
Ph.D. in Computer Science – XXXII Cycle
Doctoral Thesis

Simple Randomized Distributed

Algorithms for Graph Clustering

Emilio Cruciani

Supervisors

Luca Becchetti

Emanuele Natale

Internal Advisor

Gianlorenzo D’Angelo

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy at the

Gran Sasso Science Institute

Viale Francesco Crispi 7, 67100, L’Aquila, Italy

Declaration

I, Emilio Cruciani, declare that most of the contents of this thesis titled “Simple

Randomized Distributed Algorithms for Graph Clustering”are based on co-authored

papers published in Proceedings of Italian and International Conferences (ICTCS,

AAMAS, AAAI, ISAAC) and in the Bulletin of the EATCS:

I confirm that:

• The content of Chapter 5 is based on works co-authored by Emanuele Na-

tale, André Nusser, and Giacomo Scornavacca which have been published in

the Proceedings of the 17th International Conference on Autonomous Agents

and MultiAgent Systems (AAMAS 2018) [CNNS18b], in the Bulletin of the

EATCS 125 [CNNS18c], and in the Proceedings of the 19th Italian Conference

on Theoretical Computer Science (ICTCS 2018) [CNNS18a].

• The content of Chapter 6 is based on works co-authored by Emanuele Natale

and Giacomo Scornavacca which have been published in the Proceedings of the

33rd AAAI Conference on Artificial Intelligence (AAAI 2019) [CNS19], in the

Bulletin of the EATCS 125 [CNS18], and in the Proceedings of the 19th Italian

Conference on Theoretical Computer Science (ICTCS 2018) [CNNS18a].

• The content of Chapter 7 is based on a work co-authored by Luca Becchetti,

Francesco Pasquale, and Sara Rizzo which has been published in the Proceed-

ings of the 30th International Symposium on Algorithms and Computation

(ISAAC 2019) [BCPR19].

Date: 08/12/2019 Signature:

A Emanuela

Acknowledgments

È attribuita a Galileo l’affermazione “le cose sono unite da legami invisibili,

non puoi cogliere un fiore senza turbare una stella.” Mi piace partire da questa

riflessione per ringraziare tutte le persone che, in modo più o meno significativo e

importante, mi hanno aiutato a compiere questo lavoro. Tutti sono stati essenziali

e tutti ringrazio di cuore, uno ad uno.

Ringrazio i miei relatori Luca Becchetti ed Emanuele Natale per l’entusiasmo,

la grinta e lo spirito audace e attento con cui mi hanno seguito in questo percorso.

Ringrazio Gianlorenzo D’Angelo, Luca Aceto, Antonia Bertolino e Francesco

Pasquale per la disponibilità, la piena collaborazione e i preziosi consigli.

Ringrazio Andrea Clementi e Robert Elsässer per i commenti e gli stimoli

costruttivi con cui hanno contribuito a perfezionare la mia tesi.

Ringrazio tutti i miei coautori: André Nusser, Antonia Bertolino, Breno Mi-

randa, Emanuele Natale, Federico Corò, Francesco Pasquale, Giacomo Scornavacca,

Gianlorenzo D’Angelo, Luca Becchetti, Mohammad Abouei Mehrizi, Roberto Verdec-

chia, Sara Rizzo, Stefano Ponziani. Senza uno solo di loro la mia avventura non

sarebbe stata la stessa.

Ringrazio i compagni di dottorato all’Aquila per la loro presenza quotidiana e

per i dubbi e i successi condivisi.

Ringrazio i miei amici vicini e lontani perché posso contare sempre su di loro e

perché sanno quale birra preferisco in ogni circostanza.

Ringrazio la mia famiglia che mi ha sempre sostenuto e incoraggiato, senza mai

smettere di credere in me.

Ringrazio Emanuela per l’amore paziente e coraggioso con cui rende più ricca

e vera la mia vita e per il modo in cui mi regala ogni giorno la gioia immensa di

poterla sentire accanto.

Abstract

Label Propagation Algorithms are a class of heuristics for the problem of graph

clustering, i.e., the problem of detecting groups of nodes whose connections are

dense within each group and sparse between the groups. At the onset, a label is

assigned to each node of the graph; then, each node iteratively updates its label

according to a function of the labels of its neighbors. Empirical studies show that,

after only a few rounds, nodes in the same cluster share the same label while nodes

in different clusters have different labels. Although they are widely used in practice

given their simplicity, efficiency, and effectiveness, there is no theoretical foundation

to explain why such simple algorithms are able to perform such a hard task. The

absence of theoretical progress in the analysis of Label Propagation Algorithms is

due to the lack of mathematical techniques for handling the interplay between the

non-linearity of their update rule and the topology of the underlying graph.

In this thesis we contextualize Label Propagation Algorithms in the framework

of computational dynamics, simple dynamical processes on networks whose behav-

ior has been formally characterized on some classes of graphs. The analyses of

computational dynamics were mainly focused on graphs with good connectivity

properties, such as cliques or expanders, and on the problem of consensus, showing

that they naturally converge to a configuration in which all the nodes agree on

some value. We move a step forward in this direction by rigorously analyzing two

simple dynamics, the 2-Choices dynamics and the Averaging dynamics, reaching a

more fine-grained comprehension of their consensus behavior in classes of graphs

that exhibit a clustered structure. In particular we formally prove that, with non-

negligible probability, the two dynamics quickly bring the graph in a configuration

where each cluster reaches an internal consensus on a value that is different among

the clusters, and then enters a long metastable phase in which the internal consensus

are maintained.

We show how to exploit such metastable behavior to design simple randomized

distributed algorithms for graph clustering.

I Label Propagation Algorithms sono una classe di euristiche per il problema

del clustering di grafi, cioè il problema di suddividere i nodi di un grafo in gruppi,

o cluster, in modo tale che le connessioni tra nodi all’interno dello stesso gruppo

sono dense mentre quelle tra nodi in gruppi diversi sono sparse. All’inizio viene

assegnato un colore a ogni nodo del grafo; successivamente, in maniera iterativa,

ogni nodo aggiorna il proprio colore in funzione dei colori dei propri vicini. Al-

cuni studi mostrano empiricamente che, dopo poche iterazioni, i nodi appartenenti

allo stesso cluster condividono uno stesso colore, mentre nodi appartenenti a cluster

diversi hanno un colore diverso. Sebbene siano largamente usati in pratica per la

loro semplicità, efficienza ed efficacia, non ci sono fondamenta teoriche per spiegare

perché questi semplici algoritmi sono in grado di risolvere un problema cos̀ı difficile.

L’assenza di progresso teorico nell’analisi dei Label Propagation Algorithms è dovuta

alla mancanza di tecniche matematiche che trattano l’interazione tra la nonlinear-

ità della funzione con cui i nodi aggiornano il proprio colore e le caratteristiche

strutturali della rete di comunicazione che connette i nodi.

In questa tesi i Label Propagation Algorithms vengono contestualizzati nel quadro

teorico delle dinamiche computazionali, cioè semplici processi dinamici su reti il cui

comportamento è stato caratterizzato formalmente su alcune classi di grafi. Le anal-

isi di queste dinamiche si focalizzano su grafi con ottime proprietà di connettività e

sul problema del consenso, ovvero provando la loro naturale convergenza a config-

urazioni cromatiche in cui tutti i nodi concordano su uno stesso colore. In questa

tesi viene fatto un passo in avanti in questa direzione: le dinamiche 2-Choices e

Averaging sono analizzate rigorosamente, comprendendo meglio come il consenso

viene raggiunto in classi di grafi con una struttura che presenta dei cluster. Più

nel dettaglio viene dimostrato che, con una probabilità non trascurabile, le due di-

namiche portano i nodi in una configurazione cromatica dove ogni cluster raggiunge

velocemente un consenso interno, su un colore diverso per ogni cluster, prima di

iniziare una lunga fase metastabile in cui i consensi interni sono mantenuti.

Nella tesi viene mostrato come questo comportamento metastabile che carat-

terizza alcune dinamiche possa essere sfruttato per progettare semplici algoritmi

probabilistici e distribuiti per il problema del clustering di grafi.

Contents

Preface 1

1 Introduction 5

1.1 Research contributions . 8

1.2 Organization of the thesis . 11

I Background 13

2 Graph Clustering 15

2.1 Networks and communities . 15

2.2 Community quality metrics . 17

2.2.1 Internal criteria . 17

2.2.2 External criteria . 18

2.3 Networks with community structure 19

2.3.1 Synthetic network models . 19

2.3.2 Real-world networks . 20

2.4 Algorithms for graph clustering . 21

2.4.1 Traditional methods . 21

2.4.2 Partitional methods . 23

2.4.3 Hierarchical methods . 24

2.4.4 Spectral methods . 27

2.4.5 Dynamical methods . 32

3 Label Propagation Algorithms 35

3.1 General overview . 35

3.2 A brief history of LPAs . 36

4 Computational Dynamics 41

4.1 Communication models . 42

4.2 Consensus . 42

4.3 Dynamics . 43

4.3.1 Voter dynamics . 43

4.3.2 2-Choices dynamics . 44

4.3.3 Averaging dynamics . 46

II 2-Choices Dynamics 49

5 Phase Transition on Core-Periphery Networks 51

5.1 Preliminaries . 52

5.2 Theoretical analysis . 54

5.2.1 Phase transition on core-periphery networks 60

5.3 Simulations on real-world networks 62

6 Metastability on Clustered Graphs 67

6.1 Preliminaries . 68

6.2 Theoretical analysis . 70

6.2.1 A distributed graph clustering algorithm 87

6.3 Biological implications . 90

6.3.1 A proof of concept for speciation 90

6.3.2 On the process of innervation in muscular junctions 91

III Averaging Dynamics 97

7 Reconstruction of Volume-Regular Graphs 99

7.1 Preliminaries . 100

7.1.1 Averaging dynamics . 100

7.1.2 Community-sensitive algorithms 101

7.1.3 Volume-regular graphs . 103

7.2 Theoretical analysis . 106

7.2.1 Clustered graphs . 106

7.2.2 Bipartite graphs . 119

7.2.3 Other non-clustered graphs 122

8 Conclusion 123

Appendix 125

A Asymptotic Notation 127

B Graph Theory 129

B.1 Definitions . 129

B.2 Matrix representations . 130

B.3 Graph families . 131

B.4 Centrality measures . 131

C Linear Algebra 135

C.1 Definitions and basic results . 135

D Spectral Graph Theory 139

D.1 Graph Laplacian and its eigenvalues 139

D.2 Relating cuts and eigenvalues . 140

E Probability Theory and Stochastic Processes 141

E.1 Events, probability, random variables 141

E.2 Markov chains and random walks . 143

E.3 Concentration bounds and other useful results 146

Bibliography 149

Preface

This thesis presents one of the three lines of researched I carried out, together with

my collaborators, during my years as a Ph.D. student. In this Preface I would like

to give a brief global overview of what I studied during the last three years and of

the publications the research led to.

Simple Randomized Distributed Algorithms for Graph Clustering

This is the line of research investigated in the thesis. We analyze simple dynamical,

possibly stochastic, processes on networks known in literature as computational

dynamics [Nat17]. The theoretical computer science community, that recently got

interested in them, proved that such dynamics can be used as efficient distributed

algorithm for consensus. In this line of research we show that, when the underlying

network has a community structure, some dynamics exhibit a metastable phase

that highlights the community structure before converging to consensus and can

thus be used, despite their simplicity, as efficient distributed algorithms for graph

clustering.

This line of research resulted in the following papers:

• E. Cruciani, E. Natale, A. Nusser, G. Scornavacca. “Phase Transition of the

2-Choices Dynamics on Core-Periphery Networks.” Full paper published in

Proceedings of the 17th International Conference on Autonomous Agents and

MultiAgent Systems (AAMAS 2018) [CNNS18b].

• E. Cruciani, E. Natale, A. Nusser, G. Scornavacca. “Phase Transition of the

2-Choices Dynamics on Core-Periphery Networks.” Extended abstract pub-

lished in Bulletin of the EATCS 125 (2018) [CNNS18c].

• E. Cruciani, E. Natale, G. Scornavacca. “On the Metastability of Quadratic

Majority Dynamics and its Biological Implications.” Extended abstract pre-

sented at the 6th workshop on Biological Distributed Algorithms (BDA 2018)

and published in Bulletin of the EATCS 125 (2018) [CNS18].

• E. Cruciani, E. Natale, A. Nusser, G. Scornavacca. “On the Emergent Behav-

ior of the 2-Choices Dynamics.” Short communication published in Proceed-

ings of the 19th Italian Conference on Theoretical Computer Science (ICTCS

2018) [CNNS18a].

Page 1

Preface

• E. Cruciani, E. Natale, G. Scornavacca. “Distributed Community Detection

via Metastability of the 2-Choices Dynamics.” Full paper published in Pro-

ceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI 2019)

[CNS19].

• L. Becchetti, E. Cruciani, F. Pasquale, S. Rizzo. “Step-by-Step Community

Detection in Volume-Regular Graphs.” Full paper published in Proceedings of

the 30th International Symposium on Algorithms and Computation (ISAAC

2019) [BCPR19].

Models and Algorithms for Election Control through Influence Max-

imization

We investigate the problem of controlling elections through social influence [WV18],

i.e., exploiting social influence in a network of voters in order to change their opinion

about some target candidate to change the outcome of the election in her favor. We

introduce two models based on the Linear Threshold Model [KKT15] and provide

positive and negative approximation results to the problem of election control.

This line of research resulted in the following papers:

• F. Corò, E. Cruciani, G. D’Angelo, S. Ponziani. “Vote for Me! Election Con-

trol via Social Influence in Arbitrary Scoring Rule Voting Systems.” Extended

abstract published in Proceedings of the 18th International Conference on

Autonomous Agents and MultiAgent Systems (AAMAS 2019) [CCDP19b].

• F. Corò, E. Cruciani, G. D’Angelo, S. Ponziani. “Exploiting Social Influence

to Control Elections Based on Scoring Rules.” Full paper published in Pro-

ceedings of the 28th International Joint Conference on Artificial Intelligence

(IJCAI 2019) [CCDP19a].

• M. Abouei Mehrizi, F. Corò, E. Cruciani, G. D’Angelo, S. Ponziani. “Models

and Algorithms for Election Control through Influence Maximization.” Short

communication published in Proceedings of the 20th Italian Conference on

Theoretical Computer Science (ICTCS 2019) [MCC+19].

• M. Abouei Mehrizi, F. Corò, E. Cruciani, G. D’Angelo. “Dealing with Un-

certainty in Election Control through Social Influence.” Full paper currently

under review.

FAST Approaches for Software Testing

We propose scalable solutions for some important issues in software regression test-

ing, using tools from Information Retrieval and Data Mining. In particular we map

these problems to ranking and clustering ones and we use efficient tools from the Big

Page 2

Preface

Data domain. The approaches we developed are thought for large scale scenarios

where state-of-the-art techniques cannot deal with the test suites due to their size.

This line of research resulted in the following papers:

• B. Miranda, E. Cruciani, R. Verdecchia, A. Bertolino. “FAST Approaches

to Scalable Similarity-based Test Case Prioritization.” Full paper published

in Proceedings of the 40th International Conference on Software Engineering

(ICSE 2018) [MCVB18].

• E. Cruciani, B. Miranda, R. Verdecchia, A. Bertolino. “Scalable Approaches

for Test Suite Reduction.” Full paper published in Proceedings of the 41st

International Conference on Software Engineering (ICSE 2019) [CMVB19].

The paper won the ACM SIGSOFT Distinguished Paper Award.

• F. Corò, R. Verdecchia, E. Cruciani, B. Miranda, A. Bertolino. “JTeC: A

Large Collection of Java Test Classes for Test Code Analysis and Processing.”

Tool/Dataset paper currently under review.

• A. Bertolino, E. Cruciani, B. Miranda, R. Verdecchia. “Know Your Neighbor:

Fast Static Prediction of Test Flakiness.” Full paper currently under review.

Page 3

1
Introduction

Network science is the area that studies complex networks, systems whose behavior

is hard to model due to the dependencies, relationships, and interactions between

their parts and with the environment they are set in. They appear in a wide vari-

ety of fields such as biology, chemistry, physics, sociology, economy, and computer

science. Examples are telecommunication networks, computer networks, biological

networks, cognitive and semantic networks, social networks, and many others. A

common way to represent complex systems is through the use of networks, i.e.,

graphs where nodes represent the components of the systems and links represent

their interactions.

Complex networks have non-trivial topological features, with patterns that are

neither regular nor purely random. Many real-world networks exhibit a commu-

nity structure, i.e., several groups of nodes that are densely interconnected among

them, and more weakly connected towards the rest of the system. Among oth-

ers, some example could be: social networks, that form communities groups based

on common interests or locations; citation networks, that form communities based

on research topics; protein interaction networks, that form communities based on

similar functionalities inside a biological cell [For10].

Detecting communities is fundamental for many applications, e.g., in order to be

able to zoom-out and look the network at a different scale where each community

is a meta-node that simplifies the network structure or to provide insights into how

network topology and function affect each other [For10].

One of the most successful approaches is that of Label Propagation Algorithms,

a widely used class of protocols inspired by epidemic processes on networks that is

appealing for its simplicity, efficiency, and effectiveness [RAK07]. A label is initially

assigned to each node of the network; then, the label of each node is updated to the

most frequent label in its neighborhood; after few updates, nodes belonging to the

same cluster end up having the same label, while nodes in different clusters have

different labels. Although widely used in practice, there is no theoretical foundation

to explain why such simple algorithms are able to perform graph clustering. In fact,

most of the work in the area is empirical except very few exceptions ([TK08, KPS13,

CDIG+15]).

Page 5

Chapter 1. Introduction

The absence of substantial theoretical progress in the analysis of LPAs is largely

due to the lack of techniques for handling the interplay between the non-linearity

of the local update rules and the topology of the underlying graph [UB13]. In order

to move a step forward in this direction there is a need to contextualize LPAs in

a more rigorously defined mathematical framework such as that of computational

dynamics [Nat17], where some simple dynamics on networks are analyzed with the

goal of exploiting their behavior to design lightweight distributed algorithms.

Computational dynamics are simple synchronous dynamical processes on net-

works, possibly of stochastic nature, where each node has an initial state and up-

dates it over time according to a symmetric function of its state and of the states

of its neighbors [Nat17]. This kind of processes has been classically studied in theo-

retical physics and statistical mechanics [Lig06, Lig09]; a recent renewed interest in

the analysis of dynamics from theoretical computer scientists proved that these pro-

cesses can be utilized as simple and lightweight distributed algorithms. Hassin and

Peleg [HP01] proved how the arguably simplest dynamics, i.e., the Voter dynamics

in which each node updates its state by coping that of a random neighbor, can

be exploited as an extremely simple distributed algorithm to solve the consensus

problem, which can be informally defined as follows: Given a network of agents each

possessing some value, how can the agents agree on a single value among those ini-

tially possessed? Consensus is one of the most fundamentals problem in distributed

computing with possible applications including the agreement on the identity of a

leader, clock synchronization, usage in blockchains, and many others.

Other dynamics, besides the Voter, have also been analyzed in the framework

of computational dynamics and thus as simple and lightweight distributed algo-

rithms. Examples are: the 2-Choices [CER14, CER+15, CRRS17], where each node

samples two neighbors and, if they have the same state, copies it; the Undecided-

State [BCN+15, CGG+18], where there is an extra “undecided” state and each node

becomes undecided if samples a neighbor with a state different from its own or copies

the state of the sampled neighbor if it is undecided; the 2-Median [DGM+11], where

each node updates its state to the median color among its color and that of two

random neighbors (assuming an ordering of the colors); with all these dynamics

the focus has been again on the consensus problem. Dynamics have also been suc-

cessfully employed in order to design efficient solutions for other problems such as

noisy rumor spreading [FN16], exact majority [MNRS17], and clock synchroniza-

tion [BKN17].

The analyses of such dynamics were mainly focused on graphs which exhibit good

connectivity properties, e.g., complete graphs or expanders, since these topologies

facilitate the convergence of the dynamics to consensus. However, as previously

introduced, many real-world networks do not have such desired properties and,

instead, exhibit a community structure. The behavior of dynamics that naturally

reach consensus could in fact change when the topology of the underlying network

Page 6

Chapter 1. Introduction

changes: While the long term behavior of the dynamics remains the same, the time

needed to reach it could drastically increase due to the effect of the topology of the

communication network in the information spreading.

A first step in this direction was done by Becchetti et al. [BCN+17b, BCM+18],

that analyzed the Averaging dynamics on graphs sampled from the regular stochas-

tic block model, i.e., graphs exhibiting a clustered structure with two communities

connected by sparse cuts, proving that a simple dynamics can be used to perform

community detection. The averaging dynamics is a deterministic protocol where

each node updates its state by averaging the states of its neighbors. Becchetti et al.

show that the dynamics does converge to the global average (as originally proved

in [BGPS06, Sha09]), i.e., to a consensus, but that, with some randomness in the

initialization, the convergence of a node to the global average depends on the com-

munity the node belongs to: After a first short phase of settling, the state of a node

slowly and monotonically increase or decrease towards the global average according

to the community of the node.

In this thesis, we follow this line of research by deepening the theoretical un-

derstanding of computational dynamics and reaching a more fine-grained compre-

hension of the consensus behavior of the analyzed dynamics when the underlying

network topology does not have good connectivity properties, but instead exhibits

a community structure. In particular, we focus on two different dynamics, the

2-Choices dynamics and the Averaging dynamics, rigorously analyzing their evolu-

tion and showing that their behavior can be exploited to design simple randomized

distributed algorithms for graph clustering.

Recent developments in spectral graph theory (e.g., generalized Cheeger’s in-

equality and related tools [LGT14, PSZ17]) and new techniques for bounding the

convergence time of simple randomized protocols [BCN+15, BCN+17a, BCN+17b]

are combined to rigorously analyze the behavior of these dynamics. This combi-

nation requires, in turn, to revisit known techniques which take into account the

topology of the network to a greater extent than what has been done so far, and to

deepen the understanding of the relation between the eigenspaces associated to the

adjacency matrix of the network and its cluster structure.

We analyze the behavior of such dynamics on different classes of graphs having

an evident community structure; in this setting we show that the processes quickly

(e.g., in O(log n) rounds, where n is the number of nodes in the networks) bring the

system to a configuration where the nodes of each community agree on the same

state, i.e., an internal consensus, while the consensus of different clusters are on

different states; moreover, once in this configuration that highlights the community

structure of the network, we show that the process enters a long metastable phase

where most of the nodes retain their state before reaching (in the very long run,

e.g., in nω(1) number of rounds) a stable consensus configuration.

Page 7

Chapter 1. Introduction

1.1 Research contributions

Herein we show how simple randomized distributed algorithms, known in litera-

ture as dynamics and mainly studied to solve the consensus problem, can be also

efficiently used to detect communities in networks, deepening the theoretical un-

derstanding on the class of graph clustering algorithms known as label propagation

algorithms.

The central idea and recurrent theme of the thesis is that of considering dynamics

that naturally bring the network to a consensus and to formally prove that, when the

network exhibits a community structure, each community rapidly reaches an inter-

nal consensus (possibly different between communities) and maintains it for a very

long time interval. We call this behavior of dynamics metastable, since in the long

run the dynamics will still converge to a consensus configuration. Such metastable

behavior is of extreme interest for computational purposes since if the time interval

is long enough the dynamics naturally highlights the community structure of the

network that can be thus identified by the agents using only local information and

with extremely low individual computational resources.

2-Choices dynamics

In Part II we analyze the 2-Choices dynamics on two different classes of networks:

Core-Periphery networks [ALP+14] and clustered graphs sampled from the regular

Stochastic Block Model [HLL83].

With the analysis on Core-Periphery networks [CNNS18b, CNNS18c, CNNS18a],

i.e., networks that exhibit a bipartition of the nodes into a core (small, i.e., O(
√
n)

nodes, and densely connected) and a periphery (large, i.e., O(n) nodes, and sparsely

connected), we move a step forward considering a class of networks different than

those with strong expansion properties; moreover we investigate the role that the

initial configuration of the states of the nodes plays in the dynamics’ behavior.

Starting from a natural configuration where nodes in the core and in the periphery

initially have different states, we prove that a phase transition phenomenon occurs

depending on the strength of the cut that separates the two partitions: Either the

core’s initial state is rapidly spread among the entire network, or the periphery

resists retaining its initial state and starting a long metastable phase in which both

states coexist in the network, with high probability (Definition E.1.5).

The theoretical analysis initially considers the settings in which the nodes in the

core are stubborn, i.e., they do not change state, later substituting this assumption

with milder hypothesis on the core’s structure. We give bounds on the expected

change of the number of agents supporting a given state, obtaining a concentration

of probability around the expected evolution with the use of Chernoff bounds. The

evolution of the dynamics when the core is stubborn can be regarded as a SIS-like

Page 8

Chapter 1. Introduction

epidemic model [Het00, EJN02], where the infection probability together with a

certain probability of spontaneous infection are given by the 2-Choices dynamics.

This first result of the thesis shows that, when the graph is partitioned into two

groups of nodes, the 2-Choices dynamics could have a metastable behavior that

highlights the partition; moreover the results suggests that the 2-Choices dynamics

could be used to design a distributed label propagation algorithm.

We also validate our theoretical predictions by performing extensive experiments

on real-world networks (Section 5.3). In order to do that, we design an algorithm

to extract the core of a network by iteratively computing densest-subgraph approx-

imation and run simulations of our dynamics. The results of the simulations show

a strong correlation with the theoretical predictions made by our model.

With the analysis of the 2-Choices dynamics on clustered regular graphs [CNS19,

CNS18, CNNS18a] we show a more fine-grained understanding of the consensus

behavior of the dynamics. Our new analysis combines symmetry-breaking tech-

niques [BCN+16, CGG+18] and concentration of probability arguments with a lin-

ear algebraic approach [CER+15, CRRS17] in order to obtain the first symmetry-

breaking analysis of dynamics on non-complete topologies. In particular, we show

that if the nodes of the network initially choose a random binary state then there

is a constant, non-negligible probability that the process converges to an almost-

clustered configuration, i.e., a configuration where almost all nodes within each

community share the same state but the predominant states in the communities are

different. The process rapidly reaches such configuration and maintains it for an

extremely long time and thus the states of the nodes constitute a labeling which

reveals the clustered structure of the network.

The aforementioned constant probability for the labeling to reveal the com-

munity structure of the network can be amplified using a Community-Sensitive

Labeling [BCM+18], hence transforming the 2-Choices dynamics into a distributed

label propagation algorithm with quasi-linear message complexity.

Our result is the first analytical result on the behavior of a sparsified label propa-

gation algorithm. The 2-Choices dynamics performs an implicit sparsification of the

graph, an interesting property for the design of sparse clustering algorithms [SZ17],

in particular for opportunistic network settings [BCM+18], since the nodes sample

in each round the neighbors instead of looking at all of them. The only other anal-

ysis in literature is that of Max-LPA [KPS13], a deterministic majority dynamics.

Compared to the analysis of Max-LPA, our result holds for much sparser communi-

ties at the price of a stricter condition on the cut. Moreover, given the distributed

nature of the two algorithms, the message complexity of the 2-Choices dynamics is

lower and does not depend on the density of the graph.

Our results on the metastability of the 2-Choices dynamics on clustered graphs

has some biological implications (Section 6.3).

Page 9

Chapter 1. Introduction

In the context of evolutionary biology, dynamics such as the Moran process,

which has been proved to be equivalent to the Voter dynamics when the underlying

graph is regular [Gia16], have been used to model the spread of mutations in genetic

populations [LHN05]. However, no simple dynamics has been proposed so far in the

context of evolutionary graph theory for explaining one of evolution’s fundamental

phenomena, namely speciation [CO04]. We propose the 2-Choices dynamics as an

evolutionary dynamics for sympatric/parapatric speciation, i.e., divergence of two

species in the scenario in which there is no complete geographical isolation, and

provide an analytical evolutionary graph-theoretic proof of concept of how specia-

tion can emerge from the simple nonlinear underlying dynamics of the evolutionary

process at the population level.

In the context of neuroscience, evolutionary graph dynamics have been used to

model the innervation of synapses on muscular junctions during development. Our

result, corroborated by numerical simulations on a wider class of dynamics, provide

evidence that, in order for the model to comply with experimental evidence on

the outcome of the innervation process, either the innervation sites do not exhibit

spatial bottlenecks or the dynamics cannot be based on majority-like mechanism.

Averaging dynamics

In Part III we analyze the Averaging dynamics on a class of graphs that we call

k-volume-regular, extending the result of Becchetti et al. [BCN+17b] to the case

of k unbalanced communities, also relaxing the regularity constraint with the use

of the weaker notion of k-volume-regularity that we introduce. The concept of

volume-regularity is deeply related with that of ordinary lumpability of Markov

chains [KS60]. Moreover, volume-regular graphs are the largest class of undirected,

possibly weighted graphs that admit k “stepwise” eigenvectors (i.e., with constant

values over the k “steps” that identify the k partitions of the graph), necessary to

follow the arguments used by Becchetti et al. to prove the behavior of the dynamics.

We show that, if the k stepwise vectors of a volume-regular graph are those

associated with the k largest eigenvalues and the gap between the k-th and the (k+

1)-th eigenvalues is sufficiently large, the averaging dynamics allows to reconstruct

the original partition of the graph after a short time and for a long time interval, with

high probability. In order to prove this, we provide a family of orthogonal vectors

which have the same span of the (unknown) stepwise vectors of any volume-regular

graph and that generalize the Fiedler vector [Fie89], used in spectral partitioning

algorithms.

We also introduce the concept of community sensitive algorithm, an algorithm

that if executed in parallel for a suitable number of times produces a community-

sensitive labeling [BCM+18], i.e., assigns a binary signature to each node of the

graph with the property that the Hamming distance between signatures of nodes in

Page 10

Chapter 1. Introduction

the same community is small, while that of nodes belonging to different communities

is large.

Moreover, we show that variants of the averaging dynamics can address different

problems such as detecting if a graph is bipartite.

1.2 Organization of the thesis

After the Introduction and an overview of the results (Chapter 1), we divide the

thesis into three parts.

In Part I we start by presenting some essential background material. We first

introduce the problem of graph clustering, also known as community detection,

giving an overview of the most popular methods used to cope with it (Chapter 2)

and with a particular focus on Label Propagation Algorithms (Chapter 3). Then

we introduce the framework of computational dynamics (Chapter 4), in which we

contextualize our analytical results, presenting previous works that are fundamental

for this thesis.

In Part II we present the results obtained by analyzing the 2-Choices dynamics

on two different classes of graphs: Core-Periphery networks (Chapter 5), in which

we show a phase-transition on the behavior of the dynamics, and Clustered net-

works (Chapter 6), in which we show that the dynamics reaches and maintains a

metastable phase that highlights the clustered structure of the network.

In Part III we present the results relative to the analysis of the Averaging dy-

namics on a class of graphs that we call volume-regular, showing that the dynamics

can be used to reconstruct the hidden k-partition of the underlying graph during a

long time interval (Chapter 7).

In Chapter 8 we conclude the thesis and present open problems and possible

future research directions.

In the Appendix we start by introducing the asymptotic notation used for the

analysis of algorithms (Appendix A); then we present definitions, basic results, and

more advanced tools in the areas of Graph Theory (Appendix B), Linear Alge-

bra (Appendix C), Spectral Graph Theory (Appendix D), Probability Theory and

Stochastic Processes (Appendix E).

Page 11

I
Background

2
Graph Clustering

2.1 Networks and communities

Network theory is a relatively novel discipline that spans the natural, social, and

computer sciences as well as engineering [FH16]. In fact several complex systems

of different nature, e.g. biological or cyber-physical ones, can be represented as net-

works, which describe the interaction among the agents populating the systems,

and many research areas study and analyze phenomena happening on them. Many

complex systems usually seen as networks are part of our everyday lives: the In-

ternet, where web pages are interconnected by hyperlinks; social networks, such

as Facebook or Twitter, where people are connected by relationships; chemical re-

action networks, where bio-chemical molecules are connected if they are part of a

reaction; collaboration, communication, and transport networks are just some other

examples.

Nowadays, in the era of Big Data, the amount of network data and the number

and size of network datasets increases at an incredibly fast pace, as well as the

interest in more efficient and suitable computational techniques that can help to

understand the properties of networks.

Networks, given their essence, are well suited to be represented as graphs: The

agents in the systems form the set of nodes of the graphs, while the interaction

among them the set of edges connecting the nodes. In this thesis we consider

undirected (possibly weighted) graphs, since they are simpler to reason about and

still powerful enough to model many real-world scenarios.

Obviously, the structural properties of networks as well as the dynamics of the

interactions among the agents, can be studied under a graph-theoretical point of

view, exploiting analytical frameworks and results already known in computer sci-

ence and other areas.

Most networks of interest exhibit a community structure, i.e., the nodes in the

graph can be grouped together according to some criteria, as can be seen in Fig-

ure 2.1.1 In general, communities could represent groups of people sharing some

interests or involved in similar activities in social networks, such as members of the

1Source: https://griffsgraphs.wordpress.com/2012/07/02/a-facebook-network/

Page 15

https://griffsgraphs.wordpress.com/2012/07/02/a-facebook-network/

Chapter 2. Graph Clustering

Figure 2.1: The network of friendships of a single Facebook user. Each color repre-

sent a community: high-school friends (red), girlfriend’s friends (yellow), university

colleagues (blue), other smaller communities (remaining colors).

same fan club or classmates in high-school, or web-pages coming from the same

domain in the Internet. The task of identifying such communities in networks is

referred to as community detection, or equivalently network or graph clustering.

Grouping nodes into communities may offer insights on the network organization,

allowing us to focus on specific areas of the network. Moreover it helps to classify

the nodes based on their role with respect to the communities they belong to, e.g.

nodes at the boundary of the cluster could play an important role in processes such

as information spreading dynamics and it is of interest to be able to identify them.

In many real-world scenarios communities can overlap among them, sharing

some nodes. For instance, in social networks a user can be part of different groups

at the same time (family, friends, work, etc.), while in bio-informatics genes can be

co-regulated or co-expressed and thus part of different clusters at the same time.

In this case we talk about soft clustering, opposed to the hard clustering (or just

clustering), in which we look for non overlapping communities, and which is applied

in many disciplines such as medicine, biology, and economics [BDSY99].

Page 16

Chapter 2. Graph Clustering

2.2 Community quality metrics

Although the problem of graph clustering is fundamental in network analysis and

it has been thoroughly studied for several years from scientists with different back-

grounds, the problem itself is not well defined since communities are just informally

defined as “groups of nodes highly interconnected within each group and loosely

connected between them.” In fact, there exist no formal definition of community

and no unique metric to measure their quality. On the one hand, it is not clear how

to assess the performance of graph clustering algorithms and how to compare them

in terms of effectiveness; on the other hand, different metrics are able to approach

the problem from different perspectives that can vary depending on the specific

research question.

2.2.1 Internal criteria

Modularity

An important metric that captures the community structure of a graph is the mod-

ularity, which is defined as follows. Consider an Erdös-Rényi random graph [ER60];

the probability that two nodes are connected is the same for every pair of nodes and

consequently the graph has no well-defined community structure. This concept is

known as the null model in the community detection area, and has been introduced

to define the modularity [New04]. The idea is to compare the partitions of a graph

with the null model to assess the degree of its community structure. In particu-

lar, the modularity measure is computed as the total fraction of edges within the

communities minus the expected fraction if they were distributed at random, e.g.,

as in an Erdös-Rényi graph. Formally, given an undirected graph G = (V,E), with

|V | = n and |E| = m, and a partition of the nodes C = {C1, . . . , Ck}, such that⋃k
i=1Ci = V and Ci ∩ Cj = ∅ for every pair Ci, Cj , the modularity of the partition

C is defined as

Q =
∑

Ci∈C

[
|E(Ci)|
m

−
(∑

v∈Ci deg(v)

2m

)2
]
, (2.1)

where E(Ci) is the set of edges having both endpoints in Ci, and deg(v) is the degree

of a node v, i.e., deg(v) = |{u : (u, v) ∈ E}|. A more general and more compact

matrix definition, where the null model is not specified, is the following

Q =
1

2m

∑

(i,j)∈V×V
(Aij − Pij) δ(Ci, Cj), (2.2)

where A is the adjacency matrix of G, P is the expected adjacency matrix of the

null model, and δ(Ci, Cj) is the Kronecker delta2 of the communities to which

nodes i and j belong to.

2The Kronecker delta function δ(x, y) is defined as δ(x, y) = 1 if x = y and δ(x, y) = 0 otherwise.

Page 17

Chapter 2. Graph Clustering

The above definition of modularity (Eq. (2.1)), even if widely used as objective

function by many graph clustering algorithms, has some limitations. In particular,

modularity optimization may fail to identify small clusters whenever the number

of edges of the network is big enough with respect to the number of edges of the

interconnected communities, even in cases where the clusters are extremely well

defined [FB07]. This phenomenon is called resolution limit of the modularity and

it is a consequence of the modularity definition, which uses a global null model,

i.e., which takes into account the structure of the whole graph. Some variants of

the modularity consider different null models [BBV08], i.e., different random graph

models other than the Erdös-Rényi one, or a local null model that consider the

structure of each single cluster.

Conductance and k-way expansion

Another metric which is widely used for community detection and is worth men-

tioning is the edge expansion or conductance [Bol98]. Given a graph G = (V,E)

and a set of its vertices S ⊆ V , the conductance of the set S is defined as

φ(S) =
|E(S, V \ S)|

vol(S)
, (2.3)

where vol(S) =
∑

v∈S deg(v). It measures the average fraction of neighbors going

outside of S for a random node v ∈ S, and it compares the actual number of edges

crossing the cut (S, V \ S) with the trivial upper bound vol(S). If the conductance

of a graph is low then there exist a sparse cut and the two subsets of nodes divided

by such cut can be considered as communities. The conductance of the whole graph,

instead, is defined as

φ(G) = min
S
φ(S). (2.4)

The notion of edge expansion can be generalized to the case of multiple partitions

through the notion of k-way expansion [LGT14], which is defined as

ρ(G) = min
S1,...,Sk

max{φ(Si) : i = 1, . . . , k}. (2.5)

2.2.2 External criteria

Internal criteria are used to assess graph clustering quality as discussed before, but

are not the only existing metrics. More specifically, there exist metrics used to

compare results obtained by different graph clustering algorithms or with a ground

truth, i.e., a correct classification of the nodes into clusters.

Normalized mutual information

One of the most used external criteria is the Normalized Mutual Information (NMI).

Given two partitions CX = {C1, . . . , Cm} and CY = {C1, . . . , Cn}, e.g., the ground

Page 18

Chapter 2. Graph Clustering

truth and the partition found by the algorithm, we define two random variables

X,Y that represent the random assignment of a node to a community, respectively

in CX and CY . Formally, X ∈ {1, . . . ,m} and Pr(X = x) = |Cx|∑m
i=1 |Ci|

and similarly

for Y . Hence, the metric is defined as

NMI(X,Y) = 2

[
1− H(X,Y)

H(X) +H(Y)

]
, (2.6)

where H(X) is the entropy of X and H(X,Y) the joint entropy of X and Y , namely

H(X) = −
∑

x

Pr(X = x) log Pr(X = x), (2.7)

H(X,Y) = −
∑

x

∑

y

Pr(X = x, Y = y) log Pr(X = x, Y = y). (2.8)

Rand index

The Rand Index (RI) is another metric, for two communities but generalizable

to many, which is equal to the fraction of node pairs correctly classified in both

partitions over the total number of pairs. Given a graph G = (V,E) and two

partitions of the vertex set X = {X1, . . . , Xr}, Y = {Y1, . . . , Ys}, let us define:

• a as the number of pairs of nodes that are in the same subset in X and in the

same subset in Y ;

• b as the number of pairs of nodes that are in the different subset in X and in

the different subset in Y ;

• c as the number of pairs of nodes that are in the same subset in X and in the

different subset in Y ;

• d as the number of pairs of nodes that are in the different subset in X and in

the same subset in Y .

Hence, the metric is defined as

RI(X,Y) =
a+ b

a+ b+ c+ d
, (2.9)

i.e., the number of agreements in the assignments of the nodes in the two partitions

over the total number of pairs.

