
PHD THESIS

Service Function Chaining with Segment
Routing

PHD PROGRAM IN COMPUTER SCIENCE: XXXI CYCLE

PHD CANDIDATE

Ahmed Abdelsalam
Gran Sasso Science Institute

ADVISOR

Stefano Salsano
Università di Roma Tor Vergata

INTERNAL ADVISORS

Omar Inverso
Catia Trubiani
Gran Sasso Science Institute

August 2020

Gran Sasso Science Institute - GSSI

Abstract

Network Function Virtualization (NFV) is reshaping the way in which telecommunication

networks and services are designed and operated. Traditional network functions are being

transformed into Virtual Network Functions (VNFs) implemented as software modules. NFV

promises a big capital expenditure (CAPEX) saving by replacing dedicated physical appliances

with VNFs that can run on any commodity hardware. It also promises more flexibility as VNFs

can be augmented with new features via simple software updates.

Service function chaining (SFC) denotes the process of forwarding packets through a sequence

of network functions. It allows creating end-to-end services by composing several network

functions. In traditional “pre-NFV” approaches, network functions were placed en-route, i.e.

along the path of the flows. In NFV scenarios, VNFs can be arbitrarily located in the distributed

virtualization infrastructure. Hence, SFC requires a steering method to force traffic to go

through the chain of VNFs.

Segment Routing (SR) is a new network architecture based on source routing. It allows a node

to steer packets through a set of network nodes in a specific order. In SR networks, a list of

instructions, called segments, is attached to the packet to define such forwarding path. The SR

architecture can be implemented with MPLS and IPv6 data plane. In this thesis, we only focus

on the SR implementation based on IPv6 data plane, denoted as SRv6.

In this thesis, we leverage the SRv6 capabilities to design a scalable SRv6-based SFC archi-

tecture. We define the design principles of the architecture and discuss the challenges. We

also propose the solutions to these challenges. Moreover, we study both the functional and

non-functional properties of the architecture. More specifically, the contributions of this thesis

are as follows:

Abstract ii

• Design of a scalable SFC architecture based on SRv6.

SFC is one of the most challenging use-cases in telecommunication networks. Tra-

ditional SFC solutions require maintaining per-chain state information in the network

fabric to forward packets to VNFs. In the first part of Chapter 3, we propose a scalable

SRv6-based SFC architecture. In the proposed architecture, each VNF is assigned a

segment identifier (SID) and SFC is achieved by attaching a list of SIDs to the packets.

Being SRv6-based, our approach does not need to maintain per-chain state information

in the network fabric. Our solution is thus more scalable than the traditional alternatives.

We define both data and control planes aspects of our proposed architecture. We also

explain how to implement such architecture in a Linux environment.

• Design and implementation of a solution to integrate legacy network functions into the

SRv6-based SFC architecture.

In SRv6-based SFC, VNFs can be categorized into SRv6-aware and SRv6-unaware

VNFs based on their ability to process SRv6 information in received packets. SRv6-

unaware VNFs are legacy VNFs that can not process SRv6 packets. They might drop

the packet or perform erroneous action. However, these SRv6-unaware VNFs have been

in use since long time and network operators have spent a lot of efforts to automate their

deployment and operations. In the second part of Chapter 3, we provide a solution to

re-use such legacy SRv6-unaware VNFs within SRv6-based SFC architecture. To that

end, we provide an SRv6-proxy that processes the SRv6 information on behalf of the

SRv6-unaware VNFs. The proxy delivers plain IP packets to the VNFs with no SRv6

information. It restores the SRv6 information after the packets are processed by the

VNF. The SRv6-proxy supports static, dynamic and masquerading behaviors to address

the various types of VNFs. We provide an open source implementation for those proxy

behaviors in Linux. We evaluate the processing overhead introduced by our SRv6-proxy

implementation with respect to plain IP forwarding. The results are reported in Chap-

ter 5 and show that our implementation provides a forwarding rate that can match the

bandwidth requirements of VNFs.

• Design and implementation of native SRv6-aware network functions.

With SRv6, the SR architecture has been evolving from the simple steering of pack-

ets across nodes to a general network programming approach. The idea is to encode

instructions and not only locations in a segment list. In order to exploit such SRv6

“network programming” capabilities in SFC, network functions have to be SRv6-aware.

Abstract iii

In Chapter 4, we design and implement several SRv6-aware network functions: SERA,

SR-Snort, SR-nftables and SR-tcpdump. SERA is an SRv6-aware firewall capable of ap-

plying normal firewall behavior to packets with SRv6 information. It can also perform

stateless SRv6-specific actions on packets. SERA is implemented as an extension to the

commonly used iptables firewall. To the best of our knowledge, SERA is the first SRv6-

aware network function ever realized. In SR-Snort, we extend the widely deployed open

source IDS/IPS (Snort) to be SRv6-aware. SR-nftables, is another SRv6-aware network

function which extends the next generation Linux firewall (nftables). SR-tcpdump is a

tool that allows analyzing and debugging SRv6 traffic. It extends the tcpdump tool with

a dissector for SRv6. The different SRv6-aware network functions developed for this

thesis allow to build a fully automated SRv6-based SFC architecture. We contributed

our implementations of SRv6-aware network functions to several open source projects

to be used by network operators as well as other researchers. Several part of these im-

plementations are currently integrated into the mainline of the Linux kernel, the iptables

and nftables components and the tcpdump tool.

• Design a performance evaluation framework for SRv6 implementations.

The SRv6 data plane implementations have been supported in many different routers

implementations including: open source software routers such as the Linux kernel and

the Vector Packet Processing (VPP) platform, as well as hardware implementations from

different network vendors. Since then, SRv6 has been deployed both in service providers

networks and data centers. It is therefore critical to assess some of the non-functional

properties such as scalability and fault tolerance. In Chapter 5, we present SRPerf, a

performance evaluation framework for SRv6 data plane implementations. The design of

such framework is a very challenging task. As packets are required to be forwarded at an

extremely high rate using a limited CPU budget to process each of them. We have used

SRPerf to evaluate the performance of the SRv6 implementation in the Linux kernel

and VPP. The framework allows us to identify some performance issues of the SRv6

implementation which we have fixed in new revisions.

Finally, we would like to highlight the tutorial on Linux kernel networking and SRv6 imple-

mentations provided in Appendix A. It could help other researchers to get started with these

topics. In this respect, We also would like to mention our contribution to a survey and tutorial

paper on Segment Routing that has been submitted.

Bibliographic notes

Conferences publications

1. A. Abdelsalam, F. Clad, C. Filsfils, S. Salsano, G. Siracusano and L. Veltri, "Implemen-

tation of virtual network function chaining through segment routing in a linux-based

NFV infrastructure", IEEE Conference on Network Softwarization (NetSoft), 2017.

2. A. Abdelsalam, S. Salsano, F. Clad, P. Camarillo, and C. Filsfils, "SERA: SEgment Rout-

ing Aware Firewall for Service Function Chaining scenarios", IFIP Networking, 2018.

3. A. Abdelsalam, P. L. Ventre, A. Mayer, S. Salsano, P. Camarillo, F. Clad and C. Filsfils,

"Performance of IPv6 Segment Routing in Linux Kernel", 14th International Conference

on Network and Service Management (CNSM), 2018.

Journal publications

1. A. Abdelsalam, P. L. Ventre, C. Scarpitta, S. Salsano, A. Mayer, P. Camarillo, F. Clad,

C. Filsfils, SRPerf: a Performance Evaluation Framework for IPv6 Segment Routing,

arXiv preprint, Submitted to IEEE Transactions on Network and Service Management

(TNSM), 2020.

2. P. L. Ventre, S. Salsano, M. Polverini, A. Cianfrani, A. Abdelsalam, C. Filsfils, P. Ca-

marillo, F. Clad, Segment Routing: a Comprehensive Survey of Research Activities,

Standardization Efforts and Implementation Results, arXiv preprint, Submitted to IEEE

Communications Surveys and Tutorials, 2019.

IETF contributions

1. C. Filsfils et al, “SRv6 Network Programming”, Internet Engineering Task Force (IETF),

Internet-Draft draft-ietf-spring-srv6-network-programming, 2020.

Bibliographic notes v

2. F. Clad et al, “Service Programming with Segment Routing”, Internet Engineering Task

Force (IETF), Internet-Draft draft-xuclad-spring-sr-service-programming, 2020.

3. C. Filsfils et al, “SRv6 interoperability report”, Internet Engineering Task Force (IETF),

Internet-Draft draft-filsfils-spring-srv6-interop, 2019.

4. D. Voyer et al, "Insertion of IPv6 Segment Routing Headers in a Controlled Domain",

Internet Engineering Task Force (IETF), Internet-Draft "draft-voyer-6man-extension-

header-insertion", 2020.

5. J. Guichard et al, "Simplifying Firewall Rules with Network Programming and SRH

Metadata", Internet Engineering Task Force (IETF), Internet-Draft "draft-guichard-

spring-srv6-simplified-firewall", 2019.

6. K. Raza et al, "YANG Data Model for SRv6 Base and Static", Internet Engineering Task

Force (IETF), Internet-Draft "draft-raza-spring-srv6-yang", 2020.

Posters and demos

1. C. Filsfils, F. Clad, P. Camarillo, J. Liste, P. Jonnalagadda, M. Sharif, S. Salsano and A.

AbdelSalam, "Segment Routing IPv6 — Interoperability demo", SIGCOMM Industrial

Demos, 2017.

2. A. Abdelsalam, "Demo: Chaining of Segment Routing aware and unaware Service

Functions", IFIP Networking, 2018.

3. A. Abdelsalam, S. Salsano, F. Clad, P. Camarillo, and C. Filsfils, "SR-Snort: IPv6 Seg-

ment Routing Aware IDS/IPS", IEEE Conference on Network Function Virtualization

and Software Defined Networks (NFV-SDN), 2018.

Talks

1. P. Camarillo and A. Abdelsalam, "SRv6 Network Programming on FD.io VPP and

Linux", Free and Open source Software Developers’ European Meeting (FOSDEM),

2018.

Acknowledgment

This thesis has been an incredible journey. During that journey I have met many people to

whom I want to express my gratitude.

First and foremost, I would like to thank my advisor, Prof. Stefano Salsano. He has been

continuously feeding me with new ideas, challenging me when it was time for review and

acknowledging me when the work is done. This thesis would not exist without his advices and

support.

I would like to thank my advisors from GSSI: Omar Inverso, Catia Trubinai. They have been

always there to help. I’m very grateful to Omar for his time, help and advices.

I would like to thank Prof. Luca Aceto and Prof. Michele Flammini for their great support.

I would to thank my colleagues from University of Rome Tor Vergata: Paolo Lungaroni, An-

drea Mayer, Carmine Scarpitta, Giuseppe Siracusano and Pier Luigi Ventre for all the work

we achieved together during this thesis. It has been always nice to work with you.

I would like to thank colleagues from Cisco: Clarence Filsfils, Francois Clad, Pablo Camarillo

and Jakub Horn for their support during my internship at Cisco and all the work we achieved

together during this thesis. You are such an amazing team.

I would like to thank my friends from GSSI: Michele Aleandri, Ramiz Benyehia, Roberto

Boccagna, Gennaro Ciampa, Lars Eric, Antonio Esposito, Wolfgang Haupt, Jon May, Sabir

Ramazanov, Raffaele Scandone, Matteo Tonelli and Cosimo Vinci.

Last but not least, I would to like to thank my family. Deep in my heart, I love you.

Vi voglio veramente bene!

Contents

Abstract i

Bibliographic notes iv

Acknowledgment vi

List of Figures x

List of Tables xii

1 Introduction 1

2 Segment Routing 5
2.1 Introduction . 5
2.2 Segment Routing architecture . 6

2.2.1 SR-MPLS . 6
2.2.2 SRv6 . 7
2.2.3 SR control plane . 8

2.3 Segment Routing Header . 8
2.3.1 SRH TLVs . 10
2.3.2 HMAC TLV . 11
2.3.3 SRH processing . 12

2.4 SRv6 network programming . 13
2.4.1 Transit behaviors . 13
2.4.2 Endpoint behaviors . 14
2.4.3 SRv6 support in Linux . 15

3 Service Function Chaining 16
3.1 Introduction . 16
3.2 Service Function Chaining . 17
3.3 SFC architecture . 19
3.4 SRv6 based SFC Architecture . 21

3.4.1 Design principles . 21
3.4.2 Data plane . 22

vii

CONTENTS viii

3.4.3 Control plane . 23
3.5 SRv6-unaware VNFs . 24

3.5.1 Static proxy . 25
3.5.2 Dynamic proxy . 27
3.5.3 Shared-memory proxy . 27
3.5.4 Masquerading proxy . 28
3.5.5 Packet processing . 29

3.6 Implementation . 32
3.6.1 SREXT . 32
3.6.2 Integration in the Linux kernel mainline 35

3.7 Related work . 35

4 SRv6-aware network functions 37
4.1 Introduction . 37
4.2 Designing SRv6-aware NFs . 38
4.3 SERA (SEgment Routing Aware firewall) 39

4.3.1 SERA basic mode . 40
4.3.2 SERA advanced mode . 40
4.3.3 SERA Implementation . 43
4.3.4 SERA Performance . 48

4.4 SR-Snort . 54
4.5 SR-nftables . 57
4.6 SR-tcpdump . 58

5 SRv6 performance 59
5.1 Introduction . 59
5.2 Designing a performance evaluation framework 60
5.3 SRPerf . 61

5.3.1 SRPerf Architecture . 61
5.3.2 Evaluation methodology . 64
5.3.3 PDR finder algorithm . 66

5.4 Testbed description . 67
5.5 Performance evaluation of SRv6 in the Linux kernel 68

5.5.1 Analysis of the performance issues of SRv6 cross-connect behaviors
in Linux . 76

5.6 Performance evaluation of SRv6 user-space packet forwarders. 78
5.6.1 SRv6 support in VPP . 78
5.6.2 SRv6 performance: VPP vs Linux kernel 80

5.7 Related work . 87

6 Conclusions 89

A Linux kernel networking 92

CONTENTS ix

A.1 Linux networking subsystem . 92
A.1.1 IPv6 packet . 94
A.1.2 IPv6 FIB entry . 95
A.1.3 Manipulating IPv6 FIB . 97
A.1.4 Linux Lightweight tunnels . 98
A.1.5 IPv6 protocol stack in Linux . 99

A.2 Netfilter framework . 103
A.3 SRv6 support . 105

A.3.1 IPv6 routing extension headers processing 105
A.3.2 Kernels before 4.10 . 106
A.3.3 Kernel 4.10 . 106
A.3.4 kernel 4.14 . 109

List of Figures

2.1 Traffic engineering with SR-MPLS . 7
2.2 SR Control Plane . 8
2.3 IPv6 packet with extension headers . 9
2.4 IPv6 segment routing header (SRH) . 9
2.5 Generic format of SRH TLVs . 11
2.6 HMAC TLV format . 11
2.7 SRv6 Transit Behaviors . 14

3.1 SRv6 SFC Architecture. 22
3.2 SRv6 proxy. 25
3.3 Service Function Chains examples . 31
3.4 Bi-directional Service Chain example . 31
3.5 SREXT Architecture . 33

4.1 SERA Architecture: basic mode . 41
4.2 SERA Architecture: advanced mode . 41
4.3 Netfilter hooks and their associated tables 44
4.4 Performance evaluation testbed. 48
4.5 Basic SERA vs. default iptables . 51
4.6 Advanced SERA vs. default iptables . 52
4.7 Basic SERA vs. Advanced SERA (encap mode) 52
4.8 Existing RH iptables extension vs. advanced SERA 53
4.9 Revised iptables design vs. Basic SERA . 54
4.10 Snort packet processing architecture. 56
4.11 SRv6-Snort packet processing architecture. 56

5.1 Testbed setup for performance evaluation experiments. 61
5.2 SRPerf architecture. 62
5.3 Throughput vs Delivery Ratio . 65
5.4 Performance measurements for Exp1. 70
5.5 Performance measurements for Exp2. 72
5.6 Performance measurements for Exp3. 73
5.7 Performance measurements for Exp4. 74
5.8 Performance measurements for Exp5. 76

x

LIST OF FIGURES xi

5.9 Performance measurements for Exp6. 77
5.10 VPP packet processing architecture . 79
5.11 Performance measurements for Exp7. 82
5.12 Performance measurements for Exp8. 83
5.13 Performance measurements for Exp9. 84
5.14 Performance measurements for Exp10. 85
5.15 Performance measurements for Exp11. 86

A.1 IPv6 protocol stack in the Linux kernel . 93
A.2 Adding IPv6 FIB entries from user space . 98
A.3 Routing subsystem in Linux kernel . 100
A.4 Netfilter framework architecture . 103

List of Tables

3.1 SREXT Supported SRv6 behaviors . 34

5.1 Performance for SRv6 behaviors in Linux (Kpps). 69
5.2 Performance measurements for VPP vs Linux (Kpps). 81

xii

Listings

3.1 SREXT Command Line Interface (CLI) . 35
4.1 Standard iptables rule . 45
4.2 Extended iptables rule . 45
4.3 Linux CLI for SERA basic mode. 46
4.4 Options of srh match extension . 47
4.5 Options of SEG6 target extension . 47
4.6 SRv6 SFC policy . 49
A.1 Socket buffer structure . 94
A.2 IPv6 routing entry structure . 96
A.3 Destination entry structure . 97
A.4 The Linux kernel configuration for IPv6 forwarding 102
A.5 The Linux kernel configuration for IPv6 source routing 105
A.6 IPv6 segment routing header (SRH) . 107
A.7 The Linux kernel configuration for SRv6 forwarding 107
A.8 The Linux kernel configuration for configuring SRv6 SIDs 107
A.9 Adding an SRv6 SID with transit behavior 107

xiii

Chapter 1

Introduction

Telecommunication networks connect billions of geographically distributed users and devices

around the globe. In the last decades, they evolved from simple means to transfer either phone

calls or data into converged networks that can carry any type of traffic such as voice and

video. Moreover, in the last two decades we have seen a tremendous increase in the amount of

traffic transmitted over these networks. The internet protocol (IP) has become the converged

technology for these networks, therefore specialized IP networking devices, called routers, are

required for the inter-connectivity between this vast number of users and forwarding such a

big volume of traffic. Routers are able to connect multiple devices and networks. Each router

has a routing table containing a set of route entries representing the shortest paths towards the

networks of the same routing domain. Routing is the process of calculating such route entries,

which can be either static or dynamic. Static route entries are manually configured by the

network administrator, whereas dynamic routing entries are calculated by routing protocols.

