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Introduction

The nonlinear Schrödinger (NLS) equation

i∂tψ= −
1
2
∆ψ+ V (t, x)ψ+ f ′(|ψ|2)ψ , (1)

is ubiquitous in physics, as it arises as an effective description of many importart
physical models, like Bose-Einstein condensation [55, 60, 105], superfluidity [32,
33], nonlinear optics [78], wave propagation in nonlinear media [130], deep water
waves [129], plasma physics [128]. Moreover, it is also relevant to consider the hy-
drodynamical formulation associated to wave function dynamics ([86]). It is often
computationally less expensive and nevertheless it provides the observable quanti-
ties measured in experiments. For the linear Schrödinger equation describing the
dynamics of a quantum particle, the hydrodynamical formulation was pointed out
since the early days of quantum mechanics by Madelung [89], who attempted to
give a description to the quantum system in terms of the dynamics for the probabil-
ity density and the phase of the wave function. This formulation was later resumed
by Landau ([76, 85]) to describe nonlinear phenomena in superfluidity. A strict
relation between the Landau two-fluid model and nonlinear Schrödinger equations
(Gross-Pitaevskii equations [61, 104]) was already noticed in the steady case by
Ginzburg and Pitaevskii in [55].

This analogy was further exploited in many other physical contexts, see for
instance superconductivity [33], semiconductor devices [48], dense astrophysical
plasmas, laser plasmas [63, 64, 111, 112] and Bose-Einstein condensation at finite
temperatures [58, 59, 105].

In his theory Landau distinguished between the superfluid, inviscid, flow and the
normal, viscous, flow and used the hydrodynamic formulation to describe the inter-
actions between the two fluids. At finite temperatures, close to the transition tem-
perature, the interactions between the two fluids, mutually exchanging mass and
momentum, are non-negligible and they produce some dissipative effects ([76]).
Unfortunately Landau’s two-fluid model description of superfluidity almost com-
pletely lacks of a rigorous mathematical treatment. Amongst the few analytical re-
sults we cite [5], where a simplified model was proposed; there the authors show the
existence of global in time finite energy weak solutions for a toy model. The strategy,
following also the theory developed in [6, 8], consists in studying the underlying
wave function dynamics for the superfluid part and in constructing a sequence of
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approximate solutions. However the result is partial, since a finer analysis of the
main linear propagator for the superfluid part is missing and the results available in
the literature ([2, 17, 39]) were not suitable to develop a complete theory even for
the toy model. This is indeed the main motivation for the study developed in the
first part of this thesis, which concerns the construction of the fundamental solution
for a linear Schrödinger equation with a time dependent potential and the study of
its dispersive properties.

More precisely, in the model introduced in [5], the normal fluid is not influ-
enced by the dynamics of the superfluid, which on the other hand interacts with the
former through a collision term. The normal fluid, being a classical one, evolves
according to the compressible Navier-Stokes equation and, once solved by using
the results available in literature ([28, 31, 88]), can be used as a given term in the
equations for the superfluid. The idea now is to study the latter one by means of
the associated wave function dynamics. However, for this model, the wave func-
tion satisfies a nonlinear Schrödinger equation like (1) with a potential V such that
V = Vp+V∞, where Vp ∈ L2

t W 1,6
x , V∞ ∈ C∞(Rn) for a.e. t ∈ R+ and for any |α| ≥ 1,

∂ αx V∞ ∈ L2
t L∞x . Chapter 1 is devoted to study the fundamental solution for the free

Schrödinger equation with a scalar potential enjoying the same properties as V∞.
This will be a first step towards establishing a more satisfactory existence theory for
the model introduced in [5]. More details will be given in Appendix B.
When dealing with such potentials, which cannot be considered as Kato perturba-
tions of the free Laplacian, a suitable strategy, at a formal level, consists in using
the classical methods of Feynman path integrals. In the literature there are dif-
ferent approaches for a rigorous mathematical treatment of Feynman integrals, for
instance in [2] it is proposed an approach based on an infinite dimensional gen-
eralization of Fresnel integral transformations. Our approach instead follows di-
rectly from the methods developed by Fujiwara ([36]) and his school by using the
so called time slicing approximation technique. The strategy consists in construct-
ing the propagator by means of an oscillatory integral operator, where the phase is
given by the classical action, computed along classical trajectories. In particular let
∆ : s = t0 < t1 < · · · < tL = t be an arbitrary subdivision of the time interval [s, t]
and x j ∈ Rn, j = 0, 1, . . . , L − 1. Denote by γ∆ = γ∆(x0, x1, . . . , xL , x) the piecewise
classical path joining (t j , x j), then

C(∆)ϕ =
L
∏

j=1

1

(2πi(t j − t j−1))
n
2

∫

Rn

· · ·
∫

Rn

eiS(γ∆)ϕ(x0)d x0d x1 · · · d xL−1 ,

yields a suitable approximation for the fundamental solution. Fujiwara in [36]
proved that C(∆) converges to the propagator in the topology of the operator norm
on L2(Rn), in the case when V ∈ L∞t L∞loc,x and ∂ αx V ∈ L∞t L∞x , for |α| ≥ 2. Moti-
vated by the toy model for superfluidity studied in [5], we study in Chapter 1 the
construction of the fundamental solution for a Schrödinger equation when the po-
tential satisfies V ∈ L2

t L∞loc,x and ∂ αx V ∈ L2
t L∞x . We first analyze the classical orbits,

which in our case turn out to be non-Lipschitz in time because of our assumptions
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on the potential. Therefore we are forced to study the problem in its integral for-
mulation. As a consequence of this, we obtain orbits whose regularity is only C 1/2.
However, this integral formulation is fully compatible with the Fujiwara construc-
tion when differentiating with respect to initial data. Despite the Lagrangian is only
square integrable in time, we can still define the action, but differently from Fujiwara
we cannot use the Rademacher’s theorem and infer the almost everywhere differ-
entiability of the action in the product space Rt ×Rs ×Rd

x ×R
d
y . The lack of almost

everywhere differentiability introduces a major difficulty, because the parametrix,
constructed as an oscillatory integral operator whose phase is the action, therefore
cannot be differentiated almost everywhere. To overcome this problem we approx-
imate the action by using orbits generated by a smoothed potential which allows
to pass to the limit both the action and the paramtetrix. The construction of the
fundamental solution then does not present major difficulties. Furthermore this
construction yields also a dispersive estimate which holds for small times. By ex-
ploiting the result by Keel-Tao in [73] (see also [15, 16]) it is then possible to infer
the whole set of Strichartz estimates. We want to stress here that in Chapter 1,
we will strictly follow Fujiwara’s notation, in order to allow the readers, already
familiar with the paper [36], to fully understand the main differences between our
framework and Fujiwara’s one.

The next natural question which arises is the local smoothing associated to the
propagator just constructed. This issue is discussed in Chapter 2. The local smooth-
ing for dispersive equations was first observed by Kato in [71] for the KdV equation.
Then it was further developed by many authors, see for example [22], [121], [113].
In particular in [126] Yajima proved the local smoothing property for (a general-
ization of) the class of propagators constructed by Fujiwara in [36]. By following
Yajima’s techniques in [126], we focus the attention on a particular choice of the
potential, which is representative in the class of potentials we studied in advance.
In particular we choose V (t, x) = a(t)b(x), with a ∈ L2

t and b quadratic.

In the last Chapter we study the Cauchy problem for a nonlinear Maxwell-
Schrödinger system. The motivation for investigating the Maxwell-Schrödinger with
the presence of a nonlinear potential can again be found in a class of quantum hy-
drodynamical systems with a nontrivial pressure tensor. More precisely, in some
physical contexts (for example dense astrophysical plasmas, like in white dwarfs)
electromagnetic fields play a relevant role, so we need to consider them in our hy-
drodynamical system. In particular it can be seen that, under suitable physical
conditions, the pressure term appearing in the quantum hydrodynamical systems
can be approximated by a power law (see Section 3.5); so the introduction of the
power-type nonlinearity in the Maxwell-Schrödinger system is fundamental to re-
cover the nontrivial pressure term in the QMHD. This leads to the analysis of a
class of quantum magnetohydrodynamic (QMHD) equations, whose wave function
dynamics analogue is given by a Maxwell-Schrödinger system with a power-type
nonlinearity.
We first prove a local strong well-posedness result in H2 × H

3
2 . Our strategy relies
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on the construction of the evolution operator associated to the magnetic Laplacian,
by using Kato theory; we then perform a fixed point iteration scheme, by means of
Duhamel’s formula. Unfortunately, due to the presence of the power-type nonlinear-
ity and the lack of intrinsic Strichartz type estimates for the magnetic Laplacian, the
local theory can not be extended globally in time, as on the contrary occurs without
the nonlinear power-type potential [97, 98]. To overcome these difficulties, we ap-
proximate our system by using Yosida type regularization and we obtain the global
well-posedness for the approximating system in H2 × H

3
2 . Then, by passing to the

limit, we obtain a global in time finite energy weak solution. As a byproduct of our
existence result, we can then show the existence of weak solutions in the energy
space to the QMHD system.

For the convenience of the reader we include two appendices. In Appendix A we
collect some results on oscillatory integral operators; in Appendix B we summarize
the key points about the connection between nonlinear Schrödinger equations and
quantum hydrodynamics systems, with an application to the study of a two-fluid
model.
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Chapter 1

A construction of the fundamental
solution for a Schrödinger
equation with time dependent
potential

1.1 Feynman Path Integrals

In this section, we recall some ideas related to the Feyman path integrals, contained
in [2, 91]. We refer to these books for more details.

In 1948, Feynman introduced the notion of path integrals in [34], where he
proposed a new approach to non-relativistic quantum mechanics. He developed
an earlier idea suggested by Dirac in [25], regarding the analogue of the concepts
of classical Lagrangian and action in quantum mechanics. It is well known that
in classical mechanics the action functional, defined as the integral with respect to
time of the Lagrangian, plays a crucial role in determining the dynamics of a system.
Indeed the classical trajectory of a particle can be obtained as the stationary point
of the action functional.
If we consider a particle, with mass m, position x and velocity ẋ , subject to the
action of a potential V , the classical Lagrangian is given by

L(x , ẋ) :=
m
2

ẋ2 − V (x) .

Feynman’s formulation of quantum theory generalizes the action principle in the
following sense: to a quantum system can not be assigned a unique (classical) tra-
jectory; one has to take into account every possible path from one quantum state to
another and then to sum over all the possibilities, a “sum over all possible histories
of the system". We stress here that Feynman’s description reintroduces to quantum
mechanics the notion of trajectory, which was meaningless in the traditional formu-
lations of quantum theory, according to Heisenberg’s uncertainty principle. These
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ideas are summarized in the first postulate in [34]:

“If an ideal measurement is performed to determine whether a particle has
a path lying in a region of space-time, then the probability that the result
will be affirmative is the absolute square of a sum of complex contributions,
one from each path in the region".

So, roughly speaking, in order to know the probability amplitude for a quantum
particle to reach the position x f at time t f , starting from the position x i at time
t i , one has to consider all the possible paths connecting the points x i and x f and
integrate over all of them. The question, now, is how to weight each individual path.
The answer is contained in the second postulate in [34]:

“The paths contribute equally in magnitude, but the phase of their contri-
bution is the classical action (in units of ħh); i.e., the time integral of the
Lagrangian taken along the path".

This means that, if γ(t) is a given path, it carries a contibution which is proportional
to eiħh−1S[γ(t)], where S[γ(t)] denotes the action along the pathh γ, that is

S[γ] =

∫ t f

t i

L(γ(t), γ̇(t))d t , (1.1)

with L being the classical Lagrangian along the path γ(t).
So, in order to determine the probability that a particle occupies a certain location
in space-time, it is necessary to sum all the contributions. In this way path integrals
come out and they can be expressed symbolically as

∫

eiħh−1S[γ]D[γ] , (1.2)

where the integration is over the space of paths γ which satisfy the boundary con-
ditions γ(t i) = x i and γ(t f ) = x f . Here D[γ] stands for a Lebesgue-type measure
on the space of paths. With this choice, it is clear that the classical path is singled
out, when ħh→ 0; indeed when ħh is regarded as a small parameter, the phase factor
e

i
ħh S[γ] becomes a rapidily oscillating function. It follows from the stationary phase

method, that the main contribution in (1.2) is given by the paths that make the
action stationary, that is the classical trajectories.

A physical intuition, behind the Feynman path integrals, can be found in the
famous two-slit experiment. Let us consider a source of electrons, placed in a plane
A. The electrons, starting from A, pass throuh a screen B, which has two slits and
they are detected in a plane C . By moving the detector in C it is possible to measure
the intensity of the electrons current in different places in C . According to classical
physics, the flux of the particles should be localized in two different places in C ,
depending on which hole in B they passed through. Actually, by reproducing the
experiment, an interference pattern appears on the screen C (see Figure 1.1).
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Figure 1.1: Two-slit experiment

This suggests that, if we are interested in the probability of finding an electron
in a specific location in C , we have to sum the probability amplitudes of the two
possible paths of the particle, through the first or the second slit. One can think
to generalize this result by inserting more holes or multiple screens between A and
the detector in C . As a result, there are more paths to be taken into account to
get the final amplitude of the electrons propagating through the screens. These
considerations lead to the concept of the sum over all possible paths and so to path
integrals, which can be regarded as an infinite-slit experiment.

In order to have a heuristic idea of Feynman path integrals, let us consider the
case of a non-relativistic particle with mass m, which moves in Rn. The particle
is subject to an external potential V (x), under the assumptions to be a bounded
continuous real valued function of Rn (see [2]). The classical Lagrangian associated
to the system is

L(x , ẋ) =
m
2

ẋ2 − V (x) .

As already recalled, the principle of least action tells us that the trajectory followed
by the particle to reach x f at time t f , starting from x i at time t i , is obtained as a
stationary point of (1.1) over the space of paths γ that leave the extremal points
x i and x f fixed. In the quantum mechanical picture, the state of a particle at time
t is described by a unitary vector ψ(x , t), called wave function, which solves the
Schrödinger equation

iħh∂tψ(t, x) = −
ħh2

2m
∆ψ(t, x) + V (t, x)ψ(t, x) . (1.3)

It is well known that, under suitable assumptions on the potential and on the domain
of the operator , H is self-adjoint. In the three dimensional case, for instance, if
V ∈ L2(R3) + L∞(R3), then −∆+ V (x) is self-adjoint on D(−∆) (see [106]). So,
once the inital datum ψ(x , 0) = ϕ(x) is specified, the solution of (1.3) is given by

ψ(t, x) = e−
i
ħh tHϕ(x) . (1.4)

By means of the Lie-Trotter-Kato formula, (1.4) becomes

ψ(t, x) = lim
k→∞

�

e−
i
ħh

t
k V e−

i
ħh

t
k H0

�k

, (1.5)
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where H0 = −
ħh2

2m∆. By using the Green function of the quantum free evolution
operator, we have

e−
i
ħh tH0ϕ(x) =

�

2πi
ħh
m

t
�− n

2
∫

ei m(x−y)2

2ħht ϕ(y)d y .

Hence

ψ(t, x)= lim
k→∞

�

2πi
ħh
m

t
k

�−k n
2
∫

Rnk

e−i i
ħh
∑k

j=1

�

m
2
(x j−x j−1)

2

(t/n)2
−V (x j)

�

t
kϕ(x0)d x0 · · · d xk−1.

(1.6)
Expression (1.6) can be interpreted as the finite dimensional approximation of the
path integral (1.2); indeed let γ be a continuous path satisfying γ(t) = x and γ(t j) =
x j , j = 0, . . . , k, with t j = t j/k, x0, . . . , xk−1 given points in Rn and xk = x . Then
the exponent in the integrand in (1.6) can be regarded as a Riemann approximation
of (1.1) along γ, that is

S[γ] =

∫ t

0

�

m
2
γ̇(τ)2 − V (γ(τ))

�

= lim
k→∞

k
∑

j=1

�m
2

(x j − x j−1)2

(t/n)2
− V (x j)

� t
k

.

This means that we are approximating γ with a piecewise line γk defined as

γk(τ) := x j +
(x j+1 − x j)

t
n

(σ− t j/n), s ∈ [t j/n, t( j + 1)/n], j = 0, . . . , k− 1 .

In the mathematical literature, we can find several attempts to give a rigorous mean-
ing to Feynman’s path integrals. Indeed the interpretetion of formula (1.2), which
is just heuristic, leads to mathematical difficulties. The first problem one has to
face deals with integration over the space of paths, which is an infinite dimensional
space. Then one has to specify the meaning of D[γ] in (1.2); it turns out that a
Lebesgue-type measure cannot be defined on an infinite dimensional Hilbert (or
Banach) space (see [91]); in 1960 Cameron showed in [14], that is not even pos-
sible to construct this measure as a limit of finite dimensional approximations. It
follows that the expression D[γ] is mathematically meaningless.
Actually a theory for integration in spaces of continuous functions was already
known also before the introduction of path integrals by Feynman; in particular we
mention, as a seminal work, [123], where in 1923 Wiener proved the existence of
Brownian motion (see also [99, 124, 127]).
One way to give a rigorous mathematical definition of Feynman’s path integrals, is
that of “analytic continuation", which is based on the expression of the solution of
the heat equation

∂tu(t, x) = σ∆u(t, x)− V (x)u(t, x) , (1.7)

(σ being a positive constant) as an integral with respect to the Wiener measure,
found by Kac in [68], by proving that the solution of (1.7) admits the following
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representation

u(t, x) =

∫

e−
∫ t

0 V (γ(τ)+x)dτϕ(γ(0) + x)dW (γ) , (1.8)

where dW (γ) is the Wiener measure for the Brownian motion defined on continuous
paths γ(τ), 0 ≤ τ ≤ t, with γ(t) = 0. Expression (1.8) is mathematically rigorous
and it is known as Feynman-Kac formula. By noting that (1.7) is analoguous to the
Schrödinger equation (1.3) if t is replaced by −i t, one can define the Feynman path
integral (1.2) as the analytic continuation of (1.8) to purely imaginary t. This ar-
gument can be made rigorous under suitable assumptions on the potential and on
the initial datum. This procedure results to be successful with potentials that are
a sum of a quadratic part plus a bounded potential with singularities, potentials
which exhibit a particular polynomial growth or an exponential growth if they are
the Laplace transform of measures. In this direction one can see [11, 14, 50, 100].
Another possibility to rigorously define path integrals consists in regarding Feynman
measure as an infinite dimensional distribution, see for instance [92].
An alternative approach, in the mathematical justification of Feynman path inte-
grals, was proposed by Itô in [66] and further developed by Albeverio and Høegh-
Krohn in [2]. Itô considered the space of paths γ as a separable Hilbert space with
norm |γ|2 =

∫ t
0 γ̇(τ)dτ. The Feynman path integral is recovered as an infinite di-

mensional Fresnel integral in the Hilbert space. This procedure works for potentials
which are the sum of a quadratic form and the Fourier transform of a complex mea-
sure of bounded variation.
Another possible method is the so-called “time slicing approximation" of Feynman
path integrals, developed by Fujiwara and Kumano-go (see [36, 38, 40–46]). The
starting idea is to construct a subdivision ∆ of the time interval [s, t]

s = t0 < t1 < · · ·< tL = t .

We denote with ω(∆) = sup j=1,...,L−1 |t j − t j−1|. For each j we consider a point
x j . Now the path γ in the expression (1.2), is approximated by a piecewise clas-
sical path, that is the solution (which is unique under suitable assumptions on the
potential and for sufficiently small |t − s|) of the classical equation of motion

mγ̈(τ) = −∇V (τ,γ(τ)) ,

with boundary conditions γ(t j) = x j and γ(t j+1) = x j+1. So, if we denote with γ∆
the approximation of γ, we can define the path integral as

∫

e
i
ħh S(γ) f (γ) = lim

ω(∆)→0

L
∏

j=1

1

(2πiħh(t j − t j−1))
n
2

∫

RLn

e
i
ħh S(γ∆) f (γ∆)

L
∏

j=1

d x j .

In this Chapter we will focus on this last procedure.
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1.2 Presentation of the problem

In this chapter we consider a Schrödinger equation for a wave function subject to a
time dependent potential

�

−i ∂∂ t u(t, x)− 1
2∆u(t, x) + V (t, x)u(t, x) = 0 ,

u(s, x) = ϕ(x) ,
(1.9)

with (t, x) ∈ R × Rn (ħh = 1 here). The purpose of our study is to prove the exis-
tence and uniqueness of solutions to (1.9) under some suitable hypotheses on the
potential.

Equation (1.9) is of fundamental importance in quantum mechanics and many
other contexts, so it is a basic mathematical question to see under which assumptions
it is possible to construct its fundamental solution and which integrability/regularity
properties it satisfies.

In the mathematical literature there is a variety of methods available to study
this problem. In the case when the potential can be considered as a perturbation
of the free evolution given by the Laplacian, then it is possible to apply the abstract
theory of evolution operators (see for example [69, 106] and references therein).
Alternatively, by exploiting the smoothing estimates enjoyed by the free propagator,
it is also possible to study the problem by a variation of constants formula, see [95,
125]. Moreover, under some suitable assumptions on the potential, we can also
exploit resolvent techniques to even infer some analogue dispersive estimates as for
the free Schrödinger operator, see for example [56, 107].

However, there is a number of physically interesting potentials that cannot be
treated in a perturbative manner. In some cases we can adopt another strategy in
order to construct the fundamental solution to (1.9), which consists in construct-
ing directly the integral operator by means of a semiclassical approximation tech-
nique. This latter strategy is inspired by Feynman’s formulation of quantum me-
chanics through path integrals. More specifically the solution to (1.9) is given by
an oscillating integral operator whose phase is given by the classical action and the
integral is performed over a suitable set of paths, hence on an infinite dimensional
functional space. This theory received a lot of attention in the physical literature
because of its broad applications and was rigorously studied in the mathematical
literature by many authors, using different approaches (see Section 1.1). We men-
tion [2] where the whole theory is developed by using an infinite generalization of
Fresnel integrals; there the authors can treat potentials which are polynomials or
the Fourier transform of a complex measure with bounded variation. This theory
is robust enough so that it is possible to study the method of stationary phase for
Feynman path integrals [3]. Other approaches were proposed, see for example [14,
100] where the Feynman path integral is defined by the analytic continuation of the
Wiener integral, or [90] where the author uses Poisson processes to define it. For
more insights about different approaches we refer to [2, 11, 14, 50, 66, 74, 92, 100]
and their references.
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In this dissertation we adopt the “time slicing” approach developed by Fujiwara
[36] and his school. More precisely the classical action in the phase of the oscillatory
integral operator is computed along piecewise classical paths. Then the convergence
is proven by exploiting the L2 theory of oscillating integral transformations. As a
result they prove the convergence of the propagator in the norm operator topology
for any time dependent potential V (t, x) such that for almost every t ∈ R, V (t, x) is
a real-valued C∞ function and V ∈ L∞t L∞x ,loc , ∂

α
x V ∈ L∞(R×Rn) for any |α| ≥ 2,

i.e. the potential grows at most quadratically in space at infinity. Let us notice
that altough the approach in [2] allows to consider arbitrary polynomials, here the
main advantage is that the convergence holds in the uniform operator topology. The
approach by Fujiwara was further developed, see for example [125], where Yajima
considers also magnetic potentials and, by combining the Fujiwara’s approach with
Kato’s pertubration theory, extends the result on a large class of (electro-magnetic)
potentials. A slightly different approach is considered in [65, 82, 84], where the
action is not computed along classical trajectories, but rather on straight lines, in
the spirit of finite difference methods. The time slicing approach was extensively
studied in the literature, see also [37, 38, 40, 47, 77, 81, 83, 84]. Moreover, in
[101] it was shown that it is possible also to consider a class of non-smooth (in
space) potentials.

We are interested in relaxing the assumptions on the time integrability for the
potential. More specifically, we want to consider a class of potentials V (t, x) such
that

(V-I) V (t, x) is a measurable function of (t, x) ∈ R×Rn and for almost every t ∈ R,
V (t, ·) ∈ C∞(Rn).

(V-II) V ∈ L2
t L∞loc,x .

(V-III) For any |α| ≥ 2, ∂ αx V ∈ L2
t L∞x .

Our interest in this problem stems from the attempt of studying a class of quantum
hydrodynamic systems arising in the Landau’s two-fluid theory for superfluidity at
finite temperatures. In order to develop a self-consistent theory for finite energy
weak solutions to quantum hydrodynamic systems it is possible to study the exis-
tence of solutions for the underlying wave function dynamics. Then, by means of
the Madelung transformations and of a polar factorization technique, it is possible
to show the existence of finite energy solutions to the hydrodynamical system [6,
8, 18]. It turns out that, when studying a toy system related to Landau’s two-fluid
model, we encounter a nonlinear Schrödinger equation whose linear part is given
by (1.9). For more details about the relation between (1.9) and the quantum hy-
drodynamic systems we address the interested reader to [5, 18] and Section B.2.

Besides applications to quantum fluid dynamics, the problem is interesting as in
our setup the trajectories are not Lipschitz continuous anymore. Indeed, under our
assumptions on the potential, the classical paths are only Hölder continuous with
exponent 1/2. Consequently the action inherits the same rough regularity and we
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have to face the problem of its differentiability in order to prove that it satisfies the
Hamilton-Jacobi equation.

The chapter is organized as follows. In Section 1.3 we study the classical me-
chanics associated to (1.9) in order to prove that the phase function S(t, s, x , y) is
well defined if |t − s| is sufficiently small. In Section 1.4 we study the basic proper-
ties of the classical action S(t, s, x , y). In Section 1.5 we analyze the behaviour of
the integral transformation E(t,s), by proving that it is an approximate solution of
(1.9). In Section 1.6 we prove the convergence of the time slicing approximation
procedure to the fundamental solution of (1.9). In the Appendix A we collect some
results on the L2 theory of oscillatory integral transformations.

As already stressed in the Introduction of this dissertation, in the following sec-
tions we strictly follow Fujiwara’s notation in [36].

1.3 Classical orbits

In this section we analyze the flow generated by the Hamiltonian

H(t, x ,ξ) =
1
2
|ξ|2 + V (t, x) ,

which is described by the Hamilton canonical differential equations

d x
d t
= ξ,

dξ
d t
= −∇x V (t, x) . (1.10)

In particular, we will see that there exists a generating function of the flow, that
is the classical action S(t, s, x , y), for small |t − s|, which will be used as the phase
function for the construction of the parametrix in Section 1.5. Let x(t) = x(t, s, y,η)
and ξ(t) = ξ(t, s, y,η) be the solution of (1.10) with initial conditions

x(s) = y, ξ(s) = η . (1.11)

(x(t, s, x , y),ξ(t, s, x , y)) is the classical orbit in the phase space. The Cauchy prob-
lem (1.10)-(1.11) is equivalent to the integral equation

x(t) = y +

∫ t

s
ξ(τ)dτ (1.12)

ξ(t) = η−
∫ t

s
∇x V (τ, x(τ))dτ . (1.13)

Throughout this chapter we make the assumptions (V-I)-(V-III) on the potential
V (t, x) and we conduct the discussion on (−T, T ), with T > 0.

In order to prove the existence of a unique solution for the previous Cauchy
problem, set X = (x ,ξ), F(t, X ) = (ξ,−∇x V (t, x)) and Xs = (y,η). With this
notation, the integral equations (1.12), (1.13) become

X (t) = Xs +

∫ t

s
F(τ, X (τ))dτ , (1.14)
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For ρ > 0 let

Zρ :=
§

X ∈ C([s, s+α]) s.t. sup
t∈[s,s+α]

|X (t)− Xs| ≤ ρ
ª

.

Now we define the map

Φ(X )(t) = Xs +

∫ t

s
F(τ, X (τ))dτ . (1.15)

By the assumptions on the potential it follows that, for almost every t

|F(t, X )| ≤ |X (t)|+ C(1+ |X (t)|)‖∇2
x V (t)‖L∞x (Rn) . (1.16)

For X ∈ Zρ and |t − s| ≤ α we have, by using (1.16),

|Φ(X )(t)− Xs| ≤
∫ t

s
|F(τ, X (τ)|dτ

≤ (ρ + |Xs|)α+ C
p
αM + C

p
α(ρ + |Xs|)M ,

where M = ‖∇2
x V‖L2

t L∞x
. By choosing α≤ 1 and ρ =max(1, |Xs|), we get

|Φ(X )(t)− Xs| ≤ ρ
p
α(2+ 3C M) .

