma-
trices, especially for the minimization problem (for maximizing it is rare but
also possible). Moreover, the sparser the matrix, the more often the cycling
occurs.

The reason of cycling is hidden in multiple leading eigenvectors. If at some
iteration we get a matrix A, with a multiple leading eigenvector, then we have
an uncertainty with choosing v, from the Perron subspace. A ’'bad choice’
may cause cycling. In Example 3.10 both matrices A, and As have Perron
subspaces of dimension 2, and this is the reason of the trouble. Moreover, in
practice, not only multiple but ’almost multiple’ leading eigenvectors (when
the second largest eigenvalue is very close to the first one) may occur because of
the rounding errors and cause cycling, or at least significant slow-down of the
algorithm. On the other hand, if in all iterations the leading eigenvectors vy
are simple, then cycling never occurs as the following proposition guarantees.
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Proposition 3.11 If in all iterations of the greedy method the leading eigen-
vectors vy, are simple, then the method does not cycle and (in case of finite or
polyhedral sets F;) terminates within finite time. O

By a well-known result of the Perron-Frobenius theory, irreducible matri-
ces have strictly positive leading eigenvalue and a simple leading eigenvector
[1]. Therefore, if we manage to obtain an irreducible matrix in each iteration
of the greedy method, we will eventually finish with the right answer. This is
exactly the case with the positive matrices, since they are irreducible. Unfor-
tunately, for sparse matrices obtaining an irreducible one at every step is quite
restrictive, and hardly eve r achievable in applications.

A naive idea to avoid cycling would be to slightly change all the uncer-
tainty sets J; making them strictly positive. For example, replacing them by
the perturbed sets F;. = F; + ce, where e = (1,...,1) € R? and € > 0 is
a small constant. This means adding a positive number € to each entry of
the vectors from the uncertainty sets. All matrices A € F become strictly
positive: A — A, = A+ eE, where E = ee’ is the matrix of ones. By
Proposition 3.11, the greedy method for the perturbed family F. does not
cycle. However, this perturbation can significantly change the answer to the
problem. For example, if a matrix A has d — 1 ones over the main diagonal
and all other elements are zeros (a;; = 1 if i — j = 1 and a;; = 0 otherwise),
then p(A) = 0, while p(A.) > /9. Even if € is very small, say, 1072°, then for
d = 50 we have p(A.) > 0.4, while p(A) = 0. Hence, we cannot merely replace
the family F by JF. without risking a big error.

Nevertheless, for the greedy method, a way to avoid cycling does exist
even for sparse matrices. Further in the text we will present a strategy show-
ing its efficiency both theoretically and numerically. Even for the very sparse
matrices, it can work as fast as for the positive ones. Before introducing this
strategy we will make a short overview about implementation of the simplex
method on the non-negative families.

Remark. The authors of [28] came to the problem of spectral radius optimiza-
tion by studying entropy games with fixed number of states. Independently of
[27] they derived policy iteration algorithm which works the same way as the
spectral greedy method. However, no advances on how to practically handle
sparse matrices were made there.
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Simplex method for non-negative families

Analogously to Algorithms GP and GNN, Algorithm SP can be modified
to accommodate for the non-negative matrices. Unfortunately, all the troubles
that follow the greedy method occur also for the simplex procedure. Overcom-
ing those issues is the main topic of [25]. One strategy is to simply stop the
procedure after some number of iteration and use the estimates from Propo-
sition 3.9, since they also hold for the simplex method. However, as with the
greedy case, we may end up getting quite rough estimates.

Proposition 3.11 is also true for the simplex method. Therefore, we can
safely execute the simplex procedure on a non-negative family if we can provide
an irreducible matrix at every step. As we already mentioned, this might be
too much to ask for. Luckily, for maximization we are in much better situation:
we just need to provide the irreducible matrix in the first step.

Theorem 3.12 [25] Let F be a non-negative product family. Consider the
spectral simplex method in the mazimization problem. If the initial matriz A, €
F has a simple leading eigenvector, then so do all successive matrices As, As, . ..
and the method does not cycle. O

Theorem 3.12 does not apply for the greedy method. Example 3.10 clearly
illustrates this: we start with a strictly positive matrix A;, but we end up with
the cycling. Theorem 3.12 is also inapplicable to the simplex method for min-
imization, but [25] also provides a modification of the simplex method for
handling the sparse matrices when minimising the spectral radius.

With everything said, we can still use the simplex method on sparse ma-
trices when working with small dimensions and small uncertainty sets. For
bigger problems computations become too much time demanding. When min-
imizing spectral radius on a very sparse non-negative families for d = 500 and
N =5, the number of average iterations amounts to around 750 [25]. In order
to efficiently optimize spectral radius on big and sparse families we need to
find a way to 'save’ the greedy method and make it perform at least to some
degree as good as in the positive case.

24



3.3 Selective greedy method

Let F be a product family of sparse non-negative matrices, and F. the
corresponding perturbed family. The crucial idea behind the new strategy is
to optimise the spectral radius on the original family F by using the leading
eigenvectors from the perturbed family F..

Definition 3.13 The selected leading eigenvector of a non-negative matric

A is the limit lin% v., where v. is the normalized leading eigenvector of the
E—

perturbed matriz A, = A + ¢F.

The next result gives a way for finding the selected eigenvector explicitly. Be-
fore formulating it, we make some observations.

If an eigenvector v is simple, then it coincides with the selected eigenvec-
tor. If v is multiple, then the selected eigenvector is a vector from the Perron
subspace. Thus, Definition 3.13 provides a way to select one vector from the
Perron subspace of every non-negative matrix. We are going to see that this
selection is successful for the greedy method.

Consider the power method for computing the leading eigenvectors: x;. 1 =
Az, k> 0. In most of practical cases it converges to a leading eigenvector v
linearly with the rate O(]i—ﬂk), where A1, A2 are the first and the second largest
by modulus eigenvalues of A, or O(3), if the leading eigenvalue has non-trivial
(i.e., of size bigger than one) Jordan blocks. Rarely, if there are several largest
by modulus eigenvalues, then the “averaged” sequence % Z;;é Tj4j CONVETges
to v, where r is the imprimitivity indez [1]. In all cases we will say that the
power method converges and, for the sake of simplicity, assume that there is
only one largest by modulus eigenvalue, maybe multiple, i.e., that r = 1.

Theorem 3.14 The selected leading eigenvector of a non-negative matriz A
is proportional to the limit of the power method applied to the matriz A with
the initial vector xy = e.

The spectral radius of the matrix A,

Proof. We may assume that p(A4) = 1.
1+ 9, for some 6 > 0. We have

strictly increases in €, so p(A:) =
(A+ceev., = (14 ..
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Denoting by S: = (e, v.) the sum of entries of the vector v., we obtain

Av. + eS.e = (1+9)v.,

and hence ) 5
€
I — Alv. = “e.
( (1+90) ) v 1+4°
Since p(A) = 1, we have p(ﬁ A) = 15 < 1. Therefore, we can apply the
power series expansion:
1 -1
I — A =1+ (14+6)"A+ (14+0)724% + ...
(1 i54) (14074 + (149)
and obtain
146
e 1+0) " A"e.
v -5 g (149) e

Assume now that the power method for the matrix A and for xy = e con-
verges to some vector ©. In case r = 1 (r is the imprimitivity index), this means
that A*e — © as k — oo. Then, direction of the vector Y ;- (1 + 6)~*Are
converges as 0 — 0 to the direction of the vector v. Since § — 0 as ¢ — 0,
the theorem follows. If 7 > 1, then % Z;;é Aktie — 9. Arguing as above, we
conclude again that the direction of the vector > p (1 + 6) % AFe converges
to the direction of the vector v as § — 0. This completes the proof. O

Definition 3.15 The greedy method with the selected leading eigenvectors vy,
in all iterations is called selective greedy method.

Now we arrive at the main result of this section. We show that using selected
eigenvectors vy avoids cycling.

Theorem 3.16 The selective greedy method does not cycle.

Proof. Consider the case of finding maximum. The case of minimum is proved
in the same way. By the kth iteration of the algorithm we have a matrix A; and
its selected leading eigenvector vy. Assume the algorithm cycles: A; = A, 11,
and let n > 2 be the minimal length of the cycle (for n = 1, the equality
Ay = Ay means that A; is the optimal matrix, so this is not cycling). Consider
the chain of perturbed matrices Ay, — -+ = A, 41, where Ay, = Ay + e L
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(%)

and ¢ > 0 is a small number. For the matrix A, in each row a; ', we have

one of two cases:

1) if (a,gk), vg) = ma}((ai, vy ), then this row is not changed in this itera-
i€

(,k+1) = a,(

2) if (agk),vk) < ma}((ai,vk), then the row a
a;cf;

7

tion: a " In this case al(k“) + ce = agk) + ce.
(k)

is not optimal, and

(a,gk), vg) < (aEkH), vy). Hence the same inequality is true for the perturbed
matrices Ay ., Ag11,. and for the eigenvector vy . of Ay ., whenever ¢ is small

enough.

Thus, in both cases, each row of A;i ;. makes a bigger or equal scalar
product with v, than the corresponding row of Ay .. Moreover, at least in
one row this scalar product is strictly bigger, otherwise Ay, = Ag.1, which
contradicts the minimality of the cycle. This, in view of strict positivity of
Ay, implies that pgi1. > pr.. We see that in the chain A;, — -+ = A, .
the spectral radius strictly increases. Therefore A;. # A, 1., and hence
A1 # A,.1. The contradiction competes the proof. O

Exampe 3.10 [continued] We apply the selective greedy method to the
family from Section 3.2, on which the (usual) greedy method cycles and arrives
to a wrong solution. Now we have:

Vem(322)7 12 0 0
A — Ay =07 A3=1 0 10 0
0 0 10
V3=(1,0,0)T 1200 V4=(49,5,6)T
A3 i A4 = 1 11 ;) A4
1 1 3

Thus, the selective greedy method arrives at the optimal matrix A4 at the
third iteration. This matrix is maximal in each row with respect to its leading
eigenvector vy, as the last iteration demonstrates.

The selective greedy method repeats the first iteration of the (usual)
greedy method, but in the second and in the third iteration it chooses different
leading eigenvectors ( “selected eigenvectors”) by which it does not cycle, going
directly to the optimal solution. o
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The greedy method does not cycle, provided it uses selected leading eigen-
vectors vy, in all iterations. If the leading eigenvector is unique, then it coincides
with the selected leading eigenvector, and there is no problem. The difficulty
occurs if the leading eigenvector is not simple. The following crucial fact is a
straightforward consequence of Theorem 3.16.

Corollary 3.17 The power method x) 1 = Axy, k > 0, applied to the initial
vector @y = e converges to the selected leading eigenvector.

To realize the selective greedy method we compute all the leading eigen-
vectors vy by the power method starting always with the same vector xy = e
(the vector of ones). After a sufficient number of iterations we come close
to the limit, which is by Corollary 3.17 the selected eigenvector (up to nor-
malization). So, we actually perform the greedy method with approximations
for the selected eigenvectors, which are, in view of Theorem 3.16, the leading
eigenvectors of perturbed matrices A, for some small ¢.

Therefore, to avoid cycling we can compute all eigenvectors vy by the
power method starting with the same initial vector &y = e. Because of com-
puter approximations, we actually deal with totally positive matrices of the
family F. for some small ¢.

We chose the precision parameter € in advance and keep it the same in
all iterations of the greedy algorithm. By Theorem 3.16, if ¢ > 0 is small
enough, then the greedy method does not cycle and finds the solution within
finite time. In practice, if the algorithm cycles for a given ¢, then we reduce it
taking, say, €/10 and restart the algorithm.

Remark. To avoid any trouble with the power method for sparse matrices,
we can use the following well-known fact: if A > 0 is a matrix, then the
matrix A + [ has a unique (maybe multiple) eigenvalue equal by modulus to
p(A) 4+ 1. This implies that the power method applied for the matrix A + I
always converges to its leading eigenvector, i.e., (A+I)fe — v as k — oo. Of
course, A + I has the same leading eigenvector as A. Hence, we can replace
each uncertainty set F; by the set e; + F;, where e; is the ith canonical basis
vector. After this each matrix Ay is replaced by Ay + I, and we will not have
trouble with the convergence of the power method.
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3.4 The convergence rate of the greedy method

In this section we address two issues: revealing the secret of the extremely
fast convergence of the greedy method and getting an explanation why does
the spectral simplex method converges slower (although very fast as well). We
restrict ourselves to the maximization problems For minimization problems,
the results and the proofs are the same. The results of this section apply to the
original greedy procedure, as presented in Section 3.1, which is not necessarily
equipped with selective power method.

First of all, let us remark that due to possible cycling, no efficient esti-
mates for the rate of convergence exist. Indeed as we saw in Example 3.10
the greedy method may not converge to the solution at all. That is why we
estimate the rate of convergence only under some favorable assumptions (pos-
itivity of the limit matrix, positivity of its leading eigenvector, etc.) These
assumptions are not very restrictive since the selective greedy method has the
same convergence rate as the greedy method for a strictly positive family F..

We are going to show that under those assumptions, both methods have
global linear convergence, but the greedy method, has even a local quadratic
convergence. In both cases we estimate the parameters of linear and quadratic
convergence.

Global linear convergence

The following result is formulated for both the greedy and the spectral
simplex method. We denote by Aj the matrix obtained by the kth iteration,
by ps its spectral radius and by uy, vy its left and right leading eigenvectors
(if there are multiple ones, we take any of them). We also denote pp.x =
maxer p(A). As usual, {e;}9_, is the canonical basis in R? and e is the
vector of ones.