A routing protocol is a distributed algorithm for finding the shortest path towards a given

network. Routing protocols can be categorized into distance vector, link state or hybrid routing

protocols. The distance vector protocols use the hop count (i.e., the number of intermediate

points between the node doing routing and the destination of the packet) as metric for selecting

one path over another. Link state protocols instead maintain a full map of the network topology

and use an algorithm such as shortest path first (SPF) to select the best path towards a given

destination. Hybrid routing protocols combine both techniques. The border gateway protocol

(BGP) [1], open shortest path first (OSPF) [2], and intermediate system to intermediate system

(IS-IS) [3] are currently the most commonly used routing protocols. Routing protocols are able

to automatically discover new routes and calculate alternate paths in case of link failure, which

Chapter 1 Introduction 2

makes them scale to large networks. However, one issue of dynamic routing is that applications

have no way to express their preference on the routing path. Instead, one needs to implement a

custom routing policy to force packets to go through a path other than shortest one calculated

by dynamic routing protocols. Custom routing is useful in cases such as traffic engineering,

load balancing, network programmability, fast re-route (FRR) [4], and service chaining [5].

The plain IP forwarding approach is not capable to support these scenarios, where custom

routing is needed. Therefore IP has been combined with other networking technologies (e.g.

ATM, MPLS) that are more suitable to support custom routing. Source routing is one way

to implement such routing policy. It allows the source to define the packet path through the

network. The source can be the packet originator or an ingress node of a network domain [5].

Source routing can be either strict or loose. In strict source routing, the source defines the full

path that packets must follow through the network. In loose source routing, the source instead

defines only some mid-points of the packet path [6]. In the IPv4 world, source routing is

implemented as an IPv4 header option, named record route [7]. In the IPv6 world it is instead

implemented as IPv6 routing extension header [8].

Routers, just as any other networking device, are usually built using a vertical tightly integrated

model of both control and data (forwarding) planes. The control plane is the brain of the device

that implements the logic of calculating the best path or any other special treatment for network

traffic. The control plane programs the forwarding table of the data plane which has the job of

forwarding the traffic at high speed according to these forwarding tables. However, this tightly

integrated model of control and data planes does not allow network operator to innovate in

their networks. Instead, for each feature, operators have to wait for the implementation from

network devices vendors. This results in a vendor-lock, where operators are limited by the

features delivered by the vendor. Software defined networking (SDN) is one way to re-think

the way we build networking devices [9]. It eliminates the tight integration between the control

and data planes, and thus allows to innovate independently either of them. SDN keeps the

forwarding plane of a networking device very simple. The device needs to implement efficient

data structures to store the forwarding information. The control plane is moved outside the

devices into a central controller, called SDN controller, which has a full visibility of the whole

network and can therefore calculate the forwarding paths. This allows to define a custom

routing policies or adding new features by just updating the controller software. The SDN

controller, after calculating the forwarding paths, programs the forwarding table of the devices.

Devices need to provide an application programming interface (API) which the controller can

remotely call to program the device. The API between the forwarding devices and the SDN

Chapter 1 Introduction 3

controller is called southbound API. The OpenFlow protocol is an example of protocols used

to program the forwarding devices [10].

The SDN technology has solved the problem of updating the forwarding devices with new

features in a flexible and fast way. However, the big volume of traffic of converged networks

requires networks to provide more services than just forwarding. These services include secu-

rity, accounting, and quality of services to allow customized processing of the various types of

traffic sent by different users with different traffic processing requirements. Middleboxes are

networking devices designed to apply a special treatment to traffic other than forwarding. They

can inspect, filter, or manipulate traffic in other ways. Firewalls, intrusion detection systems

(IDS), network address translators (NAT), WAN optimizers, and load balancers are examples

middleboxes which can be also referred to as network functions. Such network functions are

usually deployed in the network as expensive proprietary hardware appliances. The proprietary

nature of such hardware appliances increases the difficulty to introduce new network functions

and services [11].

Network function virtualization (NFV) is dramatically changing the way in which networks

are designed and operated [12]. Traditional specialized physical appliances are replaced with

software module, known as virtual network functions (VNFs), that can run on any commodity

hardware. A VNF can also be referred to as service function (SF). It can be deployed in a

geographically distributed infrastructure. In NFV, the network function software is decoupled

from the underlying hardware. Similar to SDN, the evolution of software and hardware is

independent. This also provides a great level of flexibility in network function deployment, and

makes it faster. The decoupling of hardware and software allows to scale network functions

deployment. NFV promises a big capital expenditure (CAPEX) saving by replacing dedicated

physical appliances with VNFs that can run on any commodity hardware.

The delivery of end-to-end services often requires the execution of various network functions.

For example, a security service may include firewall, intrusion detection system (IDS), and

deep packet inspection (DPI). Service function chaining (SFC) denotes the process of forward-

ing packets through a sequence of network functions [13]. There are several considerations to

take when designing an SFC architecture, such as topological dependencies, configuration

complexity, constrained high availability, consistent ordering of network functions, elastic ser-

vice delivery, traffic selection criteria, classification and symmetric traffic flows [14]. One of

the essential components of any SFC architecture is the steering mechanism that forces the

traffic to go through the list of network functions. In traditional “pre-NFV” infrastructures,

the physical appliances were placed en-route, i.e. along the path of the flows. This technique

Chapter 1 Introduction 4

requires a significant effort for manual configurations, which makes it difficult to address the

scaling and automation requirements of today’s networks. In NFV scenarios, VNFs can be ar-

bitrarily located in the distributed virtualization infrastructure. Hence, SFC requires a steering

method to force traffic go through the chain of VNFs, which can be achieved using a source

routing mechanism such as segment routing.

Segment Routing (SR) is a new network architecture based on source routing [15]. It allows a

node to steer packets through a set of network nodes in a specific order. In SR networks, a list

of instructions, called segments, are attached to the packet to define its forwarding path. The

SR architecture can be implemented with MPLS and IPv6 data plane.

In this thesis, we leverage the SR implementation based on IPv6 data plane, denoted as SRv6,

to tackle the SFC problem. In Chapter 2, we introduce the SR architecture including its data

and control planes. In Chapter 3, we define an SFC architecture based on SRv6 and discuss

how to integrate legacy network functions in this architecture. We introduce our design and

implementation of native SRv6 network functions in Chapter 4. We evaluate the performance

aspects of the various SRv6 implementations in Chapter 5. Finally, we report our conclusions

in Chapter 6.

Chapter 2

Segment Routing

2.1 Introduction

Segment Routing (SR) is a new network architecture based on the source routing

paradigm [15]. SR has shown a very successful standardization path within the internet engi-

neering task force (IETF) [16]. The SR architecture and use-cases have been defined by the

industry together with academic researchers [17]. Currently, the SR architecture can be instan-

tiated on two different data planes: MPLS [18], also referred to as SR-MPLS, or IPv6 [8], which

is referred to as SRv6. In this work, we focus on SRv6. SRv6 provides all the benefits of source

routing in terms of flexibility and simplicity needed for today’s networks, but also addresses

the security concerns of previously defined source routing techniques for IPv6 [19] [20]. The

collaboration between research and industry resulted in the support of SRv6 implementations

across several platforms such as the Linux kernel, VPP [21], and hardware from various net-

work vendors [22], which are fully inter-operable as reported in [23].

In this chapter, we introduce the SR technology. In Section 2.2, we discuss the data and control

planes of the SR architecture (both for SR-MPLS and SRv6). From Section 2.3, we focus on

SRv6, covering the segment routing header (SRH) which is the main building block of SR in

IPv6 networks. Finally, we explore the SRv6 network programming model in Section 2.4.

Chapter 2 Segment Routing 6

2.2 Segment Routing architecture

The SR architecture relies on the source routing paradigm. The source can attach to a packet

an ordered list of instructions, denoted as segments, to steer the packet through a set of inter-

mediate steps in the path towards its final destination. In SR networks, the list of segments

identifiers (SIDs) are attached to packets as a part of an extra header, which carries also a

pointer to the next segment to be processed. SIDs may represent a topological or service

instructions. Topological SIDs might have local or global significance. Locally significant

topological SIDs define the forwarding behavior of a node. Globally significant topological

SIDs define a forwarding path to a destination through an SR domain and they must be unique.

There are three major variants of a global SID: prefix SID which is associated with a prefix,

node SID which is allocated to a loopback that identifies a specific node, and anycast SID

which is assigned to a loopback shared by a set of routers. It is possible to have more than

one topological SID for the same destination, each of them defining a different path with a

different objective (e.g., low-latency path or high-throughput path). On the other hand, service

SIDs define the services (e.g., container or virtual machine) that should process the packet.

In the next subsections, we consider the two different SR data planes: SR-MPLS based on

MPLS [18], and SRv6 based on IPv6 [8].

2.2.1 SR-MPLS

SR-MPLS is the SR architecture instantiation over the MPLS data plane. It requires no change

in the MPLS forwarding behavior [24]. SIDs are represented as MPLS labels and the SIDs

list is represented as a stack of MPLS labels. The data plane on an SR-MPLS nodes supports

three main operations: push consists in pushing one or more SIDs on the top of a received

packet before forwarding it to the next-hop in the path towards its destination, continue swaps

the incoming SID with an outgoing SID, and next pops the topmost SID [25].

An example of traffic engineering (TE) use-case is shown in Figure 2.1. The SR-MPLS is

domain is composed of four MPLS routers (N1, N2, N3 and N4). Each router is assigned an

MPLS label in the form 910N, where N represents the router number. For example, router

N2 is assigned the MPLS label 9102. The SR-MPLS network offers several paths to connect

hosts A and B, each with different latency and throughput characteristics. For example, the

path N1−→ N2−→ N3−→ N4 provides very high throughput as shown in Figure 2.1. However,

Chapter 2 Segment Routing 7

this path is not the shortest path between between A and B. In order to enforce the traffic to

go through such path, router N1 is programmed with a policy that pushes a list of SR SIDs

representing the nodes of that path. Once this SID list is added to packets, all the SR-MPLS

routers do not need to keep any state regarding the traffic, as the state is carried in the packet.

This provides a great simplification in the network, as the state is maintained only at the edge

routers and added to the packets. Nodes in the SR-MPLS network are only required to remove

the top SID and send the packet to the next hop in the SID list.

A B

SID3: 9104
IP Packet

SID2: 9103
SID1: 9102

N2

N1

N3

N4SID3: 9104
IP Packet

SID2: 9103

SID3: 9104
IP Packet

IP PacketIP Packet

Figure 2.1: Traffic engineering with SR-MPLS

2.2.2 SRv6

SRv6 is the SR architecture instantiation over the IPv6 data plane. It defines a new type of

IPv6 routing extension header, named segment routing header (SRH), that is used to carry the

SID list. Each SID is represented as an IPv6 address. IPv6 addresses at a given node are

not SRv6 SIDs by default, but they need to be explicitly instantiated as SRv6 SIDs. In SRv6

domain, not all nodes are required to support SRv6, since the IPv6 routing extension header is

not examined or processed by any node along a packet’s delivery path until the packet reaches

the node identified in the destination address field of the IPv6 header [8]. Accordingly, only

nodes represented with SIDs in the SID list are required to support SRv6. Packets follow the

shortest path computed by the interior gateway protocol (IGP) between nodes represented in

the SID list.

Chapter 2 Segment Routing 8

2.2.3 SR control plane

The SR control plane is concerned with communicating SID information among devices in

the network, and defining the list of SIDs to be added to the packet at the source. The SR

architecture supports any type of control plane: distributed, centralized, or hybrid. The SIDs

can be allocated and signaled by the routing protocol (e.g., OSPF or BGP). The SR controller

is responsible for the allocation of SIDs as well as computing the SR policies. It listens to all

link updates from all routers in the SR domain as shown in Figure 2.2. The SR controller has

a full view of the network and is responsible for calculating the SID list for a given traffic re-

quirements. The ingress (source) node communicates with the SR controller to get the SID list

for a given traffic flow. Then, it steers through that SID list. The SR controller can program

the devices in the SR network using any of the available southbound interfaces (e.g., NET-

CONF [26], PCEP [27], BGP [1]). Open-Daylight is an example of available SR controllers

which uses PCEP as a southbound interface [28].

R1 R5

R6

EgressIngress

SR SDN
Controller

Control plane

Data plane

R2

R3

Figure 2.2: SR Control Plane

2.3 Segment Routing Header

IPv6 extension headers are used to encode optional internet-layer information. They are placed

between the IPv6 header and the upper layer header (e.g., TCP or UDP) of a packet as high-

lighted by double lines in Figure 2.3. IPv6 extension headers are identified by a Next Header

value assigned by the IANA [29].

Chapter 2 Segment Routing 9

IPv6
Header

Hop-by-Hop
Header

UDP
Header

Routing
Header Payload

Figure 2.3: IPv6 packet with extension headers

Segment LeftRouting TypeNext header Hdr Ext Len

Last Entry Flags Tag

............

Segment List[n-1] (128 bits IPv6 address)

Optional Type Length Value objects (variable)
....................

Segment List[0] (128 bits IPv6 address)

Figure 2.4: IPv6 segment routing header (SRH)

Nodes supporting IPv6 should parse extension headers until the upper layer protocol is found

(i.e., the first Next Header value that does not correspond to an extension header). The cur-

rently defined IPv6 extension headers are Hop-by-Hop options, Fragment, Destination Op-

tions, Routing, Authentication, and Encapsulating Security Payload. IPv6 routing extension

headers are used in IPv6 networks to implement source routing. They are assigned 43 as a pro-

tocol number value. Several types of routing extension headers are defined to support several

use-cases including type-0 that was deprecated for security issues [20] and type-2 that supports

IPv6 mobility [30].

SRH is a new type of the IPv6 routing extension header with type value 4. The SRH format is

defined in [31]. Figure 2.4 shows the format of the SRH and its fields which can be described

as follows:

Chapter 2 Segment Routing 10

- Next Header: 8-bit field identifying the type of header immediately following the SRH.

The Next Header value is assigned based on the IANA [32]

- Hdr Ext Len: 8-bit field representing the length of SRH in 8-octet units (not including

the first 8 octets).

- Routing Type: 8-bit field identifying the routing header type assigned for SRH.

- Segments Left: 8-bit field identifying the number of remaining SIDs that still need to

be traversed by the packet before being delivered to its final destination.

- Last Entry: 8-bit field carrying the index of the last SID in the SID list, which is the

first SID to be traversed since the SID list is traversed in the reverse order.

- Flags: 8-bit field carrying some flags. Each flag is represented by one bit and may

triggers a special processing for the SR packet. The presence of a flag is represented by

a value of 1 in the corresponding position.

- Tag: 16-bit field to identify a packet as part of a class or group of packets. When tag is

set to zero, it means that it is not used and should be ignored by the receiving node.

- Segment List[n]: 128-bit IPv6 address representing the n-th segment in the SIDs list.

The SIDs list is encoded starting from the last SID of the SR policy. The first element

of the SIDs list contains the last SID of the SR policy. The second element contains the

penultimate SID of the SR policy, and so on.