By choosing

α≤
1

(2+ 3C M)2

we obtain that Φ maps Zρ into itself.
Moreover

|Φ(X )(t)−Φ(X̃ )(t)| ≤
∫ t

s
|F(τ, X (τ))− F(τ, X̃ (τ))|dτ

≤
∫ t

s
|X (τ)− X̃ (τ)|(1+ ‖∇2

x V (τ)‖L∞x (Rn))dτ

≤
p
α(1+M) sup

t∈[s,s+α]
|X (t)− X̃ (t)| .

So, by choosing α sufficiently small, in particular

α=min
§

1
(2+ 3C M)2

,
1

(1+M)2

ª

,

we can perform a standard fixed point iteration scheme, getting the existence of a
unique local solution. It is straightforward to show that it can be extended to a max-
imal solution in (Tmin, Tmax). (Actually, in this way, the uniqueness is established
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just in Zρ, but it can be easily extended, by using a standard continuity argument).
In order to get a global solution, we assume that Tmax is finite; it follows that

lim
t→T−max

|X (t)|= +∞ . (1.17)

By using the fact that |∇x V (t, x(t))|® (1+ |x(t)|)‖∇2
x V (t)‖L∞x

for a.e. t in (1.14),
we get

|X (t)| ≤ Cy,η,Tmax ,s + C

∫ t

s
(1+ ‖∇2

x V (τ)‖L∞x
)|X (τ)|dτ , (1.18)

where M = ‖∇2
x V (t)‖L2

t L∞x
. By the Gronwall’s inequality it follows that

|X (t)| ≤ Cy,η,Tmax ,se
C(|t−s|+M

p
|t−s|) , (1.19)

which contradicts (1.17).
So we have proved the following

Proposition 1.3.1. For any t, s ∈ R, the system (1.10) has a unique solution x(t) =
x(t, s, y,η) and ξ(t) = ξ(t, s, y,η). x(t) is of class C1 in t and ξ(t) is absolutely
continuous in t.

Remark 1.3.2. Under Fujiwara’s assumptions on the potential V (t, x), the solution
X (t) is Lipschitz continuous in time; in our case the solution is only C

1
2 -continuous in

time, since

|X (t + h)− X (t)| ≤
∫ t+h

t
|F(τ, x(τ))|dτ®

p

h(1+ ‖∇2
x V‖L2

t L∞x
)

In order to prove that for sufficiently small |t−s|, the phase function S(t, s, x , y)
is well defined, we want to write η as a function of (t, s, x , y). For this reason we
shall study derivatives of x(t) and ξ(t) with respect to the initial values (y,η). Let
u be any of the 2n−variables y j , η j , j = 1,2, · · · , n. Differentiating both sides of
(1.12) and (1.13) with respect to u, we obtain the equations

∂ x
∂ u
(t) =

∂ y
∂ u
+

∫ t

s

∂ ξ

∂ u
(τ)dτ, (1.20)

∂ ξ

∂ u
=
∂ η

∂ u
−
∫ t

s
∂ 2

x V (τ, x(τ))
∂ x
∂ u
(τ)dτ (1.21)

The following Proposition shows that the map (x(t, s),ξ(t, s)) is globally Lipschitz,
with respect to the space variables, if |t − s| ≤ T .

Proposition 1.3.3. For every T > 0 there exists a constant C(T, M) depending on T
and ‖∂ 2

x V‖L2
t L∞x

such that, for |t − s| ≤ T,








∂ x
∂ u
(t)









L∞(Rn
y×Rn

η)
≤ C ,









∂ ξ

∂ u
(t)









L∞(Rn
y×Rn

η)
≤ C (1.22)
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Proof. We have that
�

�

�

�

∂ x
∂ u
(t)

�

�

�

�

≤
�

�

�

�

∂ y
∂ u

�

�

�

�

+

∫ t

s

�

�

�

�

∂ ξ

∂ u
(τ)

�

�

�

�

dτ≤
�

�

�

�

∂ y
∂ u

�

�

�

�

+

∫ t

s









∂ ξ

∂ u
(τ)









L∞(Rn
y×Rn

η)
dτ .

In a similar way
�

�

�

�

∂ ξ

∂ u
(t)

�

�

�

�

≤
�

�

�

�

∂ η

∂ u

�

�

�

�

+

∫ t

s
‖∂ 2

x V‖L∞(Rn)









∂ x
∂ u
(τ)









L∞(Rn
y×Rn

η)
dτ

≤
�

�

�

�

∂ η

∂ u

�

�

�

�

+

∫ t

s

�

1+ ‖∂ 2
x V (τ)‖L∞x

�









∂ x
∂ u
(τ)









L∞(Rn
y×Rn

η)
dτ .

It follows that
�

�

�

�

∂ x
∂ u
(t)

�

�

�

�

+

�

�

�

�

∂ ξ

∂ u
(t)

�

�

�

�

≤
�

�

�

�

∂ y
∂ u

�

�

�

�

+

�

�

�

�

∂ η

∂ u

�

�

�

�

+

∫ t

s

�

1+ ‖∂ 2
x V‖L2

t L∞x

�

�







∂ ξ

∂ u
(τ)









L∞(Rn
y×Rn

η)
+









∂ x
∂ u
(τ)









L∞(Rn
y×Rn

η)

�

By setting M := ‖∂ 2
x V‖L2

t L∞x
and by using Gronwall’s inequality, we get









∂ x
∂ u
(t)









L∞(Rn
y×Rn

η)
+









∂ ξ

∂ u
(t)









L∞(Rn
y×Rn

η)
≤ C exp(|t − s|+M

Æ

|t − s|)≤ C(T, M)

In particular, we can prove the following result.

Proposition 1.3.4. For every T > 0 there exists a constant C = C(T, M) > 0 such
that, for |t − s| ≤ T,








∂ ξ

∂ η
(t)− I









L∞(Rn
y×Rn

η)
≤ MC |t − s|

3
2 ,









∂ ξ

∂ y
(t)









L∞(Rn
y×Rn

η)
≤ MC

Æ

|t − s| , (1.23)









∂ x
∂ y
− I









L∞(Rn
y×Rn

η)
≤ MC |t − s|

3
2 ,









∂ x
∂ η
(t)









L∞(Rn
y×Rn

η)
≤ C |t − s| , (1.24)

where I is the identity matrix.

Proof. From (1.12) and (1.13) we have

∂ x
∂ u
(t)−

∂ y
∂ u
=

∫ t

s

∂ ξ

∂ u
(τ)dτ (1.25)

∂ ξ

∂ u
(t)−

∂ η

∂ u
+

∫ t

s
∂ 2

x V (τ, x(τ))
∂ y
∂ u

dτ= −
∫ t

s

∫ τ

s
∂ 2

x V (τ, x(τ))
∂ ξ

∂ u
(σ)dσdτ .

(1.26)
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Let’s start with the first inequality in (1.23). By using (1.26) and (1.22) we have
�

�

�

�

∂ ξ

∂ η
(t)− I

�

�

�

�

≤
∫ t

s

∫ τ

s
‖∂ 2

x V (τ)‖L∞x









∂ ξ

∂ η
(σ)









L∞(Rn
y×Rn

η)
dσdτ

≤ C(T, M)

∫ t

s
‖∂ 2

x V (τ)‖L∞x
(τ− s)dτ≤ C(T, M)M |t − s|

3
2 ,

so the desired result follows. The other inequalities can be obtained in the same
way, by combining (1.25) and (1.26) with (1.22).

By using the above propositions, we can easily prove the following estimate.

Proposition 1.3.5. Let k any integer ≥ 2 and |t − s| ≤ T. Then there exists a positive
constant Ck = Ck(T, M) such that

∑

2≤|α|+|β |≤k

§

|t − s|−|β |−
3
2

�

�

�

�

�

∂

∂ y

�α� ∂

∂ η

�β

x(t, s, y,η)

�

�

�

�

+

|t − s|−|β |−
1
2

�

�

�

�

�

∂

∂ y

�α� ∂

∂ η

�β

ξ(t, s, y,η)

�

�

�

�

ª

≤ Ck ,

(1.27)

for any pair of multi-indices α and β such that 2≤ |α|+ |β | ≤ k.

Proof. From (1.12) and (1.13), we have that for |α|+ |β | ≥ 2,

∂ αy ∂
β
η x(t, s, y,η) =

∫ t

s
∂ αy ∂

β
η ξ(τ, s, y,η)dτ (1.28)

and

∂ αy ∂
β
η ξ(t, s, y,η) =−

∫ t

s

n
∑

j=1

(∂x j
∇x V (τ, x(τ))∂ αy ∂

β
η x j(τ, s, y,η)dτ (1.29)

−
∫ t

s
fαβ(τ, s, y,η)dτ , (1.30)

where fαβ(τ, s, y,η) is a linear combination of terms of the form

(∂ γx∇x V )(τ, x(τ))
�

∂ ν1
y ∂

µ1
η x j1(τ)

�

· · ·
�

∂
ν|γ|
y ∂

µ|γ|
η x j|γ|(τ)

�

, (1.31)

where j1, . . . , j|γ| ∈ {1, . . . , n}, ν1+ . . . ,ν|γ| = α, µ1+ · · ·+µ|γ| = β , |ν j|+ |µ j| ≥ 1 for
j = 1, . . . , |γ| and 2 ≤ |γ| ≤ |α|+ |β |. The proof proceeds by induction on |α|+ |β |.
If |α|+ |β |= 2, (1.27) is a simple consequence of Proposition 1.3.4. Let us suppose
that (1.27) is satisfied for |α|+ |β | ≤ m and prove it for |α|+ |β | = m+ 1. To deal
with the terms in (1.31) we note that

|∂ ν j
y ∂

µ j
η x(τ)| ≤ C(T )|τ− s||µ j | .
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This holds for |ν j|+ |µ j|= 1 by using Proposition 1.3.4 and by the inductive hypoth-
esis if |ν j|+ |µ j| ≥ 2. Since |µ1|+ · · ·+µ|γ| = β , it follows that

�

�

�

�

∂ ν1
y ∂

µ1
η x j1(τ)

�

· · ·
�

∂
ν|γ|
y ∂

µ|γ|
η x j|γ|(τ)

�

�

�

�≤ C(T )|τ− s|β .

By putting all together we get

|∂ αy ∂
β
η ξ(τ)| ≤ C

∫ t

s
‖∇2

x V (τ)‖L∞x
|∂ αy ∂

β
η x(τ)|dτ+ C |t − s|β+

1
2 .

This inequality, together with (1.28) and Gronwall’s inequality gives (1.27).

As suggested by Proposition 1.3.5, we introduce the new variable ζ = (t − s)η
and we consider the map

(u,ζ) 7→ ( x̃(t, s, y,ζ), ξ̃(t, s, y,ζ)) := (x(t, s, y,ζ/(t − s)), (t − s)ξ(t, s, y,ζ/(t − s)) .

Then, we have

Proposition 1.3.6. We have, for j, k = 1, . . . , n, t 6= s,

∂ x̃ j

∂ ζk
= δ jk − (t − s)

3
2 a jk(t, s, y,ζ) , (1.32)

∂ ξ̃ j

∂ ζk
= δ jk − (t − s)

3
2 b jk(t, s, y,ζ) , (1.33)

∂ x̃ j

∂ yk
= δ jk − (t − s)

3
2 c jk(t, s, y,ζ) , (1.34)

where a jk(t, s, y,ζ), b jk(t, s, y,ζ), c jk(t, s, y,ζ) belong to a bounded set in the function
space of Schwartz B(Rn

y ×R
n
ζ
) (see Appendix A for the definition) if 0 < |t − s| ≤ T,

for every fixed T > 0.

Proof. Since t 6= s, we have that (1.33) defines the functions b jk, so

|b jk(t, s, y,ζ)| ≤ C(M , T ) , (1.35)

by using Proposition 1.3.4. Now we need to estimate the derivative of b jk(t, s, y,ζ):

�

∂

∂ y

�α� ∂

∂ η

�β

b jk(t, s, y,ζ) = (t − s)−
3
2−|β |

�

∂

∂ y

�α� ∂

∂ η

�β ∂ ξ j

∂ ηk
(t, s, y,ζ/(t − s)) .

Proposition 1.3.5 yields the estimate
�

�

�

�

�

∂

∂ y

�α� ∂

∂ η

�β

b jk(t, s, y,ζ)

�

�

�

�

≤ |(t − s)|−
3
2−|β |

�

�

�

�

�

∂

∂ y

�α� ∂

∂ η

�β ∂ ξ j

∂ ηk
(t, s, y,ζ/(t − s))

�

�

�

�

≤ C(M , T ) .
(1.36)
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Thus {b jk(t, s, y,ζ)}t,s belong to a bounded set of B(Rn
y ×R

n
ζ
). We can prove that

{c jk(t, s, y,ζ)}t,s is bounded inB(Rn
y ×R

n
ζ
) in just the same manner. Moreover we

can easily prove that

a jk(t, s, y,ζ) = (t − s)−
5
2

∫ t

s
(τ− s)

3
2 b jk(τ, s, y,ζ)dτ . (1.37)

It follows form (1.35), (1.36) and (1.37) that {a jk(t, s, y,ζ)}t,s belong to a bounded
set inB(Rn

y ×R
n
ζ
), if |t − s| ≤ T .

Now we can study the invertibility of the map

ζ 7→ x̃(t, s, y,ζ) .

Proposition 1.3.7. There exists δ > 0, depending on T, such that for 0 < |t − s| ≤ δ
and y ∈ Rn, the map

ζ 7→ x̃(t, s, y,ζ) = x(t, s, y,ζ/(t − s))

is invertible in Rn. Moreover the following equality holds

∂ ζ j

∂ x̃k
(t, s, x̃ , y) = δ jk − (t − s)

3
2 d jk(t, s, x̃ , y) , (1.38)

where the functions d jk(t, s, x̃ , y) belong to a bounded subset inB(Rn
x̃ ×R

n
y).

Proof. By using Proposition 1.3.6, we get

det
∂ x̃
∂ ζ
= 1− (t − s)

3
2 f (t, s, y,ζ) , (1.39)

for some function f (t, s, y,ζ), belonging to a bounded set in B(Rn
y ×R

n
ζ
). Choose

δ such that (t − s)
3
2 ‖ f (t, s, ·, ·)‖L∞(Rn

y×R
n
ζ
) ≤

1
2 holds for any (y,ζ) ∈ R2n and 0 <

|t − s| ≤ δ.
In order to prove (1.38) we can proceed in the same way of Proposition 1.3.6. First
of all we have that

∂ ζ

∂ x̃
(t, s, x̃ , y) =

�

∂ x̃
∂ ζ
(t, s, y,ζ)

�−1

ζ= ζ(t, s, x̃ , y) . (1.40)

In order to prove (1.38), it is sufficient to show that

�∂ x̃ j(t, s, y,ζ)

∂ ζk

�−1

= δ jk − (t − s)
3
2 d jk(t, s, y,ζ) . (1.41)

From (1.39) we have that
�

det
∂ x̃
∂ ζ

�−1

= 1+ (t − s)
3
2 ã(t, s, y,ζ) , (1.42)
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where

ã(t, s, y,ζ) =
f (t, s, y,ζ)

1− (t − s)
3
2 f (t, s, y,ζ)

.

Clearly ã belongs to a bounded subset ofB(R2n). This, together with (1.32), gives
(1.38).

1.4 Classical action

Throughout this section, we always assume that 0 < t − s ≤ δ. Thus the function
η(t, s, x , y) is well defined. Therefore, the curve

τ 7→ x(τ) = x(τ, s, y,η(t, s, x , y))

is the unique classical orbit starting from y at time s and reaching x at time t.
Now we can define the classical action S(t, s, x , y) as

S(t, s, x , y) =

∫ t

s
L(τ, x(τ), ẋ(τ))dτ , (1.43)

where

L(τ, x(τ), ẋ(τ)) =
1
2
| ẋ(τ)|2 − V (τ, x(τ)) . (1.44)

It is well known that S(t, s, x , y) satisfies the Hamilton Jacobi equation if the po-
tential V (t, x) is continuous in (t, x). To prove this one has to exploit the total
differentiability of the action at every point. Since we do not assume the continu-
ity with respect to time of V (t, x), we cannot expect this. Fujiwara in [36] solves
this problem by showing that it is sufficient to have that S(t, s, x , y) is totally dif-
ferentiable almost everywhere. This property follows from Rademacher’s theorem,
since under the assumptions on the potential in [36], the classical action is a lo-
cally Lipschitz function of (t, x , y), for every fixed s. So, there exists a zero measure
set Z ⊂ (s − δ, s + δ) × R2n such that S(t, s, x , y) is totally differentiable at every
(t, x , y) /∈ Z; moreover at every (t, x , y) /∈ Z

∂

∂ t
S(t, s, x , y) +

1
2

�

�

�

�

∂

∂ x
S(t, s, x , y)

�

�

�

�

2

+ V (t, x) = 0 .

As a consequence of the Remark (1.3.2), under our hypothesis on the potential,
S(t, s, x , y) is not locally Lipschitz continuous in (t, x , y), since with respect to time
it is just C

1
2 -continuous. On the other hand, from the definition (1.43), it follows

that it is absolutely continuous with respect to time, for every x and y fixed. So it
is differentiable almost everywhere in t, but the zero measure set out of which this
property holds depends on x and y .
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To overcome this difficulty we introduce the following smooth regularization in time
of the potential

Vε(·, x) = V (·, x) ∗ρε, 0< ε ≤ 1 , (1.45)

where ρε(t) = ε−1ρ(ε−1 t) is a standard mollifier in R. From the properties of
mollifiers, it follows that for each x ∈ Rn, Vε(t, x)→ V (t, x), for almost every t as
ε → 0; moreover for each |α| ≥ 2, ∂ αx Vε → ∂ αx V in L2

t L∞x , when ε → 0 and hence
‖∂ αx Vε‖L2

t L∞x
is uniformly bounded with respect to ε.

Now we consider the following approximate Hamilton system

xε(y) = y +

∫ t

s
ξε(τ)dτ, ξε(t) = η−

∫ t

s

∂

∂ x
Vε(τ, xε(τ))dτ . (1.46)

Lemma 1.4.1. For fixed s ∈ R, the solutions xε(t, s, y,η), ξε(t, s, y,η) are bounded
on the compact subsets of R×R2n, uniformly with respect to ε.

Proof. Let T̃ > 0 such that |t| ≤ T̃ . We put Mε = ‖∂ 2
x Vε‖L2

t L∞x
, which is uniformly

bounded with respect to ε. From (1.12) and (1.14) we get

|xε(t)| ≤ |y|+
∫ t

s
|ξε(τ)|dτ≤ |y|+ |η||t − s|+

∫ t

s
(t −τ)(1+ |xε(τ)|)‖∇2

x Vε(τ)‖L∞x

≤ |y|+ (T̃ + |s|)‖η|+ (T̃ + |s|)
3
2 Mε +

∫ t

s
(t −τ)‖∇2

x Vε(τ)‖L∞x
|xε(τ)|dτ

By using Gronwall’s inequality we obtain

|xε(t)| ≤ Cs,y,η,Mε ,T̃ .

In the same way we can proceed for ξε(t) and this concludes the proof.

Lemma 1.4.2. For fixed s ∈ R, we have that xε(t, s, y,η) converges to x(t, s, y,η) and
ξε(t, s, y,η) converges to ξ(t, s, y,η), uniformly on the compact subset of R×R2n.

Proof. We want to study the convergence of the approximate orbits. We have

|ξε(t)− ξ(t)| ≤
∫ t

s

�

�

�

�

∂ V
∂ x
(τ, x(τ))−

∂ Vε
∂ x
(τ, xε(τ))dτ

�

�

�

�

≤
∫ t

s

�

�

�

�

∂ V
∂ x
(τ, x(τ))−

∂ V
∂ x
(τ, xε(τ))dτ

�

�

�

�

+

∫ t

s

�

�

�

�

∂ V
∂ x
(τ, xε(τ))−

∂ Vε
∂ x
(τ, xε(τ))dτ

�

�

�

�

=: I1 + I2 .

For I1

I1 =

∫ t

s

�

�

�

�

∫ 1

0

∂

∂ θ
∇x V (τ,θ x(τ) + (1− θ )xε(τ)dθ

�

�

�

�

dτ≤
∫ t

s
‖∂ 2

x V‖L∞x
|x(τ)− xε(τ)|dτ
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The second integral I2 tends to zero, when ε → 0. Indeed, from Lemma 1.4.1 it
follows that for fixed T̃ > 0, there exists a ball B in R2n, where xε(t, s, y,η) takes
values for |t| ≤ T̃ and (y,η) ∈ B. Since

I2 ≤
∫ t

s









∂ V
∂ x
(τ, ·)−

∂ Vε
∂ x
(τ, ·)









L∞x (B)
dτ≤

p
t − s









∂ V
∂ x
(τ, ·)−

∂ Vε
∂ x
(τ, ·)









L2
t L∞x (B)

,

we get I2→ 0, as ε→ 0, by exploiting the properties of the mollification. Moreover

|x(t)− xε(t)| ≤
∫ t

s
|ξ(τ)− ξε(τ)|dτ .

By putting all together and by using Gronwall’s inequality we get that

|ξ(t)− ξε(t)|+ |x(t)− xε(t)| → 0 .

Lemma 1.4.3. For |t − s| ≤ T, we have that

∂ xε
∂ η
(t, s, y,η)→

∂ x
∂ η
(t, s, y,η) (1.47)

∂ ξε
∂ η
(t, s, y,η)→

∂ ξ

∂ η
(t, s, y,η) , (1.48)

pointwise, as ε→ 0.

Proof. We have
�

�

�

�

∂ xε
∂ η
(t)−

∂ x
∂ η
(t)

�

�

�

�

≤
∫ t

s

�

�

�

�

∂ ξε
∂ η
(τ)−

∂ ξ

∂ η
(τ)

�

�

�

�

dτ .

Then
�

�

�

�

∂ ξε
∂ η
(t)−

∂ ξ

∂ η
(t)

�

�

�

�

≤
∫ t

s

�

�

�

�

∂ 2Vε
∂ x2

(τ, xε(τ))−
∂ 2V
∂ x2

(τ, x(τ))

�

�

�

�

�

�

�

�

∂ xε
∂ η
(τ)

�

�

�

�

dτ
︸ ︷︷ ︸

I1

+

∫ t

s

�

�

�

�

∂ 2V
∂ x2

�

�

�

�

�

�

�

�

∂ xε
∂ η
(τ)−

∂ x
∂ η
(τ)

�

�

�

�

dτ .

Now, by using Proposition 1.3.4, we have

I1 ≤ C(T, M)

∫ t

s
(τ− s)

�

�

�

�

∂ 2Vε
∂ x2

(τ, xε(τ))−
∂ 2Vε
∂ x2

(τ, x(τ))

�

�

�

�

dτ

+

∫ t

s
(τ− s)

�

�

�

�

∂ 2Vε
∂ x2

(τ, x(τ))−
∂ 2V
∂ x2

(τ, x(τ))

�

�

�

�

dτ

≤ C(T, M)

∫ t

s
(τ− s)‖∂ 2

x Vε‖L∞x
|xε(τ)− x(τ)|dτ

+ (t − s)
3
2 ‖∂ 2

x Vε(τ, ·)− ∂ 2
x V (τ, ·)‖L2

t L∞x
→ 0 .
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The first integral in the last lines goes to 0 by the dominated convergence theorem,
the second one because of the properties of the regularization.
The thesis follows by Gronwall’s inequality.

We can define, for each fixed ε > 0, the approximate classical action Sε(t, s, x , y)
as

Sε(t, s, x , y) :=

∫ t

s
L(τ, xε(τ), ẋε(τ))dτ . (1.49)

Lemma 1.4.4.

Sε(t, s, x , y)→ S(t, s, x , y) pointwise as ε→ 0 ,

if 0< t − s ≤ δ.

Proof.

Sε(t, s, x , y)− S(t, s, x , y) =
1
2

∫ t

s
{|ξε(τ, s, y,ηε(t, s, x , y))|2 − |ξ(τ, s, y,η(t, s, x , y))|2}

+

∫ t

s
{V (τ, x(τ))− Vε(τ, xε(τ))}dτ=: I1 + I2

By using Lemma 1.4.2, the fact that ηε(t, s, x , y) → η(t, s, x , y) pointwise (which
easily follows by contradiction by recalling that η = ζ/(t − s) and by using Propo-
sition 1.3.7 and Lemma 1.4.2 ) and the dominated convergence theorem, it follows
that I1→ 0 as ε→ 0.
Moreover, we have that I2 := I1

2 + I2
2 , where

I1
2 =

∫ t

s
{Vε(τ, xε(τ))− Vε(τ, x(τ))}dτ ,

I2
2 =

∫ t

s
{Vε(τ, x(τ))− V (τ, x(τ))}dτ .

It holds that

|I1
2 | ≤

∫ t

s
(1+ |xε(τ)|+ |x(τ)|)‖∇2

x Vε(τ)‖L∞x
|xε(τ)− x(τ)|dτ

≤ ‖∇2
x Vε‖L2

t L∞x

�

∫ t

s
(1+ |xε(τ)|+ |x(τ)|)2|xε(τ)− x(τ)|2dτ

�
1
2

,

which goes to zero as ε → 0, by combining the dominated convergence theorem
with Lemmas 1.4.1, 1.4.2 and the fact that ‖∇2

x Vε‖L2
t L∞x

is uniformly bounded with
respect to ε.
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Moreover I2
2 → 0, as ε→ 0, by using the fact that, if if |t − s| ≤ δ, there exists a ball

B in R2n where x(τ) takes values and that Vε → V in L2
t L∞loc,x as ε→ 0. Indeed

I2
2 ≤

∫ t

s
‖Vε(τ, ·)− V (τ, ·)‖L∞x (B)

.

Proposition 1.4.5. Assume that 0 < t − s ≤ δ. Then, S(t, s, x , y) is of class C∞ in
(x , y) if t and s are fixed. Moreover the following equalities hold:

∂x j
S(t, s, x , y) = ξ j(t, s, y,η(t, s, x , y)) (1.50)

∂y j
S(t, s, x , y) = −η j(t, s, x , y) . (1.51)

Proof. Equalities (1.50) and (1.51) follow by direct computations, by using integra-
tion by parts in (1.43). Indeed, let

S0(t, s, y,η) = S(t, s, x(t, s, y,η), y) =

∫ t

s
L(τ, x(τ), ẋ(τ))dτ , (1.52)

where x(τ) = x(τ, s, y,η) is the unique solution of Hamilton equations (1.10).
Clearly S(t, s, x , y) = S0(t, s, y,η(t, s, x , y)). By using the chain rule, we have

∂x j
S(t, s, x , y) = ∂ηk

S0(t, s, y,η(t, s, x , y))∂x j
ηk(t, s, x , y) . (1.53)

By integrating by parts in (1.52) and by using Einstein convention on repeated in-
dices, we get

∂ηk
S0(t, s, y,η) =

∫ t

s
∂xh

L(τ, x(τ), ẋ(τ))∂ηk
xh(τ) + ∂ ẋh

L(τ, x(τ), ẋ(τ))∂ηk
ẋh(τ)dτ

=

∫ t

s
∂ηk

xh(τ)[∂xh
L(τ, x(τ), ẋ(τ))− ∂τ∂ ẋh

L(τ, x(τ), ẋ(τ))]

+ ξh(τ, s, y,η)∂ηk
xh(τ, s, y,η)

�

�

�

�

τ=t

τ=s

= ξh(t, s, y,η)∂ηk
xh(t, s, y,η) ,

(1.54)
where we used Hamilton’s equations (1.10) equation in order to write the last equal-
ity. Indeed, from (1.44), it follows

∂xh
L(τ, x(τ), ẋ(τ))− ∂τ∂ ẋh

L(τ, x(τ), ẋ(τ)) = −∂xh
V (τ, x(τ))− ξ̇h(τ) = 0 .

Plugging (1.54) in (1.53) we obtain

∂x j
S(t, s, x , y) = ξh(t, s, y,η)∂ηk

xh(t, s, y,η)

�

�

�

�

η=η(t,s,x ,y)
∂x j
ηk(t, s, x , y) . (1.55)
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On the other hand, by differentiating with respect to x j both sides of the identity
xh = xh(t, s, y,η(t, s, x , y)) we have

δh j = ∂ηk
xh(t, s, y,η(t, s, x , y))∂x j

ηk(t, s, x , y) . (1.56)

By using (1.56) in (1.55) we get (1.50). We can prove (1.51) in a similar way.