Theorem 3.18 In both the greedy method and the spectral simplex method, in
each iteration we have

Uk+1,5 Vk,j
} + max ~ max o3 34
Pre1 Z P+ (p Pr) 5=1d (Wpg1, V) o4

provided vy > 0.
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Proof. Consider the value s = s(A) defined in (3.1). Let the maximum in
formula (3.1) be attained in the mth row. Then for every matrix A € F, we
have Avy < swyg, and therefore p(A) < s. Thus, pmax < . On the other hand,
in both greedy and simplex methods, the mth component of the vector Ay, vy
is equal to the mth component of the vector swy. In all other components,
we have Ay vy > Apvy, = prp vix. Therefore,

A1 = prvr + (5 — pr)ugse; .
Multiplying this inequality by the vector wy,q from the left, we obtain
Ui Apve = pr(Wiegn, ve) + (5 — pr) Uiy (Uryr, €5) -
Since uj 4 Apt1 = pratfy; and (Ugy1, €5) = Uty j, we have

Pr1(Weg1, V%) = pr(Ups1, V%) + (5 — Pr)VkjUks1,j -

Dividing by (ur+1,vx) and taking into account that s > puax, we arrive
at (3.4). O

Rewriting (3.4) in the form

Uk+1,5 Vk,j )
)

max < max 1 -
p Pr+1 (p Pr) ( (wrer v1)

we see that the kth iteration reduces the distance to the maximal spectral

radius in at least (1 — m—i%%) times. Thus, we have established

Corollary 3.19 Fach iteration of the greedy method and of the spectral sim-
plex method reduces the distance to the optimal spectral radius in at least

1 — k41 Vky ; _
< s O times

If Ay > 0, then the contraction coefficient from Corollary 3.19 can be
roughly estimated from above. Let m and M be the smallest and the biggest
entries, respectively, of all vectors from the uncertainty sets. For each A € F,
we denote by v its leading eigenvector and by p its spectral radius. Let also
S be the sum of entries of v. Then for each i, we have v; = p~'(Av,e;) <
p MS. Similarly, v; > p~'mS. Hence, for every matrix from F, the ratio

30



between the smallest and of the biggest entries of its leading eigenvector is at
least m /M. The same is true for the left eigenvector. Therefore,

2
Uke+1,5Vk,j m

(wpy1,vr) ~ m24(d—1)M?

We have arrived at the following theorem on the global linear convergence

Theorem 3.20 If all uncertainty sets are strictly positive, then the rate of
convergence of both the greedy method and of the spectral simplex method is at
least linear with the factor

mZ

om2 4 (d—1)M?2’

qg < (3.5)
where m and M are the smallest and the biggest entries respectively of vectors
from the uncertainty sets.

Thus, in each iteration of the greedy method and of the spectral simplex
method, we have

Pmax — Pk+1 < qk (pmax - p0>7 (36)

Local quadratic convergence

Now we are going to see that the greedy method has actually a quadratic
rate of convergence in a small neighbourhood of the optimal matrix. This
explains its fast convergence. We establish this result under the following two
assumptions: 1) the optimal matrix A, for which p(A.) = pmax, 1S strictly
positive; 2) in a neighbourhood of A, the uncertainty sets JF; are bounded
by C? smooth strictly convex surfaces. The latter is, of course, not satisfied
for polyhedral sets. Nevertheless, the quadratic convergence for sets with a
smooth boundary explains the fast convergence for finite or for polyhedral sets
as well.

The local quadratic convergence means that there are constants B > 0 and
e € (0, ) for which the following holds: if ||Ay — A,||< &, then || A1 — AL || <
B ||Ax — AL]]?. In this case, the algorithm converges whenever ||A; — A, || < ¢,
in which case for every iteration k, we have

1 ,
e = Adl < 5 (BlJA - AT
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(see, for instance, [43]).

Here we use Euclidean norm ||x||= +/(x, ). We also need the L.,-norm
|z|| o= max;—1 _a4|lzi|. A= B means that the matrix B— A is positive semidef-
inite.

Theorem 3.21 Suppose the optimal matrix A, is strictly positive and all un-

certainty sets F; are strongly convex and C? smooth in a neighbourhood of A,;
then the greedy algorithm has a local quadratic convergence to A,.

In the proof we use the following auxiliary fact

Lemma 3.22 If A is a strictly positive matriz with p(A) = 1 and with the
leading eigenvector v, then for every e > 0 and for every vector v' > 0, ||[v'||=
1, such that | Av'—v'|| < &, we have |[v—v'|| < C(A)e, where C(A) = L (1+

(d— 1)%—22)1/2, m and M are minimal and mazimal entry of A respectively.

Proof. Let v = (v1,...,04). Denote v’ = (v181,...,0484), where s; are some
non-negative numbers. Choose one for which the value |s; — 1| is maximal. Let
it be s; and let s; — 1 > 0 (the opposite case is considered in the same way).
Since ||v'[|= ||v]| and s; > 1, it follows that there exists ¢ for which s, < 1.

. d
Since Av = v, we have } %, a1;0; = vi. Therefore,

d
(v = AV') = s — Zaljvjsj =
= (3.7)
D avisi = Y ayvis; = ayvi(si — s5).
j=1 j=1 J=1

The last sum is bigger than or equal to one term a1,v,(51 — Sq) = a140,(51 —
1) = m(v} — vy). Note that for all other i, we have |s; — 1|< |s; — 1], hence
Vi =i < v =< M1vi—vy|. Therefore, [|[v'—v|| < (1+(d—1)%—22)1/2|v£—01\.
Substituting to (3.7), we get

o\ —1/2
(v — Av'); = mlv] — | > m<1+(d—1)ﬁ) |v" — v

Hence, ||Av — V|| ﬁ”v’ — v||, which completes the proof. O
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Proof of Theorem 3.21. Without loss of generality it can be assumed
that p(A,) = 1. It is known that any strongly convex smooth surface I" can
be defined by a smooth convex function f so that x € I' < f(x) = 0 and
I f'(x)]|=1 for all & € T'. For example, one can set f(x) equal to the distance
from @ to I' for & outside I' or in some neighbourhood inside it. For each
1 =1,...,d, we set I'; = 0F; and denote by f; such a function that defines

the surface I';. Fix an index i = 1,...,d and denote by a®, a**+D  and
a* the ith rows of the matrices Ay, Axi1, and A, respectively (so, we omit
the subscript ¢ to simplify the notation). Since a* = argmax,.r, (a,v*), it

follows that f/(a*) = v*. Denote by L and ¢ the lower and upper bounds of
the quadratic form f”(a) in some neighbourhood of a*, i.e., (I <X f"(a) X L1
at all points a such that ||a — a*||< . Writing the Tailor expansion of the
function f; at the point a*, we have for small h € R%:

fila* +h) = fi(a*) + (f{(a*),h) + r(h)||h|?

where the remainder r(h) < L. Substituting h = a*) — a* and taking into
account that f;(a®) = fi(a*) = 0, because both a® and a* belong to T', we
obtain (f!(a*),h) + r(h)||k|>= 0. Hence |(v*,h)|< L|h|*. Thus,

(v*,a) — (v*,a")| < L|h|?.

This holds for each row of Ay, therefore ||(Ax — I)v*||o < L||R||*, and hence
|lvr — v*|| < C(Ag) L||h||?, where the value C(Ay) is defined in Lemma 3.22.

Further, a**!) = argmax,r (a,vy), hence f/(a**V) = wv;. Conse-
quently,
los, — v = [f{(@®) = fi(@")] = (]la™" —a"].

(2

Therefore, ||a®*V) —a*| < %Hh”2 = WHGJ(’““) —a*||*. This holds for

each row of the matrices, hence the theorem follows. O

In the proof of Theorem 3.21 we estimated the parameter B of the quadratic
convergence in terms of the parameters ¢ and L of the functions f/. This es-
timate, however, is difficult to evaluate, because the functions f; are a priori
unknown. To estimate B effectively, we need another idea based on geometri-
cal properties of the uncertainty sets F;. Below we obtain such an estimate in
terms of radii of curvature of the boundary of F;.
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Assume that at each point of intersection of the surface I'; = 0F; and
of the corresponding e-neighbourhood of the point a}, the maximal radius of
curvature does not exceed R and the minimal radius of curvature is at least
r > 0. Denote also by C' the maximal value of C'(A) over the corresponding
neighbourhood of the matrix A*, where C'(A) is defined in Lemma 3.22.
Theorem 3.23 For the greedy method, we have B < %.

Proof. As in the proof of Theorem 3.21, we assume that p(A,) = 1 and
denote by a®,a**Y an a* the ith rows of the matrices Ay, Ay,1, and A,
respectively. Since a* = argmax,.r. (a,v*), it follows that v* is the outer
unit normal vector to I'; at the point a*. Denote h = a*) — a*. Draw a
Euclidean sphere S; of radius r tangent to I'; from inside at the point a*. Take
a point b¥) on &; such that ||[b*® — a*||= ||h|. Since the maximal radius of
curvature of I'; is at least R, this part of the sphere is inside F;, hence the
vector a®) — a* forms a smaller angle with the normal vector v* than the
vector b®) — a*. The vectors a® — a* and b*) — a* are of the same length,
therefore ,

(a® —a* v) > B —a* v = —@

On the other hand, (a®) — a*, v*) < 0. Therefore,

h|?
@9, v) — (@) | < 1

This inequality holds for all rows of the matrix Ay, therefore

_ h||?
(A~ Dl = (A~ Al < 1T
.
and hence, by Lemma 3.22,
loe—o' < S nj?. (3.8)
2r

Further, a*+1) = argmax,cr, (@, vy), hence vy, is a normal vector to I'; at the
point a**t1). Consequently

Rlve =o' > [la®™* —a].

Combining this inequality with (3.8) we obtain [|a**V —a*|| < ££ ||h||?, which
concludes the proof. O
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Remark. The results of this section rely on the assumption that for the
optimal matrix A, we have p(A,) = 1. This can always be done, without the
loss of generality, if p(A.) > 0. Thus, all the results apply for the optimal
matrices with non-zero spectral radius. However, for the case p(A,) = 0 we
cannot guarantee that the derived convergence rates hold. Even tough selective
greedy method will not cycle in this case either, it may considerably slow down,
which is also noticed in numerical simulations.

3.5 Selective greedy method: numerical re-
sults

We now demonstrate and analyse numerical results of the selective greedy
method. Several types of problems are considered: maximizing and minimiz-
ing the spectral radius over finite and polyhedral uncertainty sets.

Product families with finite uncertainty sets

We first test the selective greedy method on positive product families, and
then on non-negative product families with density parameters ~; € (0,1) (the
percentage of nonzero entries of the vectors from the uncertainty set F;.) The
results of tests on positive product families are given in Tables 3.1 and 3.2, for
maximization and minimization respectively. In Tables 3.3 and 3.4 we report
the behaviour of the selective greedy algorithm as dimension d and the size of
the uncertainty sets N vary. For each uncertainty set J; the density parame-
ter ~y; is randomly chosen from the interval 9 — 15% and the elements of the
set F; are randomly generated in accordance to the parameter ~;. Table 3.3
contains the data for the maximisation, while Table 3.4 presents the results for
the minimization problem. The precision of the power method for obtaining
the leading eigenvalue is set to e = 1077,
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avg. number of iterations

avg. running time

N\d ‘ 25 250 500 2000 N\d ‘ 25 250 500 2000
20 3 32 31 3 50 0.02s 0.23s 0.46s  2.15s
100 3.2 32 31 31 100 | 0.04s 0.47s 0.89s 5.19s
250 |31 31 31 31 250 0.1s 1.14s 2.1s 416.85s

Table 3.1: Selective greedy method, maximization, positive families

avg. number of iterations

avg. running time

N\d| 25 250 500 2000 N\d| 25 250 500 2000
50 [32 31 31 3 50 | 0.01s 0.22s 0.45s 2.06s
100 |32 31 31 31 100 | 0.05s 0.43s 0.87s  4.91s
250 |35 32 32 31 250 | 0.1s 1.05s 2s  392.29s

Table 3.2: Selective greedy method, minimization, positive families

The performed experiments on positive families demonstrate how the
choice of the numerical method for computing the leading eigenvector affects
the computational time. This can be clearly seen by comparing the above re-
sults with the ones given in Section 2.2. For sparse matrices we have obtained

the following results.

avg. number of iterations

avg. running time

N\d| 25 250 500 2000 N\d| 25 250 500 2000
50 |57 42 42 42 50 |0.04s 0.31s 0.61s 2.93s
100 |59 44 44 4.1 100 | 0.08s 0.61s 1.28s  8.16s
250 | 6.2 46 4.6 4.1 250 | 0.18s 1.51s 3.05s 149.33s

Table 3.3: Selective greedy method, maximization, non-negative families
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avg. number of iterations avg. running time

N\d ‘ 25 250 500 2000 N\d ‘ 25 250 500 2000

20 8§ 45 44 42 20 0.06s 0.31s 0.66s  2.96s
100 | 7.2 45 45 4.2 100 | 0.11s 0.69s 1.27s 6.41s
250 |74 47 46 4.1 250 | 0.24s 1.62s 2.96s 149.33s

Table 3.4: Selective greedy method, minimization, non-negative families

Table 3.5 shows how the sparsity affects the computations. The dimension
is kept fixed at d = 700 and the cardinality of each product set at |F;|= 200,
while we vary the percentage from which the density parameter takes value.