- Type Length Value (TLV): variable length field used to carry some optional informa-

tion along with the SRH as explained in Section 2.3.1.

2.3.1 SRH TLVs

Type length value (TLV) is a common format to encode optional information of a given proto-

col [33]. The type and length fields are fixed in size and the value field is of variable size. The

type field identifies the type of TLV, the length field identifies the size of the succeeding value

field, and the value field carries the information for the encoded option. SRH supports a set

of TLVs that can be used to encode some optional information. A SRH can carry one or more

TLVs for the same packet. Nodes processing the TLV should simply ignore any TLV that has

an unrecognized type. Figure 2.5 represents the generic SRH TLVs format where:

Chapter 2 Segment Routing 11

- Type: 8-bit field identifying the type of TLV.

- Length: 8-bit field identifying the length of the TLV’s variable length data.

- Variable length data: actual data used to encode optional information.

Type Length Variable length data

Figure 2.5: Generic format of SRH TLVs

ReservedType Length

HMAC Key ID (4 octets)

HMAC (variable)

D

Figure 2.6: HMAC TLV format

2.3.2 HMAC TLV

The SRH defines HMAC TLV to address the security issues related to source routing. It is

used to verify the validation and integrity of an SR packet. The HMAC TLV format is shown

in Figure 2.6 where:

- Type: 8-bit field identifying the HMAC TLV type (suggested value 5).

- Length: 8-bit field representing the HMAC TLV length in bytes (38).

- D: 1 bit, set to 1 to indicate that the destination address verification is disabled due to

use of reduced segment list.

- RESERVED: 15 bits. MUST be 0 on transmission and ignored on receipt.

Chapter 2 Segment Routing 12

- HMAC Key ID: A 4 octet opaque number which uniquely identifies the pre-shared key

and algorithm used to generate the HMAC.

- HMAC: keyed HMAC, in multiples of 8 octets, at most 32 octets.

Nodes outside the SR domain are not able to compute the right HMAC since the computation

requires a pre-shared key. Packets with wrong HMAC value are rejected at the SR ingress

router. Adding an HMAC to each and every SR packet increases the security, but it has a

performance impact. However, only the SR ingress node needs to process the HMAC TLV

and all other SR nodes can ignore the HMAC TLV since they trust the SR ingress router. This

speeds up the forwarding because SR routers which do not validate the SRH do not need to

parse the SRH until the end. More detailed security considerations related to SRH can be

found in the specific section of [31]

2.3.3 SRH processing

The SRH processing in an SR domain is based on the type of the SR node which can be:

SR source node, SR transit node, or SR endpoint node. The SR source node is the node that

originates SRv6 packets, it can be either the host originating the IPv6 packet or the ingress

node of an SR domain. It can be configured with one or more SR policies. Packets are

steered through one of the configured SR policies. The first SID of the SID list associated

with an SR policy is encoded as the packet destination address. Then the packet is forwarded

towards its destination address. The SR transit node is a node that forwards SRv6 traffic where

the destination address of the packet is not configured as local SID. It can be SR-capable or

SR-incapable. SR transit nodes are not required to inspect the SRH of received SR packets

since the destination address of the packet does not correspond to locally configured SID or

interface. They forward packet towards the next hop in the path towards the destination. The

SR endpoint node is a node that receives an SRv6 packet where the destination address of

that packet is locally configured as a local SID. It must process the SRH and the processing is

based on the Segments Left value. If Segments Left is equal to zero, then it proceeds to process

the next header in the packet. In case of non zero value of Segments Left, the Segments Left

is decremented by 1. Then the packet’s destination is address is updated to be the active SID

identified by Segments Left. Finally Hop Limit is decremented and the packet is handed again

to the routing module to be forwarded based on the new destination.

Chapter 2 Segment Routing 13

2.4 SRv6 network programming

The SRv6 architecture has been extended from the simple steering of packets across nodes

to a general network programming model [34]. The idea is to encode in the SID list not just

locations, but also the processing behavior to be executed by the nodes receiving the packet.

This is feasible thanks to the huge IPv6 addressing space. Each SR node implements a table

containing the SIDs local to that node. Such table is known as local SID table, which might

be a separate table or part of the main forwarding table. Each entry of the local SID table

identifies the function associated with the local SID and its parameters. The SRv6 network

programming model defines a set of processing behaviors that can be associated with an SRv6

SID. The set of SRv6 behaviors can be categorized into endpoint and transit behaviors.

2.4.1 Transit behaviors

SR source nodes, where SRv6 encapsulated packets are originated, are often configured with

one or more SRv6 policies. Each SRv6 policy includes a SID list identifying a specific path

through the network. SRv6 transit behaviors steer received packets (or layer-2 frames) into an

SRv6 policy. When SR source nodes receive packets that match a configured SRv6 policy, the

transit behavior bound to the policy is applied to those packets. The currently supported SRv6

transit behaviors (modes) in the networking programming model are shown in Figure 2.7 and

defined as follows:

• T.Insert is the transit behavior with insertion of an SRv6 policy. In this mode the SRH

is inserted in the original IPv6 packet, immediately after the IPv6 header and before

the transport level header. The original IPv6 header is modified, in particular the IPv6

destination address is replaced with the IPv6 address of the first segment in the segment

list, while the original IPv6 destination address is carried in the SRH header as the last

segment of the segment list.

• T.Encaps: the transit behavior with encapsulation in an SRv6 policy. In the encap mode

the original IPv6 packet is carried as the inner packet of an IPv6-in-IPv6 encapsulated

packet. The outer IPv6 packet carries the SRH header with the segment list.

• T.Encaps.L2: the transit behavior with encapsulation of layer-2 frame in an SRv6 pol-

icy. It works the same as the T.Encaps behavior, with the difference that T.Encaps.L2

encapsulates the whole received layer-2 frame rather than the packet.

Chapter 2 Segment Routing 14

IPv6
header Payload Transport

header SRH IPv6
header

SRH IPv6
header

Payload Transport
header

IPv6
header SRH

IN-MAC
header

T.Encaps.L2

T.Encaps

T.Insert

IPv6

IN-MAC
header

OUT-MAC
header

OUT-MAC
header

IPv6
header Payload Transport

header

IPv6
header Payload Transport

header
OUT-MAC

header

Figure 2.7: SRv6 Transit Behaviors

2.4.2 Endpoint behaviors

For each SRv6 SID configured in a SR endpoint node, there is a function to be executed on

packets matching the SID. In [34], a set of well-known functions that can be associated with

a segment are defined including:

• End is the endpoint function. This is the most basic function. Firstly, the Segments Left

of the SRH is decreased. The IPv6 destination address of the packet is replaced with the

next active segment. Then, a FIB lookup using the updated on the updated destination

address. Finally, the packet is forwarded according to the matched FIB entry. This

behavior represents the SRv6 instantiation of a prefix SID.

• End.X is the endpoint with layer-3 cross-connect to an IPv6 adjacency, which represents

the SRv6 instantiation of an adjacency SID. It is a variant of the End function where

the packet is forwarded to layer-3 adjacency bound to the SID rather than the IPv6

destination address.

• End.T is the endpoint with specific IPv6 table lookup. It is a variant of the End function

where the FIB lookup is performed in an IPv6 table associated with the SID rather than

the main FIB table. The End.T is used for multi-table operation in the network core.

• End.DX2 is the endpoint with decapsulation and layer-2 cross-connect to an output in-

terface. It is used to implement the L2VPN use-cases. It is a variant of the endpoint

function where the outer IPv6 header and its extension headers are popped and the re-

sulting frame is forwarded via the output interface associated to the SID.

Chapter 2 Segment Routing 15

• End.DX4 is the endpoint with decapsulation and IPv4 cross-connect to IPv4 adjacency.

It is used to implement the L3VPN use-cases where a FIB lookup in a specific tenant

table at the egress node is not required. It is a variant of the End and End.X functions

where the outer IPv6 header and its extension headers are popped and the resulting IPv4

packet is forwarded to layer-3 adjacency bound to the SID.

• End.DX6 is the endpoint with decapsulation and IPv6 cross-connect to an IPv6 adja-

cency. It is used to implement the L3VPN use-cases where a FIB lookup in a specific

tenant table at the egress node is not required. It is a variant of the End and End.X func-

tions where the outer IPv6 header and its extension headers are popped and the resulting

IPv6 packet is forwarded to layer-3 adjacency bound to the SID.

• End.DT6 is the endpoint with decapsulation and specific IPv6 table. It is used to imple-

ment the L3VPN use-cases where a FIB lookup in a specific tenant table at the egress

node is required. It is a variant of the End function where the outer IPv6 header and its

extension headers are popped and lookup for the exposed inner IPv6 destination address

is performed in an IPv6 table associated with the SID.

2.4.3 SRv6 support in Linux

The SRv6 capabilities were firstly merged in Linux kernel 4.10 [35]. The implementation

supported the SRv6 End behavior. The SRv6 T.Encaps and T.insert behaviors were also sup-

ported. Kernel 4.14 is another milestone for SRv6 support in Linux kernel. A new set of

SRv6 behaviors has been added to the kernel [36]. The supported SRv6 Endpoint behaviors

included in kernel 4.14 are: End.X, End.T, End.DX2, End.DX4, End.DX6, End.DT6, End.B6,

End.B6.Encaps. Along with the newly supported SRv6 Endpoint behaviors, some new transit

behaviors have been added including: T.Encaps4 which steers IPv4 packets through an SRv6

policy and T.Encaps.L2 which encapsulates a packet along with the L2 frame (i.e. the received

Ethernet header and its optional VLAN header) in the payload of the outer IPv6 packet.

The implementation details of the SRv6 behaviors are explained in Appendix A and their

performance in reported in Chapter 5.

Chapter 3

Service Function Chaining

3.1 Introduction

Service Function Chaining (SFC) denotes the process of forwarding packets through a se-

quence of service functions [13]. The SFC process is not straight-forward: many aspects need

to be considered, such as topological dependencies, configuration complexity, constrained high

availability, consistent ordering of service functions, traffic selection criteria, (re)classification

per service function, limited end-to-end service visibility, symmetric traffic flows, and multi-

vendor service functions (SFs).

The IETF SFC working group has defined an SFC reference architecture [13]. The architec-

ture includes the concepts, principles, and components required to deploy SFC. An essential

component of an SFC deployment is the steering mechanism that forces packets to go through

the SFs that encompass the SFC. The steering is often achieved by attaching an extra header

with topological information to be applied to the packets. Such process is referred to as SFC

encapsulation and the resulting packet are called SFC-encapsulated packet.

In this chapter, we provide a solution for SFC based on the SRv6 network programming model.

This chapter is based on previously published work [37] [38] [39] [40] [41]. This chapter

is structured as follows, we define Service Function Chaining (SFC) in Section 3.2. Then,

we describe the architectural concepts, principles, and components of the SFC architecture in

Section 3.3. We explain the proposed SRv6-based SFC architecture is explained in Section 3.4.

In Section 3.5, we elaborate on the difference between SRv6-aware and SRv6-unware service

functions, and propose our solution for chaining SRv6-unaware functions. We present the

Chapter 3 Service Function Chaining 17

implementation of the proposed architecture in Section 3.6. Finally, we conclude the chapter

with the state of the art of SFC in Section 3.7 .

3.2 Service Function Chaining

Service Function Chaining (SFC) allows the delivery of advanced end-to-end services com-

posed of one or more service functions. The service functions can be traditional network

service functions, such as firewalls or load balancers, as well as application-specific features

such as HTTP header manipulation. The current SFC deployment models are tightly coupled

to the network topology and to the physical resources [14]. This leads to static deployments

and thus hinders the NFV business goals of greater business agility, fast time-to-market, im-

proved business processes, optimized operating expenses (OPEX), and lower capital expendi-

tures (CAPEX) [42].

Several aspects have to be addressed to achieve successful SFC deployment. These aspects are

described in [14], which can be summarized as follows:

• Topological dependencies. The deployment of network services is often coupled to the

network topology, whether it be physical, virtualized, or a hybrid of the two. Such topo-

logical coupling limits both the placement and selection of service functions. Therefore,

placement and service function selection that take into account network topology in-

formation such as, traffic load or traffic engineering are becoming hardly feasible. In

addition, such dependency imposes constraints on service delivery, and reduces flexibil-

ity. This affects scale, capacity, and redundancy across network resources.

• Configuration complexity. The configurations required to deploy SFCs can be quite

complex as a consequence of the topological dependencies. For each simple change

in the deployment of a given SFC, there may be changes to the logical and/or physical

topology. Accordingly, service delivery deployments are becoming very static and slow,

since network operators may not be willing to take the risk of making changes in their

topology.

• Constrained high availability. With static deployment, traffic reaches service func-

tions based on the network topology. Accordingly, redundant service functions must be

placed in the same topology as the primary service. This limits the availability of service

functions as a consequence of the topological dependencies.

Chapter 3 Service Function Chaining 18

• Consistent ordering of service functions. Service functions are typically independent.

However, for SFC deployments the order in which service function should be executed

is very important. Specially in cases of topological dependent deployment in order to

wire the service functions of a given SFC together. Currently, there is no consistent way

to enforce specific ordering of the service functions within a given SFC.

• Transport dependence. Service functions are deployed in networks with a range

of different network underlays and overlays, such as Generic Routing Encapsulation

(GRE) [43], Virtual eXtensible Local Area Network (VXLAN) [44], MPLS [18], and

SRv6 [34]. Hence, service functions are required to support many transport encapsula-

tions to address the issue of coupling of service functions to the topology.

• Elastic service delivery. Realizing the rapid changes of service deployment in terms of

capacity can be a very challenging task, since it relies mostly on routing modification,

which is a risky and complex process for network operators.

• Traffic selection criteria. Selecting a part of the traffic to be processed by a given

service function(s) is not a trivial process. One of the common techniques to address this

problem is to send all traffic of a given network segment to be processed by a pre-defined

set of service functions. This might lead to a situation where service functions are

overwhelmed by traffic that does not need to be processed. An alternative solution is to

use Policy Based Routing (PBR) [45] to achieve more granular traffic control. However,

such PBR techniques are require significant amount of complex configurations.

• Limited end-to-end visibility. Service function chains can span multiple data centers,

which makes troubleshooting very complex due to the limited end-to-end service visi-

bility. Furthermore, the separation between physical and virtual environments can add

further complexity to the overall process.

• (Re)classification per service function. Due to the lack of efficient mechanisms to

share the details of classification information between services, the classification pro-

cess occurs at each service function without leveraging the previously applied service

functions.

• Symmetric traffic flows. Service function chains can be unidirectional, where traf-

fic is passed through a set of service functions in one forwarding direction only, or

bidirectional, where traffic flows through a set of service functions in both forwarding

directions. Many common service functions such as DPI and firewalls often require

Chapter 3 Service Function Chaining 19

bidirectional chaining in order to ensure that the flow state is consistent. Realizing

such bidirectional service function chains requires very complex configuration due to

the static nature of current deployment models.

• Multi-vendor service functions. Network operators often rely on service functions

from different network vendors to deploy SFC. This requires per vendor-specific exper-

tise, and calls for standards to ensure interoperability between services from different

vendors.

3.3 SFC architecture

RFC 7665 defines a high-level SFC architecture to address the aspects described in the SFC

problem statement [13]. In this architecture each service function is treated as an opaque

processing element. Generally, the list of enabled service functions in a given domain is not

pre-defined and may vary with time. The set of service functions required to deploy an SFC

can vary from one administrative entity to another. In addition, each administrative domain

may have several SFC policies that can be simultaneously applied to meet various business

requirements.

The SFC architecture puts no constraints on the underlay technology to be used, but it is up to

the network operator to decide the underlay technology to realize the SFC architecture. Service

functions (SFs) are referenced using a unique identifier within the SF domain and the ordered

set of SFs to be applied to packets are determined based on a classification process. SFC

provides more than just the application of an ordered set of SFs to selected traffic; rather, it

describes a method for deploying SFs in a way that enables dynamic ordering and topological

independence of those SFs as well as the exchange of metadata between participating entities.

SFCs can be unidirectional, bidirectional, or a hybrid of both. They may contain cycles, where

some SFs process traffic several times. SFC uses the Service Function Path (SFP) as a mech-

anism to express the forwarding path of traffic for a given chain. A single SFC can have

multiple associated SFPs. The SFC architecture does not mandate the degree of granularity of

the SFP. The SFP granularity depends on the specific SFC solution being used. SFPs can thus

be quite vague, but in some cases they can be fully specified by defining all SFs as well as the

intermediate nodes where the traffic should go between the different SFs.

Chapter 3 Service Function Chaining 20

The architecture defines some key architectural principles; topological independence, plane

separation, classification, shared metadata, service definition independence and SFC indepen-

dence. SFC deployment should not require any changes in the underlay network. The SFP

definition should be separate from the actual packet forwarding. Traffic should be forwarded

through a specific SFP, if it matches the set of classification rules associated with that SPF.