Proposition 1.4.6. Let s be fixed. Then for every x , y ∈ Rn there exists a zero measure
set Zx ,y , which depends on x and y, such that for each t /∈ Zx ,y , the classical action
S(t, s, x , y) satisfies the Hamilton Jacobi partial differential equation

∂tS(t, s, x , y) +
1
2
|∇xS(t, s, x , y)|2 + V (t, x) = 0 . (1.57)

Proof. We know, by [36] (the regularized potential Vε satisfies Fujiwara’s assump-
tions), that for each ε > 0

∂tSε(t, s, x , y) +
1
2
|∇xSε(t, s, x , y)|2 + Vε(t, x) = 0 ,

for almost every t ∈ R and all (x , y) ∈ R2n. So it follows that

Sε(t, s, x , y) +
1
2

∫ t

s
|∇xSε(τ, s, x , y)|2dτ+

∫ t

s
Vε(τ, x)dτ= 0 , (1.58)

where we used the fact that Sε(s, s, x , y) = 0. From Proposition 1.4.4, we know
that Sε(s, t, x , y) → S(t, s, x , y) pointwise as ε → 0. By using Proposition 1.4.5,
Lemmata 1.4.1, 1.4.2 and the dominated convergence theorem (for x and y in a
bounded set), we get that

∫ t

s
|∇xSε(τ, s, x , y)|2dτ→

∫ t

s
|∇xS(τ, s, x , y)|2dτ ,

as ε→ 0. Regarding the last term in (1.58) we have

∫ t

s
|Vε(τ, x)− V (τ, x)|dτ≤

∫ t

s
‖Vε(τ)− V (τ)‖L∞x (B)

dτ

≤
p

t − s‖Vε − V‖L2
t L∞x (B)

,

where B is a closed ball containing x . Since Vε → V in L2
t L∞x ,loc, as ε→ 0, by passing

to the limit in (1.58), we get

S(t, s, x , y) +
1
2

∫ t

s
|∇xS(τ, s, x , y)|2dτ+

∫ t

s
V (τ, x)dτ= 0 . (1.59)

Since S(t, s, x , y) is absolutely continuous in t, differentiating a.e. with respect to t
in (1.59), we get (1.57).
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We include here an alternative proof of (1.57).
From (1.43), it follows that S(t, s, x , y) is absolutely continuous with respect to t for
every fixed x , y ∈ Rn; hence , there exists a zero measure set Zx ,y ⊂ R, depending
on x and y , such that ∂tS(t, s, x , y) exists for every t /∈ Zx ,y .

By the chain rule, we have

d
d t

S(t, s, x , y) = ∂tS0(t, s, y,η(t, s, x , y))+∂ηk
S0(t, s, y,η(t, s, x , y))∂tηk(t, s, x , y) ,

(1.60)
for every t /∈ Zx ,y . From (1.52) it follow that

∂tS0(t, s, y,η) =
1
2
|ξ(t, s, y,η)|2 − V (t, x(t, s, y,η)) . (1.61)

Plugging (1.61) and (1.54) into (1.60) we get

∂tS(t, s, x , y) =
1
2
|ξ(t, s, y,η(t, s, x , y))|2 − V (t, x(t, s, y,η(t, s, x , y)))

+ ξh(t, s, y,η(t, s, x , y))∂ηk
xh(t, s, y,η(t, s, x , y))∂tηk(t, s, x , y) .

(1.62)
Now, we differentiate with respect to time the identity xh = xh(t, s, y,η(t, s, x , y))
and we obtain

0= ∂t xh(t, s, y,η(t, s, x , y)) + ∂ηk
xh(t, s, y,η(t, s, x , y))∂tηk(t, s, x , y)

= ξh(t, s, y,η(t, s, x , y)) + ∂ηk
xh(t, s, y,η(t, s, x , y))∂tηk(t, s, x , y) .

(1.63)

By using (1.63) into (1.62) we have

∂tS(t, s, x , y) = −
1
2
|ξ(t, s, y,η(t, s, x , y))|2 − V (t, x(t, s, y,η(t, s, x , y))) , (1.64)

which is (1.57) in virtue of (1.50).

The following proposition states an important property of the action.

Proposition 1.4.7. Assume that 0< t − s ≤ δ. Then we have

S(t, s, x , y) =
1
2
|x − y|2

t − s
+
p

t − sω(t, s, x , y) . (1.65)

For any pair of multi-indices α and β with length |α|+ |β | ≥ 2, there exists a constant
CαβM such that

|∂ αx ∂
β
y ω(t, s, x , y)| ≤ CαβM , (1.66)

where Cαβ is independent of (t, s) and (x , y).

Proof. Since t > s, ω(t, s, x , y) is defined by (1.65), hence

ω(t, s, x , y) = (t − s)−
3
2

�

(t − s)S(t, s, x , y)−
1
2
|x − y|2

�

.
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The Proposition 1.4.5 implies that

∂ 2
x j xk
ω(t, s, x , y) = (t − s)−

3
2 (∂xk

((t − s)ξ j(t, s, y,η(t, s, x , y)))−δ jk) .

Moreover, since ζ= (t − s)η,

∂xk
((t − s)ξ j) =

∑

m

∂ζm
((t − s)ξ j)∂xk

ζm .

We now apply the Propositions 1.3.6 and 1.3.7 and we obtain

∂ 2
x j xk
ω(t, s, x , y) = −b jk(t, s, y,ζ(t, s, x , y))− d jk(t, s, x , y)

+ (t − s)
3
2

d
∑

m=1

b jm(t, s, y,ζ(t, s, x , y))dmk(t, s, x , y) ,

where the functions b jk and d jk are defined in (1.33) and (1.38). This proves that
∂x j xk

ω(t, s, x , y) form a bounded set inB(Rn
x ×R

n
y).

Similar discussions for ∂ 2
x j yk
ω(t, s, x , y) and ∂ 2

y j xk
ω(t, s, x , y) prove the proposition.

Lemma 1.4.8. Let Sε(t, s, x , y) = 1
2
|x−y|2

t−s +
p

t − sωε(t, s, x , y). Then we have that

∆xωε(t, s, x , y)→∆xω(t, s, x , y) ,

pointwise as ε→ 0, if 0< t − s ≤ δ.

Proof. We have that

Æ

|t − s|∆xωε(t, s, x , y) =∆xSε(t, s, x , y)−
n

t − s
.

By using Proposition 1.4.5, we get

∆xSε(t, s, x , y) =
∑

k

∂ ξε j

∂ ηk
(t, s, y,ηε(t, s, x , y))

∂ ηεk
∂ x j

(t, s, x , y) .

So, by using (1.47), (1.48) together with the fact that ηε(t, s, x , y)→ η(t, s, x , y),
we get

∆xSε(t, s, x , y)→∆xS(t, s, x , y) , (1.67)

pointwise as ε→ 0.
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1.5 Parametrices

We assume throughout this section that 0 < t − s < δ, where δ is the constant
appearing in Proposition 1.3.7. For any ϕ ∈B(Rn) we define the integral operators
E(t, s) as

E(t, s)ϕ(x) =

∫

Rn

e(t, s, x , y)ϕ(y)d y , (1.68)

where

e(t, s, x , y) =
�

1
2πi(t − s)

�
n
2

eiS(t,s,x ,y) .

In the following proposition we prove that the operator E(t, s) is a bounded
linear operator in L2(Rn).

Proposition 1.5.1. There exists a positive constant γ0 = γ0(δ, M) such that

‖E(t, s)ϕ‖L2(Rn) ≤ γ0‖ϕ‖L2(Rn) ,

for any ϕ ∈ C∞0 (R
n).

Proof. Let ν= (t − s)−1 and

φ(t, s, x , y) = (t − s)S(t, s, x , y) =
1
2
|x − y|2 + (t − s)

3
2ω(t, s, x , y) .

Then E(t, s) can be written as an oscillatory integral transformation as follows

E(t, s)ϕ(x) =
�

ν

2πi

�
n
2
∫

Rn

eiνφ(t,s,x ,y)ϕ(y)d y . (1.69)

So E(t, s) = I(t, s; 1) (see Appendix A). By Proposition 1.4.5 we have that

∂ 2

∂ x j∂ yk
φ(t, s, x , y) = −

∂ ξk

∂ x j
(t, s, x , y) .

Proposition 1.3.6 implies that there exists a constant ρ such that
�

�

�

�

det
∂ 2

∂ x j∂ yk
φ(t, s, x , y)

�

�

�

�

> ρ .

Since Proposition 1.4.7 holds, we can apply Theorem A.0.5 of the Appendix A to
the integral transformation (1.69), getting the thesis. We remark that the constant
γ0 (see (A.1) in the Appendix A) depends only on δ and M in virtue of Proposition
1.4.7.

Definition 1.5.2. Let

W =
§

f ∈ L2(Rn)

�

�

�

�

(1+ |x |2) f ∈ L2(Rn) and
�

∂

∂ x

�α

f ∈ L2(Rn) for any α with |α| ≤ 2
ª

.
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The space W is a Hilbert space equipped with the norm

‖ f ‖2W = ‖(1+ | · |
2) f ‖2L2(Rn) +

∑

|α|≤2









�

∂

∂ x

�α

f









2

L2(Rn)
.

We note that W = H2 ∩F (H2), which is related to the harmonic oscillator.
Let H(t) be the minimal closed extension, with respect to L2, of the differential
operator −1

2∆ + V (t, x) restricted to C∞0 (R
n). We shall denote its domain with

D(H(t)). Under the assumptions on the potential we have that |V (t, x)| ≤ C(1 +
|x |2)‖∇2

x V (t)‖L∞x
for almost every t ∈ R. So it follows that the Hamiltonian opera-

tor H(t) is a bounded linear map from W to L2(Rn) for a.e. t ∈ R.

Proposition 1.5.3. E(t,s) is a continuous mapping of W into itself.

Proof. The proof is an immediate consequence of Theorem A.0.6 of the Appendix.

Proposition 1.5.4. If ϕ ∈W, then, E(t, s)ϕ ∈ D(H(t)) for almost every t ∈ R.

Proof. As a consequence of Proposition 1.5.3, we have only to prove that D(H(t)) ⊃
W for a.e.t ∈ R. Let ϕ ∈W . Then∆ϕ ∈ L2(Rn) and (1+|·|2)ϕ ∈ L2(Rn). Moreover
|V (t, x)| ≤ C(1+ |x |2)‖∇2

x V (t)‖L∞x
for almost every t ∈ R. Therefore, we have

−
1
2
∆ϕ + V (t, x)ϕ ∈ L2(Rn) .

Hence the Hamiltonian operator H(t) is a bounded linear map from W to L2(Rn) for
a.e. t ∈ R. Now, let ϕ ∈ W . Since C∞o (R

n) is dense in W , there exists a sequence
ϕn ∈ C∞0 (R

n), which converges to ϕ in W. Morevor, H(t)ϕn is a Cauchy sequence
in L2(Rn); indeed

‖H(t)ϕ‖L2(Rn) ® ‖ϕn‖W .

Thus H(t)ϕn converges to someψ ∈ L2(Rn). It follows that ϕ ∈ D(H(t)) for almost
every t ∈ R.

Now, for each ε > 0 we can define the parametrix

Eε(t, s)ϕ(x) =
�

1
2πi(t − s)

�
n
2
∫

Rn

eiSε(t,s,x ,y)ϕ(y)d y , (1.70)

where ϕ ∈ S (Rn) and Sε is defined in (1.49).

Remark 1.5.5. Proceeding as in Proposition 1.5.1, we can prove the existence of a
constant γ̃0, which is independent with respect to ε, such that

‖Eε(t, s)ϕ‖L2(Rn) ≤ γ̃0‖ϕ‖L2(Rn) . (1.71)

Indeed, as in Proposition 1.5.1, γ̃0 depends only on δ and ‖∇2
x Vε‖L2

t L∞x
is uniformly

bounded with respect to ε.
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Proposition 1.5.6. There exists a positive constant C, which is independent of ε, such
that

‖Eε(t, s)ϕ‖W ≤ C‖ϕ‖W (1.72)

Proof. This is an immediate consequence of Theorem A.0.6 of the Appendix. In-
deed, by using Propositions 1.3.5, 1.3.6 and 1.4.7, we have that all the assumptions
of Theorem A.0.6 are satisfied. The constant depends on ‖∂ 2

x Vε‖L2
t L∞x

, which is uni-
formly bounded with respect to ε.

Proposition 1.5.7.

Eε(t, s)ϕ(x)→ E(t, s)ϕ(x) ,

for every x ∈ Rn, as ε→ 0.

Proof. The result follows by Lemma 1.4.4 and the dominated convergence theorem,
because ϕ ∈ S (Rn) ⊂ L1(Rn).

The following result shows that E(t, s) converges strongly to the identity opera-
tor as t → s.

Proposition 1.5.8. 1. For every ϕ ∈ L2(Rn), we have

lim
t→s

E(t, s)ϕ = ϕ ,

in L2(Rn).

2. If we set E(s, s) = I , then the correspondence (s, t) 7→ E(t, s)ϕ gives a strongly
continuous function with values in L2(Rn).

Proof. First of all we note that we have only to prove (1) for ϕ ∈ C∞0 (R
n) since

Proposition 1.5.1 holds. From Proposition 1.5.7 we know that

Eε(t, s)ϕ(x)→ E(t, s)ϕ(x) ,

for every x ∈ Rn, as ε→ 0. By using the Fatou’s Lemma and the definition of lim inf,
we have that for every µ > 0 there exists ε0 such that

‖E(t, s)ϕ −ϕ‖L2(Rn) ≤ lim inf
ε→0

‖Eε(t, s)ϕ −ϕ‖L2(Rn)

≤ ‖Eε0
(t, s)ϕ −ϕ‖L2(Rn) +µ .

Now, we know that the regularized potential satisfies Fujiwara’s assumptions; so it
follows (see Proposition 4.3 in [36]) that

lim
t→s
‖Eε0
(t, s)ϕ −ϕ‖2 = 0
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and therefore we conclude that

lim sup
t→s

‖E(t, s)ϕ −ϕ‖L2(Rn) ≤ µ .

By the arbitrariness of µ we get the desired result.
We can prove (2) by using the fact that for every ε > 0 we have

lim
t→t ′ , s→s′

‖Eε(t, s)ϕ − Eε(t
′, s′)ϕ‖L2(Rn) = 0 ,

from [36]. By using the Fatou Lemma as above we get the desired result.

At this point we need to show that the E(t, s)ϕ(x) is an approximate solution of
the Schrödinger equation (1.9). As already stressed, under our assumptions on the
potential V (t, x), for every fixed x , y ∈ Rn the time derivative of S(t, s, x , y) exists
almost everywhere, but the zero measure set depends on x and y . This prevents
us from justifying the exchange of the order of derivation and integration, so we
cannot expect to have that

∂

∂ t
E(t, s, x , y)ϕ(x) =

∫

Rn

∂

∂ t
e(t, s, x , y)ϕ(y)d y ,

as in [36]. To overcome this difficulty we use the regularization of the potential
introduced in the previous Section. So, for each fixed ε > 0, proceeding as in [36],
we have that

�

− i∂t −
1
2
∆+ Vε(t, x)

�

Eε(t, s)ϕ(x) = Gε(t, s)ϕ , (1.73)

at almost every t ∈ (s−δ, s+δ) for any ϕ ∈ C∞c (R
n), with

Gε(t, s)ϕ(x) =
i
p

t − s

(2πi(t − s))
n
2

∫

Rn

eiSε(t,s,x ,y)∆xωε(t, s, x , y)ϕ(y)d y .

Proposition 1.5.9. There exists a positive constant C, which is idependent of ε, such
that

‖Gε(t, s)ϕ‖L2(Rn) ≤ C
Æ

|t − s|‖ϕ‖L2(Rn) (1.74)

Proof. This is a simple consequence of Theorem A.0.5 in the Appendix; the constant
C is independent on ε since it depends on ‖∇2

x Vε‖L2
t L∞x

, which is constant.

Lemma 1.5.10.
Gε(t, s)ϕ(x)→ G(t, s)ϕ(x) ,

for every x ∈ Rn, as ε→ 0. Here G(t, s) is given by

G(t, s)ϕ(x) =
i
p

t − s

(2πi(t − s))
n
2

∫

Rn

eiS(t,s,x ,y)∆xω(t, s, x , y)ϕ(y)d y . (1.75)
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Proof. The assertion follows from Lemma 1.4.8 and the dominated convergence
theorem.

We note that Proposition 1.5.9 and Lemma 1.5.10 imply that

Gε(t, s)ϕ * G(t, s)ϕ in L2(Rn) (weakly). (1.76)

By the semicontinuity of the norm, it follows

‖G(t, s)ϕ‖L2(Rn) ≤ C
p

t − s‖ϕ‖L2(Rn) . (1.77)

At this point we can explain why E(t, s)ϕ(x) is an approximation of the solution
of (1.9).

Proposition 1.5.11. Let ϕ ∈ C∞0 (R
n). Then we have that

�

i∂t +
1
2
∆− V (t, x)

�

E(t, s)ϕ(x) = −G(t, s)ϕ ,

in D′([s, t]×Rn).

Proof. Let ϕ ∈ C∞0 (R
n) ⊂W . For each ε > 0 we have that

�

i∂t +
1
2
∆− Vε(t, x)

�

Eε(t, s)ϕ(x) = −Gε(t, s)ϕ ,

for almost every t ∈ (s−δ, s+δ). For every λ ∈ C∞0 ([s, t]×Rn) we have

i

∫

Rn

Eε(t, s)ϕ(x)λ(t, x)d x−i

∫

Rn

ϕ(x)λ(s, x)d x − i

∫ t

s

∫

Rn

Eε(τ, s)ϕ(x)∂τλ(τ, x)d xdτ

=

∫ t

s

∫

Rn

Eε(τ, s)ϕ(x)
�

−
1
2
∆+ Vε(τ, x)

�

λ(τ, x)d xdτ

−
∫ t

s

∫

Rn

Gε(τ, x)ϕ(x)λ(τ, x)d xdτ .

(1.78)
From Propositions 1.5.3 and 1.5.7 we get

Eε(t, s)ϕ * E(t, s)ϕ weakly in L2
t,x .

Moreover
Vε → V strongly in L2

t L∞loc,x .

From Proposition 1.5.9 and Lemma 1.5.10 it follows

Gε(t, s)ϕ * G(t, s)ϕ in L2
t,x .

By passing to the limit, as ε→ 0, in (1.78), we get the thesis.
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1.6 Construction of the fundamental solution

The construction of the fundamental solution is based on the approximate evolution
properties of E(t, s), which will be stated in the following propositions.

Remark 1.6.1. By proceeding as for (1.73), we get that

−i∂sEε(t, s)ϕ(x) = Eε(t, s)
�

−
1
2
∆+ Vε(t, x)

�

ϕ(x) + G̃ε(t, s)ϕ(x) , (1.79)

where

G̃ε(t,σ)ϕ(x) =
�

1
2πi(t −σ)

�
n
2
p

t −σ
2i

∫

Rn

∆yωε(t,σ, x , y)eiSε(t,s,x ,y)ϕ(y)d y .

As for (1.74), we can prove

‖G̃ε(t, s)ϕ‖L2(Rn) ≤ C
Æ

|t − s|‖ϕ‖L2(Rn) , (1.80)

with C independent on ε.

Proposition 1.6.2. There exists a positive constant C1 such that

‖E(t, s1)E(s1, s)− E(t, s)‖L2(Rn)→L2(Rn) ≤ C1(|t − s1|
3
2 + |s1 − s|

3
3 ) . (1.81)

Proof. Let ϕ ∈ C∞0 (R
n). Then, we have

(Eε(t, s1)Eε(s1, s)− Eε(t, s))ϕ =

∫ s1

s

d
dσ
(Eε(t,σ)Eε(σ, s)ϕ)dσ , (1.82)

for each ε > 0. Thus, from (1.73) and (1.79) it follows (see [36]) that








d
dσ

Eε(t,σ)Eε(σ, s)ϕ









L2(Rn)
= ‖iG̃ε(t,σ)Eε(σ, s)ϕ − iEε(t,σ)Gε(σ, s)ϕ‖L2(Rn) .

From (1.71), (1.74) and (1.80) we get that








d
dσ

Eε(t,σ)Eε(σ, s)ϕ









L2(Rn)
≤ C(

Æ

|t −σ|+
Æ

|σ− s|)‖ϕ‖L2(Rn) .

The last inequality together with (1.82), gives

‖Eε(t, s1)Eε(s1, s)− Eε(t, s)‖L2(Rn)→L2(Rn) ≤ C1(|t − s1|
3
2 + |s1 − s|

3
3 ) , (1.83)

where C1 does not depend on ε. By using the Fatou’s lemma and the definition of
the liminf as in Proposition 1.5.8, we get the thesis.

Proposition 1.6.3. Let 0< t− s ≤ δ. There exists a positive constant C2 such that for
any ϕ ∈ L2(Rn),

‖E(t, s)ϕ‖L2(Rn) ≤ eC2(t−s)
3
2 ‖ϕ‖L2(Rn) (1.84)
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Proof. The proof proceeds as in Proposition 1.6.2.

The estimate (1.84) tells us that we can take γ0 in Proposition (1.5.1) as γ0 =

eC2(t−s)
3
2 . Now we are ready to construct the propagator for the equation (1.9), by

following Feyman’s construction of the approximating sequence of the fundamental
solution. Let s, t be arbitrary real numbers such that −T < s < t < T . Let us
consider a subdivision ∆ of the interval [s, t] such that

∆ : t0 = s < t1 < t2 < . . .< t l−1 < t l = t ,

with
ω(∆) = max

1≤ j≤l
|t j − t j−1|

the maximal size of the subintervals. We introduce the iterated integral operator
E(∆|t, s) as follows

Definition 1.6.4. Let ∆ be any subdivision of the interval [s, t] as above.

E(∆|t, s) = E(t, t l−1)E(t l−1, t l−2) · · · E(t2, t1)E(t1, s) . (1.85)

Then we have

E(∆|t, s)ϕ(x) =

∫

Rn

I(∆|t, s, x , y)ϕ(y)d y ,

where

I(∆|t, s, x , y) =
L
∏

j=1

�

1
2πi(t j − t j−1)

�
n
2

×
∫

Rn

· · ·
∫

Rn

L
∏

j=1

exp
§ L
∑

j=1

S(t j , t j−1, x j , x j−1)
ª L
∏

j=1

d x j ,

with x0 = y and xL = x . We want to prove that

lim
ω(∆)→0

I(∆|t, s, x , y) (1.86)

exists and equals the kernel function of the fundamental solution for the Schrödinger
equation (1.9).
To construct the propagator for (1.9), we shall use the following theorem, which
deals with the existence of the limit (1.86).

Theorem 1.6.5. Let {F(t, s)|(t, s) ∈ [−T, T]×[−T, T]} be a family of linear operators
acting on L2(Rn) with the following properties:

• F(t, s) is a bounded operator on L2(Rn) and there exists a constant C1 > 0 and
γ1 > 0 such that

‖F(t, s)ϕ‖L2(Rn) ≤ eC1|t−s|γ1‖ϕ‖L2(Rn) . (1.87)
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• There exist α > 1 and C2 such that for any ϕ ∈ L2(Rn),

‖(F(t, s1)F(s1, s)− F(t, s))ϕ‖L2(Rn) ≤ C2(|t − s1|α + |s1 − s|α)|ϕ‖L2(Rn) .
(1.88)

• For ϕ ∈ S (Rn), F(t, s)ϕ is a L2(Rn)-valued strongly continuous function in
(t, s) ∈ R2 and it satisfies

�

F(s, s)ϕ = ϕ for any s ∈ R ,
limt→s ‖F(t, s)ϕ −ϕ‖L2(Rn) = 0 .

Let ∆ be a subdivision of the interval [s, t]. We put

F(∆|t, s) = F(t, t l−1)F(t l−1, t l−2) · · · F(t1, s) .

Then there exists a bounded linear operator U(t, s) in L2(Rn) such that

lim
ω(∆)→0

‖U(t, s)− F(∆|t, s)‖L2(Rn)→L2(Rn) = 0 , (1.89)

in the norm of bounded operator from L2(Rn) to L2(Rn). More precisely, there exists
a constant γ such that

‖U(t, s)− F(∆|t, s)‖L2(Rn)→L2(Rn) ≤ γ|t − s|ω(∆)α−1 . (1.90)

For the proof, we prepare the following lemmas:

Lemma 1.6.6. Assume |t − s| ≤ δ. Let ∆ = {t j}, with t j = s + j L−1(t − s), for
j = 0, 1, . . . , L and δ(∆) = L−1|t − s|. We have

‖(F(t, s)− F(∆|t, s))ϕ‖L2(Rn) ® |t − s|αeC1|t−s|‖ϕ‖L2(Rn) ,

where F(∆|t, s)ϕ = F(tL , tL−1) · · · F(t1, t0)ϕ.

Proof. The proof is just an adaptation of the same result contained in Lemma 5.7 in
[36] (where α= 2). Let us assume to have a finite sequence ∆(0),∆(1), . . . ,∆k+1 of
subdivisions of the interval [s, t] such that

(a) k ≤ log2 L + 2.

(b) ∆(m) is a refinement of ∆(m−1).

(c) ∆(0) is the trivial subdivision [s, t] and ∆(k+1) =∆.

(d) The following estimates hold for any m= 1,2, . . . , k+ 1:

‖F(∆(m)|t, s)− F(∆(m−1)|t, s)‖L2(Rn)→L2(Rn) ≤ C |t − s|α(21−m + 4L−1)eC1|t−s| .
(1.91)
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Then, it follows

‖F(∆|t, s)− F(t, s)‖L2(Rn) ≤
k+1
∑

m=1

‖F(∆(m)|t, s)− F(∆(m−1)|t, s)‖L2(Rn)

≤ C |t − s|α(2+ 4(log2 L + 3)L−1)exp(C1|t − s|) .

The desired estimate follows by noting that sup L−1 log2 L <∞. So to conclude
the proof we need to construct the sequence of subdivisions ∆(m). Let us call J1 =
[s, t1],. . . ;JL = [tL−1, t] elementary intervals and let us the note with I the whole
interval [s, t]. We put τ1

0 = s, τ1
1 = t[L/2] and τ1

2 = t, where [·] is the integer part
function. We divide I into two intervals

∆(1); I1
1 = [s,τ

1
1], I1

2 = [τ
1
1, t] ,

which we call intervals of the first generation. The intervals of the second generation
are

∆(2); I2
1 = [τ

2
0,τ2

1], I2
2 = [τ

2
1,τ2

2], I2
3 = [τ

2
2,τ2

3], I2
4 = [τ

2
3,τ2

4] ,

where

τ2
0 = s, τ2

1 =max{t j|t j ≤ 2−1(τ1
0 +τ

1
1)} ,

τ2
2 = τ

1
1, τ2

3 =max{t j|t j ≤ 2−1(τ1
1 +τ

1
2)} ,

τ2
4 = τ

1
2 .

Iterating this process m−times, we obtain intervals Im
1 , Im

2 , . . . , Im
2m of m-th genera-

tion, where Im
j = [τ

m
j−1,τm

j ] with τm
2 j = τ

m−1
j and

τm
2 j+1 =max{t j|t j ≤ 2−1(τm−1

j +τm−1
j+1 )} .

Clearly
Im−1

j = Im
2 j−1 ∪ Im

2 j .

By definition, we have
�

�Im
2 j−1

�

�≤ 2−1
�

�Im−1
j

�

�,
�

�Im
2 j

�

�≤ 2−1
�

�Im−1
j

�

�+ L−1
�

�t − s
�

� .

So it follows that
�

�Im
j

�

�≤ |t − s|(2−m + L−1(1+ 2−1 + · · ·+ 21−m))< |t − s|(2−m + 2L−1) .

If k ≥ log2 L, then
�

�I k
j

�

�< 3L−1|t − s| .

From the last inequality, it follows that I k
j is a union of at most two elementary

intervals. Therefore every interval I k+1
j of (k + 1)th generation is a single point or

it coincides with one of elementary intervals, which means that ∆(k+1) =∆.
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The sequence of subdivisions we have constructed satisfies the conditions (a),
(b) and (c). We need to prove (1.91). Let Im−1

j any interval of (m−1)−th generation;

in ∆(m) it is divided into

Im
2 j−1 = [τ

m
2 j−2,τm

2 j−1], and Im
2 j = [τ

m
2 j−1,τm

2 j] .