% |0-8 9-15 16-21 22-51 52-76 77-100
MAX | 52 44 4 4 3.9 3.3
MIN | 43 45 41 4.1 3.9 3.6

Table 3.5.1: Effects of sparsity, number of iterations

% | 0-8 9-15 16-21 22-51 52-76 77-100
MAX [ 3.98s 3.36s 3.0ls 3.0ls 2.89s  2.96s

MIN | 13.71s 3.27s  2.98s 3s 2.87s 2.64s

Table 3.5.2: Effects of sparsity, number of iterations

Although the number of iterations remains almost unchanged, we can no-
tice a significant increase in the running time when minimizing on very sparse
families. This is because the power method tends to slow down when com-
puting the leading eigenvector for matrices with zero spectral radius, which
are usually the solution in this case. We can avoid this by simply quitting the
greedy procedure once a matrix with zero spectral radius is obtained. Even
tough this matrix might not be minimal in each row, we can take it as a min-
imal solution, since spectral radius cannot go below zero.
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Apart from the very sparse case, the number of iterations seems to depend
neither on the dimension, nor on the cardinality of the uncertainty sets nor on
the sparsity itself. The usual number of iterations is 3 - 4. The robustness to
sparsity can be explained by the fact that the selective greedy method actu-
ally works with positive perturbations of matrices. The independence on the
cardinality of the uncertainty sets is, most likely, explained by the quadratic
convergence'. The distance to the optimal matrix quickly decays to the toler-
ance parameter ¢ = 1077, and the algorithm terminates.

Polyhedral product families

Here we test the selective greedy method on product families with uncer-
tainty sets given by systems of 2d + N linear constraints of the form:

where vectors b; € Ri are randomly generated and normalized, and * =
([El, c ,l'd).

avg. number of iterations avg. running time

N\d|[ 5 10 50 N\d| 5 10 50
10 4.7 45 4.1 10 1.05s  1.25s 2.26s
25 44 49 4.9 25 3.49s  5.17s  15.56s
75 48 5.1 5.1 75 26.32s  49.19s 206.38s

Table 3.6: Selective greedy method, maximization, polyhedral sets

In polyhedral uncertainty sets the algorithm searches the optimal rows
among the vertices. However, the number of vertices can be huge. Never-
theless, the selective greedy method still needs about 5 iterations to find an
optimal matrix.

'In the tables we see that the number of iterations may even decrease in cardinality.
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3.6 Optimizing spectral radius on
reducible families

If we finish the (selective) greedy procedure for maximization with a
leading eigenvector vy that has zero entries, we might not obtain an optimal
solution. In this case the product family F is reducible. One way to resolve
this is to use the Frobenius factorization and run the maximization procedure
on irreducible blocks FU), constructing the optimal solution as the block ma-
trix. The optimal value ppay is the largest of all optimal values pfflgx among all
blocks [26]. The algorithm for the Frobenius factorization can be found in [48].

In practice, however, the Frobenius factorisation usually takes more time
than one run of the greedy algorithm for the whole family. That is why it
makes sense to avoid the factorisation by making the family irreducible. Since
having only one irreducible matrix is enough to make the whole family irre-
ducible, a simple strategy is to just include a matrix a.P to the family F, where
P is a cyclic permutation matrix and o« > 0. The matrix P is irreducible, and
so the family F U {aP} is irreducible as well, hence the greedy method has to
finish with a positive leading eigenvector. If the final matrix has no rows from
aP, then it is optimal for the original family F. Otherwise we have to make «
smaller. However, if after trying out several values of a produces the final ma-
trix with some rows from « P, we then need to resort to Frobenius factorization.
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Chapter 4

Applications of the selective
greedy method to non-negative
matrices

This chapter considers some applications of optimizing the spectral ra-
dius on non-negative families. First section deals with the problem of finding
the closest stable non-negative matrix (i.e. Schur stabilization). This issue was
already dealt with in [27] by using the greedy method and a combinatorial ap-
proach to handle the sparse matrices. Here we implement the selective greedy
method instead, along with some changes, improving the computational time.

Further on, we apply the selective greedy method to (directed) graphs.
We use the maximization for obtaining the graph with maximum spectral ra-
dius among all the graphs with prescribed outgoing edges. Minimization is, on
the other hand, used to find a closest acyclic subgraph to a given graph. We
also tackle the problem of maximal acyclic subgraph (MAS).

We will use the following in this chapter:

Lemma 4.1 [27] A non-negative matriz A is Schur stable if and only if the
matriz (I — A)™1 is well defined and non-negative. O

Definition 4.2 A support of a vector v > 0, denoted by S, is the set of all
indices @ for which v; > 0.
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4.1 Closest stable non-negative matrix

Definition 4.3 A non-negative matriz A is strongly Schur stable if p(A) < 1,
and weakly Schur stable if p(A) < 1. Otherwise, if p(A) > 1 we say it is
strongly Schur unstable, and if p(A) > 1 we say it is weakly Schur unstable.

The Schur stabilization problem is well known and has been studied in the
literature. Finding the closest non-negative matrix is important in applications
such as dynamical systems, mathematical economy, population dynamics, etc.
[15, 18, 27]. Usually the closest matrix is defined in the Euclidean or in the
Frobenius norms. In both cases the problem is hard. It was first noted in [27]
that in L.o-norm there are efficient methods for finding the global minimum!.
Let us recall that ||A|w= max;—1__4 Z;.l:l|aij|. Formally, for a non-negative
matrix A with p(A) > 1 we need to solve

_ i >
{ |X — Allee @ min: X >0, (4.1)

p(X)=1.

The key observation is that for every 7 > 0, the ball of radius 7 in L-
norm centered in A, i.e., the set of non-negative matrices

B (A) = {X >0 ) 1X — Al o< T}

T

is a product family with the polyhedral uncertainty sets

d
B;;(A) = {w € Ri ‘ Z‘l'] — aij|< 7'}.
j=1

Hence, for each 7, the problem p(X) — min, X € B (A), can be solved by
the selective greedy method. Then the minimal 7 such that p(X) < 1 is the
solution of problem (6.10). This 7 can be found merely by bisection.

Now we propose a modification of the algorithm for Schur stabilization,
given in [27].

! The results from L.-norm can also be applied for Li-norm; we elaborate this in Chapter
6.
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Alg. SCS: Schur stabilization in L., norm
Step 0. Take ”—’;‘H as the starting value for 7.

Step 1. Start the selective greedy method procedure for minimizing the spec-
tral radius on the ball of non-negative matrices B (A). Iterate until a matrix
X is obtained with p(X) < 1. When this is done, stop the greedy proce-
dure, compute its leading eigenvector v and rearrange its positive entries v:
vj, = --- = vj,, where S is support of v, and |S| = m. Proceed to the next
step.

Else, if the greedy procedure finishes finding the Schur unstable matrix as the
optimal one on B (A), keep implementing the bisection in 7, until the ball

Bt (A) containing strongly Schur stable matrix is reached.

Step 2. We construct matrices C' = (¢;;) and R, as follows. For each i € S

0, k <

l;
Cije = Dot Gijer k=1
Qijp s k > ll

where [; the minimal index for which Zi;l a;j, > 7. If this ; does not exist,
we put [; = m. R is a boolean matrix with ones on positions (i,[;) and zeros
in all other places. If some of the indices i, j are not in the support, then we
put ¢;; = x;;. We can write X = C' — 7R.

Denote by 7. a potential optimal value of the problem (6.10). To determine
it, proceed to the next step.

Step 3. Because p(X) < 1, we have by Lemma 4.1 that [ — X is invertible
and
I-X)'=[I-(C—-7R)]*>0.

Since 1 = p(C — .R) = p(C — TR+ (T — 7)R), it follows that det(/ — (C' —
TR) — (1 — 7.)R) = 0. From here we have

det ( [—[I—(C— TR)]_1R> — 0.

T — Ty

Matrix [I — (C'—7R)]™ R is non-negative and A\ = —— is its (positive) leading
eigenvalue.
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We find the potential optimal value 7, by computing the leading eigenvalue A
of the matrix [I — (C'— 7R)]"'R, and then calculating

1
Te =T — ~.

A

Step 4. To check if 7, is really optimal, start iterating through the greedy
procedure on the ball B} (A), as in the Step 1.

If in some iteration a matrix Y is obtained with p(Y) < 1, then 7, is not
optimal. Stop the greedy procedure, return to Step 1, and continue doing the
bisection taking now 7, as the starting value.

Else, if we finish the greedy procedure obtaining the matrix X, with minimal
spectral radius p(X,) = 1 on the ball B} (A), we are done: 7, is the optimal
value for the (6.10), with X, as the corresponding optimal solution. o

In Tables 4.1 and 4.2 we compare the running times for Schur stabilization
reported in [27] (t,p,) with the performance of Algorithm SCS (%gs)-

d | 50 250 500 1000
0.15s 9.08s 44.02s 302.43s
0.45s 7.12s 17.93s 221.28s

tnp

tSCS

Table 4.1: Schur stabilization for positive matrices

d | 50 250 500 1000
0.15s 20.26s 140.9s 717.25s
0.4s 7.89s 2321s 170.81s

tup

tSCS

Table 4.2: Schur stabilization for sparse matrices, with 9-15% sparsity of each row
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If we compare these results with the numerical results for Schur stabiliza-
tion from [27], we can observe a remarkable speed-up in the computational
time. The first reason for this is because in the updated algorithm we do not
need to conduct the greedy method until the end: we quit it as soon as the
strongly Schur stable matrix is obtained. By quitting the greedy method be-
fore it finishes, we usually avoid obtaining matrices with zero spectral radius.
As practical experiments showed, computation of the leading eigenvector for
the zero spectral radius matrices can be drastically slow, especially for the very
sparse big matrices. The big chunk of computational time in the implementa-
tion of the algorithm from [27] in fact goes for iterating through zero spectral
radius matrices. In the updated procedure this is effectively avoided, providing
us with significantly faster computations. The following table shows how the
sparsity of the starting matrix affects the running time (of Algorithm SCS).

%-‘ 3-8 9-15 16-21 22-51 52-76 77-100
t ‘ 137.49s 91.71s 179.73s 228.07s 292.15s 238.38s

Table 4.3: Effects of sparsity

Certainly, the dimension has a major effect on the computational time.
However, how often we come across zero spectral radius matrices has also an
important impact on the running duration.

We remark that for the big majority of the performed experiments we
set the precision of the power method to ¢ = 1077, It is important to have a
high precision, since for higher dimensions the procedure gets really sensitive,
because the entries of the leading eigenvector get pretty close to one another.
This affects the procedure which is dependant on the ordering of the entries.
Therefore, the higher precision of the power method guarantees us the com-
puted ordering, if not the same, then very similar to the exact one, thus giving
us overall more precise result. On the other hand the bad ordering can lead to
the bad behaviour of the algorithm. In few cases this precision was not enough
and we needed to set € = 1078 so the code could finish.

Another thing to point out is that in our implementation of the SCS algo-
rithm we set the tolerance parameter 6 to 210~%. This means that we accepted
a matrix X, as the solution if p(X,) = 1+ 10~*. If we want to have a better
precision of the solution, then we need to set the precision parameter € even
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smaller, which can increase the computational time.

Example 4.4 For the Schur unstable matrix

00500900280

000O0O0OO09 00 2

O OO OO OO
<t © O 0w OO O
SO OO IO OO
0 OO O AN O
O OO OO o oo
O N <t © OO DOAN
100 N O O O OO
oo oo I~ o
S M  H O OO OO
AN O OO o <t O

I

<

we obtain the matrix X

0050090000

000O0O0OO0OO0OO0O®O01

S OO0 O OO —H O
N O OO O o oo
SO OO Mmoo oo
o0 O O O o O
OO OO o o oo
OO O O oo o H
0 O O O O O o O
O O OO - O <
SO O O oo oo
N O O Mmoo oo

Il

b

as the closest stable, with minimal distance 7, = 10.
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Schur stabilization of aF, a > 0
[18] deals with the problem of finding a (locally) closest stable matrix in
Frobenius norm. One example considers stabilizing the matrix aF, where E
is the matrix of ones, and a > 0. Here we are interested in the same problem,

just working with the L., norm.

Let d > 2 be a dimension of F. For o < é the matrix aF is already stable
per se. So, the interesting case is when o > é.

First, we analyse the d = 2 case, as in [18]. The solutions obtained there
are also the solutions in L., norm. However, using Algorithm SCS we come
to a new solution which will prove useful in generalizing the result for higher
dimensions.

For o € [%, 1) the solution is also the matrix
X, — ( a l-a > '
a l-a

Note that X, is the closest stable matrix to aF in L., norm, but not in the
Frobenius norm.

For a« = 1 Algorithm SCS finds the matrix

(i)

as a solution. Moreover, the matrix

is a solution too.

Matrix Y is also closest stable to aF for a > 1. Additionally,

1 «
n=(1%)

can also be regarded as a solution in this case.
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Before generalizing these observations, we will give some illustrative ex-
amples for the case of d = 4. As said before, we are interested in case when
a > 1. For o € {0.3,0.4,0.8} we have following solutions:

0.3 0.3 03 0.1 0.4 04 02 0
% 0.3 0.3 03 0.1 v | 04 04 020
371 03 03 03 0.1 |’ 471 04 04 02 0 |
0.3 0.3 03 0.1 04 04 02 0
0.8 02 0 0
0.8 02 0 0
Xos = 0.8 02 0 0
0.8 02 0 0

For a > 1 the algorithm returns

~

I
— = = =
o O OO
o O OO
o O OO

Y, =

oo
oo~ 0
o~ L 9
— 9 2 9

0

is also a solution, and a more representative one, since it requires less changes
of entries.

However, the matrix

Motivated by previous discussion, we can make a conjecture for the general
case. When a € (%, 1), we conjecture that the closest Schur stable matrix to
aF in the the L, norm is the matrix X,, obtained by d times stacking the
vector v,, where

vo = (a,...,a,1—aM,0,...,0).

Here, the entries a are repeated M times, where M is the highest integer such
that aM < 1. For a > 1, we conjecture that the upper triangular matrix
having the form of Y,, is a solution. The numeric experiments done in higher
dimensions fully support our conjectures, although we still lack the formal
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confirmation. Even so, the assumed solutions in L., norm can be used as a
starting point in search of the solutions in Frobenius norm.