Classification can occur at multiple points within an SFC, and it can have varying degrees of

granularity such 5-tuple of a packet. Metadata can be shared among SFs and classifiers and be-

tween external systems and SFs. Such metadata provides a mean to communicate the results of

preceding processing to the subsequent ones. The SFC architecture has to be independent from

the actual implementation details of the SFs themselves. Finally, the creation, modification, or

deletion of an SFC should have no impact on other SFCs.

In SFC, classifiers are configured with different policies that meet the different traffic require-

ment. Each policy includes a set of classification criteria. Classifiers compare received traffic

to the policies, and traffic that satisfies the classification criteria of a policy is directed into

the SFP associated with that policy. Classification initially occurs at the ingress of the SFC

domain. The granularity of the initial classification is determined by the capabilities of the

classifier and the requirements of the SFC policy. As a consequence of the classification,

the appropriate SFC encapsulation is imposed on the data, and a suitable SFP is selected or

created. The SFC architecture supports reclassification as well. As packets traverse an SFP,

reclassification may occur. Reclassification may result in the selection of a new SFP, an update

of the associated metadata, or both. This is referred to as “branching”.

SFs are the core element of SFC and can be categorized into SFC-aware and SFC-unaware

based on their ability to process the SFC encapsulation. SFC-aware SFs can process SFC-

encapsulated packets, meaning that they are able to act on the original packet. On the contrary,

SFC-unaware SFs are not able to process SFC-encapsulated packets. SFC proxies allow to

include SFC-unaware SFs into the SFC architecture. The SFC proxy acts as a gateway between

the SFC encapsulation and SFC-unaware SFs. The proxy accepts packets on behalf of the

SF. It removes the SFC encapsulation and delivers IP packet to SFC-unaware SFs. For the

packets coming out from an SFC-unaware SF, the proxy can receive them, re-apply the SFC

encapsulation, and return them to the service function forwarder (SFF) for processing along the

service function path. Otherwise the packets could be reclassified from scratch and associated

to the proper SFC.

Chapter 3 Service Function Chaining 21

3.4 SRv6 based SFC Architecture

3.4.1 Design principles

The IETF SFC working group introduces the generic concept of SFC encapsulation without

specifying the protocols required to enforce the service forwarding path (SFP). In this thesis,

we propose the use of IPv6 segment routing (SRv6) to support SFC. SRv6 allows to steer

packets through an ordered list of instructions, called segments. These segments may encode

simple routing instructions for forwarding packets through a specific network path, or rich

behaviors to support use-cases such as service chaining.

In the context of service chaining, each service, running either on a physical appliance or in a

virtual environment, is associated with a segment, which can be included in a segment list to

steer packets through the service. Such service segments may be combined together in a seg-

ment list to achieve service chaining, but also with other types of segments as defined in [15].

SRv6 thus provides a fully integrated solution for service chaining, overlay and underlay op-

timization. Furthermore, the IPv6 data plane natively supports metadata transportation as part

of the SRv6 information attached to the packets.

In the rest of this section, we will refer to the Service Functions (SF) that we have introduced

earlier as Virtual Network Functions (VNFs). This is the terminology used in the context of

Network Function Virtualization (NFV). As discussed in general for SFs, VNFs will be divided

into two classes depending on whether they are able to behave properly in the presence of SRv6

information. These are respectively named SRv6-aware and SRv6-unaware VNFs. An SRv6-

aware VNF can process the SRv6 information from the packets it receives. This means that

is able to identify the active segment as a local instruction and move forward in the segment

list, but also that the VNFs own behavior is not hindered by the presence of SRv6 information.

SRv6-aware VNFs can process the information contained in the SRH of incoming packets and

can use the SRH to influence the processing/forwarding of the outgoing packets. Any VNF

that does not meet these criteria is considered as SRv6-unaware. SRv6-unaware VNFs are not

capable to understand the SRH, they can only reason in terms of traditional IP operations.

A typical case of SRv6-unaware VNFs is the case in which a pre-existing VNF (also referred

to as a legacy VNF) is used in an SRv6-based SFC scenario. In this case, legacy VNFs need

to be inserted in the SFC processing chain in such a way that they can receive, process and

forward plain IP packets with no knowledge of the SRH and of the SFC infrastructure. In this

case, the SFC infrastructure needs to take care of handing the packets to the SRv6-unaware

Chapter 3 Service Function Chaining 22

VNFs and to receive the packets from them, performing the adaptation with the SRv6-based

SFC processing chain. The SRv6-based SFC architecture is divided into data plane and control

plane components as depicted in Figure 3.1.

3.4.2 Data plane

In the data plane, the network is composed of IPv6 routers and NFV nodes as shown in

Figure 3.1. IPv6 routers can be SRv6-enabled or legacy IPv6 router. SRv6-enabled routers

(Ingress and Egress) are able to add, remove, or process the SRv6 encapsulation. Legacy IPv6

routers (R1 and R2) simply forward packets based on their destination address regardless of

the presence of the SRH 1. NFV nodes (NFV1 and NFV2) can host some VNFs running as

VMs and/or containers. NFV nodes can be SRv6-enabled or legacy IPv6 routers. Each VNF

instance running in a NFV node is uniquely identified by an IPv6 address.

Figure 3.1: SRv6 SFC Architecture.

Typically, VNFs running in the same NFV node will be assigned IPv6 addresses from the same

IPv6 prefix. Therefore, traffic destined to those VNFs is routed to their hosting NFV node

using the prefix of that node. For example, VNFs 1 through k running in NFV node N will

be assigned an IPv6 address in the form N :: F1/64 through N :: Fk/64 and traffic destined to

1Extension headers, except hop-by-hop, are not examined or processed by any node along a packet’s delivery
path, until the packet reaches the node identified in the destination address field of the IPv6 header [8].

Chapter 3 Service Function Chaining 23

those VNFs is typically routed using the prefix N :: /64. We represent an SFC as <v1,v2,...,vn>,

where vi is the IPv6 address of the i-th VNF in the chain. Each VNF IPv6 address corresponds

to an SRv6 SID and the SFC is represented by an ordered list of segments encoded in the IPv6

SRH.

An SRv6-based SFC domain is bounded by one or more SRv6 edge routers. There are two

types of SRv6 edge routers, known as Ingress and Egress. An SRv6 Ingress router classifies the

incoming packets and associates them to a VNF chain. Then the packets are steered through

the SFP associated with that VNF chain, which implies attaching a list of SRv6 SIDs to be

traversed. The attaching of SRv6 SID list to the packets can be done into two modes: Encap

or Insert [31]. In the Encap mode the original IPv6 packet is used as payload of a new packet

composed of a outer IPv6 header, the SRH, and the original packet. The outer IPv6 header has

the ingress router IPv6 address as source address, the next VNF in the chain as IPv6 destination

address, and the egress router as last segment in the segment list. In the Insert mode the SRH

is added directly to the original packet. The IPv6 destination address is set to the next VNF

in the chain and the original destination address of the packet is added as the last SID in the

segments list.

In case of the Encap mode, SRv6 Egress routers are responsible for removing the SRv6 en-

capsulation from packets before they leave the SRv6 domain. SRv6 encapsulation is removed

because it carries topological information of the SRv6 domain that should not be exposed to

the outside. At the NFV node, when a packet arrives with the destination address equals to

one of the VNFs running inside the node, the packet processing will be based on type of the

VNF, i.e., SRv6-aware or SRv6-unaware. For SRv6-aware VNFs the packet is delivered un-

changed. In case of SRv6-unaware VNFs, the SRv6 proxy will handle the processing of the

SR information on behalf of the SRv6-unaware VNFs. After the packet has been successfully

processed by all VNFs of a given chain, it is forwarded to the egress router to remove the SRv6

encapsulation before sending the packet to its final destination.

3.4.3 Control plane

The architecture of the control plane includes the End-to-End Orchestrator that interacts with

the NFV Managers for configuring and administrating the VNFs. In a simple scenario, VNFs

are instantiated and configured in the NFV nodes by the orchestrator in a static way. This

means that the VNFS will ready and waiting to process packets steered through them. In a more

advanced scenario, VNFs could be instantiated (on-the-fly). This means that the orchestrator

Chapter 3 Service Function Chaining 24

will instantiate and configure the VNF upon the arrival of the first packet. This solution is

more efficient in terms of resource utilization as VNFs will be deployed only when there is

traffic steered through them. However, it introduces some delay as the first few packets need

to wait until the VNF get configured. The SDN controller is responsible for configuring the

network. In particular, the SDN controller performs the following:

1. Configuration of SRv6 Ingress routers with traffic classification rules and the different

SRv6 SID lists to be applied to classified traffic. Such approach requires a per-flow

configuration state only at the Ingress node, and no per-flow states of the rest of the

network are needed.

2. Configuration of the routing across all nodes of the SRv6 domain. In the absence of

specific requirements for traffic engineering, this function can be replaced by standard

routing protocols, like OSPF. This function is not executed on a per-flow basis, since it

is requested only when a new node is added or removed, or when some modification of

the routing is needed.

3.5 SRv6-unaware VNFs

An SRv6-unaware VNF is not able to process the SRv6 information in the traffic that it re-

ceives. It may either drop the traffic or take erroneous decisions due to the unrecognized

routing information. In order to include such VNFs in an SRv6 SFC policy, it is thus required

to remove the SRv6 information before the VNF receives the packet, or to alter it in such a

way that the VNF can correctly process the packet.

The SRv6 proxy is an entity, separate from the VNF, that performs these modifications and

handles the SRv6 processing on behalf of a VNF [41]. It can run as a separate process on

the VNF appliance, on a virtual switch or router on the NFV node or on a remote host. We

assume that the SRv6 proxy is connected to the VNF via a layer-2 link. An SRv6-unaware

VNF is associated with an SRv6 SID instantiated on the SRv6 proxy, which is used to steer

traffic through the VNF.

In collaboration with several network device vendors and network operators, we designed

several SRv6 proxy behaviors to enable SR SFC through SRv6-unaware VNFs [41] [46]. A

system implementing one of these functions may handle the SR processing on behalf of an

SRv6-unaware VNF and allows the VNF to properly process the traffic that is steered through

Chapter 3 Service Function Chaining 25

it. In general, a VNF may be located at any hop in an SR SFC, including the last segment.

However, the SRv6 proxy behaviors defined in this section are dedicated to supporting SRv6-

unaware VNFs at intermediate hops in the segment list. In case an SRv6-unaware VNF is

at the last segment, it is sufficient to ensure that the SR information is ignored (IPv6 routing

extension header with Segments Left equal to 0) or removed before the packet reaches the

VNF.

The generic behavior of an SRv6 proxy has two parts as illustrated in Figure 3.2. The first part

is in charge of passing traffic from the network to the VNF. It intercepts the SR traffic destined

for the VNF via a locally instantiated SRv6 SID, modifies it in such a way that it appears as

non-SR traffic to the VNF, then sends it out on a given interface, IFACE-OUT, connected to the

VNF. The second part receives the traffic coming back from the VNF on IFACE-IN, restores

the SR information and forwards it according to the next segment in the list.

Figure 3.2: SRv6 proxy.

Static, Dynamic, Shared-memory, and Masquerading are different SRv6 proxy mechanisms.

Each of which has its own characteristics and constraints. It is up to the operator to select

the best one based on the proxy node capabilities, the VNF behavior and the traffic type. It

is also possible to use different proxy mechanisms within the same service chain [41]. In the

following subsections we will discuss these different proxy mechanisms.

3.5.1 Static proxy

The static proxy is an SRv6 endpoint behavior for processing SRv6 traffic on behalf of an

SRv6-unaware VNFs. We consider only the case of encapsulation mode, hence this proxy

receives SR traffic that is formed of an outer IPv6 header with SRH, encapsulating an inner

packet, which can be Ethernet, IPv4 or IPv6. A static SRv6 proxy segment is associated with

the following mandatory parameters:

Chapter 3 Service Function Chaining 26

• INNER-TYPE: inner packet type

• S-ADDR: ethernet or IP address of the VNF (only for inner type IPv4 and IPv6)

• IFACE-OUT: local interface for sending traffic towards the VNF

• IFACE-IN: local interface receiving the traffic coming back from the VNF

• CACHE: SR information to be attached on the traffic coming back from the VNF.

A static SRv6 proxy segment is thus defined for a specific VNF, inner packet type (INNER-

TYPE) and cached SR information (CACHE). It is also bound to a pair of directed interfaces

on the proxy (IFACE-OUT and IFACE-IN). These may be both directions of a single interface,

or opposite directions of two different interfaces. The latter choice is recommended in case

the VNF is to be used as part of a bi-directional SR SFC policy.

The first part of this behavior is triggered when the proxy node receives a packet whose active

segment matches a segment associated with the static proxy behavior. It removes the SR

information from the packet then sends it on a specific interface towards the associated VNF.

This SR information corresponds to the encapsulation IPv6 header with any attached extension

header in the case of SRv6.

The second part is an inbound policy attached to the proxy interface receiving the traffic re-

turning from the VNF, IFACE-IN. This policy attaches the cached SR information associated

with the SRv6 proxy segment to the incoming traffic. The CACHE is defined as a source ad-

dress, an active segment and an optional SRH (tag, segments left, segment list and metadata).

The proxy encapsulates the packets with an IPv6 header that has the source address, the active

segment as destination address and the SRH as a routing extension header. After the SR infor-

mation has been attached, the packets are forwarded according to the active segment, which is

represented in the IPv6 destination address.

In this scenario, there are no restrictions on the operations that can be performed by the VNF

on the stream of packets. It may operate at all protocol layers, terminate transport layer con-

nections, generate new packets and initiate transport layer connections. This behavior may

also be used to integrate an IPv4-only service into an SRv6 policy. However, a static SRv6

proxy segment can be used in only one service chain at a time.

As opposed to most other segment types, a static SRv6 proxy segment is bound to a unique list

of segments, which represents a directed SR SFC policy. This is due to cached SR information

Chapter 3 Service Function Chaining 27

being defined in the segment configuration. This limitation prevents multiple segment lists

from using the same static SRv6 proxy segment at the same time. Note that the same segment

list can be shared among mutliple traffic flows. Besides, since the returning traffic from the

VNF is re-classified based on the incoming interface, an interface can be used as receiving

interface IFACE-IN only for a single SRv6 proxy segment at a time. In the case of a bi-

directional SR SC policy, a different SRv6 proxy segment and receiving interface are required

for the return direction.

3.5.2 Dynamic proxy

The dynamic proxy is an improvement over the static proxy that dynamically learns SR in-

formation before removing it from the incoming traffic. The same information can then be

re-attached to the traffic returning from the VNF. As opposed to the static SRv6 proxy, no

CACHE information needs to be configured. Instead, the dynamic SRv6 proxy relies on a

local caching mechanism on the node instantiating this segment. Therefore, a dynamic proxy

segment cannot be the last segment in an SR SFC policy.

Upon receiving a packet whose active segment matches a dynamic SRv6 proxy function, the

proxy node applies the SRv6 End behavior, then compares the updated SR information with

the cache entry for the current segment. If the cache is empty or different, it is updated with

the new SR information. SR information is then removed and the inner packet is sent towards

the VNF. The cache entry is not mapped to any particular packet, but instead to an SR SFC

policy identified by the receiving interface IFACE-IN. Any non-link-local IP packet or non-

local Ethernet frame received on that interface will be re-encapsulated with the cached headers.

The VNF may thus drop, modify or generate new packets without affecting the proxy.

3.5.3 Shared-memory proxy

The shared memory proxy is an SRv6 endpoint behavior for processing SRv6-encapsulated

traffic on behalf of an SRv6-unaware VNF. This proxy behavior leverages a shared-memory

interface with the service in the VNF in order to hide SR information from an SRv6-unaware

VNF while keeping it attached to the packet. We assume in this case that the proxy and the

VNF are running on the same NFV node.

Chapter 3 Service Function Chaining 28

3.5.4 Masquerading proxy

The masquerading proxy is another SRv6 endpoint behavior for processing SRv6 traffic on be-

half of an SRv6-unaware VNF. This proxy receives SR traffic that is formed of an IPv6 header

and an SRH on top of an inner payload. The masquerading behavior is independent from the

inner payload type. Hence, the inner payload can be of any type but often in practice a trans-

port layer packet, such as TCP or UDP. A masquerading SRv6 proxy segment is associated

with the following mandatory parameters:

• S-ADDR: ethernet or IPv6 address of the VNF

• IFACE-OUT: local interface for sending traffic towards the VNF

• IFACE-IN: local interface receiving the traffic coming back from the VNF.