2.3 Networks with community structure

2.3.1 Synthetic network models

The Stochastic Block Model (SBM) [HLL83] is a generative model for random graphs

which tends to produce graphs presenting community structure. In particular, SBM

takes as parameters the number of nodes n of the graph to generate, a partition of

Page 19

Chapter 2. Graph Clustering

the nodes into k communities C1, . . . , Ck, and a symmetric k×k matrix P ; the edges

are samples according to P , i.e. the nodes u ∈ Ci and v ∈ Cj are connected with

probability Pij . Some special cases of SBM are the Erdös-Rényi model, in which

Pij = p for each i, j, or the planted partition model, in which Pii = p for each i and

Pij = q for each pair i, j such that i 6= j. The planted partition model is important

in the area of community detection since the graph sampled from it present a strong

community structure whenever p � q. Given a graph sampled from the planted

partition model, a common task for community detection algorithms is to exactly

or partially reconstruct the latent partition without knowing the model parameters

the input graph comes from.

There exist other models for the creation of graph with community structure.

For example, the caveman model starts with k cliques of size l and rewires one

single edge per clique to another node in an adjacent clique, or its relaxed version,

the relaxed caveman model, in which each edge is rewired with probability p toward

another clique.

A modified version of the planted partition model that keeps into account for

the heterogeneity of degrees and community sizes is called Gaussian random parti-

tion [BGW03]. The cluster sizes have a Gaussian distribution, so they do not have

the same, although they do not differ much from each other. Such heterogeneity

in the cluster sizes also introduces a diversity in the degree distribution since the

expected degree of a node depends on the size of the cluster it belongs to. The

variability of degree and cluster size, though, is not substantial.

Lancichinetti et al. tried to improve on this direction by introducing a class

of benchmark graphs known as LFR (from the names of the authors), where the

distributions of degree and community size are power laws, thus similarly to many

real-world networks [LFR08].

2.3.2 Real-world networks

Synthetic networks are good as benchmarks for community detection algorithms,

but do not always have the same properties and cluster structure of real-world

networks. In fact, many real world networks are used to test graph clustering

algorithms and compare their effectiveness in identifying the communities. The most

used networks are usually taken from existing social networks, such as Facebook

or Twitter; collaboration network, using author information of scientific articles;

biological networks, where gene co-occurrences in DNA sequences are considered;

and many others.

There exist many repository of network datasets used in scientific research, pre-

senting real-world networks with different properties. Some of the most popular

datasets used as benchmarks can be found on the following repositories:

• http://networkrepository.com

Page 20

http://networkrepository.com

Chapter 2. Graph Clustering

• https://snap.stanford.edu/data

• http://konect.uni-koblenz.de

• http://www-personal.umich.edu/~mejn/netdata

• http://vlado.fmf.uni-lj.si/pub/networks/data

• http://socialcomputing.asu.edu/pages/datasets

• https://sites.google.com/site/ucinetsoftware/datasets

2.4 Algorithms for graph clustering

The problem of graph clustering is approached in many different ways. Some al-

gorithms require some knowledge about the number of clusters to identify, while

others do not. This is because graph clustering is similar to the graph partitioning

problem, a classical problem in computer science known to be in NP -hard. They

both have the same goal, i.e., partition the graph into clusters satisfying specific

properties, but graph partitioning knows the number k of partitions beforehand.

Algorithms for graph partitioning, though, are not good for community detection,

since require information that is, in principle, unknown and that is expected as

output of the algorithm itself.

Many approaches partition the graph into two clusters, and then repeat recur-

sively the procedure into each cluster. From a methodological perspective this is

not reliable, since it could be imprecise in case the number of clusters is odd.

2.4.1 Traditional methods

An intuitive way to partition a graph into two community is to find the minimum cut

of the graph, i.e., the partition that minimizes the number of edges across the cut.

The minimum cut can be found in polynomial time with a maximum flow algorithm,

such as Ford-Fulkerson or Edmonds-Karp, based on the following theorem.

Theorem 2.4.1 (Max-flow min-cut theorem). Given a graph G = (V,E) and such

that s, t ∈ V are the source and target nodes, the maximum value of an s − t flow

is equal to the minimum capacity over all s− t cuts.

This is not enough to solve graph partitioning though, since cutting out single

nodes does not help much in identifying clusters and does not reveal any higher-

level structural properties [Sch07]. An example of graph clustering algorithm using

minimum cuts is the one proposed by Flake et al. in [FTT04]. The algorithm inserts

an artificial sink node in the graph and it computes the maximum flow towards the

artificial sink node; a Gomory-Hu minimum-cut tree [GH61] is then used to assign

each vertex to its cluster. A Gomory-Hu tree of a weighted graph, of which we can

Page 21

https://snap.stanford.edu/data
http://konect.uni-koblenz.de
http://www-personal.umich.edu/~mejn/netdata
http://vlado.fmf.uni-lj.si/pub/networks/data
http://socialcomputing.asu.edu/pages/datasets
https://sites.google.com/site/ucinetsoftware/datasets

Chapter 2. Graph Clustering

see an example in Figure 2.2,3 is a weighted tree that represents the minimum s− t
cuts for all the s− t pairs in the graph and can be constructed in |V | − 1 maximum

flow computations.

Figure 2.2: A graph G with its corresponding Gomory-Hu tree.

The Kernighan-Lin heuristic [KL70] is one of the earliest methods proposed

to solve the problem and is still frequently used, especially combined with other

techniques [For10]. It is a local-search algorithm, i.e., iteratively apply only a small

change to the current candidate solution, moving towards a better one. Starting

from a random bisection of the graph, the algorithm iteratively improve the quality

of the partition by swapping every pair of nodes that decreases the size of the cut.

The original algorithm separates the graph into two clusters of predefined size, but it

has been extended to divide it into an arbitrarily number of clusters with an increase

in the run-time and storage costs that grows with the number of clusters [SK88].

The basic version works as follows: let G = (V,E) a graph and (S, T), with

T = (V \ S), a partition of G such that |S| = n1 and |T | = n2; the algorithm tries

to minimize |(S, T)| and has three phases which are repeated for r rounds.

Each round of the algorithm goes as follows:

1. Pick a random partition (S, T) of G, such that |S| = n1 and |T | = n2; all the

pairs of nodes are not marked for now.

2. For every unmarked pair (u, v) ∈ S × T such that swapping them decreases

the size of the cut (S, T), swap them and then mark the pair, namely

S := S ∪ {u} \ {v}, (2.10)

T := T ∪ {v} \ {u}. (2.11)

3. Return (S, T) as solution.

Note that at the end no pair (u, v) improves the solution swapping the nodes.

The algorithm then returns r candidate solutions, among which the best one, i.e.

3Source: https://courses.engr.illinois.edu/cs598csc/sp2010/Lectures/Lecture6.pdf

Page 22

https://courses.engr.illinois.edu/cs598csc/sp2010/Lectures/Lecture6.pdf

Chapter 2. Graph Clustering

the one with the minimum size partition, is chosen. It runs in O(rmn2), but has

been proved to scale to O(n2 log n) performing only a constant number of swaps at

each iteration. Though, increasing the number of clusters found by the solution,

space and time costs rapidly increase too [For10].

2.4.2 Partitional methods

Partitional clustering is a collection of methods that separate a set of points belong-

ing to a metric space into an a priori fixed number of partitions k. Such techniques

are best known as a solution to the data clustering problem, but can be adapted to

work on graphs under certain constraints [SLBK03, HW04, RMJ07].

The most famous technique is k-means clustering, which objective is to subdivide

the point into k clusters minimizing the sum of squared errors (SSE), i.e., the sum

of the distances of each point to its closest centroid, defined as

SSE =

k∑

j=1

∑

x∈Cj
‖x− µj‖22, (2.12)

where x is a data point belonging to cluster Cj and µj is the centroid of the cluster,

i.e., the center of mass of the points in Cj . The problem has several variants, such

as k-medoids or k-medians which are slightly different. In the former the centroids

are datapoints, while in the latter the cost function is the `1 norm, i.e., the centroid

becomes the median point.

The most used technique to solve the k-means problem is Lloyd’s algorithm [Llo82].

The algorithm starts by choosing k random centroids among the data points. In

the Expectation phase it assign each data point to its closest centroid. In the

Maximization phase it recompute centroids. The algorithm alternates expectation-

maximization phases until the centroids remain the same for two consecutive rounds.

Lloyd’s algorithm is just an heuristic, i.e., even if it is proved to converge it only

guarantees a local optimum.

It works as follows:

1. Initialization: choose k random centroids among the data points.

2. Centroid assignment: assign each data point to the closest centroid.4

3. Centroid recomputation: recompute each centroid as a function of the data

points assigned to it, e.g., the center of mass or median point.

4. Convergence check: if the centroids remains the same for two consecutive

rounds then the algorithm converged; if the algorithm has not converged, go

back to Step 2.

4The definition of closest depends on the distance function we are using in the metric space. A

distance function in Rn could be, for example, the Euclidean distance d(x, y) =
√∑n

i=1(xi − yi)2.

Page 23

Chapter 2. Graph Clustering

The algorithms is proved to converge, although it does not always bring to the

global optimal solution but only to a local one. What is usually done, in fact, is

to run the algorithm multiple times with different initializations and pick the best

solution, i.e. the ones with minimum cost function.

As in graph partitioning the number of clusters k that the algorithms has to

produce has to be declared before running the algorithm. To find the “right” k

there are several approaches, but the most used are the rule of thumb, setting

k =
√

n
2 , or the elbow method (Figure 2.4), which computes the Sum of Squared

Errors (SSE) for various values of k and picks the value for which the SSE starts to

decrease more smoothly; the SSE is defined as

SSE :=

k∑

j=1

∑

x∈Cj
d(x, µj)

2,

with d(x, y) being the Euclidean distance between x and y. Both method are heuris-

tics and do not guarantee optimality.

Figure 2.3: Example of k-means algorithm clustering 2-dimensional data points.

2.4.3 Hierarchical methods

Hierarchical clustering is a method used for clustering both data points and net-

works. The main advantage with respect to traditional methods is that the number

of clusters it is not needed a priori. It produces a dendrogram, as that of Figure 2.5,

which is a tree diagram that shows the multilevel clustered structure of the graph.

There are two approaches: divisive and agglomerative algorithms.

Divisive algorithms. Divisive algorithms are top-down: They start considering

the whole graph as a single cluster and iteratively split it into two or more partitions

Page 24

Chapter 2. Graph Clustering

3 6 9 12 15

10
0

20
0

30
0

40
0

Figure 2.4: An example plot of the elbow method for choosing the right value of

k in clustering applications. On the x axis the number k of cluster; on the y axis

the SSE. The name comes from the usual shape of the plot, as we can see, that is

similar to an elbow.

until each node is isolated at the end of the process. Girvan and Newman is the

most important example of divisive algorithm for graph clustering [NG04]. It works

by iteratively removing the most central edge from the graph, according to its

betweenness centrality (see Appendix B.4), and update the dendrogram if the graph

becomes disconnected after the removal. The algorithm finally selects from the

dendrogram the partition with highest modularity.

In detail:

1. Initialize all nodes to the same color, meaning that initially they are all in the

same cluster.

2. Compute the modularity of the network. If the value is higher than the best

one computed so far, save the value and the partition.

3. Find the edge or, if more than one, the edges with highest betweenness cen-

trality and remove it/them from the graph.

4. If the graph splits, resulting in more than one connected components, then

update the partitions labeling the nodes of each component with a different

color.

5. If there are still edges in the graph go back to Step 2.

6. Return the partition with highest modularity, saved after Step 2.

Page 25

Chapter 2. Graph Clustering

Figure 2.5: A dendrogram showing hierarchical clusters. The three colors indicate

a possible partition into three clusters. The height of the dendrogram corresponds

to the clusters obtained in different iterations of the algorithm.

The algorithm turns out to be slow, since at each iteration it has to recompute

the edge betweenness, which cost O(n(n+m)).

Agglomerative algorithms. Agglomerative algorithms, contrarily, are bottom-

up: Each node initially forms its own cluster and then the clusters are iteratively

merged together until all the nodes are in the same cluster. Newman also proposed

an agglomerative algorithm [New04], which has a better time complexity, since it

does not compute the edge betweenness at each iteration, but that produces worse

results. It is a greedy modularity maximization algorithms: At each iteration the

algorithm merges the clusters that produce a higher increase (or lower decrease) of

the modularity of the network until all the nodes belong to the same cluster. As

for the divisive approach, the algorithm selects from the dendrogram the partition

with highest modularity.

It works as follows:

1. Initialize each node with a different color, meaning that each node is initially

in a different cluster.

2. Compute the modularity of the network. If the value is higher than the best

one computed so far, save the value and the partition.

3. Aggregate the pairs of communities resulting in a higher increase or smaller

decrease of the modularity of the network.

4. If there is more than one community go back to Step 2.

Page 26

Chapter 2. Graph Clustering

5. Return the partition with highest modularity, saved after Step 2.

A popular faster alternative, also based on a greedy approach that maximizes

the modularity, is the heuristic proposed by Clauset et al. in [CNM04].

An extremely fast agglomerative approach is the Louvain method [BGLL08]. It

is again a greedy modularity maximization algorithm and works in two phases that

are repeated iteratively: In the first phase, each node chooses the community of its

neighbor that brings the greatest increase in modularity; in the second phase, com-

munities are replaced by supernodes and two supernodes are connected if there is at

least an edge between nodes of the corresponding communities. The computational

complexity of the algorithm is O(n log n).

2.4.4 Spectral methods

Spectral clustering algorithms use properties of the spectrum of the matrix represen-

tation of graphs to perform clustering. The first contribution to spectral clustering

algorithms, was probably the one of Fiedler [Fie73], where he realized that it is

possible to get a bipartition of the graph with very low cut size using the eigen-

vector of the second smallest eigenvalue of the Laplacian matrix associated to the

graph (see Appendix B.2). In fact, given a graph G with k connected components,

the Laplacian of G is such that the eigenvalues λ1, . . . , λk = 0 and the eigenvectors

associated to them identify the k connected components. If we consider a graph

with k communities, i.e., we add a few links among the k disconnected components

described before, the Laplacian spectrum will not be much different having λ1 = 0

and the other k−1 eigenvalues close to λ1. The consequence of this property is that

the k eigenvectors associated with the k smallest eigenvalues are still representative

of the k communities and can be used to partition the graph.

The motivations of such intuition rely on the modes of vibrations or harmonics

of a string, which is the frequencies assumed by a tight string, as one of a guitar,

when plucked. As we can see in Figure 2.6,5 in the case of λ2 the harmonics

perfectly cuts in two equally sized parts. We can write down the physical equations

related to such phenomenon and model it as a graph in which nodes are masses and

edges are springs: solving the frequencies and shapes of harmonics we exactly get

the eigenpairs of the Laplacian of the graph we used, and furthermore the second

eigenvector cuts the graph in half.

Spectral partitioning

A simple algorithm to bisect a graph using the Fiedler vector [Fie73], i.e., the

eigenvector associated to the second smallest eigenvalue of the Laplacian, works as

follows: First compute the Fiedler vector f , then sort it, and finally consider the

partition formed by the n
2 nodes that have the biggest values in f . More in detail:

5Source: https://people.eecs.berkeley.edu/~demmel/cs267/lecture20/lecture20.html

Page 27

https://people.eecs.berkeley.edu/~demmel/cs267/lecture20/lecture20.html

Chapter 2. Graph Clustering

+
Lowest Frequency

+

+ +

-

-

Second Frequency λ2

Third Frequency

λ1

λ3

Figure 2.6: The frequencies of a vibrating string, intuition at the base of spectral

partitioning. The symbols + and − indicates whether the string is above or below

its rest position.

1. Compute the second eigenvalue λ2 and its eigenvector v2 of L.

2. Sort the components of v2.

3. Create two candidate partitions as follows:

(a) Put the n1 nodes with largest values in S and the remaining n2 in T as

a first candidate partition.

(b) Put the n1 nodes with smallest values in S and the remaining n2 in T as

a second candidate partition.

4. Return the partition with lower cut size e(S, T).

A simple variation where the sizes n1 and n2 are not defined works at follows:

1. Compute the second eigenvalue λ2 and its eigenvector v2 of L.

2. Sort the components of v2 from the largest to the smallest.

3. Return the minimum conductance cut among the n − 1 cuts given by the

ordering done in Step 2.

Such simple technique can be generalized to the case of unbalanced communities,

e.g. of size n1 and n2, and applied recursively in each cluster to find more than two

communities.

Page 28

Chapter 2. Graph Clustering

Analysis. Here we provide an overview of the analysis, skipping some calculations.

Let G = (V,E) be a graph such that V = S ∪ T , A its adjacency matrix, and L its

Laplacian matrix. We want to find a partition (S, T) such that |S| = n1, |T | = n2,

and such that the cut of the partition, e(S, T), is minimum. We can write the cut

size as

e(S, T) =
1

2

∑

i,j
S(i)6=S(j)

Aij . (2.13)

Now we want to rewrite it in another notation which uses the graph Laplacian

to exploit its spectral properties. Let’s first define a mapping S : V → {S, T} and

the vector s = (s1, . . . , sn), such that

si =

{
1 if S(i) = S,

−1 if S(i) = T.
(2.14)

We can note that, using the components of s

1

2
(1− sisj) =

{
1 if S(i) 6= S(j),

0 if S(i) = S(j).
(2.15)

Moreover the adjacency matrix can be written in terms of the components of s too:

∑

i,j∈V
Aij =

∑

i∈V
di (2.16)

=
∑

i∈V
dis

2
i (2.17)

=
∑

i,j∈V
diδijsisj , (2.18)

where di is the degree of the node i and δij is the delta of Kronecker, i.e., δij = 1 if

i = j and δij = 0 otherwise.

Thus, combining the previous equations, we can rewrite the cut as

e(S, T) =
1

4

∑

i,j∈V
Ai,j(1− sisj) (2.19)

=
1

4

∑

i,j∈V
(diδij−Aij)sisj (2.20)

=
1

4

∑

i,j∈V
Lijsisj , (2.21)

since the (i, j)-th element of the Laplacian matrix is defined exactly as Lij = dvδij−
Aij. Such formulation can be written in matrix form too, getting

e(S, T) =
1

4
sᵀLs. (2.22)

Thus, we need to minimize sᵀLs subject to
∑n

i=1 si = n1 − n2 and such that

si ∈ {−1, 1} for i = 1, . . . , n. Such problem is hard and we will relax it letting

Page 29

Chapter 2. Graph Clustering

s ∈ Rn, but with the additional constraint that
∑n

i=1 s
2
i = n. Mathematically, we

can reformulate our original problem in its relaxed version as follows

minimize sᵀLs

s.t. 1ᵀs = n1 − n2

‖s‖22 = n.

(2.23)

Using the method of Lagrangian multipliers we can solve the relaxed version of

our optimization problem (we will not present the calculations), and get that the

objective function (2.22) satisfies

e(S, T) =
1

4
sᵀLs (2.24)

=
1

4
vᵀLv (2.25)

=
1

4
λvᵀv (2.26)

=
n1n2

n
λ, (2.27)

where λ,v is any eigenpair of L, and because vᵀv = 4λn1n2
n (from the skipped

calculations). In addition we also get that v has to be orthogonal to 1, meaning

that λ 6= 0 since (0,1) is always an eigenpair of any Laplacian matrix. Which is

then the best eigenpair to use? We want to choose the smallest λ, since n1, n2, and

n are fixed: we know that 0 = λ1 6 λ2 6 . . . 6 λn and, since we already excluded

λ1, the best choice is (λ2,v2). It follows (from the skipped calculations) that the

components of s will be of the form

si = vi +
n1 − n2

n
. (2.28)

The original version of the problem, then, is solved by making sᵀs as big as

possible such that each component si ∈ {−1, 1}, which means that si = 1 for the

n1 largest components of v and si = −1 for the remaining ones. Obviously the

symmetric solution is also valid and that is why we compute both and pick the one

with smallest cut size, as in the algorithm.

Spectral modularity maximization

One of the ways to look for a partition is that of maximizing the modularity of the

graph. Here we will see how such kind of maximization can be done with a spectral

approach too, assuming we are just looking for two partitions.

We can note that δ(ci, cj) =
(sisj+1)

2 , with

si =

{
−1 if i ∈ c1,

1 if i ∈ c2,
(2.29)

where c1 and c2 being the two communities of the graph. Therefore we can rewrite

the modularity as

Q =
1

2m

∑

i,j∈V

(
Aij −

didj
2m

)
(2.30)

Page 30

Chapter 2. Graph Clustering

=
1

4m

∑

i,j∈V
Bij(sisj + 1) (2.31)

=
1

4m

∑

i,j∈V
Bijsisj (2.32)

=
1

4m
sᵀBs, (2.33)

with B = A− ddᵀ

2m being the modularity matrix, and d the degree vector.

As for the Fiedler vector, we want to maximize a function subject to the fact

that the vector s ∈ {−1, 1}, and again we relax the problem (adding the extra

constraint sᵀs = n) and use the method of Lagrange multipliers to find the optimal

solution. We find out that it holds that Bs = βs, being β, s an eigenpair of B and

that the modularity is equal to

Q =
1

4m
βsᵀs =

n

4m
β (2.34)

In this case, then, we want β to be as large as possible and we pick the largest

eigenvalue of the matrix B. In general we cannot choose s = vβ because of the

extra constraint, but we can choose si = 1 if vi > 0 and si = −1 if vi 6 0.

So the algorithm follows:

1. Compute the biggest eigenvalue β and its eigenvector vβ of the modularity

matrix of the graph.

2. Assign vertices to communities according to the sign of the corresponding

component of vβ.

Differently from the Laplacian, B is not a sparse matrix and then computing

the eigenvalues could be computationally expensive. Luckily, though, B is similar

to the sparse matrix A, as defined above, and it is still possible to compute Bx in

O(n+m).

Other spectral methods

Another noticeable clustering algorithm exploiting the spectral properties of the

graph is the one proposed by Shi and Malik [SM98, SM00], which makes use of the

Normalized Laplacian matrix (see Appendix B.2). They proposed a global criterion

for partitioning the graph, the normalized cut, which is related to the conductance.

Such metric takes into account both the total dissimilarity between the different

clusters and the total similarity within the clusters. A very nice and complete

tutorial on spectral clustering, with insights from different perspectives on why it

works and on what is happening, is the one of Von Luxburg [VL07].

All the spectral clustering techniques require to compute the eigenvectors as-

sociated with the k smallest eigenvalues of the Laplacian matrix of the input

Page 31

Chapter 2. Graph Clustering

Figure 2.7: A graph with two communities (white nodes and grey nodes). A

random walker starting in the white (grey) cluster will stay there for a long time

until going to the bold node and then moving to the grey (white) cluster with

probability 1
6 .

graph. If the graph is large the exact computation of the eigenvectors unfeasi-

ble, since it requires a time in O(n3). Although, some techniques such as the power

method [MPG29] can be used to approximate the first k eigenvector, with a running

time that depends on the gap between λk and λk+1, i.e., the larger |λk+1 − λk| the

faster is the convergence.

2.4.5 Dynamical methods

Another approach to graph clustering is the one of running dynamical processes

on networks in which each node has a state that evolves as time passes according

to some interaction with its neighbors [BBV08]. Dynamical approaches are closely

related to spectral ones. In fact the adjacency matrix is strictly related to the

transition matrix (see Appendix B.2) of a Random Walk on the graph (see Ap-

pendix E.2). In particular the components of the second largest eigenvalue of the

transition matrix P measures how long it takes for the random walk to reach every

node [Sch07]. Intuitively, in fact, two nodes in the same cluster should be easy to

reach from each other, while if the random walk is currently in a cluster it should

take more time to move to the other one, as in Figure 2.7.6

The concept that a random walker gets “stuck” in a community has been also

used in Infomap [RAB09], an extremely effective information-theoretic methods to

cluster graphs that could yield, for some network structures, dramatically dissim-

ilar results from those obtained by modularity maximization algorithms given its

different nature. The map equation [RAB09], based on the information flow, is

the objective function of Infomap and is used to find a compressed representation

of a set of random walks on the graph. Such compact representation can be ex-

pressed through clusters rather than single nodes. In practice, the more compact

the representation the better the community detection result.

6Source: [Sch07]

Page 32

Chapter 2. Graph Clustering

Van Dongen discussed the use of Markov Chains for graph clustering in his PhD

thesis [VD01]. He showed how applying a sequence of algebraic matrix operations

on the transition matrix of a graph can isolate the clusters, removing inter-clusters

edges. Meila and Shi, instead, showed the connection between the normalized cut

and the stationary distribution of a random walk in the graph and thus linked the

mathematics of random walks with the one of cut-based clustering [MS01a, MS01b].

Wu and Huberman [WH04] proposed a linear time algorithm to bisect a graph

that uses notions of voltage drops across networks. Suppose that one can find two

nodes u and v belonging to two different communities; initialize them with values 1

and 0 respectively, and then initialize all the other nodes value 0. At each iteration

of the algorithm, all nodes except u and v update their values as the average of

their neighbors values until convergence. Then values are sorted between 0 and 1:

sweeping through the sorted values there will be a sudden drop at the border of two

communities, which is used to identify them.

Label Propagation Algorithms

Another important class of dynamical clustering algorithms is the one of Label

Propagation Algorithms (LPAs), introduced by Raghavan et al. [RAK07]. LPAs

remind of epidemic processes on networks: Nodes interact with their neighbors and

change their states based on some function of the neighbors states. Being most

central for this thesis, they will be discussed in detail in Chapter 3.

Page 33

3
Label Propagation Algorithms

3.1 General overview

Label Propagation Algorithms (LPAs) are dynamical clustering algorithms that re-

semble epidemic spread processes on networks. Each node of the network is initially

assigned a label, which is updated to the most frequent in each node’s neighborhood;

one most prominent label will take over each cluster and then stop its diffusion give

the sparsity of the cuts between the clusters. LPAs have proved to be fast and

effective algorithms for community detection and, since their first proposal, have

been modified and improved over time to handle huge graphs and evolving ones. A

recent comprehensive survey on LPAs has been made by Garza & Schaeffer [GS19].

The generic pattern of such algorithms, that can be visualized in Figure 3.1, can

be described as follows:

1. Initialization: A label taken from a finite set is assigned to each node according

to some rule, e.g, they choose a unique value or sample a value uniformly at

random from a finite set.

2. Activation rule: Nodes are activated following some synchronous/asynchronous

rule, e.g., according to some permutation of their IDs or in rounds.

3. Update rule: Active nodes interact with their neighbors and update their

labels according to some local, majority-based function.

After the first algorithm, known in literature as LPA, has been proposed and

its effectiveness empirically assessed [RAK07], a new line of research started with

the goal of improving the quality of the detected communities and the efficiency of

the algorithm [LHLC09, LM10, BRSV11, ŠB11a, ŠB11b, XS13, ZRS+17], and to

investigate more general settings, e.g., dynamic networks [XCS13, CDIG+15]. Many

variants with small modifications on initialization rule, activation rule, and update

rule have been proposed, but they have only been validated experimentally. On

the other hand, there exist only few theoretical works. The absence of substantial

theoretical progress in the analysis of LPAs is largely due to the lack of techniques

for handling the interplay between the non-linearity of the local update rules and

the topology of the graph.

Page 35

Chapter 3. Label Propagation Algorithms

Figure 3.1: A visualization of Label Propagation Algorithm phases on a simple

graph with two communities.

3.2 A brief history of LPAs

Raghavan et al. designed an extremely simple but fast and effective method based

on label propagation for graph clustering, known as LPA [RAK07]. A unique label is

initially assigned to each node, and, at each iteration, a random permutation of the

nodes is considered. Each node, in the sequential order dictated by the permutation,

update its label with the label shared by the majority of its neighbors; if there is

no majority, the tie is broken with a random choice among the labels. This simple

process makes the labels propagate across the graph: Many of them will soon start to

disappear, while some will rapidly gain consensus. After some iterations the process

ends in a stable situations in which each node has a label equal to the majority of

the labels of its neighbors. The clusters are then defined as groups of nodes with

the same label after the convergence of the algorithm, having more neighbors in its

community than to others, according to the stopping criterion. The random tie-

break rule does not guarantee a unique solution though, but empirical experiment

show that the results are similar. The advantages of this technique are the fact that

it does not need any information on the number and size of clusters, and that it

has a low computational complexity: Each iteration runs in O(m) and the number

of iterations needed seems to grow logarithmically with respect to it [LHLC09].

Tibély and Kertész [TK08] showed that LPA is equivalent to find the local

minima of a simple zero-temperature kinetic Potts model, a generalization of the

Ising model used in statistical mechanics to describe the spin interaction of electrons

on a crystalline lattice.

Barber and Clark reformulated LPA as an equivalent optimization problem with

an objective functions whose maxima identify communities in the graph [BC09].

They identified a practical drawback of the objective function: The global optimum

is the trivial solution, i.e. the community containing all the nodes. Consequently

they modified it adding some penalizers to it, making LPA stop to local maxima

with higher modularity. Moreover they showed that a particular penalizer make the

LPA optimize the modularity. This version of the algorithm is known as LPAm.

Page 36

Chapter 3. Label Propagation Algorithms

Gregory presented COPRA [Gre10], a generalized LPA able to detect overlap-

ping communities through the use of belonging coefficients, parameters that indicate

the strength of a node’s membership to a community. COPRA is also able to work

on bipartite graphs as showed in the experiments presented in the same work.

Another improvement to LPA is made by Liu and Murata with their LPAm+,

an advanced modularity-specialized LPA [LM10]. The simple LPAm gets stuck in

poor local maxima identifying communities with similar volumes. Instead, LPAm+

make use of a Multistep Greedy algorithm (MSG) [SC08] that can merge multiple

communities at each time improving the modularity of the solution and offering a

good trade-off between accuracy and speed. LPAm+ works in two phases: First it

applies LPAm until it converges in a local maximum; then it uses MSG to merge

pairs of communities that bring an increase in the modularity. This two phases

are alternated until no further improvement in modularity can be reached. They

also proposed a version of LPA that is able to detect communities in bipartite

networks [LM09].

Cordasco and Gargano [CG10] improved the running time of the original LPA

with a Semi-Synchronous LPA. The goal is to take advantage both from the syn-

chronous model, where the propagation phase is performed in parallel by all the

nodes, and from the asynchronous one, where the propagation phase is performed

sequentially to guarantee convergence. The Semi-Synchronous LPA works in two

phases. The coloring phase assign a color to the nodes such that adjacent nodes

have different colors and is easy parallelizable. The propagation phase, inspired

by [LM09], is divided into as many stages as many colors: In each stage only one

color is active, and nodes with that color synchronously propagate their labels.

Their solution has been tested on benchmark graphs and proved to be more ef-

fective, efficient, and stable (different runs produce similar results, regardless of

the random initialization). Furthermore, they formally proved that their algorithm

guarantees finite convergence time on any static graph.

Layered Label Propagation, presented by Boldi et al. [BRSV11], is an algorithm

that builds on LPAm for clustering to reorder very large graphs favoring their

compression. The interesting part, though, is that LPAm is modified in order to

handle huge graphs: Modularity is not a good measure in big networks due to its

resolution limit. In particular, a discount term is added to the objective function

to increase the density of the sparsest community. This modification produces both

a high number of clusters and clusters with a high number of nodes, following a

power law distribution.

Xie and Szymanski proposed a generalization of LPA [XS11]. In particular, a

new update rule and label propagation criterion are presented in order to improve

both the efficiency and the effectiveness of LPA. This is obtained by reducing the

number of iterations of the algorithm, by avoiding unnecessary updates: The proce-

dure keeps a list of active nodes, i.e. the ones that are not at the boundary and will

Page 37

Chapter 3. Label Propagation Algorithms

update according to the label propagation phase, and skip the update phase for the

nodes not present in the list. The generalized update rule, instead, gives a weight

to the labels which is related to the local clustering coefficient of the node.1 This

idea follows the intuitions that when a node joins a group it may take into account

not only the number of members of that group but also if they are connected to his

neighbors.

Xie and Szymanski also proposed LabelRank [XS13], a modified version of LPA

that makes the algorithm deterministic and extendible to other applications, e.g.

community detection in dynamic graphs. LabelRank relies on four operators applied

to the labels: propagation, inflation, cutoff, conditional update. The propagation

is not only of a single label as in LPA, but each node maintains and propagates

an entire distribution of labels. The inflation is similar to an operator used in

MCL [VD01] but is applied on the labels, decoupling from the network structure;

it increases the gap among labels with high and low probabilities. The cutoff re-

move labels with a probability below a certain threshold, to mitigate the memory

overhead introduced by the algorithm. The conditional update, finally, is the real

novelty of LabelRank: it preserve the algorithm from moving away from the highest

quality communities via updating only when a node is significantly different from

its neighbors.

Ugander and Backstrom [UB13] developed a balanced LPA with the specific

goal of dealing with massive graphs while greedily maximizing the number of edges

that are assigned to the same shard of a partition. They formulate the problem

as a linear problem with constraints in the form of upper and lower bounds to the

partition sizes. An iteration of the algorithm is similar to the one of LPA. In fact,

compared to it, the only difference is that rather than updating the labels of all

the nodes, balanced LPA first solves the constrained linear optimization problem

and then updates as many nodes as possible without “breaking the balance”. The

algorithm works well with random initialization, but is able to converge within a

single update step if labels are initialized using external geographic data, e.g. IP

addresses in a computer network, domains in the Internet, geographical information

provided by the users in social networks.

Kothapalli et al. [KPS13] are the first to provide a formal analysis of a simple al-

gorithm based on LPA that solves community detection. In particular, they analyze

Max-LPA both in terms of convergence time and quality of solution on clustered

Erdös and Rényi graphs, i.e. graphs sampled from the planted partition model.

Max-LPA works exactly as LPA, but whenever there is a tie in the update rule this

is broken in favor of the largest label. They show that with general restrictions on

the cuts sparsity Max-LPA is able to detect the clusters in just two rounds, conjec-

turing, with empirical evidences, that this would be possible in a polylogarithmic

1The local clustering coefficient measures how close the neighbors of a node are to a clique. It

is given by the fraction of edges between the nodes within the neighborhood of a node over the

number of possible between them.

Page 38

Chapter 3. Label Propagation Algorithms

number of rounds even when the clusters are much sparser.

Clementi et al. [CDIG+15] investigated on the problem of distributed community

detection on evolving random graphs. They propose a simple LPA-based distributed

protocol and proved that in some classes of random graphs their protocol is able

to reconstruct the planted partition with high probability, even when the graph

becomes disconnected over time. Moreover, they are the first to formally prove a

logarithmic bound on the convergence time of a LPA-based protocol.

The majority in the previously discussed works improve the original LPA with

respect to running time, effectiveness, and stability of the solution making it a usable

algorithm for clustering huge real-world networks. Others introduce modifications of

LPA in order to solve slightly different problems, e.g. soft clustering or community

detection evolving graphs. Although, the trend in the line of research has been

almost exclusively empirical: Most of the works present a variation of LPA and

report experiments performed on benchmark graphs without providing analytical

results about the algorithm. Formal analysis of LPAs, in fact, have started only

more recently [KPS13, CDIG+15] opening many theoretical questions regarding the

capabilities of LPAs.

Page 39

4
Computational Dynamics

A very interesting and fascinating issue is the apparent difficulty to provide non-

trivial mathematical characterizations of the complexity from simplicity phenomenon,

i.e., the hidden interplay between simple local interactions occurring at microscopic

level and the global evolution of the system at macroscopic level. Distributed com-

puting naturally addresses such questions, focusing on the design and analysis of

systems of computational agents that collectively achieve some global task. Several

research efforts in distributed computing are moving towards formulating a general

theory that characterizes the behavior of (simple) computing entities, in a way simi-

lar to that of statistical mechanics for interacting particle systems. Examples of such

efforts are with respect to programmable matter [DDG+14, CDRR16] , chemical

reaction networks [CSWB09, Dot14, CKW18], sensor networks [AAD+06, AFJ06].

One possible, algorithmic abstraction of the interplay between microscopic and

macroscopic scales of complex phenomena is the notion of dynamics. Dynamics

are rules to update an agent’s state according to a function which is invariant with

respect to time, network topology, and identity of an agent’s neighbors, and whose

arguments are only the agent’s current state and those of its neighbors [MT17,

Nat17].

Most of the scientific results in the sub-area of distributed computing that stud-

ies dynamics focus on their computational power, i.e., their ability to globally solve

some specific problem such as consensus or synchronization, on their convergence

time, i.e., the number of rounds needed to the dynamics to reach (and eventually

maintain) a configuration that solves the problem, and their fault tolerance and

self-stabilization, i.e., their ability to go to a configuration with certain properties

of interest even in the presence of faulty communication links or malicious nodes

that deviate their behavior from that of the dynamics’ local rule.

Examples of other dynamics are: the Undecided-State [CGG+18], where

there is an extra “undecided” state, nodes pick a random neighbor and becomes

undecided if the pick has a different state or support that color if they were unde-

cided; the h-Majority (e.g., studied for h = 3 in [BCN+17a, BCN+16]), where

each node samples h neighbors and update its color to the most supported state

among those that have been sampled; the 2-Median [DGM+11], where each node

Page 41

Chapter 4. Computational Dynamics

samples two neighbors and update its state to the median state (assuming an order-

ing of the states) among the to sampled states and its state. Examples of problems

for which dynamics have been successfully employed in order to design an efficient

solution are Noisy Rumor Spreading [FN16], Exact Majority [MNRS17], and Clock

Synchronization [BKN17].

In the following we focus on the voter dynamics, arguably the most simple non-

trivial dynamics, and on the dynamics that are object of analysis in this thesis: the

2-Choices dynamics and the Averaging dynamics.

4.1 Communication models

Consider a network of agents exchanging messages over a connected graph G ac-

cording to some fixed communication model M. The communication model M
describes the rule that agents follow in the communication, e.g., the communication

is synchronous or asynchronous, the size of the exchanged messages is limited, etc.

In this thesis we consider the communication model known as synchronous uni-

form pull. We suppose agents have a common notion of time that is marked into

discrete rounds, making the communication synchronous. In each round, every

agent chooses a message (e.g., their state); every agent then pulls the messages of

a fixed-size subset of its neighbors. The subset of neighbors is chosen uniformly at

random and independently from the choices of the other agents, making the com-

munication uniform. Sometimes, the size of the exchanged messages can be limited

to some fixed number of bits (either constant or dependent on the size of the net-

work). The communication is noiseless, i.e., every transmitted message is received

with no error. Moreover, we always assume the network is anonymous, i.e., agents

have no distinct identities (e.g., they do not possess an ID they can share with their

neighbors to mark their messages).

4.2 Consensus

Consensus, also known as agreement, is a simplified model of the way inconsistencies

and disagreements are resolved in social networks, biological systems, and peer-

to-peer systems [MNT14]. The problem of consensus is unsurprisingly a primary

problem in the theory of distributed computing, with applications in many problems

and as a primitive building block for more complex procedures. In distributed

models that restrict the way in which nodes communicate, upper and lower bounds

for consensus protocols give insights on how to break symmetry in networks in

the case of balanced initial color configurations. Its original version [Dij74] can be

informally defined as follows: A set of nodes, each having a state (an element taken

from a fixed set Σ), interact via an underlying communication network with the

Page 42

Chapter 4. Computational Dynamics

goal of agreeing on one of the elements of Σ initially held by at least one of the

nodes.

For the consensus task in the presence of adversaries (Byzantine Agreement) [Rab83],

the goal is to design a protocol that brings with the following properties:

• Agreement: all non-corrupted nodes eventually have the same state σ.

• Validity: the state σ must be a valid one, i.e., a state which was initially

supported by at least one non-corrupted node.

• Termination: every non-corrupted node can correctly decide to stop running

the protocol in some round.

The problem of plurality consensus requires that the nodes eventually obtain a

consensus on the state that was initially supported by the plurality of the nodes,

i.e., to the initially most supported state.

The problem of proportionate consensus, instead, requires that the system even-

tually reaches a consensus configuration such that the final state σ ∈ Σ is supported

with a probability proportional to the volume of the set of nodes that initially sup-

ported state σ, for each σ ∈ Σ.

4.3 Dynamics

As previously introduced, dynamics are simple and lightweight and typically have

a behavior that rely on randomness. We report below a definition that tries to

formalize such concept that appeared in [Nat17].