By using (1.88), we get

‖F(τm−1
j ,τm−1

j−1 )− F(τm
2 j ,τ

m
2 j−1)F(τ

m
2 j−1,τm

2 j−2)‖L2(Rn)

≤ C2

��

�Im
2 j−1

�

�

α
+
�

�Im
2 j

�

�

α�
.

This, together with (1.87), gives

‖F(∆(m−1)|t, s)− F(∆(m)|t, s)‖L2(Rn)→L2(Rn)

≤
2m−1
∑

j=0

C2

��

�Im
2 j−1

�

�

α
+
�

�Im
2 j

�

�

α�
exp

�

C1

��

�Im−1
2m−1

�

�

α
+ · · ·+

�

�Im−1
j+1

�

�

α
+
�

�Im
2 j+1

�

�

α

+
�

�Im
2 j−1

�

�

α
+ · · ·+

�

�Im
1

�

�

α��≤ C2|t − s|α(21−m + 4L−1)exp(C1|t − s|) .

This proves (1.91) (see Lemma 5.7 of [36]).

Lemma 1.6.7. Let two subdivisions of [s, t] be given by

∆1 : s = t0 < t1 < · · ·< tL−1 < tL = t, ,

∆2 : s = so < s1 < · · ·< sM−1 < sM = t .

Assuming that δ(∆1)< δ and δ(∆2)< δ, we get

‖(F(∆1|y, s)− F(∆2|t, s))ϕ‖L2(Rn) ® |t − s|(δ(∆1)
α−1+δ(∆2)

α−1)eC1|t−s|‖ϕ‖L2(Rn) .
(1.92)

Proof. The proof proceeds verbatim as in Lemma 5.8 in [36]. We begin with proving
(1.92) under the assumption that all the ratios (t− s)−1(t j− t j−1) and (t− s)−1(sk−
sk−1) are rational. Under this conditions, there exists a common refinement ∆3 of
the subdivisions ∆1 and ∆2 with intervals of the same length. Let us denote

∆3; s = τ0 < τ1 < · · ·< τk = t ,

and δ(∆3) = |τ j − τ j−1| = K−1|t − s|. Any interval [t j−1, t j] of ∆1 is divided into
[τk,τk+1], . . . , [τk+m−1,τk+m] in ∆3. By applying Lemma 1.6.6 to [t j−1, t j], we get

‖F(t j , t j−1)− F(τk+m,τk+m−1) · · · F(τk+1,τk)‖L2(Rn) ® |t j − t j−1|αeC1|t−t j−1| .
(1.93)
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Using this and (1.87)

‖F(∆1|t, s)− F(∆3|t, s)‖L2(Rn)

®
L−1
∑

j=0

|t j − t j−1|α exp(C1|t j − t j−1|+ |t − tL−1|γ1 + · · ·+ |t j+1 − t j|γ1

+ |τk −τk−1|γ1 + · · ·+ |τ1 − s|γ1)

® |t − s|δ(∆1)
α−1 exp(C1|t − s|) .

(1.94)

In the same way we can prove a similar estimate for ‖E(∆2|t, s)−E(∆3|t, s)‖L2(Rn),hence
we have proved (1.92) when the ratios (t − s)−1(t j − t j−1) and (t − s)−1(sk − sk−1)
are rational. In the case of general sundivisions∆1 and∆2 we can prove (1.92), by
exploiting the density of the rational numbers inR (see also Lemma 5.8 of [36]).

Proof of Theorem 1.6.5. The proof corresponds to the proof of Theorem 1 in [36],
so is omitted.

Now, we put F(t, s) = E(t, s). All the assumptions of Theorem 1.6.5 are satis-
fied: they follow by using Proposition 1.6.3 with γ1 =

3
2 , (1.83) with α = 3

2 and
Proposition 1.5.8. Thus, we have constructed a family {U(t, s)|t, s ∈ [−T, T]} of
operators such that

lim
ω(∆)→0

‖U(t, s)− E(∆|t, s)‖L2(Rn)→L2(Rn) = 0 .

The following proposition shows that U(t, s) has the evolution property.

Proposition 1.6.8. For any s, t, r ∈ R

U(t, r)U(r, s) = U(t, s) .

Proof. Let s < r < t ; take the subdivision ∆ such that ∆=∆l ∪∆r , where

∆l : s = t0 < t1 < . . .< t l = r < t l+1 ,

∆r : r = t l < t l+1 < . . .< tM = t .

Then, by noting that E(∆r |t, s)E(∆l |r, s) = E(∆|t, s), we get

‖U(t, r)U(r, s)ϕ − U(t, s)‖L2(Rn)→L2(Rn) ≤ ‖(U(t, r)− E(∆r |t, r))U(r, s)ϕ‖L2(Rn)→L2(Rn)

+ ‖E(∆r |t, r)(U(r, s)− E(∆l |r, s))ϕ‖L2(Rn)→L2(Rn)

+ ‖(E(∆r |t, r)E(∆l |r, s)− U(t, s))ϕ‖L2(Rn)→L2(Rn)→ 0 as ω(∆)→ 0 .

Now we prove that U(t, s) is actually the fundamental solution of (1.9).

Theorem 1.6.9. For any t, s the operator U(t, s) maps the space W into itself.
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Proof. Let us consider an arbitrary subdivision ∆ of the interval [s, t]:

∆ : s = t0 < t1 < · · ·< tL = t .

Let ϕ ∈ S (Rn). By applying repeatedly Theorem A.0.6 of the Appendix, we get the
estimate

‖E(∆|t, s)ϕ‖W ≤ C(T )‖ϕ‖W .

It follows that the set Σ = {E(∆|t, s)ϕ} is bounded in W when ω(∆)→ 0. Conse-
quently, Σ has at least one accumulation point in the weak topology of W . On the
other hand, since W is continuously embedded in L2(Rn), every accumulation point
of Σ in W must coincide with U(t, s)ϕ. Hence, U(t, s)ϕ ∈W .

Theorem 1.6.10. For any ϕ ∈W, we have

i
∂

∂ t
U(t, s)ϕ = −

1
2
∆U(t, s)ϕ + V (t, x)U(t, s)ϕ ,

in D′([s, t]×Rn).

Proof. We consider a subdivision ∆ of the interval [s, t]

s = t0 < t1 < · · ·< tL = t ,

withω(∆) sufficiently small. For anyσ ∈ [s, t], there exists j such thatσ ∈ [t j , t j+1]
and we put

F(σ) = E(σ, t j)E(t j , t j−1) · · · E(t1, s) .

From Theorem 1.6.5 we know that, for every ψ ∈ C∞0 (R
n),

(F(σ)ϕ,ψ)→ (U(σ, s)ϕ,ψ) , (1.95)

when ω(∆)→ 0. Moreover, by using Proposition 1.5.11, we have
�

i∂t +
1
2
∆− V (t, x)

�

F(σ)ϕ = −G(σ, t j)F(t j)ϕ , (1.96)

in D′([t j , t j+1]×Rn). Now, we consider λ ∈ C∞0 ([s, t]×Rn), and we put f (t, x) =
(i∂t +

1
2∆− V (t, x))λ(t, x). We have

i

∫

Rn

F(t)ϕ(x)λ(t, x)d x − i

∫

Rn

F(s)ϕ(x)λ(s, x)d x +

∫ t

s

∫

Rn

F(σ)ϕ(x) f (σ, x)d xdσ

= i

∫

Rn

F(t)ϕ(x)λ(t, x)d x − i

∫

Rn

F(s)ϕ(x)λ(s, x)d x

+
L−1
∑

j=0

∫ t j+1

t j

∫

Rn

F(σ)ϕ(x) f (σ, x)d xdσ

(1.97)
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By Proposition 1.5.11, we know that

∫ t j+1

t j

∫

Rn

F(σ)ϕ(x) f (σ, x)d xdσ = −
∫ t j+1

t j

∫

Rn

G(σ, t j)ϕ(x)λ(σ, x)d xdσ

+ i

∫

Rn

F(t j)ϕ(x)λ(t j , x)d x − i

∫

Rn

F(t j+1)ϕ(x)λ(t j+1, x)d x .

(1.98)
By plugging (1.98) into (1.97), we get

i

∫

Rn

F(t)ϕ(x)λ(t, x)d x − i

∫

Rn

F(s)ϕ(x)λ(s, x)d x +

∫ t

s

∫

Rn

F(σ)ϕ(x) f (σ, x)d xdσ

=
L−1
∑

j=0

∫ t j+1

t j

∫

Rn

G(σ, t j)ϕ(x)λ(σ, x)d xdσ .

(1.99)
By using (1.77)

�

�

�

�

L−1
∑

j=0

∫ t j+1

t j

∫

Rn

G(σ, t j)ϕ(x)λ(σ, x)d xdσ

�

�

�

�

≤
L−1
∑

j=0

∫ t j+1

t j

‖G(σ, t j)ϕ‖L2(Rn)‖λ(t)‖L2(Rn)dσ ® Lω(∆)
3
2 ‖ϕ‖L2(Rn) .

(1.100)
Then, by passing to the limit ω(∆)→ 0 in (1.99) and by using (1.95) , we get the
thesis.

Remark 1.6.11. If ϕ ∈W, it follows that H(t)U(t, s)ϕ ∈ L2(Rn) for a.e. t. By using
Theorem 1.6.10, we have that

i
∂

∂ t
U(t, s)ϕ = H(t)U(t, s)ϕ ,

in L2(Rn) for almost every t.
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Chapter 2

Local Smoothing

2.1 Introduction

The goal of this chapter is the study of the local smoothing property for the
Schrödinger equation (1.9), under the assumptions (V-I)-(V-III) on the potential
V (t, x). The local smoothing estimate refers to the property of solutions to a linear
homogeneous dispersive equation to gain some regularity with respect to the initial
data, on average in time and locally in space. The local smoothing property repre-
sents a useful tool in the analysis of nonlinear problems, for instance in the study of
decaying properties of solutions ([67]) and in global existence issues, expecially in
the case of the Schrödinger equations with derivatives in the nonlinearity ([75]).

It is well known that the solution to the free Schrödinger equation satisfies the
following smoothing estimate

‖〈x〉−s(−∆)
1
2 ei t∆u‖L2

t L2
x
≤ C‖u‖L2(Rn) s >

1
2

.

This kind of inequality was proved by Ben-Artzi and Klainerman in [13] for n ≥ 3
and by Chihara in [20] for n= 2.
Actually the first result concerning global smoothing effect for unitary operators goes
back to Kato in [72]. In this work the author introduced the notion of H-smooth
operators. Let L :H 7→ H̃ (H and H̃ Hilbert spaces) be a densely defined closed
operator; we say that L is H-smooth if

sup
Imζ 6=0

|((H − ζ)−1 L∗ũ, L∗ũ)| ≤ C‖ũ‖2H̃ , ũ ∈ D(L∗) ⊂ H̃ ,

where H is a selfadjoint operator in H such that the resolvent (H − ζ)−1 is de-
fined (so at least for Imζ 6= 0). The relationship between H-smooth operators and
smoothing effects is the following: an operator L is H-smooth if and only if

∫ ∞

−∞
‖Le−i tHu‖2H̃ d t ≤ C‖u‖H ,
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and in particular, e−i tHu ∈ D(L) for almost every t ∈ R.
Later on, Strichartz, studying properties of Fourier transform in [115], proved that

�

∫ +∞

−∞

∫

Rn

|ei t∆u|2(n+2)/nd xd t
�n/2(n+2)

≤ C‖u‖L2(Rn) ,

which tells us that, if u ∈ L2(Rn) then ei t∆u ∈ L
2(n+2)

n (Rn) for almost every t. This
means that the free Schrödinger propagator improves Lp-smoothness.
In [54], the authors improved this result by proving that

�

∫

§

∫

|ei t∆u|pd x
ª
θ
p
�

1
θ

≤ C‖u‖L2(Rn) ,

for 0 ≤ 2/θ = n(1/2− 1/p) < 1, which means that for every u ∈ L2(Rn), ei t∆u ∈
L2(Rn)∩ Lp(Rn), 2≤ p < 2n/(n− 2) for a.e t ∈ R.
The local smoothing effect was first established by Kato in [71]; he observed that
the solutions of the Korteweg-de Vries equation

�

∂tu+ ∂ 3
x u+ u∂xu= 0, t, x ∈ R ,

u(0) = u0 .

with u(0) = u0, have an improvement of the differentiability property. In particular

∫ T

−T

∫ R

R
|∂xu(x , t)|2d xd t ≤ C(T, R)‖u0‖2L2(Rn) , (2.1)

which means that the solution is one derivative smoother than the inital datum. In
[80], Kruzhkov and Faminskii obtained a similar result independently.
Subsequently, but simultaneously, Constantin and Saut ([22]), Sjölin ([113]) and
Vega ([121]) found that estimates of the type in (2.1) are possessed by the unitary
groups generated by dispersive equations. This is a consequence of the dispersive
nature of the linear part of the equation. Most of the physically relevant dispersive
equations and systems (K-dV, Benjamin-Ono, Boussinesq, Schrödinger) show the
local smoothing property.

If we consider an operator P(D) with real symbol P(ξ), such that P(ξ)∼ |ξ|α at
infinity, for a real positive α, we get

�

∫ T

−T

∫

|x |≤R
|(−∆)(α−1)/4e−i t P(D)u0(x)|2d xd t

�
1
2

≤ C(T, R)‖u0‖L2(Rn) . (2.2)

This last inequality tells us that if u0 ∈ L2(Rn), the solutions ei t P(D)u0 ∈ H(α−1)/2
loc (Rn)

for almost every t.
In [22], the authors extended Kato’s result (2.1) to general linear dispersive equa-
tions. On the other hand, in [113] and [121], the authors got inequality (2.2) with
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α = 2 implicitly, while studying the problem of finding the value of s such that the
following limit exists in Hs(Rn):

lim
t↓0

ei t∆u0(x) = u0(x), for almost every x ∈ Rn .

While Kato’s original proof of the smoothing effects (2.1) relies on energy estimates,
the generalization of the result to general linear dispersive equations is based on a
Fourier transform argument.
In particular, for the free Schrödinger propagator, it is showed that

∫

R

∫

Rn

|φ(t, x)(1−∆)
1
4 ei t∆u(x)|2d xd t ≤ C‖u‖2L2(Rn), u ∈ L2(Rn) , (2.3)

whereφ ∈ C∞0 (R
n+1). For Schrödinger equations, the smoothing property has been

extended to the case with a potential. There is a wide literature in this direction,
when the potential V has enough regularity and decays fast at infinity; we refer
to [30, 107, 108] and references therein. Yajima, in [126], extended (2.3) to the
problem

−i∂tu(t, x)− (∇− iA(t, x))2u+ V (t, x)u(t, x) = 0 ,

where V (t, x) is a smooth potential growing subquadratically at infinity and the
magnetic potential A(t, x) has a sublinear growth and satisfies suitable regularity
assumptions. This result was generalized by Doi in [26, 27] to equations of the
form

i∂tu(t, x)−
∑

(−i∂x j
−iA j(t, x))g jk(x)(−i∂xk

−iAk(t, x))u(t, x)+V (t, x)u(t, x) = 0 ,

where the the metric g jk(x) satsfies suitable assumptions.
In this Chapter we investigate the possibility to extend (2.3) to the propagator of
Schrödinger equations (1.9) with a time dependent potential, which may increase
subquadratically at infinity but with rough integrability in time. We know, from
Chapter 1, that under the assumptions (V-I)-(V-III), the equation (1.9) generates a
unique propagator U(t, s) in L2(Rn), which gives the unique solution of (1.9).
The analysis led in Chapter 1 is focused on potentials, which are not locally bounded
in time as in [36], so they may exhibit local singularities (in time), which however
are L2-integrable. As a preliminary step towards a further investigation of the local
smoothing property for equation (1.9), with potentials studied in Chapter 1, we
examine the case of a potential with a local singularity in time. More specifically,
we deal with the following

V (t, x) =
1
2

t−
1
4 |x |2 . (2.4)

We stress here that the potential (2.4) does not fall in the class considered in [126];
indeed, with this choice, we are relaxing the assumption on the integrability with
respect to time by considering a potential V (t, x) which belongs to L2

t L∞loc,x and not
to L∞t L∞loc,x .
The result we would like to prove, by proceeding as in [126], is the following
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Theorem 2.1.1. Let V (t, x) be defined by (2.4). Let T > 0 be sufficiently small, µ > 1
2

and ρ ≥ 0. Then there exists a constant Cρµ > 0 such that for s ∈ R

∫ s+T

s−T
‖〈x〉−µ−ρ〈D〉ρU(t, s) f ‖2L2(Rn) ≤ Cρµ‖〈D〉ρ−

1
2 f ‖L2(Rn) f ∈ S (Rn) , (2.5)

where 〈x〉 =
p

1+ |x |2, 〈D〉 = (1 −∆)
1
2 and U(t, s) is the propagator associated to

the equation (1.9), with V (t, x) defined by (2.4).

2.2 Representation formula for the propagator

In [126], the proof of Theorem 2.1.1 is strongly based on the representation formula
of the propagator U(t, s) of (1.9) as an oscillatory integral operator, which is derived
in this Section.

Let T > 0. We say that a function a(t, s, x , y) belongs to the amplitude class
Amp, a(t, s, x , y) ∈ Amp, when for any α and β ,

|∂ αx ∂
β
y a(t, s, x , y)| ≤ Cαβ , |t − s|< T, x , y ∈ Rn.

We denote with I(t, s, a) the oscillatory integral operator with the phase S(t, s, x , y)
and amplitude a(t, s, x , y):

I(t, s, a) f (x) =
1

(2πi(t − s))
n
2

∫

Rn

eiS(t,s,x ,y)a(t, s, x , y) f (y)d y.

We want to show that the propagator U(t, s) for (1.9) admits the integral represen-
tation U(t, s) = I(t, s; k), where k ∈ Amp. We denote with ‖ · ‖m the norm defined
by

‖ f ‖m =
∑

|α|+|β |≤m

sup
(x ,y)∈Rn×Rn

�

�

�

�

�

∂

∂ x

�α� ∂

∂ y

�β

f (x , y)

�

�

�

�

,

for m = 0,1, 2, . . . The following Lemma contains some useful properties of oscilla-
tory integral operators.

Lemma 2.2.1. There exists a positive number T such that, for |t−s| ≤ T, the following
statements hold true.

(i) There exists a constant γ0(T ) such that, for |t − s| ≤ T

‖I(t, s; a)ϕ‖L2(Rn) ≤ γ0(T )‖a‖2n+1|ϕ‖L2(Rn), .

(ii) For a, b ∈ Amp, there exists c ∈ Amp such that

I(t, r; a)I(r, s; b) = I(t, s; c).

50



(iii) For subdivisions Ω : s = s0 < s1 < · · · < sL = t and a1, a2, . . . , aL ∈ Amp,
there exists a ∈ Amp such that I(t, sL−1; aL) · I(sL−1, sL−2; aL−1) · · · I(s1, s; a1) =
I(t, s; a). For m= 0, 1, . . .,

‖a(t, sL−1, . . . , s1, s)‖m ≤ κ(m)L
L
∏

j=1

‖a j‖R(m),

where κ(m) and R(m) are some positive constants, independent of L, the subdi-
vision Ω and functions a j ∈ Amp (here a(t, sL−1, . . . , s1, s) is just a notation to
denote the amplitude function a, as in the equation A.7 in [38]).

Proof. See Theorem A.2 in [38].

In the remaining part of this section, we assume that |t − s| is sufficiently small,
in order to exploit the results of Chapter 1.
We know from the previous Chapter, that the integral operator

E(t, s)ϕ(x) =
1

(2π(t − s))
n
2

∫

Rn

eiS(t,s,x ,y)ϕ(y)d y ,

is an approximate solution of the Schrödinger equation (1.9), in the sense that

i∂t E(t, s)ϕ =
�

1
2
∆+ V

�

E(t, s)ϕ − G(t, s)ϕ ,

in L2(Rn) for almost every t, where

G(t, s)ϕ(x) =
i
p

t − s

(2πi(t − s))
n
2

∫

Rn

eiS(t,s,x ,y)∆xω(t, s, x , y)ϕ(y)d y . (2.6)

Since U(t, s) is the fundamental solution of (1.9), we can use Duhamel’s formula to
write

E(t, s)ϕ = U(t, s)ϕ + i

∫ t

s
U(t,σ)G(σ, s)ϕdσ . (2.7)

So, we are looking for an operator-valued function F(t, s) , which allows us to write
the fundamental solution as

U(t, s) = E(t, s) + E(t, s)#F(t, s) , (2.8)

where

E#F(t, s) =

∫ t

s
E(t,σ)F(σ, s)dσ .

At this point we consider (2.7) as an operator equation for U(t, s) and we solve it
by successive approximation. At least formally we have that

U(t, s) = E(t, s)− i(E#G)(t, s) + (−i)2(E#G#G)(t, s)

+ (−i)3(E#G#G)(t, s) + · · ·
(2.9)
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We have to study the convergence of the right hand side of (2.9) in the uniform
operator topology. It follows from (2.6) that

G(t, s) = (2i)−1 I(t, s; c(t, s)) ,

with
c(t, s) =

p
t − s∆xω(t, s, x , y) .

Moreover, the estimate (1.77) of Chapter 1, gives

‖G(t, s)ϕ‖L2(Rn) ≤ γ1
p

t − s‖ϕ‖L2(Rn) . (2.10)

Proposition 2.2.2. We can estimate the norm of the product of k−factors as

‖G# · · ·#G(t, s)ϕ‖L2(Rn) ≤
γk

1Γ (
3
2)

k

Γ (3
2 k)

|t − s|
3
2 k−1‖ϕ‖L2(Rn) (2.11)

Proof. The proof proceeds by induction. We begin with the case k = 2; we have

G#G(t, s) =

∫ t

s
G(t,σ)G(σ, s)dσ .

By using (2.10), we get

‖G#G(t, s)‖ ≤ γ2
1

∫ t

s

p
t −σ

p
σ− sdσ = γ2

1(t − s)2
∫ 1

0

(1− x)
1
2 x

1
2 d x

= γ2
1(t − s)2

Γ (3
2)

2

Γ (3)
,

where we used in the integral the substitution σ = (t − s)x + s and the fact ([57])
that

∫ 1

0

(1− x)α−1 xβ−1d x =
Γ (α)Γ (β)
Γ (α+ β)

.

Now we assume that (2.11) holds for k factors. For k+ 1 factors we have

G# · · ·#G(t, s) =

∫ t

s
dσkG(t,σk)

∫ σk

s
G(σk,σk−1) · · ·

∫ σ1

s
dσ1G(σ1, s) .

By using the inductive hypothesis we get

‖G# · · ·#G(t, s)‖ ≤
γk+1

1 Γ (3
2)

k

Γ (3
2 k)

∫ t

s

p

t −σk(σk − s)
3
2 k−1dσk

≤ γk+1
1 |t − s|

3
2 (k+1)−1 Γ (

3
2)

k

Γ (3
2 k)

∫ 1

0

(1− x)
1
2 x

3
2 k−1d x

= γk+1
1 |t − s|

3
2 (k+1)−1 Γ (

3
2)

k

Γ (3
2 k)

Γ (3
2)Γ (

3
2 k)

Γ (3
2(k+ 1))

= γk+1
1 |t − s|

3
2 (k+1)−1 Γ (3

2)
k+1

Γ (3
2(k+ 1))

.
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Proposition 2.2.3. There exists an amplitude function ck(t, s, x , y) ∈ Amp such that

G# · · ·#G(t, s) = (2i)−k I(t, s; ck(t, s)) ,

for k ≥ 2. Moreover for any integer m > 0 there exists a constant γ2 = γ2(m, n, T )
such that

‖ck(t, s)‖m ≤
γk

2

Γ (3
2 k)
|t − s|

3
2 k−1 . (2.12)

Proof. Let’s consider an arbitrary subdivision of [s, t]

∆ : s = σ0 < σ1 < · · ·< σk = t .

By applying Lemma 2.2.1 repeatedly, we have that

G(t,σk−1)G(σk−1,σk−2) · · ·G(σ1, s) = (2i)−k I(t, s; bk(t,σk−1, . . . ,σ1, s)) ,

with bk(t,σk−1, . . . ,σ1, s)) ∈ Amp. It follows that

G# · · ·#G(t, s) = (2i)−k I(t, s; ck(t, s)) ,

by putting

ck(t, s, x , y) =

∫ t

s
dσk−1

∫ σk−2

s
. . .

∫ σ1

s
bk(t,σk−1, . . . ,σ1, s) .

In order to prove (2.12), we first recall that, by the properties of the function
ω(t, s, x , y), we have

‖c(t, s)‖m ≤ A
p

t − s , (2.13)

with A= A(m, T ). Then it follows, from (2.13) and Lemma 2.2.1, that

‖bk(t,σk−1, . . . ,σ1, s)‖m ≤ κ(m)k
k
∏

j=1

‖c(σ j ,σ j−1)‖R(m)

≤ κ(m)kAk
1

k
∏

j=1

Æ

σ j −σ j−1 ,

(2.14)

with A1 = A1(R(m), T ). Clearly, by the expression for ck, it follows that

‖ck(t, s)‖m ≤
κ(m)kAk

1Γ (
3
2)

k

Γ (3
2 k)

|t − s|
3
2 k−1 ,

which is (2.12) with γ2 = κ(m)A1Γ (
3
2).

Proposition 2.2.4. There exists an amplitude function k(t, s, x , y) ∈ Amp such that

U(t, s) = I(t, s; k(t, s)) .
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Proof. By using (2.12), it follows that

∞
∑

k=2

‖(2i)−kck(t, s)‖m ≤
∞
∑

k=2

2−kγk
2

Γ (3
2 k)
|t − s|

3
2 k−1 <∞

Indeed, by using the ratio test, with sk =
2−kγk

2

Γ ( 3
2 k)

, we get

sk+1

sk
= κ(m)A1Γ (

3
2
)
Γ (3

2 k)

Γ (3
2 k+ 3

2)
.

By Stirling’s formula it follows that

Γ (3
2 k)

Γ (3
2 k+ 3

2)
∼ e

3
2

�3
2 k
�

3
2 k− 1

2

�3
2 k+ 3

2

�
3
2 k+1

→ 0 .

This proves that the series
∑

k(2i)−kck(t, s, x , y) converges in the spaceB(Rn×Rn).
We denote with c∞(t, s, x , y) its limit. It is obvious that

k
∑

j=1

G# · · ·#G(t, s) = I
�

t, s;
k
∑

j1

(2i)− jc j(t, s)
�

. (2.15)

We want to pass to the limit k → ∞ in (2.15). The left hand side converges to
F(t, s) in the uniform operator topology by Proposition 2.2.2. By using Lemma
2.2.1 and the convergence of the series

∑

k(2i)−kck(t, s, x , y) in B(Rn × Rn), we
get that the right hand side of (2.15) converges to I(t, s; c∞(t, s)) in the uniform
operator topology. It follows that

F(t, s) = I(t, s; c∞(t, s)) .

We know that E(t, s) = I(t, s; 1); so by Lemma 2.2.1 there exists an amplitude func-
tion p(t,σ, s) such that

I(t, s; p(t,σ, s)) = I(t,σ; 1)I(σ, s; c∞(σ, s)) .

Then
E#F(t, s) = I(t, s; r(t, s)) ,

with

r(t, s, x , y) =

∫ t

s
p(t,σ, s, x , y)dσ .

Thus it follows that
U(t, s) = I(t, s; k(t, s)) ,

with k(t, s) = 1+ r(t, s).
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2.3 Local smoothing estimate

As already stressed in the previous Section, we start by constructing the evolution
operator associated to (1.9) with the potential (2.4). In order to do this we exploit
the results contained in Chapter 1.