A masquerading SRv6 proxy segment is thus defined for a specific service and bound to a pair

of directed interfaces or sub-interfaces on the proxy. As opposed to the dynamic SR proxies,

a masquerading segment can be present at the same time in any number of SR SFC policies

and the same interfaces can be bound to multiple masquerading proxy segments. The only

restriction is that a masquerading proxy segment cannot be the last segment in an SR SFC

policy.

The first part of the masquerading behavior is triggered when the proxy node receives an IPv6

packet whose destination address matches a masquerading proxy segment. The proxy inspects

the IPv6 extension headers and substitutes the destination address with the last segment in the

SRH attached to the IPv6 header, which represents the final destination of the IPv6 packet.

The packet is then sent out towards the VNF. The VNF receives an IPv6 packet whose source

and destination addresses are respectively the original source and final destination. It does not

attempt to inspect the SRH, as RFC8200 [8] specifies that routing extension headers are not

examined or processed by transit nodes. Instead, the VNF simply forwards the packet based on

its current destination address. In this scenario, we assume that the VNF can only inspect, drop

or perform limited changes to the packets. For example, intrusion detection system (IDS), deep

packet inspector (DPI) and non-NAT firewalls are among the services that can be supported by

a masquerading SRv6 proxy.

The second part of the masquerading behavior, also called de-masquerading, is an inbound

policy attached to the proxy interface receiving the traffic returning from the VNF, IFACE-IN.

Chapter 3 Service Function Chaining 29

This policy inspects the incoming traffic and triggers a regular SRv6 endpoint processing on

any IPv6 packet that contains an SRH. This processing occurs before any lookup on the packet

destination address and it is sufficient to restore the right active segment as the destination

address of the IPv6 packet.

3.5.5 Packet processing

As shown in Figure 3.1, the SRv6 proxy is running inside each NFV node to handle the pro-

cessing of SR information on behalf on SRv6-unaware VNF. This operation can be logically

split into three phases:

1. identifying the target VNF and modifying the packet.

2. forwarding the packet to the correct VNF

3. restoring the correct SRv6 encapsulation after the packet being processed by the VNF.

In this section we explain in detail the process of including SRv6-unaware VNFs in SRv6-

based SFC. As an SRv6 proxy we use the SR dynamic proxy, since this proxy can support

a broad range of use-cases. However, most the concepts discussed in this section also apply

to other proxy behaviors. When an SR-encapsulated packet arrives to an NFV node with its

destination address matching an SRv6-unaware VNF running on that NFV node, the packet is

handed the dynamic SRv6 proxy. Then following operations are performed:

• the proxy extracts the SRv6 encapsulation from the packet, including the outer IPv6

header, SRH, and any other IPv6 extension header

• the proxy maintains a CACHE for previously saved SRv6 encapsulations, and compares

the extracted SRv6 encapsulation to the CACHE elements.

• if the CACHE is empty or the SRv6 encapsulation is different from the cached one, then

the CACHE is updated with the new SRv6 encapsulation

• the original packet is extracted and forwarded to the SRv6-unaware VNF through the

IFACE-OUT interface

• the VNF processes the packet; there is no restriction on the processing done by the VNF,

hence the packet can be modified, forwarded, or deleted in the VNF

Chapter 3 Service Function Chaining 30

• packets processed by the VNF are sent back to the proxy through the IFACE-IN interface

• the proxy searches its CACHE using the IFACE-IN as a key

• the cached SRv6 encapsulation is retrieved and re-added to packets

• finally the packet is handed back to the routing system of the NFV node to be forwarded

to the next VNF in the chain, which might be running on the same NFV node or on a

different one.

Generally, a VNF could be part of several VNF chains at the same time. Therefore, packets

that go through a VNF should be re-classified after being processed to identify the chain they

belong to. On the other hand, we can impose the constraint that a VNF can be part of only

chain at the same time. Under this constraint, it is possible to operate in a very simple way and

associate all packets processed by the VNF to one VNF chain. In Figure 3.3, we assume that

packets belonging to a flow f1 are associated by an ingress node to the VNF chain represented

by <VNFa,VNFi,VNFx>, while the packets belonging to the flow f2 are associated to the

chain <VNFb,VNFi,VNFy>. The packets of both flows need to cross the VNF V NFi, but

those belonging the the flow f1 should be associated to the chain <VNFa,VNFi,VNFx> when

they go out of the VNFi and those belonging to the flow f2 should be associated to the other

chain. This scenario is shown in Figure 3.3(a). If we duplicate the VNFi by instantiating two

instances in the same VNF node (V NFi1 and V NFi2 in Figure 3.3(b)), it is possible to meet

the condition that a VNF is part of only one chain. The two chains associated to flows f1 and

f2 will now be <VNFa,VNFi1,VNFx> and <VNFb,VNFi2,VNFy> respectively.

In our architecture we assume that VNFs are univocally mappable, i.e., they belong to at most

one VNF chain. We also assume that a VNF cannot appear twice in the same VNF chain. A

bi-directional service chain is composed of two uni-directional chains, indicated as Eastbound

chain and Westbound chain in Figure 3.4. We assume that each VNF participating in a bi-

directional service chain has two interfaces, indicated as W and E. Under these assumption,

outgoing traffic from the E interfaces can be associated to the Eastbound chain (from source

node S to dest node D) while traffic going out from the W interfaces can be associated to

the Westbound chain (from D to S). In other words, we assume that each interface of a VNF

instance can inject traffic only in one chain at a time.

Formally, let S be the set of all VNF chains allocated in the network. Let I be an interface of a

VNF instance. A univocally mappable interface is an interface that has all the traffic outgoing

from I belongs to at most one VNF chain in S. For bi-directional chains, a univocally mappable

Chapter 3 Service Function Chaining 31

(a) VNF as part of several chains

(b) VNF as part of a single chain only

Figure 3.3: Service Function Chains examples

Figure 3.4: Bi-directional Service Chain example

Chapter 3 Service Function Chaining 32

VNF is a VNF that has all its interfaces that output traffic are univocally mappable. In case

of non-univocally mappable VNFs, a more complex classifier is needed in the SRv6 proxy to

associate the packets outgoing from the VNF to the VNF chain and index. This case is not

covered in this the thesis.

3.6 Implementation

The SRv6-based SFC architecture we have shown in Figure 3.1 is composed of several compo-

nents; Ingress node, Egress node, classifier, NFV nodes, VNFs, proxy, and the control plane.

We chose Linux to implement our SFC architecture because of its feature richness which

makes it an ideal platform to implement the various components of the architecture. Linux is

commonly used within the research community and thus gives more opportunities for collab-

oration and eases the process of re-producing our work by other researchers. In addition, by

using Linux we can leverage the various SRv6 capabilities supported in kernel 4.10 and 4.14.

An alternate would have been VPP [21]. However, this would require special hardware (e.g.

NIC) that supports DPDK [47]. Moreover, VPP would have made it more difficult for other

researchers to collaborate or reproduce our work.

We implemented all the components of our SFC architecture, except the SRv6 proxy, using

the native features of the Linux kernel. To implement the SRv6 proxy in Linux we chose

between two different implementations choices: integrate the proxy implementation directly

in the kernel, or implement it as an external kernel module. In the first phase, we preferred

to use the latter modular approach and implemented a new kernel module called SREXT.

This approach gives us more flexibility as it is possible to update the implementation without

recompiling the kernel each time. It also eases the process of installing our extension on any

Linux machine. The SREXT implementation is open source and publicly available [48]. We

also considered the other choice (integrate the proxy implementation directly in the kernel) and

contributed to the design of a native kernel SR-Proxy (SRNK) which we cover in Section 3.6.2.

3.6.1 SREXT

SREXT is a kernel module providing the basic segment routing functions in addition to more

advanced ones. It can be used as a standalone SRv6 implementation or as a complement to

the existing SRv6 kernel implementation (kernel 4.10 and later kernels). SREXT supports a

Chapter 3 Service Function Chaining 33

“localsid table” which contains the local SRv6 segments explicitly instantiated in the node and

associates each SID with a function. The localsid table is completely independent from the

Linux routing table and contains SRv6 SIDs only. Each entry of the localsid table is an SRv6

segment that is associated with an SRv6 endpoint behavior.

OutputForward

MulticastInput

Receive

NF_INET_PRE_ROUTING

Routing Subsystem NF_INET_FORWARD

Network Driver

NF_INET_LOCAL_IN

NF_INET_POST_ROUTING

NF_INET_FORWARD

Neighbour

Transport Layer (TCPv6/UDPv6/….)

Local

NF_INET_LOCAL_OUT

SREXT

 Localsid table

 SREXT ..

Figure 3.5: SREXT Architecture

SREXT registers a callback function in the pre-routing hook of the netfilter framework as

shown Figure 3.5. This callback function is invoked for each received IPv6 packet. If the

destination address of the IPv6 packet matches an entry in the localsid table, the associated

behavior is applied, otherwise the packet will go through the kernel routing sub-system for

normal processing. SREXT removes the SRv6 encapsulation from packets and hands only the

inner packet to the VNF. Before handing packets to the VNF, SREXT creates a cache entry with

the removed encapsulation and uses the interface connecting to the VNF as a key. As SREXT

is registered in the pre-routing hook, it receives packets before the routing sub-system. Hence,

it will be able to re-apply the cached SRv6 encapsulation to packets coming back from VNF.

The currently supported SRv6 endpoint behaviors by SREXT are listed in Table 3.1.

Chapter 3 Service Function Chaining 34

Behavior Description

End Endpoint function is the mostbasic function

End.X Endpoint with cross-connect to an array of L3 adjacencies

End.DX2 Endpoint with decapsulation and L2 cross-connect to OIF

End.Dx4
Endpoint with decapsulation and cross-connect
to an IPv4 adjacency

End.DX6
Endpoint with decapsulation and cross-connect
to an IPv6 adjacency

End.AD4 Endpoint to IPv4 SR-unaware APP via dynamic proxy

End.AD6 Endpoint to IPv6 SR-unaware APP via dynamic proxy

End.AM Endpoint to SR-unaware APP via masquerading

End.EAD4 Extended End.AD4 to allow SFs be the last SID

End.EAD6 Extended End.AD6 to allow SFs be the last SID

Table 3.1: SREXT Supported SRv6 behaviors

We provided a native command-line-interface (CLI), named srconf, that allows to add, delete,

show, flush or clear counters of localsid table entries as shown in Listing 3.1. We also provide

a simple and easily replicable testbed to experiment with our implementation. The testbed is

composed of three nodes representing SRv6 Ingress, NFV and Egress nodes. The testbed is

based on VirtualBox [49] and Vagrant [50]. VirtualBox is a virtualization hyper-visor used to

create virtual machines (VMs). Vagrant is an open source tool for creating portable VMs. It

simplifies the life cycle management and provisioning of VMs. A full description and instruc-

tions to replicate the testbed are available at [48].

SREXT has been widely adopted by the research community as well as industry as an SRv6

proxy implementation in Linux [51] [39] [52] [34]. It was included in the SRv6 interoper-

ability demo which was presented the SIGCOMM 2017 Industrial demos. The demo shows

the interoperability among hardware platforms from several network vendors as well as open

source SRv6 implementations both in the Linux kernel and VPP. It showcases two main use-

cases of SRv6: layer-3 VPN and service chaining. SREXT allowed to include some SRv6

unaware VNFs in the service chain.

Chapter 3 Service Function Chaining 35

Listing 3.1: SREXT Command Line Interface (CLI)

$ sudo s r c on f l o c a l s i d
Usage : s r c on f l o c a l s i d { help | f l u s h }

s r c on f l o c a l s i d { show | c l ea r - counter s } [SID]
s r c on f l o c a l s i d de l SID
s r c on f l o c a l s i d add SID BEHAVIOR

BEHAVIOR:= { end |
end . dx2 OIF |
end . dx4 NH4 OIF |
{ end . x | end . dx6 } NH6 OIF |
{ end . ad4 | end . ead4 } NH4 OIF IIF |
{ end .am | end . ad6 | end . ead6} NH6 OIF IIF }

NH4:= { ip IPv4 -ADDR | mac MAC-ADDR }
NH6:= { ip IPv6 -ADDR | mac MAC-ADDR }

3.6.2 Integration in the Linux kernel mainline

SRNK (SR-Proxy Native Kernel) is a proposal to re-implement SREXT as part of the Linux

kernel mainline [38]. SREXT was implemented to complement the Linux kernel to support

the SRv6 behaviors that we were not supported yet. By that time, the Linux kernel was only

supporting the basic SRv6 End behavior processing. Currently, most of the behaviors im-

plemented in SREXT are supported by the mainline of Linux kernel, except the SRv6-proxy

behaviors. While the SREXT implementation has been acknowledged by the research com-

munity and the industry, SRNK proposes a mechanism to integrate the implementation of the

static and dynamic proxy behaviors directly in the kernel. We contributed to the design and

evaluation of SRNK [38] [53], which is implemented by Netgroup Research Group from Uni-

versity of Rome Tor Vergata [54] [55].

3.7 Related work

Network Service Header (NSH) provides an alternative solution to implement SFC [56]. The

idea is to carry both SFC metadata and path information in an additional header. The traffic

steering between VNFs is delegated to other tunneling mechanisms such as VXLAN [44] or

GRE [43]. Traffic is encapsulated in tunnels that go from one VNF to the next VNF hop, the

NSH is added between the tunnel headers and the original packet. The basic mechanism is

designed to work with NSH-aware services that are capable to understand and process NSH

Chapter 3 Service Function Chaining 36

headers. The largest majority of VNF legacy services is NSH-unaware, in this case before the

traffic reaches and after it leaves the VNF a NSH proxy has to process it in order to remove and

then reattach the NSH header. Such type of proxy has to remove and reattach the NSH header

to each incoming/outgoing packet from the VNF, hence it has to reclassify all the outgoing

packets from the VNF.

The SRv6-based approach and the NSH approach are not necessarily mutually exclusive, but

there can be coexistence scenarios. In particular, citing [13], “the use of SRv6 together with the

NSH allows building flexible service chains where the topological information related to the

path to be followed is carried into the Segment List while the service plane related information

(function/action to be performed) is encoded in the metadata, carried into the NSH”.

NSH is supported in Open vSwitch [57] through an unofficial patch [58]. The same patch

is used in [59] to offer experimental support to NSH in the OpenDaylight [28] platform.

OpenStack Neutron [60] is the networking-as-a-service platform used by the OpenStack [61]

project. Currently Neutron does not support service function chaining. There is a proposed

SFC API for OpenStack Neutron [62]. This API defines a service chain as: i) flow classifier

- definition of what traffic enters the chain; ii) an ordered list of Neutron ports that define the

chain; iii) correlation type - chain metadata encapsulation type. VMs are connected to a Neu-

tron network via Neutron ports, using an ordered chain of ports the traffic is steered through

the VMs composing the service chain. This makes it possible to create a traffic steering model

for service chaining that uses only Neutron ports. This traffic steering model has no notion of

the actual services attached to these Neutron ports. The correlation type specifies the type of

chain correlation mechanism supported by a specific service functions (it can be MPLS, NSH,

ecc..). This is needed, in case of SFC-aware SFs, by the data plane switch to determine how to

associate a packet with a chain. In case of SFC-unaware VNFs (VNFs that do not support any

correlation mechanism) the correlation type is set to none.

The SRv6 solution for SFC still has several advantages compared to NSH. In particular, it

provides a unique solution for service function chaining combined with overlay networking

and tight underlay requirements such as low latency and high bandwidth. The SRv6 solution

can also scale better, as the SFC state is maintained only at the SRv6 Ingress router with no

need for state information in the network fabric.

Chapter 4

SRv6-aware network functions

4.1 Introduction

SRv6-aware NFs are capable of processing SRv6 information in the packets. They can be in-

tegrated into SRv6 service chains with no need of any sort of proxy behavior. This simplifies

the configuration and management of the NFV infrastructure. At the same time this has a posi-

tive effect on the performance of the NFV-enabled nodes, as there is no complex classification

procedures required anymore. Moreover, it allows to implement advanced SFC features, as

the SRH information is preserved when packets are processed by the NF. In this chapter, we

take a forward-looking approach and consider the design and implementation of SRv6-aware

network functions. We provide open source implementations for these SRv6-aware NFs that

has been partly adopted in the mainline of the Linux kernel.

The content of this chapter has been partially or fully published in [46] [40] [63] [39]. In Sec-

tion 4.2, we define the design considerations for developing SRv6-aware NFs. In Section 4.3-

4.6 we explain the design and implementation of several SRv6-aware NFs. In Section 4.3 we

provide a full description of the design, implementation and performance of our SRv6-aware

firewall, named SERA. In Section 4.4 we explain how we developed an SRv6-aware IDS (In-

trusion Detection System) and IPS (Intrusion Prevention System) by extending the widely used

open source Snort [64]. In Section 4.5 we describe the the SRv6 extension that has been added

to Linux nftables firewall [65]. Finally, in Section 4.6 we augment TCPDUMP [66] with SRv6

capabilities for debugging SRv6 traffic.