Definition 4.3.1 (Dynamics). A dynamics is a distributed algorithm characterized

by a very simple structure, whereby the state of a node at round t depends only on

its state and on a symmetric function of the multi-set of states of its neighbors at

round t − 1, while the update rule is the same for every graph and for every node

and it does not change over time.

Within the constraints of the previous definition, it may still be possible to

come up with computational rules that appear cumbersome and unnatural. The

goal of Definition 4.3.1 is just to provide a reference, and not to replace reliance of

the scientific community on the real world phenomena the concept is intended to

capture.

4.3.1 Voter dynamics

The voter dynamics is arguably the simplest nontrivial dynamics: at each round,

each node looks at a random neighbor and copies its state. A more formal definition

can be found in Algorithm 1.

Page 43

Chapter 4. Computational Dynamics

Algorithm 1 Voter dynamics

Initialization: At round t = 0, every node v ∈ V has a value x(t)(v) ∈ {0, 1}.

Update: At each subsequent round t > 1, every node v ∈ V samples a neighbor

u ∈ Nv uniformly at random and sets x(t)(v) = x(t−1)(u).

The Voter dynamics, in its asynchronous version where only one node chosen

uniformly at random updates its state, has been studied in statistical mechan-

ics [Lig06, Lig09]. The study of the synchronous version of the dynamics, the one

previously described, has been first considered in distributed computing as a pro-

portionate agreement protocol [HP01]. The voter dynamics reaches proportionate

consensus in a polynomial number of rounds, but it turns out to be slow, i.e., Ω(n)

rounds, on many networks with small diameter such as complete graphs or expander

graphs.

4.3.2 2-Choices dynamics

The 2-Choices dynamics (more formally described in Algorithm 2 and illustrated

in Figure 4.1) is a local synchronous protocol that works as follows: In each round,

each node u chooses two neighbors v, w uniformly at random with replacement; if v

and w support the same state, then u updates its own state to their state, otherwise

u keeps its previously supported state.

Algorithm 2 2-Choices dynamics

Initialization: At round t = 0, every node v ∈ V follows one the following

rules to choose its initial value x(t)(v):

• Deterministic initialization: sets x(t)(v) = 0 if v ∈ S and x(t)(v) = 1

if v ∈ V \ S, for some S ∈ V (used in Chapter 5).

• Random initialization: sets x(t)(v) ∈ {0, 1} uniformly at random and

independently from other nodes (used in Chapter 6).

Update: At each subsequent round t > 1, every node v ∈ V :

1. Sampling : samples two neighbors u,w ∈ Nv uniformly at random

with replacement.

2. Majority : sets x(t)(v) = 0 if x(t−1)(u) + x(t−1)(v) + x(t−1)(w) < 3
2

and x(t)(v) = 1 otherwise.

It can be seen as an implicit sparsification of a deterministic majority dynamics,

where each node updates its state the the most frequent in its neighborhood, given

the sampling used in the update rule. Moreover, it can be seen also as a 2-majority

Page 44

Chapter 4. Computational Dynamics

u u u u

Figure 4.1: The update rule of the 2-Choices dynamics: The node updates its

current state only if the two randomly chosen neighbors share the same state; in all

other cases, the node keeps its current state.

dynamics where ties are not broken at random, but towards the previously sup-

ported state. It can arguably be considered the simplest type of dynamics after the

Voter dynamics and, until now, it constitutes one of the few processes whose behav-

ior has been characterized on non-complete topologies [CER14, CER+15, CRRS17].

In the binary case, i.e., where each node can support one of two possible states,

the 2-Choices dynamics turns out to be equivalent to the 2-Median dynamics. The

results obtained in [DGM+11] thus follow as immediate consequence, i.e., the dy-

namics essentially converges to an almost1 plurality consensus in O(log n) number

of rounds if the initial plurality is supported enough.

A deep analysis of this dynamics for a number of colors k = O(nε) has been

recently presented by Elsässer et al. [EFK+16]. They consider an initial configu-

rations having some initial bias s, i.e., the plurality is well represented, and show

that this dynamics is an efficient, fault-tolerant protocol for plurality consensus,

converging in O(k log n) rounds.

Ghaffari et al. [GL17] provide a tight bound on the convergence time starting

from any configuration with a polynomially-bounded number of colors, i.e., k =

O
(

n
logn

)
. Their analysis uses and improves an approach previously introduced by

Becchetti et al. [BCN+16] to analyze 3-Majority dynamics in a similar setting.

Cooper et al. [CER14] analyze, for the first time, the 2-Choices dynamics on

d-regular graphs. They gave different bounds on the convergence time depending

on several parameters such as the degree d, the initial bias s, and on the expansion

of the graph (the spectral gap between the largest and second largest eigenvalues

of the transition matrix of a simple random walk on the graph).

Further analysis of the 2-Choices dynamics on non-complete graph topologies

consider the binary case over non-regular expander graphs [CER+15], where essen-

tially it is proved that the dynamics converges to a plurality consensus with high

probability after a polylogarithmic number of rounds whenever the initial bias is

greater than a given function of the network’s expansion [CER14] (with milder as-

sumptions with respect to those of [CER14]). Such result was later generalized to

the multi-color case on regular expander graphs [CRRS17].

1A certain number of nodes could still support the other state.

Page 45

Chapter 4. Computational Dynamics

4.3.3 Averaging dynamics

The averaging dynamics works as follows. Initially, each node of the network has a

(possibly random) value; then, at each synchronous time step every node updates

its state to the (possibly weighted, if the underlying graph is weighted) average of

the values held by its neighbors. In this section we consider a simple Rademacher

initialization, i.e., each node independently chooses a value uniformly at random in

{−1, 1}. The dynamics is more formally described in Algorithm 3, and a visualiza-

tion of its update rule can be seen in Figure 4.2.2

Algorithm 3 Averaging dynamics

Initialization: At round t = 0, every node v ∈ V independently samples its

value x(0)(v) from {−1,+1} uniformly at random.

Update: At each subsequent round t > 1, every node v ∈ V :

1. Averaging : updates its value x(t)(v) to the weighted average of the

values of its neighbors at the end of the previous round.

2. Labeling : if x(t)(v) > x(t−1)(v) then v sets label(t)(v) = 1; otherwise

v sets label(t)(v) = 0.

Figure 4.2: A visualization of the update rule of the averaging dynamics.

The averaging dynamics is one of the simplest, yet most interesting examples of

linear dynamics. It always converges to a consensus when the underlying network is

connected and not bipartite; in more detail, the consensus is given by the weighted

global average of the initial states of the nodes. Note that the consensus is not valid,

2Source: [Nat17]

Page 46

Chapter 4. Computational Dynamics

since the global average could not be one of the initial states. The convergence time

of the dynamics strictly depends on the second largest eigenvalue λ2 of the transition

matrix of a random walk on the underlying graph.

The averaging dynamics has been analyzed by Becchetti et al. [BCN+17b] on

graphs with two equal-sized communities sampled from the regular Stochastic Block

Model [HLL83]. They show that, with a simple labeling scheme that assigns to each

node a “blue” state if its value has increased with respect to the previous iteration

and “red” otherwise, the algorithm reconstruct the hidden partition of the graph by

labeling all the nodes in one community of one colors and the nodes in the other

community of the other color after O(log n) rounds. They extend the analysis also

to the case of k equal-sized communities and bound the error in the reconstruction

when the graph is almost regular as a function of such irregularity.

In a follow-up work [BCM+18] Becchetti et al. also extend the analysis consid-

ering another communication model, in which the nodes update their states asyn-

chronously, i.e., in each round a node is sampled uniformly at random, and with a

sparsified update rule, i.e., the sampled node averages its value with that of a ran-

dom neighbor. The results they obtained in this different setting are comparable

to those of the original work: the dynamics converges in O(n log n) asynchronous

iterations and reconstructs the hidden partition.

Page 47

II
2-Choices Dynamics

5
Phase Transition on

Core-Periphery Networks

In this chapter, we aim at contributing to the general understanding of the evo-

lution of simple dynamics in richer classes of network topologies. We study the

behavior of the 2-Choices dynamics (Algorithm 2) both theoretically and empiri-

cally on core-periphery networks, graphs that exhibit a bipartition of the nodes into

a small, dense core and a large, sparse periphery. In particular we consider a natu-

ral initial configuration in which the core and the periphery have different opinions.

Our experiments on real-world networks show that the execution of the 2-Choices

dynamics tends to fall mainly within two opposite kinds of possible behavior:

1. Consensus: The opinion of the core spreads in the periphery and takes over

the network in a short time.

2. Metastability: The periphery resists and, although the opinion of the core

may continuously “infect” agents in the periphery, most of them retain the

initial opinion.

In Theorem 5.2.1 we initially consider the setting in which agents in the core

are stubborn, i.e., they don’t change their initial opinion. We later show, in Corol-

lary 5.2.1, how to substitute this assumption with milder hypotheses on the core’s

structure. In Section 5.2 we provide a careful bound on the expected change of the

number of agents supporting a given opinion. Together with the use of Chernoff

bounds, we obtain a concentration of probability around the expected evolution,

and identifiy a phase transition phenomenon:

Informal description of Corollaries 5.2.1 and 5.2.2. There exists

a universal constant c? =
√

2−1
2 such that, on a core-periphery network

of n agents, if the dominance parameter cd is greater than c?, an almost-

consensus is reached within O(log n) rounds, with high probability; oth-

erwise, if cd is less than c?, a metastable phase in which the periphery

retains its opinion takes place, namely, although the opinion of the core

may continuously “infect” agents in the periphery, most of them will

retain the initial opinion for nω(1) rounds, with high probability.

Page 51

Chapter 5. Phase Transition on Core-Periphery Networks

We remark that the evolution of the 2-Choices dynamics, together with the latter

assumption on the stubbornness of the core, can be regarded as a SIS-like epidemic

model [Het00, EJN02]. In such a model, the network is the subgraph induced by the

periphery and the infection probability is given by the 2-Choices dynamics, which

also determines a certain probability of spontaneous infection (that in the original

process corresponds to the fact that agents in the periphery interact with agents in

the core, or vice versa). This interpretation of our results may be of independent

interest.

We validate our theoretical predictions by extensive experiments on real-world

networks chosen from a variety of domains including social networks, communica-

tion networks, road networks, and the web and thoroughly discuss them in Sec-

tion 5.3. The experiments showed some weaknesses of the core extraction heuristic

used in [ALP+14] and, to avoid those drawbacks, we designed a new core extraction

heuristic which repeatedly calculates densest-subgraph approximations. Our exper-

imental results on real-world networks show a strong correlation with the theoretical

predictions made by our model. They further suggests an empirical threshold larger

than c? for which the aforementioned correlation is even stronger. We discuss which

aspects of the current theoretical model may be responsible for such discrepancy,

and thus identify possibilities for a model which is even more accurate.

We remark that our investigation represents an original contribution with re-

spect to the line of research on consensus, as it shows a drastic change in behavior

for the 2-Choices dynamics on an arguably typical broad family of social networks

which is not directly characterized by expansion properties. In particular, the con-

vergence to the core’s opinion in our theoretical and experimental results is a highly

nontrivial fact when compared to previous analytical works (see Section 5.3).

Overall, our theoretical and experimental results highlight new potential rela-

tions between the typical core-periphery structure in social and economic networks

and the behavior of simple opinion dynamics – both, in terms of getting insights

into the driving forces that may determine certain structures to appear frequently

in real-world networks, as well as in terms of the possibility to provide analytical

predictions on the outcome of simplistic models of interaction in networks of agents.

5.1 Preliminaries

Core-periphery networks (Figure 5.1) are typical economic and social networks

which exhibit a core-periphery structure, a well-known concept in the analysis of so-

cial networks in sociology and economics [BE00, DJ10], which defines a bipartition

of the agents into core and periphery, such that certain key features are identified.

We consider an axiomatic framework that has been introduced in previous work

in computer science [ALP+14], which is based on two parameters only, dominance

and robustness. The ranges for these parameters in the theorems we obtain include

Page 52

Chapter 5. Phase Transition on Core-Periphery Networks

Figure 5.1: A visualization of a Core-Periphery network. The core is pictured in

blue, while the periphery in red.

the values used in Section 5.3, in which our results are experimentally validated on

important datasets of real-world networks.

Intuitively, the core is a set of agents that dominates the rest of the network. In

order to do so, it maintains a large amount of external influence on the periphery,

higher than or at least comparable to the internal influence that the periphery has

on itself. Similarly, to maintain its robustness, namely to hold its position and stick

to its opinions, the core must be able to resist the “outside” pressure in the form of

external influence. To achieve that, the core must maintain a higher (or at least not

significantly lower) influence on itself than the external influence exerted on it by

the periphery. Both, high dominance and high robustness, are essential for the core

to be able to maintain its dominating status in the network. Moreover, it seems

natural for the core size to be as small as possible. In social-network terms this

is motivated by the idea that if membership in a social elite entails benefits, then

keeping the elite as small as possible increases the share for each of its members.

The above requirements are formalized in the following axioms [ALP+14]. Given

a networkG = (V,E) and two subsets of agentsA,B ⊆ V , let e(A,B) := {(u, v) |u ∈
A, v ∈ B, (u, v) ∈ E} be the set of cut edges between A and B. The density of a set

X ⊆ V is defined as δ(X) = |e(X,X)|/|X|. Let cd and cr be two positive constants

and let V = C ∪̇ P, where C is the set of agents in the core and P the set of agents

in the periphery. Then, the axioms are as follows:

• Dominance: The core’s influence dominates the periphery, i.e., |e(C,P)| >
cd · |e(P,P)|.

• Robustness: The core can withstand outside influence from the periphery, i.e.,

|e(C, C)| > cr · |e(P, C)|.

Page 53

Chapter 5. Phase Transition on Core-Periphery Networks

• Compactness: The core is a minimal set satisfying the above dominance and

robustness axioms.1

• Density : The core is denser than the whole network, i.e., δ(C) > δ(V).

Our analytical and experimental results leverage the dominance and robustness

axioms only (see Definition 5.2.1), showing how assumptions on the values of cd and

cr are sufficient to provide a good characterization of the behavior of the dynamics.

5.2 Theoretical analysis

We give a formal analysis of the 2-Choices dynamics on a specific network topology,

i.e., on Core-Periphery networks. We use colors instead of opinions to facilitate

intuitive understanding of the analysis. Specifically, we consider the setting in

which the agents belonging to the core C initially support the color blue while the

remaining agents, from the periphery P, support the color red. We show that,

depending on the value of some parameters describing the core-periphery structure

of the network, either the opinion of the core rapidly spreads among almost the

whole network (almost-consensus, i.e., almost all the agents support the blue color

after a few rounds) or most of the periphery resists for a long time (metastability,

i.e., most agents in P remain red).

First, we formally describe our characterization of Core-Periphery networks and

of the 2-Choices dynamics. Then, we prove two technical results which will be

exploited in order to provide a rigorous analysis of the 2-Choices dynamics on Core-

Periphery networks.

Definition 5.2.1. Let n ∈ N and ε, cr, cd ∈ R+, with ε ∈
[

1
2 , 1
]
. We define an

(n, ε, cr, cd)-Core-Periphery network G = (V,E) as a network where each agent

either belongs to the core C or to the periphery P, i.e., V = C ∪̇ P, with |C| = nε

and |P| = n, and such that:

• for each agent u ∈ C, it holds that

|N(u) ∩ C| = cr · |N(u) ∩ P|, (5.1)

• for each agent v ∈ P, it holds that

|N(v) ∩ C| = cd · |N(v) ∩ P|, (5.2)

where N(v) is the set of neighbors of agent v.

The definition we just provided matches the requirements of the core-periphery

structure as axiomatized by Avin et al. [ALP+14]. However, observe that it is more

1The core is a minimal set and not necessarily the minimum one.

Page 54

Chapter 5. Phase Transition on Core-Periphery Networks

restrictive: The values cr and cd define properties that hold for each agent of the

network and not only globally, i.e., for the partition induced by the core.

In order to analyze the 2-Choices dynamics on Core-Periphery networks, we

present a more general technical result that will be exploited later. In fact, both in

the analysis of the almost-consensus and of the metastability, we can focus on the

worst-case scenario for the core and for the periphery: Each time an agent in one

of the two sets picks a neighbor in the other set, that neighbor has the initial color

of the set it belongs to. Alternatively, such a scenario can be seen as the following

variant of the 2-Choices dynamics.

Definition 5.2.2 (Biased-2-Choices(p, σ) dynamics). Let p ∈ [0, 1] be a constant

and let σ ∈ {red, blue} be a color. We define the Biased-2-Choices(p, σ) dynamics

as a variation of the 2-Choices dynamics: Every time an agent picks a neighbor,

with probability p that neighbor supports color σ regardless of its actual color.

The technical result we present considers a network of agents running the Biased-

2-Choices(p, σ) dynamics, all having the same initial color different from σ. Infor-

mally, it shows that there exists a value p? such that if the agents are running

the Biased-2-Choices(p, σ) dynamics with p > p?, then the color σ rapidly spreads

among almost the whole network, while if p < p?, then most of the network does

not support the color σ for a superpolynomial number of rounds. Given a set of

agents A, we define the volume of A as vol(A) :=
∑

v∈A dv, where dv is the degree

of v.

Theorem 5.2.1. Let G = (V,E) be a network of n agents such that each agent

v has a color σv and dv = ω(log n) neighbors. Let p ∈ [0, 1] be a constant. Then,

starting from a configuration where all agents initially support the red color and

letting the agents run Biased-2-Choices(p, blue), it holds that:

• Almost-consensus: If p > 3− 2
√

2, then the agents reach a configuration such

that the volume of agents supporting the blue color is (1− o(1))vol(V) within

O(log n) rounds, w.h.p.

• Metastability: If p < 3 − 2
√

2, then the volume of the blue agents never

exceeds 1−3p
4(1−p)vol(V) for any poly(n) number of rounds, w.h.p.

Proof. Let B(t) be the set of blue agents and R(t) = V \B(t) be the set of red agents

at time t. For any agent v, let NR(v) = N(v) ∩ R(t) be the set of red neighbors

and NB(v) = N(v) ∩ B(t) the set of blue neighbors of v. Furthermore, let r
(t)
v be

the number of red neighbors of v at time t, i.e., r
(t)
v = |NR(v)|. Let φ

(t)
v = r

(t)
v
dv

be the fraction of red agents in the neighborhood of v; let φ(t)
min

= minv∈V φ
(t)
v and

φ(t)
max

= maxv∈V φ
(t)
v be, respectively, the minimum and maximum fractions of red

neighbors among all agents in V . Let c(t) ∈ {red, blue}n be the configuration of

the colors of the agents at time t. In the following, for the sake of readability,

Page 55

Chapter 5. Phase Transition on Core-Periphery Networks

whenever we omit the time index, we refer to the value at time t, e.g., φv stands

for φ
(t)
v . Similarly, we concisely denote with PR (v) = P(v ∈ R(t+1) | c(t)) the

probability that agent v will be supporting the red color in the next round of the

Biased-2-Choices(p, blue), i.e.,

PR (v) =

{
1−

(
p+ (1− p)(1− φv)

)2
if v ∈ R,

(1− p)2φ2
v if v ∈ B.

(5.3)

Furthermore, note that:

min
w∈R

PR (w) = 1−
(
p+ (1− p)(1− φmin)

)2
, (5.4)

min
w∈B

PR (w) = (1− p)2φ2
min. (5.5)

Given a configuration c(t), we can give a lower bound for the expected fraction

of red neighbors of any agent v as follows:

E
[
φ(t+1)
v

∣∣∣ c(t)
]

=
1

dv


 ∑

w∈NR(v)

PR (w) +
∑

w∈NB(v)

PR (w)


 (5.6)

>
1

dv

(
|NR(v)|min

w∈R
PR (w) + |NB(v)|min

w∈B
PR (w)

)
(5.7)

=
rv
dv

min
w∈R

PR (w) +

(
1− rv

dv

)
min
w∈B

PR (w) (5.8)

=
rv
dv

(
1−

(
p+ (1− p)(1− φmin)

)2)
+

(
1− rv

dv

)
(1− p)2φ2

min
(5.9)

=
rv
dv

(
1−

(
p+ (1− p)(1− φmin)

)2 − (1− p)2φ2
min

)
+ (1− p)2φ2

min
(5.10)

> φmin

(
1−

(
p+ (1− p)(1− φmin)

)2 − (1− p)2φ2
min

)
+ (1− p)2φ2

min
(5.11)

= φmin

(
1−

(
p+ (1− p)(1− φmin)

)2
+ (1− p)2(1− φmin)φmin

)
(5.12)

= φmin

(
1− 2(1− p)2φ2

min
+ (1− p)(3− p)φmin − 1

)
. (5.13)

Note that we could cancel out 1 and −1, however, leaving them facilitates the

analysis. Note that in Equation (5.11), we can lower bound rv
dv

with φmin because

its coefficient is non-negative, i.e., (1−
(
p+ (1− p)(1− φmin)

)2 − (1− p)2φ2
min

) > 0

for every p, φmin ∈ [0, 1].

Conversely, we can upper bound the expectation using φmax , i.e.,

E
[
φ(t+1)
v

∣∣∣ c(t)
]
6 φmax

(
1− 2 (1− p)2 φ2

max
+ (1− p)(3− p)φmax − 1

)
. (5.14)

Note that the lower and the upper bound for the expectation have the same

form. In fact, defining the functions

fp(φ) := 2 (1− p)2 φ2 − (1− p)(3− p)φ+ 1, (5.15)

gp(φ) := φ(1− fp(φ)), (5.16)

Page 56

Chapter 5. Phase Transition on Core-Periphery Networks

Figure 5.2: A plot of gp(φ), where we call the critical value p? = 3 − 2
√

2. The

red line is for a value p < p?, while the green line is for a value p > p?; the dotted

gray line, instead, is for p = p? and is tangent to the bisector line. When the

line is above the bisector the expected fraction of red neighbors in the next round

increases; when the line is below the bisector the expected fraction of red neighbors

in the next round decreases.

the lower and the upper bound for the expectation can respectively be written as

gp(φmin) and gp(φmax). Thus, analyzing fp(φ), we can see for which values of p the

function gp(φ) is increasing or decreasing.

Before proving the almost-consensus and the metastability configurations that

can be reached by the agents running the Biased-2-Choices(p, blue), we study fp(φ)

in order to characterize the bounds for the expectation. The roots of fp(φ) are

in
3−p±
√
p2−6p+1

4(1−p) while its derivative is f ′p(φ) = 4 (1− p)2 φ − (1 − p)(3 − p). It

follows that fp(φ) has a minimum point in φ̄ = 3−p
4(1−p) . Moreover, the sign of fp(φ̄)

exclusively depends on p. In fact

fp(φ̄) > 0 if p > 3− 2
√

2, (5.17)

fp(φ̄) < 0 if p < 3− 2
√

2, (5.18)

since fp(φ) is convex and in (5.17) the discriminant of fp(φ) is negative, while

in (5.18) the discriminant is positive.

A plot of gp that shows the consensus and metastable behaviors of the process

while p varies is available in Figure 5.2.

Page 57

Chapter 5. Phase Transition on Core-Periphery Networks

Almost-consensus. Let p > 3− 2
√

2. Let fp(φ̄) = ε be the local minimum of f .

Note that ε is positive because of (5.17) and it is a constant since it only depends

on p and φ̄, which are both constants. Due to the convexity of fp(φ), it holds that

fp(φ) > ε for every φ ∈ [0, 1]. Thus, for every v ∈ V , we have that

E
[
φ(t+1)
v

∣∣∣ c(t)
]
6 gp(φmax) = φmax(1− fp(φmax)) 6 φmax(1− ε). (5.19)

Thus, we can apply a multiplicative form of the Chernoff bounds directly to the

upper bound of the expected fraction of red neighbors at the next round, as shown

in [DP09, Exercise 1.1], and get that

P
(
φ(t+1)
v > (1− ε2)φmax

∣∣∣ c(t)
)

(5.20)

= P
(
φ(t+1)
v > (1 + ε)(1− ε)φmax

∣∣∣ c(t)
)

(5.21)

= P
(
r(t+1)
v > (1 + ε)(1− ε)φmaxdv

∣∣∣ c(t)
)

(5.22)

6 e−
ε2

3
(1−ε)φmaxdv 6 e−2 logn = n−2, (5.23)

where in the last inequality we can assume that the configuration c(t) is such that

φmax >
6 logn

ε2(1−ε)dv , which is φmax = o(1), since dv = ω(log n) by definition. Thus,

using the union bound over all the agents, we get that φ(t+1)
max

6 (1− ε2)φmax , w.h.p.

Formally,

P
(
∃v ∈ V : φ(t+1)

v > (1− ε2)φmax

∣∣∣ c(t)
)

(5.24)

6
∑

v∈V
P
(
φ(t+1)
v > (1− ε2)φmax

∣∣∣ c(t)
)

(5.25)

6
∑

v∈V
n−2 = n−1. (5.26)

Such a multiplicative decrease rate of the expected maximum fraction of red

neighbors implies that φmax is in the order of o(1) within O(log n) rounds of the

Biased-2-Choices(p, blue). Again, applying the union bound over all the agents, we

get that this still happens w.h.p.

Metastability. Let p < 3 − 2
√

2. Define fp(φ̄) = −ε to be the local minimum

of f . Recall that ε is positive because of (5.18) and it is a constant since it only

depends on the constants p and φ̄.

Then, using the fact that gp(φ) is monotonically nondecreasing for φ ∈ [0, 1], for

every φ > φ̄ we have that

gp(φ) > gp(φ̄) = φ̄(1− fp(φ̄)) = φ̄(1 + ε). (5.27)

We can now use a multiplicative form of the Chernoff bounds in order to show

that if the fraction of red neighbors of an agent v is at least φ̄, then the probability

that the number of red neighbors of v in the next round is lower than φ̄ is negligible.

Page 58

Chapter 5. Phase Transition on Core-Periphery Networks

Formally, let c(t) be an arbitrary configuration such that φmin > φ̄, e.g., the initial

configuration c(0) has this property. First, note that due to gp(φ) > gp(φ̄), we have

that

E
[
φ(t+1)
v

∣∣∣ c(t)
]
> gp(φmin) > gp(φ̄) = φ̄(1 + ε). (5.28)

Then, it follows that

P
(
φ(t+1)
v < φ̄

∣∣∣ c(t)
)

(5.29)

= P

(
φ(t+1)
v <

1

1 + ε
φ̄(1 + ε)

∣∣∣∣ c(t)

)
(5.30)

= P

(
φ(t+1)
v <

(
1− ε

1 + ε

)
φ̄(1 + ε)

∣∣∣∣ c(t)

)
(5.31)

6 P

(
φ(t+1)
v <

(
1− ε

1 + ε

)
E
[
φ(t+1)
v

∣∣∣ c(t)
] ∣∣∣∣ c(t)

)
(5.32)

= P

(
r(t+1)
v <

(
1− ε

1 + ε

)
dvE

[
φ(t+1)
v

∣∣∣ c(t)
] ∣∣∣∣ c(t)

)
(5.33)

6 exp

(
− ε2

3(1 + ε)2
dvE

[
φ(t+1)
v

∣∣∣ c(t)
] ∣∣∣∣ c(t)

)
(5.34)

6 exp

(
− ε2

3(1 + ε)2
dvφ̄(1 + ε)

)
(5.35)

= e−Ω(dv) = e−ω(logn) = n−ω(1). (5.36)

Applying the union bound over all the agents, we get

P
(
∃t∈poly(n)
∃v∈V : φ(t+1)

v < φ̄
∣∣∣ c(t)

)
(5.37)

6
∑

t∈poly(n)
v∈V

P
(
φ(t+1)
v < φ̄

∣∣∣ c(t)
)

(5.38)

=
∑

t∈poly(n)
v∈V

n−ω(1) = n−ω(1). (5.39)

Thus, with high probability we have that φmin > φ̄ for every polynomial number of

rounds. Before we can use this to finish the proof, note that
∑

v∈B dv =
∑

v∈V (dv−
rv), by simply counting the number of blue endpoints of an edge in two different

ways. Using that φv > φmin > φ̄ for each v, we have

vol(B(t)) =
∑

v∈B
dv (5.40)

=
∑

v∈V
(dv − rv) (5.41)

=
∑

v∈V
dv

(
1− rv

dv

)
(5.42)

6 (1− φ̄)
∑

v∈V
dv (5.43)

=
1− 3p

4(1− p)vol(V). (5.44)

Page 59

Chapter 5. Phase Transition on Core-Periphery Networks

This means, the volume of the blue agents never exceeds a fraction of 1−3p
4(1−p) of the

total volume of the graph, w.h.p. �

5.2.1 Phase transition on core-periphery networks

Theorem 5.2.1 has several interesting implications on the behavior of the 2-Choices

dynamics on Core-Periphery networks which we describe in the remainder of this

section.

In the following, we always assume an initial configuration in which all agents in

the core C are blue and all agents in the periphery P are red. Now, let G = (V,E)

be an (n, ε, cr, cd)-Core-Periphery network. Furthermore, let qC = |N(u)∩P|
du

be the

probability that an agent u ∈ C picks a neighbor in the periphery, and let qP =
|N(v)∩C|

dv
be the probability that an agent v ∈ P picks a neighbor in the core. The

relations below follow from Definition 5.2.1:

cr = |N(u) ∩ C| / |N(u) ∩ P| = (1− qC) / qC ∀u ∈ C, (5.45)

cd = |N(v) ∩ C| / |N(v) ∩ P| = qP / (1− qP) ∀v ∈ P. (5.46)

Let c? =
√

2−1
2 be the constant which later defines a threshold between almost-

consensus and metastability behavior. We get

cr = 1 / (c? + δr) =⇒ qC = 3− 2
√

2 + δ′r (5.47)

cd = c? + δd =⇒ qP = 3− 2
√

2 + δ′d (5.48)

for δr and δ′r (δd and δ′d) which are either both positive or both negative.

For the almost-consensus result, we require a high robustness of the core such

that it remains monochromatic for a logarithmic number of rounds. The following

lemma is needed to link the robustness with this property.

Lemma 5.2.1. Let ε and δ be two positive constants. Let G = (V,E) be a graph

of nε agents, and let 0 6 p 6 n−(ε+δ)/2. Starting from a configuration such that

each agent initially supports the blue color, within O(log(n)) rounds of the Biased-

2-Choices(p, red) no agent becomes red, w.h.p.

Proof. The probability that an agent v changes its color to red at time t, given that

all the other agents are still blue, is

P
(
v ∈ R(t+1)

∣∣∣ V = B(t)
)

= p2 6
(
n−(ε+δ)/2

)2
= n−(ε+δ). (5.49)

Applying the union bound over all the agents and over τ = O(log n) rounds, we get

P
(
∃t6τ
∃v∈V : v ∈ R(t+1)

∣∣∣ V = B(t)
)
6
nε · τ
nε+δ

= O(n−δ). (5.50)

Thus, all agents in the graph remain blue for any logarithmic number of rounds,

w.h.p. �

Page 60

Chapter 5. Phase Transition on Core-Periphery Networks

If cr > n(ε+δ)/2, by Equation (5.45) it follows that

qC = 1 / (cr + 1) < 1 / cr 6 n
−(ε+δ)/2. (5.51)

We are now ready to prove the almost-consensus behavior of the 2-Choices dynamics

on Core-Periphery networks.

Corollary 5.2.1. Let c? =
√

2−1
2 and let ε and δ be two positive constants. Let

G = (V,E) be an (n, ε, cr, cd)-Core-Periphery network such that each agent in the

network has ω(log n) neighbors. If cr > n(ε+δ)/2 and cd > c? by a constant, then the

agents reach a configuration such that the volume of blue agents is (1−o(1))vol(V)

within O(log n) rounds of the 2-Choices dynamics, w.h.p.

Proof sketch. Since cr > n(ε+δ)/2, we can apply Lemma 5.2.1 and thus the agents in

the core never change color for O(log n) rounds, w.h.p. Therefore, for any O(log n)

number of rounds, the process is equivalent to a Biased-2-Choices(qP , blue) run by

the periphery. Since cd > c? and thus qP > 3 − 2
√

2 by Equation (5.48), we can

apply Theorem 5.2.1 and get almost-consensus on the blue color in a logarithmic

number of rounds, w.h.p. �

Finally we can also prove a metastability phenomenon of the 2-Choices dynamics

on Core-Periphery networks.

Corollary 5.2.2. Let c? =
√

2−1
2 be a universal constant. Let G = (V,E) be

an (n, ε, cr, cd)-Core-Periphery network such that each agent in the network has

ω(log n) neighbors. Then, with high probability, we have that for each round t and

for any poly(n) number of rounds of the 2-Choices dynamics the following two

statements hold:

• if cr >
1
c? by a constant, then vol(B(t)) > 3

4vol(C),

• if cd < c? by a constant, then vol(R(t)) > 3
4vol(P),

where B(t) are the blue agents and R(t) the red agents at time t.

Proof sketch. Consider the following worst case scenario: Every time an agent in

the core (periphery) chooses a random neighbor belonging to the periphery (core),

then that neighbor is red (blue). In this scenario, the 2-Choices dynamics can be

thought of as two independent Biased-2-Choices(p, σ) in which for the core p = qC
and σ = red , and for the periphery p = qP and σ = blue. From cr >

1
c? and

cd < c? and Equations (5.47) and (5.48), it follows that qC and qP are less than

3 − 2
√

2. By applying the metastability result of Theorem 5.2.1, we get that the

volume of the adversary never exceeds 1−3p
4(1−p) of the network’s volume. Since both

qC and qP are smaller than 3 − 2
√

2, we have that 1−3p
4(1−p) 6

1
4 (as the inequality is

tight for p = 0 and its value is decreasing). Thus, the volumes of red (blue) agents

in the core (periphery) are at most a fraction of 1
4 . Therefore, the volumes of blue

and red agents in the whole network are at least 3
4 of the volumes of C and P,

respectively. �

Page 61

Chapter 5. Phase Transition on Core-Periphery Networks

5.3 Simulations on real-world networks

In Section 5.2 we formally studied the 2-Choices dynamics on Core-Periphery net-

works, observing a phase transition phenomenon that appears on a dominance

threshold c? =
√

2−1
2 . Here, we report the results of the empirical data obtained by

simulating the 2-Choices dynamics on real-world networks. Furthermore, we discuss

our results and compare them with our theoretical analysis. The source code of the

experiments is freely available.2

We simulated the 2-Choices dynamics on 70 real-world networks, 25 of them

taken from KONECT [Kun13] and 45 of them taken from SNAP [LK14]. Detailed

information regarding the networks and the results of the experiments are reported

in Table 5.1. The networks chosen for the experiments are drawn from a variety

of domains including social networks, communication networks, road networks, and

web graphs; moreover, they range in size from thousands of nodes and thousands

of edges up to roughly one million of nodes and tens of millions of edges. Before

simulating the 2-Choices dynamics, we pre-process the networks in order to match

the theoretical setting. In particular, for all the networks, we remove the orientation

of the edges and all loops, and we work on the largest (w.r.t. the number of nodes)

connected component.

The first issue we faced simulating the 2-Choices dynamics was the extraction of

the set of agents representing the core. In fact, there is no exact definition of what a

good core is with respect to dominance and robustness values. We started by using

a simple heuristic to extract the core, namely the k-rich-club method [ZM04]: This

method establishes the core C as the set of k agents with highest degree and the

periphery P as the remaining agents. Avin et al. [ALP+14] empirically show that

when k is at the symmetry point, i.e., k is chosen such that vol(C) ≈ vol(P), the

core found by this method is sublinear in size with respect to the number of agents

of the network. We remark that if vol(C) = vol(P) then, from the definitions of

robustness and dominance, it follows that cr = 1
cd
.

We initially used the k-rich-club method to extract the core but noted that this

simple heuristic produces a core with very low robustness values, contrary to what

common sense would suggest to be a good core. In particular, low robustness values

imply that the dominance values never go below our theoretical threshold c? (see

columns c̄r and c̄d in Table 5.1), which hinders the comparison between theoretical

and experimental results. Indeed, in our theoretical analysis we assume that the core

never changes color, i.e., that the robustness is high; however, in the experiments

the core was very unstable when using the k-rich-club method. The main issue

of this method is that it does not take into account the topological structure of

the network, e.g., if we consider a regular graph with a well defined core-periphery

2https://github.com/ioemilio/opinion_dynamics

Page 62

https://github.com/ioemilio/opinion_dynamics

Chapter 5. Phase Transition on Core-Periphery Networks

Table 5.1: Experimental results of the 2-Choices dynamics on networks with

core-periphery structure. Source reports the source of the dataset, i.e. SNAP (S) or

KONECT (K). The values cr and cd are the robustness and dominance obtained us-

ing the densest-core method; the values c̄r and c̄d are the robustness and dominance

obtained using the k-rich-club method. C and P are the fraction of experiments in

which the core’s and the periphery’s color respectively spread to reach an almost-

consensus, while M is the fraction of experiments in which there is metastability,

all having the core extracted with the densest-core method. K stands for thousand,

M for million.