4.2 Applications to graphs

Optimizing the spectral radius of a graph

A directed graph? G = (V, E) with vertex set V and edge set F, can be
represented by a (0,1)-matrix Ag, called adjacency matriz, defined by

Q:{ 1, (i,j)€E
ij 0, (4,§) ¢ E.

The spectral radius of a directed graph G is the spectral radius of its
adjacency matrix Ag. The problem of optimizing the spectral radius under
some restrictions on the graph is well known in the literature [16, 22, 44, 45, 46,
47] Some of them deal with product families of adjacency matrices and hence
can be solved by the greedy method. One example of such application is finding
the maximal spectral radius of a directed graph with d vertices and prescribed
numbers of outgoing edges nq,...,ny. For this problem, all the uncertainty
sets JF; are polyhedral and are given by the systems of inequalities:

Qa

d
Fo={oeR Y m<n, 0<m<Lk=1.d}. (42

k=1

The minimal and maximal spectral radii are both attained at extreme points
of the uncertainty sets, i.e., precisely when the the ith row has n; ones and all
other entries are zeros. If we need to minimize the spectral radius, we define
F; in the same way, with the only one difference: ZZ:1 T = n;.

Performing the greedy method we solve in each iteration an LP problem
(a;,vg) — max, a; € F;, i = 1,...,d, with the sets F; defined in (4.2). In
fact, this LP problem is solved explicitly: the (0,1)-vector a; has ones precisely
at positions of the n; maximal entries of the vector vy, while all other compo-
nents of a; are zeros.

2 In this work we deal only with directed graphs. Therefore, we will always refer to them
shortly as graphs. Furthermore, we deal only with the graphs containing no self-loops.
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Thus, in each iteration, instead of solving d LP problems, which can get
computationally demanding even for not so big d, we just need to deal with
finding the corresponding number of highest entries of the eigenvector v;. In
Table 4.4 we present the numerical results for applying the selective greedy
method to this problem, where the number of iteration and the time required
for the algorithm to finish are shown.

d ‘ 500 1500 3000 5000
# 3 3 3 3
t 10.16s 0.83s 3.085 6.62s

Table 4.4: Row sums are randomly selected integers from the segment [0.1,0.75] x d

Example 4.5 We apply the greedy method to find the maximal spectral
radius of a graph with 7 vertices and with the numbers of incoming edges
(n1,...,n7) = (3,2,3,2,4,1,1). The algorithm finds the optimal graph with
the adjacency matrix:

o

@Q

|
OO = O = O
OO OO oo O
O O =
ool NoNoNoNe)
e e e
O OO OO o oo
O OO OO oo

with p(A) = 3.21432.
In terms of application, knowing the optimal matrix Ags can tell us which

vertices we should prioritise, i.e. supply first, in order to maximize the effect.
In our example it is the fifth vertex. o
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Closest acyclic subgraph and MAS

We denote the set of all (0,1)-matrices with B. Optimizing the spectral radius
on a ball of (0,1)-matrices BOY.

BV = B NB,

can be used for finding the closest (in L., norm) acyclic subgraph to a given
graph. By knowing the spectral radius of the graph’s adjacency matrix, one
can easily see if it contains cycles. Moreover, the following theorem holds:

Theorem 4.6 [35] Let Ar be adjacency matriz of a directed graph T'. The
following statements are equivalent:

1° Ar is strongly Schur stable;

2° p(Ar) = 0;

3° the graph " is acyclic and all diagonal elements of Ar are zero;

4° there exists a permutation matriz P such that PT ArP is upper-triangular
and has zero elements on the main diagonal;

5° Depth First Search algorithm applied to the graph I' returns a spanning tree
with no back edge.

For more details about Depth First Search (DFS) algorithm we refer the
reader to [48]. In short, a DFS algorithm applied to an acyclic graph will
rearrange its vertices, outputting a spanning tree with no edges directed from
a vertex back to its ancestor.

We now formulate the problem of finding the closest acyclic graph. For a
given graph G that contains cycles, we are interested in finding its subgraph
I', such that:

{ |Ac — Ar|lec — min
p (AF) =0,

where Ag and Ar are the adjacency matrices of graphs G and I, respectively.

(4.3)
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The Ly norm is a good choice for the problem (4.3), since it gives us the
information on:

1) the required number of edges one needs to cut from at least one vertex of
the graph G to render it acyclic;

2) the upper bound on the number of edges one should cut from each vertex
to render the graph G acyclic.

In other words, if 7, is the optimal value of the problem (4.3), then one should
cut exactly 7, edges from at least one vertex of GG, and one needs not to cut
more than 7, edges from each vertex.

Related to the poblem (4.3) is the issue of making a graph G acyclic, so
that the obtained subgraph has maximal number of edges. This is the mazimal
acyclic subgraph (MAS) problem. It is an NP-hard problem and there exists
a vast body of literature dedicated to it [29, 30, 31, 32, 33]. One can only
hope to get, in polynomial time, a good approximation of the maximal acyclic
subgraph. Our solution to the problem of finding the closest acyclic subgraph
may also prove to give a good approximation of the MAS.

Before setting out to describe the procedure for solving the (4.3), we give the
following result:

Proposition 4.7 [45] Let r and R be, respectively, a minimum and mazimum
row sum of the non-negative matriz A. Then

r< p(A) < R.
O

From Theorem 4.6 and Proposition 4.7 we conclude that the adjacency
matrix of an acyclic graph must contain a row of zeros. Further, we can con-
clude that the distance between a graph GG and its closest acyclic subgraph is at
least r. From this point we develop our procedure for solving (4.3), described
below.
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Alg. ACY: Finding the closest acyclic subgraph

Step 0. Let Ag be adjacency matrix of a graph G containing cycles, and let
r and R be, respectively, a minimum and maximum row sums of matrix Ag.

Take k = R;".

Step 1. Do the greedy procedure for minimizing spectral radius on the ball
. (0,1)
of (0,1)-matrices B,".

We can also give the explicit solution to the LP problems occurring in
greedy procedure when applied to the ball B,(f’”. Let X’ be a (0,1)-matrix
obtained in some iteration with v > 0 as its leading eigenvector. We rear-
range positive entries of v: v; > --- > wv;,, where § is the support of v,
and |S| = m. In the next iteration of the greedy procedure we construct the

(0,1)-matrix X = (x;;) as follows:
For each i € § we have LP problem
(x;,v) — min, x; € F, (4.4)

which we solve by setting the first x non-zero entries x;; of x; equal to zero,

where
K= min{k, Zl’;]k}

m
k=1

Step 2. Doing a bisection in k € [r, ], repeat Step 1, until a value k is
reached, for which matrix X is obtained, with p(X) < «. Usually, « is chosen
tobel <a <3.

Step 3. If p(X) > 0, then, increasing k by one repeat Step 1, until a matrix

Y with p(Y) = 0 is obtained. Alternatively, for p(X) = 0, repeat Step 1,
decreasing k by one, until the matrix with positive spectral radius is obtained.
Take the last matrix Y with p(Y) = 0. The distance k., = ||Ag — Y| is the

optimal value.

We can now take Y as an optimal solution to the problem (4.3). However, in
the light of the MAS problem, Y might not present the best approximation,
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since it will preserve less than a half of starting graph’s edges® (see Tables 4.6
and 4.7 of the numerical results). To improve upon this, proceed to the

Step 4. Run DFS algorithm on the acyclic graph generated by the matrix Y
to obtain a spanning tree (Theorem 4.6). For each vertex of the spanning tree,
restore all edges present in the starting graph G, so that no cycle is created.
Take the newly obtained graph I' as the optimal solution.

Alternatively, one can find a permutation P and bring the matrix Y to an
upper triangular form P?TY P. We then restore all ones present in the original
matrix Ag, without breaking the upper triangular structure. More formally
put, we permute the indices {1,...,d} — {i1,...,i4} (so that Y becomes up-
per triangular), and form the matrix Y’ with entries

G . .
y = Qg i e < JI
ikl 0, s > g

We put Y/ = Ar, and take the corresponding graph I' as the optimal solution.
This graph will be much better approximate of the MAS than the matrix ob-
tained in Step 3 (see Tables 4.8 and 4.9 of the numerical results). o

Numerical results

Algorithm ACY can be used to give answer to both the closest acyclic
graph and MAS problems. If we stop with Step 3, we can obtain a distance
to the closest acyclic graph in relatively short time, as can be seen from the
tables below. Here, A represents a fraction of the edges preserved in the solu-
tion graph I', compared to the starting graph G.

3 Dividing the adjacency matrix into two triangular halves and choosing the one with
greater number of edges will produce an acyclic graph.
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9-51% sparsity 26-95% sparsity

d| 50 250 500 1000 d| 50 250 500 1000
t | 058 4.23s 20.13s 299.25s ¢ | 0.65s 5.29s 30.51s 381.52s
A | 0.508 0.491 0.498  0.494 A | 0.448 0.453 0.46  0.461

Table 4.5: Numerical results for Alg. ACY, reduced version

%[3-21 9-51 16-75 25-095
t [ 15.52s 41.11s 47.61s 48.17s
A| 052 0499 0484  0.462

Table 4.6: Alg. ACY, reduced version, varying the sparsity, d = 500

However, the obtained graph may be unsatisfactory, especially in the light
of the MAS problem. Implementing the full Algorithm ACY improves upon
this, but it prolongs the computational time. This is because DFS algorithms
may have, in the worst-case scenario, computational time of O(n?), where n is
number of edges [48]. Below, we report the results for implementation of the
full Algorithm ACY.

9-51% sparsity 26-95% sparsity

d | 50 250 500 1000 d] 50 250 500 1000
t [053s 47s 371s 527.79s  t | 0.66s 5.73s 50.42s G674.27s
A 064 062 0619 0617  A|0598 0592 0593  0.593

Table 4.7: Numerical results for Alg. ACY, full version

%]3-21 9-51 16-75 25-95
t [27.16s 70.69s 81.02s 88.78s
A] 0639 0619 0.608  0.594

Table 4.8: Alg. ACY, reduced version, varying the sparsity, d = 500
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To the best of our knowledge, the most effective algorithms found in lit-
erature for approximating MAS have A = 0.5 + Q(@), where 0.5 + ¢ is the
fraction of the original edges contained in MAS [29, 31]. The numerical results
presented here show that our approach outputs graphs with A =~ 0.6, which
seems to remain the same even for the large dimensions or big density. We

1

can conjecture that our algorithm gives A = 0.5 + Q(@) (or maybe even

A =05+ Q(@)). However, checking this conjecture will require numeri-
cal experiments on a very big scale, or theoretical confirmation. In any case,
our procedure could prove useful for constructing more effective algorithms for
approximating MAS. We also remark that our procedure can be made even

faster by using an improved DFS algorithm.

Example 4.8 In the figure below, we apply Algorithm ACY to a graph G
containing cycles. First we obtain its closest acyclic subgraph G’ and then an
approximation to its MAS, T'.

2/§1\5 2//1\5 2/1\5
\3 4 \3)(4 \?és(él

G G’ r
Actually T' is exactly maximum acyclic subgraph to G; restoring any of the
edges in I' creates a cycle. o
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Example 4.9 For a graph G containing cycles, with adjacency matrix
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Algorithm ACY first returns graph G’ with
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as the closest acyclic subgraph with 7, = 2. Continuing further, it finishes

with the graph T,

Y

010000O0O0O0O0

000O0O0OT1O0O0O0O0

1100100111

1100111101

1'100000O0O0O0
000O0O0OO0OOO0OO0O0

1000010111

1100000010
1100110001
0100100000

Ar =

0.711 of the original edges. Moreover,

as the graph approximating MAS of G. For the graph G’, we have A(G’) =

0.578, while the graph I' saves A(T")
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if we manually add back to I' any of the edge from the original graph G, we
create a cycle. This suggests that I' might actually be the exact maximum
acyclic subgraph to G. o
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Chapter 5

Metzler product families

The second part of the thesis is concerned with Metzler matrices, i.e.
real matrices with non-negative off-diagonal entries. As already mentioned,
they are an important mathematical tool and found quite often in applica-
tions [3, 4, 5, 8, 9, 10]. Our main goal of this chapter is to generalize the
selective greedy method and use it to optimize spectral abscissa on Metzler
product families.

Definition 5.1 A Metzler matriz is strict if it has a strictly negative diagonal
entry. A Metzler matrixz is full if it has positive off-diagonal elements. A Met-
zler matriz is irreducible if it does not have a non-trivial invariant coordinate
subspace.

By M we denote the set of all the Metzler matrices, and by M; the sets of
vectors
Mi={acR |ajx, >0}, i=1,...,d

Definition 5.2 A family F of Metzler matrices is a Metzler product family
if there exist compact sets F; C M;, i =1,...,d, such that F consists of all
possible matrices with i-th row from F;, for everyit=1,...,d.

We stated in the introduction that we change focus from spectral radius p

to spectral abscissa 1 for Metzler matrices. This is because the spectral radius
is no longer a Perron eigenvalue of a Metzler matrix, which is seen from
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Theorem 5.3 ([14]) Let A be a full (or at least irreducible) Metzler matriz.
Then, there exist an eigenvalue r such that:

1° reR;

2° r > Rel, for every eigenvalue \ # r;

3° 1 is a simple eigenvalue;

4° r can be associated with a strictly positive (right) eigenvector v;

5° w 1s a simple eigenvector. O

Theorem 5.4 ([14]) Let A be a Metzler matriz. Then, there exist an eigen-
value r such that:

1° reRR;

2° r = Rel, for every eigenvalue \;

3° r can be associated with a non-negative (right) eigenvector v. O

Definition 5.5 Let A be a (full/irreducible) Metzler matriz. An eigenvalue r
characterized by Theorem (5.3) 5.4 is called Perron (or leading) eigenvalue. Its
corresponding eigenvector v is called Perron (or leading) eigenvector.