Let H(τ, x ,ξ) = 1
2 |ξ|

2+ 1
2τ
− 1

4 |x |2 be the Hamiltonian associated with (1.9). The
starting point for the construction of the propagator for (1.9) is to find the solution
of the Hamilton’s equation







ẍ(τ) +τ−
1
4 x(τ) = 0 ,

x(s) = y ,
x(t) = x ,

(2.16)

with x , y ∈ Rn. Equation (2.16) is a generalized form of Bessel’s ordinary differen-
tial equations (also reminiscent of Airy’s equation). In order to see this, we firstly
introduce the change of variables x =

p
τw; in this way the equation (2.16) be-

comes

τ2ẅ(τ) +τẇ(τ) +
�

τ
7
4 −

1
4

�

w(τ) = 0 . (2.17)

By putting τ
7
8 = 7

8u and by rewriting the equation (2.17), we end up with the
following

u2w′′(u) + uw′(u) +
�

u2 −
16
49

�

w(u) = 0 , (2.18)

which is the Bessel’s ordinary differential equation. It is well known ([1]) that the
solution of (2.18) is given by

w(u) = c1J4/7(u) + c2J−4/7(u) , (2.19)

where

Jν(u) =
�

u
2

�ν ∞∑

n=0

(−1)n

n!Γ (n+ ν+ 1)

�

u
2

�2n

(2.20)

are the so-called Bessel functions of the first type. Finally the solution of (2.16)
reads as

x(τ) = c1
p
τJ 4

7

�

8
7
τ

7
8

�

+ c2
p
τJ− 4

7

�

8
7
τ

7
8

�

. (2.21)

In order to determine the constants c1 and c2, we impose the boundary conditions
x(s) = y and x(t) = x to obtain

c1(t, s, x , y) =
x

p
ta(t, s)

J− 4
7

�

8
7

s
7
8

�

−
y

p
sa(t, s)

J− 4
7

�

8
7

t
7
8

�

, (2.22)

c2(t, s, x , y) = −
x

p
ta(t, s)

J 4
7

�

8
7

s
7
8

�

+
y

p
sa(t, s)

J 4
7

�

8
7

t
7
8

�

, (2.23)

with

a(t, s) = J− 4
7

�

8
7

s
7
8

�

J 4
7

�

8
7

t
7
8

�

− J− 4
7

�

8
7

t
7
8

�

J 4
7

�

8
7

s
7
8

�

. (2.24)
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Moreover we have

ẋ(τ) = c1τ
3
8 J− 3

7

�

8
7
τ

7
8

�

− c2τ
3
8 J 3

7

�

8
7
τ

7
8

�

. (2.25)

In order to derive (2.25), we used the following properties of Bessel’s functions

d
du

Jν(u) =
1
2
(Jν−1(u)− Jν+1(u)) (2.26)

and
uJν+1(u) = 2νJν(u)− uJν−1(u) . (2.27)

We denote with S(t, s, x , y), for 0 < t − s ≤ T and x , y ∈ Rn, the classical action
integral along the path x(τ):

S(t, s, x , y) =

∫ t

s
L(τ, x(τ), ẋ(τ))dτ , (2.28)

where L(τ, x(τ), ẋ(τ)) = 1
2 | ẋ(τ)|

2 − 1
2τ
− 1

4 |x(τ)|2 is the Lagrangian corresponding
to the Hamiltonian H. By integrating by parts in (2.28), we get that

S(t, s, x , y) =
1
2
(x ẋ(t)− y ẋ(s)) ,

that is

S(t, s, x , y) =
1
2

§

c1(t, s, x , y)
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− s
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s
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��ª

.
(2.29)

Once we have defined the classical action, we can construct the propagator U(t, s),
by using S(t, s, x , y) as the phase function for the oscillatory integral operator. In-
deed, it follows from Section 2.2, that there exists a function e(t, s, x , y) such that
for any α and β

|∂ αx ∂
β
y e(t, s, x , y)| ≤ Cαβ ,

for 0 < t − s < T and x , y ∈ Rn and the propagator U(t, s) admits the following
representation formula

U(t, s) f (x) =
1

(2π(t − s))
n
2

∫

Rn

eiS(t,s,x ,y)e(t, s, x , y) f (y)d y . (2.30)

Now we can start with the proof of Theorem 2.1.1. Without loss of generality we
may assume 1

2 < µ≤ 1. We have that

‖〈x〉−µU(t, s) f ‖2L2(Rn) =
1

(2π(t − s))
n
2

∫

Rn

ei(S(t,s,x ,y)−S(t,s,x ,z))

〈x〉−2µe(t, s, x , y)e(t, s, x , z) f (y) f (z)d ydzd x .

(2.31)
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By straightforward computations it follows that

S(t,s, x , y)− S(t, s, x , z)

= (z − y)
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Now we make the change of variables x = ξ, with
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and the right handside of (2.31) becomes

A(t, s)
(2π(t − s))n

∫

Rn

ei(z−y)ξ〈G(t, s, y, z,ξ)〉−2µe(t, s, x , y)e(t, s, x , z)

f (y) f (z)d ydzdξ ,

(2.34)

where
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with
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and

A(t, s) =

�

�

�

�

2
p

tsa(t, s)
h(t, s)
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n

. (2.37)
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By using Taylor expansion, exploiting the fact that (t − s) is sufficiently small, and
(2.27) we get

p
tsa(t, s) = (t − s)s
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+ o((t − s)2) .

(2.38)
Then, for t − s small,

G(t, s)∼ (t − s)ξ+
y + z

2
, (2.39)

and
A(t, s)∼ (t − s)n . (2.40)

So, by using (2.39) and (2.40), we obtain that, for (t − s) small, the right handside
of (2.31) behaves like

1
(2π)n

∫

Rn

ei(z−y)ξ〈(t − s)ξ+
y + z

2
〉−2µe(t, s, x , y)e(t, s, x , z) f (y) f (z)d yd xdξ .

(2.41)
In order to complete the proof of Theorem 2.1.1, we need to estimate

∫ s+T

s−T
‖〈x〉−µU(t, s) f ‖2L2(Rn)d t .

First of all note that
∫ s+T

s−T
〈(t − s)ξ+

y + z
2
〉−2µd t ≤

∫ +∞

−∞
〈(t − s)ξ+

y + z
2
〉−2µd t

® 〈ξ〉−1 .

(2.42)

This follows from the change of variables t ′ = |t−s||ξ|− y+z
2 and the fact that µ > 1

2 .
By (2.42) and the boundedness of the function e(t, s, x , y), we have that

F(s, y,ξ, z) =

∫ s+T

s−T
〈(t − s)ξ+

y + z
2
〉−2µe(t, s, x , y)e(t, s, x , z)d t (2.43)

is such that {〈ξ〉F(s, ·, ·, ·) : s ∈ R} is bounded in B(Rn × Rn × Rn). Finally, by
applying the Calderon-Vaillancourt theorem ([119]), we get

∫ s+T

s−T
‖〈x〉−µU(t, s) f ‖2L2(Rn)d t

= (2π)−n

∫

ei(z−y)·ξF(t, s, y,ξ, z) f (y) f (z)d ydzdξ≤ C‖〈D〉−
1
2 f ‖2L2(Rn) .

(2.44)
This concludes the proof of Theorem 2.1.1.
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Chapter 3

Maxwell-Schrödinger system

3.1 Presentation of the problem

In this chapter we investigate the existence of local and global in time solutions to
the 3–D nonlinear Maxwell-Schrödinger system. Let us consider a non-relativistic
quantum particle, described by a wave function u, interacting with the self-generated
(classical) electro-magnetic field and subject to a self-consistent power-like inter-
action potential, of the form |u|2(γ−1)u. The Maxwell’s equations for the electro-
magnetic fields read as











div E = ρ ,
div B = 0 ,
∂t B = −∇∧ E ,
∂t E =∇∧ B − J ,

(3.1)

where E and B stand for the electric and magnetic fields respectively, ρ and J are the
total electric and current charge densities, respectively (all the physical constants
are normalized to one). From the equation div B = 0 we may infer that B is the
curl of a vector field A, that is B =∇∧A. By plugging this expression for B into the
Faraday’s law we obtain

∇∧ (E + ∂tA) = 0 , (3.2)

which implies that E + ∂tA must be the gradient of a scalar field ϕ, that is E =
−∂tA−∇ϕ. Putting all togehter we get







B =∇∧ A, E = −∂tA−∇ϕ ,
−∂t div A−∆ϕ = ρ ,
∂t tA−∆A+∇(∂tϕ + div A) = J .

(3.3)

It is well known that the choice of the potential vector field (ϕ, A) is unique up to
the gauge transformation

A′ = A+∇η , ϕ′ = ϕ − ∂tη ,

59



where η is any scalar field. We will adopt the Coulomb gauge, namely div A = 0.
Hence, the system (3.3) becomes







B =∇∧ A, E = −∂tA−∇ϕ ,
∂t tA−∆A= PJ ,
−∆ϕ = ρ ,

(3.4)

where P= I−∇div∆−1 is the Leray-Helmholtz projection operator onto divergence
free vector fields. We recall here that if f =∇g + k, where div k = 0, then P f = k.
It follows that the term ∇∂tϕ in the third equation of (3.3) is dropped by operating
P.
In this chapter we investigate the existence of local and gloabl solutions to the fol-
lowing Maxwell-Schrödinger system

�

i∂tu= −
1
2∆Au+ϕu+ |u|2(γ−1)u

�A= PJ(u, A)
(3.5)

with the initial data

u(0) = u0, A(0) = A0, ∂tA(0) = A1.

Here all the physical constants are normalized to 1,∆A = (∇−iA)2 denotes the mag-
netic Laplacian, ϕ = ϕ(ρ) = (−∆)−1ρ, with ρ := |u|2, represents the Hartree-type
electrostatic potential, while the power nonlinearity describes the self-consistent in-
teraction potential. J(u, A) = Im(ū(∇− iA)u) is the electric current density.
As already said, the Maxwell-Schrödinger system















i∂tu= −
1
2
∆Au+ϕu

−∆ϕ − ∂t div A= ρ

�A+∇(∂tϕ + div A) = J ,

(3.6)

is used in the literature to describe the dynamics of a charged non-relativistic quan-
tum particle, subject to its self-generated (classical) electro-magnetic field, see for
instance [35, 109]. In particular the Maxwell-Schrödinger system (3.6) can be seen
as a classical approximation to the quantum field equations for an electro-dynamical
non-relativistic many body system. It is well known to be invariant under the gauge
transformation

(u, A,ϕ) 7→ (u′, A′,ϕ′) = (eiλu, A+∇λ,ϕ − ∂tλ), (3.7)

therefore for our convenience we can decide to work in the Coulomb gauge, namely
by assuming div A = 0. Consequently under this gauge the system (3.6) takes the
form







i∂tu= −
1
2
∆Au+ ((4π|x |)−1 ∗ |u|2)u

�A= PJ(u, A).
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It is straightforward to verify that also power-type nonlinearities of the previous
form are gauge invariant.
The Maxwell-Schrödinger system (3.6) has been widely studied in the mathematical
literature in the various choice of gauges. For instance, among the first mathemat-
ical treatments, we mention [96, 120], where the authors studied the local and
global well-posedness in high regularity spaces by means of the Lorentz gauge. The
global existence of finite energy weak solutions has been investigated in [62], by
using the method of vanishing viscosity. However the uniqueness and the global
well-posedness of the finite energy weak solutions is not easily achievable with this
approach. In [97, 98], by using the semigroup associated to the magnetic Laplacian
following Kato’s theory [69, 70] and hence by means of a fixed point argument, the
authors obtained global well-posedness with higher order Sobolev regularity.

More recently a global well-posedness result in the energy space has been proven
in [12] by using the analysis of a short time wave packet parametrix for the mag-
netic Schrödinger equation and the related linear, bilinear, and trilinear estimates.
Therefore strong H1 solutions to (3.6) are obtained as the unique strong limit of
H2 solutions. Moreover, in the same paper, the authors obtained a continuous de-
pendence on initial data in the energy space. The asymptotic behavior and the
long-range scattering of solutions to (3.6) has been studied for instance in [52, 53,
110] (see also the references therein). The global well-posedness in the space of
energy for the 2D Maxwell-Schrödinger system in Lorentz gauge has been investi-
gated by [122] .
We focus on the Cauchy problem for the Maxwell-Schrödinger system with a power-
type nonlinearity; our interest in this problem is motivated by the possibility to
develop a general theory for quantum fluids in presence of self-induced electromag-
netic interacting fields. The related Quantum Magneto-Hydrodynamic (QMHD) sys-
tems, with a nontrivial pressure tensor, arise in the description of quantum plasmas,
for example in astrophysics, where magnetic fields and quantum effects are non
negligible, see [63, 64, 111, 112] and the references therein. The hydrodynamic
equations describing a bipolar gas of ions and electrons can be recovered from the
Maxwell-Schrödinger system (3.5) by applying the Madelung transforms as done in
[6], where the authors studied a general class of quantum fluids in the non-magnetic
case. We refer to the Section 3.5 for a more detailed discussion concerning the con-
nection between QMHD and the Maxwell-Schrödinger system (3.5).
We state in the sequel the two main results of this chapter. The first one regards
the local well-posedness theory for (3.5) in H2(R3)×H

3
2 (R3). More precisely let us

denote by

X :=
�

(u0, A0, A1) ∈ H2(R3)×H3/2(R3)×H1/2(R3) s.t. div A0 = div A1 = 0
	

.
(3.8)

Theorem 3.1.1 (Local wellposedness). Let γ > 3
2 . For all (u0, A0, A1) ∈ X there

exist a (maximal) time 0 < Tmax ≤∞, depending on ‖(u0, A0, A1)‖X , and a unique
(maximal) solution (u, A) to (3.5) such that
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• u ∈ C([0, Tmax); H2(R3)).

• A∈ C([0, Tmax); H
3
2 (R3))∩ C1([0, Tmax); H

1
2 (R3)), div A= 0.

• The solution depends continuously on the initial data in the following sense:if we
consider a sequence of initial data {(u0,n, A0,n, A1,n)} converging to {(u0, A0, A1)}
in X as n →∞, then the corresponding sequence of solutions {(un, An,∂tAn)}
with initial data {(u0,n, A0,n, A1,n)} converges to {(u, A,∂tA)} in C(I ; X ) for any
compact interval I ⊂ [0, Tmax).

The following blowup alternative holds: either Tmax =∞ or Tmax <∞ and

lim
t→T−max

(‖u(t)‖H2 + ‖A(t)‖H3/2 + ‖∂tA(t)‖H1/2) =∞.

Our proof plays on the construction of the evolution operator associated to the
magnetic Laplacian, based on Kato’s approach [69, 70], then we perform a fixed
point argument to approximate the solutions to the Maxwell-Schrödinger system
by the classical Picard iteration. Differently from [97], in our case the solutions
obtained by this method cannot be extended globally in time, indeed the power-
type nonlinearity does not lead to a Gronwall type inequality capable to bound the
higher order norms of the solution at any time, see also [103] for a similar problem.
To circumvent this difficulty we regularize the system (3.5) by making use of the
so-called Yosida approximations of the identity; hence we are able to get the global
well-posedness for the approximating system in H2(R3)× H3/2(R3). Moreover, by
using the uniform bounds provided by the higher order energy, defined by the norm
of X , we prove the existence of a finite energy weak solution to (3.5), in the sense
defined in [62]. This is established by the following theorem.

Theorem 3.1.2 (Global Weak Solutions). Let 1 < γ < 3, (u0, A0, A1) ∈ X , then
there exists, globally in time, a finite energy weak solution (u, A) to (3.5), such that
u ∈ L∞(R+; H1(R3)), A∈ L∞(R+; H1(R3))∩W 1,∞(R+; L2(R3)).

Remark 3.1.3. The same results can be obtained in a straightforward way, by using
the previous results on the Coulomb gauge, in any other admissible gauge.

Remark 3.1.4. It is possible to include a Hartree (nonlocal) nonlinear potential of the
form (| · |−α ∗ |u|2)u, with 0 < α < 3. It can be dealt in the same fashion as for power
nonlinearities.

With those results at hand, we want to develop a suitable theory in the energy
space for the QMHD system (3.61). The major obstacle in this direction, which is
also the major difference with respect to the usual QHD theory, regards the possi-
bility to give sense to the nonlinear term related to the Lorentz force. For sake of
simplicity let us consider the case without the nonlinear potential. Let us recall the
definition of the macroscopic hydrodynamic variables via the so-called Madelung
transformations, namely

ρ := |u|2 J := Re(ū(−i∇− A)u)
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From the Maxwell equations we have

E = −∂tA−∇ϕ B =∇∧ A FL := ρE + J ∧ B,

where E, B, FL ,ϕ denote the Electric field, the Magnetic field, the Lorentz force and
the (scalar) electrostatic potential, respectively. The fields equations are supple-
mented by the involution of the magnetic field and in the Coulomb gauge by the
Poisson equation (here all the physical constants are normalized to one), namely

div B = 0, div E = −∆φ = ρ

The usual energy estimates on the Maxwell-Schrödinger system (3.5), as we will
see in the Section 3.5, lead to Jp

ρ ∈ L∞t L2
x ,∇pρ ∈ L∞t L2

x , J ∈ L∞t L3/2
x , B ∈ L∞t L2

x ,

∇∧ J ∈ L∞t L1
x ∩ L∞t W−1,3/2

x . Unfortunately these bounds are not sufficient to apply
the compensated compactness of Tartar [93, 94, 118] and in particular the argument
in the Lecture 40 of [117], indeed J /∈ L2

x and B /∈ L3
x (the boundedness in at least

one of these norms would be sufficient). Therefore the analysis of the Lorentz force
for finite energy solutions needs still to be better understood. In [9], the authors
investigate the weak stability of the Lorentz force by a detailed frequency analysis,
in the case of incompressible dynamics (where J ∈ L2). In [12] the authors obtain a
global well-posedness result, in the sense that finite energy strong solutions are the
unique limit of H2 regular solutions, but however these solutions do not allow to
treat the Lorentz force term. The results of [97, 98], obtained without the nonlinear
potential, include global well-posedness in higher order Sobolev spaces which, com-
bined with the methods of [6, 8], allows instead to analyze the pressureless QMHD
case.
The additional difficulty introduced by the power nonlinearity in the Maxwell-
Schrödinger system (3.5) in 3–D, namely a nonlinear pressure term in the QMHD
system, cannot be easily managed. Usually the proof of higher order well-posedness
for the NLS, combines higher order energy estimates with the use of sharp Strichartz
estimates. However, to our knowledge, there are not intrinsic Strichartz estimates
for (3.5); actually there are many Strichartz estimates available in the literature for
the Schrödinger equations with a prescribed magnetic potential, but our solution
to (3.5) does not fall in that class. On the other hand, a brute force higher order
energy estimate would end up in a superlinear Gronwall inequality and hence into
an upper bound which blows up in finite time.
Our theory deals with the presence of a hydrodynamic pressure and it will provide
the existence of local in time finite energy weak solutions for the QMHD.

This chapter is organized as follows. In Section 3.2 we collect some estimates
which will be used afterwards and we study the evolution operator associated to
the linear magnetic Schrödinger equation. In Section 3.3 we prove Theorem 3.1.1.
In Section 3.4 we introduce an approximating system to (3.5) for which we show
global existence of solutions and then we pass to the limit, proving Theorem 3.1.2.
Finally, in Section 3.5 we discuss about the application of our main results to the
existence theory for the QMHD system.
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3.2 Notation and Preliminaries

In this Section we introduce the notation and we review some preliminary results
we are going to use throughout the chapter.
Let A, B be two quantities, we say A® B if A≤ CB for some constant C > 0. We de-
note by Lp(R3) the usual Lebesgue spaces, Hs,p(R3) are the Sobolev spaces defined
throught the norms ‖ f ‖Hs,p := ‖(1−∆)s/2 f ‖Lp . For a given reflexive Banach space
X we let C([0, T];X ) (resp. C1([0, T];X ))) denote the space of continuous (resp.
differentiable) maps [0, T]→X . Analogously, Lp(0, T ;X ) is the space of functions

whose Bochner integral ‖ f ‖Lp(0,T ;X ) :=
�

∫ T
0 ‖ f (t)‖X d t

�1/p
is finite.

Lemma 3.2.1 (Generalized Kato-Ponce inequality). Suppose 1 < p <∞, s ≥ 0,
α ≥ 0, β ≥ 0 and 1

p =
1
pi
+ 1

qi
with i = 1,2, 1 < q1 ≤ ∞, 1 < p2 ≤ ∞. Setting

Λs = (I −∆)
s
2 we have

‖Λs( f1 f2)‖Lp(R3) ® ‖Λs+α( f1)‖Lp1 (R3)‖Λ−α( f2)‖Lq1 (R3)

+ ‖Λ−β( f1)‖Lp2 (R3)‖Λs+β( f2)‖Lq2 (R3)

Proof. Those estimates are generalization of Kato-Ponce commutator estimates, for
a proof of this Lemma see for example Theorem 1.4 in [79].

Lemma 3.2.2. Let p, q be such that 1≤ q < 3
2 < p ≤∞, then

‖(−∆)−1 f ‖L∞ ® ‖ f ‖θLp‖ f ‖1−θLq , (3.9)

where θ ∈ (0,1) is given by θ = p′(3−2q)
3(q−p′(q−1)) . Furthermore, the following estimates

hold

‖(−∆)−1( f1 f2) f3‖L2(R3) ® ‖ f1‖L2(R3)‖ f2‖L3(R3)‖ f3‖L3(R3) (3.10)

‖(−∆)−1| f |2‖L∞(R3) ® ‖ f ‖2L2(R3) + ‖ f ‖2L∞(R3) (3.11)

Proof. Let R> 0, then we have

4π((−∆)−1 f )(x) =

∫

1
|y|

f (x−y) d x =

∫

|y|<R

1
|y|

f (x−y) d x+

∫

|y|≥R

1
|y|

f (x−y) d x ,

then by Hölder’s inequality we have

‖(−∆)−1 f ‖L∞ ®

�

∫

|y|<R
|y|−p′ d y

�1/p′

‖ f ‖Lp +

�

∫

|y|≥R
|y|−q′ d y

�1/q′

‖ f ‖Lq .

The two integrals on the right hand side are finite by the assumptions on p, q. By
optimizing the above inequality in R we then get (3.9). To prove (3.10) we apply
Hölder and Hardy-Littlewood-Sobolev inequality to get

‖(−∆)−1( f1 f2) f3‖L2 ≤ ‖(−∆)−1( f1 f2)‖L6‖ f3‖L3 ® ‖ f1 f2‖L6/5‖ f3‖L3 .
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Using again Hölder inequality for ‖ f1 f2‖L
6
5 (R3)

we get (3.10).

Inequality (3.11) follows from (3.9) by choosing p =∞, q = 1 and by applying
Young’s inequality.

Next Lemma will be useful to estimate the Hartree term in the fixed point argu-
ment in Section 3.3.

Lemma 3.2.3. Let u ∈ H2(R3), then

‖(−∆)−1(|u|2)u‖H2 ® ‖u‖2H3/4‖u‖H2 . (3.12)

Proof. We have

‖(−∆)−1(|u|2)u‖H2 ®‖(−∆)−1(1−∆)(|u|2)u‖L2 + ‖(−∆)−1(|u|2)(1−∆)u‖L2

®‖(−∆)−1(1−∆)|u|2‖L6‖u‖L3 + ‖(−∆)−1|u|2‖L∞‖(1−∆)u‖L2 .

By the Hardy-Littlewood-Sobolev inequality we have

‖(−∆)−1(1−∆)|u|2‖L6 ® ‖(1−∆)|u|2‖L6/5 ® ‖u‖L3‖(1−∆)u‖L2 ,

where the last inequality follows from Lemma 3.2.1. On the other hand, by using
(3.9), with p, q sufficiently close to 3

2 , and Sobolev embedding we see that

‖(−∆)−1|u|2‖L∞ ® ‖u‖2
H

1
2+ε

.

Consequently,
‖(−∆)−1(|u|2)u‖H2 ® ‖u‖2

H
1
2+ε
‖u‖H2 .

Lemma 3.2.4. Let A∈ H1(R3) and u ∈ H2(R3). Then the following estimates hold:

‖(∇− iA)u‖H1(R3) ® (1+ ‖A‖H1(R3))‖u‖H2(R3), (3.13)

‖PJ(u, A)‖
H

1
2 (R3)
® ‖u‖H1(R3)‖u‖H2(R3) + ‖A‖H1(R3)‖u‖2H2(R3), (3.14)

‖∆Au‖L2 ® ‖u‖H2 + ‖A‖4H1‖u‖L2 , (3.15)

‖u‖H2 ® ‖∆Au‖L2 + ‖A‖4H1‖u‖L2 , (3.16)

‖(∇+ iA)u‖L6 ® ‖u‖H2 + ‖A‖4H1‖u‖L2 . (3.17)

Proof. We begin with the proof of (3.13). By using Lemma 3.2.1 we have

‖(∇− iA)u‖H1(R3) ≤ ‖∇u‖H1(R3) + ‖Au‖H1(R3)

® ‖u‖H2(R3) + ‖A‖H1(R3)‖u‖L∞(R3) + ‖A‖L6(R3)‖u‖W 1,3(R3)

® ‖u‖H2(R3) + ‖A‖H1(R3)‖u‖H2(R3) + ‖A‖H1(R3)‖u‖H
3
2 (R3)

,
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where in the last inequality we used the Sobolev embedding theorem. Thus (3.13)
is proved. We now consider (3.14); by Lemma 3.2.1,

‖u∇u‖
H

1
2 (R3)
® ‖u‖

W
1
2 ,3(R3)

‖∇u‖L6(R3) + ‖u‖L6(R3)‖∇u‖
W

1
2 ,3(R3)

® ‖u‖
W

1
2 ,3(R3)

‖∇u‖H1(R3) + ‖u‖H1(R3)‖∇u‖
W

1
2 ,3(R3)

® ‖u‖H1(R3)‖u‖H2(R3)

and

‖A|u|2‖
H

1
2 (R3)
® ‖A‖

H
1
2 (R3)
‖u‖2L∞(R3) + ‖A‖L6‖|u|2‖

W
1
2 ,3(R3)

® ‖A‖H1(R3)‖u‖2H2(R3).

By adding the two estimates above we then obtain

‖PJ‖H1/2 ® ‖J‖H1/2 ® ‖u‖H1‖u‖H2 + ‖A‖H1‖u‖2H2 .

For (3.15) we have

‖∆Au‖L2 ®‖u‖H2 + ‖A · ∇u‖L2 + ‖|A|2u‖L2

®‖u‖H2 + ‖A‖L6‖∇u‖L3 + ‖A‖2L6‖u‖L6

®‖u‖H2 + ‖A‖H1‖u‖H3/2 + ‖A‖2H1‖u‖H1

®‖u‖H2 + ‖A‖H1‖u‖1/4L2 ‖u‖
3/4
H2 + ‖A‖2H1‖u‖

1/2
L2 ‖u‖

1/2
H2 .

By using Young’s inequality we obtain (3.15). Estimate (3.16) is proved in an anal-
ogous way. Finally, for (3.17) we have

‖(∇+ iA)u‖L6 ®‖∇(∇+ iA)u‖L2

®‖∆Au‖L2 + ‖A(∇+ iA)u‖L2

®‖∆Au‖L2 + ‖A‖H1‖u‖H3/2 + ‖A‖2H1‖u‖H1

and proceed as for the previous estimates.

Let us now state the Strichartz estimates for the wave equation we are going to
use later. For a proof see for example [51, 116] and references therein.

Lemma 3.2.5 (Strichartz estimates for the wave equation). Let I be a time interval,
and let B : I × R3 → C be a solution to the wave equation �B = F with initial
data B(0) = B0, ∂t B(0) = B1, such that B0 ∈ Ḣs(R3), B1 ∈ Ḣs−1(R3) and F ∈
Lq̃′

t L r̃ ′
x (I × R

3), whenever s ≥ 0, 2 ≤ q, q̃ ≤ ∞ and 2 ≤ r, r̃ <∞ obey the scaling
condition

1
q
+

3
r
=

3
2
− s =

1
q̃′
+

3
r̃ ′
− 2

and the wave admissibility condition

1
q
+

1
r

,
1
q̃
+

1
r̃
≤

1
2

.

66



Then the following estimate holds

‖B‖Lq
t Lr

x (I×R3) + ‖B‖Ct Ḣs
x (I×R3) + ‖∂t B‖Ct Ḣs−1

x (I×R3)

® ‖B0‖Ḣs(R3) + ‖B1‖Ḣs−1 + ‖F‖Lq̃′
t L r̃′

x (I×R3)
.

As a consequence we also obtain the following energy estimate.