Dataset (Source) |V | |E| cr (c̄r) cd (c̄d) C P M
Chicago (K) 0.8K 1.6K 6.55 (0.10) 0.15 (9.72) 0.00 0.00 1.00

email-Eu-core (S) 0.9K 32.1K 0.75 (0.53) 1.32 (1.88) 0.92 0.08 0.00

Euroroad (K) 1.0K 2.6K 5.53 (0.62) 0.18 (1.61) 0.00 0.00 1.00

Blogs (K) 1.2K 33.4K 0.62 (0.38) 1.57 (2.60) 0.00 0.00 1.00

Traffic Control (K) 1.2K 4.8K 1.25 (0.51) 0.78 (1.96) 0.00 0.00 1.00

Protein (K) 1.4K 3.8K 0.90 (0.33) 1.10 (2.95) 1.00 0.00 0.00

US Airport (K) 1.5K 34.4K 0.54 (0.48) 1.82 (2.10) 0.00 0.00 1.00

Stelzl (K) 1.6K 6.2K 1.03 (0.36) 0.96 (2.73) 1.00 0.00 0.00

Bible (K) 1.7K 18.1K 0.74 (0.54) 1.33 (1.84) 0.98 0.02 0.00

Hamster full (K) 2.0K 32.1K 0.96 (0.66) 1.02 (1.51) 1.00 0.00 0.00

Opsahl OF (K) 2.9K 31.2K 0.76 (0.55) 1.30 (1.81) 1.00 0.00 0.00

OpenFlights (K) 3.3K 38.4K 0.73 (0.50) 1.35 (1.98) 0.80 0.00 0.20

bitcoin-alpha (S) 3.7K 28.2K 0.53 (0.39) 1.87 (2.52) 1.00 0.00 0.00

ego-Facebook (S) 4.0K 176.4K 4.83 (1.53) 0.20 (0.65) 0.00 0.00 1.00

ca-GrQc (S) 4.1K 26.8K 3.33 (1.29) 0.29 (0.77) 0.00 0.00 1.00

US power grid (K) 4.9K 13.1K 3.17 (0.53) 0.31 (1.86) 0.00 0.00 1.00

bitcoin-otc (S) 5.8K 42.9K 0.52 (0.38) 1.88 (2.59) 1.00 0.00 0.00

p2p-Gnutella08 (S) 6.2K 41.5K 1.20 (0.53) 0.82 (1.86) 0.00 1.00 0.00

Route Views (K) 6.4K 25.1K 0.30 (0.16) 3.26 (6.13) 0.96 0.04 0.00

wiki-Vote (S) 7.0K 201.4K 0.60 (0.44) 1.64 (2.24) 1.00 0.00 0.00

p2p-Gnutella09 (S) 8.1K 52.0K 1.08 (0.53) 0.91 (1.86) 0.00 1.00 0.00

ca-HepPh (S) 8.6K 49.6K 1.40 (0.69) 0.71 (1.44) 1.00 0.00 0.00

p2p-Gnutella06 (S) 8.7K 63.0K 0.91 (0.53) 1.09 (1.87) 1.00 0.00 0.00

p2p-Gnutella05 (S) 8.8K 63.6K 0.93 (0.54) 1.06 (1.83) 0.86 0.14 0.00

PGP (K) 10.6K 48.6K 2.54 (1.18) 0.39 (0.84) 1.00 0.00 0.00

p2p-Gnutella04 (S) 10.8K 79.9K 0.91 (0.52) 1.08 (1.90) 1.00 0.00 0.00

ca-HepTh (S) 11.2K 235.2K 3.49 (2.39) 0.28 (0.41) 0.00 0.00 1.00

ca-AstroPh (S) 17.9K 393.9K 1.54 (0.84) 0.64 (1.18) 1.00 0.00 0.00

ca-CondMat (S) 21.3K 182.5K 1.70 (0.68) 0.58 (1.46) 1.00 0.00 0.00

p2p-Gnutella25 (S) 22.6K 109.3K 0.72 (0.41) 1.37 (2.43) 1.00 0.00 0.00

E.A.T. (K) 23.1K 594.1K 0.60 (0.48) 1.64 (2.07) 0.96 0.04 0.00

Cora citation (K) 23.1K 178.3K 1.37 (0.54) 0.72 (1.83) 1.00 0.00 0.00

CAIDA (K) 26.4K 106.7K 0.31 (0.16) 3.13 (6.03) 1.00 0.00 0.00

p2p-Gnutella24 (S) 26.4K 130.7K 0.71 (0.42) 1.39 (2.34) 1.00 0.00 0.00

cit-HepTh (S) 27.4K 704.0K 1.33 (0.74) 0.74 (1.34) 1.00 0.00 0.00

Digg (K) 29.6K 169.5K 0.59 (0.49) 1.67 (2.01) 1.00 0.00 0.00

Linux (K) 30.8K 426.4K 0.47 (0.24) 2.10 (4.14) 0.90 0.10 0.00

email-Enron (S) 33.6K 361.6K 0.71 (0.54) 1.39 (1.84) 1.00 0.00 0.00

Page 63

Chapter 5. Phase Transition on Core-Periphery Networks

Dataset (Source) |V | |E| cr (c̄r) cd (c̄d) C P M
cit-HepPh (S) 34.4K 841.5K 1.34 (0.61) 0.74 (1.61) 1.00 0.00 0.00

Internet topology (K) 34.7K 215.4K 0.61 (0.32) 1.62 (3.08) 0.88 0.00 0.12

p2p-Gnutella30 (S) 36.6K 176.6K 0.82 (0.44) 1.21 (2.23) 1.00 0.00 0.00

loc-Brightkite (S) 56.7K 425.8K 0.99 (0.71) 1.00 (1.40) 1.00 0.00 0.00

p2p-Gnutella31 (S) 62.5K 295.7K 0.78 (0.44) 1.27 (2.26) 1.00 0.00 0.00

soc-Epinions1 (S) 75.8K 811.4K 0.72 (0.60) 1.37 (1.65) 1.00 0.00 0.00

Slashdot081106 (S) 77.3K 937.1K 0.51 (0.46) 1.93 (2.13) 0.98 0.02 0.00

soc-Slashdot0811 (S) 77.3K 938.3K 0.51 (0.46) 1.93 (2.13) 1.00 0.00 0.00

ego-Twitter (S) 81.3K 2.6M 1.12 (0.57) 0.89 (1.75) 0.00 0.00 1.00

Slashdot090216 (S) 81.8K 995.3K 0.53 (0.48) 1.87 (2.08) 1.00 0.00 0.00

Slashdot090221 (S) 82.1K 1.0M 0.53 (0.48) 1.87 (2.08) 1.00 0.00 0.00

soc-Slashdot0922 (S) 82.1K 1.0M 0.53 (0.47) 1.87 (2.08) 1.00 0.00 0.00

Prosper loans (K) 89.1K 6.6M 0.82 (0.47) 1.21 (2.10) 0.00 0.00 1.00

Livemocha (K) 104.1K 4.3M 0.47 (0.38) 2.10 (2.56) 0.94 0.06 0.00

Flickr (K) 105.7K 4.6M 2.27 (1.07) 0.43 (0.92) 0.00 0.00 1.00

ego-Gplus (S) 107.6K 24.4M 0.95 (0.54) 1.04 (1.82) 0.00 0.00 1.00

epinions (S) 119.1K 1.4M 0.64 (0.52) 1.53 (1.89) 1.00 0.00 0.00

Github (K) 120.8K 879.7K 0.88 (0.70) 1.12 (1.41) 1.00 0.00 0.00

Bookcrossing (K) 185.9K 867.2K 0.52 (0.34) 1.90 (2.87) 1.00 0.00 0.00

loc-Gowalla (S) 196.5K 1.9M 1.14 (0.80) 0.87 (1.24) 0.02 0.00 0.98

email-EuAll (S) 224.8K 679.8K 0.16 (0.06) 6.19 (14.4) 0.00 0.00 1.00

web-Stanford (S) 255.2K 3.8M 2.52 (0.37) 0.39 (2.68) 0.00 0.00 1.00

amazon0302 (S) 262.1K 1.7M 2.61 (0.44) 0.38 (2.23) 1.00 0.00 0.00

com-DBLP (S) 317.0K 2.0M 1.43 (0.70) 0.69 (1.42) 1.00 0.00 0.00

web-NotreDame (S) 325.7K 2.1M 2.63 (0.60) 0.37 (1.65) 0.00 0.00 1.00

com-amazon (S) 334.8K 1.8M 1.72 (0.32) 0.57 (3.03) 0.98 0.00 0.02

amazon0312 (S) 400.7K 4.6M 2.18 (0.41) 0.45 (2.41) 0.00 0.00 1.00

amazon0601 (S) 403.3K 4.8M 2.08 (0.40) 0.47 (2.44) 0.00 0.00 1.00

amazon0505 (S) 410.2K 4.8M 2.01 (0.41) 0.49 (2.40) 0.00 0.00 1.00

web-BerkStan (S) 654.7K 13.1M 1.60 (0.43) 0.62 (2.30) 0.00 0.00 1.00

web-Google (S) 855.8K 8.5M 1.77 (0.42) 0.56 (2.33) 0.00 0.00 1.00

roadNet-PA (S) 1.0M 3.0M 7.35 (1.01) 0.13 (0.98) 0.00 0.00 1.00

structure (which satisfies Definition 5.2.1) the k-rich-club method would identify

the core to be a random subset of nodes.

Therefore, we introduce a novel heuristic for extracting the core which takes

the network topology into account by prioritizing the robustness of the core over

its dominance. The procedure, which we refer to as densest-core method, is de-

scribed in Algorithm 4. Informally, it iteratively extracts the densest subgraph

from the network and adds it to the core unless the core’s volume becomes too

large. In order to compute this constrained densest subgraph, it uses a variation

of the 2-approximation algorithm [Cha00], which chooses every time the densest

subgraph that will not make the core’s volume larger than the periphery’s volume.

We apply the densest-core method to the networks and, as expected, we obtain

higher robustness and lower dominance values compared to the k-rich-club method.

The data reported in Table 5.1 shows that the robustness of the core extracted

Page 64

Chapter 5. Phase Transition on Core-Periphery Networks

Algorithm 4 Densest-Core Extraction

1: procedure DensestCore(G)

2: C? ← ∅
3: do

4: C ← ∅; D ← G

5: while D 6= ∅ do

6: v ← LowestDegreeNode(D)

7: D ← D \ {v}
8: if Density(D) > Density(C) and

FractionOfVolume(C? ∪D) 6 1
2 then

9: C ← D

10: end if

11: end while

12: C? ← C? ∪ C
13: G← G \ C
14: while C 6= ∅
15: return C?

by our method is higher in all the considered datasets but one. Indeed, we finally

obtain dominance values below the theoretical threshold c?.

We proceed as follows: We initialize all the agents in C with blue and all the

agents in P with red. Then, we simulate the 2-Choices dynamics on each network,

keeping track of the volumes of blue and red agents in each iteration. We declare an

almost-consensus on the majority’s color if within |V | iterations either the red or

the blue agents reach a volume greater than 95% of the network’s volume. Other-

wise we consider the simulation metastable – waiting for a superpolynomial number

of rounds would be infeasible. The experiments were repeated 50 times for each

network.

As can be observed in Figure 5.3, there exists an empirical threshold σ = 1
2

which is different from the theoretical one. In fact, in 81% of the datasets with

a dominance above the threshold the 2-Choices dynamics converges to an almost-

consensus while in 86% of the datasets with a dominance below the threshold,

the 2-Choices dynamics ends up in a metastable phase. The empirical threshold is

greater than the theoretical threshold because of several factors: (i) in the experi-

ments the core actually changes color to a small extent (while in the theoretical part

we ignored such small perturbations), and it consequently lowers the probability for

an agent in the periphery to pick the core’s color; (ii) the real-world network we

used in the experiments do not have the regularity assumptions of the networks

that we consider in the analysis; (iii) in the experiments we declare metastability

only after |V | iterations and this increases the likelihood of metastable runs. The

gap between the theoretical and the empirical threshold should be closed in future

Page 65

Chapter 5. Phase Transition on Core-Periphery Networks

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

cd

10−4

10−3

10−2

10−1

100

t/
|V
|

M
C
P
c?

σ

Figure 5.3: Almost-consensus and metastability of the experiments compared

to the theoretical and empirical thresholds c? and σ. In 81% of the runs there

is an almost-consensus if cd > σ; the 86% of them are metastable when cd <

σ. The value t is the arithmetic mean of the number of rounds until almost-

consensus/metastability was declared.

work by providing a more fine-grained theoretical analysis which does not assume

the adversary’s color to be monochromatic and considers more general networks.

We want to highlight that the protocol’s convergence to the core’s color (as

shown in Table 5.1) is remarkable in light of the fact that the densest-core method

ensures that the sum of the agents’ degrees of the core and of the periphery are

equal. More precisely, note that equal volumes of core and periphery, starting

from an initial configuration where two sets support different colors, is sufficient

in the Voter Model to say that the two initial colors have the same probability to

be the one eventually supported by all agents [HP01], regardless of the topological

structure. Previous works on the 2-Choices dynamics [CER14] provided convergence

results which are parametrized only in the difference of the volumes of the two sets,

suggesting a similar behavior. Our experimental results highlight the insufficiency

of the initial volume distribution as an accurate predictive parameter, showing that

the topological structure of the core plays a decisive role.

Page 66

6
Metastability on

Clustered Graphs

In this chapter we consider again the 2-Choices dynamics (Definition 2) and analyze

it on graphs exhibiting a clustered structure. It is known in literature that the

process rapidly converges to consensus [CER+15, CRRS17] (see Chapter 4). Their

proofs leverage an interesting property of the 2-Choices dynamics, i.e., that the

expected number of agents supporting one state can be expressed as a quadratic

form of the transition matrix of a simple random walk on the underlying graph. This

fact allows to relate the behavior of the process to the eigenspaces of the graph.

Motivated by questions arising in graph clustering and evolutionary biology, we

exploit the aforementioned relation to show a more fine-grained understanding of

the consensus behavior of the 2-Choices dynamics. Our new analysis combines

symmetry-breaking techniques [BCN+16, CGG+18] and concentration of probabil-

ity arguments with a linear algebraic approach [CER+15, CRRS17] to obtain the

first symmetry-breaking analysis for dynamics on non-complete topologies.

Informal description of Theorem 6.2.1. Let the agents of a net-

work initially pick a random binary state and then run the 2-Choices

dynamics. If the network has a community structure there is a sig-

nificant probability that it will rapidly converge to an almost-clustered

configuration, where almost all nodes within each community share the

same state, but the predominant states in the communities are different.

In other words, with constant probability, after a short time the states

of the nodes constitute a labeling which reveals the clustered structure

of the network.

The aforementioned probability for the labeling to reveal the community struc-

ture can be amplified via Community-Sensitive Labeling [BCN+17a], transforming

the 2-Choices dynamics into a distributed label propagation algorithm with quasi-

linear message complexity.

Page 67

Chapter 6. Metastability on Clustered Graphs

We remark that, because of the stochastic and time-independent behavior of the

2-Choices dynamics, the process eventually leaves almost-clustered configurations

and reaches a monochromatic configuration in which all agents have the same state.

However, before that happens, we prove that the process remains in almost-clustered

configurations for a time equal to a large-degree polynomial in n. Hence, the event

that the process leaves the almost-clustered configuration is negligible for most

practical applications. This key transitory property of some stochastic processes,

called metastability [AFPP12, FV15], has recently attracted a lot of attention in

the Theoretical Computer Science community.

Comparison with other analytical results

Let a and b respectively be the number of neighbors of each agent in its own com-

munity and in the other community; let d := a + b. The analysis of Max-LPA

essentially requires a > n3/4−ε and b 6 ca2/n, for some arbitrary constants ε and c.

Our analysis requires1 λ 6 n−1/4, which implies a > n1/2 because of the extremality

of Ramanujan graphs, and b/d 6 n−1/2. Compared to the analysis of Max-LPA,

Theorem 6.2.1 holds for much sparser communities at the price of a stricter con-

dition on the cut. Moreover, given the distributed nature of the two algorithms,

Max-LPA has a message complexity of Ω(m), with m the number of edges in the

graph that is at least n7/4; instead, the message complexity of the 2-Choices dynam-

ics is O(n log n) regardless of the actual density of the edges on the graph, since the

local update rule only looks at 2 labels. Our algorithm performs an implicit spar-

sification of the graph, an interesting property for the design of sparse clustering

algorithms [SZ17], in particular for opportunistic network settings [BCM+18].

6.1 Preliminaries

Let G = (V,E) be a (2n, d, b)-clustered regular graph (Definition 6.1.1) and let us

define a := d−b. Note that G is composed by two a-regular communities connected

by a b-regular cut (Figure 6.1) and that when a > b the graph G exhibits a well-

clustered structure, i.e., each node has more neighbors in its community than in the

other one.

Definition 6.1.1 (Clustered regular graph [BCN+17b]). A (2n, d, b)-clustered reg-

ular graph is a graph G = (V,E) such that:

• V = V1 ∪ V2, V1 ∩ V2 = ∅, and |V1| = |V2| = n;

• every node has degree d;

• every node in V1 has exactly b neighbors in V2 and every node in V2 has exactly

b neighbors in V1.
1λ is the maximum eigenvalue, in absolute value and different from 1, of the transition matrices

of the subgraphs induced by the communities.

Page 68

Chapter 6. Metastability on Clustered Graphs

a-regular a-regularb-regular
bipartite

Figure 6.1: Representation of a (2n, d, b)-clustered regular graph where a := d −
b. Each community induces an a-regular graph while the cut between the two

communities induces a b-regular bipartite graph.

Each node of G maintains a binary state that we represent as a color: either

red or blue. We denote the vector of states of all nodes in G at time t as the

configuration vector c(t) and we refer to the state of a node u ∈ V at time t as

c
(t)
u ∈ {red, blue}. We call B(t) the set of nodes colored blue at time t and R(t)

the set of nodes colored red at time t. For each community i ∈ {1, 2} we define

B
(t)
i := Vi ∩ B(t) and R

(t)
i := Vi ∩ R(t). We call s

(t)
i = |R(t)

i | − |B
(t)
i | the bias in

community i toward color red. Given some initial configuration c(0), we let the

nodes of G run the 2-Choices dynamics.

Note that the random sequence of configurations {c(t)}t∈N generated by multiple

iterations of the 2-Choices dynamics on G is a Markov Chain with two absorbing

states, namely the configurations where all the nodes support the same color, either

red or blue.

Let us now introduce the notion of almost-clustered configuration.

Definition 6.1.2 (Almost-clustered configuration). A configuration c(t) is almost-

clustered if

|si| > n−O
(

log n

log logn

)
(6.1)

for each i ∈ {1, 2} and the sign of the biases is different, i.e., s1s2 < 0.

Intuitively, almost-clustered configurations are such that the vast majority of the

nodes in one community is supporting one of the two colors, and the vast majority

of nodes in the other community is supporting the other color.

In the rest of the section we introduce the notation used to describe the spectral

properties of the transition matrix of the underlying graph G: The analysis in

expectation of the process (Lemma 6.2.2) exploits such spectral properties and our

main result (Theorem 6.2.1) makes assumptions on the spectrum of the transition

matrix of G.

Page 69

Chapter 6. Metastability on Clustered Graphs

Let P = 1
dA be the transition matrix of a simple random walk on G, where we

denote with d the degree of the nodes and with A the adjacency matrix of G. Note

that the transition matrix P can be decomposed as follows:

P =

(
P1,1 P1,2

P2,1 P2,2

)
= A+B =

(
P1,1 0

0 P2,2

)
+

(
0 P1,2

P2,1 0

)
, (6.2)

where A is the transition matrix of the communities if we disconnect them, while

B is the transition matrix of the bipartite graph connecting the two communities.

Note that since the cut is regular B is symmetric and P ᵀ1,2 = P2,1.

We denote with λ1 > . . . > λn the eigenvalues of the transition matrix of the

subgraph induced by the first community P̄1,1 := d
aP1,1 and with v1, . . . ,vn their

corresponding eigenvectors; we denote with µ1 > . . . > µn the eigenvalues of the

transition matrix of the subgraph induced by the second community P̄2,2 := d
aP2,2

and with w1, . . . ,wn their corresponding eigenvectors. Since both P̄1,1 and P̄2,2 are

stochastic matrices we have that λ1 = µ1 = 1 and that v1 = w1 = 1√
n
1, where 1 is

the vector of all ones. We consider the case in which both the subgraphs induced by

the communities are connected and not bipartite; thus it holds that λ2 < 1, µ2 < 1

and that λn > −1, µn > −1.

We define λ := max(|λ2|, |λn|, |µ2|, |µn|). The value of λ is a representative of

the second largest eigenvalues for both the subgraphs induced by the communities

and is closely related to the third largest eigenvalue of P .

6.2 Theoretical analysis

Let G be a clustered regular graph (Definition 6.1.1). Let each node in G initially

pick a color c
(0)
u ∈ {red, blue} uniformly at random and independently from the

other nodes. Then let the nodes of G run the 2-Choices dynamics (Definition 2).

The variance in the initialization suggests that with some constant probability

the distribution of the two colors will be slightly asymmetric w.r.t. the two com-

munities, i.e., the first community will have a bias toward a color, while the second

community will have a bias toward the other color. Without loss of generality, we

consider the case in which s1 is positive and s2 is negative, i.e., the first community

is unbalanced toward color red while the second community is unbalanced toward

color blue.

Roughly speaking, we show that when the initialization is“lucky”, i.e., the biases

in the two communities are toward different colors, there is a significant probabil-

ity that the process will rapidly make the distribution more and more asymmetric

until converging to an almost-clustered configuration (Definition 6.1.2), i.e., a con-

figuration in which, apart from a small number of outliers, the nodes in the two

communities support different colors. This behavior of the 2-Choices dynamics is

formalized in the following theorem.

Page 70

Chapter 6. Metastability on Clustered Graphs

Theorem 6.2.1 (Constant probability of clustering). Let G = (V,E) be a connected

(2n, d, b)-clustered regular graph such that b
d = O(n−1/2) and λ = O(n−1/4). Let

c ∈ N be any constant; let us define the two following events about the 2-Choices

dynamics on G:

• C: “Starting from a random initialization the process reaches an almost-

clustered configuration within O(log n) rounds.”

• Mc: “Starting from an almost-clustered configuration the process stays in

almost-clustered configurations for nc rounds.”

For two suitable positive constants γ1 and γ2 it holds that

P (C) > γ1 and P (Mc) > 1− n−γ2 . (6.3)

Proof. The proof is divided in the following steps (a visual representation is available

in Figure 6.2):

1. The bias in each community is initially |si| = Θ(
√
n), for each i ∈ {1, 2}, and

the sign of the biases is different, with constant probability (Lemma 6.2.1);

2. The bias in each community becomes |si| = Θ(
√
n log n), for each i ∈ {1, 2},

in O(log log n) rounds and the sign of the biases is preserved, with constant

probability (Lemma 6.2.4);

3. The bias in each community becomes |si| > n−O(log n), for each i ∈ {1, 2}, in

O(log n) rounds and the sign of the biases is preserved, with high probability

(Lemma 6.2.5);

4. The process enters an almost-clustered configuration in one single round and

lies in the set of almost-clustered configurations for the next nc rounds, with

high probability (Lemma 6.2.6).

Before starting with the proof, let us introduce some extra notation. Let b
d 6

c1 ·n−1/2 for some positive constant c1, i.e., let every node in each community have

at most c1 neighbors in the opposite community for every
√
n neighbors in their

own. Let λ 6 c2 · n−1/4, for some positive constant c2; note that the hypothesis on

λ implies that the subgraph induced by each community is a good expander. Let

us define the constant h := 4(2
√

2c1 + c2
2).

We start the analysis of the process by looking at the initialization phase. In

particular, in Lemma 6.2.1 we show that there is a probability at least constant

that the initialization is “lucky”, i.e., that the biases in the two communities are

Θ(
√
n) toward different colors. This is true because the Binomial distribution,

i.e., the initial distribution of the colors in the graph, is well approximated by a

Gaussian distribution, and the latter has a constant probability to deviate from

the mean by the standard deviation. The Central Limit Theorem establishes the

approximation of the distribution and we are able to quantify it using Berry-Esseen

Theorem (Theorem E.3.1).

Page 71

Chapter 6. Metastability on Clustered Graphs

(a) Phase 1: Lucky initialization (b) Phase 2: Symmetry breaking

(c) Phase 1: Convergence (d) Phase 1: Metastability

Figure 6.2: A visualization of the metastable behavior of the 2-Choices dynamics

on clustered regular graphs.

Lemma 6.2.1 (Lucky initialization). Let G = (V,E) be a (2n, d, b)-clustered regular

graph and let each node u ∈ V choose a color c
(0)
u ∈ {red, blue} uniformly at random

and independently from the others. Let c1 and c2 be two positive constants. Then,

there exists a constant γ1 such that

P
(
s

(0)
1 > h

√
n ∧ −s(0)

2 > h
√
n
)
> γ1. (6.4)

Then, considering a configuration c(t) at a generic time t, we look at the ex-

pected evolution of the process observing the behavior of one single community,

but also taking into account the influence of the other. Informally, Lemma 6.2.2

gives a bound to the number of nodes that will support the minority color in each

community at the next round as a function of all the parameters involved in the

process: the number of nodes supporting the minority color in each community at

the current round; the number of nodes supporting the same color in the other

community at the current round; the expansion of the communities λ 6 c2 · n−1/4;

the cut density b
d 6 c1 · n−1/2.

The proof of Lemma 6.2.2 leverages the fact that the expected number of nodes

supporting a given color can be expressed as a quadratic form of the transition

matrix of a simple random walk on the graph, allowing to relate the behavior of the

process to the expansion of the communities, as exploited in [CER+15, CRRS17].

Lemma 6.2.2 (Expected decrease of the minority color). Let G be a (2n, d, b)-

clustered regular graph. For any configuration c(t) we have that

E
[
|B(t+1)

1 |
∣∣∣ c(t)

]
<

Page 72

Chapter 6. Metastability on Clustered Graphs

|B(t)
1 |


1− s1

2n
+

c2
2√
n

+
2c1√
n

√√√√ |B
(t)
2 |

|B(t)
1 |

(
1

2
− s1

2n
+

c2
2√
n

+
c2

1|B
(t)
2 |

n|B(t)
1 |

)
 (6.5)

and

E
[
|R(t+1)

2 |
∣∣∣ c(t)

]
<

|R(t)
2 |


1 +

s2

2n
+

c2
2√
n

+
2c1√
n

√√√√ |R
(t)
1 |

|R(t)
2 |

(
1

2
+
s2

2n
+

c2
2√
n

+
c2

1|R
(t)
1 |

n|R(t)
2 |

)
 . (6.6)

It follows from Lemma 6.2.2 that the asymmetry in the coloring of the nodes in

the two communities continues to grow in expectation. In fact, when in a certain

range of values, the bias in the first community increases in expectation at each

round while the bias in the second community decreases in expectation at each

round, since the minority color in each community decreases. With Lemma 6.2.3

we prove that the increase of the bias in the first community and the decrease of

the bias in the second community we have shown in expectation in Lemma 6.2.2

is multiplicative w.h.p. whenever s1 satisfies s1 ∈ [h
√
n, n2] and s2 satisfies s2 ∈

[−n
2 ,−h

√
n]. With the use of concentration of probability arguments, namely a

multiplicative form of the Chernoff bounds [DP09, Lemma 1.1], we show that the

number of nodes with the minority color in each community decreases and we use

this fact to prove Lemma 6.2.3.

Lemma 6.2.3 (Probability of multiplicative growth of the bias). Let c(t) be a

configuration such that h
√
n 6 s1 6 n

2 and h
√
n 6 −s2 6 n

2 . Then, it holds that

P
(
s

(t+1)
1 > (1 + 1/16) s1

∣∣∣ c(t)
)
> 1− e−2s21/322n (6.7)

and

P
(
s

(t+1)
2 6 (1 + 1/16) s2

∣∣∣ c(t)
)
> 1− e−2s22/322n. (6.8)

Now we know that there is a constant probability that the initialization of the

process starts is “lucky” (Lemma 6.2.1); we also know that the bias in the first com-

munity will increase in expectation and the bias in the second community will de-

crease in expectation (Lemma 6.2.2); moreover, when in a given range, we know that

the biases will follow their expected behavior with high probability (Lemma 6.2.3).

Then we need to show that the asymmetry in the coloring of the two com-

munities will rapidly increase up to a configuration such that |si| = Θ(
√
n log n),

for each i ∈ {1, 2}, while the sign of the biases is preserved. More formally, with

Lemma 6.2.4 we prove the internal symmetry breaking of each community. This is

possible by applying Lemma 6.2.1, and by iterating the application of Lemma 6.2.3

for O(log log n) rounds, i.e., until the bias is large enough; finally we handle the

stochastic dependency between the two biases during their respective increases in

opposite directions.

Page 73

Chapter 6. Metastability on Clustered Graphs

Lemma 6.2.4 (Clustering – Symmetry Breaking). Starting from an initial con-

figuration where each node u ∈ V chooses a color c
(0)
u ∈ {red, blue} uniformly at

random and independently from the others, it holds that, with constant probability,

within O(log log n) rounds the process reaches a configuration c(t) such that

s
(t)
1 >

√
n log n and − s(t)

2 >
√
n log n. (6.9)

Once the internal symmetry of each community is broken, we show that, with

high probability, both biases keep increasing while preserving their sign until they

rapidly reach a configuration in which the minority color in each community has

at most logarithmic size. This behavior is formally proved in Lemma 6.2.5, again

through the application of Lemma 6.2.2 and Lemma 6.2.3.

Lemma 6.2.5 (Convergence). Starting from a configuration c(t) such that |si| >√
n log n, for each i ∈ {1, 2}, there exist two rounds τ1, τ2 = O(log n) such that

|s(τ1)
1 | > n− log n and |s(τ2)

2 | > n− log n (6.10)

and the sign of the biases is preserved, with high probability.

Finally, with Lemma 6.2.6 we show that the number of wrongly colored nodes in

each community drops to O(log n/ log log n) in one single round (by approximating

it with a Poisson random variable through an application of Le Cam’s Theorem)

and then, with high probability, the process enters a metastable phase in which the

only possible configurations are almost-clustered ; this will last for any polynomial

number of rounds. In other words, even if a few nodes in each community will

continue to change color, almost all the nodes in one community will support one

color while almost all the nodes in the other community will support the other color.

Note that this quantity is tight : It is possible to prove that, within any polynomial

number of rounds, there will be a round in which at least Ω(log n/ log log n) nodes

in each community will have the wrong color.

Lemma 6.2.6 (Metastability). Let c ∈ N be any constant. Starting from a config-

uration c(t) such that |si| > n− log n for each i ∈ {1, 2}, for the next nc rounds the

process lies in the set of configurations such that

|si| > n−O
(

log n

log log n

)
(6.11)

and the sign of the bias is preserved, with high probability.

More formally, through Lemma 6.2.5 and Lemma 6.2.6 we can finally prove that

P (C) > γ1 and P (Mc) > 1 − n−γ2 for any constant c, concluding the proof of

Theorem 6.2.1. �

Page 74

Chapter 6. Metastability on Clustered Graphs

Technical proofs

Proof of Lemma 6.2.1

Proof. The initial bias of the first cluster s1 = |R1| − |B1| can be thought as a sum

of Rademacher random variables, i.e. s1 =
∑

i∈V1 Xi where Xi = 1 if node i chooses

color red and Xi = −1 if node i chooses color blue. Rademacher random variables

have mean equal to 0, variance equal to 1, and third moment equal to 1; thus, we

can apply the Berry-Esseen theorem (Theorem E.3.1) which in our case states that

∣∣∣∣P
(∑

i∈V1 Xi√
n

6 h

)
− Φ(h)

∣∣∣∣ 6
C√
n
, (6.12)

where Φ is the cumulative distribution function of the standard normal distribution

and C is a universal positive constant. Hence,

P


∑

i∈V1
Xi < 4(2

√
2c1 + c2

2)
√
n


 6 Φ(4(2

√
2c1 + c2

2)) +
C√
n

(6.13)

(a)

6 Φ(4(2
√

2c1 + c2
2)) + ε (6.14)

(b)

6 α, (6.15)

where in (a) ε is a suitably small positive constant and (b) holds for a positive

constant α strictly smaller than one, because for every h constant also Φ(h) is a

constant strictly smaller than one. The same inequality also holds for s2. Note

that, since the random variables s1 and s2 are independent, we have:

P
(
s1 > h

√
n
)
·P
(
s2 > h

√
n
)
> (1− α)2 = γ1. (6.16)

�

Proof of Lemma 6.2.2

Proof. W.l.o.g. we analyze the case of the blue minority color in community 1. The

proof is completely symmetric for the red minority color in community 2.

For every set Z ∈ {B,B1, B2, R,R1, R2} and for every node v ∈ V , we define

Z(v) = N(v) ∩ Z, where N(v) is the set of neighbors of v. Thus, by definition

of 2-Choices dynamics (Definition 2), we can write the expected number of nodes

supporting the minority color in community 1 at round t + 1 as the sum of the

probabilities for each node supporting color red of picking two blue nodes (and thus

becoming blue) and the sum of the probabilities for each blue node of not picking

two red nodes (and thus remaining blue).

E
[
|B(t+1)|

1

∣∣∣ c(t)
]

=
∑

x∈R1

(|B(x)|
d

)2

+
∑

x∈B1

(
1−

(|R(x)|
d

)2
)

(6.17)

Page 75

Chapter 6. Metastability on Clustered Graphs

=
∑

x∈V1

(|B(x)|
d

)2

−
∑

x∈B1

(|B(x)|
d

)2

+
∑

x∈B1

(
1−

(
1− |B(x)|

d

)2
)

(6.18)

=
∑

x∈V1

(|B(x)|
d

)2

−
∑

x∈B1

(|B(x)|
d

)2

+

+
∑

x∈B1

(
1− 1 + 2

|B(x)|
d
−
(|B(x)|

d

)2
)

(6.19)

=
∑

x∈V1

(|B(x)|
d

)2

+ 2
∑

x∈B1

(
|B(x)|
d
−
(|B(x)|

d

)2
)

(6.20)

=
∑

x∈V1

(|B(x)|
d

)2

+ 2
∑

x∈B1

(|B(x)|
d

(
1− |B(x)|

d

))
(6.21)

6
∑

x∈V1

(|B(x)|
d

)2

+

(
B1

2

)
, (6.22)

where in the last inequality we used the fact that |B(x)|
d

(
1− |B(x)|

d

)
6 1

4 , since it is

a concave function and its maximum is 1
4 .

In order to bound the quantity
∑

x∈V1

(
|B(x)|
d

)2
we use the assumptions on the

structure of G, i.e. that it is (2n, d, b)-clustered, that b
d 6 c1 · n−1/2, and that

λ 6 c2 · n−1/4. In particular, we split the quantity into three terms as follows:

∑

x∈V1

(|B(x)|
d

)2

=
∑

x∈V1

(|B1(x)|
d

+
|B2(x)|
d

)2

(6.23)

=
∑

x∈V1

(|B1(x)|
d

)2

+
∑

x∈V1

(|B2(x)|
d

)2

+

+ 2
∑

x∈V1

|B1(x)|
d

· |B2(x)|
d

. (6.24)

We upper bound the first of the terms by using λ := max(|λ2|, |λn|, |µ2|, |µn|),
which gives a measure of the internal expansion of the graphs induced by the clus-

ters. Let P̄1,1 := d
aP1,1 be the transition matrix of the subgraph induced by the first

cluster. Notice that, since G is (2n, d, b)-clustered, the subgraph induced by the

first cluster is a-regular and thus P̄1,1 is symmetric. Consequently the eigenvectors

of P̄1,1 form an orthonormal basis of the space. Let 1
(t)
B be the indicator vector

of the set B, i.e. 1
(t)
B (v) = 1 if v ∈ B(t) and 1

(t)
B (v) = 0 otherwise. When clear

from the context we will omit the time t. This allows us to write the matrix in

its spectral decomposition, i.e. P̄1,1 =
∑n

i=1 λiviv
ᵀ
i , and the indicator vector of the

blue nodes in the first cluster as a linear combination of the eigenvectors of P̄1,1,

i.e. 1B1 =
∑n

i=1 αivi with αi = 〈vi,1B1〉. Hence, we get that

∑

x∈V1

(|B1(x)|
d

)2

= ‖P1,11B1‖22 (6.25)

= 1B
ᵀ
1P
ᵀ
1,1 · P1,11B1 (6.26)

Page 76

Chapter 6. Metastability on Clustered Graphs

= 1B
ᵀ
1P

2
1,11B1 (6.27)

=
a2

d2
1B
ᵀ
1P̄

2
1,11B1 (6.28)

6 1B
ᵀ
1P̄

2
1,11B1 (6.29)

= 1B
ᵀ
1 ·

n∑

i=1

λ2
iviv

ᵀ
i ·

n∑

i=1

αivi (6.30)

= 1B
ᵀ
1 ·

n∑

i=1

λ2
iαivi (6.31)

= 1B
ᵀ
1 ·
(
λ2

1α1v1 +
n∑

i=2

λ2
iαivi

)
(6.32)

6 1B
ᵀ
1 ·
(
λ2

1α1v1 + λ2
n∑

i=2

αivi

)
(6.33)

6 1B
ᵀ
1 ·
(
λ2

1α1v1 + λ2
n∑

i=1

αivi

)
(6.34)

= 1B
ᵀ
1 ·
(
α1v1 + λ21B1

)
(6.35)

=
|B1|2
n

+ λ2|B1|. (6.36)

The second of the terms can be bounded using the Cauchy-Schwarz inequality

and the fact that the fraction of neighbors in the other community is b
d . Formally,

we get

∑

x∈V1

(|B2(x)|
d

)2

6 (‖P1,21B2‖2)2 (6.37)

6 (‖P1,2‖2‖1B2‖2)2 (6.38)

=
(
‖P1,2‖2

√
|B2|

)2
(6.39)

6

(√
‖P1,2‖1 · ‖P1,2‖∞ ·

√
|B2|

)2

(6.40)

=

(
b

d

√
|B2|

)2

(6.41)

=
b2

d2
|B2|, (6.42)

where in the last inequality we combined Corollary C.1.1 with the two following

observations:

• ‖P1,2‖1 := max16j6n
∑n

i=1 |bij | = b
d , since each node in the first community

has exactly b neighbors in the second community.

• ‖P1,2‖∞ := max16i6n
∑m

j=1 |bij | = b
d , since each node in the second community

has exactly b neighbors in the first community and P1,2 = P ᵀ2,1.

Page 77

Chapter 6. Metastability on Clustered Graphs

For the third and last term, which equals twice the product of the first two, we

use the previously derived bounds and get the following quantity:

2
∑

x∈V1

|B1(x)|
d

· |B2(x)|
d

= 2‖P1,1b1‖2 · ‖P1,2b2‖2 (6.43)

6 2
b

d

√
|B2|

(|B1|2
n

+ λ2|B1|
)
. (6.44)

Before combining the three bounds, we recall that by hypothesis G is such that
b
d 6 c1 · n−1/2 and λ 6 c2 · n−1/4. Hence:

E
[
|B(t+1)|

1

∣∣∣ c(t)
]

6
|B1|2
n

+ λ2|B1|+
b2

d2
|B2|+ 2

b

d

√
|B2|

(|B1|2
n

+ λ2|B1|
)

+

(|B1|
2

)
(6.45)

=
|B1|2
n

+ λ2|B1|+
b2

d2
|B2|+ 2

b

d

√
|B1| · |B2|

(|B1|
n

+ λ2

)
+

(|B1|
2

)
(6.46)

6
|B1|2
n

+ c2
2

|B1|√
n

+ c2
1

|B2|
n

+
2c1√
n

√
|B1| · |B2|

(|B1|
n

+
c2

2√
n

)
+

(|B1|
2

)
(6.47)

= |B1|
(
|B1|
n

+
c2

2√
n

+
c2

1|B2|
n|B1|

+
2c1√
n

√
|B2|
|B1|

(|B1|
n

+
c2

2√
n

)
+

1

2

)
(6.48)

< |B1|
(

1

2
− s1

2n
+

c2
2√
n

+
c2

1|B2|
n|B1|

+
2c1√
n

√
|B2|
|B1|

(
1

2
− s1

2n
+

c2
2√
n

)
+

1

2

)
(6.49)

< |B1|
(

1

2
− s1

2n
+

c2
2√
n

+
2c1√
n

√
|B2|
|B1|

(
1

2
− s1

2n
+

c2
2√
n

+
c2

1|B2|
n|B1|

)
+

1

2

)
(6.50)

< |B1|
(

1− s1

2n
+

c2
2√
n

+
2c1√
n

√
|B2|
|B1|

(
1

2
− s1

2n
+

c2
2√
n

+
c2

1|B2|
n|B1|

))
. (6.51)

Thus, we finally get

E
[
|B(t+1)

1 |
∣∣∣ c(t)

]

< |B1|
[

1− s1

2n
+

c2
2√
n

+
2c1√
n

√
|B2|
|B1|

(
1

2
− s1

2n
+

c2
2√
n

+
c2

1|B2|
n|B1|

)]
(6.52)

and, having a symmetric scenario in the other community, also that

E
[
|R(t+1)

2 |
∣∣∣ c(t)

]

< |R2|
[

1 +
s2

2n
+

c2
2√
n

+
2c1√
n

√
|R1|
|R2|

(
1

2
+
s2

2n
+

c2
2√
n

+
c2

1|R1|
n|R2|

)]
. (6.53)

�

Page 78

Chapter 6. Metastability on Clustered Graphs

Proof of Lemma 6.2.3

Proof. Let us start with the bias in the first community. Note that our assumption

on the bias implies that n
4 6 |B1| 6 n−s1

2 < n
2 , and thus |B2|

|B1| 6 4. Therefore, under

these conditions the expectation of |B(t+1)
1 | can be upper bounded as follows:

E
[
|B(t+1)|

1

∣∣∣ c(t)
]

< |B1|
(

1− s1

2n
+

c2
2√
n

+
2c1√
n

√
|B2|
|B1|

(
1

2
− s1

2n
+

c2
2√
n

+
c2

1|B2|
n|B1|

))
(6.54)

< |B1|
(

1− s1

2n
+

c2
2√
n

+
2c1√
n

√
4

(
1

2
− s1

2n
+

c2
2√
n

+
4c2

1

n

))
(6.55)

(a)
< |B1|

(
1− s1

2n
+

c2
2√
n

+
2c1√
n

√
4 · 1

2

)
(6.56)

< |B1|
(

1− s1

2n
+

c2
2√
n

+
2c1

√
2√

n

)
(6.57)

= |B1|
(

1− s1

2n
+

2c1

√
2 + c2

2√
n

)
(6.58)

= |B1|
(

1− s1

2n
+
s1

4n

)
(6.59)

= |B1|
(

1− s1

4n

)
, (6.60)

where in (a) we used that s1
2n >

c22√
n

+
4c21
n by hypothesis.