Chapter 4 SRv6-aware network functions 38

4.2 Designing SRv6-aware NFs

SRv6-aware NFs are capable of processing SRv6-encapsulated traffic, which means that they

can process the original packet despite the fact that it has been encapsulated with SRv6 encap-

sulation. They can identify the sequence of NFs that have already processed the packet and

the sequence of following NFs that still have to process the packet. They can also modify the

service chain by adding, removing, and possibly reordering the segment list. This opens the

possibility of advanced service chaining operations, such as branching and looping. When a

node running SRv6-aware NFs receives an SRv6-encapsulated packet whose destination ad-

dress matches a segment assigned to an SRv6-aware NF, the full SRv6 packet is processed

to the VNF. The VNF can act on packet’s outer IPv6 header, SRH and inner packet. It can

perform any action to modify the packet or even drop it. The VNF can modify the packet path

by adding or removing a SID to the SID list carried in the SRH. Finally, it updates the packet

destination address with the next SID from the SID list and forwards the packet accordingly.

In this section, we choose the firewall as an example to define the design considerations for

SRv6-aware NFs. However, these considerations have a general value as they can be applied

to several types of network functions that need to be deployed on an SRv6-based SFC environ-

ment (e.g. DPI, IDS). A firewall essentially works according to a set of rules to accept or drop

received packets [67]. Each rule is composed of a condition and an action. The condition is

based on the attributes of the received packets. Once a packet satisfies the condition expressed

by a rule condition, the associated action is performed on that packet

We assume that an SRv6-aware firewall should support two working modes: basic mode and

advanced mode. In the basic mode the SRv6-aware firewall must be able to work as a legacy

firewall, but with no need of the SRv6-proxy. In particular, the SRv6-aware firewall should

be able to use the same set of rules defined for the legacy firewall and apply them directly to

the SRv6-encapsulated packets that carry SRH information. It must be able to handle SRv6

packets encapsulated in encap as well as insert modes and logically apply the rules to the

original packets rather than to the SFC encapsulated packets. To make a concrete example, if

an existing rule includes a condition on the source IPv6 address and the original IPv6 packet

has been encapsulated using IPv6-in-IPv6 it makes no sense to consider the outer IPv6 source

address of the received packet as the condition should be checked on the source address of

the original packet. The use-case scenario is to virtualize the legacy firewalls, executing them

in servers on the NFV infrastructure, without changing the legacy rules and with no need of

SRv6-proxy functionality.

Chapter 4 SRv6-aware network functions 39

In the advanced mode the SRv6-aware firewall should support rules with extended conditions

that can explicitly include attributes not only from the original packet but also from the SRH

and the outer packet. In particular, the SRv6-aware firewall could leverage SRv6 SID argu-

ments, TLVs, or TAG. It could also apply differentiated processing based on the active SRv6

SID (i.e., apply different rule sets for different SIDs). As for the actions, in the advanced mode

the SRv6-aware firewall should be able to support SRv6-specific actions. For example, an

SRv6-specific action could be to skip the next SID in the segment list, so that it is possible

to operate a “branching” instead of the usual linear exploration of the VNF chain, when some

conditions on the packet are met. A use-case scenario for this feature is a service chain which

includes a firewall followed by an Intrusion Detection System (IDS) and allow skipping the

IDS for a subset of traffic that matches some conditions.

A further requirement is that the SRv6-aware firewall application should be able to select the

actions to be performed based on information contained in the SID. This is aligned with the

SRv6 network programming approach [34] of minimizing the state information maintained

in the nodes and storing explicit state information in the packets. The use-case scenario in

this case is that instead of re-configuring some firewall rules in a specific firewall running in

the core of the NFV infrastructure, it is possible to obtain the same result by changing a SID

in the SID list that is injected to the packet by the edge node. The big advantage is that the

reconfiguration is only needed at the edge node.

4.3 SERA (SEgment Routing Aware firewall)

SERA (SEgment Routing Aware firewall) is an advanced SRv6-aware firewall, capable of

taking stateless actions programmed in the SRH. It extends the Linux iptables firewall and

supports both basic and advanced modes of SRv6-aware firewalls. The basic mode of the

proposed SERA firewall solution avoids the need of (re)classifying packets in the intermediate

NFV nodes that host the SRv6-aware firewall. The advanced mode supports new firewall

actions that can operate on the SRH segment list, allowing to make branches in the VNF

chain. To the best of our knowledge, the SERA firewall can be considered the first SRv6-

aware application.

Chapter 4 SRv6-aware network functions 40

4.3.1 SERA basic mode

In the basic mode, SERA applies the firewall processing to the original packets of SRv6 traffic.

The proposed packet processing architecture is shown in Figure 4.1. Each received packet

goes through an SRv6 pre-processor that splits traffic into SRv6 and non-SRv6 traffic. Non-

SRv6 traffic does not require any special processing and is processed as in an SRv6-unaware

firewall, as represented with the solid-line path in Figure 4.1. SRv6 traffic follows a different

path through the firewall, represented with double-line path in the figure. In this path, the

firewall, using the Inner match module, evaluates the rules on the inner packet, properly taking

into account the impact of the SRv6 encapsulation. The Inner match module supports both

encap and insert modes of SRv6, which implies that the original IPv6 source and destination

information of received packets may be encoded differently. In the encap mode the original

source and destination are the ones of the original packet. In the insert mode, packets have

only one IPv6 header. The original source information is in the source address of the IPv6

header, while the original destination is encoded as the last SID in the SRH. The Inner match

module is responsible for getting the original source and destination information from SRv6

packets and comparing them to the defined rules. Once a packet matches one of the rules, the

Action module applies the associated action (e.g., ACCEPT, DROP) on that packet.

4.3.2 SERA advanced mode

In the advanced mode, SERA extends the iptables capabilities with new matching capabilities

and new SRv6-specific actions. It introduces a new type of iptables rules (SERA rules) that

have extended conditions on the attributes of outer packet, inner packet, and the SRH header.

The architecture of advanced mode (Figure 4.2) is defined incrementally with respect to the

basic mode (Figure 4.1), by adding the SRH match module and replacing the Action block with

the Extended Action block. Since the matching could be performed on both the original and the

outer packet headers, the SRv6 traffic follows a more complex path, as shown in Figure 4.2.

Unlike in the basic mode SERA, all received packet are first processed by the Outer match

block, which applies parts of the extended rules on the outer packet.

The SRv6 pre-processor does the same job as in the basic mode SERA by splitting traffic

into non-SRv6 and SRv6 traffic. Non-SRv6 traffic goes directly to the Action module while

SRv6 traffic is directed to the Inner match module. The Inner match module works as in the

basic mode, but the rules that drive its behavior are written in a different way. For example,

Chapter 4 SRv6-aware network functions 41

Firewall
Rules
Firewall

Rules
Firewall

Rules
Firewall

RulesDefault Rules

Pkt_in Pkt_out

Outer match

SRv6 pre-
processor Inner match

Action

action

standard

match
- src
- dst
....

SRv6

Non-SRv6

Non-SRv6

SRv6

Figure 4.1: SERA Architecture: basic mode

Firewall
Rules
Firewall

Rules
Firewall

Rules
Firewall

Rules
Extended

Rules

Pkt_in Pkt_out

Outer match

SRv6 pre-
processor Inner match

Extended
Action

SRH match

action

Extended

match
- src
- dst
....

Extension(SRH)
-in_src - next_hdr
-in_dst - tag
......

SRv6

Non-SRv6

SRv6

SRv6

Figure 4.2: SERA Architecture: advanced mode

Chapter 4 SRv6-aware network functions 42

with an extended rule it is possible to match on the outer source and destination IPv6 addresses

(denoted as src, dst) and on the original ones (denoted as inner-src, inner-dst). The Inner match

block takes care of the matching of the inner source and destination (the ones of the original

packet). The SRH match block is concerned with the matching between SRH extension part of

the rules and the SRH of received SRv6 packets. Finally, each packet (SRv6 or non-SR) that

satisfies the matching condition of a rule goes to the Extended Action module. It extends the

Action module present in the architecture of the Basic mode by allowing the introduction of

SRv6-specific actions in addition to the standard ones.

An SRv6-specific action is an advanced action that can be applied to SRv6-encapsulated pack-

ets. It may modify or process SRv6-encapsulated packets based on SRH information. We list

here some examples of SRv6-specific actions, but the set of these actions can be extended to

cover more complex SFC use-cases.

• seg6-go-next: Similar to the SRv6 End behavior from the SRv6 network programming

model [34]. It sends packets towards the next SID from SRH. The seg6-go-next serves

as an ACCEPT action for SRv6 encapsulated packets.

• seg6-skip-next: Instructs the SERA firewall to skip the next SID in the SRH.

• seg6-go-last: Instructs the SERA firewall to skip the remaining part of the segment list

and process the last segment.

• seg6-eval-args: Generic action to support programming actions into the SRH content.

(more below).

Following the traditional iptables model, the above defined SRv6-specific actions are included

in statically configured rules which are executed in a SERA firewall running as a VNF. Taking

into account the concepts of the SRv6 programming model, we have designed a more dynamic

approach, which allows defining the action to be executed as a result of a match on a packet-

by-packet basis, by putting information in the SID. For this purpose, the special SRv6-specific

action (seg6-eval-args) is defined. It does not represent a concrete action, but it instructs

the SERA firewall to look into the current SID to find the action to be executed. In order

to understand how this dynamic approach works, let us recall first how the SRv6 SIDs are

structured. The SRv6 network programming model defines SIDs as IPv6 addresses which can

be logically split into three fields LOC:FUNCT:ARGS [34]. LOC uses the L most significant

bits, ARGS the R rightmost-bits and FUNCT the remaining 128− (L+R) bits in the middle.

Chapter 4 SRv6-aware network functions 43

In our case, the LOC part is used as a locator to forward the packets to the NFV node that runs

the firewall, and it is advertised by the routing protocols. The FUNCT part identifies a specific

VNF on the NFV node (in our case the SERA firewall instance). The ARGS part may contain

information required by the VNF and may even change on a per-packet basis. Note that the

ARGS part will be ignored in most cases (or omitted setting R = 0), whenever there is no need

to carry additional information in the SID. For example, the LOC field can be 64 bits long and

uniquely identify an NFV node. This leaves 128− 64 = 64 bits for the identification of the

VNF in the NFV node and for the arguments if needed.

In the advanced mode of SERA it is possible to use the ARGS part of the SID to encode a

firewall action to be executed in case of match. This requires that a set of rules with action

eval-args is configured in the SERA firewall. For all packets that match one of these rules,

the action to be executed is contained in the ARGS field of the SID. To give an example, the

ARGS part could be defined as follows: ARGS = 0 accept packet, ARGS = 1 drop packet.

The advantage of this approach is that it is possible to (re)configure the action to be executed

on a given subset of packets by operating at the network edge, with no need to update the

configuration of the SERA firewall instance running in the core of the NFV infrastructure.

4.3.3 SERA Implementation

We implemented SERA as an extension of the Linux iptables firewall. Before going into

the details of the implementation we provide a short tutorial on iptables and netfilter. Then

we explain our open source implementation of the SERA firewall [68]. We contributed part

of the SERA implementation to the Linux kernel which was merged into release 4.16 of the

Linux kernel [69]. We also contributed part of the SERA firewall to the netfilter.org project to

extend the iptables user-space utility to support new match options merged into release 1.6.2

of iptables [70].

Linux iptables firewall

Iptables is a flexible and modular firewall and it is a standard component of most Linux distri-

butions. It is built on top on the netfilter framework as shown in Fig. 4.3.

The netfilter framework (Appendix A) is a set of hooks in the packet traversal through the

Linux protocol stack, which allows access to packets at different points [71]. The current

Chapter 4 SRv6-aware network functions 44

netfilter implementation provides five different hooks (PREROUTING, INPUT, FORWARD,

OUTPUT, POSTROUTING) distributed along the receive and transmit path of packets. Kernel

modules can register callback functions at any of these hooks. A callback function, after

processing a packet, returns to the netfilter hook the action to be taken on the packet, such as

DROP, ACCEPT, QUEUE.

Iptables represents the userspace implementation which allows access to the kernel-level net-

filter framework hooks. It defines a set of rules that instruct the kernel what to do with packets

coming to or traversing the protocol stack. The implementation of netfilter includes some pre-

defined tables, as shown in Figure 4.3. Each table has a set of chains where iptables rules can

be inserted. The currently supported tables are:

• Filter: the default table, it contains rules that are used to filter IP packets

• Nat: mainly used to re-write the source and/or destination addresses of IP packets

• Mangle: a specialized table for mangling packet as they go through the kernel

FORWARD

PR
ER
OU
TI
NG

Routing

raw

Transport Layer (TCP/UDP/….)

nat

mangle

mangle

filter

Network Driver

mangle

filter

mangle

nat

Routing raw

mangle

nat

filter

pkt_in

IN
PU
T

POSTROUTING
OUTPUT

pkt_out

Figure 4.3: Netfilter hooks and their associated tables

Chapter 4 SRv6-aware network functions 45

• Raw: mainly used for connection tracking.

Each iptables rule defines a set of matching criteria based on information from different layers

of the protocol stack. Once a packet matches a rule, iptables takes an action on that packet. The

standard actions are: ACCEPT, DROP, or QUEUE. Those correspond to the callback functions

return values. Listing 4.1 shows an example of standard iptables rule that matches the packet’s

source and destination addresses.

The iptables framework is modular and extensible. New match extensions and target exten-

sions can be developed separately and added to the iptables as new modules. Match extensions

are used to add more matching options to iptables. They can be used alone or in combination

with the default match options. They provide the ability to have sophisticated iptables rules

in order to look deeper into IP packets. For instance, hbh matches the parameters in IPv6

Hop-by-Hop extensions header. An example of extended iptables rule is shown in Listing 4.2.

Target extensions are new actions added to the default ones of iptables. A new iptables target

usually performs an action different from the default ones (ACCEPT, DROP, etc.,). It can be

used for logging/profiling or it can modify the packet before returning it back to the netfilter

framework. Destination NAT (DNAT) is an example of iptables target extension, which is used

to modify the destination address of a packet.

Implementation of SERA basic mode

In the Linux kernel, the ip6_tables module is responsible for checking the iptables rules

against the received packets. It implements the ip6_packet_match() function that evaluates

Listing 4.1: Standard iptables rule

Add ing s t a n d a r d i p t a b l e s r u l e
$ i p 6 t ab l e s - I INPUT - s f c00 : 1 : : / 6 4 -d f c00 : d1 : : / 6 4 \

- j DROP

Listing 4.2: Extended iptables rule

Add ing e x t e n d e d i p t a b l e s r u l e
$ i p 6 t ab l e s - I INPUT - s f c00 : 1 : : / 6 4 -d f c00 : d1 : : / 6 4 \

-m hbh - -hbh - l en 40 - j DROP

Chapter 4 SRv6-aware network functions 46

the defined iptables rules against the outermost IPv6 header of a received packet. In order to

implement the basic mode of the SERA firewall, we extended the existing ip6_tables module

to operate according to the architecture shown in Figure 4.1.

We added the SRv6 pre-processor block. SRv6 packets are forwarded to the Inner match

functional block, implemented by the inner_match() function, which evaluates iptables rules

against the original packet. It supports SRv6 packets encapsulated in both encap and insert

mode. We added a new sysctl parameter (ip6t_seg6) to switch between legacy iptables mode

and SERA basic mode. The system administrator can enable the SERA basic mode on the

fly with the command shown in Listing 4.3, which activates the SRv6 pre-processor. We

have implemented a first version of basic mode SERA that implements a subset of the normal

classification rules, namely those involving the IP source and destination addresses. On this

first version we have performed the evaluation that is reported in Section 4.3.4. Then we have

implemented a second version that supports all the classification rules and it is now available

at [69].

Listing 4.3: Linux CLI for SERA basic mode.

E n a b l e SERA b a s i c mode .
$ s y s c t l -w net . ipv6 . ip6t_seg6=1

Implementation of SERA advanced mode

We implemented the advanced mode SERA by exploiting the iptables extension features. We

added a new match extension as well as a new target extension to the iptables implementation

both at kernel and user-space levels. Thanks to these extensions it is possible to match on the

SRH fields, this allow to have a full control on where the packets is directed (the next SIDs)

and which nodes it has crossed before. At the kernel level, we implemented two additional

kernel modules: the ip6t_srh as match extension and ip6t_SEG6 as target extension.