Recalling Definition 1.4 for spectral abscissa, we conclude

Proposition 5.6 For a Metzler matriz, its spectral abscissa is its Perron
ergenvalue. O

Unlike for the non-negative case, the Perron eigenvalue of a Metzler matrix
can take on negative values. Of course, for non-negative matrices spectral
radius and spectral abscissa coincide.

Proposition 5.7 If A is a non-negative matriz, then

p(A) =n(A).
O

Another important thing to point out is the behaviour of the Perron eigen-
vector. For (strict) Metzler matrices it remains non-negative, as with the non-
negative matrices. Moreover, for the full Metlzer case it behaves the same way
as for the positive matrices: it is strictly positive and unique.

A property of a strict Metzler matrix, which we will amply exploit, is
that it can be translated to a non-negative matrix: i.e. if A is a strict Metzler
matrix, then there exists h > 0 such that A 4+ hl is non-negative. Having this
in mind, along with the fact that the translation by identity matrix does not
change the set of eigenvectors, we have from Proposition 5.7
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Lemma 5.8 If A is strict Metzler, then
p(A+hI) = (A) + b,

for any h > 0 such that A + hI is non-negative. O

5.1 Greedy method for full Metzler matrices

We saw that the Perron eigenvector for both the positive and full Metzler
matrices keeps the same properties. This is why it can make sense to use the
non-selective greedy method presented in Section 2.1 (Algorithm GP) for full
Metzler matrices. The goal of this section is to formally show that the greedy
method can be safely and effectively used for optimizing the spectral abscissa
on the full Metzler product families. We must remark that selective greedy
method, as given in Section 3.3, is inapplicable to general Metzler matrices
without modifications. We will address and resolve this issue in the next sec-
tion. As with the positive and non-negative product families, the results of
this section are the extension of the results from [21].

It is known that spectral radius is monotone on the set of non-negative
matrices [27]. We now prove that the same holds for the spectral abscissa on
the set of Metzler matrices, that is:

Lemma 5.9 Let A and B be two Metzler matrices such that B > A. Then
n(B) = n(A).

Proof. Let A > 0 be such that both A4+hl and B+hlI are non-negative. Since
B is entrywise bigger than A we have B 4+ hl > A+ hl. By the monotonicity
of spectral radius p(B + hl) = p(A + hI) holds. Using Lemma 5.8, we obtain
n(B) = n(A). O

Lemma 5.10 Let A be a Metzler matriz, w > 0 a vector, and A > 0 a real
number. Then Au = \u implies that n(A) = X. If for a strictly positive vector
v we have Av < \v, then n(A) < .
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Proof. Let Au > Au. Since A is Metzler, there exists h > 0 such
that A+ hl > 0. We have (A + hl)u > (A + h)u, and since the analogous
of this Lemma for non-negative matrices and spectral radii holds, we obtain
p(A+ hI) > X+ h, and therefore n(A) > A (Lemma 5.8). The proof of the
second statement follows by the same reasoning. O

Corollary 5.11 Let A be a Metzler matriz, w > 0 a vector, and A > 0 a real
number. Then Au > Au implies that n(A) > X. If for a strictly positive vector
v we have Av < \v, then n(A) < .

Proof. Let Au > Au. The statement n(A) < A is in direct contradiction
with Lemma 5.10 and n(A) = A would imply that A is an eigenvalue of matrix
A, which is not true. Hence, n(A) > X has to hold. The proof of the second
statement follows the same reasoning. O

Since the behaviour of the leading eigenvector remains unchanged, we can
extend the definitions of minimality /maximality in each row as given by Defi-
nition 3.8 (2.5) to account for (full) Metzler matrices.

The following Proposition stems directly from Lemma 5.10.

Proposition 5.12 Let matrix A belong to a Metzler product family F and
v > 0 be its leading eigenvector. Then
1) if v > 0 and A is mazximal in each row with the respect to v, then n(A) =

max n(X).

€

2) if A is minimal in each row with the respect to v, then n(A) = )Igug n(X).
€

O

Proposition 5.13 If a Metzler matriz A € F is full, then it has the maximal
spectral abscissa in F if and only if A is maximal in each row with the respect
to its (unique) leading eigenvector. The same is true for minimization.

Proof. Maximization. Let A be maximal in each row w.t.r. to v. Since for
a full Metzler matrix its leading eigenvector is strictly positive, we can apply
1) of Proposition 5.12, and therefore the maximal spectral abscissa is indeed
achieved for matrix A.
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Conversely, assume that A maximizes the spectral abscissa on F, but it is
not maximal w.t.r. to its leading eigenvector v in each row. Construct matrix
A’ € F by changing all the necessary rows of the matrix A, so that A’ becomes
maximal w.t.r. to v in each row. Thus we have A'v > Av = n(A)v. This, in
turn, results in n(A’) > n(A) (Corollary 5.11), which is incorrect. So, A has
to be maximal in each row w.t.r. to its eigenvector.

Minimization. Suppose now that A is minimal in each row w.t.r. to v. One
direction of the equivalence is basically 2) of Proposition 5.12. The proof for
the other direction goes the similar way as with the maximization, taking into
account the strict positivity of the vector v. O

Proposition 5.14 For every Metzler product family there exists a matriz
which is mazimal (minimal) in each row with the respect to the one of its
leading eigenvalues.

Proof. Let & > 0 be such that the shifted product family F., = F+¢'FE is full
Metzler family, and let A., € F., be the matrix with maximal spectral abscissa.
Since this matrix is full, by Proposition 5.13 it has to be maximal in each row.
For all 0 < & < €/, we associate one such a matrix A.. By compactness, there
exists a sequence {ej}ren such that e — 0 as k& — +oo. Hence, matrices
A, converges to a matrix A € F and their respective leading eigenvectors
converge to a nonzero vector v. By continuity, v is a leading eigenvector of A,
and A is maximal in each row w.t.r. to v. O

Theorem 5.15 If F is a product family of full Metzler matrices, the greedy
spectral simplex method terminates in finite time.

Proof. Assume we use the greedy method for maximizing the spectral abscissa
(the same goes for minimization). Proposition 5.14 guarantees the existence
of a matrix maximal in each row, and Proposition 5.13 that this matrix is
the optimal one. Starting from matrix A; € F and iterating trough the algo-
rithm we obtain the sequence of matrices A,, Az, ... with the sequence of their
respective spectral abscissas 1(Asz),n(As), ..., which is increasing. Moreover,
each ith row of the given matrices is some vertex of the polyhedron F;, so
the number of total states is finite. Therefore, we arrive at our solution in
finite number of iterations, increasing the spectral abscissa in each one, until
we reach the optimal matrix. O
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Remark. Since Perron eigenvectors/eigenvalues of full and irreducible Metlzer
matrices have the same properties, we can safely use greedy method on Metzler
matrices which are not full, provided we obtain an irreducible matrix in each
iteration. Of course, this condition is too restrictive and quite difficult to
achieve in applications.

5.2 Greedy method for sparse Metzler matri-
ces

Comparing Theorems 5.3 and 5.4, we see that the Perron subspace of a
general Metzler matrix might be spanned by more than one leading eigenvec-
tor. Because of this, the greedy method may choose a 'bad’ leading eigenvalue
from a Perron subspace and cycle, as with the sparse non-negative matrices.
Using the selective greedy method on sparse Metzler matrices to avoid cycling
seems like a logical move. However, it may happen that the power method
applied to a strict Metzler matrix, starting with the initial vector vy = e, does
not converge.

Example 5.16 We apply the power method to the matrix

-2 2 0
A= 0 -6 5
2 2 -9

Starting from the vector vy = e, and obtain the following sequence of vectors:

(0.242, 0, —0.97)
(—0.025, —0.507, 0.862)

vy = (—0.094, —0.649, —0.755)
vy = (0.138, —0.694, 0.707)

V1
V2

It is clear that the sequence of vectors v, is not going to converge, because the
sign pattern keeps changing with every iteration. o

Having in mind that a Metzler matrix can be translated to a corresponding
non-negative matrix, we propose translative power method.
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Definition 5.17 Let A be a Metzler matriz. A power method applied to a
matric A = A+ hl, where h > 0 is the minimal number for which A is
non-negative 1s called translative power method.

We extend Definition 3.13 to include Metlzer matrices and give the following

Proposition 5.18 The translative power method @1 = Axy, k > 0, where A
1s Metzler matrix, applied to the initial vector xq = e converges to the selected
leading eigenvector.

Proof. If A is non-negative, then translative power method is just the regular
power method and we can use Corollary 3.17. Suppose now that A is strictly
Metzler. Applying a translative power method on it, taking e as an initial
vector, we obtain the selected leading eigenvector v of a non-negative matrix
A = A+ hI. This eigenvector v = llg(l) v, is a limit of a sequence of leading

eigenvectors of perturbed positive matrices A. = A+ ¢E. Since the leading
eigenvectors v, for matrices A, are also the leading eigenvectors for the per-
turbed Metzler matrices A, = A + ¢FE, we have, by the definition, that v is a
selected leading eigenvector of the matrix A. O

Proposition 5.18 allows us to use the selective greedy method when dealing
with Metzler matrices as well, having in mind that in this case we need to resort
to the translative power method. Moreover,

Theorem 5.19 The selective greedy method, equipped with translative power
method and applied to Metzler matrices, does not cycle.

Proof. Assume we have a product family F that contains strict Metzler ma-
trices, since the case of non-negative families is already resolved by Theorem
3.16. Cycling of the selective greedy method on this family would also imply
the cycling of the spectral greedy method on the family F +¢F of full Metzler
matrices, which is, given Theorem 3.16, impossible. O

Remark. As discussed in Section 3.3, when implementing selective greedy
method we compute the selected leading eigenvectors by applying the power
method not on the non-negative matrices Ay, obtained iterating through the
procedure, but on the matrices A; + I instead. For the same reasons, if we
obtain a strict Metzler matrix A; in some iteration, we will actually compute
the selected leading eigenvector by applying power method ta a non-negative
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matrix Ay + (h+ 1)I, where h = |min; agf)].

Remark. If using the selective greedy method on Metlzer family F for max-
imization produces as a solution a matrix A, having the leading eigenvector
v with some zero entries, then we are dealing with reducible family. We can
deal with this issue in completely analogous manner as described in Section
3.6. However, in this case, we need to add the matrix aP — 1 instead, where

a, 8> 0.

5.3 Numerical results

We test the selective greedy method, equipped with translative power
method, on both full and sparse Metzler product families. The results of tests
on full Metzler product families, as dimension d and the size of the uncertainty
sets N vary, are given in Tables 5.1 and 5.2, for maximization and minimiza-
tion, respectively.

avg. number of iterations avg. running time

N\d\ 25 250 500 2000 N\d\ 25 250 500 2000

20 3 32 3 3.1 50 |1 0.02s 0.24s 0.51s  2.19s
100 | 3.1 3.1 3 3 100 | 0.04s 0.45s 0.89s  5.12s
250 |32 31 32 3 250 | 0.1s 1.05s 2.06s 382.12s

Table 5.1: Selective greedy method, maximization, full Metzler matrices

avg. number of iterations avg. running time

N\d \ 25 250 500 2000 N\d \ 25 250 500 2000

50 (32 3 31 31 50 | 0.02s 0.21s 0.46s 2.21s
100 | 3.2 3.3 3.1 3 100 | 0.04s 0.44s 0.89s  4.9s
250 |33 32 32 31 250 | 0.1s 1.06s 2.05s 436.82s

Table 5.2: Selective greedy method, minimization, full Metzler matrices
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In Tables 5.3 and 5.4 we report the behaviour of the selective greedy al-
gorithm on sparse Metzler families. For each uncertainty set F; the density
parameter ~; is randomly chosen from the interval 9 — 15% and the elements
of the set F; are randomly generated in accordance to it.

avg. number of iterations avg. running time

N\d ‘ 25 250 500 2000 N\d ‘ 25 250 500 2000

20 04 43 41 4 20 0.02s 0.3s 0.33s  2.89s
100 | 5.8 44 42 4.1 100 | 0.1s 0.6s 1.2s 6.02s
250 |58 46 44 41 250 | 0.2s 1.54s 291s 167.89s

Table 5.3: Selective greedy method, maximization, sparse Metzler matrices

avg. number of iterations avg. running time

N\d ‘ 25 250 500 2000 N\d ‘ 25 250 500 2000

50 |78 45 43 4.1 20 1.35s 0.31s 0.63s  3.03s
100 | 8.6 45 43 4.2 100 | 0.58s 0.66s 1.26s  6.04s
250 | 9.6 47 45 44 250 | 0.32s 1.6s 2.99s 159.29s

Table 5.4: Selective greedy method, minimization, sparse Metzler matrices

Table 5.5 shows how the number of iterations and computing time vary
as the density parameter is changed. The dimension is kept fixed at d = 600
and the cardinality of each product set at |F;|= 200, while we vary the interval
from which ~; takes value. We may conclude that the greedy method behaves
on Metzler families as good as for the non-negative ones.