Using the additive form of the Chernoff Bound and that s1 6 n
2 , we get that

P
(
|B1|(t+1) > |B1|

(
1− s1

8n

) ∣∣∣ c(t)
)

= P

(
|B1|(t+1) > |B1|

(
1− s1

4n

)
+
s1|B1|

8n

∣∣∣∣ c(t)

)
(6.61)

6 P
(
|B1|(t+1) > |B1|

(
1− s1

4n

)
+
s1

32

∣∣∣ c(t)
)

(6.62)

6 P
(
|B1|(t+1) > E

[
|B1|(t+1)

∣∣∣ c(t)
]

+
s1

32

∣∣∣ c(t)
)

(6.63)

6 exp (−2(s1)2/(322n)). (6.64)

Since it holds that s1 = n−2|B1|, then with probability 1−exp (−2(s1)2/(322n))

it holds that

s
(t+1)
1 > n− 2|B1|

(
1− s1

8n

)
(6.65)

= n− (n− s1)
(

1− s1

8n

)
(6.66)

= n− n
(

1− s1

8n

)
+ s1

(
1− s1

8n

)
(6.67)

=
s1

8
+ s1 −

s2
1

8n
(6.68)

>
s1

8
+ s1 −

s1

16
(6.69)

Page 79

Chapter 6. Metastability on Clustered Graphs

= s1

(
1 +

1

16

)
. (6.70)

The same reasoning can also be applied to the symmetric case of s2. �

Proof of Lemma 6.2.4

Proof. Let I be the event “the initial configuration has the property that s
(0)
1 >

4(2
√

2c1 + c2
2)
√
n and −s(0)

2 > 4(2
√

2c1 + c2
2)
√
n.” In Lemma 6.2.1 we proved that

I happens with a probability that is at least constant. Then, starting from such

configuration, we use Lemma 6.2.3 in order to show that s1 becomes greater than√
n log n and s2 becomes smaller than −√n log n within O(log log n) rounds, with

constant probability.

We define a round t to be successful w.r.t. community 1 if one of the two following

conditions hold:

• the process has not reached yet a configuration in which the bias is is multi-

plicatively increasing and is large enough, namely s
(t)
1 > s

(t−1)
1

(
1 + 1

16

)
and

s
(t−1)
1 <

√
n log n;

• the bias was already large enough in a previous round, i.e., there exists a

round t′ < t such that s
(t′)
1 >

√
n log n.

The definition extends to community 2 in a symmetric fashion.

Let h = 4(2
√

2c1 + c2
2), α = 2(h/32)2, β = (1 + 1/16), and let us define the

events

S(t)
i : “The round t is successful w.r.t. community i.”

Ki: “The first logβ log n rounds are successful w.r.t. community i.”

Note that, after T consecutive successful rounds with respect to community 1,

the stochastic process reaches a configuration c̄ such that s1 > h
√
n(1 + 1/16)T

and then the probability that also the next round is successful with respect to

community 1 is at least 1− exp
{
−2h2(1+1/16)2T

322

}
. Conditioning to event I, we have

that

P (K1 | I) = P




logβ logn∧

i=1

S(i)
1

∣∣∣∣∣∣
I


 (6.71)

=

logβ logn∏

i=1

P


S(i)

1

∣∣∣∣∣∣
c̄(i−1) :

i−1∧

j=1

S(j)
1 , I


 (6.72)

>

logβ logn∏

i=1

(1− e−2h2(1+1/16)2i/(32)2) (6.73)

=

logβ logn∏

i=1

(1− e−αβ2i
) (6.74)

Page 80

Chapter 6. Metastability on Clustered Graphs

= exp


log




logβ logn∏

i=1

(1− e−αβ2i)




 (6.75)

= exp




logβ logn∑

i=1

log(1− e−αβ2i))


 (6.76)

> exp

(∞∑

i=1

log(1− e−αβ2i))

)
(6.77)

(a)
= exp

(
−
∞∑

i=1

[
e−αβ

2i
+O(e−2αβ2i

)
])

(6.78)

(b)
> exp

(
− 1

α

∞∑

i=1

[
β−2i +O(β−2i)

]
)

(6.79)

= exp

(
− 1

α

(
1

1− β−2

)
(1 + C)

)
(6.80)

= e−β
′
, (6.81)

where in (a) we expanded log(1− x) = −x− x2

2 − x3

3 − . . . using the Taylor series,

and in (b) we used that

e−αβ
2i
< α−1β−2i =⇒ −αβ2i < log(α−1β−2i) =⇒ αβ2i > log(αβ2i), (6.82)

which is always true for our values of α, β, i since we always have αβ2i > 0; the

term C appearing in the last bound is a constant due to the smaller order terms

coming from the Taylor approximation.

Note that the bias, starting from O(
√
n), reaches a value of O(

√
n log n) after

O(log log n) rounds. This implies that the bias reaches a value of at least
√
n log n

within O(log log n) rounds with probability at least eβ
′
.

In a completely symmetric fashion, the same holds for community 2. Now we

compute the probability P (K1,K2 | I) using the fact that, conditioning on the

previous configuration, the events that a round is successful w.r.t. community 1

and community 2 are independent.

P (K1,K2 | I) > P




logβ logn∧

i=1

S(i)
1 ∧ S

(i)
2

∣∣∣∣∣∣
I


 (6.83)

=

logβ logn∏

i=1

P
(
S(i)

1 ∧ S2(i)
∣∣∣ c̄(i−1) : ∩i−1

j=1S
(j)
1 ∧ S

(j)
2 , I

)
(6.84)

=

logβ logn∏

i=1

P
(
S(i)

1

∣∣∣ c̄(i−1) : ∩i−1
j=1S

(j)
1 ∧ S

(j)
2 , I

)

×
logβ logn∏

i=1

P
(
S2(i)

∣∣∣ c̄(i−1) : ∩i−1
j=1S

(j)
1 ∧ S

(j)
2 , I

)
(6.85)

= P




logβ logn∧

i=1

S(i)
1

∣∣∣∣∣∣
I


 ·P




logβ logn∧

i=1

S(i)
2

∣∣∣∣∣∣
I


 (6.86)

Page 81

Chapter 6. Metastability on Clustered Graphs

> e−2β′ (6.87)

= γ3. (6.88)

�

Proof of Lemma 6.2.5

Proof. The proof has the following structure: We focus only on one of the biases

and we show, in two different phases, that it will grow until it reaches the value

n − log n within O(log n) rounds, w.h.p. Then we apply the Union Bound and we

show that this holds for both the biases, w.h.p.

W.l.o.g. we assume that both the biases are positive. For any i ∈ {1, 2} we

define τ ′i as the first round such that si > n
2 starting from a configuration such that

si >
√
n log n. Using Lemma 6.2.3 and the hypotheses si >

√
n log n we get that,

for each round t such that s
(t)
i 6

n
2 , it holds

P
(
s

(t+1)
i > (1 + 1/16)si

∣∣∣ c(t) : si >
√
n log n

)

> 1− exp (−2(si)
2/(322n)) (6.89)

> 1− exp−O(log2 n) (6.90)

> 1− n−a1 (6.91)

for any positive constant a1. By iteratively applying the Union Bound we get that

w.h.p. we have O(log n) consecutive rounds of this multiplicative grow and thus it

holds

P
(
τ ′i > b2 log n

)
> 1− n−a2 , (6.92)

for two suitable positive constants a2, b2. Now we define, for any i ∈ {1, 2}, τi as the

first round such that si > n− log n starting from a configuration such that si > n
2 .

Let us focus on community 1. Our assumption on the sign of the biases implies that

there the minority color is blue. This, together with the fact that s1 > n
2 , implies

|B1| 6 n
4 .

Consider a configuration such that 2 log n 6 |B1| 6 n
4 . Then it holds

P

(
|B(t+1)|

1 > |B(t)
1 |(1−

1

5
)

∣∣∣∣ c(t)

)
< n−Ω(1). (6.93)

Indeed, using that s1
2n >

n
2 >

c22√
n

+
c21|B2|
n|B1| and Lemma 6.2.2 we get

E
[
|B(t+1)|

1

∣∣∣ c(t)
]

< |B1|
(

1− s1

2n
+

c2
2√
n

+
2c1√
n

√
|B2|
|B1|

(
1

2
− s1

2n
+

c2
2√
n

+
c2

1|B2|
n|B1|

))
(6.94)

< |B1|
(

1− s1

2n
+

c2
2√
n

+
2c1√
n

√
|B2|
|B1|

· 1

2

)
(6.95)

Page 82

Chapter 6. Metastability on Clustered Graphs

6 |B1|
(

1− 1

4
+

c2
2√
n

+
2c1√
n

√
n

2 log n
· 1

2

)
(6.96)

= |B1|
(

1− 1

4
+

c2
2√
n

+
2c1√
4 log n

)
(6.97)

= |B1|
(

1− 1

4
+

c2
2√
n

+
c1√
log n

)
(6.98)

6 |B1|
(

1− 1

5

)
, (6.99)

where the last inequality holds for a sufficient large n. Then, using the multiplicative

form of the Chernoff Bound, we get that:

P

(
B

(t+1)
1 > (1− 1

25
)|B1|

)

= P

(
B

(t+1)
1 >

(
1 +

1

5

)(
1− 1

5

)
|B1|

)
(6.100)

6 e−(1− 1
5)|B1|/125 (6.101)

6 e−(1− 1
5)2 logn/125 (6.102)

= n−γ2 , (6.103)

for a positive constant γ2. Let τ ′′i be the first round such that si > n − log n,

starting from a configuration such that si > n
2 . Equation (6.93) implies that, by an

application of the Union Bound,

P
(
τ ′′i > b3 log n

)
> 1− n−a3 (6.104)

for two suitable positive constants a3, b3. Thus, if we define τi as the first round

such that si > n− log n, starting from a configuration such that si >
√
n log n, we

get

P
(
τ1 > (b2 + b3) log n

⋃
τ2 > (b2 + b3) log n

)

< P
(
τ ′1 > b2 log n

⋃
τ ′′1 > b3 log n

⋃
τ ′2 > b2 log n

⋃
τ ′′2 > b3 log n

)
(6.105)

< P
(
τ ′1 > b2 log n

)
+ P

(
τ ′′1 > b3 log n

)
+

+ P
(
τ ′2 > b2 log n

)
+ P

(
τ ′′2 > b3 log n

)
(6.106)

< n−a4 , (6.107)

for a suitable positive constant a4. �

Proof of Lemma 6.2.6

Proof. Let us define Xu as an indicator random variable such that Xu = 1 if node

u will support the minority color of community i at the next round and Xu = 0

otherwise; let pu be the probability of having Xu = 1. We approximate
∑

u∈V Xu

with a Poisson random variable using Le Cam’s Theorem (Theorem E.3.2). Thanks

Page 83

Chapter 6. Metastability on Clustered Graphs

to Le Cam’s Theorem, if
∑

u∈Vi p
2
u 6

1
nε , for some positive constant ε, then any

result that holds on the Poisson random variable with high probability will hold

with high probability also for
∑

u∈Vi Xu.

Claim 6.2.1. It holds that
∑

u∈Ci p
2
u = O

(
log3 n
n

)
.

Proof. Let σ−i be the set of nodes supporting the minority color of community i

and σ+
i be the set of nodes supporting the majority one. Let zu be the number

of neighbors of node u belonging to σ−i , and z̄u be the number of neighbors of u

belonging to σ+
i . Notice that |σ−i | = log n and |σ+

i | = n− log n. Thus

∑

u∈Ci
p2
u =

∑

u∈Ci,
u∈σ+

i

p2
u +

∑

u∈Ci,
u∈σ−i

p2
u. (6.108)

Let us analyze the two terms separately. As for the first term we have that

∑

u∈Ci,
u∈σ+

i

p2
u 6

∑

u∈Ci,
u∈σ+

i

(
zu + b

a+ b

)4

(6.109)

(a)

6 a

(
log n+ b

a+ b

)2

+ (n− log n− a)

(
b

a+ b

)4

(6.110)

6
a log4 n+ 4ab log3 n+ 6ab2 log2 n+ 4ab3 log n+ b4n− b4 log n

a4
(6.111)

=
log4 n

a4
+

4b log3 n

a4
+

6b2 log2 n

a4
+

4b3 log n

a4
+
b4n

a4
− b4 log n

a4
(6.112)

(b)

6
log4 n

n2
+

4 log3 n

n2
+

6 log2 n

n2
+

4 log2 n

n2
+

n

n2
− log n

n2
(6.113)

= O
(

1

n

)
(6.114)

where in (a) we used that at most a nodes can have all the log n nodes belonging

to σ−i as neighbors, and in (b) that b > 1, a > b
√
n >

√
n by hypothesis of

Theorem 6.2.1, and thus b
a 6

1√
n

.

As for the second term we have that

∑

u∈Ci,
u∈σ−i

p2
u 6

∑

u∈Ci,
u∈σ−i

(
z̄u + b

a+ b

)2

(6.115)

6
∑

u∈Ci,
u∈σ−i

(
log n+ b

a+ b

)2

(6.116)

= log n

(
log n+ b

a+ b

)2

(6.117)

6
log3 n

a2
+

2b log2 n

a2
+
b2 log n

a2
(6.118)

(a)

6
log3 n

n
+

2 log n

n
+

log n

n
(6.119)

Page 84

Chapter 6. Metastability on Clustered Graphs

= O
(

log3 n

n

)
, (6.120)

where in (a) we used again that a >
√
n.

Finally, by combining the two bounds together, we get

∑

u∈Ci
p2
u = O

(
1

n

)
+O

(
log3 n

n

)
= O

(
log3 n

n

)
. (6.121)

�

We now show that a Poisson(λ) random variable is upper bounded byO
(

logn
log logn

)

w.h.p. as long as λ is constant w.r.t. n.

Claim 6.2.2. Let X ∼ Poisson(λ) where λ is a positive real number, that is

P (X = i) =
λi

i!
e−λ.

If t = c log n/ log log n for some constant c > 0 and λ is constant w.r.t. n, then

P (X > t) 6 n−c+o(1).

Proof. We have

P (X > t) =

∞∑

i=t+1

λi

i!
e−λ (6.122)

=
λt

t!
e−λ

∞∑

i=1

λi∏i
j=1 (t+ j)

(6.123)

6
λt

t!
e−λ

∞∑

i=1

λi

ti
(6.124)

(a)

6
λt

t!
e−λ

∞∑

i=1

2−i (6.125)

(b)

6

(
λe

t

)t
e−λ (6.126)

=

(
λe

c logn
log logn

)c logn
log logn

e−λ (6.127)

=
(
elog(λe)−log c−log logn+log log logn

)c logn
log logn

e−λ (6.128)

= e
−λ+c logn

log logn(log λe
c
−log logn+log log logn) (6.129)

= e−c logn(1−o(1)) (6.130)

= n−c+o(1), (6.131)

where in (a) we used t > 2λ, and in (b) we used Stirling’s formula t! >
(
t
e

)t
. �

As a last step, we show that λ =
∑

u∈Vi pu is bounded by a constant w.r.t. n.

Page 85

Chapter 6. Metastability on Clustered Graphs

Claim 6.2.3. Let λ =
∑

u∈Vi pu and σ−i be the set of nodes supporting the minority

color of community i and σ+
i be the set of nodes supporting the majority one. It

holds that λ = O(1).

Proof. Let zu be the number of neighbors of node u belonging to σ−i , and z̄u be the

number of neighbors of u belonging to σ+
i . Notice that |σ−i | = log n and |σ+

i | =

n− log n. Thus

λ =
∑

u∈Ci
pu =

∑

u∈Ci,
u∈σ+

i

pu +
∑

u∈Ci,
u∈σ−i

pu. (6.132)

Let us analyze the two terms separately. As for the first term, similarly to Claim

6.2.1, we have that

∑

u∈Ci,
u∈σ+

i

pu 6
∑

u∈Ci,
u∈σ+

i

(
zu + b

a+ b

)2

(6.133)

(a)

6 a

(
log n+ b

a+ b

)2

+ (n− log n− a)

(
b

a+ b

)2

(6.134)

=
a log2 n+ 2ab log n+ ab2 + b2n− b2 log n− ab2

(a+ b)2
(6.135)

6
a log2 n+ 2ab log n+ b2n− b2 log n

a2
(6.136)

=
log2 n

a
+

2b log n

a
+
b2n

a2
− b2 log n

a2
(6.137)

(b)

6
log2 n√

n
+

2 log n√
n

+
n

n
− log n

n
(6.138)

= 1 +
log2 n√

n
+

2 log n√
n
− log n

n
, (6.139)

where in (a) we used that at most a nodes can have all the log n nodes belonging

to σ−i as neighbors, and in (b) that b > 1, a > b
√
n >

√
n by hypothesis of

Theorem 6.2.1, and thus b
a 6

1√
n

.

As for the second term we have that

∑

u∈Ci,
u∈σ−i

pu 6
∑

u∈Ci,
u∈σ−i

(
z̄u + b

a+ b

)
(6.140)

6
∑

u∈Ci,
u∈σ−i

(
log n+ b

a+ b

)
(6.141)

= log n

(
log n+ b

a+ b

)
(6.142)

6
log2 n

a
+

log n

a
(6.143)

(a)

6
log2 n√

n
+

log n√
n
, (6.144)

Page 86

Chapter 6. Metastability on Clustered Graphs

where in (a) we used again that a >
√
n.

Finally, by combining the two bounds together, we get

λ =
∑

u∈Ci
pu =

∑

u∈Ci,
u∈σ+

i

pu +
∑

u∈Ci,
u∈σ−i

pu (6.145)

6 1 +
log2 n√

n
+

2 log n√
n
− log n

n
+

log2 n√
n

+
log n√
n

(6.146)

= 1 +
2 log2 n√

n
+

3 log n√
n
− log n

n
(6.147)

= 1 + o(1) (6.148)

= O(1). (6.149)

�

We showed that the number of wrongly colored nodes
∑

u∈V Xu is well ap-

proximated by a Poisson random variable and such random variable, thanks to

Claim 6.2.2, will be O
(

logn
log logn

)
w.h.p. �

6.2.1 A distributed graph clustering algorithm

We showed that, starting from a random initialization, the 2-Choices dynamics

reaches an almost-clustered configuration within O(log n) rounds with constant

probability. This result is tight, given that there is constant probability that

the two communities converge to the same color; Figure 6.3 shows the four pos-

sible behaviors of the 2-Choices dynamics on clustered regular graphs. Similarly

to Lemma 6.2.1, it holds that with constant probability both the biases are un-

balanced toward the same color, i.e., s
(0)
1 > h

√
n and s

(0)
2 > h

√
n. It means

that a suitable variant of Lemma 6.2.4 shows that there is constant probabil-

ity that within O(log log n) rounds the process reaches a configuration such that

s
(t)
1 >

√
n log n and s

(t)
2 >

√
n log n. Then, Lemma 6.2.5 and Lemma 6.2.6 show

that the system gets quickly stuck in a configuration where almost all nodes have

the same color. This is a proof that, given the symmetric nature of the process, we

need some luck in the initialization to reach an almost-clustered configuration.

In order to get an algorithm that works w.h.p. we sketch how to use the results

of the previous sections to build a Community-Sensitive Labeling [BCM+18] within

Θ(log n) rounds. A Community-Sensitive Labeling (CSL) is made up by a labeling

of the nodes and a predicate that can be applied to pairs of labels; it holds that, for

all but a small number of outliers, the predicate is satisfied if the nodes belong to the

same community, and it is not satisfied if the nodes belong to different communities.

A visualization of the CSL can be seen in Figure 6.4.

Theorem 6.2.2 (LPA via CSL). Let G = (V,E) be a connected and nonbipartite

(2n, d, b)-clustered regular graph such that b
d = O(n−1/2) and λ = O(n−1/4). Let c(0)

Page 87

Chapter 6. Metastability on Clustered Graphs

(a) Metastability (blue vs red) (b) Metastability (red vs blue)

(c) Blue consensus (d) Red consensus

Figure 6.3: A visualization of the four possible behaviors of the 2-Choices dynam-

ics on clustered regular graphs after O(log n) rounds.

Figure 6.4: A visualization of the CSL used to design a distributed graph clustering

algorithm by exploiting the metastable behavior of the 2-Choices dynamics.

be the initial configuration, where each node u ∈ V picks a vector of colors c
(0)
u ∈

{red, blue}` sampled uniformly at random and independently from the other nodes,

such that ` = c log n for some positive constant c. Consider the resulting vector

after Θ(log n) rounds of independent parallel runs of the 2-Choices dynamics, each

one working on a different component of the vector: For all the pairs of nodes but

a polylogarithmic number, it holds that the vectors of nodes in the same community

are equal while the vectors of nodes in different communities are different.

Sketch of proof. As for the first part of the predicate, it is a simple application of

Theorem 6.2.1. Indeed, at least one of the Θ(log n) runs of the 2-Choices dynamics

ends in an almost-clustered configuration with probability 1 − γ−Θ(logn) = 1 −
n−Θ(1). As for the second part we show that no matter if the process reaches an

almost-clustering, nodes in the same community will have the same color with high

Page 88

Chapter 6. Metastability on Clustered Graphs

probability. This is consequence of Lemma 6.2.5 and of the following one, which we

can prove by applying a general tool for Markov Chains [CGG+18, Lemma 4.5].

Lemma 6.2.7 (Consensus – Symmetry Breaking). Starting from any initial con-

figuration c(0), within O(log n) rounds the system reaches a configuration c(t) such

that

|s(t)
1 | >

√
n log n and |s(t)

2 | >
√
n log n, (6.150)

with high probability.

Proof. We are interested in bounding the hitting times τ1 and τ2 defined as, re-

spectively, the first round such that |s1| >
√
n log n and the first round such that

|s2| >
√
n log n. In order to bound one of the two hitting times we use Lemma E.3.1,

a general tool for Markov chains (see [CGG+18, Lemma 4.5]). Let Ω be the the

configuration space of the process and m =
√
n log n the target value. We need to

show that the following two properties hold for each i ∈ {1, 2}:

• For any positive constant h, there exists a positive constant c1 < 1 such that

for every x ∈ Ω : si < m we have

P
(
s

(t+1)
i < h

√
n
∣∣∣ Xt = x

)
< c1, (6.151)

• There exist two positive constants ε and c2 such that for every x ∈ Ω : h
√
n 6

si < m we have

P
(
s

(t+1)
i < (1 + ε)si

∣∣∣ Xt = x
)
< e−c2s

2
i /n. (6.152)

As for the first point, its proof is analogous to the proof of Lemma 6.2.1 since it

is a consequence of the Berry-Esseen Theorem and of the variance of the process. As

for the second point, we already proved it in Lemma 6.2.3, for ε = 1
16 and c2 = 2

322
.

Thus we can conclude that P (τ1 > a log n) < n−b for two positive constants a, b.

Using the Union Bound, it is immediate to show that both the hitting times are

lower bounded by a log n, w.h.p.:

P (τ1 6 a log n, τ2 6 a log n) = 1−P (τ1 > a log n ∪ τ2 > a log n) (6.153)

> 1− [P (τ1 > a log n) + P (τ2 > a log n)] (6.154)

= 1− 2nb. (6.155)

Note that, once a bias has reached a value of at least
√
n log n, by an application

of Lemma 6.2.3 and using the hypothesis si >
√
n log n and of the Union Bound,

it follows that the bias remains above that value for Ω(log n) rounds w.h.p. This

means that the system reaches a configuration such that both the biases have value

at least
√
n log n within O(log n) rounds w.h.p. �

Thus, most pairs of nodes can locally distinguish if they are in the same com-

munity with high probability by checking whether their vectors differ on any com-

ponent. �

Page 89

Chapter 6. Metastability on Clustered Graphs

6.3 Biological implications

6.3.1 A proof of concept for speciation

Evolutionary dynamics is the branch of genetics which studies how populations

evolve genetically as a result of the interactions among the individuals [Dur11].

The study of evolutionary dynamics on graphs started with the investigation of the

fixation probability of the Moran process (Figure 6.5) on different families of graphs,

namely the probability that a new mutation with increased fitness eventually spreads

across all individuals in the population [LHN05]. The Moran process has since then

attracted the attention of the computer science community due to the algorithmic

questions associated to its fixation probability [Gia16, GGG+17].

However, no simple dynamics has been proposed so far in the context of evo-

lutionary graph theory for explaining one of evolution’s fundamental phenomena,

namely speciation [CO04]. Two fundamental classes of driving forces for speciation

can be distinguished: allopatric speciation and sympatric/parapatric speciation. The

former, which refers to the divergence of species resulting from geographical isola-

tion, is nowadays considered relatively well understood [SAL+06]; on the contrary,

the latter, namely divergence without complete geographical isolation, is still con-

troversial [SAL+06, BF07]. In several evolutionary settings the spread of a mutation

appears nonlinear with respect to the number of interacting individuals carrying the

mutation, exhibiting a drift towards the most frequent phenotypes [CO04]. In this

Section we look at the 2-Choices dynamics as a quadratic evolutionary dynamics

on a clustered graph representing sympatric and parapatric scenarios. We regard

the random initialization of the 2-Choices process as two inter-mixed populations of

individuals with different genetic pools. The interactions for reproduction purposes

between the two populations can be categorized in frequent interactions among

individuals within an equal-size bipartition of the populations, i.e., the communi-

ties, and less frequent interactions between these two communities which, in later

Initial population

Select for
reproduction

Select for
reproduction

Select for
death

Replace

Figure 6.5: Visual representation of the Moran process (adapted from [LHN05]).

At each time step an individual is randomly chosen for reproduction according to

its fitness, and a second individual adjacent to it is randomly chosen for death;

the offspring of the first individual then replaces the second. When the underlying

network is regular, the process is equivalent to the Voter dynamics [BGKMT16].

Page 90

Chapter 6. Metastability on Clustered Graphs

stages of the differentiation process, may be interpreted as genetic admixture, i.e.

interbreeding between two genetically-diverging populations [MDN+13].

Within the aforementioned framework our Theorem 6.2.1 provides an analytical

evolutionary graph-theoretic proof of concept on how speciation can emerge from the

simple nonlinear underlying dynamics of the evolutionary process at the population

level.

6.3.2 On the process of innervation in muscular junctions

During mammalian development neuromuscular junctions and some other postsy-

naptic cells transition from having multiple neurons innervating onto them into

being subject to innervation from a single neuron only [GL98, TWK+12, TL12].

This process takes place as synaptic sites are exchanged between different axons:

Locations on the cell surface of the cell, on which neurons innervate, transition

from being freed by the current innervating neuron to be occupied again by a new

one [TL12] (see Figure 6.7).

In [TL12], it is shown that soon-to-be-eliminated axons rapidly reverse fate and

grow to occupy vacant sites at a neuromuscular junction after they are artificially

damaged in laboratory. Such evidence is argued to support the hypothesis that the

process is driven by a form of competition at the level of neural terminations:

“This reversal supports the idea that axons take over sites that were pre-

viously vacated. Indeed, during normal development we observed with-

drawal followed by takeover. The stimulus for axon growth is not post-

synaptic cell inactivity because axons grow into unoccupied sites even

when target cells are functionally innervated. These results demonstrate

competition at the synaptic level and enable us to provide a conceptual

framework for understanding this form of synaptic plasticity.”

— Turney et al. [TL12].

The authors then provide a simplistic model for the aforementioned process based

on evolutionary graph theory. Their model, illustrated in Figure 6.8, is equivalent

to the Voter dynamics when the underlying graph is assumed to be regular.

In this section we argue that our Theorem 6.2.1 provides evidence for the fact

that, in order for a model based on dynamics2 to comply with experimental evidence

on the outcome of the innervation process, either the innervation sites do not exhibit

spatial bottlenecks or the dynamics cannot be based on majority-like mechanism.

Theorem 6.2.1 shows that, when the 2-Choices dynamics takes place on a clus-

tered graph from a random initial configuration, there is a constant probability

that the system will converge to a configuration in which the two clusters main-

tain an almost-consensus on two different values. This should be contrasted with
2We remark that we did not find any decisive evidence in the experimental literature that the

process could not be better explained through other factors such as communication among axons

via molecular clues (similarly to other developmental neural process such as [AAB+11]).

Page 91

Chapter 6. Metastability on Clustered Graphs

the aforementioned phenomenon of synapse elimination at developing neuromuscu-

lar junctions [TL12, TWK+12], where the outcome is a consensus configuration in

which the whole neuromuscular junction is innervated by a single axon only. Hence,

our Theorem 6.2.1 suggests that, if the competition among axons for innervating a

postsynaptic cell follows a local behavior akin to the 2-Choices dynamics, the topol-

ogy of the sites as formalized in [TL12] (Figure 6.8), should not exhibit a clustered

structure, i.e. a partition in two communities with good expansion properties while

being separated by a sparse cut as in the regular clustered graphs of Theorem 6.2.1.

On the other hand, if experimental evidence would confirm that the graph associ-

ated to the innervation site can indeed exhibit a structure similar to the graphs of

Theorem 6.2.1, then the dynamics implemented by axons should qualitatively differ

from a super-linear majority dynamics such as the 2-Choices one.

We complement our previous argument with simulations on stochastic block

models with two communities [HLL83], on a class of dynamics which generalizes

the 2-Choices dynamics. We call the latter class y-degree majority dynamics.

Definition 6.3.1 (y-degree majority dynamics). In the y-degree majority dynamics,

for a real value y > 0, a generic node u updates its current color with color σ with

probability (|N(u) ∩ Sσ|
du

)y
, (6.156)

where Sσ is the set of nodes supporting color σ, N(u) is the set of neighbors of u,

and du is the degree of u.

Observe that the node stays of its current color with probability 1−∑σ

(
|N(u)∩Sσ |

du

)y
.

As a special case, for y = 2 we get the 2-Choices dynamics and for y = 1 we get the

Voter dynamics.

The stochastic block model (with two communities) is generated by dividing the

nodes in two sets of equal size, called communities, and including each edge with

probability p if its two endpoints are in the same community, and with probability

q if instead the two endpoints belong to different communities. To match the pa-

rameters of Theorem 6.2.1, we set p = n−
1
4 and q = n−

3
4 , with n = 10000, and we

vary y from 1 to 2 with stepsize 0.1.

For each run (50 in total) the y-degree majority dynamics is run until the num-

ber of rounds exceeds
√
n = 100. The outcome of the simulations is illustrated in

Table 6.1 and Figures 6.6a and 6.6b. The results show that, as y decreases from 2 to

1.5, the probability that the dynamics converges (and maintains) a non-consensus

configuration in which the two clusters support different colors deteriorates from

roughly 1
2 to circa 1

3 , with a steeply decreasing derivative, while the time to con-

verge to the almost-consensus (for the run for which that happens) starts increasing

rapidly towards y = 1.5. Below y = 1.5, no convergence to an almost-clustered con-

figuration occurs in any of the 50 runs before exceeding the time limit. This also

Page 92

Chapter 6. Metastability on Clustered Graphs

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
y

0.34

0.36

0.38

0.40

0.42

0.44

0.46
Pe

rc
en

ta
ge

 o

f m
et

as
ta

bl
e

ex
pe

rim
en

ts

(a) Percentage M of metastable runs with

respect to y-degree majority dynamics.

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
y

15

20

25

30

35

40

45

50

55

Sp
ee

d
of

 c
on

ve
rg

en
ce

 to

 m
et

as
ta

bi
lit

y

(b) Number of rounds ρ to converge to

metastable configurations with respect to

y-degree majority dynamics.

Figure 6.6: Experimental results of y-degree majority dynamics on clustered

graphs. Details reported in Table 6.1.

Table 6.1: Results of the experiments on y-degree majority dynamics on clustered

graphs sampled from the stochastic block model with two communities Gn,p,q. Each

experiment has been repeated 50 times. The parameters used for the experiments

are: n = 10000, p = n−1/4, q = n−3/4. The value M represents the percentage of

runs for which an almost-clustered configuration is reached in less than
√
n = 100

iterations; the value ρ represents the average number of rounds for the process

to converge to an almost-clustered configuration (in which the two communities

maintain an almost-consensus on different colors, conditioning on such state being

reached in the current run).

y 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

M 0.00 0.00 0.00 0.00 0.00 0.34 0.40 0.44 0.46 0.46 0.46

ρ 0.00 0.00 0.00 0.00 0.00 32.47 20.40 20.23 18.74 18.17 17.43

confirms the positive results numerically obtained in [TL12] for their dynamics,

which corresponds to the Voter dynamics, where the probability and time for the

dynamics to converge to a consensus have been analytically characterized [HP01].

We remark that, as a byproduct, our numerical experiments also show the low

sensitivity of Theorem 6.2.1 to the regularity assumption.

Page 93

Chapter 6. Metastability on Clustered Graphs

Figure 6.7: Synaptic withdrawal precedes takeover during naturally occurring

synapse elimination (Turney & Lichtman 2012 [TL12]). An illustration from [TL12]

showing the competition among different axons for innervating receptive areas dur-

ing development. Shown are four views of a multiply innervated neuromuscular

junction from the sternomastoid muscle of a living mouse viewed over two days

(scale of 10 micrometers). At the first view (0 h) the orange-colored axon occupied

the lower part of the junction and a small branch at the top. Insets below show

axons (left) and receptors (right, in gray) of the bottom region of the junction.

To more clearly see the extent of the territory occupied by the yellow axon, the

fluorescent protein in orange-colored input was bleached at the nerve entry zone

for several minutes without damaging the axon, using visible continuous wave laser

light. A day later (22 h) the orange-colored input is no longer at the junction, but a

remnant of the retracting axon is visible (arrow). Several sites that had previously

been occupied by the orange axon are now vacant (dashed ellipse). However, by

45 h, the remaining input grew into the vacated territory. The delay between the

withdrawal of the orange axon and the takeover by the yellow one is similar to time

course observed following removal of an input by laser irradiation (∼1 day).

Page 94

Chapter 6. Metastability on Clustered Graphs

Figure 6.8: Model of synaptic competition based on piecewise withdrawal from

synaptic sites (courtesy of Turney & Lichtman 2012 [TL12]). The simple graphical

model gives rise to many of the features that have previously been experimentally

observed. A junction is represented by a set of synaptic sites that are randomly

distributed among six innervating axons each with a different color (leftmost panel).

Based on the findings in this article showing that synaptic vacancies can induce

nearby axonal branches of either the same or a different axon to grow, synaptic

competition is simulated in [TL12] as an iterative process of axon withdrawal from

a randomly selected site followed by takeover of the vacated site. As shown in the

first two panels the process starts with the pink axon losing a synaptic contact. The

vacated site is subsequently reoccupied by one of the immediately neighboring axons

(in this case the dark blue one; see right panel). This stepwise process is repeated

approximately 1000 times until all the sites become innervated by the same axon

and the junction is in its mature singly innervated state. Over the course of this

simulation, the synaptic contacts of each axon become progressively clustered, and

eventually, when the junction has only two remaining inputs, the axons become

completely segregated as has been seen in normal development [GL98].

Page 95

III
Averaging Dynamics

7
Reconstruction of

Volume-Regular Graphs

In this chapter we consider the Averaging dynamics (Algorithm 3) on a class of

graphs that exhibits a clustered structure and that we call volume-regular graphs

(see Section 7.1). In the classical setting, we are given a (possibly weighted) graph G

and an integer k. Our goal is to partition the vertex set of G into k disjoint subsets,

so that the k induced subgraphs have high inner and low outer expansion. Results

such as those presented in [LGT14, PSZ17] provide further theoretical justification

for spectral clustering, showing that, for a well-clustered graph with k communities,

the profiles of the first k eigenvectors are correlated with the underlying commu-

nity structure of G. Instead, as discussed in Chapter 4, the approach proposed

in [BCN+17b] suggests that observing the temporal evolution of the power method

applied to an initial random vector may, at least in some cases, provide equiva-

lent information, without requiring explicit eigenvector computations. There, the

authors show that, with a simple labeling of the nodes that depends on the local

update rule, the dynamics converges in logarithmic time to a coloring that reflects

the underlying cut. They further elaborated on how to extend the proposed ap-

proach to the case of multiple communities, providing an analysis for a strongly

regular version of the stochastic block model with multiple communities. Their

analysis exploits a property of the eigenvectors of the transition matrix of a simple

random walk on the graph: If the graph is sampled by the regular stochastic block

model with two equally sized communities, the eigenvector associated to the second

largest eigenvalue of the transition matrix of a random walk on the graph is a linear

combination of the indicator vectors of the communities.

In this chapter we push their argument to its limit, considering the most general

class of graphs with “stepwise” vectors (with constant values over the components of

nodes belonging to the same community) that we introduce using a connection with

lumpability of Markov chains [KS60, TK06]. We prove that also in this general case

the Averaging dynamics can be used to recover the underlying clustered structure

of the graph.

Page 99

Chapter 7. Reconstruction of Volume-Regular Graphs

Informal description of Theorem 7.2.1. Let G be a k-volume-

regular graph and let the nodes of G perform ` parallel and independent

runs of the Averaging dynamics. If the stepwise eigenvectors are those

associated to the first k eigenvalues and the gap between the k-th and

the (k+1)-th eigenvalues is sufficiently large, after a logarithmic number

of rounds, a long time interval starts where the labels of the nodes reveal

the community structure of the graph, with high probability.

We remark that the graphs we consider neither require having communities of

the same size nor to be regular as in [BCN+17b]; volume-regularity, in fact, is a

weaker notion than regularity of a graph. The analysis of the Averaging dynamics

on this class is considerably harder, but it is likely to provide insights into the

challenges of analyzing the general case, without all the intricacies of the latter.

We further show that variants of the Averaging dynamics (and/or its labeling

rule) can address different problems (e.g., identifying bipartiteness) and/or other

graph classes (Sections 7.2.2 and 7.2.3).

7.1 Preliminaries

Notation. Consider an undirected edge-weighted graph G = (V,E,w) with non-

negative weights. For each node u ∈ V , we denote by δ(u) the volume, or weighted

degree, of node u, namely δ(u) =
∑

v:(u,v)∈E w(u, v). D denotes the diagonal ma-

trix, such that Duu = δ(u) for each u ∈ V . Without loss of generality we assume

minu δ(u) = 1, since the behavior of the Averaging dynamics (and the correspond-

ing analysis) is not affected by a normalization of the weights. We refer to the

maximum volume of a node as ∆ := maxu δ(u).

In the remainder, W denotes the weighted adjacency matrix of G, while P =

D−1W is the transition matrix of a random walk on G, in which a transition from

node u to node v occurs with probability proportional to w(u, v). We call λ1, . . . , λn

the eigenvalues of P , in non-increasing order, and v1, . . . ,vn a family of eigenvectors

of P , such that Pvi = λivi. We let N = D−
1
2WD−

1
2 = D

1
2PD−

1
2 denote the

normalized weighted adjacency matrix of G. Note that N is symmetric and that its

spectrum is the same as that of P . We denote byw1, . . . ,wn a family of eigenvectors

of N , such that Nwi = λiwi. It is important to note that wi is an eigenvector of

N if and only if D−
1
2wi is an eigenvector of P .

7.1.1 Averaging dynamics

The simple algorithm we consider in this chapter, named Averaging dynamics (Al-

gorithm 3) after [BCM+18] in which the algorithm was first proposed, can be seen

as an application of the power method, augmented with a Rademacher initialization

and a suitable labeling scheme. In this form, it is best described as a distributed

Page 100

Chapter 7. Reconstruction of Volume-Regular Graphs

process, executed by the nodes of an underlying edge-weighted graph. The Aver-

aging dynamics can be used as a building-block to achieve “community detection”

in some classes of “regular” and “almost regular” graphs. Herein, we extend its use

and analysis to broader graph classes and, in one case, to a different problem.

Spectral decomposition of the transition matrix. Let x(t) denote the state

vector at time t, i.e., the vector whose u-th entry is the value held by node u at

time t. We let x(0) = x denote the initial state vector. Globally, the averaging

update rule of Algorithm 3 corresponds to one iteration of the power method, in

this case an application of the transition matrix P to the current state vector, i.e.,

x(t) = Px(t−1). We can write

x(t) = P tx = D−
1
2N tD

1
2x

(a)
= D−

1
2

n∑

i=1

λtiwiw
ᵀ
i

n∑

i=1

βiwi =
n∑

i=1

λtiβiD
− 1

2wi, (7.1)

where in (a) we spectrally decomposed the matrix N t and expressed the vector

D
1
2x as a linear combination of the eigenvectors of N , i.e., D

1
2x =

∑n
i=1 βiwi, with

βi = 〈D 1
2x,wi〉. By explicitly writing the βis and by noting that wi = D

1
2 vi

‖D 1
2 vi‖

we

conclude that

x(t) =
n∑

i=1

λti
〈D 1

2x, D
1
2vi〉

‖D 1
2vi‖

D−
1
2
D

1
2vi

‖D 1
2vi‖

=
n∑

i=1

λtiαivi, (7.2)

where αi := 〈D 1
2 x,D

1
2 vi〉

‖D 1
2 vi‖2

= xᵀDvi

‖D 1
2 vi‖2

.