The ip6t_srh module implements the SRv6 pre-processor, the Inner match, and the SRH

match from the advanced SERA architecture. The ip6t_SEG6 module implements the Ex-

tended Action. It is a new target (SEG6) for iptables rules that supports a set of SRv6-specific

actions. To support the advanced mode SERA at user-space level, we extended the iptables

user-space utility with two new shared libraries: libip6t_srh and libip6t_SEG6. They allow

the iptables user to define SERA rules. These rules can have attributes from outer packet, in-

ner packet, and SRH. Listing 4.4 shows a list of match options supported by the libip6t_srh

Chapter 4 SRv6-aware network functions 47

extension. The ibip6t_SEG6 extension supports the new SR (SEG6) target with some SRv6-

specific actions (shown in Listing 4.5).

For SRH programmed actions, we introduced a new sysctl variable (ip6t_seg6_args) that

defines the number of rightmost bits in the active SID to be used as ARGS. The SEG6 target

decodes the ARGS bits to decide which action should be taken on the packet. If the decoded

value does not correspond to any of the supported actions (e.g., ACCEPT, DROP, QUEUE,

seg6-go-next, seg6-skip-next, seg6-go-last, etc.), SERA will send back an ICMP Parameter

Listing 4.4: Options of srh match extension

$ i p6 t ab l e s -m srh -h
srh match opt ions :
[!] - - inner - s r c addr [/mask] Inner packet s r c
[!] - - inner - dst addr [/mask] Inner packet dst
[!] - - srh - next - hdr next - hdr SRH Next Header
[!] - - srh - len - eq hdr_len SRH Hdr Ext Len
[!] - - srh - len - gt hdr_len SRH Hdr Ext Len
[!] - - srh - len - l t hdr_len SRH Hdr Ext Len
[!] - - srh - segs - eq s e g s_ l e f t SRH Segments Le f t
[!] - - srh - segs - gt s e g s_ l e f t SRH Segments Le f t
[!] - - srh - segs - l t s e g s_ l e f t SRH Segments Le f t
[!] - - srh - l a s t - eq las t_entry SRH Last Entry
[!] - - srh - l a s t - gt la s t_entry SRH Last Entry
[!] - - srh - l a s t - l t l a s t_entry SRH Last Entry
[!] - - srh - tag tag SRH Tag
[!] - - srh - ps id addr [/mask] SRH prev ious SID
[!] - - srh - ns id addr [/mask] SRH next SID
[!] - - srh - l s i d addr [/mask] SRH l a s t SID

Listing 4.5: Options of SEG6 target extension

$ i p6 t ab l e s - j SEG6 -h
SEG6 ta r g e t opt ions :
[- - seg6 - ac t i on ac t i on]
Val id SEG6 ac t i on s :
seg6 - go - next SEG6 go next
seg6 - skip - next SEG6 sk ip next
seg6 - go - l a s t SEG6 go l a s t
seg6 - eval - a rgs SEG6 eva l args

Chapter 4 SRv6-aware network functions 48

Problem message point to the active SID. Such ICMP message can be used to understand

which actions are supported by the firewall.

4.3.4 SERA Performance

Testbed description

In order to verify the correctness of SERA implementation and to evaluate the performance

aspects, we designed a testbed environment that can be easily replicated, shown in Figure 4.4.

For the experiments described in this section, we have deployed the testbed on CloudLab [72,

73]. Cloudlab is a flexible infrastructure dedicated to scientific research on the future of cloud

computing.

Figure 4.4: Performance evaluation testbed.

Our testbed is composed of three identical nodes. Each node is a bare metal server with

Intel Xeon E5-2630 v3 processor with 16 cores clocked at 2.40GHz, 128 GB of RAM and

two Intel 82599ES 10-Gigabit network interface cards. The three nodes are Linux servers

and respectively represent an ingress, NFV and egress nodes of an SRv6 based SFC scenario.

The ingress and egress nodes are running Linux kernel 4.14 [74] and have the 4.14 release

of iproute2 [75] installed. The NFV node runs a compiled Linux kernel 4.15-rc2 with SRv6

enabled and SERA firewall included [68].

The links between any two nodes X and Y are assigned IPv6 addresses in the form

fc00:xy::x/64 and fc00:xy::y/64. For example, the two interfaces of the link between the

ingress node (node 1) and the NFV node (node 2) are assigned the addresses fc00:12::1/64

and fc00:12::2/64. Each node owns an IPv6 prefix to be used for SRv6 local SID alloca-

tion. The prefix is in the form fc00:n::/64, where n represents the node number. For exam-

ple, the NFV node (node 2) owns the IPv6 prefix fc00:2::/64. SRv6 local SIDs are in form

LOC:FUNCT:ARGS, where LOC is the most significant 64-bits, ARGS is rightmost 16-bits

and FUNCT is the 48-bits in between LOC and ARGS.

Chapter 4 SRv6-aware network functions 49

The ingress node is used as a source for SRv6 encapsulated traffic and the NFV node runs the

SERA firewall inside a network namespace. The SERA firewall is instantiated on the SRv6

local SID fc00:2::f1:0/112. We have two destination servers d1 and d2 that are used as traffic

sinks. Each destination server is assigned a prefix in the form fc00:dn::/64, where n is the des-

tination server number. We configured the ingress node with two different SRv6 SFC policies

as shown in Listing 4.6. The first SRv6 SFC policy is used to encapsulate traffic destined to

d1 as SRv6 packets in encap mode, while the second one encapsulates traffic destined to d2

as SRv6 packets in insert mode. The SRv6 SFC policies are used to steer traffic through the

SERA firewall, then to the egress node which removes SR encapsulation from packets as they

leave the SR domain towards destinations (d1 and d2).

Listing 4.6: SRv6 SFC policy

SR SFC p o l i c y - e n c a p mode
$ ip -6 route add f c00 : d1 : : / 6 4 encap seg6 mode \

encap seg s f c00 : 2 : : f 1 : 0 , f c00 : 3 : : d6 dev enp6s0f0

SR SFC p o l i c y - i n s e r t mode
$ ip -6 route add f c00 : d2 : : / 6 4 encap seg6 mode \

i n l i n e s eg s f c00 : 2 : : f 1 : 0 , f c00 : 3 : : d6 dev enp6s0f0

We used iperf [76] to generate traffic on the ingress node. All traffic generated by iperf goes

through the SRv6 SFC policies configured on the ingress node. In order to saturate the CPU

of the NFV node, we used only one processor core for processing all the received packets by

disabling the irqbalance service and assigning the IRQ for all interfaces to be served by the

same CPU core.

Validation

In order to evaluate the performance of our implementation, we generated SRv6 traffic with

a rate of 1 Mpps (106 packets per second). Each packet has a payload size of 1 KB. We

wanted to measure the processing capacity (or throughput) of the firewall in processed packets

per second (pps). We configured iptables with a rule that drops all traffic going from ingress

node towards the destinations. Therefore, the counter of this rule represents the number of SR

packets that the firewall has been able to process.

In order to evaluate the performance for different numbers of rules, we add a sequence of N−1

non-matching rules before the matching rule. In particular, we repeated each experiment for

Chapter 4 SRv6-aware network functions 50

ten different numbers of rules N from 1 to 512. Each value plotted in Figures 4.5-4.9 represents

the average of 30 runs, each run with a duration of 60 seconds. The confidence intervals are

so close to the average that we have not plotted them.

We conducted five experiments as follows:

• Exp. 1: default iptables on plain IP packets.

• Exp. 2: basic mode SERA with SR encap mode.

• Exp. 3: basic mode SERA with SR insert mode.

• Exp. 4: advanced mode SERA with SR encap mode.

• Exp. 5: advanced mode SERA with SR insert mode.

In experiment 1 (default iptables), we used a rule that matches the IPv6 source and destination

address of the received packets. The non-matching rules have the same structure, but different

source and destination addresses. With only one rule configured (N=1), the throughput is 911

Kpps. As expected, the achieved throughput decreases with the number of rules, as shown

in Figure 4.5. This is due to the operations that are executed for each rule. In particular, the

function ip6_packet_match() is called for each rule.

In experiments 2 and 3, we evaluate the throughput of basic mode SERA with the same rules

as the ones in the experiment 1 (matching the source and destination address). In these exper-

iments, we are considering SR encapsulated packets and we set the ip6t_seg6 sysctl to apply

the rule to the original packets. When there is only the matching rule (N = 1) the through-

put is 875 Kpps in encap mode and 873 Kpps in insert mode (Figure 4.5). For larger N, the

degradation of the performance is more evident.

The performance reduction of basic SERA with respect to iptables default is due to the SRv6

pre-processor module.This module has the task to look for the inner IPv6 header in the packet

or for the SRH header in case of insert mode (we have re-used the ipv6_find_hdr function

used by iptables). These operations are computationally expensive and are the reason for

the reduction of the throughput visible in Figure 4.5. According to the design philosophy of

iptables, the SRv6 pre-processor is executed once for each rule, because each rule operates

in a stateless way and no state related to the packet is saved. From a performance point of

view, this is clearly not efficient. Therefore, in order to improve the throughput result shown

in Figure 4.5 we have considered an alternate design which achieves higher performance when

Chapter 4 SRv6-aware network functions 51

a large number of rules may need to be applied to the packets and will be described at the

end of this subsection. The insert mode has lower throughput than the encap mode due to our

implementation of the SRv6 pre-processor block, which detects SRv6 packets in encap mode

before those in insert mode. We decided to add the encap mode detection before the insert

mode since it works also for IPv6-in-IPv6 tunnels.

Figure 4.5: Basic SERA vs. default iptables

In experiments 4 and 5, we evaluated the throughput of advanced mode SERA. We considered

an extended rule that matches source and destination address from both inner and outer packet.

The results represented in Figure 4.6 are similar to the basic mode SERA, the throughput is

857 Kpps in encap mode and 849 Kpps in insert mode when one rule is configured (N = 1)

and the performance degradation with respect to the default iptables is higher when the number

of rules N increases. In Figure 4.7, we compare the throughput of basic and advanced mode

SERA, considering the SR packets in encap mode. Both in the basic and in the advanced mode

the SRv6 pre-processor is executed once for each rule, the advanced mode SERA achieves a

lower throughput because it has to perform two match operations (Inner and Outer) rather than

a single one.

Chapter 4 SRv6-aware network functions 52

Figure 4.6: Advanced SERA vs. default iptables

Figure 4.7: Basic SERA vs. Advanced SERA (encap mode)

Chapter 4 SRv6-aware network functions 53

The throughput reduction when several rules per packet are executed was not caused by prob-

lems in our implementation. To verify, we conducted a new experiment using an already

existing iptables extension, the Routing Header extension. This extension is implemented in

the ip6t_rt kernel module and able to match the common fields of the IPv6 Routing Header,

including the Routing Type field. We run the test for the different numbers of rules N as in

the previous experiments. For matching we used an extended rule that drops packets with

Routing Type 4 (SRH). As shown in Figure 4.8 the obtained throughput perfectly matches

our SERA implementation, confirming that the poor performance is inherently related to the

iptables design.

Figure 4.8: Existing RH iptables extension vs. advanced SERA

Finally, we tackled the issue of performance degradation and we were able to design and

implement a solution focusing on one specific scenario, the basic mode SERA operating on

SRv6 packets encapsulated in encap mode. In this scenario, a set of existing rules needs

to be applied to the original packets that are encapsulated with IPv6-in-IPv6. As shown in

Figure 4.5, there is a performance penalty which becomes significant when the number of

rules is large. We revised the design of our iptables extension so that we can execute the

SRv6 pre-processor once for each packet instead of re-executing it for every rule. The idea

is to modify the pointers that point to the memory area in which the headers of the packet

Chapter 4 SRv6-aware network functions 54

is stored once before executing all the rules and then to properly keep into account these

modifications in the processing of the results of the matching. The throughput measurements

of the revised design are shown in Figure 4.9. Only in case of a single rule, the throughput is

slightly reduced due to the operations that are performed once for the packet. When the number

of rules increases, there is no throughput degradation as for the basic mode SERA, and the

performance approaches the one of the default iptables operating on plain (not encapsulated)

IPv6 packets. This solution is integrated yet in the main line of the Linux. However, the open

source implementation of the solution are available on GitHub to be re-used by the research

community to use.

Figure 4.9: Revised iptables design vs. Basic SERA

4.4 SR-Snort

Snort is an open source, rule-based, network intrusion detection and prevention sys-

tem [64] [77]. It combines the intelligence of several attack detection methods including

signature-based, protocol-based, and anomaly-based to deliver flexible protection from mal-

ware attacks. Snort can also be used as a packet sniffer, similar to tcpdump[66], to read packets

Chapter 4 SRv6-aware network functions 55

from a specific network interface and prints their headers fields. Snort supports three different

run-time modes as follows:

• Sniffer mode: the packet analyzer mode of snort, similar to tcpdump[66], that simply

reads packets off of the network, dissect them and print out the TCP/IP packet headers

in a continuous stream on the console (screen).

• Packet Logger mode: logs the packets to disk for later analysis.

• Network Intrusion Detection System (NIDS) mode: Snort uses its detection engine to

analyze the traffic and detect threats. In this mode Snort can be configured to act in

either Passive (IDS) or Active (IPS) way. In the IDS mode snort gets a copy of each

received packet, analyzes the packet and gives an alert if it detects a threat but without

dropping the packets. In the IPS mode, Snort is inline in the packets data-path by re-

ceiving packets, analyzing them and decides if a packet should be forwarded further or

drop it (if a threat is detected).

The design of Snort was initially relying on direct calls to the libpcap [78] library functions

to acquire network packets. This design was changed in release 2.9 of Snort by introducing

the data acquisition library (DAQ), which provides an abstraction layer between Snort and

the different types of network interfaces [79]. DAQ offers a variety of modes for packets

acquisition that can be chosen at run time. Currently, the DAQ module provides several options

to acquire packets from the network such as Pcap, AFPACKET, NFQ, IPQ, IPFW and Dump.

Figure 4.10 shows the packet processing architecture of Snort. In a Linux environment, the

DAQ module runs on top of the Linux network stack. First, Snort acquires packets from the

DAQ module by using the Acquire module. Next, the Decoder module decodes packets and

builds up the Snort’s main data structure (SFSnortPacket), which contains the information

required to process the packet. Then, the Snort preprocessors plugins (if any) are invoked.

The Preprocessors provide a modular way to easily extend the functionalities of Snort by

developing custom plugins. The Log module logs the packet information. After that, the

Detection module compares the SFSnortPacket against the configured Snort rules. Finally,

the Verdict module returns the action to be performed on the packet (e.g., accept or drop).

SR-Snort is an extended SR-aware version of Snort. It can apply Snort rules to inner packets

of SRv6 encapsulated traffic. The packet processing architecture of SR-Snort is shown in

Figure 4.11. We extended the packet processing architecture of Snort by adding two new

Chapter 4 SRv6-aware network functions 56

Firewall RulesFirewall RulesFirewall RulesFirewall RulesSnort Rules

Acquire

Linux Network Stack

Snort

DAQ (Data Acquisition Library)

PreprocessorsDecoder

Verdict

Log

Detection

Figure 4.10: Snort packet processing architecture.

Firewall RulesFirewall RulesFirewall RulesFirewall RulesSnort Rules

Acquire

SR
preprocessor

Expose
Inner pkt

Linux Network Stack

SR-Snort

DAQ (Data Acquisition Library)

PreprocessorsDecoder

Verdict

Log

Detection

Figure 4.11: SRv6-Snort packet processing architecture.

Chapter 4 SRv6-aware network functions 57

modules: SR preprocessor and Expose Inner pkt. The SR preprocessor module is invoked

immediately after the Decoder to detect SRv6 encapsulated packets, and hence classify packets

into SRv6 and non SRv6. For non SRv6 packets, there is no change in the processing pipeline

describe previously. SRv6 packets include SR encapsulation and to be able to apply Snort

rules to the inner packet, the SRv6 encapsulation (i.e, Outer IPv6 Header and SRH) has to

be removed before invoking the Preprocessors, the Log, and the Detection modules. SRv6

packets are directed to the Expose Inner pkt module, which removes the SRv6 encapsulation

from packets and feeds them to the Snort Decoder to build up a new SFSnortPacket. The new

SFSnortPacket has the information of the inner packet. Accordingly, Snort rules are applied

to the inner packet. SR-Snort can be included in an SRv6 policy, where it uses the same set

of legacy Snort rules and applies them to the exposed inner packet. SR-Snort supports inner

IPv4 and IPv6 packets and can work in either IDS or IPS mode. We implemented SR-Snort

by extending the open source implementation of Snort. We added support for the two new

modules: SR preprocessor and Expose Inner pkt. The implementation is open source and

publicly available on GitHub [80]. SR-Snort design, implementation and demo is published

in [81].