Lemma 3.2.6. Let s ∈ R, B0 ∈ Hs(R3), B1 ∈ Hs−1(R3) and F ∈ L1([0, T]; Hs−1(R3)),
T > 0, then

B ∈ C([0, T]; Hs(R3))∩Hs−1([0, T]; Hs−1(R3))

defined as in previous Lemma satisfies

‖B‖Ct Hs
x ([0,T]×R3) + ‖∂t B‖Ct Hs−1([0,T]×R3)

® (1+ T )(‖B0‖Hs(R3) + ‖B1‖Hs−1(R3) + ‖F‖L1
t Hs−1

x ([0,T]×R3)).
(3.18)

We conclude this Section by recalling some results concerning the Schrödinger
propagator associated to the magnetic Laplacian∆A. More precisely, let A be a given,
time dependent, divergence-free vector field, we then consider the following initial
value problem

�

i∂tu= −
1
2∆Au

u(s) = f ,
(3.19)

and we study the properties of its solution.

Proposition 3.2.7. Let 0 < T <∞ and let us assume that A ∈ C([0, T]; H1(R3)),
∂tA∈ L1([0, T]; L3(R3)). Then there exists a unique

u ∈ C([0, T]; H2(R3))∩ C1([0, T]; L2(R3)) ,

which solves (3.19). Moreover, it holds

‖u‖L∞(0,T ;H2(R3)) ® ‖ f ‖H2

�

1+ ‖A‖4L∞t H1
x

�

e
C‖∂t A‖L1

t L3
x . (3.20)

Proof. The existence and uniquenss for u is already known for a sufficiently smooth
magnetic field A, see [69, 70]. Therefore we only need to prove (3.20) as an a priori
estimate: the general result stated in this Proposition will then follow by a standard
density argument (for more details see Lemma 2.1 in [98]). Let us then consider
the norm ‖∆Au‖L2; by differentiating it in time we have

d
d t

�

1
2
‖∆Au‖2L2

�

=

∫

Re
�

∆Au∂t∆Au
	

d x =

∫

Re
§

∆Au
�

i
2
∆2

Au+ [∂t ,∆A]u
�ª

d x

≤‖∆Au‖L2‖∂tA · (∇+ iA)u‖L2

≤‖∆Au‖L2‖∂tA‖L3‖(∇+ iA)u‖L6 .

Now by (3.17) we have

‖(∇+ iA)u‖L6 ≤ ‖u‖H2 + ‖A‖4H1‖u‖L2 .
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Consequently,

d
d t
(‖∆Au‖L2)≤ ‖∂tA‖L3

�

‖u‖H2 + ‖A‖4H1‖u‖L2

�

.

Let L = 1+‖A‖4L∞t H1
x ([0,T]×R3), then by the conservation of the total mass, ‖u(t)‖L2 =

‖ f ‖L2 , we have

d
d t
(‖∆Au‖L2 + L‖u‖L2)® ‖∂tA‖L3 (‖u‖H2 + L‖u‖L2) .

By using (3.16) we then get

d
d t
(‖∆Au‖L2 + L‖u‖L2)® ‖∂tA‖L3 (‖∆Au‖L2 + L‖u‖L2) ,

and by Gronwall

‖∆Au‖L2 + L‖u‖L2 ®
�

L‖ f ‖L2 + ‖∆A0
f ‖L2

�

e
C‖∂t A‖L1

t L3
x .

Again by using (3.16) we also get

‖u(t)‖H2 ® ‖ f ‖H2(1+ ‖A‖4L∞t H1
x
)e

C‖∂t A‖L1
t L3

x ,

so that (3.20) is satisfied and the Proposition is proved.

From Proposition 3.2.7 we can then define the propagator UA(t,τ) associated
to (3.19), i.e. UA(t,τ) f = u(t), where u is the solution in Proposition 3.2.7, and UA
satisfies the following properties:

• UA(t,τ)H2 ⊂ H2, for any t ∈ [0, T];

• UA(t, t) = I;

• UA(t1, t2)UA(t2, t3) = UA(t1, t3), for any t1, t2, t3 ∈ [0, T].

Moreover, by (3.20) we have

K2 := sup
t,τ∈[0,T]

‖UA(t,τ)‖H2→H2 ®
�

1+ ‖A‖4L∞t H1

�

e
C‖∂t A‖L1

t L3
x .

From the unitarity of UA(t,τ) in L2, ‖UA(t,τ) f ‖L2 = ‖ f ‖L2 , and by interpolation,
we can then infer

sup
t,τ∈[0,T]

‖UA(t,τ) f ‖Hs→Hs <∞, ∀ s ∈ [0,2].
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Proposition 3.2.8. Let A∈ L∞([0, T]; H1(R3))∩W 1,1([0, T]; L3),
f ∈ L1([0, T]; H−2(R3)) and let v ∈ C([0, T]; L2(R3))∩W 1,1([0, T]; H−2(R3))
be solution to

i∂t v = −
1
2
∆Av + f .

Then for every t0 ∈ [0, T],

v(t) = UA(t, t0)− i

∫ t

t0

UA(t, s) f (s)ds .

Proof. See [97] for a proof of Proposition 3.2.8.

3.3 Local well-posedness

In this Section we are going to prove the local well-posedness result stated in The-
orem 3.1.1 by using a fixed point argument. We split the proof into two parts: in
Proposition 3.3.1 we are going to show the existence and uniqueness of a local so-
lution by means of a fixed point argument, then Proposition 3.3.8 will be about the
continuous dependence of the solution on the initial data.

Proposition 3.3.1. Let γ > 3
2 . For all (u0, A0, A1) ∈ X there exists Tmax > 0 and

a unique maximal solution (u, A) to (3.5) such that u ∈ C([0, Tmax); H2(R3)), A ∈
C([0, Tmax); H

3
2 (R3) ∩ C1([0, Tmax); H

1
2 (R3)), div A = 0. Moreover the following

blowup alternative holds true: if Tmax <∞, then

lim
t→T−max

(‖u(t)‖H2 + ‖A(t)‖H3/2 + ‖∂tA(t)‖H1/2) =∞.

Proof. First of all, let us define the space

XT := {(u, A) s.t. u ∈ C([0, T]; H2(R3)), A∈ C([0, T]; H
3
2 (R3))∩ C1([0, T]; H

1
2 (R3)),

div A= 0,‖u‖L∞t H2
x (R3) ≤ R1, ‖A‖

L∞t H
3
2 (R3)

+ ‖∂tA‖
L∞t H

1
2
x (R3)

≤ R2} ,

(3.21)

where R1, R2, T > 0 will be chosen later. It is straightforward to see that XT , en-
dowed with the distance

d((u1, A1), (u2, A2)) =max{‖u1 − u2‖L∞t L2
x (R3),‖A1 − A2‖L4

t L4
x (R3)} , (3.22)

is a complete metric space. We also define

‖(u, A)‖XT
:= ‖u‖L∞(0,T ;H2(R3)) + ‖A‖L∞(0,T ;H3/2(R3)) + ‖∂tA‖L∞(0,T ;H1/2(R3)). (3.23)

Let (u0, A0, A1) ∈ X , where X is defined in (3.8); we define the map Φ on XT , (v, B) =
Φ(u, A), (u, A) ∈ XT , where

v(t) = Φ(u)(t) = UA(t, 0)u0 − i

∫ t

0

UA(t, s)(ϕu+ |u|2(γ−1)u)(s)ds (3.24)

69



and

B(t) = Φ(A)(t) = cos(t
p
−∆)A0 +

sin(t
p
−∆)

p
−∆

A1 +

∫ t

0

sin(t
p
−∆)

p
−∆

PJ(u, A)(s)ds

Let us first show that Φmaps XT into itself. By (3.20) we have that for any s ∈ [0, T],

‖UA(t, s) f ‖H2 ® ‖ f ‖H2

�

1+ ‖A‖4L∞t H1
x

�

e
C‖∂t A‖L1

t L3
x

and since ‖∂tA‖L1
t L3

x
® T‖∂tA‖L∞t H1/2

x
, we have

‖UA(t, s) f ‖H2 ≤ C(1+ R4
2)e

C TR2‖ f ‖H2 .

Let us consider the nonlinear terms in (3.24). Since γ > 3
2 the function z 7→ |z|2(γ−1)z

is C2(C;C), then by the Sobolev embedding H2 ,→ L∞ and by Lemma 3.2.1 we have

‖|u|2(γ−1)u‖L∞t H2
x
® ‖u‖2γ−1

L∞t H2
x
® R2γ−1

1 .

Furthermore, from (3.12) we have

‖ϕu‖L∞t H2
x
® ‖u‖2

L∞t H3/4
x
‖u‖L∞t H2

x
® R3

1 ,

so that by putting everything together, we obtain

‖v‖L∞t H2
x
≤ C1(1+ R4

2)exp(C TR2)
�

‖u0‖H2 + TR2γ−1
1 + TR3

1

�

.

On the other hand, by using the Strichartz estimates for the wave equation stated
in Lemma 3.2.5 we have

‖B‖L∞t H3/2
x
+ ‖∂t B‖L∞t H1/2

x
® (1+ T )

�

‖A0‖H3/2 + ‖A1‖H1/2 + ‖PJ‖L1
t H1/2

x

�

.

By (3.14) we have
‖PJ‖L∞t H1/2

x
® R2

1(1+ R1),

so that

‖B‖L∞t H3/2
x
+ ‖∂t B‖L∞t H1/2

x
≤ C2(1+ T )

�

‖A0‖H3/2 + ‖A1‖H1/2 + TR2
1(1+ R1)

�

.

Let us now choose R1, R2, T ; without loss of generality we can assume that T < 1.
Let

R2 := 4C2‖A0‖H3/2 + ‖A1‖H1/2

R1 := 2C1(1+ R4
2)e

CR2‖u0‖H2

Then

‖v‖L∞t H2
x (R3) ≤

R1

2
+ C1(1+ R4

2)TeR2R1(R
2(γ−1)
1 + R2

1)

‖B‖
L∞t H

3
2
x (R3)

+ ‖∂t B‖
L∞t H

1
2
x (R3)

≤
R2

2
+ 2C2R2

1(1+ R2)T
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Now by choosing T such that

max

�

C1(1+ R4
2)e

CR2(R2(γ−1)
1 + R2

1)T,
2C2R2

1(1+ R2)

R2
T

�

<
1
2

,

we get that Φ maps XT into itself.
We now prove that, possibly choosing a smaller value for T > 0, the map Φ is

indeed a contraction on XT . Let us define

(v, B) = Φ(u, A)

(v′, B′) = Φ(u′, A′) .

In view of Lemma 3.2.8, we have that

i∂t v = −∆Av +ϕ(u)u+ |u|2(γ−1)u, v(0) = u0 , (3.25)

i∂t v
′ = −∆A′ v

′ +ϕ(u′)u′ + |u′|2(γ−1)u′, v′(0) = u0 , (3.26)

By writing the difference of the equations (3.25) and (3.26) for v and v′ we get

i∂t(v − v′) = −∆A(v − v′) + F, (v − v′)(0) = 0 , (3.27)

where F is given by

F = 2i(A− A′) · ∇v′ +
1
2
(|A|2 − |A′|2)v′ + (ϕ(|u|2)−ϕ(|u′|2))u′

+ϕ(|u|2)(u− u′) + |u|2(γ−1)u− |u′|2(γ−1)u′ =:
5
∑

j=1

F j .
(3.28)

Again, by using Lemma 3.2.8, it follows that

(v − v′)(t) = −i

∫ t

0

UA(t, s)F(s) ds,

Hence we have
‖v − v′‖L∞t L2

x
®
∑

j

‖F j‖L1
t L2

x
. (3.29)

We now estimate term by term; by using Hölder’s inequality, Sobolev embedding
and the fact that v, v′ ∈ XT , we have

‖F1‖L1
t L2

x
= 2

∫ T

0

‖(A− A′)∇v′‖L2
x
®
∫ T

0

‖A− A′‖L4
x
‖∇v′‖L4

x

®
∫ T

0

‖A− A′‖L4
x
‖∇v′‖H1

x
® ‖∇v′‖

L
4
3
t H1
‖A− A′‖L4

t,x

® T3/4‖∇v′‖L∞t H1
x
‖A− A′‖L4

t,x
,
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and analogously

‖F2‖L1
t L2

x
® T3/4‖v′‖L∞t,x

�

‖A‖L∞t H1
x
+ ‖A′‖L∞t H1

x

�

‖A− A′‖L4
t,x

By using (3.10), the third term is estimated by

‖F3‖L1
t L2

x
® T

�

‖u‖L∞t H1
x
+ ‖u′‖L∞t H1

x

�

‖u′‖L∞t H1
x
‖u− u′‖L∞t L2

x
.

For the term F4 we use (3.11) and Sobolev embedding to get

‖F4‖L1
t L2

x
® T‖u‖2L∞t H2

x
‖u− u′‖L∞t L2

x
.

The last term is estimated by

‖F5‖L2(R3) ® (‖u‖
2(γ−1)
L∞ + ‖u′‖2(γ−1)

L∞ )‖u− u′‖L2(R3) ® R2(γ−1)
1 ‖u− u′‖L2(R3) ,

where we used the following inequality

||u|2(γ−1)u− |u′|2(γ−2)u2|® (|u1|2(γ−1) + |u′|2(γ−1))|u− u′|

By putting everything together in (3.29), and by using Hölder’s inequality in time,
we obtain

‖v − v′‖L∞t L2
x
® (T3/4 + T )C(R1, R2)d((u, A), (u′, A′)). (3.30)

Analogously, for B, B′ we write

(B − B′)(t) =

∫ t

0

sin((t − s)
p
−∆)

p
−∆

G(s) ds, (3.31)

where G =
∑3

j=1 G j is given by:

G = P Im{(u− u′)(∇− iA)u− iuu′(A− A′)− (u− u′)(∇+ iA′)u′} .

Here we have used the fact that P(u′∇(u − u′)) = −P((u − u′)∇u′). Using the
Strichartz estimates in Lemma 3.2.5 with q = r = q̃ = r̃ = 4, we get

‖B − B′‖L4
t,x
® ‖G‖

L
4
3
t,x

(3.32)

We estimate the three terms in G. The terms G1 and G3 are treated similarly, by
Sobolev embedding and by using (3.13) we have

‖G1‖L4/3
t,x
+ ‖G3‖L4/3

t,x
®

T3/4
�

1+ ‖A‖L∞t H1
x
+ ‖A′‖L∞t H1

x

��

‖u‖L∞t H2
x
+ ‖u′‖L∞t H2

x

�

‖u− u′‖L∞t L2
x
.

By using Hölder’s inequality, G2 is bounded by

‖G2‖L4/3
t,x
® T1/2‖u‖L∞t H1

x
‖u′‖L∞t H1

x
‖A− A′‖L4

t,x
.
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Resuming, by estimating the terms in (3.32) we obtain

‖B − B′‖L4
t,x
® (T1/2 + T3/4)C(R1, R2)d((u, A), (u′, A′)) . (3.33)

By summing up (3.30) and (3.33), we finally get

d((v, B), (v′, B′))≤ (T1/2 + T )C(R1, R2)d((u, A), (u′, A′)).

Thus, if T > 0 is chosen sufficiently small, then Φ is a contraction. This proves that
for any initial data (u0, A0, A1) ∈ X , there exists a unique local solution (u, A) to (3.5)
in XT such that

u ∈ C([0, T]; H2(R3)), A∈ C([0, T]; H3/2(R3))∩ C1([0, T]; H1/2(R3)) .

By a standard argument it is straightforward to show that it may be extended to a
maximal solution (u, A), with u ∈ C([0, Tmax); H2(R3)), A∈ C([0, Tmax); H3/2(R3))∩
C1([0, Tmax); H1/2(R3)) and that the blow-up alternative holds true, namely if Tmax <

∞ then we have

lim
t→T−max

(‖u(t)‖H2 + ‖A(t)‖H3/2 + ‖∂tA(t)‖H1/2) =∞.

Proposition 3.3.8 states the continuous dependence of solution on the initial
data. Its proof goes through a series of technical lemmas and it follows this strategy:
first we prove the continuous dependence for more regular solutions, then by an
approximation argument we prove the general result for solutions (u, A) ∈ X . This
will finish the proof of Theorem 3.1.1. In the remaining part of the Section we state
the Proposition and the Lemmas needed to prove the continuous dependence for
regular solutions. Then we show how to extend it to arbitrary solutions (u, A) ∈ X .

We consider two different solutions (u, A), (u′, A′) emanated from two sets of
initial data (u0, A0, A1), (u′0, A′0, A′1) ∈ X such that

‖(u0, A0, A1)‖X ,‖(u′0, A′0, A′1)‖X ≤ L.

Then there exists a positive time, say T , such that both soutions (u, A), (u′, A′) exist
in [0, T]. Moreover we assume that there exists a constant R> 0 such that in [0, T]

‖(u, A,∂tA)‖XT
, ‖(u′, A′,∂tA

′)‖XT
≤ R . (3.34)

We are also going to exploit the uniform bounds given by the total energy of system
(3.5),

E(t) =

∫

1
2
|(∇− iA)u|2 +

1
2
|∂tA|2 +

1
2
|∇A|2 +

1
2
|∇ϕ|2 +

1
γ
|u|2γ d x . (3.35)
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It is straightforward to see that it is conserved along the flow of solutions to (3.5)
(see [97]); thus if (u, A), resp. (u′, A′), is the solutions emanated from (u0, A0, A1),
resp. (u′0, A′0, A′1), then we may consider E > 0 such that

E(t), E′(t)≤ E,

where E(t), resp. E′(t), is the total energy associated to (u, A), resp. (u′, A′).
We remark here that in the following lemmas, the discussion will be led for a suf-
ficiently small T = T (R); indeed, if it is not the case, one can divide the interval
[0, T] into small subintervals and repeatedly use the estimates obtained for short
intervals.

Lemma 3.3.2. Let (u, A), (u′, A′) be solutions to (3.5) defined as above, then we have

‖u− u′‖L∞t H2
x
®‖∂t(u− u′)(0)‖L2 + T‖∂tu

′‖L∞t H2
x

�

‖A− A′‖L∞t H1/2
x
+ ‖u− u′‖L∞t L2

x

�

+ T‖(u, A)− (u′, A′)‖XT
,

where the constant depends only on R, E defined as above.

We split the proof of Lemma 3.3.2 into two steps; see the two Lemmas 3.3.3 and
3.3.4 below.

Lemma 3.3.3. We have

‖u− u′‖L∞t H2
x (R3) ®R,E ‖∂t(u− u′)‖L∞t L2

x (R3) + ‖u− u′‖L∞t L2
x (R3)

+ ‖A− A′‖
L∞t H

1
2
x (R3)

. (3.36)

Proof. Let us consider the equation for the difference u−u′; by using (3.27) we have

i∂t(u− u′) = −∆(u− u′) + 2iA · ∇(u− u′) + |A|2(u− u′) + F (3.37)

where

F = 2i(A− A′) · ∇u′ + (|A|2 − |A′|2)u′ + (ϕ(|u|2)−ϕ(|u′|2))u′

+ϕ(|u|2)(u− u′) + |u|2(γ−1)u− |u′|2(γ−1)u′ .

This implies

‖∆(u− u′)‖L2(R3) ≤ ‖∂t(u− u′)‖L2(R3) + ‖A · ∇(u− u′)‖L2(R3)

+ ‖|A|2(u− u′)‖L2(R3) + ‖F‖L2(R3)

From Hölder’s inequality and Sobolev embedding theorem we have

‖A · ∇(u− u′)‖L2(R3) ≤ ‖A‖L6(R3)‖∇(u− u′)‖L3(R3) ® ‖∇A‖L2(R3)‖u− u′‖
H

3
2

®E ‖u− u′‖
H

3
2 (R3)
®E ‖u− u′‖

1
4

L2(R3)‖u− u′‖
3
4

H2(R3)

®E C(ε)‖u− u′‖L2(R3) + ε‖u− u′‖H2(R3) ,
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where we do not consider the explicit dependence on the constants on R and E.
Similarly we have

‖|A|2(u− u′)‖L2(R3) ® ‖A‖2L6‖u− u′‖H1(R3) ®E C(ε)‖u− u′‖L2(R3) + ε‖u− u′‖H2(R3)

We can deal with F as already done previously, getting

‖F‖L2(R3) ®R,E ‖A− A′‖
H

1
2 (R3)

+ ‖u− u′‖L2(R3)

Finally, putting all together the previous inequalities, we have

‖u− u′‖L∞t H2
x (R3) ≤ ‖u− u′‖L∞t L2

x (R3) + ‖∆(u− u′)‖L∞t L2
x (R3)

®R,E C(ε)‖u− u′‖L∞t L2
x (R3) + ‖∂t(u− u′)‖L∞t L2

x (R3)

+ ‖A− A′‖
L∞t H

1
2
x (R3)

+ ε‖u− u′‖L∞t H2
x (R3) .

Now, by choosing ε sufficently small, we get (3.36).

We note that, as a consequence of the previous computations and equation
(3.37), we can prove that

‖∂t(u− u′)‖L∞t L2
x (R3) ®R,E ‖u− u′‖L∞t H2

x (R3) + ‖A− A′‖
L∞t H

1
2
x (R3)

(3.38)

In order to estimate the term ‖∂t(u− u′)‖L∞t L2
x (R3) we use next lemma.

Lemma 3.3.4. The following inequality holds:

‖∂tu− ∂tu
′‖L∞t L2

x (R3) ®R,E ‖∂t(u− u′)(0)‖L2(R3)

+ T‖∂tu
′‖L∞t H2

x (R3)
�

‖A− A′‖
L∞t H

1
2
x (R3)

+ ‖u− u′‖L∞t L2
x (R3)

�

+ T‖(u− u′, A− A′,∂tA− ∂tA
′)‖XT

(3.39)

Proof. We start by differentiating in time the equation

i∂tu= −∆Au+ϕ(u)u+ |u|2(γ−1)u.

We then get

i∂ 2
t u= −∆A∂tu+ϕ(u)∂tu+ (2i∂tA(∇− iA) + ∂tϕ)u+ ∂t(|u|2(γ−1)u)

Writing the corresponding equation for ∂ 2
t u′ and taking the difference with the pre-

vious one we get
i∂ 2

t (u− u′) = −∆A(∂tu− ∂tu
′) + F , (3.40)

where F is given by

F =
�

2i(A− A′)
�

∇−
i
2
(A+ A′)

�

+ (ϕ −ϕ′)
�

∂tu
′ +ϕ(∂tu− ∂tu

′)

+ (2i∂tA(∇− iA) + ∂tϕ)(u− u′) + ∂t(|u|2(γ−1)u− |u′|2(γ−1)u′)

+ (2i∂t(A− A′)(∇− iA)− 2i(A− A′)∂tA
′ + ∂t(ϕ −ϕ′))u′ .

(3.41)
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Using the unitarity in L2(R3) of UA(t, s) we get

‖∂t(u− u′)(t)‖L2(R3) ≤ ‖∂t(u− u′)(0)‖L2 +

∫ t

0

‖F(s)‖L2(R3)ds . (3.42)

We estimate the inhomogenous term F , we have








�

2i(A− A′)(∇−
i
2
(A+ A′)) + (ϕ −ϕ′)

�

∂tu
′








L2(R3)

®R,E

�

‖u− u′‖L2(R3) + ‖A− A′‖
H

1
2 (R3)

�

‖∂tu
′‖H2(R3)

This inequality follows from








(A− A′)
�

∇−
i
2
(A+ A′)

�

∂tu
′








L2(R3)

≤ ‖A− A′‖L3(R3)









�

∇−
i
2
(A+ A′)

�

∂tu
′








L6(R3)

® ‖A− A′‖
H

1
2 (R3)

�

‖∇∂tu
′‖H1(R3) + ‖A+ A′‖L6(R3)‖∂tu

′‖L∞(R3)
	

® ‖A− A′‖
H

1
2 (R3)
‖∂tu

′‖H2(R3)
�

1+ ‖∇A‖L2(R3) + ‖∇A′‖L2(R3)
�

®E ‖A− A′‖
H

1
2 (R3)
‖∂tu

′‖H2(R3)

and

‖(ϕ −ϕ′)∂tu
′‖L2(R3) ≤ ‖∆−1((u− u′)u+ (u− u′)u′)∂tu

′‖L2(R3)

® ‖u− u′‖L2(R3)‖u‖L3(R3)‖∂tu
′‖L3(R3) + ‖(u− u′)‖L2(R3)‖u′‖L3(R3)‖∂tu

′‖L3(R3)

®M ,E ‖u− u′‖L2(R3)‖∂tu
′‖H2(R3)

where M = ‖u‖2L2(R3) and we used Hölder inequality, the Sobolev embeddings

H1(R3) ,→ L6(R3), H
1
2 (R3) ,→ L3(R3) and (3.10).

Furthermore, from (3.11) we may infer

‖ϕ(∂tu− ∂tu
′)‖L2(R3) ®R ‖∂tu− ∂tu

′‖L2(R3) .

Again,

‖2i∂tA(∇− iA)(u− u′)‖L2(R3) ® ‖∂tA‖L3(R3)‖(∇− iA)(u− u′)‖L6

®R,E ‖u− u′‖H2(R3)

and, by using (3.13) and (3.10),

‖∂tϕ(u− u′)‖L2(R3) ® ‖(∆−1(2 Re(u∂tu)))(u− u′)‖L2(R3)

® ‖∂tu‖L2(R3)‖u‖L3(R3)‖u− u′‖H2(R3)

®R ‖u− u′‖H2(R3) .
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Observe that one has

∂t(|u|2(γ−1)u) = γ|u|2(γ−1)∂tu+ (γ− 1)|u|2(γ−2)u2∂tu,

therefore it follows

∂t(|u|2(γ−1)u− |u′|2(γ−1)u′) = γ∂tu(|u|2(γ−1) − |u′|2(γ−1)) + γ|u′|2(γ−1)∂t(u− u′)

+ (γ− 1)∂tu(|u|2(γ−2)u2 − |u′|2(γ−2)u′2)

+ (γ− 1)|u′|2(γ−2)u2∂t(u− u′)

We then have

‖∂t(|u|2u− |u′|2u′)‖L2(R3) ®R ‖∂t(u− u′)‖L2(R3) + ‖u− u′‖H2(R3) ,

where we used the following two inequalities
�

�

�|z|2(γ−1) − |z′|2(γ−1)
�

�

�®
�

|z|2γ−3 + |z′|2γ−3
�

|z − z′|
�

�

�|z|2(γ−2)z2 − |z′|2(γ−2)z′2
�

�

�®
�

|z|2γ−3 + |z′|2γ−3
�

|z − z′| ,

which follow from the assumption γ > 3
2 , that ensures to deal with a locally Lipschitz

nonlinearity. For the last term, with similar computations, we have

‖∂t(A− A′)(∇− iA)u′‖L2(R3) ®R,E ‖∂t(A− A′)‖
H

1
2 (R3)

‖∂tA
′(A− A′)u′‖L2(R3) ® ‖∂tA

′‖L3(R3)‖A− A′‖L6(R3)‖u′‖L∞(R3)

®R ‖A− A′‖
H

3
2 (R3)

‖(∂tϕ − ∂tϕ
′)u′‖L2(R3) ®R ‖∂tu− ∂tu

′‖L2(R3) + ‖u− u′‖H2(R3) .

By putting everything together, we obtain

‖∂tu− ∂tu
′‖L∞t L2

x (R3) ®R,E ‖∂t(u− u′)(0)‖L2(R3) + T‖∂tu− ∂tu
′‖L∞t L2

x (R3)

+ T‖∂tu
′‖L∞t H2

x (R3)
�

‖A− A′‖
L∞t H

1
2
x (R3)

+ ‖u− u′‖L∞t L2
x (R3)

�

+ T
�

‖u− u′‖L∞t H2
x (R3) + ‖A− A′‖

L∞t H
3
2
x (R3)

+ ‖∂t(A− A′)‖
L∞t H

1
2
x (R3)

�

,

which gives (3.39), by using (3.38) for the term ‖∂t(u−u′)‖L∞t L2
x (R3) in the righthand

side of the previous inequality.

Proof of Lemma 3.3.2. The proof clearly follows by putting together Lemmas 3.3.3
and 3.3.4.