Note that λ1 = 1 and v1 = 1,1 since P is stochastic and, if G is connected and

non bipartite, λi ∈ (−1, 1) for every i > 1. The long term behavior of the dynamics

can be written as

lim
t→∞

x(t) = lim
t→∞

n∑

i=1

λtiαivi = α11, (7.3)

with

α1 =

∑
u∈V δ(u)x(u)∑
u∈V δ(u)

=
∑

u∈V

δ(u)

vol(V)
x(u), (7.4)

i.e., each node converges to the initial global weighted average of the network.

7.1.2 Community-sensitive algorithms

We give the following definition of community sensitive algorithm, that closely re-

sembles that of locality-sensitive hashing (see, e.g., [LRU14]).

Definition 7.1.1 (Community-sensitive algorithm). Let A be a randomized algo-

rithm that takes in input a (possibly weighted) graph G = (V,E) with a hidden par-

tition V = {V1, . . . , Vk} and assigns a Boolean value A(G)[v] ∈ {0, 1} to each node

v ∈ V . We say A is an (ε, δ)-Community-sensitive algorithm, for some ε, δ > 0, if

the following two conditions hold:

1Here and in the remainder, 1 denotes the vector whose entries are 1.

Page 101

Chapter 7. Reconstruction of Volume-Regular Graphs

1. For each set Vi of the partition and for each pair of nodes u, v ∈ Vi in that set,

the probability that the algorithm assigns the same Boolean value to u and v

is at least 1− ε,

∀i ∈ [k], ∀u, v ∈ Vi, P (A(G)[u] = A(G)[v]) > 1− ε. (7.5)

2. For each pair Vi, Vj of distinct sets of the partition and for each pair of nodes

u ∈ Vi and v ∈ Vj, the probability that the algorithm assigns the same value

to u and v is at most δ,

∀i, j ∈ [k] with i 6= j, ∀u ∈ Vi, ∀v ∈ Vj , P (A(G)[u] = A(G)[v]) 6 δ. (7.6)

For example, for (ε, δ) = (1/n, 1/2), an algorithm that simply assigns the same

value to all nodes would satisfy the first condition but not the second one, while an

algorithm assigning 0 or 1 to each node with probability 1/2, independently of the

other nodes, would satisfy the second condition but not the first one.

Note that Algorithm 3 is a distributed algorithm that, at each round t, assigns

one out of two labels to each node of a graph. In the next section (see Theorem 7.2.1)

we prove that a time window [T1, T2] exists, such that for all rounds t ∈ [T1, T2], the

assignment of the Averaging dynamics satisfies both conditions in Definition 7.1.1:

The first condition with ε = ε(n) = O(n−
1
2), the second with δ = δ(n) = 1− Ω(1).

Community-sensitive labeling. If we execute ` = Θ(log n) independent runs

of an (ε, δ)-Community-sensitive algorithm A, each node is assigned a signature

of ` binary values, with pairwise Hamming distances probabilistically reflecting

community membership of the nodes. More precisely, letA be an (ε, δ)-Community-

sensitive algorithm and let A1, . . . ,A` be ` = Θ(log n) independent runs of A. For

each node u ∈ V , let s(u) = (s1(u), . . . , s`(u)) denote the signature of node u, where

si(u) = Ai(G)[u]. For each pair nodes u, v, let h(u, v) = |{i ∈ [`] : si(u) 6= si(v)}|
be the Hamming distance between s(u) and s(v). The following lemma follows from

a straightforward application of Chernoff bounds.

Lemma 7.1.1 (From Community-sensitive algorithm to Community-sensitive la-

beling). Let A be an (ε, δ)-Community-sensitive algorithm with ε = o(1) and δ =

1 − Ω(1). For large enough ` = Θ(log n), two positive constants α, β exist, with

0 6 α < β 6 1, such that for each pair of nodes u, v ∈ V it holds that:

1. If u and v belong to the same community then h(u, v) 6 α`, w.h.p.

2. If u and v belong to different communities then h(u, v) > β`, w.h.p.

Proof. If u and v belong to the same community, then E [h(u, v)] 6 ε`. If they

belong to different communities, then E [h(u, v)] > (1− δ)`. The thesis follows by a

standard application of Chernoff bounds, e.g., by choosing α = 2ε and β = 1−δ
2 . �

Page 102

Chapter 7. Reconstruction of Volume-Regular Graphs

7.1.3 Volume-regular graphs

Recall that, for an undirected edge-weighted graph G = (V,E,w), we denote by

δ(u) the volume a node u ∈ V , i.e., δ(u) =
∑

v:(u,v)∈E w(u, v). Note that the

transition matrix P of a random walk on G is such that Puv = w (u, v) /δ(u). Given

a partition V = {V1, . . . , Vk} of the set of nodes V , for a node u ∈ V and a partition

index i ∈ [k], δi(u) denotes the overall weight of edges connecting u to nodes in Vi,

δi(u) =
∑

v∈Vi :u,v∈E w (u, v) . Hence, δ(u) =
∑k

i=1 δi(u).

Definition 7.1.2 (Volume-regular graph). Let G = (V,E,w) be an undirected edge-

weighted graph with |V | = n nodes and let V = {V1, . . . , Vk} be a k-partition of the

nodes, for some k ∈ [n]. We say that G is volume-regular with respect to V if,

for every pair of partition indexes i, j ∈ [k] and for every pair of nodes u, v ∈ Vi,
δj(u)
δ(u) =

δj(v)
δ(v) . We say that G is k-volume-regular if there exists a k-partition V of

the nodes such that G is volume-regular with respect to V.

In other words, G is volume-regular if there exists a partition of the nodes such

that the fraction of a node’s volume toward a set of the partition is constant across

nodes of the same set. Note that all graphs with n nodes are trivially 1- and

n-volume-regular.

Let G = (V,E,w) be a k-volume-regular graph and let P be the transition

matrix of a random walk on G. In the next lemma we prove that the span of k

linearly independent eigenvectors of P equals the span of the indicator vectors of the

k communities of G. The proof makes use of the correspondence between random

walks on volume-regular graphs and ordinary lumpable Markov chains [KS60]; in

particular the result follows from Lemma 7.1.3 and Lemma 7.1.4, that we prove in

Section 7.1.3.

Lemma 7.1.2. Let P be the transition matrix of a random walk on a k-volume-

regular graph G = (V,E,w) with k-partition V = {V1, . . . , Vk}. There exists a family

{v1, . . . ,vk} of linearly independent eigenvectors of P such that Span ({v1, . . . ,vk}) =

Span ({1V1 , . . . ,1Vk}) , with 1Vi the indicator vector of the i-th set of the partition,

for i ∈ [k].

In the rest of the chapter we call “stepwise” the eigenvectors of P that can be

written as linear combinations of the indicator vectors of the communities. In the

next definition, we formalize the fact that a k-volume-regular graph is clustered if

the k linearly independent stepwise eigenvectors of P , whose existence is guaranteed

by the above lemma, are associated to the k largest eigenvalues of P .

Definition 7.1.3 (Clustered volume-regular graph). Let G = (V,E,w) be a k-

volume-regular graph and let P be the transition matrix of a random walk on G.

We say that G is a clustered k-volume-regular graph if the k stepwise eigenvectors

of P are associated to the first k largest eigenvalues of P .

Page 103

Chapter 7. Reconstruction of Volume-Regular Graphs

Volume-regular graphs and lumpable Markov chains

The class of volume-regular graphs is deeply connected with the definition of lumpa-

bility [KS60] of Markov chains. We here first recall the definition of lumpable

Markov chain and then show that a graph G is volume-regular if and only if the

associated weighted random walk is a lumpable Markov chain.

Definition 7.1.4 (Ordinary lumpability of Markov Chains). Let {Xt}t be a finite

Markov chain with state space V and transition matrix P = (Puv)u,v∈V and let

V = {V1, . . . , Vk} be a partition of the state space. Markov chain {Xt}t is ordinary

lumpable with respect to V if, for every pair of partition indexes i, j ∈ [k] and for

every pair of nodes in the same set of the partition u, v ∈ Vi, it holds that

∑

w∈Vj
Puw =

∑

w∈Vj
Pvw. (7.7)

We define the lumped matrix P̂ of the Markov Chain as the matrix such that P̂ij =∑
w∈Vi Puw, for any u ∈ Vj.

We first prove that random walks on Volume-regular graphs define exactly the

subset of reversible and ordinary lumpable Markov chains.

Lemma 7.1.3. A reversible Markov chain {Xt}t is ordinary lumpable if and only

if it is a random walk on a volume-regular graph.

Proof. We first assume that {Xt}t is ordinary lumpable and then assume G is k-

volume-regular with respect to the partition V = {V1, . . . , Vk}.

1. Assume first assume that {Xt}t is ordinary lumpable and let P be the cor-

responding transition matrix. Consider the weighted graph G = (V,E,w)

obtained from P as follows: V corresponds to the set of states in P , while

w(u, v) = π(u)Puv, for every u, v ∈ V , with π the stationary distribution of

P . Note that G is an undirected graph, i.e., w(u, v) = π(u)Puv
(a)
= π(v)Pvu =

w(v, u), where (a) holds because P is reversible. Moreover

δ(u) =
∑

z∈V
w(u, v) =

∑

z∈V
π(u)Puv = π(u)

∑

z∈V
Puv

(a)
= π(u), (7.8)

where (a) holds because P is stochastic. Thus G meets Definition 7.1.2 be-

cause, for any u, v ∈ Vi,

δj(u)

δ(u)
=

1

π(u)

∑

z∈Vj
w(u, z) =

∑

z∈Vj
Puz =

∑

z∈Vj
Pvz =

1

π(v)

∑

z∈Vj
w(v, z) =

δj(v)

δ(v)
.

(7.9)

2. Next, assumeG is k-volume-regular with respect to the partition V = {V1, . . . , Vk}.
Let P be the transition matrix of the corresponding random walk. For every

Page 104

Chapter 7. Reconstruction of Volume-Regular Graphs

i, j ∈ [k] and for every u, v ∈ Vi we have:

∑

z∈Vj
Puz =

∑

z∈Vj

w(u, z)

δ(u)
=
δj(u)

δ(u)

(a)
=
δj(v)

δ(v)
=
∑

z∈Vj

w(v, z)

δ(v)
=
∑

z∈Vj
Pvz,

where (a) follows from Definition 7.1.2. Moreover note that P is reversible

with respect to distribution π, where π(u) = δ(u)
vol(G) .

�

Note that infinitely many k-volume-regular graphs have the same k-ordinary

lumpable random walk chain.

We next show that a Markov chain is k-ordinary lumpable if and only if the

corresponding transition matrix P has k stepwise, linearly independent eigenvectors.

Lemma 7.1.4. Let P be the transition matrix of a Markov chain. Then P has k

stepwise linearly independent eigenvectors if and only if P is ordinary lumpable.

Proof. We divide the proof in two parts. First, we assume that P is ordinary

lumpable and show that P has k stepwise linearly independent eigenvectors. Second,

we assume that P has k stepwise linearly independent eigenvectors and show that

P is ordinary lumpable.

1. Let P be ordinary lumpable and P̂ its lumped matrix. Let λi,vi be the

eigenvalues and eigenvectors of P̂ , for each i ∈ [k]. Let wi ∈ Rn be a stepwise

vector defined as

wi = (vi(1), . . . ,vi(1), vi(2), . . . ,vi(2), . . . , vi(k), . . . ,vi(k))ᵀ, (7.10)

where vi(j) indicates the j-th component of vi, and then the nj components

relative to Vj are all equal to vi(j).

Since the eigenvectors vi of P̂ are linearly independent, the vectors wi are

also linearly independent. Moreover, it is easy to see that Pwi = λiwi by just

verifying the equation for every i ∈ [k].

2. Assume P has k stepwise linearly independent eigenvectors wi, associated to k

eigenvalues λi, for each i ∈ [k]. Let vi ∈ Rk the vector that has as components

the k constant values in the steps of wi. Since the wi are linearly independent,

the vi also are.

For every eigenvectorwi and for every two states x, y ∈ Vl, for every l ∈ [k], we

have that λiwi(x) = λiwi(y) since wi is stepwise. Then, since Pwi = λiwi,

we have that

k∑

j=1

∑

z∈Vj
Pxzvi(j) = (Pwi)(x) = (Pwi)(y) =

k∑

j=1

∑

z∈Vj
Pyzvi(j). (7.11)

Page 105

Chapter 7. Reconstruction of Volume-Regular Graphs

Thus
∑k

j=1 vi(j)
∑

z∈Vj (Pxz − Pyz) = 0 and then it follows that

k∑

j=1

vi(j)uxy(j) = 〈uxy,vi〉 = 0, (7.12)

where uxy(j) =
∑

z∈Vj (Pxz − Pyz). Since the vi’s are k linearly independent

vectors in a k-dimensional space, uxy cannot be orthogonal to all of them and

then it has to be the null vector, i.e. uxy(j) = 0 for all j ∈ [k]. This implies

that P is ordinary lumpable, i.e.
∑

z∈Vj Pxz =
∑

z∈Vj Pyz. It is easy to verify

that the eigenvalues and eigenvectors of P̂ are exactly λi,vi, with i ∈ [k].

�

7.2 Theoretical analysis

7.2.1 Clustered graphs

For a volume-regular graph G = (V,E,w) with n nodes and k-partition V =

{V1, . . . , Vk} we name N = maxi |Vi|
mini |Vi| the ratio between the maximum and mini-

mum sizes of the communities. In this section we prove the following result for

volume-regular graphs.

Theorem 7.2.1. Let G = (V,E,w) be a connected clustered k-volume-regular graph

with n nodes and k-partition V = {V1, . . . , Vk}, with k 6
√
n, maximum weighted

degree ∆ 6 poly(n), and N = O(
√
k/∆). If λk >

1
2 and (1−λ2) > (λ2−λk)∆

3
2n1+c,

for an arbitrarily-small positive constant c, then a time interval [T1, T2] exists, with

T1 = O(log n / log(λk/λk+1)) and T2 = Ω(nc/3), such that for each time t ∈ [T1, T2]

the Averaging dynamics truncated at round t is a (O(n−
1
2), 1 − Ω(1))-community

sensitive algorithm, w.h.p.

In the remainder of this section, we first introduce further notation and then

state the two main technical lemmas (Lemma 7.2.1 and Lemma 7.2.2), that will be

used in the proof of Theorem 7.2.1, which concludes this section.

Let G = (V,E,w) be a clustered k-volume-regular graph and, without loss of

generality, let V1, . . . , Vk be an arbitrary ordering of its communities. We introduce

a family of stepwise vectors that generalize Fiedler vector [Fie89], namely
{
χi =

√
m̂i

mi
1Vi −

√
mi

m̂i
1V̂i : i ∈ [k − 1]

}
, (7.13)

where 1Vi is the indicator vector of the set Vi and, for convenience sake, we denoted

by mi the volume of the i-th community, V̂i the set of all nodes in communities

i + 1, . . . , k, and m̂i the volume of V̂i, i.e., mi =
∑

u∈Vi δ(u), V̂i =
⋃k
h=i+1 Vh,

and m̂i =
∑k

h=i+1mh. Note that vectors χis are “stepwise” with respect to the

communities of G (i.e., for every i ∈ [k−1], χi(u) = χi(v) whenever u and v belong

to the same community).

Page 106

Chapter 7. Reconstruction of Volume-Regular Graphs

Recall from Equation (7.2) that the initial state vector can be written as x =∑n
i=1 αivi. Let z =

∑k
i=1 αivi and note that z = α11 +

∑k−1
i=1 γiχi by applying

Lemma 7.1.2 and because Span ({1,χ1, . . . ,χk−1}) = Span ({1V1 , . . . ,1Vk}). Let

us now define the vector y = z − α11 or, equivalently,

y =
k−1∑

i=1

γiχi, where γi =
xᵀDχi∥∥D1/2χi

∥∥2 . (7.14)

Note that the coefficients γis are proportional to the length of the projection of the

(inhomogeneously) contracted state vector on the (inhomogeneously) contracted,

not anymore stepwise, D
1
2χis and can be computed since the vectors in the family

{D 1
2 1} ∪ {D 1

2χi : i ∈ [k − 1]} are mutually orthogonal.2

The binary coloring of each node only depends on the difference of its state in

two consecutive rounds (see Algorithm 3). Essentially in Lemma 7.2.1 we show that,

under suitable assumptions on the transition matrix of a random walk on G, there

exists a time window where the the difference of the state vector in two consecutive

rounds, i.e., x(t) − x(t+1), can be approximated by the previously defined vector

y in a way that the sign of the two vectors is equal in any component, with high

probability.

Lemma 7.2.1 (Sign of the difference). Let G = (V,E,w) be a clustered k-volume-

regular graph. If λk >
1
2 and (1− λ2) > (λ2 − λk)∆

3
2n1+c, for an arbitrarily-small

positive constant c, then a time interval [T1, T2] exists, with T1 = O
(

logn
log(λk/λk+1)

)

and T2 = Ω(nc/3), such that for each node u ∈ V it holds that

sgn(x(t)(u)− x(t+1)(u)) = sgn(y(u)) (7.15)

for every round t ∈ [T1, T2] of the execution of the Averaging dynamics, w.h.p.

Sketch of proof. Recall from Equation (7.2) that the state vector at time t, i.e., x(t),

can be written as the sum of the first k stepwise vectors of P and of the remaining

ones, namely

x(t) = α11 +

k∑

i=2

λtiαivi +

n∑

i=k+1

λtiαivi = α11 + c(t) + e(t), (7.16)

where we call c(t) :=
∑k

i=2 λ
t
iαivi the core contribution and e(t) :=

∑n
i=k+1 λ

t
iαivi

the error contribution. If we look at the difference of the state vector between two

consecutive rounds, for each node u ∈ V , the first term cancels out being constant

over time and we get x(t)(u)− x(t+1)(u) = c(t)(u)− c(t+1)(u) + e(t)(u)− e(t+1)(u).

Note that the sign of the difference between two consecutive states of each node

2The mutual orthogonality of the vectors, including D
1
2 1, is also one of the reasons why other

“simpler” families of stepwise vectors, e.g., the indicator vectors of the communities, are not used

instead.

Page 107

Chapter 7. Reconstruction of Volume-Regular Graphs

u ∈ V is determined by the difference of the core contributions during the two

consecutive rounds, i.e., c(t)(u)− c(t+1)(u), whenever

∣∣∣c(t)(u)− c(t+1)(u)
∣∣∣ >

∣∣∣e(t)(u)− e(t+1)(u)
∣∣∣ . (7.17)

To find the conditions on t that make Eq. (7.17) hold, we give a bound to both the

left and right hand side of the inequality. In detail:

1. We know from Lemma 7.2.4 that
∣∣c(t)(u)− c(t+1)(u)

∣∣ > 1
2λ

t
k(1−λ2) |y(u)| for

every u ∈ V and for every time t < T2, where T2 = Ω(n
c
3), since by hypothesis

λk >
1
2 and (1− λ2) > (λ2 − λk)∆

3
2n1+c.

2. We know from Lemma 7.2.5 that |e(t)(u)| 6 λtk+1

√
∆n, for every u ∈ V , and

thus it follows that
∣∣e(t)(u)− e(t+1)(u)

∣∣ 6
∣∣e(t)(u)

∣∣+
∣∣e(t+1)(u)

∣∣ 6 2λtk+1

√
∆n.

Combining Lemma 7.2.4 and Lemma 7.2.5, we get that if the following inequality

holds, i.e.,
1

2
λtk(1− λ2) |y(u)| > 2λtk+1

√
∆n, (7.18)

then also Equation (7.17) holds. By moving the terms dependent from t on the

left hand side and by taking the logarithm of both sides, we can finally find the

conditions on t such that Equation (7.18) is satisfied, i.e., all times t > T1 where

T1 = log

(
4
√

∆n

(1− λ2) |y(u)|

)
· 1

log
(

λk
λk+1

) . (7.19)

Note that T1 = O(log n / log(λk
λk+1

)) and that T1 = O(log n) when λk
λk+1

= Ω(1). In

fact:

1. We know by hypothesis that the maximum weighted degree of a node is at

most polynomial in n, i.e., ∆ 6 poly(n).

2. We know from the Cheeger’s inequality for weighted graphs (Theorem D.2.1)

the relation between the spectral gap and the Cheeger’s constant of G, i.e.,

1− λ2 > 1
2∆n , given that 1− λ2 >

h2G
2 >

1
2∆n .

3. We know from Lemma 7.2.3 that the length of the projection of the state

vector on the stepwise vectors is not too small, i.e., |y(u)| > k
∆n , w.h.p.

Since Lemma 7.2.4 holds for every time t < T2, we conclude that there exists a

time window [T1, T2] such that, for every time t ∈ [T1, T2] of the Averaging dynamics,

it holds that sgn(x(t)(u)−x(t+1)(u)) = sgn(c(t)(u)−c(t+1)(u)), with high probability.

Moreover, Lemma 7.2.4 tells us that sgn(c(t)(u)− c(t+1)(u)) = sgn(y(u)), for every

u ∈ V and for every t ∈ [T1, T2]. Thus, sgn(x(t)(u) − x(t+1)(u)) = sgn(y(u)),

concluding the proof. �

Page 108

Chapter 7. Reconstruction of Volume-Regular Graphs

In Lemma 7.2.2, instead, we show that with some constant probability (i.e.,

independent from the number of nodes n) the first two “steps” of the vector y have

different signs, i.e., the sign can be considered as a criterion to distinguish the first

two communities.

Lemma 7.2.2 (Different communities, different signs). Let G = (V,E,w) be a

clustered k-volume-regular graph with maximum weighted degree ∆ 6 poly(n) and

N = O(
√
k/∆). For each pair of nodes u ∈ Vi and v ∈ Vj, with i 6= j, it holds that

P (sgn(y(u)) 6= sgn(y(v))) = Ω(1). (7.20)

Proof. Since the ordering of the communities (and consequent definition of the χi’s)

is completely arbitrary, we can without loss of generality assume i = 1 and j = 2.

From Lemma 7.2.1 we have that sgn(x(t)(u)−x(t+1)(u)) = sgn(y(u)), for every u ∈
V , during a time interval [T1, T2], w.h.p. Let us define X(Vi) :=

∑
w∈Vi δ(w)x(w).

Note that y(u) = γ1χ1(u) and y(v) = γ1χ1(v) + γ2χ2(v), since the other terms

of the χis are equal to 0 on the components relative to u and v. Thus, with some

algebra, we get

y(u) =
1

m

[
m̂1

m1
X(V1)−X(V2)−X(V̂2)

]
, (7.21)

y(v) =
1

m

[
m1m2 +mm̂2

m̂1m2
X(V2)−X(V1)−X(V̂2)

]
. (7.22)

Note that, by linearity of expectation, E [X(Vi)] = 0. Moreover, since the terms

x(w)s are independent Rademacher random variables, we can write the standard

deviation of X(Vi) as

σ(X(Vi)) =

√∑

w∈Vi
σ2(x(w)) =

√∑

w∈Vi

(
E [δ(w)2x(w)2]−E [δ(w)x(w)]2

)
(7.23)

=

√∑

w∈Vi
δ(w)2. (7.24)

Then we can upper and lower bound the standard deviation σ(X(Vi)) getting
mi√
|Vi|
6 σ(X(Vi)) 6 ∆

√
|Vi|, where the lower bound follows from ‖d‖2 > ‖d‖1 /

√
|Vi|,

where di is the vector of weighted degrees of nodes in community Vi, and for the

upper bound we used that δ(w) 6 ∆, for each w ∈ V .

Let us now define the following three events:

1. E1: X(V1) > σ(X(V1)). Note that E1 implies

X(V1) >
m1√
|V1|
>

minimi√
maxi |Vi|

; (7.25)

2. E2: X(V2) 6 −σ(X(V2)). Note that E2 implies

X(V2) 6 − m2√
|V2|
6 − minimi√

maxi |Vi|
; (7.26)

Page 109

Chapter 7. Reconstruction of Volume-Regular Graphs

3. E3: 0 6 X(V̂2) 6 εσ(X(V̂2)). Note that E3 implies

0 6 X(V̂2) 6 ε∆

√√√√
k∑

i=3

|Vi| 6 ε∆
√
kmax

i
|Vi|, (7.27)

with ε a suitable positive constant.

Note that E1, E2, E3 all hold with non-negligible, constant probability since essen-

tially require that the outcome of a Binomial random variable minus its expected

value is greater (E1, E2) or less (E3) than a standard deviation. When E1, E2, E3

are true it holds that y(v) < 0; as for y(u) we have that

m̂1

m1
X(V1)−X(V2)−X(V̂2) >

m̂1

m1
σ(X(V1)) + σ(X(V2))− εσ(X(V̂2)) (7.28)

>
kmini |Vi|√

maxi |Vi|
− ε∆

√
kmaxi |Vi|. (7.29)

The previous inequality is greater than 0 whenever ε <
√
k

∆N . By hypothesis ∆N =

O(
√
k) and thus

√
k

∆N = Ω(1), i.e., there is an ε = Ω(1) such that y(u) > 0.

By approximating the random variables with Gaussian ones and using Berry-

Esseen’s theorem (Theorem E.3.1), it is possible to show that all three events

have probability at least constant; moreover, being the events independent, also

P (E1, E2, E3) is constant. �

Proof of Theorem 7.2.1. The proof proceeds by showing that the binary labeling

of the nodes of G produced by the Averaging dynamics during the time window

[T1, T2] is such that the two conditions required by the definition of (ε, δ)-community

sensitive algorithm (Definition 7.1.1) are met. The first condition follows directly

from Lemma 7.2.1 and from the fact that y is a “stepwise” vector, with ε = O(n−
1
2)

(see Lemma 7.2.3 for details on the probability). The second condition follows

directly from Lemma 7.2.2. �

Full proof of Lemma 7.2.1

In this section we prove all technical lemmas used in the proof of Lemma 7.2.1.

The main result in Section 7.2.1 is Lemma 7.2.3 in which we show that every com-

ponent of y, i.e., the projection of the (inhomogeneously) contracted initial state

vector D
1
2x on the (inhomogeneously) contracted vectors D

1
2χis, is not too small,

w.h.p. This result is shown first since it is used in other lemmas in this section. In

Section 7.2.1 we provide a lower bound on the core contribution of the state vector

between two consecutive time steps. Moreover, we show that the sign of a node

depends only on the sign of y. Finally, in Section 7.2.1 we upper bound the error

(i.e., the part of the state vector in the eigenspace of eigenvalue λk+1, . . . , λn).

Page 110

Chapter 7. Reconstruction of Volume-Regular Graphs

Length of the projection of the state vector

Claim 7.2.1. Let α(u, v) =
∑k−1

i=1
χi(u)χi(v)
m̂i−1

. For every pair of nodes u, v ∈ V it

holds that

min
u,v∈V

|α(u, v)| > k

∆n
. (7.30)

Proof. Let u ∈ Vl and v ∈ Vh, for some l, h ∈ [k]. We divide the proof in two

cases. First, we assume that l = h, then we handle the case l 6= h. Without loss

of generality, we assume m1 6 . . . 6 mk and consequently m = m̂0 > m̂1 > . . . >

m̂k−1 = mk.

• Let us suppose l = h. Then

min
u,v∈V

|α(u, v)| = min
u,v∈V


 ∑

i<min{h,l}

mi

m̂im̂i−1
+

m̂l

mlm̂l−1


 (7.31)

>
m̂1

m1m̂0
(7.32)

=
m2 + . . .+mk

m1m
(7.33)

>
k

m
(7.34)

>
k

nmaxv δ(v)
(7.35)

>
k

∆n
. (7.36)

• Let us suppose l 6= h. Note that, in this case, α(u, v) =
∑

i<min{h,l}
mi

m̂im̂i−1
−

1 < 0. In fact,

∑

i<min{h,l}

mi

m̂im̂i−1
=

∑

i<min{h,l}

mi(∑k
j=i+1mj

)(∑k
j=imj

) (7.37)

(a)

6
∑

i<min{h,l}

mi

(k − i)(k − i+ 1)m2
i

(7.38)

=
∑

i<min{h,l}

1

(k − i)(k − i+ 1)mi
(7.39)

6
∑

i<min{h,l}

1

(k − i)(k − i+ 1)
(7.40)

6
k∑

j=1

1

j(j + 1)
(7.41)

=

k−1∑

j=1

1

j
−
k−1∑

j=1

1

j + 1
(7.42)

= 1− 1

k
< 1, (7.43)

Page 111

Chapter 7. Reconstruction of Volume-Regular Graphs

where in (a) we use the assumption on the ordering of the volumes of the

communities, i.e., mi 6 mj for every i 6 j. Since α(u, v) < 0, we have that

|α(u, v)| = 1−
∑

i<min{h,l}

mi

m̂im̂i−1
. (7.44)

Thus,

min
u,v∈V

|α(u, v)| = 1− max
u,v∈V


 ∑

i<min{h,l}

mi

m̂im̂i−1


 (7.45)

> 1− (k − 2)mk

m2
k

(7.46)

= 1− k − 2

mk
. (7.47)

Note that mk >
n
k and, given that k 6

√
n, we get mk > k. Thus

1− k − 2

mk
>

2

k
>

k

∆n
. (7.48)

�

Lemma 7.2.3 (Length of the projection of the state vector). For every u ∈ V , it

holds that

P

(
|y(u)| > k

∆n

)
> 1−O

(
1√
n

)
. (7.49)

Proof. Let us write y(u) =
∑k−1

i=1 γiχi(u) in terms of x. Recall that

γi =
xᵀDχi∥∥D1/2χi

∥∥2 , χi =

√
m̂i

mi
1Vi −

√
mi

m̂i
1V̂i . (7.50)

Thus, we get

∥∥∥D1/2χi

∥∥∥
2

=
m̂i

mi

∑

v∈Vi
δ(v) +

mi

m̂i

∑

v∈V̂i

δ(v) = m̂i +mi = m̂i−1, (7.51)

where m̂0 := m =
∑

v∈V δ(v). Now, we can rewrite y(u) as

y(u) =
k−1∑

i=1

γiχi(u) (7.52)

=
k−1∑

i=1

xᵀDχi
m̂i−1

χi(u) (7.53)

=

k−1∑

i=1

(∑

v∈V

δ(v)x(v)χi(v)

m̂i−1

)
χi(u) (7.54)

=
∑

v∈V

(
k−1∑

i=1

χi(u)χi(v)

m̂i−1

)
δ(v)x(v) (7.55)

Page 112

Chapter 7. Reconstruction of Volume-Regular Graphs

=
∑

v∈V
α(u, v)δ(v)x(v), (7.56)

where

α(u, v) :=

k−1∑

i=1

χi(u)χi(v)

m̂i−1
. (7.57)

Note that, for every u ∈ Vl and v ∈ Vh, with l, h ∈ [k], we have

χi(u)χi(v) =





mi
m̂i

if i < min(l, h)
m̂i
mi

if i = min(l, h) and l = h

−1 if i = min(l, h) and l 6= h

0 if i > min(l, h).

(7.58)

Thus, α(u, v) is equal to

α(u, v) =

k−1∑

i=1

χi(u)χi(v)

m̂i−1
=





∑

i<min{h,l}

mi

m̂im̂i−1
+

m̂l

mlm̂l−1
if h = l,

∑

i<min{h,l}

mi

m̂im̂i−1
− 1 if h 6= l.

(7.59)

We apply Theorem E.3.3 and Claim 7.2.1 to prove that the length of the pro-

jection of the state vector x on {χi : i ∈ [k]} is not too small, w.h.p.

P

(
|y(u)| 6 k

∆n

)
= P

(∣∣∣∣∣
∑

v∈V
α(u, v)δ(v)x(v)

∣∣∣∣∣ 6
k

∆n

)
(7.60)

= P

(∣∣∣∣∣
∑

v∈V

α(u, v)

minu,v |α(u, v)|δ(v)x(v)

∣∣∣∣∣ 6
k

∆nminu,v |α(u, v)|

)
(7.61)

(a)

6 P

(∣∣∣∣∣
∑

v∈V

α(u, v)

minu,v |α(u, v)|δ(v)x(v)

∣∣∣∣∣ 6 1

)
(7.62)

(b)

6 O
(

1√
n

)
, (7.63)

where in (a) we use Claim 7.2.1 to upper bound with 1 the r.h.s. term in the

probability; in (b) we can apply Theorem E.3.3 given that minv δ(v) = 1 and that∣∣∣ α(u,v)
minu,v |α(u,v)|

∣∣∣ > 1. �

Lower bound on the core contribution

In order to prove the main result of this section (Lemma 7.2.4) we first provide

upper and lower bounds on c(t)(u) in Claim 7.2.2; then, in Claim 7.2.3, we use the

result of Claim 7.2.2 to bound c(t)(u)− c(t+1)(u).

Claim 7.2.2. Let c(t) =
∑k

i=2 λ
t
iαivi. For every u ∈ V it holds that

c(t)(u) > λtk

k∑

i=2

αivi(u) + tλt−1
2 (λ2 − λk)

∑

i:αivi(u)<0

αivi(u), (7.64)

Page 113

Chapter 7. Reconstruction of Volume-Regular Graphs

c(t)(u) 6 λtk

k∑

i=2

αivi(u) + tλt−1
2 (λ2 − λk)

∑

i:αivi(u)>0

αivi(u). (7.65)

Proof. Let us start with the lower bound.

c(t)(u) =
k∑

i=2

λtiαivi(u) (7.66)

=
∑

i:αivi(u)>0

λtiαivi(u) +
∑

i:αivi(u)<0

λtiαivi(u) (7.67)

> λk
∑

i:αivi(u)>0

λt−1
i αivi(u) + λ2

∑

i:αivi(u)<0

λt−1
i αivi(u) (7.68)

(a)
= λk

k∑

i=2

λt−1
i αivi(u) + (λ2 − λk)

∑

i:αivi(u)<0

λt−1
i αivi(u) (7.69)

(b)
= λk


λk

k∑

i=2

λt−2
i αivi(u) + (λ2 − λk)

∑

i:αivi(u)<0

λt−2
i αivi(u)




+ (λ2 − λk)λt−1
2

∑

i:αivi(u)<0

αivi(u) (7.70)

= λ2
k

k∑

i=2

λt−2
i αivi(u) + λk(λ2 − λk)

∑

i:αivi(u)<0

λt−2
i αivi(u)

+ (λ2 − λk)λt−1
2

∑

i:αivi(u)<0

αivi(u) (7.71)

> λ2
k

k∑

i=2

λt−2
i αivi(u) + λkλ

t−2
2 (λ2 − λk)

∑

i:αivi(u)<0

αivi(u)

+ (λ2 − λk)λt−1
2

∑

i:αivi(u)<0

αivi(u) (7.72)

= λ2
k

k∑

i=2

λt−2
i αivi(u) + (λkλ

t−2
2 + λt−1

2)(λ2 − λk)
∑

i:αivi(u)<0

αivi(u) (7.73)

> λ2
k

k∑

i=2

λt−2
i αivi(u) + 2λt−1

2 (λ2 − λk)
∑

i:αivi(u)<0

αivi(u) (7.74)

> . . . (7.75)

> λtk

k∑

i=2

αivi(u) + tλt−1
2 (λ2 − λk)

∑

i:αivi(u)<0

αivi(u), (7.76)

where in (a) we add and subtract λk
∑

i:αivi(u)<0 λ
t−1
i αivi(u); in (b) we iterate the

same reasoning on the first term only.

As for the upper bound, similarly to the previous case, we get

c(t)(u) 6 λtk

k∑

i=2

αivi(u) + tλt−1
2 (λ2 − λk)

∑

i:αivi(u)>0

αivi(u). (7.77)

Page 114

Chapter 7. Reconstruction of Volume-Regular Graphs

�

Here we use the result of Claim 7.2.2 to give upper and lower bounds on the

difference between the core contribution in two consecutive rounds.

Claim 7.2.3. Let c(t) =
∑k

i=2 λ
t
iαivi and let λ2 > λk >

1
2 . For every u ∈ V , it

holds that

c(t)(u)− c(t+1)(u) > λtk(1− λ2)
k∑

i=2

αivi(u) + (t+ 1)λt2(λ2 − λk)
∑

i:αivi(u)<0

αivi(u),

c(t)(u)− c(t+1)(u) 6 λtk(1− λ2)

k∑

i=2

αivi(u) + (t+ 1)λt2(λ2 − λk)
∑

i:αivi(u)>0

αivi(u).

Proof. Let us start with the lower bound.

c(t)(u)− c(t+1)(u)

=

k∑

i=2

λti(1− λi)αivi(u) (7.78)

=
∑

i:αivi(u)>0

λti(1− λi)αivi(u) +
∑

i:αivi(u)<0

λti(1− λi)αivi(u) (7.79)

> (1− λ2)
∑

i:αivi(u)>0

λtiαivi(u) + (1− λk)
∑

i:αivi(u)<0

λtiαivi(u) (7.80)

= (1− λ2)
k∑

i=2

λtiαivi(u) + (λ2 − λk)
∑

i:αivi(u)<0

λtiαivi(u) (7.81)

(a)

> (1− λ2)


λtk

k∑

i=2

αivi(u) + tλt−1
2 (λ2 − λk)

∑

i:αivi(u)<0

αivi(u)




+ λt2(λ2 − λk)
∑

i:αivi(u)<0

αivi(u) (7.82)

= λtk(1− λ2)

k∑

i=2

αivi(u)

+ (λ2 − λk)[λt−1
2 (1− λ2)t+ λt2)]

∑

i:αivi(u)<0

αivi(u) (7.83)

(b)

> λtk(1− λ2)

k∑

i=2

αivi(u) + (t+ 1)λt2(λ2 − λk)
∑

i:αivi(u)<0

αivi(u) (7.84)

where in (a) we use Claim 7.2.2 and λti 6 λ
t
2; in (b) we use the hypothesis on λ2.

As for the upper bound, similarly to the previous case, we get

c(t)(u)− c(t+1)(u)

6 λtk(1− λ2)
k∑

i=2

αivi(u) + (t+ 1)λt2(λ2 − λk)
∑

i:αivi(u)>0

αivi(u). (7.85)

�

Page 115

Chapter 7. Reconstruction of Volume-Regular Graphs

The proof of Lemma 7.2.4 requires one extra claim about the coefficients βi, i.e.,

the ones such that αivi = βiD
1
2wi. This last bound is shown in Claim 7.2.4.

Claim 7.2.4. Let x ∈ {−1, 1}n be a Rademacher random vector. Let D ∈ Rn×n be

a positive diagonal matrix with maximum element ∆ = maxiDii and let w ∈ Rn be

a vector such that ‖w‖2 = 1. Let β = 〈x, D 1
2w〉. It holds that |β| 6 √∆ log n, with

high probability.

Proof. Note that β is a weighted sum of Rademacher random variables with i-th

coefficient equal to (D
1
2w)(i) and that ‖D 1

2w‖2 =
√∑n

i=1 δ(i)w(i)2 6
√

∆, since

by hypothesis ‖w‖2 = 1 and thus ‖D 1
2w‖22 is a convex combination of the diagonal

elements of D. Let t =
√

log n; by applying Theorem E.3.4 we get

P
(
|β| >

√
∆ log n

)
6 P

(
|βi| > t‖D 1

2w‖2
)
6 2e−

logn
2 = O

(
1

n

)
. (7.86)

Thus |β| 6 √∆ log n, with high probability. �

We now state and prove Lemma 7.2.4.

Lemma 7.2.4 (Lower bound on the core contribution). Let c(t) =
∑k

i=2 λ
t
iαivi.

Let λk >
1
2 and 1−λ2

λ2−λk > ∆
3
2n1+c, for some positive constant c. For every u ∈ V

and for every time t < T2, such that T2 = Ω(nc/3), the two following conditions

hold, w.h.p.:

•
∣∣∣c(t)(u)− c(t+1)(u)

∣∣∣ > 1

2
λtk(1− λ2) |y(u)| ; (7.87)

• sgn(c(t)(u)− c(t+1)(u)) = sgn(y(u)) (7.88)

Proof. We show the lower bound in the time window. To do that, first we suppose

that c(t)(u) − c(t+1)(u) > 0 and show that the claim holds; then we show that the

claim also holds when c(t)(u)− c(t+1)(u) < 0.