% |0-8 9-15 16-21 22-51 52-76 77-100
MAX| 5 42 41 4 3.8 3.4
MIN | 62 44 41 4 4 3.8

Table 5.3.1: Effects of sparsity, number of iterations
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% | 0-8 9-15 16-21 22-51 52-76 77-100

MAX | 3.18 2.71s 2.6s 2.54s 2.36s 2.14s
MIN | 42.58s 2.69s 2.6s 2.55s 2.48s 2.32s

Table 5.3.2: Effects of sparsity, number of iterations
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Chapter 6

Closest (un)stable Metzler
matrix

The problem of finding the closest (un)stable Metzler matrix (i.e. Hurwitz
(de)stabilization), bein hard in general [19, 34|, allows efficient solutions when
working in L, Lo, and max- norms. These norms are given by:

[ X lmax = 123§d ek
d
XM = max 3 i |l
d
[Xllw = jnax Zj:llxij"

As it can be easily seen || X||oo= || X7||;. Consequently, all the results for the
L, norm apply for the L; norm as well: we just need to take the transpose
of the matrix. Having this in mind, we shall only develop results for L., and

max HOI"IHS1 .

Dealing with Metzler matrices means that we are considering stability in
the sense of Hurwitz. While Schur stability gets determined by the spectral
radius, the Hurwitz stability depends on the sign of spectral abscissa.

Definition 6.1 A Metzler matriz A is strongly Hurwitz stable if n(A) < 0,
and weakly Hurwitz stable if n(A) < 0. Otherwise, if n(A) > 0 we say it
is strongly Hurwitz unstable, and if n(A) > 0 we say it is weakly Hurwitz
unstable.

! In this chapter we will regard norms without a subscript as the L., norm (i.e ||-|| =

[lloo)-
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We denote by H the set of all weakly Hurwitz stable Metzler matrices, and by
H, the set of all strongly Hurwitz stable Metzler matrices.

Remark. When searching for the closest (un)stable Metzler matrix to the
matrix A, the starting matrix need not necessarily be Metzler. It is easy to
check that both the real matrix A and matrix A’, with entries

’ Ay, aij200ri:j
a;. = .
0, otherwise

have the same solution. Therefore, without the loss of generality, we shall
always assume that our starting matrix is Metzler.

6.1 Hurwitz (de)stabilization in max-norm
Closest Hurwitz unstable Metzler matrix in the max-norm

For a given Hurwitz stable Metzler matrix A we consider the problem of
finding its closest (weakly) Hurwitz unstable matrix X, with the respect to the
max-norm. In other words, for a matrix A € H, find a matrix X that satisfies:

| X — Al|max — min
n(X)=0, X € M.

The following set of results provides the answer to the posed problem. We
start from

Lemma 6.2 [35] A Metzler matriz A is Hurwitz stable if and only if it is
invertible and the matriz —A™! is non-negative. O

Lemma 6.3 Let A€ H, and H >0, H #0. Then

1
A H < _ 1
n(A+aH) <0, 0 &<p(—A—1H) (6.1)

and 77(14 + ﬁ) =0.
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Proof. Define matrix B = —A~'H. Since A is Hurwitz stable, from Lemma
6.2 we have B > 0. Define

W(a)=—-A—aH =—-A—-a(—AB) = —A(I — aB).

From Lemma 4.1 and Lemma 6.2, W(«) is invertible for every o € [O, ﬁ)
Moreover, for every « from the given interval, W~!(«) is non-negative. Since

—W(a) = A+ aH is Metzler, by Lemma 6.2, it is Hurwitz stable, so we have
(6.1).

For the proof of the second part, we assume that matrix B is strictly
positive. Then its leading eigenvector v is also strictly positive, and we have

—W(ﬁ)v = 0. Hence, by the continuity of spectral abscissa on the set of

Metzler matrices, we have n(A + %BJ =0. a

The following result is a direct consequence of Lemma 6.3:
Corollary 6.4 Let A€ H, and H > 0, H # 0. Then all X € M that satisfy

7
p(—A~TH)

are stable. O

X <A+

Applying Corollary 6.4 to the special case of the non-negative matrix H = F,
where E is matrix of all ones, we arrive to the explicit formula for Hurwitz
destabilization in the max-norm.

Theorem 6.5 Let A be a Hurwitz stable Metzler matrixz and e vector of all
ones. Then all Metzler matrices X that satisfy

E
X<A——F—
(A-le,e)
are Hurwitz stable. Moreover, matriz A — A*lLee) 18 the closest Hurwitz un-

stable Metzler matriz with the distance to the starting matriz A equal to

1
Z’a;j ’
i.j

T

where aj; are entries of the matriz A",
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Proof. The proof stems directly from the fact that

p(—AT'E) = —(Ate, e).

Closest Hurwitz stable Metzler matrix in the max-norm

We now deal with the problem of Hurwitz stabilization in the max-norm.
First, consider the following spectral abscissa minimization problem for a given
matrix A € M and parameter 7 > 0:

i - <
min {7(X) [ [|X = Allmax< 7} (6.2)

Lemma 6.6 The optimal solution of the problem (6.2) is a matriz A(1) € M
with the following entries:

Uiy =T, 1 =]
az‘j(T):{

max{0,a;; — T}, i # j.

Proof. Clearly, a Metzler matrix A(7) is feasible for (6.2). Moreover, for any
other feasible solution X, we have X > A(7). From the monotonicity of spec-
tral abscissa we have that A(7) is truly the optimal solution to our problem. O

Now, for a given Hurwitz unstable Metzler matrix A, consider the follow-
ing minimization problem:

)I(Heljl\}lHX — Allmax- (6.3)
Denote by 7, its optimal value.
Lemma 6.7 7, is a unique root of the equation n(A(t)) = 0.

Proof. The statement follows directly from Lemma 6.6 and the fact the func-
tion n(A(7)) is monotonically decreasing in 7. O
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The matrix A(7.) is the closest Hurwitz stable Metzler matrix to a given
matrix A € M with n(A) > 0, and 7, is the minimal distance. We now present
the algorithm for computing the value 7. and solving (6.3).

Alg. HUS-max: Finding the closest Hurwitz stable Metzler matrix
in max-norm

Step 1. Sort all positive entries of matrix A in an increasing order. Check if
the highest entry is on the main diagonal. If so, take 7, = max; a; and finish
the procedure. Else, continue to the

Step 2. Using the monotonicity of the spectral abscissa, find by bisection in
the entry number the value 71, which is the largest between all positive entries
a;; and zero, such that n(A(a;;)) > 0. Find value 75, which is the smallest
entry of A with n(A(a;;)) < 0.

Step 3. Form the matrix
_ A(n) — A(m)

To —T1

Step 4. Compute

Theorem 6.8 Algorithm HUS-max computes an optimal solution to the prob-
lem (6.3).

Proof. First, assume that the highest entry is on the main diagonal. Then, the

matrix A(max; a;;) will be non-positive diagonal matrix such that n(A(max; a;)) =

0. Since 7., by Lemma 6.7, is the unique root of the equation n(A(7)) = 0, we
can put 7, = max; a;.

Now, assume that the highest entry is off-diagonal. Then, the matrix
A(max;; a;;) is negative diagonal. Therefore, we have

n(A(miz}x aij>) < 0.
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On the other hand, n(A(0)) = n(A) > 0. So, it is possible to find two
values 71 < 7 from the set
{0} U{ay | a; > 0}
such that n(A(r1)) > 0 and n(A(m)) < 0. A(7) is linear in 7, and for every
T € |11, 73] we have

To — T

A(T) = A(Tg) +

(A(my) — A(1a)) = A(m2) + (19 — 7)H.

T2 —T1

Applying Lemma 6.3 for Metzler matrix A(7;) and non-negative matrix H
concludes the proof. O

6.2 Hurwitz destabilization in L., norm

Let A be a Metzler matrix, and let
B.(A) = {X € M| A — X|< <}

denote an e-ball of Metzler matrices around A. Optimization of the spectral
abscissa on B.(A) is a crucial tool for the Hurwitz (de)stabilization. The
selective greedy method developed in Chapter 5 can be applied on B., since it
can be considered as a product set of the balls

BY ={x e M, | |a; —z||< ¢}, i=1,...,d

Let us first consider the problem of Schur destabilization of non-negative
matrix in L., norm: if A is a non-negative matrix with p(A) < 1, find a matrix
X that satisfies

{ | X — Al| = min (6.4)

p(X)=1.

An explicit solution to (6.4) was given in [27]. An important point is that the
solution is always a non-negative matrix, entrywise bigger than A.

Theorem 6.9 [27] The optimal value T, of the problem (6.4) is the reciprocal
of the biggest component of the vector (I — A)~'e. Let k be the index of that
component. Then the optimal solution is the matrix
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We can also solve a more general problem: for a given A > 0 and non-
negative matrix A with p(A) < h, find the closest matrix X having p(X) = h,
i.e., find a solution to
| X — Al — min
{ o(X) = h. (6.5)
Here, as with the h = 1 case, the solution X is also non-negative and entrywise
bigger than A. We can also prove a generalization of Theorem 6.9:

Theorem 6.10 The optimal value T, of the problem (6.5) is the reciprocal of
the biggest component of the vector (hI — A)~‘e. Let k be the index of that
component. Then the optimal solution is the matrix

X = A+ 1,.Ep. (6.6)

Proof. The optimal matrix X, for (6.5) is also a solution to the maximization
problem

p(X) — max
| X — A< T, X > A

having the optimal value 7 = 7,. Let us characterize this matrix for arbitrary
7. From Proposition 5.12 and Proposition 5.14, applied to the non-negative
product families and spectral radii, we can conclude that X is maximal in each
row for the product family with the uncertainty sets:

BH(A) = B.(A)N{X>0|X > A}

= [X20|X>A (X -Aee)<r, i=1,...,d}.

Conversely, every matrix X with p(X) = h which is maximal in each row w.r.t.
a strictly positive leading eigenvector, solves (6.5).

Any matrix X € Bf(A) with the leading eigenvector v is optimal in the
ith row if and only if the scalar product (x; — a;,v) is maximal under the
constraint (x; — a;,e) = 7. This maximum is equal to r7, where r is the
maximal component of the leading eigenvector v. Denote the index of this
component by k. Then

T, —a; =Tey, 1=1,...,d.
Hence, if X is maximal in each row, we have

X =A+reel = A+ TE,.
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Furthermore, since each set B (a;) contains a strictly positive point, we have

v; = (Xv); = max (x,v) > 0.
xeB-(a;)

Therefore, the leading eigenvector v is strictly positive so, by Proposition 5.12,

the matrix X maximizes the spectral radius on the product family B (A).

Thus, the optimal matrix has the form (6.6) for some &, and || X — A||= 7.
It remains to find £ for which the value of 7 is minimal.

Since p(A + 7.Ex) = h, it follows that 7, is the smallest positive root of the
equation
det(A—hl 4+ TE;) = 0. (6.7)

Since p(2) < 1 we have (hI — A)™' = +(I — 4)~1 = 157 ()7 > 0. Multi-
plying equation (6.7) by det(—(hl — A)~!) we obtain

det(I — r(hI — A)"'E}) = 0.

The matrix 7(hI — A)"'E}, has only one nonzero column. This is the kth
column, equal to 7(hI — A)~'e. Hence,

det(I — r(hI — A)"'E,) = 1 — 7[(hI — A)é];.

We conclude that the minimal 7 corresponds to the biggest component of this
vector. 0

We can now move to a Hurwitz destabilization, or more formally put: for
a given Metzler matrix A with n(A) < 0, find a solution to

(6.8)

{ |X — Al| = min
n(X) =0.

Lemma 6.11 Let a matriz X be a solution to the problem (6.8). Then, X is
Metzler and X > A.

Proof. First, let us show that X is Metzler. Assume the contrary, that it has
some negative off-diagonal entries. We consider a matrix X’ with entries

I‘/: ZEZ']‘, l’ij>00ri:j
" |z5j], xi; <0 andi# j.
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We have || X' — Al < || X — A and n(X’) < 0. Since X' is Metzler, there exists
h > 0 such that X; = X’ + hl is non-negative. In addition, from Lemma 5.8,
we obtain p(X}) < h.

Define the matrix X;, = X + hl which contains off-diagonal negative
entries. From the inequality || XF| < ||[(X})*||, using Gelfand’s formula for
spectral radius [2], we arrive at p(Xj) < p(X}). Since the largest real part of
all the eigenvalues of X is equal to zero, we have

0 =n(X) < p(X).

Adding h on both sides of inequality and using p(X) + h = p(X + hl), we
obtain h < p(X}), which is a contradiction. Therefore, matrix X must not
contain negative off-diagonal entries, i.e. it has to be Metzler.

Now let us prove that X > A. Assume the converse, that there exist some
entries x;; of X such that z;; < a;;. Define matrix X with entries

s ) Tij Tij 2 0y
) T
Qij, Tij < Qgj

X is Metzler, X > A and X > X. By the monotonicity of spectral abscissa

we have n(X) > n(X). X is the closest Hurwitz unstable Metzler matrix, so
|IX — Al > || X — AJ|. This is impossible, since || X — A|| < [|[X — A|| holds.
Hence, X has to be entrywise bigger than A. O

Theorem 6.12 The optimal value 7, of the problem (6.8) is the reciprocal
of the biggest component of the vector —A~te. Let k be the index of that
component. Then the optimal solution is the matrix

X = A+ 1,.E. (6.9)

Proof. Lemma 6.2 ensures invertibility of the matrix A. We also remark
that a Hurwitz stable Metzler matrix is necessary a strict Metzler matrix: if
it were non-negative, than the biggest real part of its eigenvalues would also
be non-negative, which is not the case.