Lemma 3.3.5. Let (u, A), (u′, A′) be solutions to (3.5) defined as above, then we have

‖u− u′‖L∞t L2
x
+ ‖A− A′‖L∞t H1/2

x
® ‖(u0, A0, A1)− (u′0, A′0, A′1)‖L2×H1/2×H−1/2 , (3.43)

where the constant depends only on R, E defined as above.
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Proof. Writing the difference equation for A and A′ we get

�(A− A′) = G ,

with
G = P Im{(u− u′)(∇− iA)u− iuu′(A− A′)− (u− u′)(∇+ iA′)u′}

where we used the fact that P(u′∇(u − u′)) = −P((u − u′)∇u′). By applying the
energy estimate (3.18) we get

‖A− A′‖
L∞t H

1
2
x (R3)
® (1+ T )‖(A0 − A′0, A1 − A′1)‖H

1
2 (R3)×H−

1
2 (R3)

+ (1+ T )‖G‖
L1

t H
− 1

2
x (R3)

Using the embedding L
3
2 (R3) ,→ H−

1
2 (R3) we have

‖(u− u′)(∇− iA)u‖
L

3
2 (R3)

≤ ‖u− u′‖L2(R3)‖(∇− iA)u‖L6(R3)

® ‖u− u′‖L2(R3)
�

‖∇u‖H1(R3) + ‖Au‖L6(R3)
	

® ‖u− u′‖L2(R3)‖u‖H2(R3)
�

1+ ‖∇A‖L2(R3)
�

®R,E ‖u− u′‖L2(R3) .

Analogously
‖(u− u′)(∇+ iA)u′‖

L
3
2 (R3)
®R,E ‖u− u′‖L2(R3)

and
‖uu′(A− A′)‖

L
3
2 (R3)
®R ‖A− A′‖

H
1
2 (R3)

Hence we get

‖A− A′‖
L∞t H

1
2 (R3)
®R,E (1+ T )‖(A0 − A′0, A1 − A′1)‖H

1
2 (R3)×H−

1
2 (R3)

+ T (1+ T ){‖A− A′‖
L∞t H

1
2 (R3)

+ ‖u− u′‖L∞t L2(R3)} .

In a similar way, using the difference of the equations for u and u′ we get

‖u− u′‖L∞t L2(R3) ®R,E ‖u0 − u′0‖L2(R3)

+ T
�

‖A− A′‖
L∞t H

1
2 (R3)

+ ‖u− u′‖L∞t L2(R3)
	

Putting all togheter

‖A− A′‖
L∞t H

1
2 (R3)

+ ‖u− u′‖L∞t L2(R3)

®R,E (1+ T )‖(u0 − u′0, A0 − A′0, A1 − A′1)‖L2(R3)×H
1
2 (R3)×H−

1
2 (R3)

+ T (1+ T ){‖A− A′‖
L∞t H

1
2 (R3)

+ ‖u− u′‖L∞t L2(R3)} .

So, taking T sufficiently small, we get (3.43).
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Lemma 3.3.6. We have

‖∂tu‖L∞t H2
x
® ‖u0‖H4 + ‖A0‖H5/2 + ‖A1‖H3/2 ,

where the constant depends only on T, R, E.

In order to prove Lemma 3.3.6, we will use the following.

Lemma 3.3.7. The following estimate holds:

‖∂tu‖L∞t H2(R3) ≤ ‖∂ 2
t u‖L2(R3) + C(E, R) (3.44)

Proof. From the equation

i∂ 2
t tu= −∆∂tu+ 2iA · ∇∂tu+ |A|2∂tu+ 2i∂tA · ∇u+ 2A · ∂tAu

+ ∂tϕu+ϕ∂tu+ ∂t(|u|2(γ−1)u)
(3.45)

we can estimate ‖∂tu‖H2(R3). Indeed

‖∂tu‖H2(R3) ≤ ‖∂tu‖L2(R3) + ‖∆∂tu‖L2(R3) ≤ C(R) + ‖∆∂tu‖L2(R3)

So we have

‖∆∂tu‖L2(R3) ≤ ‖∂ 2
t tu‖L2(R3) + ‖A · ∇∂tu‖L2(R3) + ‖|A|2∂tu‖L2(R3)

+ ‖∂tA · ∇u‖L2(R3) + ‖A · ∂tAu‖L2(R3)

+ ‖∂tϕu+ϕ∂tu‖L2(R3) + ‖∂t(|u|2(γ−1)u)‖L2(R3)

We begin with the estimate of the right-hand side of the previous inequality.

‖A · ∇∂tu‖L2(R3) ® ‖A‖L6(R3)‖∇∂tu‖L3(R3) ® ‖∇A‖L2(R3)‖∂tu‖H
3
2 (R3)

®
p

E‖∂tu‖
1
4

L2(R3)‖∂tu‖
3
4

H2(R3) ®
p

E(C(ε)‖∂tu‖L2(R3) + ε‖∂tu‖H2(R3))

® C(E, R) + C(E)ε‖∂tu‖H2(R3) ,

where we used the fact that ‖∂tu‖L∞t L2 ≤ C(R), which follows by using the equation
for u together with the assumption (3.34). In the same way

‖|A|2∂tu‖L2(R3) ® ‖A‖2L6(R3)‖∂tu‖L6(R3) ® ‖∇A‖2L2(R3)‖∂tu‖H1(R3)

® (1+ ε‖∂tu‖H2(R3))

The other terms are all bounded by C(R); for instance

‖∂tA∇u‖L2(R3) ® ‖∂tA‖H
1
2 (R3)
‖u‖H2(R3) ≤ C(R)

or

‖∂t(|u|2(γ−1)u)‖L2(R3) ® ‖|u|2(γ−1)∂tu‖L2(R3)

® ‖u‖2(γ−1)
L∞ ‖∂tu‖L2(R3) ≤ C(R)

We can deal with the remaining terms analogously. Finally we get

‖∂tu‖H2(R3) ® ‖∂ 2
t tu‖L2(R3) + C(E, R) + C(R)ε‖∂tu‖H2(R3)

which gives (3.44) for sufficiently small ε.
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Proof of Lemma 3.3.6. To complete the estimates we have to deal with ‖∂ 2
t u‖L∞t L2(R3).

We write the equation for the time derivative ∂ 2
t u

i∂ 3
t u= −∆∂ 2

t u+ 2iA · ∇∂ 2
t u+ |A|2∂ 2

t u+ G

where

G = 4i∂tA · ∇∂tu+ 4A · ∂tA∂tu+ 2i∂ 2
t A(∇u− iAu) + 2(∂tA)

2u

+ 2∂tϕ∂tu+ ∂
2
t ϕu+ ∂ 2

t uϕ + ∂ 2
t (|u|

2(γ−1)u)

Using Duhamel’s representation in Proposition (3.2.8) we have

‖∂ 2
t u‖L∞t L2(R3) ® ‖∂t tu(0)‖L2(R3) + T‖G‖L∞t L2(R3)

Proceeding as before we finally get

‖∂ 2
t u‖L2(R3) ® ‖∂ 2

t u(0)‖L2(R3)

+ T C(R, E)
¦

‖∂tu‖L∞t H2(R3) + ‖A‖L∞t H
5
2 (R3)

+ ‖∂tA‖L∞t H
3
2 (R3)

©

We estimate the right-hand side of the previous inequality. From (3.18), we have

‖A‖
L∞t H

5
2 (R3)

+ ‖∂tA‖L∞t H
3
2 (R3)
® (1+ T )‖(A0, A1)‖H

5
2 (R3)×H

3
2 (R3)

+ T (1+ T )‖J‖
L∞t H

3
2 (R3)

For the term with J , proceeding as in (3.14), we have, by using Lemma 3.2.1, that

‖u∇u‖
H

3
2 (R3)
® ‖u‖L∞(R3)‖∇u‖

H
3
2 (R3)

+ ‖u‖
H

3
2 (R3)
‖∇u‖L∞(R3)

® C(R)‖u‖H4(R3)

and
‖A|u|2‖

H
3
2 (R3)
® C(R, E) .

So

‖A‖
L∞t H

5
2 (R3)

+ ‖∂tA‖L∞t H
3
2 (R3)
® (1+ T )‖(A0, A1)‖H

5
2 (R3)×H

3
2 (R3)

+ T (1+ T )‖u‖L∞H4(R3) .

Moreover since ‖u‖H4(R3) ® ‖u‖L2(R3) + ‖∆u‖H2(R3) and by the equation for u it
follows

‖∆u‖H2(R3) ® ‖∂tu‖H2(R3) + ‖A · ∇u+ |A|2u‖H2 + ‖ϕu‖H2 + ‖|u|2(γ−1)u‖H2(R3) ,

then by estimating the right-hand side as before, we obtain

‖u‖L∞t H4(R3) ® C(E, R)
�

‖∂tu‖L∞t H2(R3) + ‖A‖L∞t H
5
2 (R3)

�

.
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Putting all together

‖∂tu‖L∞t H2(R3) ® ‖∂t tu(0)‖L2(R3) + ‖(A0, A1)‖H
5
2 (R3)×H

3
2 (R3)

,

moreover one has

‖∂t tu(0)‖L2(R3) ® ‖u0‖H4(R3) + C(E, R)‖A0‖H
5
2 (R3)

.

Indeed, from the equation (3.45), evaluated at time t = 0, it follows that

‖∂t tu(0)‖L2 ®R,E ‖∂tu(0)‖H2 + C(E, R) .

On the other hand, by doing the same with the equation for ∂tu, we get

‖∂tu(0)‖H2 ® ‖u0‖H4 + C(E, R)‖A0‖H
5
2

.

Then we obtain

‖∂tu‖L∞t H2(R3) ® ‖u0‖H4(R3) + ‖(A0, A1)‖H
5
2 (R3)×H

3
2 (R3)

. (3.46)

By combining the above Lemmas, it is possible to show the continuous depen-
dence for solutions whose initial data are (u0, A0, A1) ∈ H4 × H5/2 × H3/2. Indeed
Lemmas 3.3.2, 3.3.5 and 3.3.6 imply the following estimate

‖(u, A)− (u′, A′)‖XT
® ‖(u0, A0, A1)− (u′0, A′0, A′1)‖X

+ T
�

‖u′0‖H4 + ‖A′0‖H5/2 + ‖A′1‖H3/2

�

‖(u0, A0, A1)− (u′0, A′0, A′1)‖L2×H1/2×H−1/2

+ T‖(u, A)− (u′, A′)‖XT
.

A straightforward bootstrap argument (by choosing T sufficiently small) yields to

‖(u, A)− (u′, A′)‖XT
® ‖(u0, A0, A1)− (u′0, A′0, A′1)‖X

+ T
�

‖u′0‖H4 + ‖A′0‖H5/2 + ‖A′1‖H3/2

�

‖(u0, A0, A1)− (u′0, A′0, A′1)‖L2×H1/2×H−1/2 .
(3.47)

Proposition 3.3.8. [Continuous dependence on the initial data]
Let T > 0. The mapping (u0, A0, A1) 7→ (u, A,∂tA), , where (u, A) is the solution to
(3.5), is continuous as a mapping from X to C([0, T]; X ).

Proof. In the following we take T > 0 sufficiently small. Iterating the process below,
the result can be extended to any compact subset of [0, Tmax). Let us consider initial
data (u0, A0, A1) ∈ X . Let now {(u0,n, A0,n, A1,n)} ⊂ X be a sequence converging
to (u0, A0, A1) ∈ X . Then {(u0,n, A0,n, A1,n)} is bounded in X and, accordingly, the
assumption (3.34) is satisfied.
Let us define a mollifier ηδ(x) = δ−3η(x/δ), δ > 0, where η ∈ C∞c (R

3) is a smooth,
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radial function with
∫

η= 1. We define uδ0 = η
δ ∗u0, Aδ

2

0 = η
δ2
∗A0, Aδ

2

1 = η
δ2
∗A1.

It is straightforward to check that this definition implies

‖uδ0‖H4 + ‖Aδ
2

0 ‖H5/2 + ‖Aδ
2

1 ‖H3/2 ® δ−2 (‖u0‖H2 + ‖A0‖H3/2 + ‖A1‖H1/2)

and that
‖u0 − uδ0‖L2 + ‖A0 − Aδ

2

0 ‖H1/2 + ‖A1 − Aδ
2

1 ‖H−1/2 = 0(δ2).

By using (3.47) above we then infer

‖(u, A)− (uδ, Aδ
2
)‖XT
® ‖(u0, A0, A1)− (uδ0 , Aδ

2

0 , Aδ
2

1 )‖X

+ T
�

‖uδ0‖H4 + ‖Aδ
2

0 ‖H5/2 + ‖Aδ
2

1 ‖H3/2

�

‖(u0, A0, A1)− (uδ0 , Aδ
2

0 , Aδ
2

1 )‖L2×H1/2×H−1/2

®‖(u0, A0, A1)− (uδ0 , Aδ
2

0 , Aδ
2

1 )‖X + TO(δ2)o(δ−2).
(3.48)

Consequently we have that (uδ, Aδ
2
) converges to (u, A) in XT as δ→ 0. We want to

prove that the solutions (un, An) emanated from (u0,n, A0,n, A1,n) converge to (u, A)
in XT . To do this, we regularize the initial data by considering (uδ0,n, Aδ

2

0,n, Aδ
2

1,n).

From (3.48) we know that {(uδn , Aδ
2

n )} converges to (u,An) in XT , as δ → 0, where
(un, An) is the solution to (3.5) with initial data (u0,n, A0,n, A1,n). On the other

hand, {(uδ0,n, Aδ
2

0,n, Aδ
2

1,n)} generate regular solutions, so that by (3.47) we have that

{(uδn , Aδ
2

n )} converges to (uδ, Aδ
2
) in XT , for n→∞. The triangular inequality then

yields the convergence of (un, An) to (u, A) in XT .

3.4 Global existence

In the previous Section we proved the local well-posedness of (3.5) in H2 × H3/2.
However, the presence of the power-type nonlinearity in (3.5) prevents from obtain-
ing a global bound for ‖(u(t), A(t),∂tA(t))‖X . This is different, for example, from
what can be proven in [97]. Indeed, while in the case of Hartree nonlinearity it is
possible to use (3.12) which is linear in the higher order norm, in the case of the
power-type nonlinearity one has

‖|u|2(γ−1)u‖H2(R3) ® ‖u‖
2(γ−1)
L∞(R3)‖u‖H2(R3) ,

which requires to bound u in Hs(R3), with s > 3
2 . Therefore it follows that the

related Gronwall type inequality becomes superlinear in the higher order norm,
hence it blows up in finite time.
The major obstacle in this direction, as already stressed in the first section of this
chapter, is represented by the lack of intrinsic Strichartz estimates for the Maxwell-
Schrödinger system (3.5); indeed, this kind of estimates are a powerful tool in the
analysis of the global existence of solutions in the field of nonlinear Schrödinger
equations, as well as wave equations, as we recall briefly here.
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We say that (q, r) are admissible Schrödinger exponents in Rn, if 2 ≤ q ≤ ∞,
2≤ r ≤ 2n

n−2 (2≤ r ≤∞ if n= 1, 2≤ r <∞ if n= 2) and

1
q
=

n
2

�

1
2
−

1
r

�

.

Now we can define the Strichartz norms in a space-time slab I ×R3 as

‖u‖S0(I×R3) := sup
(q,r)admissible

‖u‖Lq
t Lr

x (I×R3) ,

and for any k ≥ 1
‖u‖Ṡk = ‖∇ku‖S0 .

If we consider a Schwartz solution u to the non homogeneous Schrödinger iut +
∆u= F(u), then

‖u‖Ṡk(I×R3) ® ‖u(t0)‖Ḣk(R3) + C‖∇kF‖
Lq′

t Lr′
x (I×R3)

(3.49)

Let us suppose to have a quintic nonlineraity F(u) (the energy-critical case in R3).
Let k = 0, 1,2 and u a finite energy solution such that ‖u‖L10

t,x (I×R3) ≤ R, then, if

t0 ∈ I and u(t0) ∈ Ḣk, we have

‖u‖Ṡk(I×R3) ≤ C(R, E)‖u(t0)‖Ḣk . (3.50)

This follows by combining the following inequality

‖∇k(F(u))‖L1
t L2

x
® ‖u‖L10

x ,t
‖u‖Ṡk‖u‖3Ṡ1 ,

where the norm ‖u‖Ṡ1 is controlled by the energy bounds, with the Strichartz es-
timate(3.49)(see [21]). This leads to the global existence of solutions. To our
knowledge, there are not intrinsic Strichartz estimates for (3.5); actually there are
many Strichartz estimates available in the literature for the Schrödinger equations
with a prescribed magnetic potential (see for instance [23, 24, 114] and references
therein), but our solution to (3.5) does not fall in that class.

Our strategy to investigate global in time existence is based on the regulariza-
tion of the nonlinear terms, provided by the classical Yosida approximations of the
identity. We then consider the following approximating system















iuεt =−
1
2
∆Ãεu

ε +ϕεuε + N ε(uε)

�Aε =J εPJε

uε(0) =u0, Aε(0) = A0, ∂tA
ε(0) = A1,

(3.51)

where J ε = (I − ε∆)−1, Ãε = J εAε, N ε(uε) = J ε
�

|J εuε|2(γ−1)J εuε
�

, Jε =
J(uε, Aε), ϕε = ϕ(|uε|2) and we denote ∇Ãε = ∇ − iÃε. The total energy of this
approximating system is given by

E =

∫

R3

¦

|∇Ãεu
ε|2 +

1
2
|∇ϕε|2 +

1
2
|∇Aε|2 +

1
2
|∂tA

ε|2 +
1
γ
|J εuε|2γ

©

d x (3.52)
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which is conserved along the flow of solutions. A local well-posedness result, anal-
ogous to Theorem 3.1.1, can be proved for the system (3.51) in a straightforward
way. We remark that, from now, several constants will depend on ε and they are
unbounded if ε→ 0.

Proposition 3.4.1. For all (u0, A0, A1) ∈ X , there exists T εmax > 0 and a unique max-
imal solution (uε, Aε) to (3.51) such that

• uε ∈ C([0, T εmax); H2(R3)),

• Aε ∈ C([0, T εmax); H3/2(R3))∩ C1([0, T εmax); H1/2(R3))

and the usual blow-up alternative holds true (see Theorem 3.1.1). Moreover, the solu-
tion depends continuously on the initial data.

Proof. We only remark here that the local well-posedness result for system (3.51)
holds for any γ ∈ (1,∞), while in Theorem 3.1.1 we restrict the range to γ ∈
(3

2 ,∞). Indeed, because of the Yosida regularisation, we have

‖N ε(uε)‖H2 ® ‖|J εuε|2(γ−1)J εuε‖L2 ® ‖uε‖2γ−1
H2 .

From now on, several constants will depend on ε, and are unbounded as epsilon
goes to zero.
The regularisation of the nonlinear terms yields indeed the global existence of solu-
tions.

Proposition 3.4.2. The solution obtained in Proposition (3.4.1) exists globally in time,
namely ‖(uε(t), Aε(t),∂tA

ε(t))‖X belongs to L∞loc in time.

The proof of Proposition 3.4.2 is based on the following

Lemma 3.4.3. Let ε > 0, then for every t ∈ R,

‖uε(t)‖H2 ≤ C1(‖u0‖L2 , E)e
C2 t‖∂t A

ε‖
L∞t H1/2

x . (3.53)

Proof. By (3.16) we have

‖uε‖H2 ®‖∆Ãεu
ε‖L2 + ‖Aε‖4H1‖uε‖L2

≤C(‖u0‖L2 , E)‖∆Ãεu
ε‖L2 ,

therefore it is convenient to estimate the norm ‖∆Ãεu
ε‖L2 instead of ‖u‖H2(R3). By

a standard energy method (see the proof of Proposition 3.2.7) it follows that

d
d t

�

‖(∆Ãεu
ε)(t)‖L2

�

≤ ‖∆Ãε(ϕ
εuε)‖L2 + ‖∆ÃεN

ε(uε)‖L2 + ‖[∂t ,∆Ãε]u
ε‖L2 .
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The first term can be estimated by using (3.15) and (3.12),

‖∆Ãε(ϕ
εuε)‖L2 ®‖ϕεuε‖H2 + ‖Aε‖4H1‖ϕεuε‖L2

®‖uε‖2H3/4

�

‖∆Ãεu
ε‖L2 + ‖Aε‖4H1‖uε‖L2

�

≤C(‖u0‖L2 , E)‖∆Ãεu
ε‖L2 .

The nonlinear term N ε(uε) can be controlled by exploiting the regularization given
by J ε

‖∆ÃεN
ε(uε)‖L2 ®‖N ε(uε)‖H2 + ‖Aε‖4H1‖N ε(uε)‖L2

®‖|J εuε|2(γ−1)J εuε‖L2 + ‖Aε‖4H1‖N ε(uε)‖L2

®‖|J εuε|2(γ−1)‖L2‖J εuε‖L∞ + ‖Aε‖4H1‖N ε(uε)‖L2

®‖J εuε‖2(γ−1)
L4(γ−1) ‖u

ε‖H2 + ‖Aε‖4H1‖uε‖L2

®‖J εuε‖2(γ−1)
H2 ‖uε‖H2 + ‖Aε‖4H1‖uε‖L2

®‖uε‖H2 + ‖Aε‖4H1‖uε‖L2 ,

where we used the Sobolev embeddings H2(R3) ,→ L4(γ−1)(R3), H4(R3) ,→ L∞(R3)
and the conservation of the mass. The commutator [∂t ,∆Ãε]u

ε = 2∂t Ã
ε(∇+ iÃε)uε

can be estimated by using the Hölder’s inequality and the Sobolev embedding

‖∂t Ã
ε · (∇+ iÃε)uε‖L2 ≤‖∂t Ã

ε‖L3‖(∇+ iÃε)uε‖L6

®‖∂tA
ε‖H1/2

�

‖∆Ãεu
ε‖L2 + ‖Aε‖4H1‖uε‖L2

�

.

By summing up the previous three terms

d
d t

�

‖(∆Ãεu
ε)(t)‖L2

�

≤ C(‖u0‖L2 , E)‖∂tA
ε‖H1/2‖∆Ãεu

ε‖L2 ,

hence (3.53).

Proof of Proposition 3.4.2. In order to get a bound on the H2 norm of the approx-
imating solution uε, by Lemma 3.4.3 it is sufficient to control ‖∂tA

ε‖L∞t H1/2
x

. Using
the energy estimate for the wave equation

‖Aε‖L∞t H3/2
x
+ ‖∂tA

ε‖L∞t H1/2
x
® C(T )

�

‖A0‖H3/2 + ‖A1‖H1/2 + ‖J εPJε‖L∞t H1/2
x

�

,

and, by exploiting the Yosida regularization, we get

‖J εPJε‖L∞t H1/2
x
® ‖PJε‖L∞t H−1/2

x
® ‖Jε‖L∞t L3/2

x
≤ C(E).

It follows that ‖Aε(t)‖H3/2 + ‖∂tA
ε(t)‖H1/2 is uniformly bounded on compact time

intervals and consequently by (3.53) also ‖uε(t)‖H2 is finite. Hence, by the blow-up
alternative, the solution (uε, Aε) to (3.51) exists globally in time. �
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Now we conclude the proof of Theorem 3.1.2 by showing that (uε, Aε) converges
to a solution to (3.5), as ε→ 0.
The conservation of mass and energy yields the following a priori bounds

‖uε‖L∞t H1
x (R×R3) ≤ C ,

‖Aε‖L∞t H1
x (R×R3) ≤ C , ‖∂tA

ε‖L∞t L2
x (R×R3) ≤ C ,

(3.54)

which imply that, up to subsequences, there exist u ∈ L∞t H1
x , A∈ L∞t H1

x ∩W 1,∞
t L2

x ,
such that

uε
∗
* u in L∞t H1

x(R×R
3) (3.55)

Aε
∗
* A in L∞t H1

x(R×R
3) (3.56)

∂tA
ε ∗* ∂tA in L∞t L2

x(R×R
3) (3.57)

Remark 3.4.4. We want to stress here that, actually, the conservation of mass and
energy gives a uniform bound on ‖u‖H1

A
:= ‖(∇ − iA)u‖L2(R3), from which the first

inequality in (3.54) easily follows. Indeed

‖u‖H1 ≤ ‖u‖H1
A
+ ‖Au‖L2 ≤ E + ‖A‖L6‖u‖L3

≤ E + ‖A‖H1‖u‖L3 ®E 1+ ‖u‖L3

®E 1+ ‖u‖
1
2
L2‖u‖

1
2
H1 ®M ,E 1 ,

where we used the Young inequality and we put M = ‖u‖L2 .

Proposition 3.4.5. The weak limit (u, A) in (3.55), (3.56) is a finite energy weak
solution to the Cauchy problem (3.5), with initial datum (u0, A0, A1).

Proof. Let us consider uε, by using equation (3.51) and the a priori bounds given by
the energy we have {∂tu

ε} is uniformly bounded in L∞(R; H−1(R3)). Indeed, for
the right handside of (3.51), we have

‖Aε · ∇uε‖
L

3
2 (R3)

≤ C‖uε‖H1(R3)‖∇Ãε‖L2(R3) ≤ C

‖|Aε|2uε‖
L

3
2 (R3)

≤ C‖∇Aε‖2L(R3)‖u
ε‖H1(R3) ≤ C

‖ϕ(uε)uε‖
L

3
2 (R3)

≤ C‖uε‖3H1(R3) ≤ C .

Moreover

‖N ε(uε)‖
L

2γ
2γ−1
≤ ‖|J εuε|2(γ−1)‖

L
γ
γ−1 (R3)

‖J εuε‖L2γ(R3)

≤ ‖J εuε‖2γ−1
L2γ(R3) ≤ C ,

with 2γ
2γ−1 ∈ (

6
5 , 2]. Hence, by using the Aubin-Lions lemma and from the assumption

1< γ < 3 we may infer

uε → u in L4
loc(R×R

3)∩ L2γ
loc(R×R

3) . (3.58)
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This also implies that |uε|2 * |u|2 in L2
t L6/5

x , and consequently, since∆−1 is bounded

from L
6
5 to L6, we obtain

(−∆)−1(|uε|2)* (−∆)−1(|u|2), in L2
t L6

x . (3.59)

Analogously for Aε, the a priori bounds yield

Aε → A in L4
loc(R×R

3) . (3.60)

We are now able to show the convergence for the nonlinear terms Kε(uε, Aε), N ε(uε),
J εPJε, where

Kε(uε, Ãε) = iÃε · ∇uε +
1
2
|Ãε|2uε +ϕ(uε)uε ,

Indeed, by using the convergences (3.55)-(3.60) we may conclude

Kε(uε, Ãε)* K(u, A) in L
4
3
loc(R×R

3) ,

PJ(uε, Ãε)* PJ(u, A) in L
4
3
loc(R×R

3) ,

N ε(uε)* N(u), in L
2γ

2γ−1

loc (R×R
3).

It remains to see that the initial condition is satisfied. We have that ∂tA ∈
L∞t L2

x(R × R
3) and ∂ 2

t A,∂tu ∈ L∞t H−1
x (R × R

3), and consequently (u, A,∂tA) ∈
C(R; H−1× L2×H−1). Moreover, the energy bounds imply (u, A,∂tA) ∈ L∞(R; H1×
H1 × L2) and hence we may also infer the weak continuity (u, A,∂tA) ∈ Cw(R; H1 ×
H1 × L2).
Since Aε ∈ L2(0, T ; H1(R3)) and ∂tA

ε ∈ L2(0, T ; L2(R3)), integrating by parts we
have

∫ T

0

〈Aε(t)∂t f (t) + ∂tA
ε(t) f (t),ϕ〉H1,H−1 ds = −〈A0,ϕ〉

for every ϕ ∈ L2(R3) and all f ∈ C∞(R) with f (0) = 1 and f (T ) = 0. As ε→ 0 we
obtain

∫ T

0

{A(t)∂t f (t) + ∂tA(t)h(t)} d t = −A0

in L2(R3), which implies A|t=0 = A0. Now we have
∫ T

0




∂tA
ε∂t f (t) + {∆Aε − PJ(uε, Ãε)} f (t),η

�

= 〈A1,η〉 ,

and as ε→ 0, we find
∫ T

0

{∂tA(t)∂t f (t) + ∂ 2
t A(t) f (t)}= A1

in H−1(R3), which gives us ∂tA|t=0 = A1. Applying the same argument to uε we
deduce that u|t=0 = u0.

87



3.5 Quantum Magnetohydrodynamics

Our last Section is devoted to point out the relation between the nonlinear Maxwell-
Schrödinger system (3.5) and quantum magnetohydrodynamic (QMHD) models.
Such hydrodynamic systems have been introduced in the physics literature, moti-
vated by various applications to semiconductor devices, dense astrophysical plasmas
(e.g. in white dwarfs), or laser plasmas [63, 64, 111, 112].