Let us suppose c(t)(u) − c(t+1)(u) > 0. If y(u) < 0 the thesis follows directly;

then let us suppose y(u) > 0. From Claim 7.2.3 we have that

c(t)(u)− c(t+1)(u)

> λtk(1− λ2)
k∑

i=2

αivi(u) + (t+ 1)λt2(λ2 − λk)
∑

i:αivi(u)<0

αivi(u). (7.89)

In order to prove the lemma in this first case, we need to show that

1

2
λtk(1− λ2)

k∑

i=2

αivi(u) > −(t+ 1)λt2(λ2 − λk)
∑

i:αivi(u)<0

αivi(u). (7.90)

We lower bound the left hand side and upper bound the right hand side. For

the lower bound we apply Lemma 7.1.2 to get that
∑k

i=2 αivi(u) = y(u) and

Page 116

Chapter 7. Reconstruction of Volume-Regular Graphs

Lemma 7.2.3 to get y(u) > k
∆n , with high probability. For the upper bound, in-

stead, we rely on Claim 7.2.4 and on the fact that αivi = βiD
1
2wi, for every i ∈ [n].

Indeed

−
∑

i:αivi(u)<0

αivi(u) = −
∑

i: βiwi(u)<0

βi√
δ(u)

wi(u)
(a)

6 k
√

∆ log n, (7.91)

where in (a) we can apply Claim 7.2.4 since ‖wi‖2 = 1 for every i ∈ [k] and

βi = 〈D 1
2x,wi〉. By combining lower and upper bounds, we get

1

2
λtk(1− λ2)

k∑

i=2

αivi(u) > −(t+ 1)λt2(λ2 − λk)
∑

i:αivi(u)<0

αivi(u) (7.92)

1

2
λtk(1− λ2)

k

∆n
> (t+ 1)λt2(λ2 − λk)k

√
∆ log n (7.93)

(
λ2

λk

)t
(t+ 1) <

1

2

1− λ2

λ2 − λk
1

∆
3
2n
√

log n
. (7.94)

By hypothesis we have that 1−λ2
λ2−λk > ∆

3
2n1+c and that λk >

1
2 . Thus, we can derive

an upper bound for λ2
λk

, namely

λ2

λk
= 1 +

λ2 − λk
λk

6 1 +
1− λ2

λk∆
3
2n1+c

6 1 +
1

∆
3
2n1+c

6 1 +
1

n
c
3

. (7.95)

Moreover, by the hypothesis on 1−λ2
λ2−λk , we know that

1

2

1− λ2

λ2 − λk
1

∆
3
2n
√

log n
>

1

2
n
c
2 . (7.96)

We apply Equations (7.95) and (7.96) to Equation (7.94) to find a time T2 such

that for every t 6 T2 the lemma holds, and get

(
1 +

1

n
c
3

)t
(t+ 1) <

1

2
n
c
2 . (7.97)

Let T2 = n
c
3 . Note that

(
1 + 1

n
c
3

)t
6 e for every time t 6 T2; thus, for every time

t < T2, it also holds that e (t+ 1) < 1
2n

c
2 . We conclude that, in this first case, there

exists a time T2 = Ω(n
c
3) such that, for every t < T2,

c(t)(u)− c(t+1)(u) >
1

2
λtk(1− λ2)

k−1∑

i=1

γiχi(u). (7.98)

Let us now suppose c(t)(u) − c(t+1)(u) < 0. As before, if y(u) > 0 the thesis

directly follows; then let us suppose y(u) 6 0. From Claim 7.2.3 we have that

c(t)(u)− c(t+1)(u)

6 λtk(1− λ2)
k∑

i=2

αivi(u) + (t+ 1)λt2(λ2 − λk)
∑

i:αivi(u)>0

αivi(u). (7.99)

Page 117

Chapter 7. Reconstruction of Volume-Regular Graphs

Similarly to the previous case, in order to prove the lemma we need to show that

1

2
λtk(1− λ2)

k∑

i=2

αivi(u) 6 −(t+ 1)λt2(λ2 − λk)
∑

i:αivi(u)>0

αivi(u). (7.100)

Again, we upper bound the left hand side using Lemma 7.1.2 and Lemma 7.2.3

and getting
∑k

i=2 αivi(u) =
∑k−1

i=1 γiχi(u) 6 − k
∆n , with high probability. As

for the right hand side we use Claim 7.2.4 and get that −∑i:αivi(u)>0 αivi(u) >

−k√∆ log n. By combining the two bounds we get

−1

2
λtk(1− λ2)

k

∆n
< −(t+ 1)λt2(λ2 − λk)k

√
∆ log n, (7.101)

which is exactly the same condition of the previous case. Thus, for every time

t < T2 = Ω(n
3
2), we have that

c(t)(u)− c(t+1)(u) 6
1

2
λtk(1− λ2)

k−1∑

i=1

γiχi(u). (7.102)

By combining Eq. (7.98) and Eq. (7.102), we conclude that
∣∣c(t)(u)− c(t+1)(u)

∣∣ >
1
2λ

t
k(1− λ2) |y(u)|.

Now we show that sgn(c(t)(u) − c(t+1)(u)) = sgn(y(u)). In particular, Equa-

tions (7.90) and (7.100) imply that−(t+1)λt2(λ2−λk)
∑

i:αivi(u)<0 αivi(u) 6 1
2λ

t
k(1−

λ2) |y(u)| and that (t+1)λt2(λ2−λk)
∑

i:αivi(u)>0 αivi(u) 6 1
2λ

t
k(1−λ2) |y(u)|. Thus,

upper and lower bounds for c(t)(u)−c(t+1)(u) in Claim 7.2.3, during for every t < T2,

have the same sign of y and consequently sgn(c(t)(u)− c(t+1)(u)) = sgn(y(u)). �

Upper bound on the error contribution

Lemma 7.2.5 (Upper bound on the error contribution). Let e(t) :=
∑n

i=k+1 λ
t
iαivi.

For every u ∈ V , it holds that

|e(t)(u)| 6 λtk+1

√
∆n. (7.103)

Proof. To bound all components of vector e(t) we use its `∞ norm, defined for any

vector x as ‖x‖∞ := supi |x(i)|. In particular

‖e(t)‖2∞ 6 ‖e(t)‖2 (7.104)

=

∥∥∥∥∥
n∑

i=k+1

λtiαivi

∥∥∥∥∥

2

(7.105)

=

∥∥∥∥∥
n∑

i=k+1

λtiβiD
− 1

2wi

∥∥∥∥∥

2

(7.106)

(a)

6
∥∥∥D− 1

2

∥∥∥
2
∥∥∥∥∥

n∑

i=k+1

λtiβiwi

∥∥∥∥∥

2

(7.107)

Page 118

Chapter 7. Reconstruction of Volume-Regular Graphs

(b)
=
∥∥∥D− 1

2

∥∥∥
2

n∑

i=k+1

λ2t
i β

2
i (7.108)

6
∥∥∥D− 1

2

∥∥∥
2
λ2t
k+1

n∑

i=k+1

β2
i (7.109)

6
∥∥∥D− 1

2

∥∥∥
2
λ2t
k+1

n∑

i=1

β2
i (7.110)

=
∥∥∥D− 1

2

∥∥∥
2
λ2t
k+1

∥∥∥D 1
2x
∥∥∥

2
(7.111)

6
∥∥∥D− 1

2

∥∥∥
2
λ2t
k+1

∥∥∥D 1
2

∥∥∥
2
‖x‖2 (7.112)

(c)
=

maxu δ(u)

minu δ(u)
λ2t
k+1 ‖x‖2 (7.113)

6 λ2t
k+1∆n, (7.114)

where in (a) we use Cauchy-Schwarz inequality (Theorem C.1.5) and we apply the

definition of spectral norm of an operator, i.e., ‖A‖ := supx:‖x=1‖ ‖Ax‖; in (b)

we use that the wis are orthonormal; in (c) we use that the spectral norm of a

diagonal matrix is equal to its maximum value. Thus, for every u ∈ V it holds that

|e(t)(u)| 6
√
‖e(t)‖2∞ 6 λtk+1

√
∆n. �

7.2.2 Bipartite graphs

Assume G = (V,E,w) is a bipartite 2-volume-regular graph, i.e., V = V1 ∪ V2,

E ⊆ V1×V2 andG is volume-regular w.r.t. the bipartition (V1, V2). In this case, basic

properties of random walks imply that the Averaging dynamics does not converge to

the global (weighted) average of the values, but it periodically oscillates. In fact, in

this case the transition matrix P has an eigenvector χ = 1V1 − 1V2 with eigenvalue

λn = −1 (as implied by Claim 7.2.5). Thus, the state vector is mainly affected by

the eigenvectors associated to the two eigenvalues of absolute value 1 (i.e., λ1 and

λn). After a number of rounds of the dynamics that depends on 1/λ2, we have that,

in even rounds, all nodes in Vi (i = 1, 2) have a state that is close to some local

average µi; in odd rounds, these values are swapped (as shown in Eq. (7.118)).

If one were observing the process in even rounds,3 however, the states of nodes

in V1 would converge to µ1 and those of nodes in V2 would converge to µ2. Un-

fortunately (and differently from clustered volume-regular graphs), convergence to

the local average for nodes belonging to the same community does not eventually

become monotone (i.e., increasing or decreasing). This follows since the eigenvec-

tor associated to λ2 is no longer stepwise in general (lumpable classes are already

associated to 1 and χ). However, we can easily modify the labeling scheme of the

Averaging dynamics to perform bipartiteness detection as follows: Nodes apply the

labeling rule every two time steps and they do it between the states of two consec-

utive rounds, i.e., each node v ∈ V sets label(2t)(v) = 1 if x(2t)(v) > x(2t−1)(v)

3Or, equivalently, in odd rounds.

Page 119

Chapter 7. Reconstruction of Volume-Regular Graphs

and label(2t)(v) = 0 otherwise. We call this new protocol Averaging Bipartite

dynamics.

Let G = (V,E,w) be an edge-weighted undirected bipartite volume-regular

graph. We denote with W ∈ Rn×n the weighted adjacency matrix of G. Since

G is undirected and bipartite, the matrix W can be written as

W =

(
0 W1

W2 0

)
=

(
0 W1

W T
1 0

)
. (7.115)

Thus, the transition matrix of a simple random walk on G, i.e., P = D−1W where

D−1 is a diagonal matrix and Dii = 1
δ(i) , has the form

P =

(
0 P1

P T1 0

)
. (7.116)

Claim 7.2.5 shows that the spectrum of P is symmetric and it gives a relation

between the eigenvectors of symmetric eigenvalues.

Claim 7.2.5. Let G = (V1∪V2, E, w) be an edge-weighted undirected bipartite graph

with bipartition (V1, V2) and such that |Vi| = ni . If v = (v1,v2)T , with vi ∈ Rni, is

an eigenvector of P with eigenvalue λ, then v′ = (v1,−v2)T is an eigenvector of P

with eigenvalue −λ.

Proof. If Pv = λv then we have that P1v2 = λv1 and P T1 v2 = λv2. Using these

two equalities we get that Pv′ = −λv′. In fact,

Pv′ =

(
0 P1

P T1 0

)(
v1

−v2

)
=

(
−P1v2

P T1 v1

)
= −λ

(
v1

−v2

)
. (7.117)

�

The transition matrix P is stochastic, thus the vector 1 (i.e., the vector of all

ones) is an eigenvector associated to λ1 = 1, that is the first largest eigenvalue of

P . Claim 7.2.5 implies that χ = 1V1 − 1V2 is an eigenvector of P with eigenvalue

λn = −1.

As in Section 7.1, we write the state vector at time t using the spectral decom-

position of P . Let 1 = λ1 > λ2 > . . . > λn = −1 be the eigenvalues of P . We

denote by 1 = v1,v2, . . . ,vn = χ a family of n linearly independent eigenvectors of

P , where each vi is the eigenvector associated to λi. Thus, we have that

x(t) = P tx =
n∑

i=1

λtiαivi = α11 + (−1)tαnχ+
n−1∑

i=2

λtiαivi, (7.118)

where αi = 〈D 1
2 x,D

1
2 vi〉

‖D 1
2 vi‖2

. The last equation implies that x(t) = P tx does not converge

to some value as t tends to infinity, but oscillates. In particular, nodes in V1 on

even rounds and nodes in V2 on odd rounds, converge to α1 + αn. Instead in the

Page 120

Chapter 7. Reconstruction of Volume-Regular Graphs

symmetric case, i.e., odd rounds for nodes in V1 and even rounds for nodes in V2,

the process converges to α1−αn. These quantities are proportional to the weighted

average of the initial values in the first and in the second partition, respectively.

Lemma 7.2.6, whose proof follows, shows that Averaging Bipartite dynam-

ics performs bipartiteness detection in O(log n / log(1/λ2)) rounds. Note that if

log(1/λ2) = Ω(1), then the Averaging Bipartite dynamics takes logarithmic time to

find the bipartition.

Lemma 7.2.6. Let G = (V,E,w) be an edge-weighted bipartite volume-regular

graph with bipartition V1, V2 and maximum weighted degree ∆ 6 poly(n). Then for

every time t > T , with T = O(log n / log(1/λ2)), the Averaging Bipartite dynamics

is a (O(n−
1
2), O(1))-community sensitive algorithm, w.h.p.

Proof. We assume that the coloring rule is applied between every even and every

odd round (conversely, the signs of the nodes in the analysis are swapped). Re-

call the definition of the error contribution, namely e(t)(u) =
∑n−1

i=2 λ
t
iαivi(u). We

compute the difference between the state vectors of two consecutive steps by using

Eq. (7.118), namely

x(2t) − x(2t+1) = α11 + (−1)2tαnχ+ e(2t) − α11− (−1)2t+1αnχ− e(2t+1) (7.119)

= 2αnχ+ e(2t) − e(2t+1). (7.120)

We want to find a time T such that for every t > T the sign of a node u ∈ V

depends only on χ(u). Formally, sgn(x(2t)(u) − x(2t+1)(u)) = sgn(αnχ). The last

equation holds whenever

2|αnχ(u)| > |e(2t)(u)− e(2t+1)(u)| (7.121)

2|αn| > |e(2t)(u)− e(2t+1)(u)|. (7.122)

We upper bound |e(2t)(u)−e(2t+1)(u)| by using Lemma 7.2.5. We get that |e(2t)(u)−
e(2t+1)(u)| 6 2λ2t

2

√
∆n. We get that Eq. (7.122) holds if the following holds:

|αn| > λ2t
2

√
∆n (7.123)

(1/λ2)2t >

√
∆n

|αn|
(7.124)

2t > log

(√
∆n

|αn|

)
1

log(1/λ2)
. (7.125)

In order to find the time t which makes the last inequality hold, we provide a lower

bound on |αn|, showing that it is not too small, with high probability. Recall that

αi = 〈D 1
2 x,D

1
2 vi〉

‖D 1
2 vi‖2

and thus

αn =
〈D 1

2x, D
1
2χ〉

‖D 1
2χ‖2

=
1

vol(V)

∑

v∈V
δ(v)x(v)χ(v), (7.126)

Page 121

Chapter 7. Reconstruction of Volume-Regular Graphs

where vol(V) =
∑

v∈V δ(v). We get the lower bound, with high probability, by

showing that

P

(
|αn| 6

1

∆n

)
6 P

(
|αn| 6

1

vol(V)

)
(7.127)

= P

(∣∣∣∣∣
∑

v∈V
δ(v)x(v)χ(v)

∣∣∣∣∣ 6 1

)
(7.128)

(a)
= O

(
1√
n

)
(7.129)

where in (a) we apply Theorem E.3.3. Indeed this last inequality implies that

|αn| > 1
∆n with high probability. The thesis then follows from the above bound on

|αn| and from the hypothesis on ∆ 6 poly(n). �

7.2.3 Other non-clustered graphs

Consider k-volume-regular graphs whose k stepwise eigenvectors are associated to

the k largest eigenvalues, in absolute value. These graphs include many k-partite

graphs (e.g., regular ones), graphs that are “close” to being k-partite (i.e., ones that

would become k-partite upon removal of a few edges). Differently from the clustered

case (Theorem 7.2.1) some of the k eigenvalues can in general be negative.

Consider the following variant of the labeling scheme of the Averaging dynamics,

in which nodes apply their labeling rule only on even rounds, comparing their value

with the one they held at the end of the last even round, i.e., each node v ∈ V sets

label(2t)(v) = 1 if x(2t)(v) > x(2t−2)(v) and label(2t)(v) = 0 otherwise. Since the

above protocol amounts to only taking even powers of eigenvalues, the analysis of

this modified protocol proceeds along the same lines as the clustered case, while the

results of Theorem 7.2.1 seamlessly extend to this class of graphs.

Page 122

8
Conclusion

Complex networks are ubiquitous, since are able to model many aspects in several

heterogeneous areas. They have non-trivial topologies, often exhibiting a commu-

nity structure. Detecting such communities is fundamental for many applications

and in the last decade many techniques based on different approaches have been

proposed. One of the most widely used class of such techniques is that of label prop-

agation algorithms (LPAs), dynamical processes on networks inspired by epidemic

spreads of viruses. Although largely used in practice for their simplicity, efficiency,

and effectiveness the scientific literature lacks of theoretical results that explain the

behavior of such dynamical processes on networks and why they are able to perform

well in the task of graph clustering. In fact, the absence of proper mathematical

tools to analyze the interplay between the non-linearity of the dynamics and the

non-trivial topology of the network makes harder to obtain a substantial theoretical

progress.

In this thesis we considered some simple dynamics that are can be seen as label

propagation algorithms and rigorously analyzed them. The dynamics we considered

have been rigorously studied in the past, but exclusively on graphs with extremely

good connectivity properties (complete or expander graphs) and are well known

for naturally bringing the nodes of the network to a consensus. Differently from

previous work, we analyze such dynamics in a setting where the networks exhibit

a community structure. The main idea is that if the communication network is

more complex, presenting a community structure, some dynamics make the nodes

quickly reach (and maintain for a long time window) many local consensus instead

of a global one. We showed that this behavior, that we call metastability, can be

exploited to design lightweight distributed algorithms for graph clustering, in which

each node only uses local information and a very low computational power.

The metastable behavior is not a feature of every dynamics, though. The well

studied voter dynamics, for example, would converge in polynomial time to a con-

sensus independently of the underlying network, and hence, also in the case of

networks presenting a community structure. An open question thus remain that of

studying which are the properties that a dynamics should have in order to exhibit

Page 123

Chapter 8. Conclusion

such metastable behavior in graphs with communities, which is fundamental to uti-

lize them as label propagation algorithms. To achieve that it should be possible

to explore the behavior of other already studied dynamics for consensus, e.g., the

Undecided-State dynamics [CGG+18], on non-trivial topologies and to extend the

analysis of the 2-Choices dynamics to other classes of graphs with other features,

e.g., graphs with power-law degree distribution.

Page 124

Appendix

A
Asymptotic Notation

Here we introduce the Bachmann–Landau asymptotic notation. Let f : R+ → R
and g : R+ → R+ be two real functions. As n→∞, we say that:

• f is asymptotically dominated by g, i.e.,

f(n) = o(g(n)) ⇐⇒ ∀k > 0∃n0 ∀n > n0 |f(n)| < kg(n); (A.1)

• f is asymptotically bounded above by g, up to a constant factor, i.e.,

f(n) = O(g(n)) ⇐⇒ ∃k > 0 ∃n0 ∀n > n0 |f(n)| 6 kg(n); (A.2)

• f is asymptotically bounded above and below by g, up to a constant factor,

i.e.,

f(n) = Θ(g(n)) ⇐⇒ ∃k1 > 0 ∃k2 > 0∃n0 ∀n > n0

k1g(n) 6 |f(n)| 6 k2g(n); (A.3)

• f is asymptotically bounded below by g, up to a constant factor, i.e.,

f(n) = Ω(g(n)) ⇐⇒ ∃k > 0 ∃n0 ∀n > n0 |f(n)| > kg(n); (A.4)

• f asymptotically dominates g, i.e.,

f(n) = ω(g(n)) ⇐⇒ ∀k > 0∃n0 ∀n > n0 |f(n)| > kg(n). (A.5)

Page 127

B
Graph Theory

Graph theory is that field of mathematics which studies graphs, structures used

to model and represent relations between objects. This section covers the basic

definitions, some examples of simple graphs, and some graph metrics.

B.1 Definitions

Definition B.1.1. An undirected graph, or just graph, G = (V,E) is defined as a

nonempty set of vertices (or nodes) V and a set of edges (unordered pair of nodes)

E ⊆ V × V = {(u, v) : u, v ∈ V, u 6= v}.

Given an edge e = (u, v), then u and v are said adjacent nodes or neighbors.

Moreover, in the whole thesis we will often use the following classic notations:

|V | = n and |E| = m.

Definition B.1.2. A directed graph, or digraph, G = (V,E) is defined as a

nonempty set of vertices V and a set of edges (ordered pair of nodes) E ⊆ V × V .

Note that a digraph, differently from a graph, allows loops (edges going from a

node v to itself) and opposite edges among the same pair of nodes, i.e. (i, j) 6= (j, i).

Definition B.1.3. The degree deg(v) of a vertex v is the number of edges containing

v, formally |{(i, j) ∈ E : i = v or j = v}|. Sometimes we refer to deg(v) as dv.

Definition B.1.4. A graph G is d-regular when deg(v1) = . . . = deg(vn) = d.

Lemma B.1.1 (Handshaking lemma). Given a graph G, it holds that

∑

v∈V
deg(v) = 2|E|. (B.1)

Proof. We just need to observe that each edge is counted two times in the sum,

contributing to the degree of exactly two nodes. �

Definition B.1.5. Given a graph G = (V,E), we call a subgraph of G a graph

G′ = (V ′, E′) s.t. V ′ ⊆ V and E′ ⊆ E.

Page 129

Appendix B. Graph Theory

Definition B.1.6. A path on a graph G = (V,E) is a sequence v1, e1, . . . , ek−1, vk,

with vi ∈ V and ei = (vi, vi+1) ∈ E for i = 1, . . . , k, and such that all the vi and ei

are distinct.

Definition B.1.7. A graph G is said to be connected if there exists a path con-

necting each pair of nodes.

Definition B.1.8. The vertex connectivity of a graph G is the minimum number

of vertices that have to be removed such that G will be disconnected.

Definition B.1.9. The edge connectivity of a graph G is the minimum number of

edges that have to be removed such that G will be disconnected.

Definition B.1.10. The algebraic connectivity of a graph G is the value of the

second smallest eigenvalue of the Laplacian matrix of G.

B.2 Matrix representations

Adjacency matrix. The adjacency matrix A ∈ Rn×n of a graph G = (V,E) is

defined as

Aij =

{
1 if (i, j) ∈ E,
0 otherwise.

(B.2)

Incidence matrix. The incidence matrix B ∈ Rn×m of a graph G = (V,E),

where e ∈ E and v ∈ V , is defined as

Bve =

{
1 if e is incident to v,

0 otherwise.
(B.3)

Degree matrix. The diagonal degree matrix D ∈ Rn×n of a graph G = (V,E) is

defined as

Dij =

{
deg(i) if i = j,

0 otherwise.
(B.4)

Transition matrix. The transition matrix P ∈ Rn×n of a graph G = (V,E) is

defined, in matrix notation, as P = D−1A. In other words

Pij =
1

deg(i)
Aij . (B.5)

Notice that if G is regular, then P is symmetric. The transition matrix will play a

really important role in this thesis and we will extend its discussion later, especially

in E.2.

Page 130

Appendix B. Graph Theory

Laplacian matrix. The Laplacian matrix L ∈ Rn×n of a graph G = (V,E) is

defined, in matrix notation, as L = D −A or, element-wise, as

Lij =





deg(i) if i = j,

−1 if i 6= j and (i, j) ∈ E,
0 otherwise.

(B.6)

Normalized Laplacian matrix. The Normalized Laplacian matrix LRW ∈ Rn×n

of a graph G is defined, in matrix notation, as LRW = D−1L or, element-wise, as

LRWij =





1 if i = j,

− 1
deg(i) if i 6= j and (i, j) ∈ E,

0 otherwise.

(B.7)

It is named LRW since it is closely related to a Random Walk (RW) on the graph.

B.3 Graph families

Path. A path graph (Figure B.1a) is a connected graph with n vertices and n− 1

edges; the first and last vertex have degree 1 and all the others have degree 2.

Cycle. A cycle graph (Figure B.1b) is a path where the two external vertices are

connected through an additional edge.

Star. A star graph (Figure B.1c) is a connected graph composed of n+ 1 vertices

and n edges, where one central vertex has degree n and is connected to all the

others, which have degree 1.

Complete. A complete graph (Figure B.1d), also known as clique, is the most

connected graph: it has n vertices and each of them os connected to all the others,

having a total of n(n−1)
2 edges.

Bipartite. A bipartite graph (Figure B.1e) is a graph of n vertices partitioned

into two sets, such that nodes of the same set are not connected.

Complete bipartite. A complete bipartite graph (Figure B.1f) is a bipartite

graph with each vertex of one set connected to all the vertices of the other.

B.4 Centrality measures

Centrality is an indicator of which are the most “central” and, in some sense, in-

fluence nodes of a graph. Such concept is not obvious to model and in fact it has

several definitions. We will have an overview in this section, focusing on the ones

that will be used more later.

Page 131

Appendix B. Graph Theory

(a) A path graph. (b) A cycle graph.

(c) A star graph. (d) A clique.

(e) A bipartite graph. (f) A complete bipartite graph.

Figure B.1: Some examples of graphs in figures (a), (b), (c), (d), (e), and (f).

Degree centrality. The first definition is that of degree centrality, which is simply

represented by the degree of each node, i.e. CD(v) = deg(v) where v is a node of a

graph, and it is able to tell which are the nodes more connected to others and able

to catch some flow passing through the graph. It can be computed in linear time,

just counting the number of edges incident to each node.

Page 132

Appendix B. Graph Theory

Eigenvector centrality. As the name itself suggest it involves operations with

the spectrum of the graph and improves the degree centrality giving a different

weight to each node, proportional to the combined score of their neighbors. The

problem, for an undirected graph G with an associated adjacency matrix A, is

equivalent to solve the eigenequation Ax = α−1x, where the eigenvector centrality

of node v is defined as CE(v) = xv and α−1 is the largest eigenvalue of A. Such

value can be computed through the power method, which will be briefly described

below.

The power method is an iterative algorithm for approximately solving the eigen-

value equation. It is especially good at finding the largest and smallest eigenvalues

and their associated eigenvectors for the way it works. It starts with an initial vec-

tor x(0) ∈ Rn and proceeds applying over and over the adjacency matrix operator

as follows

x(t) = Ax(t−1). (B.8)

until convergence, i.e. until the vector x does not change significantly anymore. We

will not discuss in details about the proof of convergence, the appropriate initial

vector choice, and the running time to obtain a maximum error ε, but the idea is to

iterate the above operation until the variation between x(t+1)

‖x(t+1)‖ and x(t)

‖x(t)‖ is under

a certain threshold.

Katz centrality. Katz centrality is a generalization of degree centrality and can

be seen as a variation of eigenvector centrality since can be computed in a way

similar to the power method. It is defined as x = αAᵀx + β1, with α and β some

positive constants. The Katz centrality of node v is then defined as CK(v) = xv,

where x can be found solving x = β(I − αAᵀ)−1 · 1.

Pagerank centrality. Pagerank centrality is a very well known measure since

the algorithm that computes was developed by Google and is at the base of Google

search engine. The measure tries to overcome an issue that we could face with Katz

centrality: all the nodes linked by a node with high centrality get high centrality

too, independently from how many they are. Formally

CPR = xv =
∑

u∈V
Auv

xu

d+
u

+ β (B.9)

where d+
u is the out-degree of node u.

Closeness centrality. Informally a node has a high closeness centrality if it is

close to many other nodes. In fact it is defined as the reciprocal of the average

length of the shortest path between a node towards all the others. Formally

CC(v) =
n∑

u∈V
d(u, v)

(B.10)

Page 133

Appendix B. Graph Theory

with d(u, v) being the distance or shortest path (minimum number of hops) between

nodes u and v.

Betweenness centrality. The betweenness centrality of a node describes how

often such nodes is in between the shortest path of two random nodes in a network.

It is defined as follows

CB(v) =
∑

s,t∈V

σvst
σst

(B.11)

where σst is the total number of shortest paths between nodes s and t, and σvst is

the fraction of shortest paths between nodes s and t passing through v. In such

formula we consider the fact that if σst and σvst are 0 then
σvst
σst

= 0.

Another definition is the one of edge betweenness in terms of flow. For every pair

of nodes s, t let s split a unit flow through all possible paths towards t. The edges

betweenness of e = (u, v) is defined as the combined flow on e. The betweenness of

a node u is the sum of the betweenness of all the edges adjacent to it. An algorithm

(more details can be found in [Che13]), which runs in O(n(n + m)), to compute

such metric is the following:

1. Starting from a node v, perform a Breadth First Search (BFS).

2. Count the number of shortest paths from v to all the other nodes.

3. Compute the flow from v to all the other nodes in each edge.

There are faster algorithms that compute an approximation of the between-

ness centrality, such as the recent one proposed by Riondato and Kornaropoulos in

[RK14].

Page 134

C
Linear Algebra

Here we review some basic definitions and results from linear algebra and, more

specifically, spectral theory.

C.1 Definitions and basic results

Definition C.1.1. Given a complex number x = a+ ib then we define its conjugate

as x = a − ib. Given a matrix A, its conjugate is the matrix A such having all

elements are the conjugate ones of A. We denote the transpose with Aᵀ and the

conjugate transpose with A∗.

Definition C.1.2 (Inner product). Given two vectors x,y ∈ Rn their inner product

is defined as

〈x,y〉 = x∗y =
n∑

i=1

xiyi (C.1)

being x∗ the conjugate transpose of x.

Such product is called dot product or scalar product in Euclidean spaces, to

emphasize the notation “·”, used in Rn to define it, or the fact that the result is a

scalar. Notice that, by definition, 〈x,y〉 = 〈x,y〉; the inner product of a vector with

itself is equal to its squared Euclidean norm; formally 〈x,x〉 = ‖x‖22.

Definition C.1.3. Given a matrix A ∈ Cn×n, a scalar λ, and a non-zero vector

v ∈ Cn, whenever

Av = λv (C.2)

we say that λ is an eigenvalue of A and v the eigenvector of A associated to λ. The

pair λ,v is also referred as eigenpair.

The above equation Av = λv is also known as eigenvalue equation.

Definition C.1.4 (Hermitian matrix). A matrix A is Hermitian if it is equal to

its conjugate transpose.

Theorem C.1.1. Given an Hermitian matrix A all its eigenvalues are real.

Page 135

Appendix C. Linear Algebra

Proof. Let λ and v be an eigenpair of a matrix A. Then, Av = λv. Conjugating

both sides we get that v∗Aᵀ = λv∗ and thus it follows that v∗Av = λv∗v exploiting

the symmetry of A. Thus λ‖v‖22 = λ‖v‖22 which implies λ = λ showing that

λ ∈ R. �

Theorem C.1.2. Let A be an Hermitian matrix and u, v two eigenvectors of A

associated to different eigenvalues. Then u and v are orthogonal.

Proof. We have the following equalities: Au = λuu and Av = λvv. A is symmetric,

thus uᵀAv = λuuᵀv for the first equality and uᵀAv = λvuᵀv for the second. Then

λvuᵀv = λuuᵀv and since λu 6= λv then uᵀv = 0. �

Notice that the adjacency and transition matrices associated to every regular

graph are Hermitian.

Theorem C.1.3 (Spectral decomposition). Let λ1 6 . . . 6 λn be the eigenvalues

of a matrix A with associated eigenvectors v1, . . . ,vn. Then

A =
n∑

i=1

λiviv
ᵀ
i . (C.3)

Proof. Let B =
∑n

i=1 λiviv
ᵀ
i . Thus, for all j, it holds that

Bvj =

n∑

i=1

λiviv
ᵀ
i vj = λjvj = Avj . (C.4)

Since the eigenvectors form an orthonormal basis of the space we have for all v ∈ Rn

that Av = Bv and thus A = B. �

Here we present a variational characterization of the eigenvalues of Hermitian

operators that will be used later which is known as variational theorem, min-max

theorem, or Courant-Fischer-Weyl min-max principle.

Theorem C.1.4 (Courant-Fischer-Weyl min-max principle). Given an n× n real

symmetric matrix A, λ1 6 . . . 6 λn its eigenvalues counted with multiplicities, and

v1, . . . ,vn the associated orthonormal eigenvectors. Then for all 1 6 k 6 n it hold

that

λk(A) = min
v∈Rn\0,vᵀui=0
∀i∈{1,...,k−1}

vᵀAv

vᵀv
(C.5)

and

λk(A) = max
v∈Rn\0,vᵀui=0
∀i∈{k+1,...,n}

vᵀAv

vᵀv
. (C.6)

The proof of Theorem C.1.4 can be found in [V+13].

Page 136

Appendix C. Linear Algebra

Theorem C.1.5 (Cauchy-Schwarz’s inequality). For all vectors u,v of an inner

product space it holds that

|〈u,v〉|2 6 〈u,u〉 · 〈v,v〉, (C.7)

where 〈·, ·〉 is the inner product.

Corollary C.1.1. Given M ∈ Rn×m it holds that

‖M‖22 6 ‖M‖1 · ‖M‖∞. (C.8)

Proof. We have that ‖M‖2 := sup‖x‖2=1 ‖Mx‖2, withMx = (m1, . . . ,mn)ᵀ. Notice

that

‖M‖22 =

n∑

k=1

|mk|2 =

n∑

k=1

(|mk| · |mk|) 6 (sup
i
|mi|)·

n∑

k=1

|mk| = ‖M‖∞ ·‖M‖1. (C.9)

�

Page 137

D
Spectral Graph Theory

Spectral graph theory studies the relation between eigenvalues of graph matrices and

combinatorial properties of the graphs they represent. The reported definitions and

proofs are very well known results and are mostly taken from [V+13] and [Tre14].

D.1 Graph Laplacian and its eigenvalues

Lemma D.1.1. Let G = (V,E) be a graph and L its Laplacian matrix. Let’s define

the Le matrices as follows: for every e = (i, j) ∈ E let Le(i, j) = Le(j, i) = −1,

Le(i, i) = Le(j, j) = 1, Le(x, y) = 0, with x, y /∈ {i, j}. Then L =
∑

e∈E Le.

Proof. It follows directly from the definitions of Le’s and L. �

Lemma D.1.2. Let L be the Laplacian matrix of a graph G = (V,E). Then L is

positive semidefinite (PSD), i.e. λi > 0, for all i = 1, . . . , n.

Proof. Given any vector v = (v1, . . . , vn), then it holds that

vᵀLv = vᵀ
∑

e∈E
Lev =

∑

e∈E
vᵀLev =

∑

e=(i,j)∈E
(vi − vj)2 > 0. (D.1)

Then minv 6=0 vᵀLv and it follows from Theorem C.1.4 that L is PSD. �

Notice that any Laplacian L has λ1(L) = 0. In fact considering 1 as the vector

of all 1s it is easy to check that L · 1 = 0, that 0 is then an eigenvalue of L, and

from Lemma D.1.2 that λ1(L) = 0. The second eigenvalue of the Laplacian, as said

before, has an important role in spectral graph theory and here we will see why.

Definition D.1.1. Given a graph G = (V,E) we define its normalized Laplacian

matrix as L = I − 1
dA.

The above definition, which is more convenient, will be used in the following

theorem.

Theorem D.1.1. Let G = (V,E) a d-regular graph, and L its normalized Laplacian

matrix. Let λ1 6 . . . 6 λn its eigenvalues, counted with multiplicities. Then the

following statements hold:

Page 139

Appendix D. Spectral Graph Theory

1. λ1 = 0 and λn 6 2;

2. λk = 0 if and only if G has at least k connected components;

3. λn = 2 if and only if one of the connected components of G is bipartite.

The proof can be found in [Tre14].

As introduced before, the second smallest eigenvalue of the Laplacian of a graph

is called algebraic connectivity and has an important role in measuring the connec-

tivity of a graph. Fiedler showed its properties in [Fie73, Fie89] and to used the so

called Fiedler vector to prove its theorem.

D.2 Relating cuts and eigenvalues

Theorem D.2.1 (Cheeger’s inequality [Chu96]). Let P be the transition matrix of

a connected edge-weighted graph G = (V,E,w) and let λ2 be its second largest eigen-

value. Let |E(S, V \S)| = ∑u∈S, v∈V \S w(u, v) and hG = min
S:vol(S)6 vol(V)

2

|E(S,V \S)|
vol(S) .

Then
1− λ2

2
6 hG 6

√
2(1− λ2). (D.2)

Lemma D.2.1 (Expander Mixing Lemma). Let G = (V,E) be a d-regular graph.

Let S ⊆ V and T ⊆ V . Then it holds that
∣∣∣∣e(S, T)− d|S||T |

n

∣∣∣∣ 6 λ
√
|S||T |, (D.3)

where λ is the second largest eigenvalue, in absolute value, of the adjacency matrix

of G.

Lemma D.2.2 (Expander Mixing Lemma – Bipartite graphs). Let G = ((L,R), E)

be a d-regular bipartite graph. Let S ⊆ L and T ⊆ R with |S| = αL and |T | = βR.

Then it holds that ∣∣∣∣
e(S, T)

|E| − αβ
∣∣∣∣ 6

λ

d

√
αβ, (D.4)

where λ is the second largest eigenvalue, in absolute value, of the adjacency matrix

of G.

Page 140

E
Probability Theory and

Stochastic Processes

Herein we introduce the basics of probability theory and of stochastic processes,

with a focus Markov chains and random walks.

E.1 Events, probability, random variables

We start with the foundations of probability, including events, probability spaces,

random variables, and some basic theorems that will be used later. All the defini-

tions, theorems, and lemmas are taken from [MU17].

Axioms of probability

Definition E.1.1. A probability space is composed of:

1. a sample space Ω, which is the set of all possible outcomes of the random

process that the space models;

2. a family of sets F representing the possible events; each set in F is a subset

of the sample space Ω;

3. a probability function P : F → R, satisfying Definition E.1.2.

Definition E.1.2. A probability function is any function P : F → R that satisfies

the following conditions:

1. for any event E, 0 6 P(E) 6 1;

2. P(Ω) = 1;

3. for any finite or countably infinite sequence of pairwise mutually disjoint

events it holds that

P

(⋃

i>1

Ei

)
=
∑

i>1

Ei. (E.1)

Page 141

Appendix E. Probability Theory and Stochastic Processes

Lemma E.1.1. For any two events E1 and E2

P(E1 ∪ E2) = P(E1) + P(E2)−P(E1 ∩ E2). (E.2)

Lemma E.1.2 (Union bound). For any finite or countably infinite sequence of

events

P

(⋃

i>1

Ei

)
6
∑

i>1

Ei. (E.3)

Proof. This intuitively follows from the generalization of Lemma E.1.1. The prob-

ability of the union, as in the previous case, is exactly equal to the sum when the

events are disjoints. �

Definition E.1.3 (Independent events). Two events E and F are independent if

and only if

P(E ∩ F) = P(E) ·P(F). (E.4)

In general k events are mutually independent if and only if

P

(
k⋂

i=1

Ei

)
=

k∏

i=1

P(Ei). (E.5)

Definition E.1.4 (Conditional probability). The conditional probability that event

E occurs, given that event F occurs, is

P(E |F) =
P(E ∩ F)

P(F)
. (E.6)

Such probability, obviously, is well-defined only if P(F) > 0.

Theorem E.1.1 (Law of total probability). Let E1, . . . , En be mutually disjoint

events in the sample space Ω and let
⋃n
i=1Ei = Ω. Then

P(A) =
n∑

i=1

P(A ∩ Ei) =
n∑

i=1

P(A |Ei)P(Ei). (E.7)

Theorem E.1.2 (Bayes’ law). Assume that E1, . . . , En are mutually disjoint sets

such that
⋃n
i=1Ei = E. Then

P(Ej |A) =
P(Ej ∩A)

P(A)
=

P(A |Ej)P(Ej)∑n
i=1 P(A |Ei)P(Ei)

. (E.8)

Definition E.1.5 (Event with high probability). We say that an event En occurs

with high probability (w.h.p., in short) if P(En) > 1 − O(n−γ), for some positive

constant γ.