Now, let i > 0 be such that the matrix A = A+ Rl is non-negative. We have
p(A) < h. Using Theorem 6.10 we obtain the closest non-negative matrix to
A. Denote it by X. We have p(X) = h and

X :A—l-T*Ek,
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where 7, is the reciprocal of the biggest component of the vector (hl — A) le
—A7'e. Let X = X — hl. X is Metzler with 7(X) = 0, and satisfies (6. )

Now we need to check that X is really the closest Hurwitz unstable Metzler
matrix for A. Assume that Y # X is the true solution of (6.8). We have
Y — Al < || X — A||= 7.. Define Y=Y +hl.Yis entrywise bigger than A,
and p(Y') = h. Since X is the closest non-negative matrix to A having spectral
radius equal to h, the following is true:

Y = Al =Y = Al > | X - Al = 7.,

which is a contradiction. Therefore, our X is really the optimal solution. O

Example 6.13 For a given Hurwitz stable Metzler matrix

N
Il
O O OO -
S O NN O
|
OO OO
W = O N O
O© O OO

with n(A) = —1, the biggest component of the vector —A~1e is the third one,
and it is equal to 2.5. Thus we get the matrix

—4 0 0.4 0 4
0 —2 0.4 2 0
X = 0 2 —-06 0 O
0O 0 04 —4 O
0O 0 04 3 -9
as the closest Hurwitz unstable. o
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6.3 Hurwitz stabilization in L., norm

The problem of Schur stabilization for non-negative matrices in L., norm
was also considered in [27]: if A is a given non-negative matrix with p(A) > 1,
find a non-negative matrix X that satisfies

— in : >
{ |X — Al > min: X >0, (6.10)

p(X)=1.

Notice that, in contrast to the problem of Schur destabilization (6.4), here we
have to impose the non-negativity condition on our solution.

The story is the same with the Hurwitz (de)stabilization of Metzler ma-
trix. For Hurwitz destabilization (6.8), requesting for the solution to be Met-
zler is redundant, a fact confirmed by Lemma 6.11. However, this is not the
case with the Hurwitz stabilization; here, we have to explicitly impose the
restriction on our solution to be Metzler. So, our problem can be written in
the following manner:

{ | X — Al > min: X e M, (6.11)

n(X) = 0.
To obtain the solution, we solve the related problem

n(X) — min: [|[X — Al < 7,
A> X, X e M.

and use the strategy that implements the bisection in 7, together with the
greedy procedure for minimizing the spectral abscissa described in Chapter 5.

First, we describe how to compute matrix X explicitly in each iteration
of the greedy method for minimization, thus finding the optimal solution on
the ball of radius 7.

Fix some 7 > 0, and let X’ be a matrix obtained in some iteration with v > 0
as its leading eigenvector. We rearrange positive entries of v: v;, > --- > v;,,
where S is support of v, and |S| = m. In the next iteration of the greedy
procedure we construct the matrix X = (z;5):

79



For each i € S we solve

(x;,v) — min, x, €F;
which we can rewrite as
m m m
Zaz-- vj, — min : k=t Tige Z 7T F D e (6.12)
R | wig, =0, @ F i '

k=1

We can solve (6.12) explicitly:

O’ k < ll
Ty =4 —T+ Yy aij,, k=1 (6.13)
Qi s k > l,

where z
l; = min {i, min{l € S‘; aj, > 7'}} (6.14)

Forie S, but j ¢ S, we take x;; = a;;; and if i ¢ S we put x; = .

Alg. HUS: Computing the closest Hurwitz stable Metzler matrix in
L., norm

Step 0. Take LA]

5+ as the starting value for 7.

Step 1. Minimize the spectral abscissa on the ball of Metzler matrices B, (A)
by using the selective greedy method and applying (6.13). Let X be a matrix
with the minimal spectral abscissa on B, (A). Keep implementing the bisection
on 7, until the ball B,(A) for which 7y, = n7(X) < 0 is obtained. Compute
the leading eigenvector v of the matrix X and proceed to the

Step 2. Construct matrices C' = (¢;;) and R, as follows. For each i € S

0, k < lz

l;
Cij = 4 Dosmr Qije, k=1
QAijy s k> ll

where [; is given by (6.14), while R is a boolean matrix having ones on posi-
tions (7,l;) and zeros in all other places. If some of the indices 7, j are not in
the support, then we put ¢;; = z;;. We can write X = C — 7R.
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Denote by 7. a potential optimal value of the problem (6.11). To determine
this value we proceed to the next step.

Step 3. Since n(X) < 0, we have by Lemma 6.2 that X is invertible and
—X'=—(C—-7R)'>0.

Since 0 = n(C — 7R) = n(C — 7R+ (7 — 7)R), it follows that det(—(C —
TR) — (T — ) R) = 0. From here we have

det ( I+(C— TR)_1R> ~0.

T — Tk

Matrix —(C'— 7R)™'R is non-negative and A = —— is its (positive) leading
eigenvalue.

We find the potential optimal value 7, by computing the leading eigenvalue \
of the matrix —(C' — 7R)™'R, and then calculating

1
Te =T — —.

A

Step 4. To check if 7, is really optimal, start iterating through the greedy
procedure on the ball B;, (A).

If during some iteration a matrix with negative spectral abscissa is obtained,
Ty is not the optiaml value. Stop the greedy procedure and return to Step 1,
taking now 7, as the starting value for 7.

Else, if we finish the greedy procedure obtaining the matrix X, with minimal
spectral abscissa 7(X,) = 0 on the ball B, (A), we are done: 7, is the optimal
value for the problem (6.11), with X, as the corresponding optimal solution.
o

Remark. Contrary to Algorithm SCS for Schur stabilization, here we let the
greedy procedure finish its course in Step 1, without interrupting it. We do this
since numerical experiments showed that for Hurwitz stabilization this practice
leads us to the solution much quicker, than when doing the interruptions.
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Example 6.14 For a given Hurwitz unstable Metzler matrix

0N

Il
o DN W I W
[ RSO N N
O~ N O N
=~ = W Ut =
© 00 O 0 =

with (A) > 0, the described procedure computes the matrix

o 0O 0 0 o0
T -7 6 5 0
X=13 0 -4 3 0
2 0 0 -1 0
8 0 0 4 -1
as the closest stable Metzler with 7, = 10. o

Numerical results

In this subsection we report the numerical results for the implementation
of Algorithm HUS, as the dimension of the starting matrix A is varied. By
t fun Wwe denote running time of the algorithm applied on a full starting matrix;
tsparse 15 the running time for sparse matrices, having the density parameter
between 9 — 15%. The precision parameter of the power method was set to
e = 1077 in most of the experiments, except in some cases when it was required
to set it to 1078, so the code could finish.

d | 50 250 500 1000
trau | 0.4s  10.96s 49.22s 273.21s
toparse | 0.31s  8.38s  12.29s  66.42s

Table 6.1: Numerical results for Hurwitz stabilization
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The next table shows how the sparsity affects the computations. The dimen-
sion is kept fixed at d = 850 in all experiments, while the density parameter ;
for each row of the starting matrix is randomly chosen from the given interval.

Vi ‘ 3-8 9-15 16-21 22-51 52-76 77-100
t ‘ 69.44s 60.9s 127.98s 115.63s 152.12s 132.85s

Table 6.2: Effects of sparsity

The importance of the solution set

The following example illustrates the importance of imposing the set of
allowable solutions for the stabilization problems.

Example 6.15 Observe the non-negative matrix
19
A=
(6 0)
with spectral abscissa (i.e. spectral radius) greater than one. If we want to

find a closest non-negative matrix having spectral abscissa (i.e. spectral radius)
equal to one, we have a Schur stabilization problem. Solving it, we obtain the

matrix
0 4.236
X = ( 0.236 0 )

as the closest Schur stable, with 7, = 5.764. However if we expand our set of
admissible solution to a set of Metzler matrices, we get

—44 9
Y*_( 0.6 0)

as the solution. In this case the distance to the starting matrix will be 7, = 5.4,
which is smaller than for the closest non-negative matrix. o
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Remark In the previous example we found the closest Metzler matrix to a
matrix A having n(A) = 1 by slightly modifying Step 4 of the Algorithm SCS:
we used the greedy procedure on the balls of Metzler matrices B,(A), instead
on the balls of non-negative matrices B (A). Further, we changed spectral
radius to spectral abscissa, and determined the indices [; using the formula
(6.14).
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Chapter 7

Applications of selective greedy
method to Metzler matrices

Checking the reliability of a given data

One of the most prominent uses of Metzler matrices is for mathematical
modelling [3, 4, 35]. Numerous phenomena can be modelled by positive linear
dynamical systems. In most simple case these systems have the form & = Az,
where = x(t) is a vector of time-dependent unknowns, and A is a time-
independent Metzler matrix. The coefficients of A are determined from the
gathered data. Often, researchers are interested in examining the stability of
the model, which is reflected by the Hurwitz stability of matrix A. However,
gathered data might contain some errors (i.e. due to the measurement impre-
cisions), which can lead us to the model with qualitative behaviour completely
different than the real picture. To check if our data is reliable, we can optimize
spectral abscissa on the ball B.(A).

For example, let us assume that the matrix of our model-system A is Hur-
witz stable and that each entry contains an error not bigger than €. To check
if our model is reliable, we need to maximize the spectral abscissa on B.(A).

Let X, be the optimal matrix. If n(X,) < 0, we are safe and the qualita-
tive behaviour of our model will agree with the real state of affair, even in the
case of making the biggest predicted errors. On the other hand, if we obtain
n(X.) > 0, we cannot claim that our model reliably describes the phenomenon.
In this case one needs to further refine our data gathering methods.
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Similar reasoning can be applied if for our model we have n(A) > 0, and
we want to check if the real system is unstable as well. However, in this case
we would actually need to minimize spectral abscissa on B..

Stabilization of 2D postitive linear switching systems

Positive linear switching systems (LSS) are an important tool of math-
ematical modelling. They are a point of an extensive research with many
applications [5, 6, 7]. Let A;, i =1,..., N be a family of Metzler matrices. A
positive LSS is given with:

i(t) = A (D)

#(0) = =, (7.1)

where x € R? and 0 : Ry — {1,..., N} is a piecewise constant switching
signal.

A crucial question in the theory of LSS is the asymptotic stability under
the arbitrary switching signal. The following theorem provides us with the
necessary condition:

Theorem 7.1 [5] If the positive LSS (7.1) is asymptotically stable (under the
arbitrary switching), then all the matrices in the convex hull co{Ay, ..., Ax}
are Hurwitz stable. O

The converse of Theorem 7.1 is true only for the two-dimensional case [6].
Therefore, we can use Hurwitz stabilization on the unstable convex combina-
tions to build an algorithm for the stabilization of the 2D positive L.SS. By this
we mean constructing a stable LSS from the original system, as shown below.

Assume that 2 x 2 Metzler matrices A;, 1 = 1,..., N are Hurwitz stable.
If some of them is not, find and replace it with its closest stable. Suppose that
there exists a matrix in co{ Ay, ..., Ay} that is not Hurwitz stable.

Let A = Zfil a; A; be a convex combination in co{ A1, ..., Ay} with the largest

spectral abscissa (321, a; =1, a; € [0,1], i = 1,..., N). Find its closest Hur-
witz stable matrix A’, and denote by 7, the optimal distance.
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We now need to decompose the matrix A" = Zfil a; A}, while taking care
about matrices A;. We have

N N
o= A=A <D aillA = Al =) e (7.2)
=1 i=1

Choose values 7; and matrices A} € B, (A;), so that (7.2) and A’ = Zf\il a; Al
are satisfied.

Let A, be a convex combination in co{A],..., Ay}. If n(A.) < 0, then
we are done: the switching system built from matrices A} is asymptotically
stable. Else, we should make a different choice of 7;, or restart the procedure,
but now starting with matrices A.

7.1 Closest stable sign-matrix and its
application to positive LSS

The notions of sign-matrices and sign-stability originated from the prob-
lems in ecology [10, 11], economy [38, 39] and chemistry [40]. Ever since,
those concepts have been a point of interest in the mathematical literature
(35, 36, 37]. Metzler sign-matrices are very useful for the dynamical system
modelling. They come in handy if we do not posses quantitative data, but just
the information on the sign of coefficients of the observed system. By analysing
the sign-matrix of the system, we can discern its qualitative behaviour. As we
will see later on, Metzler sign-matrices can be used as a tool for stability anal-
ysis of the linear switching systems.

Denote by Mg, set of all real Metzler matrices with entries from {—1,0, 1}.
Hurwitz stable matrices from Mg, have one peculiar property: replacing any
entry by an arbitrary real number of the same sign does not influence the sta-
bility.
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Example 7.2 The matrix A € Mg,

-1 1 0 0 ©0
0o -1 0 0 1
A= 0o 1 -1 0 0
1 10 -1 1
0o 0 0 0 -1
is Hurwitz stable with n(A) = —1. Metzler matrix A" with the same sign
pattern, given by
—107° 10° 0 0 0
0 —107° 0 0 10°
A= 0 10° —107* 0 0
10° 10° 0 —107° 10°
0 0 0 0 —107°
has n(A’) = —107?, i.e., is also Hurwitz stable. It remains stable in spite of
very big changes (order of 10°) of all non-negative entries. o

The same can be said for Schur stable matrices: replacing a positive entry
of a zero spectral radius matrix by an arbitrary non-negative number will not
change its spectral radius. We illustrate this by

Example 7.3 The (0,1)-matrix

000O0O0
00111
A= 1 00 1 1
1 0001
10000

is Schur stable with p(A) = 0. A non-negative matrix matrix A" with the same
distribution of zero entries, given by
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00 0O0O
00123
A=]140056
70 0 0 8
9 0 0 0O
has also zero spectral radius, i.e., is also Schur stable. o

The secret behind this behaviour can be discerned by examining the sign-
matrices and their graphs.

Definition 7.4 A matriz is called a sign-matrix if its entries take values from
the set {—,0,4+}. If — appears only on the main diagonal, we say it is Matzler
sign-matrix. If it does not contain —, then it is non-negative sign-matrix.

In analogy with the real Metzler and non-negative matrices, we can also con-
sider Hurwitz and Schur stability of sign-matrices.