The quantum magnetohydrodynamic equations consist of the continuity equa-
tion and the electron and ion momentum equations (here i =ions and e =electrons)

∂ ne,i

∂ t
+∇ · (ne,iue,i) = 0,

neme

�

∂

∂ t
+ ue · ∇

�

ue = −nee
�

E+
1
c

ue ×B
�

−∇Pe + neFQe,

nimi

�

∂

∂ t
+ ui · ∇

�

ui = Zieni

�

E+
1
c

ui ×B
�

,

the Faraday law

c∇× E= −
∂ B
∂ t

,

and the Maxwell equation including the magnetization spin current

∇×B=
4π
c

�

Jp + Jm

�

+
1
c
∂ E
∂ t

,

where n j and m j are the number density and the mass of the particle species j respec-
tively, u j is the particle fluid velocity, Zi is the ion charge state, Jp = −neeue+Zinieui
is the plasma current density and Jm = ∇×M is the electron magnetization spin
current density, with M = (neµ

2
B/kB TFe)B, where µB = eħh/2mec is the Bohr mag-

neton (magnetic moment of an electron caused by either its orbital or spin angular
momentum). The term FQe is the sum of the quantum Bohm potential and intrinsic
angular momentum spin forces

FQe =∇
�

∇2pne
p

ne

�

−
µ2

B

kB TFe
∇B,

where B = |B|. The pressure for degenerate (close to zero temperature) electrons is
given by ([29])

Pe =
4eB(2me)1/2E3/2

F

3(2π)2ħh2c



1+ 2
nmax
∑

nL=1

�

1−
nLħhωB

EF

�3/2



 ,

where pF and EF are the Fermi momentum and the Fermi energy respectively. If
p2

F
2m < ħhωB (strong Landau quantization condition) one has the following density
scaling laws
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• If B = 0 then pF ≈ n1/3
e , EF ≈ n2/3

e , Pe ≈ n5/3
e

• If B > 0 then pF ≈ ne, EF ≈ n2
e , Pe ≈ n3

e

As we can see, under certain conditions, the pressure term can be approximated by
a power law and this motivates the introduction of the nonlinear power-like poten-
tials in (3.5).
The above equations are written for a two species charged particle system (bipolar
quantum fluid model). As a simplification, we focus the attention on a one-species
charged quantum plasma, with self-generated electromagnetic fields, whose dynam-
ics is described by







∂tρ + div J = 0

∂t J + div
�

J ⊗ J
ρ

�

+∇P(ρ) = ρE + J ∧ B +
1
2
ρ∇

�

∆
p
ρ

p
ρ

�

,
(3.61)

where ρ denotes the charge density and J the current density of the quantum fluid.
Here all the constants are normalized to one. The pressure term P(ρ) is assumed
to be isentropic of the form P(ρ) = γ−1

γ ρ
γ, 1< γ < 3. The last term in the equation

for the current density can be written in different ways

1
2
ρ∇

�

∆
p
ρ

p
ρ

�

=
1
4
∇∆ρ − div(∇pρ ⊗∇pρ) =

1
4

div(ρ∇2 logρ). (3.62)

and it can be seen as a self-consistent quantum potential (the so called Bohm po-
tential) or as a quantum correction to the stress tensor. Mathematically speaking,
this is a third order nonlinear dispersive term. The hydrodynamical system above is
complemented by the Maxwell equations for the electromagnetic fields E and B

�

div E = ρ, ∇∧ E = −∂t B

div B = 0, ∇∧ B = J + ∂t E.
(3.63)

In recent years a global existence theory of finite energy weak solutions for a class
a quantum hydrodynamic systems has been established in [6–8]. By means of a
polar factorization techinque it is possible to define the hydrodynamic quantities
by considering the Madelung transform of a wave function solution to a nonlinear
Schrödinger equation. In this way the definition of the velocity field in the nodal
regions is no longer needed. We also mention in the H2 case the construction given
in [49]. Furthermore it could be interesting to consider also confining potentials as
in [4], generated by external magnetic fields. The aim of this Section is to show the
existence of a finite energy weak solution to (3.61)-(3.63) by taking advantage of
our results on the system (3.5).

Definition 3.5.1. We define the total mass and energy for the system (3.61)-(3.63) as

M(t) :=

∫

R3

ρ(t, x) d x , (3.64)
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E(t) =

∫

R3

1
2
|∇pρ|2 +

1
2
|Λ|2 + f (ρ) +

1
2
|∂tA|2 +

1
2
|∇A|2 +

1
2
|∇φ|2 d x , (3.65)

where f (ρ) = 1
γρ

γ.

Definition 3.5.2. Let ρ0, J0, E0, B0 ∈ L1
loc(R

3) such that M(0) and E(0) are finite. A
finite energy weak solution to system (3.61)-(3.63) in the space-time slab [0, T )×R3

is given by a quadruple (pρ,Λ,φ, A) such that

1.
p
ρ ∈ L∞([0, T ); H1(R3)), Λ ∈ L∞([0, T ); L2(R3)), φ ∈ L∞([0, T ); H1(R3)),

A∈ L∞([0, T ); H1(R3))∩W 1,∞([0, T ); L2(R3));

2. ρ := (pρ)2, J :=pρΛ, E := −∂tA−∇ϕ, B :=∇∧ A;

3. J ∈ L2([0, T ); L2
loc(R

3));

4. ∀ η ∈ C∞c ([0, T )×R3),

∫ T

0

∫

R3

ρ∂tη+ J · ∇η d xd t +

∫

R3

ρ0(x)η(0, x) d x = 0;

5. ∀ζ ∈ C∞c ([0, T )×R3;R3),

∫ T

0

∫

R3

J · ∂tζ+Λ⊗Λ :∇ζ+ P(ρ)divζ+ρE · ζ+ (J ∧ B) · ζ

+∇pρ ⊗∇pρ :∇ζ+
1
4
ρ∆divζ d xd t +

∫

R3

J0(x) · ζ(0, X ) d x = 0;

6. E, B satisfy (3.63) in [0, T )×R3 in the sense of distributions;

7. (finite energy) The total mass and energy defined by (3.64) and (3.65) respec-
tively, are finite for every t ∈ [0, T ).

Proposition 3.5.3. Let (ρ0, J0, B0, E0) be such that ρ0 := |u0|2, J0 := Re(ū0(−i∇−
A0)u0), B0 :=∇∧A0, E0 := −A1−∇φ0, φ0 := (−∆)−1|u0|2 for some (u0, A0, A1) ∈ X ,
then there exists Tmax > 0 such that (pρ,Λ,φ, A) is a finite energy weak solution to
(3.61)-(3.63) with initial data (ρ0, J0, B0, E0) in the space-time slab [0, Tmax)×R3.
Moreover, the total mass and energy are conserved for all t ∈ [0, Tmax).

To prove this Proposition we are going to use a polar factorization argument, in
analogy with the electrostatic case treated in [6, 8] (see Appendix B).
Given any complex valued fuction u ∈ H1(R3), we may define the set of its polar
factors as

P(u) := {ϕ ∈ L∞(R3) : ‖ϕ‖L∞ ≤ 1, u=
p
ρϕ a.e. in R3},
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where
p
ρ := |u|. Thus, for any ϕ ∈ P(u), we have |ϕ| = 1

p
ρ d x a.e. in R3 and

ϕ is uniquely defined
p
ρ d x a.e. in R3. Clearly the polar factor is not uniquely

defined in the nodal regions, i.e. in the set {ρ = 0}.
In the following Lemma we exploit the polar factorization of a given wave function
ψ in order to define the hydrodynamical quantities associated to ψ. This approach
overcomes the WKB ansatz in the finite energy framework and allows to define the
hydrodynamical quantities almost everywhere in the space, without passing through
the construction of the velocity field, which is not uniquely defined in the nodal
region. Furthermore, we show how this definition which uses the polar factorization
is stable in H1(R3).

Lemma 3.5.4. Let u ∈ H1(R3), A ∈ L3(R3), and let
p
ρ := |u|, ϕ ∈ P(u). Let us

define Λ := Re(ϕ̄(−i∇− A)u) ∈ L2(R3), then we have

• pρ ∈ H1(R3) and ∇pρ = Re(ϕ̄∇u);

• the following identity holds a.e. in R3,

Re{(−i∇− A)u⊗ (−i∇− A)u}=∇pρ ⊗∇pρ +Λ⊗Λ. (3.66)

Moreover, let {un} ⊂ H1(R3), {An} ⊂ L3(R3) be such that un converges strongly to u
in H1 and An converges strongly to A in L3, then we have

∇
p

ρn→∇
p
ρ, Λn→ Λ, in L2(R3),

where
p
ρn := |un|, Λn := Re(ϕ̄n(−i∇− An)un).

Proof. Let u ∈ H1(R3) and let us consider a sequence of smooth functions converg-
ing to u, {un} ⊂ C∞c (R

3), un→ u in H1(R3). For each un we may define

ϕn(x) :=







un(x)
|un(x)|

if un(x) 6= 0

0 if un(x) = 0.

The ϕn’s are clearly polar factors for the wave functions un. Since ‖ϕn‖L∞ ≤ 1, then
(up to subsequences) there exists ϕ ∈ L∞(R3) such that

ϕn
∗
*ϕ, L∞(Rd). (3.67)

It is easy to check that ϕ is indeed a polar factor for u. Since {un} ⊂ C∞c (R
3), we

have
∇
p

ρn = Re(ϕ̄n∇un), a.e. in R3.

It follows from the convergence above

∇
p

ρn→∇
p
ρ, L2(R3)

Re(ϕ̄n∇un)* Re(ϕ̄∇u), L2(R3),
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thus ∇pρ = Re(ϕ̄∇u) in L2(R3) and consequently the equality holds a.e. in R3.
It should be noted that here we have∇pρ = Re(ϕ̄∇u), whereϕ is the weak−∗ limit
in (3.67). However the identity above for ∇pρ does not depend on the choice
of ϕ. Indeed, by Theorem 6.19 in [87] we have ∇u = 0 for almost every x ∈
u−1({0}) and, on the other hand, ϕ is uniquely determined on {x ∈ R3 : |u(x)|> 0}
almost everywhere. Consequently, for any ϕ1,ϕ2 ∈ P(u), we have Re(ϕ̄1∇u) =
Re(ϕ̄2∇u) = ∇pρ. The same argument applies for Λ := Re(ϕ̄(−∇− A)u). Let us
now prove the identity (B.8). Recall that we have |ϕ| = 1

p
ρ d x a.e. in R3, hence

again by invoking Theorem 6.19 in [87] we have

Re{(−i∇− A)u⊗ (−i∇− A)u}=Re
¦�

ϕ(−i∇− A)u
�

⊗ (ϕ̄(−i∇− A)u)
©

=Re{ϕ(−i∇− A)u} ⊗Re{ϕ̄(−i∇− A)u}

− Im{ϕ(−i∇− A)u} ⊗ Im{ϕ̄(−i∇− A)u}
=Λ⊗Λ+∇pρ ⊗∇pρ,

a.e. in R3. Furthermore, by taking the trace on both sides of the above equality we
furthermore obtain

|(−i∇− A)u|2 = |∇pρ|2 + |Λ|2. (3.68)

For the second part of the Lemma, let us consider a sequence {un} ⊂ H1 strongly
converging to u ∈ H1 and vector fields {An} ⊂ L3 strongly converging to A∈ L3. As
before it is straightforward to show that

Re(ϕ̄n∇un)*Re(ϕ̄∇u), L2

Re(ϕ̄n(−i∇− An)un)*Re(ϕ̄(−i∇− A)u), L2.

Moreover, from (3.68), the strong convergence of un and the weak convergence for
∇pρn,Λn, we obtain

‖(−i∇− A)u‖2L2 =‖∇
p
ρ‖2L2 + ‖Λ‖2L2 ≤ lim inf

n→∞

�

‖∇
p

ρn‖2L2 + ‖Λn‖2L2

�

= lim
n→∞

‖(−i∇− An)un‖2L2 = ‖(−i∇− A)u‖2L2 .

Hence, we obtain ‖∇pρn‖L2 → ‖∇pρ‖L2 and ‖Λn‖L2 → ‖Λ‖L2 . Consequently,
from the weak convergence in L2 and the convergence of the L2 norms we may
infer the strong convergence

∇
p

ρn→∇
p
ρ, Λn→ Λ, in L2(R3).

In view of Lemma 3.5.4 we can now prove Proposition 3.5.3. Let (u0, A0, A1) ∈ X
be given, then by our main Theorem 3.1.1 there exists a unique solution (u, A) to
(3.5) in [0, Tmax)×R3 such that u ∈ C([0, Tmax); H2(R3)), A∈ C([0, Tmax); H3/2(R3))∩
C1([0, Tmax); H1/2(R3)). Let us now define

p
ρ := |u|, Λ := Re(ϕ̄(−i∇+A)u), where

92



ϕ is a polar factor for u, and let φ := (−∆)−1ρ. By differentiating ρ with respect
to time we have

∂tρ =2Re
§

ū
�

−
i
2
(−i∇− A)2u− iφu− i|u|2(γ−1)u

�ª

= Im
�

ū(−i∇− A)2u
	

= Im
¦

−i div
�

ū(−i∇− A)u+ (−i∇− A)u · (−i∇− A)u
�©

=− div (Re(ū(−i∇− A)u)) .

Hence by defining J = Re (ū(−i∇− A)u) =pρΛ we obtain the continuity equation
for ρ

∂tρ + div J = 0.

Now let us differentiate J with respect to time,

∂t J =Re
§�

i
2
(−i∇− A)2u+ iφū+ i|u|2(γ−1)ū

�

(−i∇− A)u
ª

+Re
§

ū(−i∇− A)
�

−
i
2
(−i∇− A)2u− iφu− i|u|2(γ−1)u

�ª

−ρ∂tA

=
1
2

Im
¦

ū(−i∇− A)
�

(−i∇− A)2u
�

− (−i∇− A)2u(−i∇− A)u
©

+Re
�

ū(φ + |u|2(γ−1))∇u− ū∇
�

φu+ |u|2(γ−1)u
�	

−ρ∂tA.

Now the last line equals ρ∇φ −ρ∇ργ−1 −ρ∂tA= ρ(−∂tA−∇φ) +∇P(ρ), where
P(ρ) = γ−1

γ ρ
γ. After some tedious but rather straightforward calculations we may

see that

1
2

Im
¦

ū(−i∇− A)
�

(−i∇− A)2u
�

− (−i∇− A)2u(−i∇− A)u
©

=
1
4
∇∆ρ − div

�

Re
¦

(−i∇− A)u⊗ (−i∇− A)u
©�

+ J ∧ (∇∧ A).

By putting everything together we then obtain

∂t J + div
�

Re{(−i∇− A)u⊗ (−i∇− A)u}
�

+∇P(ρ) =

ρ(−∂tA−∇φ) + J ∧ (∇∧ A) +
1
4
∇∆ρ.

We now use the polar factorization Lemma to infer that

Re{(−i∇− A)u⊗ (−i∇− A)u}=∇pρ ⊗∇pρ +Λ⊗Λ

and consequently we get

∂t J + div(Λ⊗Λ) +∇P(ρ) = ρE + J ∧ B +
1
4
∇∆ρ − div(∇pρ ⊗∇pρ).
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By recalling identity (3.62) we see that this is the equation for the current density
in the QMHD system (3.61). The above calculations are rigorous only when (u, A)
are sufficiently regular, however for solutions to (3.5) considered in Theorem 3.1.1
they can be rigorously justified in the weak sense, namely in the sense of Definition
3.5.2 by regularizing the initial data and by exploiting the continuous dependence
showed in Proposition 3.3.8 and the H1−stability of the polar factorization stated
in Lemma 3.5.4.
It only remains to prove that E, B satisfy the Maxwell equations, but this comes
in a straightforward way from the wave equation in (3.5) and the definitions E =
−∂tA−∇φ, B =∇∧ A.
Finally we remark that for solutions (u, A) to (3.5) considered in Theorem 3.1.1 the
total energy (3.35) is conserved. Again by using Lemma 3.5.4 we see that the energy
in (3.35) equals the one defined in (3.65) this equals the energy defined in (3.65).
This concludes the proof of Proposition 3.5.3.
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Appendix A

Oscillatory integral operators

We collect here some results about oscillatory integral transformations which are
used in the Chapter 1.
Let consider integral transformations of the following type:

I(t, s; a) f (x) = ν
n
2

∫

Rn

a(x , y)eiνφ(x ,y) f (y)d y ,

where ν≥ 1 is a parameter. We denote withB(Rn) the Schwartz space of bounded
C∞-functions with bounded derivatives:

B(Rn) =
§

f : ‖ f ‖m = sup
x∈Rn

∑

|α|≤m

|∂ αx f (x)|<∞, m= 0, 1, . . .
ª

,

which is W∞,∞(Rn) as a Sobolev space. We assume that the phase functionφ(x , y)
and the amplitude function a(x , y) satisfy the following assumptions:

(A-I) φ(x , y) is a real valued C∞ function of (x , y) ∈ Rn ×Rn.

(A-II) There exists a positive constant δ0 such that
�

�

�

�

det
∂ 2

∂ x∂ y
φ(x , y)

�

�

�

�

≥ δ0 .

(A-III) For every multi-indices α,β , with |α|+ |β | ≥ 2, there exists a positive constant
Cαβ such that

�

�

�

�

�

∂

∂ x

�α� ∂

∂ y

�β

φ(x , y)

�

�

�

�

≤ Cαβ .

(A-IV) a(x , y) ∈B(Rn ×Rn).

For any integer l ≥ 0 we define

δ(2, l + 2) =max
d(φ)

∑

|α|+|β |≤l

sup
(x ,y)

�

�

�

�

�

∂

∂ x

�α� ∂

∂ y

�β

d(φ)(x , y)

�

�

�

�

,
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where d(φ)(x , y) denotes each of the entries of the matrix D(φ)(x , y) = ∂ 2

∂ x∂ yφ(x , y).
We write as an abbreviation δ2 = δ(2,2) and we set δ̃ = C(n)δ0δ

1−n
2 .

Theorem A.0.5. Assume that (A-I), (A-II), (A-III) and (A-IV) hold. Then there exists
a positive constant K such that the estimate

‖I(t, s; a) f ‖L2(Rn) ≤ K‖ f ‖L2(Rn) ,

for any f ∈ C∞0 (R
n). In particular we can take

K = C(n)(1+ δ̃
n
2 )(1+δ(2,8n+ 4))3n+2‖a‖2n+1 . (A.1)

Proof. See [10].

Theorem A.0.6. Assume that a ∈ B(Rn ×Rn). Then, there exist positive constants
C1 and C2 such that for any f ∈ C∞0 (R

n)

‖xα I(t, s; a) f ‖L2(Rn) ≤ C1‖a‖m‖ f ‖W ,









�

∂

∂ x

�α

I(t, s; a) f









L2(Rn)
≤ C2‖a‖m‖ f ‖W ,

with some positive integer m if |α| ≤ 2 .

Proof. See [38].
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Appendix B

QHD and Nonlinear Schrödinger
equations

B.1 From NLS to QHD

In this section we recall some results regarding the correspondence between the
Quantum Hydrodynamic system











∂tρ + div J = 0 ,

∂t J + div
�

J⊗J
ρ

�

+∇P(ρ) +ρ∇V = 1
2ρ∇

�

∆
p
ρp
ρ

�

,

−∆V = ρ ,

(B.1)

and the Schrödinger-Poisson system
�

i∂tψ= −
1
2∆ψ+ |ψ|

p−1ψ+ Vψ ,
−∆V = |ψ|2 ,

(B.2)

where P(ρ) = p−1
p+1ρ

(p+1)/2 and 1 ≤ p < 5 and x ∈ R3. One way to prove this
equivalence is the WKB ansatz, which consists in expressing the wave functionψ as
the product of its amplitude

p
ρ and its phase S, that isψ=pρeiS . This procedure

tells us that if we have a solution ψ of (B.2), then the pair (ρ, J), with J := ρ∇S is
a solution of (B.1). This kind of approach fails in the nodal region, that is {ρ = 0},
since the phase is not well-defined there. Actually, it is possible to overcome this
difficulty by means of a polar factorization technique , which does not require the
definition of the velocity field in the vacuum regions (see [6, 8, 18] for more details).

It is well known (see for instance [19]) that the system (B.2) is globally well
posed for initial data in H1(R3) and the solution is such that ψ ∈ C(R3; H1(R3)).
For this reason, for each time t ∈ [0, T ), we can define the following quantities

ρ(t) = |ψ|2 , J(t) = Im(ψ(t)∇ψ(t)) . (B.3)

The couple (ρ, J) is the candidate solution for (B.1). Let us compute the balance
laws for the quantities ρ and J defined in (B.3). Formally we get the following
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identities
∂tρ + div J = 0 , (B.4)

∂t J =
1
4
∇∆ρ − div(Re(∇ψ⊗∇ψ))−

p− 1
p+ 1

∇(|ψ|p+1)−ρ∇V . (B.5)

Now we want to rewrite the quadratic term inside the divergence in (B.5), in terms
of the hydrodynamical quantities ρ and J . Formally, by multiplying and dividing by
|ψ|2, we have

Re(∇ψ⊗∇ψ) = Re
�

(ψ∇ψ)⊗ (ψ∇ψ)
|ψ|2

�

=
1
ρ
(Re(ψ∇ψ)⊗Re(ψ∇ψ) + Im(ψ∇ψ)⊗ Im(ψ∇ψ))

=
1
ρ

�

1
2
∇ρ ⊗

1
2
∇ρ + J ⊗ J

�

=∇pρ ⊗∇pρ +
J ⊗ J
ρ

.

(B.6)

By putting (B.6) into (B.5), and by noting that

1
2
ρ

�

∆
p
ρ

p
ρ

�

=
1
4
∆∇ρ − div(∇pρ ⊗∇pρ) , (B.7)

we get the formal equivalence between (B.1) and (B.2). As already stressed, these
computations are just formal, since in order to obtain (B.6), we have divided by
|ψ|2. Again, as in the case of the WKB ansatz mentioned before, we have to face
the problem of the vacuum, that is the region {ψ= 0}.

To circumvent this difficulty, we can use a polar factorisation technique, which
allows us to decompose the wave function ψ in terms of its amplitude |ψ| and its
phase φ. Let ψ be a wave function in L2(R3). We define the set

P(ψ) := {ϕ ∈ L∞(R3) : ‖ϕ‖L∞ ≤ 1,ψ=
p
ρϕ a.e. in R3},

where
p
ρ := |ψ|.

The next lemma explains how to connect the bilinear term Rediv(∇ψ⊗∇ψ) to the
hydrodynamical quantities.

Lemma B.1.1. Let ψ ∈ H1(R3), pρ := |ψ| and ϕ ∈ P(ψ). Let us define Λ :=
Im(ϕ̄∇ψ) ∈ L2(R3), then we have

• pρ ∈ H1(R3) and ∇pρ = Re(ϕ̄∇ψ);

• the following identity holds a.e. in R3,

Re{∇ψ⊗∇ψ}=∇pρ ⊗∇pρ +Λ⊗Λ. (B.8)
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Moreover, let {ψn} ⊂ H1(R3) such that ψn converges strongly to ψ in H1; then we
have

∇
p

ρn→∇
p
ρ, Λn→ Λ, in L2(R3),

where
p
ρn := |ψn|, Λn := Re(ϕn∇ψn).

Proof. See [6].

Thanks to Lemma B.1.1, the identity

Re(∇ψ⊗∇ψ) =∇pρ ⊗∇pρ +Λ⊗Λ (B.9)

is justified; clearly J =pρΛ. In this way we recover a solution for the system (B.1),
by sarting from a solution to the equation (B.2). Actually the above discussion
is rigorous only for smooth enough solutions ψ of (B.2). In order to deal with
ψ ∈ H1(R3), one can use a density argument, exploiting the persistence of regularity
for the solutions of the nonlinear Schrödinger equations and the stability of the polar
factorisation in H1(R3), contained in the last statement of Lemma B.1.1.

B.2 Two-fluid model

Our interest on (1.9) is motivated by the attempt to study a class of two-fluid hydro-
dynamic systems. This kind of models arise in several physical phenomena, such as
superfluidity [76] or Bose-Einstein condensation at finite temperatures [58, 59]. A
typical example in this direction is given by liquid Helium; indeed when it is cooled
to the temperature of Tλ = 2.172 K it exhibits a phase transition: above the crit-
ical temperature Tλ, Helium behaves like a viscous Newtonian fluid; this is what,
usually, is called normal fluid. Below Tλ, instead, quantum effects become relevant
and so the liquid Helium is described by a frictionless quantum fluid, usually called
superfluid. The same kind of behaviour is shown by dilute Bose condensed gases at
a temperature lower than the critical condensation temperature, but sufficiently far
from absolute zero, in order to have distinguished condensate and non-condensate
part. The class of two-fluid model we are interested in reads as















∂tρs + div Js = 0

∂t(Js) + div
�

Js⊗Js
ρs

�

+∇Ps(ρs) =
1
2ρs∇

�

∆
p
ρsp
ρs

�

− (Js −Qvn)
∂tρn + div(ρnvn) = 0
∂t(ρnvn) + div(ρnvn ⊗ vn) +∇Pn(ρn) = η∆vn +

η
3∇div vn,

(B.10)

where ρs, Js denote the superfluid mass and current density, respectively, and ρn,
vn the mass density and the velocity field for the normal fluid. Ps and Pn are self-
consistent pressure terms, η is the viscosity in the equation for normal fluid andQ=
−(−∆)−1∇div. It is clear from the system (B.10), that the dynamics of the normal
fluid is not affected by the superfluid; on the other hand the latter interacts with the
former through the collision term J1 − ρ1Qv2. The dynamics of the normal fluid,
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which is a classical one, is described by the Navier-Stokes equations for compressible
fluids,







∂tρn + div(ρnvn) = 0 ,
∂t(ρnvn) + div(ρnvn ⊗ vn) +∇Pn(ρn) = η∆vn +

η
3∇div vn ,

ρn(0) = ρn,0 , (ρnvn)(0) = J2,0 ,
(B.11)

where the viscosity coefficient η is constant. The compressible Navier-Stokes system
(B.11) can be solved by using the results available in the mathematical literature
(see for instance [28, 31, 88]).
At this point it can be seen as a given term in the equation for the superfluid, which
evolves according to the following Cauchy problem







∂tρs + div Js = 0

∂t(Js) + div
�

Js⊗Js
ρs

�

+∇Ps(ρs)−Qvn =
ħh2

2 ρs∇
�

∆
p
ρsp
ρs

�

− Js ,
ρs(0) = ρs,0 , Js(0) = Js,0 .

(B.12)

As a first step to solve the system (B.12), we consider the case without collision, that
is we neglect the term Js in the right handside of the second equation in (B.12). In
the light of the results in Section B.1, we get that the system (B.12) is equivalent to
the following Schrödinger equation

�

i∂tψ= −
1
2∆ψ+ Ṽψ+ f (|ψ|2)ψ ,

ψ(0) = 0 ,
(B.13)

where Ṽ = (−∆)−1 div vn and ħh = 1. Hence the information we have on Ṽ is that
∇Ṽ = Qvn ∈ L2

t L6
x(R+ ×R

n). By using Theorem 2.2 in [102], it can be proved that
Ṽ = V +V∞, where V ∈ L2

t W 1,6
x , V∞ ∈ C∞(Rn) for a.e. t ∈ R+ and for any |α| ≥ 1,

∂ αx V∞ ∈ L2
t L∞x . Thus we need to study the properties of the propagator associated

with the following Cauchy problem
�

i∂tψ= −
1
2∆ψ+ V∞ψ ,

ψ(0) = 0 ,
(B.14)

where V∞ has the properties listed above. This is just (1.9). Once we have a so-
lution of (B.14), we can construct a finite energy weak solution of (B.12) without
the collision term, by means of a polar factorisation technique (see Section B.1).
Then, in order to solve the general case, a fractional step method can be used. This
allows to get an approximate solution for (B.12), by splitting the problems into two
separate steps. First of all, one solves the QHD problem without collisions; then the
collisional problem, without QHD, is solved. At this point one starts again with the
non-collisional QHD problem. We refer the reader to [5, 6, 8] for further details.
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