Page 142

Appendix E. Probability Theory and Stochastic Processes

Random variables and expectation

Definition E.1.6 (Random variable). A random variable X on a sample space Ω

is a function X : Ω → F , where F is some set. A discrete random variable is a

random variable such that F is finite or countably infinite.

Definition E.1.7 (Expectation). The expectation or expected value of a discrete

random variable X is given by

E [X] =
∑

i∈X
iP(X = i). (E.9)

Theorem E.1.3 (Linearity of expectation). For any finite collection of discrete

random variables

E

[
n∑

i=1

Xi

]
=

n∑

i=1

E [Xi] . (E.10)

Lemma E.1.3. For any constant c and discrete random variable X

E [cX] = cE [X] . (E.11)

E.2 Markov chains and random walks

Markov chains are an extremely useful tool for modeling random processes and are

at the base of many algorithms, such as PageRank. In this section we report some

basic definitions, which are mainly taken from [MU17] and [LP17].

Definition E.2.1. A stochastic process X = {Xt : t ∈ T} is a collection of random

variables, denoted with X, that change their state Xt over time t.

If X assumes only discrete values we call X a discrete space process. If Xt can only

assume a finite number of values, for all t, then we call the process finite. Whenever

T is a countably infinite set, we call X a discrete time process.

Markov chains

Markov chains are discrete time stochastic processes that do not remember their

past history and such that their evolution only depend on their actual state. Here

we give a formal definition.

Definition E.2.2. A discrete time stochastic process X is a Markov chain if

P (Xt = at |Xt−1 = at−1, . . . , X0 = a0)

= P (Xt = at |Xt−1 = at−1) = Pat−1,at . (E.12)

Such property, prerogative of Markov chain, is called Markov property or memory-

less property.

Page 143

Appendix E. Probability Theory and Stochastic Processes

Observe that every Markovian process, i.e., every process having such property,

can be described by a transition matrix: Each of its elements, e.g., Pi,j , describes

the probability of moving from state i to state j in one time step and is sufficient

to describe the whole process because of the memoryless property. The rows of

the transition matrix are probability distributions and make such matrix stochastic,

meaning that its entries are non-negative, being probabilities, and sum to 1, since

are probability distributions. Such matrix is the representation of a graph (more

precisely a weighted digraph) and an example of it can be seen in Figure E.1.1

P =

0
BB@

0 1
4 0 3

4
1
2 0 1

3
1
6

0 0 1 0
0 1

2
1
4

1
4

1
CCA

(a) Transition matrix.

0

_
4

1 2

3
1

_
4
3 _

4
1

_
2
1

_
2
1

_
3
1_

4
1

1
_
6
1

(b) Markov digraph.

Figure E.1: An example of Markov chain represented as transition matrix (a) and

associated weighted digraph (b).

If we denote with p
(t)
i the probability of the process of being at state i at time

t, then we can compute such value as p
(t)
i =

∑
j>0 p

(t−1)
j Pj,i. Using vector notation

we can define π(t) = (p
(t)
0 , p

(t)
1 , . . .) and rewrite the above equation as follows

π(t) = π(t−1)P = π(0)P t. (E.13)

So we can see how multiplying a row vector, representing a probability distribution,

by P on the right side takes us from the current distribution (at time t) to the next

one (time t+ 1). Instead if we consider a column vector µ, representing a function

of the state space, we get that multiplying it by P on the left side gives us the

expected value of such function on the next state.

Definition E.2.3 (Irreducibility). A Markov chain is irreducible if for any two

states x, y there exists an integer t such that P tx,y > 0, i.e., there exists a directed

path in the Markov digraph from x to y.

Definition E.2.4. Let Tx = {t > 0 : P tx,x > 0} the set of time for which a Markov

chain P can return to its initial state x. The greatest common divisor of Tx is called

the period of the state x.

Definition E.2.5 (Aperiodicity). Let P be a Markov chain. If all its state have

period 1, then we say that P is aperiodic.

Lemma E.2.1. Let P be a Markov chain. If P is irreducible then all the states

have the same period.

1Source: [MU17]

Page 144

Appendix E. Probability Theory and Stochastic Processes

Theorem E.2.1. If a Markov chain P is both irreducible and aperiodic, then there

exists an integer r such that P rx,y > 0 for all states x, y.

Definition E.2.6. A state of a Markov chain is said to be recurrent whenever the

chain will eventually return to it, once visited, with probability 1. Otherwise a state

is said to be transient. A state is positive recurrent if the expected time of returning

to it, after its first visit, is finite.

Definition E.2.7 (Ergodicity). An aperiodic, positive recurrent state is said to be

ergodic. If all the states of a Markov chain are ergodic, then the Markov chain is

ergodic.

Corollary E.2.1 (Ergodic Markov Chains). Any finite, irreducible, and aperiodic

Markov chain is ergodic.

Stationary distributions

Definition E.2.8 (Stationary distribution). A stationary distribution of a Markov

chain is a row vector probability distribution π̄ such that

π̄ = π̄P. (E.14)

Such definition implies that whenever a Markov chain reaches such distributions

it will stay on that forever. Hence, such distribution is a steady-state of the Markov

chain. We call the time t in which a Markov chain reaches a stationary distribution

mixing time of the Markov chain. Now we present a fundamental theorem which is

at the basis of the analysis of Markov chains.

Theorem E.2.2. For any ergodic Markov chain, the following statements hold:

1. it has a unique stationary distribution π̄ = (π0, . . . , πn);

2. for all i, j, the limit limt→∞ P tj,i exists and is independent from j;

3. π̄i = limt→∞ P tj,i = 1
hi,i

, where hi,i is the expected number of steps for the

Markov chain, starting from state i, to return to state i.

Random walks

Random walks on graphs are a particular type of Markov chains and are especially

useful to analyze algorithms.

Definition E.2.9. A random walk on a connected graph G = (V,E) is a Markov

chain defined by the sequence of positions among the vertices of G, which compose

the state space. The transition matrix of a random walk is the transition matrix

associated to G. Thus, if the state is vertex v the next state will be a neighbor of v

and the probability of following any incident edge will be 1
dv

.

Page 145

Appendix E. Probability Theory and Stochastic Processes

Lemma E.2.2. A random walk on a graph G is aperiodic if and only if G is not

bipartite.

Theorem E.2.3. A random walk on a not bipartite graph G converges to a sta-

tionary distribution π̄, where

πv =
dv

2|E| . (E.15)

Proof. Since
∑

v∈V dv = 2|E| it follows that

∑

v∈V
πv =

∑

v∈V
dv =

dv
2|E| = 1. (E.16)

Let’s define N(v) as the set of neighbors of node v. Using the stationary distribution

equation π̄ = π̄P we get

πv =
∑

u∈N(v)

du
2|E|Pu,v =

∑

u∈N(v)

du
2|E|

1

du
=

dv
2|E| . (E.17)

�

E.3 Concentration bounds and other useful results

Theorem E.3.1 (Berry–Esseen [She14]). Let X1, . . . , Xn be independent and iden-

tically distributed random variables with mean µ = 0, variance σ2 > 0, and third

absolute moment ρ <∞. Let Yn = 1
n

∑n
i=1Xi; let Fn be the cumulative distribution

function of Yn
√
n

σ ; let Φ the cumulative distribution function of the standard normal

distribution. Then, there exists a positive constant C < 0.4748 such that, for all x

and for all n,

|Fn(x)− Φ(x)| 6 Cρ

σ3
√
n
. (E.18)

Theorem E.3.2 (Le Cam). Let X1, . . . , Xn be independent Bernoulli random vari-

ables and let pi the probability of having Xi = 1. Let λ =
∑n

i=1 pi and let Y =∑n
i=1Xi be a Poisson random variable. Then

∞∑

k=0

∣∣∣∣P (Y = k)− λke−λ

k!

∣∣∣∣ < 2
n∑

i=1

p2
i . (E.19)

Theorem E.3.3 (Littlewood–Offord’s small ball [Erd45]). Let xi be a Rademacher

random variable (taking values ±1 with probability p = 1
2), let ai be real constants

such that |ai| > 1, and let X =
∑n

i=1 aixi. Then, for any r ∈ R, it holds that

P(|X − r| < 1) = O
(

1√
n

)
. (E.20)

Theorem E.3.4 (Rademacher concentration bound [MS90]). Let xi be a Rademacher

random variable (taking values ±1 with probability p = 1
2), let ai be real constants,

and let X =
∑n

i=1 aixi. Then, it holds that

P (|X| > t‖a‖2) 6 2e−
t2

2 . (E.21)

where ‖a‖2 is the Euclidean norm of the vector a = (a1, . . . , an).

Page 146

Appendix E. Probability Theory and Stochastic Processes

Theorem E.3.5 (Chernoff — Additive). Let X1, . . . , Xn be independent Bernoulli

random variables, let X =
∑n

i=1Xi, and let E [X] = µ. Then:

P (X 6 µ− λ) 6 e−2λ2/n, 0 < λ < n− µ; (E.22)

P (X > µ+ λ) 6 e−2λ2/n, 0 < λ < µ. (E.23)

Theorem E.3.6 (Chernoff — Multiplicative). Let X1, . . . , Xn be n independent

Bernoulli random variables, let X =
∑n

i=1Xi, and let E [X] = µ. Then:

P (X 6 (1− δ)µ) 6 e−δ
2µ/2, 0 6 δ 6 1; (E.24)

P (X > (1 + δ)µ) 6 e−δ
2µ/3, 0 6 δ 6 1. (E.25)

Lemma E.3.1 (Lemma 4.5 [CGG+18]). Let {Xt}t∈N be a Markov Chain with finite

state space Ω and let f : Ω 7→ [0, n] be a function that maps states to integer values.

Let c3 be any positive constant and let m = c3
√
n log n be a target value. Assume

the following properties hold:

1. For any positive constant h, there exists a positive constant c1 < 1 such that,

for any x ∈ Ω : f(x) < m,

P
(
f(Xt+1) < h

√
n
∣∣ Xt = x

)
< c1. (E.26)

2. There exist two positive constants ε, c2 such that, for any x ∈ Ω : h
√
n 6

f(x) < m,

P (f(Xt+1) < (1 + ε)f(Xt) | Xt = x) < e−c2f(x)2/n. (E.27)

Then the process reaches a state x such that f(x) > m within O(log n) rounds,

w.h.p.

Page 147

Bibliography

[AAB+11] Yehuda Afek, Noga Alon, Omer Barad, Eran Hornstein, Naama

Barkai, and Ziv Bar-Joseph. A biological solution to a funda-

mental distributed computing problem. Science (New York, N.Y.),

331(6014):183–185, January 2011.

[AAD+06] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and

René Peralta. Computation in networks of passively mobile finite-state

sensors. Distributed computing, 18(4):235–253, 2006.

[AFJ06] Dana Angluin, Michael J. Fischer, and Hong Jiang. Stabilizing consen-

sus in mobile networks. In Proc. of Distributed Computing in Sensor

Systems (DCOSS’06), volume 4026 of LNCS, pages 37–50, 2006.

[AFPP12] Vincenzo Auletta, Diodato Ferraioli, Francesco Pasquale, and

Giuseppe Persiano. Metastability of Logit Dynamics for Coordina-

tion Games. In 33rd Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 1006–1024, Kyoto, Japan, 2012. SIAM.

[ALP+14] Chen Avin, Zvi Lotker, David Peleg, Yvonne Anne Pignolet, and

Itzik Turkel. Core-Periphery in Networks: An Axiomatic Approach.

arXiv:1411.2242 [physics], November 2014. arXiv: 1411.2242.

[BBV08] Alain Barrat, Marc Barthelemy, and Alessandro Vespignani. Dynam-

ical processes on complex networks. Cambridge university press, 2008.

[BC09] Michael J. Barber and John W. Clark. Detecting network communities

by propagating labels under constraints. Phys. Rev. E, 80:026129, Aug

2009.

[BCM+18] Luca Becchetti, Andrea E.F. Clementi, Pasin Manurangsi, Emanuele

Natale, Francesco Pasquale, Prasad Raghavendra, and Luca Trevisan.

Average whenever you meet: Opportunistic protocols for community

detection. In 26th Annual European Symposium on Algorithms, ESA

2018, August 20-22, 2018, Helsinki, Finland, pages 7:1–7:13, 2018.

[BCN+15] Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco

Pasquale, and Riccardo Silvestri. Plurality consensus in the gossip

Page 149

Bibliography

model. In Proceedings of the 26th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA’15), pages 371–390. SIAM, 2015.

[BCN+16] Luca Becchetti, Andrea E. F. Clementi, Emanuele Natale, Francesco

Pasquale, and Luca Trevisan. Stabilizing consensus with many opin-

ions. In Proceedings of the Twenty-27th Annual ACM-SIAM Sym-

posium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,

January 10-12, 2016, pages 620–635, 2016.

[BCN+17a] Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco

Pasquale, Riccardo Silvestri, and Luca Trevisan. Simple dynamics

for plurality consensus. Distributed Computing, 30(4), August 2017.

[BCN+17b] Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco

Pasquale, and Luca Trevisan. Find your place: Simple distributed

algorithms for community detection. In Proceedings of the 28th An-

nual ACM-SIAM Symposium on Discrete Algorithms, pages 940–959.

Society for Industrial and Applied Mathematics, 2017.

[BCPR19] Luca Becchetti, Emilio Cruciani, Francesco Pasquale, and Sara Rizzo.

Step-by-step community detection in volume-regular graphs. In Pro-

ceedings of the 30th International Symposium on Algorithms and Com-

putation, ISAAC 2019, Shanghai, China, December 8-11, 2019, page

to appear, 2019.

[BDSY99] Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene

expression patterns. Journal of computational biology, 6(3-4):281–297,

1999.

[BE00] Stephen P Borgatti and Martin G Everett. Models of core/periphery

structures. Social Networks, 21(4):375 – 395, 2000.

[BF07] Daniel I. Bolnick and Benjamin M. Fitzpatrick. Sympatric Speciation:

Models and Empirical Evidence. Annual Review of Ecology, Evolution,

and Systematics, 38:459–487, 2007.

[BGKMT16] Petra Berenbrink, George Giakkoupis, Anne-Marie Kermarrec, and

Frederik Mallmann-Trenn. Bounds on the Voter Model in Dynamic

Networks. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval

Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium

on Automata, Languages, and Programming (ICALP 2016), vol-

ume 55 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 146:1–146:15, Dagstuhl, Germany, 2016. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik.

Page 150

Bibliography

[BGLL08] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and

Etienne Lefebvre. Fast unfolding of communities in large net-

works. Journal of statistical mechanics: theory and experiment,

2008(10):P10008, 2008.

[BGPS06] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah.

Randomized gossip algorithms. IEEE/ACM Transactions on Net-

working (TON), 14:2508–2530, 2006.

[BGW03] Ulrik Brandes, Marco Gaertler, and Dorothea Wagner. Experiments

on graph clustering algorithms. In Algorithms - ESA 2003, 11th

Annual European Symposium, Budapest, Hungary, September 16-19,

2003, Proceedings, pages 568–579, 2003.

[BKN17] Lucas Boczkowski, Amos Korman, and Emanuele Natale. Minimiz-

ing Message Size in Stochastic Communication Patterns: Fast Self-

Stabilizing Protocols with 3 bits. In 28th Annual ACM-SIAM Sym-

posium on Discrete Algorithms, January 2017.

[Bol98] Béla Bollobás. Random graphs. In Modern Graph Theory, pages

215–252. Springer, 1998.

[BRSV11] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna.

Layered label propagation: A multiresolution coordinate-free ordering

for compressing social networks. In Proceedings of the 20th interna-

tional conference on World wide web, pages 587–596. ACM, 2011.

[CCDP19a] Federico Corò, Emilio Cruciani, Gianlorenzo D’Angelo, and Stefano

Ponziani. Exploiting social influence to control elections based on scor-

ing rules. In Proceedings of the 28th International Joint Conference

on Artificial Intelligence, IJCAI 2019, Macau, China, August 10-16,

2019, page to appear, 2019.

[CCDP19b] Federico Corò, Emilio Cruciani, Gianlorenzo D’Angelo, and Stefano

Ponziani. Vote for me! election control via social influence in arbitrary

scoring rule voting systems. In Proceedings of the 18th International

Conference on Autonomous Agents and MultiAgent Systems, AAMAS

2019, Montreal, QC, Canada, May 13-17, 2019, pages 1895–1897,

2019.

[CDIG+15] Andrea Clementi, Miriam Di Ianni, Giorgio Gambosi, Emanuele Na-

tale, and Riccardo Silvestri. Distributed community detection in dy-

namic graphs. Theoretical Computer Science, 2015.

[CDRR16] Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andrea Richa.

A markov chain algorithm for compression in self-organizing particle

Page 151

Bibliography

systems. In PODC 2016 - Proceedings of the 2016 ACM Symposium on

Principles of Distributed Computing, volume 25-28-July-2016, pages

279–288. Association for Computing Machinery, 7 2016.

[CER14] Colin Cooper, Robert Elsässer, and Tomasz Radzik. The power of two

choices in distributed voting. In Automata, Languages, and Program-

ming - 41st International Colloquium, ICALP 2014, Copenhagen,

Denmark, July 8-11, 2014, Proceedings, Part II, pages 435–446, 2014.

[CER+15] Colin Cooper, Robert Elsässer, Tomasz Radzik, Nicolas Rivera, and

Takeharu Shiraga. Fast consensus for voting on general expander

graphs. In Distributed Computing - 29th International Symposium,

DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, pages 248–

262, 2015.

[CG10] Gennaro Cordasco and Luisa Gargano. Community detection via

semi-synchronous label propagation algorithms. In Business Applica-

tions of Social Network Analysis (BASNA), 2010 IEEE International

Workshop on, pages 1–8. IEEE, 2010.

[CGG+18] Andrea E. F. Clementi, Mohsen Ghaffari, Luciano Gualà, Emanuele

Natale, Francesco Pasquale, and Giacomo Scornavacca. A Tight Anal-

ysis of the Parallel Undecided-State Dynamics with Two Colors. In

43st International Symposium on Mathematical Foundations of Com-

puter Science, 2018.

[Cha00] Moses Charikar. Greedy Approximation Algorithms for Finding Dense

Components in a Graph, pages 84–95. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2000.

[Che13] Hongsong Chen. Networks, crowds, and markets: Reasoning about

a highly connected world [book review]. IEEE Technol. Soc. Mag.,

32(3):10, 2013.

[Chu96] Fan R.K. Chung. Laplacians of graphs and Cheeger’s inequalities. In

Combinatorics, Paul Erdös is eighty, volume 2, pages 157–172. János

Bolyai Math. Soc., 1996.

[CKW18] Luca Cardelli, Marta Kwiatkowska, and Max Whitby. Chemical re-

action network designs for asynchronous logic circuits. Natural Com-

puting, 17(1):109–130, 2018.

[CMVB19] Emilio Cruciani, Breno Miranda, Roberto Verdecchia, and Antonia

Bertolino. Scalable approaches for test suite reduction. In Proceedings

of the 41st International Conference on Software Engineering, ICSE

2019, Montreal, QC, Canada, May 25-31, 2019, pages 419–429, 2019.

Page 152

Bibliography

[CNM04] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding

community structure in very large networks. 70(6), 2004.

[CNNS18a] Emilio Cruciani, Emanuele Natale, André Nusser, and Giacomo Scor-

navacca. On the emergent behavior of the 2-choices dynamics. In

Proceedings of the 19th Italian Conference on Theoretical Computer

Science, Urbino, Italy, September 18-20, 2018., pages 60–64, 2018.

[CNNS18b] Emilio Cruciani, Emanuele Natale, André Nusser, and Giacomo Scor-

navacca. Phase transition of the 2-choices dynamics on core-periphery

networks. In Proceedings of the 17th International Conference on Au-

tonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm,

Sweden, July 10-15, 2018, pages 777–785, 2018.

[CNNS18c] Emilio Cruciani, Emanuele Natale, André Nusser, and Giacomo Scor-

navacca. Phase transition of the 2-choices dynamics on core-periphery

networks. Bulletin of the EATCS, 125, 2018.

[CNS18] Emilio Cruciani, Emanuele Natale, and Giacomo Scornavacca. On the

metastability of quadratic majority dynamics on clustered graphs and

its biological implications. Bulletin of the EATCS, 125, 2018.

[CNS19] Emilio Cruciani, Emanuele Natale, and Giacomo Scornavacca. Dis-

tributed community detection via metastability of the 2-choices dy-

namics. In Proceedings of the 33rd AAAI Conference on Artificial

Intelligence, AAAI 2019, Honolulu, HI, USA, January 27 - February

1, 2019, page to appear, 2019.

[CO04] Jerry A Coyne and H Allen Orr. Speciation. Sinauer Associates, Inc,

Sunderland, Mass, 1 edition edition, 2004.

[CRRS17] Colin Cooper, Tomasz Radzik, Nicolas Rivera, and Takeharu Shiraga.

Fast plurality consensus in regular expanders. In 31st International

Symposium on Distributed Computing, DISC 2017, October 16-20,

2017, Vienna, Austria, pages 13:1–13:16, 2017.

[CSWB09] Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua

Bruck. Programmability of Chemical Reaction Networks, pages 543–

584. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[DDG+14] Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W.

Richa, Christian Scheideler, and Thim Strothmann. Brief announce-

ment: Amoebot – a new model for programmable matter. In Proceed-

ings of the 26th ACM Symposium on Parallelism in Algorithms and

Architectures, SPAA ’14, pages 220–222, New York, NY, USA, 2014.

ACM.

Page 153

Bibliography

[DGM+11] Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas Sauer-

wald, and Christian Scheideler. Stabilizing consensus with the power

of two choices. In Proceedings of the Twenty-third Annual ACM Sym-

posium on Parallelism in Algorithms and Architectures, SPAA ’11,

pages 149–158, New York, NY, USA, 2011. ACM.

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed

control. Commun. ACM, 17(11):643–644, November 1974.

[DJ10] Easley David and Kleinberg Jon. Networks, Crowds, and Markets:

Reasoning About a Highly Connected World. Cambridge University

Press, New York, NY, USA, 2010.

[Dot14] David Doty. Timing in chemical reaction networks. In Proc. of 25th

Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA’14), pages

772–784. SIAM, 2014.

[DP09] Devdatt Dubhashi and Alessandro Panconesi. Concentration of Mea-

sure for the Analysis of Randomized Algorithms. Cambridge Univer-

sity Press, New York, NY, USA, 1st edition, 2009.

[Dur11] Richard Durrett. By Richard Durrett - Probability Models for DNA

Sequence Evolution: 2nd (second) Edition. Springer-Verlag New York,

LLC, November 2011.

[EFK+16] Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Frederik

Mallmann-Trenn, and Horst Trinker. Rapid Asynchronous Plurality

Consensus. arXiv:1602.04667 [cs], February 2016. arXiv: 1602.04667.

[EJN02] Mark E. J. Newman. Spread of epidemic disease on networks.

66:016128, 08 2002.

[ER60] Paul Erdos and Alfréd Rényi. On the evolution of random graphs.

Publ. Math. Inst. Hung. Acad. Sci, 5(1):17–60, 1960.

[Erd45] Paul Erdös. On a lemma of littlewood and offord. Bulletin of the

American Mathematical Society, 51(12):898–902, 1945.

[FB07] Santo Fortunato and Marc Barthélemy. Resolution limit in com-

munity detection. Proceedings of the National Academy of Sciences,

104(1):36–41, 2007.

[FH16] Santo Fortunato and Darko Hric. Community detection in networks:

A user guide. 659:1–44, 2016.

[Fie73] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak

mathematical journal, 23(2):298–305, 1973.

Page 154

Bibliography

[Fie89] Miroslav Fiedler. Laplacian of graphs and algebraic connectivity. Ba-

nach Center Publications, 25(1):57–70, 1989.

[FN16] Pierre Fraigniaud and Emanuele Natale. Noisy Rumor Spreading and

Plurality Consensus. In ACM Symposium on Principles of Distributed

Computing, pages 127–136, 2016.

[For10] Santo Fortunato. Community detection in graphs. Physics Reports,

486(3):75–174, 2010.

[FTT04] Gary William Flake, Robert E Tarjan, and Kostas Tsioutsiouliklis.

Graph clustering and minimum cut trees. Internet Mathematics,

1(4):385–408, 2004.

[FV15] Diodato Ferraioli and Carmine Ventre. Metastability of Asymptot-

ically Well-Behaved Potential Games. In Mathematical Foundations

of Computer Science 2015, Lecture Notes in Computer Science, pages

311–323. Springer Berlin Heidelberg, 2015.

[GGG+17] Andreas Galanis, Andreas Göbel, Leslie Ann Goldberg, John Lapin-

skas, and David Richerby. Amplifiers for the Moran Process. J. ACM,

64(1):5:1–5:90, March 2017.

[GH61] Ralph E Gomory and Tien Chung Hu. Multi-terminal network

flows. Journal of the Society for Industrial and Applied Mathemat-

ics, 9(4):551–570, 1961.

[Gia16] George Giakkoupis. Amplifiers and Suppressors of Selection for the

Moran Process on Undirected Graphs. arXiv:1611.01585 [cs, math,

q-bio], November 2016. arXiv: 1611.01585.

[GL98] Wen-Biao Gan and Jeff W. Lichtman. Synaptic Segregation at the

Developing Neuromuscular Junction. Science, 282(5393):1508–1511,

November 1998.

[GL17] Mohsen Ghaffari and Johannes Lengler. Tight analysis for the 3-

majority consensus dynamics. CoRR, abs/1705.05583, 2017.

[Gre10] Steve Gregory. Finding overlapping communities in networks by label

propagation. New Journal of Physics, 12(10):103018, 2010.

[GS19] Sara E. Garza and Satu Elisa Schaeffer. Community detection with

the Label Propagation Algorithm: A survey. Physica A: Statistical

Mechanics and its Applications, page 122058, July 2019.

[Het00] Herbert W. Hethcote. The mathematics of infectious diseases. SIAM

Review, 42(4):599–653, 2000.

Page 155

Bibliography

[HLL83] Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt.

Stochastic blockmodels: First steps. Social Networks, 5(2), June 1983.

[HP01] Yehuda Hassin and David Peleg. Distributed probabilistic polling and

applications to proportionate agreement. Information and Computa-

tion, 171(2):248 – 268, 2001.

[HW04] Adel Hlaoui and Shengrui Wang. A direct approach to graph cluster-

ing. Neural Networks and Computational Intelligence, 4(8):158–163,

2004.

[KKT15] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the

spread of influence through a social network. Theory of Computing,

11(4):105–147, 2015.

[KL70] Brian W Kernighan and Shen Lin. An efficient heuristic procedure for

partitioning graphs. The Bell system technical journal, 49(2):291–307,

1970.

[KPS13] Kishore Kothapalli, Sriram V. Pemmaraju, and Vivek Sardeshmukh.

On the analysis of a label propagation algorithm for community de-

tection. In Proc. of the 14th Int. Conf. on Distributed Computing and

Networking (ICDCN’13), pages 255–269, 2013.

[KS60] John G. Kemeny and J. Laurie Snell. Finite Markov chains. D. van

Nostrand Company, inc., Princeton, N.J., 1960.

[Kun13] Jérôme Kunegis. Konect: the koblenz network collection. In Proceed-

ings of the 22nd International Conference on World Wide Web, pages

1343–1350. ACM, 2013.

[LFR08] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Bench-

mark graphs for testing community detection algorithms. Physical

review E, 78(4):046110, 2008.

[LGT14] James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway

spectral partitioning and higher-order cheeger inequalities. Journal of

the ACM (JACM), 61(6):37, 2014.

[LHLC09] Ian X. Y. Leung, Pan Hui, Pietro Liò, and Jon Crowcroft. To-

wards real-time community detection in large networks. Phys. Rev.

E, 79:066107, Jun 2009.

[LHN05] Erez Lieberman, Christoph Hauert, and Martin A. Nowak. Evolution-

ary dynamics on graphs. Nature, 433(7023):312–316, January 2005.

[Lig06] Thomas M. Liggett. Interacting Particle Systems. Springer Science &

Business Media, 2012-12-06. Google-Books-ID: 7JbqBwAAQBAJ.

Page 156

Bibliography

[Lig09] Thomas M. Liggett. Stochastic Interacting Systems: Contact, Voter

and Exclusion Processes. Springer Science & Business Media, 2013-

03-09. Google-Books-ID: wRv2CAAAQBAJ.

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large

network dataset collection. http://snap.stanford.edu/data, June

2014.

[Llo82] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions

on information theory, 28(2):129–137, 1982.

[LM09] Xin Liu and Tsuyoshi Murata. How does label propagation algorithm

work in bipartite networks? In IEEE/WIC/ACM International Joint

Conference on Web Intelligence and Intelligent Agent Technology -

Volume 03, pages 5–8, 2009.

[LM10] Xin Liu and Tsuyoshi Murata. Advanced modularity-specialized label

propagation algorithm for detecting communities in networks. Phys-

ica A: Statistical Mechanics and its Applications, 389(7):1493 – 1500,

2010.

[LP17] David A Levin and Yuval Peres. Markov chains and mixing times,

volume 107. American Mathematical Soc., 2017.

[LRU14] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining

of massive datasets. Cambridge university press, 2014.

[MCC+19] Mohammad Abouei Mehrizi, Federico Corò, Emilio Cruciani, Gian-

lorenzo D’Angelo, and Stefano Ponziani. Models and algorithms for

election control via influence maximization. In Proceedings of the 20th

Italian Conference on Theoretical Computer Science, Como, Italy,

September 9-11, 2019., page to appear, 2019.

[MCVB18] Breno Miranda, Emilio Cruciani, Roberto Verdecchia, and Antonia

Bertolino. FAST approaches to scalable similarity-based test case

prioritization. In Proceedings of the 40th International Conference

on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 -

June 03, 2018, pages 222–232, 2018.

[MDN+13] Simon H. Martin, Kanchon K. Dasmahapatra, Nicola J. Nadeau,

Camilo Salazar, James R. Walters, Fraser Simpson, Mark Blaxter,

Andrea Manica, James Mallet, and Chris D. Jiggins. Genome-wide ev-

idence for speciation with gene flow in Heliconius butterflies. Genome

Research, 23(11):1817–1828, November 2013.

Page 157

http://snap.stanford.edu/data

Bibliography

[MNRS17] George B Mertzios, Sotiris E Nikoletseas, Christoforos L Raptopoulos,

and Paul G Spirakis. Determining majority in networks with local

interactions and very small local memory. Distributed Computing,

30(1):1–16, 2017.

[MNT14] Elchanan Mossel, Joe Neeman, and Omer Tamuz. Majority dynamics

and aggregation of information in social networks. Autonomous Agents

and Multi-Agent Systems, 28(3):408–429, May 2014.

[MPG29] RV Mises and Hilda Pollaczek-Geiringer. Praktische verfahren der

gleichungsauflösung. ZAMM-Journal of Applied Mathematics and

Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik,

9(1):58–77, 1929.

[MS90] Stephen J Montgomery-Smith. The distribution of rademacher sums.

Proceedings of the American Mathematical Society, 109(2):517–522,

1990.

[MS01a] Marina Meila and Jianbo Shi. Learning segmentation by random

walks. In Advances in neural information processing systems, pages

873–879, 2001.

[MS01b] Marina Meila and Jianbo Shi. A random walks view of spectral seg-

mentation. 2001.

[MT17] Elchanan Mossel and Omer Tamuz. Opinion exchange dynamics.

Probability Surveys, 14:155–204, 2017.

[MU17] Michael Mitzenmacher and Eli Upfal. Probability and computing: ran-

domization and probabilistic techniques in algorithms and data analy-

sis. Cambridge university press, 2017.

[Nat17] Emanuele Natale. On the Computational Power of Simple Dynamics.

Phd thesis, 2017. Sapienza University of Rome.

[New04] M. E. J. Newman. Fast algorithm for detecting community structure

in networks. 69(6), 2004.

[NG04] M. E. J. Newman and M. Girvan. Finding and evaluating community

structure in networks. 69(2), 2004.

[PSZ17] Richard Peng, He Sun, and Luca Zanetti. Partitioning well-clustered

graphs: Spectral clustering works! SIAM Journal on Computing,

46(2):710–743, 2017.

[Rab83] Michael O. Rabin. Randomized byzantine generals. In Proc. of the

24th Ann. Symp. on Foundations of Computer Science (SFCS’83),

pages 403–409. IEEE, 1983.

Page 158

Bibliography

[RAB09] Martin Rosvall, Daniel Axelsson, and Carl T. Bergstrom. The map

equation. The European Physical Journal Special Topics, 178:13–23,

2009.

[RAK07] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near

linear time algorithm to detect community structures in large-scale

networks. Physical Review E, 76(3):036106, 2007.

[RK14] Matteo Riondato and Evgenios M. Kornaropoulos. Fast approxima-

tion of betweenness centrality through sampling. In Proceedings of the

7th ACM International Conference on Web Search and Data Mining,

WSDM ’14, pages 413–422, New York, NY, USA, 2014. ACM.

[RMJ07] Matthew J Rattigan, Marc Maier, and David Jensen. Graph cluster-

ing with network structure indices. In Proceedings of the 24th inter-

national conference on Machine learning, pages 783–790. ACM, 2007.

[SAL+06] Vincent Savolainen, Marie-Charlotte Anstett, Christian Lexer, Ian

Hutton, James J. Clarkson, Maria V. Norup, Martyn P. Powell, David

Springate, Nicolas Salamin, and William J. Baker. Sympatric specia-

tion in palms on an oceanic island. Nature, 441(7090):210–213, May

2006.

[ŠB11a] Lovro Šubelj and Marko Bajec. Robust network community detec-

tion using balanced propagation. The European Physical Journal B,

81(3):353–362, 2011.

[ŠB11b] Lovro Šubelj and Marko Bajec. Unfolding communities in large com-

plex networks: Combining defensive and offensive label propagation

for core extraction. Physical Review E, 83(3):036103, 2011.

[SC08] Philipp Schuetz and Amedeo Caflisch. Efficient modularity optimiza-

tion by multistep greedy algorithm and vertex refinement. 2008.

[Sch07] Satu Elisa Schaeffer. Graph clustering. Computer science review,

1(1):27–64, 2007.

[Sha09] Devavrat Shah. Gossip algorithms. Now Publishers Inc, 2009.

[She14] Irina Shevtsova. On the absolute constants in the berry-esseen-type

inequalities. Doklady Mathematics, 89(3):378–381, May 2014.

[SK88] Peter R Suaris and Gershon Kedem. An algorithm for quadrisection

and its application to standard cell placement. IEEE Transactions on

Circuits and Systems, 35(3):294–303, 1988.

Page 159

Bibliography

[SLBK03] Adam Schenker, Mark Last, Horst Bunke, and Abraham Kandel.

Clustering of web documents using a graph model. SERIES IN MA-

CHINE PERCEPTION AND ARTIFICIAL INTELLIGENCE, 55:3–

18, 2003.

[SM98] Jianbo Shi and Jitendra Malik. Motion segmentation and tracking

using normalized cuts. In Computer Vision, 1998. Sixth International

Conference on, pages 1154–1160. IEEE, 1998.

[SM00] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmenta-

tion. IEEE Transactions on pattern analysis and machine intelligence,

22(8):888–905, 2000.

[SZ17] He Sun and Luca Zanetti. Distributed graph clustering and sparsifi-

cation. CoRR, abs/1711.01262, 2017.

[TK06] Jianjun Paul Tian and D Kannan. Lumpability and commutativity

of markov processes. Stochastic analysis and Applications, 24(3):685–

702, 2006.

[TK08] Gergely Tibély and János Kertész. On the equivalence of the la-

bel propagation method of community detection and a potts model

approach. Physica A: Statistical Mechanics and its Applications,

387(19):4982 – 4984, 2008.

[TL12] Stephen G. Turney and Jeff W. Lichtman. Reversing the Outcome of

Synapse Elimination at Developing Neuromuscular Junctions In Vivo:

Evidence for Synaptic Competition and Its Mechanism. PLOS Biol,

10(6):e1001352, June 2012.

[Tre14] Luca Trevisa. Lecture Notes on Expansion, Sparsest Cut and Spectral

Graph Theory. 2014.

[TWK+12] Juan C. Tapia, John D. Wylie, Narayanan Kasthuri, Kenneth J.

Hayworth, Richard Schalek, Daniel R. Berger, Cristina Guatimosim,

H. Sebastian Seung, and Jeff W. Lichtman. Pervasive Synaptic Branch

Removal in the Mammalian Neuromuscular System at Birth. Neuron,

74(5):816–829, June 2012.

[UB13] Johan Ugander and Lars Backstrom. Balanced label propagation for

partitioning massive graphs. In Proceedings of the sixth ACM inter-

national conference on Web search and data mining, pages 507–516.

ACM, 2013.

[V+13] Nisheeth K Vishnoi et al. Lx= b. Foundations and Trends R© in

Theoretical Computer Science, 8(1–2):1–141, 2013.

Page 160

Bibliography

[VD01] Stijn Marinus Van Dongen. Graph clustering by flow simulation. PhD

thesis, 2001.

[VL07] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and

computing, 17(4):395–416, 2007.

[WH04] Fang Wu and Bernardo A. Huberman. Finding communities in linear

time: a physics approach. 38(2):331–338, 2004.

[WV18] Bryan Wilder and Yevgeniy Vorobeychik. Controlling elections

through social influence. In Proceedings of the 17th International

Conference on Autonomous Agents and MultiAgent Systems, AAMAS

2018, Stockholm, Sweden, July 10-15, 2018, pages 265–273, 2018.

[XCS13] Jierui Xie, Mingming Chen, and Boleslaw K. Szymanski. Labelrankt:

Incremental community detection in dynamic networks via label prop-

agation. In ACM Workshop on Dynamic Networks Management and

Mining, pages 25–32, 2013.

[XS11] Jierui Xie and Boleslaw K. Szymanski. Community detection using

a neighborhood strength driven label propagation algorithm. In Net-

work Science Workshop (NSW), 2011 IEEE, pages 188–195. IEEE,

2011.

[XS13] Jierui Xie and Boleslaw K. Szymanski. Labelrank: A stabilized la-

bel propagation algorithm for community detection in networks. In

Network Science Workshop (NSW), 2013 IEEE 2nd, pages 138–143.

IEEE, 2013.

[ZM04] Shi Zhou and Raúl J Mondragón. The rich-club phenomenon in the

internet topology. IEEE Communications Letters, 8(3):180–182, 2004.

[ZRS+17] Xian-Kun Zhang, Jing Ren, Chen Song, Jia Jia, and Qian Zhang.

Label propagation algorithm for community detection based on node

importance and label influence. Physics Letters A, 381(33):2691–2698,

2017.

Page 161

	Preface
	Introduction
	Research contributions
	Organization of the thesis

	I Background
	Graph Clustering
	Networks and communities
	Community quality metrics
	Internal criteria
	External criteria

	Networks with community structure
	Synthetic network models
	Real-world networks

	Algorithms for graph clustering
	Traditional methods
	Partitional methods
	Hierarchical methods
	Spectral methods
	Dynamical methods

	Label Propagation Algorithms
	General overview
	A brief history of LPAs

	Computational Dynamics
	Communication models
	Consensus
	Dynamics
	Voter dynamics
	2-Choices dynamics
	Averaging dynamics

	II 2-Choices Dynamics
	Phase Transition on Core-Periphery Networks
	Preliminaries
	Theoretical analysis
	Phase transition on core-periphery networks

	Simulations on real-world networks

	Metastability on Clustered Graphs
	Preliminaries
	Theoretical analysis
	A distributed graph clustering algorithm

	Biological implications
	A proof of concept for speciation
	On the process of innervation in muscular junctions

	III Averaging Dynamics
	Reconstruction of Volume-Regular Graphs
	Preliminaries
	Averaging dynamics
	Community-sensitive algorithms
	Volume-regular graphs

	Theoretical analysis
	Clustered graphs
	Bipartite graphs
	Other non-clustered graphs

	Conclusion
	Appendix
	Asymptotic Notation
	Graph Theory
	Definitions
	Matrix representations
	Graph families
	Centrality measures

	Linear Algebra
	Definitions and basic results

	Spectral Graph Theory
	Graph Laplacian and its eigenvalues
	Relating cuts and eigenvalues

	Probability Theory and Stochastic Processes
	Events, probability, random variables
	Markov chains and random walks
	Concentration bounds and other useful results

	Bibliography