Definition 7.5 Let M be a sign-matriz. We say that real matriz X belongs
to a qualitative class of a matrix M, denoted by Q(M), if

< 0, m;; = —
zijq =0, mi; =0
> 0, mi; = +.

Definition 7.6 A Metzler sign-matriz M is strongly (weakly) Hurwitz stable
if all the matrices from the qualitative class Q(M) are strongly (weakly) Hur-
witz stable. A non-negative sign-matriz M is strongly (weakly) Schur stable
if all the matrices from the qualitative class Q(M) are strongly (weakly) Schur
stable.

Theorem 7.7 [35] Let M be a Metzler sign-matriz, and sgn(M) be a real
matrix given by

_]-7 mg;; = —,
sgn __ _
m;; =< 0, my; =0,

1, mij = 4.
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M is strongly (weakly) Hurwitz stable if and only if sgn(M) is strongly (weakly)
Hurwitz stable. Moreover, M is strongly Hurwitz stable if and only if sgn(M )+
I is the adjacency matriz of an acyclic graph.

If M is a non-negative sign-matriz, then M is strongly (weakly) Schur stable if
and only if sgn(M) is strongly (weakly) Schur stable. Moreover, M is strongly
Schur stable if and only if sgn(M) is the adjacency matriz of an acyclic graph.
O

From Theorem 7.7 we see why the Hurwitz stable matrices from Mg,, do not
change their stability, even as we change their non-zero entries.

The problem of Hurwitz stabilization of real Metzler matrices can be
formulated for the Metzler sign-matrices as well. Theorem 7.7 gives a way to
do so: for a given Hurwitz unstable Metzler sign-matrix M, we need to find
closest Hurwitz stable Metzler sign-matriz X. In other words, X should solve

{ lsen(M) — sgn(X)|| — min (7.3)

n(sgn(X)) < 0.
The norm considered is the L., norm.

Remark. Notice that in Hurwitz stabilization of sign-matrix we allow our
optimal solution to have negative spectral abscissa as well. We do this since
in some cases a solution with zero spectral abscissa does not exist.

Denote B;*" = Bj,NMeg,. Using minimization of spectral abscissa on ;%"
we can present a simple procedure for solving problem (7.3).

Algorithm HSM: Finding the closest Hurwitz stable sign-matrix

Let M be a Hurwitz unstable sign-matrix. Set k = LMJ By X denote
the sign-matrix such that 7, = n(sgn(Xy)) is minimal on B;*".

Doing a bisection in k, minimize the spectral abscissa on the ball B;*". Do
this until sign-matrices X;_; and X} are obtained, with the (minimal) spectral

Sgn

abscissas 7,_; > 0 and 7, < 0 on the balls B;®", and B;*", respectively.

We can finish the procedure by taking k£ = k, as the optimal value, and
X = X, as the optimal solution of (7.3).

90



Additionally, we can run a DFS algorithm on matrix X, if it has no cycles
(we consider — entries as no-edge). In this case we obtain a spanning tree,
and then restore all the + entries present in the original matrix M without
creating cycles. The matrix obtained this way will still be the closest stable,

and it will contain more + entries, resembling the starting matrix even better.
o

Example 7.8 For the unstable Metzler sign-matrix

0 + + + 0
+ 4+ 0 + +
M=+ 4+ 0 0 +

+ 0 0 — +

0o 0 + + +

we find

0O 0 0 + O

+ - 0 + +

M,=1 + 0 0 +

0O 0 0 — 0

0O 0 0 + 0

with n(sgn(M,)) = 0 as the closest sign-stable with optimal distance k, = 2.

o

Example 7.9 For the unstable Metzler sign-matrix

=
I
o+ + +
+ + oo+
+ + oo o
oo+ + o
o o+ +
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we find

—~ 00 00
+ - 0 + +
M,=|+4+ 0 — 0 0
+ 0 + — 0
000 0 —

with n(sgn(M,)) = —1 as the closest sign-stable with optimal distance k, = 2.
The optimal solution with zero spectral abscissa is impossible to find, because
at the distance & = 1 we obtain the matrix

- 0 0 0 +
+ 0 0 0 +
M=+ 0 0 0 0
+ + + — 0
00 + 0 —
with n(sgn(M’)) = 0.46 as the one with the minimal spectral abscissa. o

For a non-negative sign-matrix M we can set the problem of finding the
closest Schur stable non-negative sign-matriz, analogous to (7.3):

{ lsgn(M) — sgn(X)|| — min (7.4)

plsgn(X)) = 0.

Inspecting Theorem 7.7 we see that the problem (7.4) is equivalent to the
problem of finding the closest acyclic subgraph, and therefore it can be solved
by using Algorithm ACY given in Chapter 4.

We have seen that Theorem 7.1 works both ways only in the two-dimensional
case. However, there is a criterion of asymptotic stability, valid in any dimen-
sion, which involves sign-matrices and sign-stability.

Theorem 7.10 [35] Let M;, i =1,..., N be a family of Metzler sign-matrices.
Forall A; € Q(M;), i=1,..., N, the LSS (7.1) is asymptotically stable if and
only if all the diagonal entries of M;, i =1,..., N are negative and Zfil M;
18 strongly Hurwitz sign-stable. O
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Now, assume that the sign-matrices M;, 1 = 1,..., N have negative diag-
onal entries, that they are Hurwitz stable, but their sum M = Zfil M; is not.
Using Algorithm HSM, we can find closest Hurwitz sign-stable matrix M’ to
M. Let k, be the optimal value. Now we need to decompose M’ into the sum
Z?Ll M}, while taking into the consideration the structure of matrices M;. We
have

N
ko = [sgn(M) —sgn(M")]| < llsgn(M;) —sgn(M)|| = > k. (7.5)
i=1 i=1
We need to choose values k; and matrices M; € B*"(M;), so that (7.5) and

M = Zf\il M! are satisfied. Matrices M/, including their sum, will have
negative entries on the main diagonal and be Hurwitz stable. Therefore, by
Theorem 7.10, any LSS we construct from matrices in Q(M/) will be asymp-
totically stable, while keeping the similar structure to the initial system.

The following example illustrates how to apply Algorithm HSM to stabilize
the positive LSS.

Example 7.11 Observe a positive linear switching system, switching between
the following three strongly Hurwitz stable matrices:

8 0 0 0 -5 0 0 2
0 -4 2 0 0 -3 0 0
Ay = 7 0 _s 3 | &= 2 2 -1 3
0 1 9 —9 0 5 0 -8

-9 0 2 0

0 -9 0 2

Ay = 0 7 -2 3

0 0 0 —4
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Their corresponding sing-matrices are given by

— 0 0 0 - 0 0 +
M= | 0 + 0 o0 -0
+ 0 — + + o4+ =
0 + + - 0 + 0 -

- 0 + 0

0 — 0 +

Ms =
’ 0+ — + |’
00 0 -

and their sum M = M; + M,y + M5 with

o 4+ o |
+ |
I+
+ + +

Since sign-matrix M is Hurwitz unstable (with n(sgn(M)) = 1.303), our posi-
tive LSS will not be asymptotically stable. Applying Algorithm HSM, we find
its closest strongly Hurwitz stable sing-matrix

- 0 0
0 — 0
+ +

0 +

M =

o+ +

o |
|

with an optimal distance k, = 1. We select ky = ko = k3 = 1 and decompose
M' = Mj + My + Mj by choosing M; € B#"(M;), i =1,2,3. We have:
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0 0 - 0 0 +
0 0O — 0 0

+ + — 0

0 + 0 -

=
I
o+ o |
+ o
o |
| + © o
=
|
o4+ o/

oo o |

+ —
0

o
|

Following the sign pattern of matrices M and correspondingly cutting the
interdependencies in matrices A;, we get

-8 0 0 0 5 0 0 2
, [ 0o—=4 0o of , | 0-3 0 o0
A=l 7 0 s o | 2 o2 1o
0 1 0 —9 0 5 0 -8

-9 0 0 0

, | 0o -9 0o 2

L=l 0 7 2 0

0 0 0 —4

A newly obtained LSS built from matrices A, will be asymptotically stable
under the arbitrary switching.

Using the just described procedure we can obtain the information on which
interdependencies we should cut from the single systems comprising the LSS,
in order to make it stable. o

Having matrices of LSS with all negative diagonal entries might not always
be the case in real applications. Fortunately, the described procedure can also
be used when there are some zero entries on the main diagonal. The essential
thing is to cut the interdependencies of the matrices comprising the LSS, so
that the sum of the newly obtained matrices (i.e. its graph) contains no cycles.
We are not in trouble even if our starting matrices have positive diagonal
entries: we just need to make them equal to zero.
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Appendix: Implementation and
strategies of the presented
algorithms

The last part of the thesis is devoted to technical details about the
implementation of the presented algorithms. The codes for the algorithms
are done in Python, using NuPy and SciPy packages, and can be found on:
https://github.com /ringechpil /thesis_codes. Each code comes with the set of
comments containing explanations. We also present here one of the most
important implementation strategies for countering the cycling caused by cal-
culation imprecisions.

Overcoming the cycling caused by the rounding errors

Even tough the selective greedy method, in theory, can safely and effec-
tively be used on Metzler product families, the cycling might occur due to
the computational errors, especially in the case of very sparse matrices. The
following example sheds some light on this issue.

Example 7.12 We run the selective greedy algorithm to the product family
F = Fix---xFyof (0,1)-matrices of dimension 7, for solving the minimization
problem. Each uncertainty set JF; consists of (0, 1)-vectors containing from 1
to 4 ones. The selective greedy algorithm cycles between the following two
matrices:
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Both matrices have the same leading eigenvalue A, = 1, and the al-
gorithm computes the same leading eigenvector v = v’. Both matrices are
minimal in the second, fifth, and sixth rows (the rows that get changed) with
the respect to the vector v, so we have (a;,v) = (a,v) for i € {2,5,6}. Ac-
cording to the greedy algorithm, those rows should remain unchanged, and
algorithm have actually to terminate with the matrix A. The explanation
for this contradictory behaviour is that the machine, due to the calculation
imprecisions, keeps miscalculating the above dot products, first taking the
“problematic” rows a; of the second matrix as the optimal, and then rolling
back to the rows a;, seeing them as optimal. o

One of the most straightforward strategy to resolve this issue is to sim-
ply round all calculation to some given number of decimals. This approach is
particularly efficient if we are not concerned with high precision. However, if
we want our calculations to have a higher order of precision, we need to resort
to other strategies.

Another strategy to deal with this issue is to modify the part of the al-
gorithm that dictates the conditions under which the row changes. Here we
use notation for the maximization, although for everything is completely anal-
ogous for the minimization case.

Let a,gk) be the i-th row of a matrix Ay obtained in the kth iteration, v, its
5’““) = max,er, (a, vy), different from az(k). Unless
the computed dot products (a(k)

a!® will get replaced by agkﬂ)

. . However, as can be seen from Example 7.12
above, the change may occur even if those dot products are the same. The
undesired change may also occur even if the vector agkﬂ) is not truly opti-

mal, but the computed dot products are really close to each other. This make

leading eigenvector, and a
, ) and (agkﬂ),vk) are the same, the row
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(k)

the algorithm roll back to the vector a;" in the next iteration, and thus cycling.

(k)

To counter this, we impose the rule that the row a;”’ gets replaced by the

row aEkH) if and only if aEkH) = maxXuer, (@, v;) and \(a,gk), vk)—(agkﬂ), vi)| =
J, where 0 is some small parameter. In other words, in the (k + 1)st iteration,

the row az(»k) will not be replaced by the new row agkﬂ) if their computed scalar

products with the vector vy are really close to each other. Of course, we need
to take care not to make § too big, since it can lead to the incorrect answer
and bad behaviour of the algorithm.
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Thesis summary

Before closing the presentation, we make a brief summary by going
through the four questions posed in the introductory chapter, listing the the-
sis contributions on the matter, and giving some ideas for the possible future
research.

N1: Optimizing spectral radius on a given family of non-negative matrices.

By supplying the greedy method with the selective power method for com-
puting the Perron eigenvalue, we were able to come up with the solution for
optimizing the spectral radius on a product family of non-negative matrices.
This new approach, the selective greedy method, can handle even the sparse
matrices very fast. Moreover, we proved its local quadratic and global linear
convergence. A possible further research in this direction would be supplying
the greedy algorithm with some other, more efficient, method which will al-
ways choose a 'good’ leading eigenvector from the Perron subspace.

N2: Finding the closest Schur weakly (un)stable non-negative matrix in a given
norm.

Using few tricks we have managed to significantly improve the perfor-
mance of the algorithm for finding the closest stable non-negative matrix in
the Lo norm. Furthermore, we used the Schur stabilization to graph theory,
and even found a way to apply it to approximate the MAS. The shortcomings
of our approach for MAS approximation is that it still requires more in-depth
theoretical research and large-scale numerical experiments to confirm its effi-
ciency. Of course, this offers a good point for a further research.
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M1: Optimizing spectral abscissa on a given family of Metzler matrices.

Introducing the translative power method we have managed to modify
selective greedy method and make it applicable for optimizing the spectral
abscissa on the product families of Metzler matrices. The performance of the
selective greedy method is still remarkable as in the non-negative case. The
only problematic ground are the very sparse and big zero spectral abscissa
matrices. There, the translative method can really slow down. Finding an
effective way to overcome this presents another direction for the further devel-
opment of the work.

M2: Finding the closest Hurwitz weakly (un)stable Metzler matrix in a given
norm.

We solved the problems of Hurwitz (de)stabilization in L., (and therefore,
L;) and max- norms by providing either an explicit solutions or an effective
algorithms. Bringing all pieces of the work together, we used the connection
between sign-matrices, graph theory and positive LSS, together with Hurwitz
stabilization, to provide a strategy for stabilizing an unstable LSS of any di-
mension.
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