4.5 SR-nftables

nftables is the next generation Linux firewall [65]. It has been merged in the release 3.11 of

the Linux kernel and aims to replace the popular iptables firewall. nftables is built on top

of the Linux netfilter framework and reuses many other existing kernel components such as

the connection tracking system, NAT, userspace queueing and logging subsystem. It provides

a new in-kernel packet classification framework that is based on a network-specific Virtual

Machine (VM) and a new userspace command line tool, named nft.

The firewall rules in nftables are defined through the nft command line tool are compiled

into bytecode in the userspace and then pushed this into the kernel via the nftables API. In

case of firewall rules from the kernel, the bytecode is retrieved and from the kernel and then

decompiled back to its original rules format in userspace. The main issues with iptables were

rules scanning and writing/reading rules the firewall rules between userspace and the kernel.

Rules in iptables are scanned sequentially which has a huge performance impact on packet

throughput as the number of rules increases. Rules manipulation of a given table in iptables

are atomic, which means adding/deleting/updating a rule will require reading the full table

Chapter 4 SRv6-aware network functions 58

from the kernel to userspace, perform the required operation and write again the full table to

the kernel. This model has been proved not to be scalable, hence the need for nftables.

nftables promises a higher performance and better scaling than iptables through the use of

maps and concatenations to structure the ruleset to reduce the number of rules to be scanned.

Another advantage of nftables with respect to iptables is that the intelligence is placed in

userspace which means that adding a new feature does not require any change to the kernel in

most of the cases.

We extended nftables with some SR-awareness features. We added new matching capabili-

ties to allow matching traffic matching SRH information in nftables. The extension allows

matching Last Entry, Flags, Tag and the SID list of SRH. In addition to these new matching

features, we fixed some bugs related to IPv6 routing extension headers processing in nftables.

We contributed our code to the netfilter project and it has been merged in release 0.8.4 of

nftables[82].

4.6 SR-tcpdump

tcpdump is a widely used open source network protocols analyzer [66]. It used to print TCP/IP

headers of packets on a given network interface card. Along with headers print out, it prints

packets time stamps in units of hours, minutes, seconds, and fractions of a second. tcpdump

provides several levels of details for printing packets as well as several filters to specify a

subset of packets. In addition, it can be used to capture packets from a given interface and save

them for later analyzing. The saved packets file are usually in the pcap format.

In the tcpdump implementation there is a dissector for each protocol to print out its header

fields. One of the main issues we have faced while debugging SRv6 traffic is the lack of a

tool to print out the SRH header fields which limited our visibility into the content of SRv6

packets. We implemented a new dissector that prints out the fields of the SRH. The SRH

dissector has been merged in the mainline of the tcpdump implementation[83]. In addition we

also fixed the checksum calculation for SRv6 traffic in tcpdump which has been merged in the

its mainline [84].

Chapter 5

SRv6 performance

5.1 Introduction

SRv6 has been supported across several routers implementations, including open source soft-

ware routers such as the Linux kernel and the Vector Packet Processing (VPP) [21], as well as

hardware implementations from different network vendors [22]. SRv6 has several production

deployment both in service providers networks and data centers [22]. Assessing non-functional

properties of SRv6 such as scalability and fault tolerance, is therefore critical. In order to eval-

uate such properties, the availability of suitable performance evaluation tools is fundamental.

In this work, we have addressed the design of a performance evaluation framework, which is a

very challenging task [85]. In facts, packets are required to be forwarded at an extremely high

rate using a limited CPU budget to process each of them. The IETF has defined the guidelines

to evaluate the performance of forwarding devices [86]. The guidelines cover the test setup,

packets formats and several measurements to be performed such as throughput, latency, jitter,

and frame loss rate.

In this chapter, we present the design of SRPerf, an open source performance evaluation frame-

work for SRv6, which we use to evaluate the performance of SRv6 behaviors of the Linux ker-

nel, the Vector Packet Processor (VPP) [21] and the SREXT module [48]. The work described

in this chapter has also been reflected in [87] [88]. The chapter is structured as follows. We

discuss the principles of designing a performance evaluation framework in Section 5.2. We

describe the design of our performance evaluation framework (SRPerf) in Section 5.3. In

59

Chapter 5 SRv6 performance 60

Section 5.4, we describe the testbed used for the evaluation the performance of the SRv6 be-

haviors. In Section 5.5, we evaluate the performance of SRv6 behaviors in the Linux kernel.

We compare the SRv6 performance in the Linux kernel and the Vector Packet Processor (VPP)

in Section 5.6. Finally, we conclude the chapter with the state of the art of SRv6 performance

in Section 5.7.

5.2 Designing a performance evaluation framework

The RFC 2544 [86] has defined a set of guidelines for network benchmarking including:

• Testbed setup. The benchmarking of a forwarding device requires a tester node with

two NICs used as transmitting and receiving ports as shown in Figure 5.1. The trans-

mitting and receiving ports of the tester node are connected respectively to the receiving

and transmitting ports of the system under test (SUT) node. The tester node runs a traffic

generator that sends packets to the SUT through the transmitting interface, and receives

these packets after they have been forwarded by the SUT. Such setup allows the tester to

assess the performance of the SUT by calculating the packet throughput, loss rate, and

latency.

• Device configurations. The SUT must be configured to forward the received packets

back to the tester node.

• Frame size. A performance test can use different frame sizes from the minimum frame

size up to the maximum transfer unit (MTU). RFC2544 provides a list of frame sizes to

be considered for testing, including 54, 64, 128, 256, 1024, 1518, 2048, and 4472 bytes.

• Line rate. The maximum number of frames per second that can be sent between the

tester and the forwarding device is defined as Line rate, which is calculated by dividing

the link maximum speed by the test frame size (including the transmission overhead).

The transmission overhead is the number of bytes sent on the wire along with each

frame for frame synchronization purposes between the sender and receiver. For example,

considering Ethernet media, these bytes include CRC (4 bytes), preamble and SFD (8

bytes) and inter frame gap (12 bytes). The line rate is used as the maximum reference

value to which one can relate the measured performance.

LineRate[pps] = Linkspeed/(f ramesize+ transmission overhead)

Chapter 5 SRv6 performance 61

• Trial description. Performance experiments require several repetitions of the same test.

Each of these tests is called a trial, and should have a consistent and concrete description

to make sure that the measurements are accurate across the several trials.

• Trial duration. The duration of each trial depends on the forwarding behavior being

tested, and should be long enough to avoid abnormal results.

• Benchmarking measures. The IETF has defined several measures to assess the perfor-

mance of forwarding devices including throughput, latency, jitter, and frame loss rate.

NIC1

NIC2

NIC1

NIC2

Traffic
generator

(TG)
Forwarder

Tester node SUT node

Figure 5.1: Testbed setup for performance evaluation experiments.

5.3 SRPerf

In this section, we illustrate our performance evaluation framework (SRPerf). In particular,

we describe the internal design and the high-level architecture of SRPerf in Section 5.3.1. In

Section 5.3.2, we elaborate on our evaluation methodology and describes the Partial Drop Rate

(PDR) metric used to characterize the performance of a forwarding node. In Section 5.3.3, we

explain the algorithm we developed for finding the PDR of a given forwarding behavior.

5.3.1 SRPerf Architecture

We designed SRPerf following the network benchmarking guidelines defined in RFC

2544 [86]. As shown in Figure 5.2, the architecture of SRPerf is composed of two main

building blocks: the testbed and the Orchestrator. In turn, the testbed is composed by the

Tester node and the System Under Test (SUT) node. These nodes have two network interfaces

cards (NIC) each and are connected back-to-back using both NICs. The Tester sends traffic

towards the SUT through one NIC, which is then received back through the other one, after

being forwarded by the SUT. Accordingly, the Tester can easily perform all different kinds of

throughput measurements as well as round-trip delay and jitter.

Chapter 5 SRv6 performance 62

Figure 5.2: SRPerf architecture.

In our design, we rely on TRex [89] as traffic generator. TRex is an open source traffic gen-

erator based on the data plane development kit (DPDK) [47] for fast packet processing. TRex

can generate layer-4 to layer-7 traffic at a rate up to 10-22 million packets per second (Mpps)

using a single CPU core. It provides per-interface statistics, which are done at hardware level

to provide higher precision. The statistics are used to calculate the various measures including

throughput, latency, and jitter. Automation is another main feature of TRex, which is provided

by the Python client API [90] and the scapy [91] packet manipulation program. As for the

SUT Node, we currently support the Linux kernel and VPP as Forwarder.

We follow a top-down approach to describe the architecture of SRPerf. Two configurations

files (upper part of the Figure 5.2) are provided as input to the Orchestrator. The first file,

Experiments CFG, represents the necessary input to run the experiments. In particular, it

defines: i) the type of experiment (i.e. set of SRv6 behaviors to be tested, type of tests and type

of algorithm); ii) the number of runs; iii) the size and type of the packets to be sent between

the traffic generator and the Forwarder. The second configuration file (Testbed CFG) defines

Chapter 5 SRv6 performance 63

the forwarding engine of the SUT and the information needed to establish a SSH connection

with it. The SRPerf configuration files use a YAML [92] syntax, an example of configuration

is reported in the upper-left part of the Figure 5.2.

The Orchestrator leverages the CFG Parser to extract the configuration parameters and to ini-

tialize the experiment variables. The CFG Parser is a Python module which uses PyYAML

parser [93] to return Python objects to the caller. The Orchestrator is responsible for the au-

tomation of the whole evaluation process. According to the input parameters, it creates an Ex-

periment; specifically, the Orchestrator uses different algorithms for calculating the through-

put. Each algorithm offers an API interface (see Figure 5.2) through which the Orchestrator

can run an Experiment. An example of currently supported throughput measurement algo-

rithms is the Partial Drop Rate (PDR), described in Section 5.3.2. Moreover, the Orchestrator

provides a mapping between the forwarding behaviors to be tested and the type of traffic re-

quired to test each behavior. For example, to test the End behavior, it is necessary to use an

SRv6 packet with an SRH containing a SID list of at least two SIDs and the active SID must

not be the last SID - the type of packet to be replayed during the experiments has to be passed

to the experiment. The Orchestrator controls the TG (deployed in the Tester node) through

the high level abstraction provided by the TG Driver, which translates the calls coming from

the other modules in commands to be executed on the TG. Each driver is a Python wrapper

that can speak native Python APIs or use any other transport mechanism supported by the lan-

guage. For example, the TRex driver includes the Python client of the TRex automation API

[90] that uses as transport mechanism JSON-RPC2 [94] over ZMQ [95]. The Orchestrator

can be deployed on the same node of the TG or in a remote node.

The CFG Manager controls the forwarding engine in the SUT. It is responsible for enforcing

the required configuration in the Forwarder. The Orchestrator provides the mapping between

the forwarding behaviors to be tested and the required configuration of a given forwarding

engine. Hence, the Orchestrator is able to properly instruct the CFG Manager. For each for-

warding engine, we implement a CFG which provides the CFG Manager with the means to

enforce a required configuration. In particular, a CFG is a bash script defining a configuration

procedure for each behavior to be tested. The configuration is applied via the Command Line

Interface (CLI) exposed by the forwarder. For example, to test the End behavior in the Linux

kernel, we implement a bash procedure called end. In this procedure, we leverage the iproute

utility to configure the forwarding engine in the SUT with two FIB entries: 1) an SRv6 SID

with the End behavior; 2) a plain IPv6 FIB entry to forward the packet once the End function

has been performed. The configuration can be as simple as adding a FIB entry to forward the

Chapter 5 SRv6 performance 64

received packets back to the Tester, but also being a more complex configuration that manipu-

lates the incoming packets before forwarding them back to the Tester. The CFG Manager first

pushes the CFG scripts in the SUT and then applies a given configuration running commands

over an SSH connection.

The SRPerf implementation is open source and available at [96]. SRPerf is mostly written

in Python, and provides a toolset to facilitate the deployment of experiments. It offers an

interface for the automatic generation of configuration files. Moreover, it provides differ-

ent configuration scripts to deploy experiments on any commodity hardware. These scripts

include installation and initial configuration of both the TG and the Forwarder. The frame-

work is modular and can be expanded in different ways. It can be extended to support new

traffic generators by simply creating a new driver for each. A new forwarding behavior can

be added by updating the CFG Manager with the configuration required for such behavior.

New algorithms for calculating throughput and delay can be developed and plugged into the

Orchestrator. It can support different Forwarders in the SUT, which only requires the CFG

manager to be updated to recognize them and to implement the related CFG object. In this

thesis, we have first considered the Linux kernel networking as Forwarder and then, leveraging

the framework described above, we added the support for VPP software router.

5.3.2 Evaluation methodology

RFC 1242 [97] defines the Throughput as the maximum rate at which all received packets

are forwarded by the device. It is a standard measure to compare performance of different

network devices. The throughput can be measured in bits per second (bps) as well as pack-

ets per second (pps). The FD.io CSIT report [98] defines No-Drop Rate (NDR) and Partial

Drop Rate (PDR). NDR is the highest throughput achieved without dropping packets, so it

corresponds to the Throughput defined by RFC 1242. PDR is the highest throughput achieved

without dropping traffic more than a pre-defined loss ratio threshold [99]. We use the nota-

tion PDR@X%, where X represents the loss ratio threshold. For example, we can evaluate

PDR@0.1%, PDR@0.5%, PDR@1%. NDR can be described as PDR@0%, i.e. PDR with a

loss threshold of 0%. Considering that throughput can be used with wider meanings, the termi-

nology defined in [98] (e.g. No-Drop Rate) is clearer and it will be used hereafter. Hence, we

can use throughput to refer in general to the output forwarding rate of a device. In this thesis,

we will consider only the Partial Drop Rate (PDR) since it is more generic than the NDR.

Chapter 5 SRv6 performance 65

0 250 500 750 1000 1250 1500 1750 2000
Incoming Packet Rate [kpps]

0

200

400

600

800

1000

1200

1400

Ou
tg

oi
ng

 P
ac

ke
t R

at
e

[k
pp

s]

Net Throughput
Delivery Ratio

0.4

0.5

0.6

0.7

0.8

0.9

1.0

De
liv

er
y

Ra
tio

Figure 5.3: Throughput vs Delivery Ratio

Finding the PDR requires scanning of a broad range of possible traffic rates. In order to explain

the process, let us consider the plain IPv6 forwarding in the Linux kernel. Figure 5.3 plots the

throughput (i.e. the output forwarding rate) and the Delivery Ratio (DR) versus the input rate,

defined and evaluated as follows. We generate traffic at a given PS packet rate [kpps] for a

duration D [s] (usually D = 10s in our experiments). Let the number of packets generated by

the TGR node and incoming to the SUT in an interval of duration D be PIN (Packets INcoming

in the SUT). We define the number of packets transmitted by the SUT (and received by the TG)

as POUT (Packets OUTgoing from the SUT). The throughput T is POUT/D [kpps]. We define

the Delivery Ratio as POUT/PIN = POUT/(PS∗D) = T/PS. For each incoming packet rate we

run a number of test repetition (e.g. 15) to evaluate the average and standard deviation of the

outgoing rate. Hence, the Delivery Ration is the ratio between the input and the output packet

rates of a device, for a given forwarding behavior under analysis. It is 100% for all incoming

data rates less than the device No-Drop Rate. Initially, the throughput increases linearly with

the increase in the incoming rate. This region is often referred to as no drop region, i.e. where

the Delivery Ratio is always 100%. If the forwarding process is CPU-limited, the CPU usage

at the SUT node increases with the increase of incoming traffic rate (i.e. the sending rate of

the Tester).

Chapter 5 SRv6 performance 66

Ideally, the SUT node should be able to forward all received packets until it becomes 100%

CPU saturated. On the other hand, in our experiments with the Linux based SUT we measured

very small but not negligible packet loss ratio in a region where we have an (almost) linear

increase of the Throughput. Therefore, it is better to consider the Partial Drop Rate (PDR) and

we used 0.5% as threshold. The PDR@0.5% is the highest incoming rate at which the Delivery

Ratio is at least 0.995. The usefulness of the PDR is that it allows to characterize a given

configuration of the SUT with a single scalar value, instead of considering the full relation

between Throughput and Incoming rate shown in Figure 5.3. The procedure for finding the

PDR for a given loss threshold is described in the next section.

5.3.3 PDR finder algorithm

Estimating the PDR of a given forwarding behavior is a time consuming process, since it

requires the scanning of a broad range of possible traffic rates. In order to automate the PDR

finding process, we have designed and developed the PDR finder algorithm. It scans a range of

traffic rates with the objective of estimating the PDR value. Alg. 1 reports the pseudo code of

Algorithm 1 PDR finder algorithm

1: minRate← startingT xRate
2: maxRate← lineRate
3: loop
4: // The algorithm terminates when the size of the searching window is less than a thresh-

old
5: if |maxRate−minRate| ≤ ε then
6: return [minRate,maxRate]
7: end if
8: // Evaluate the DR for the window middle point

9: txRate← minRate+maxRate
2

10: rxRate← runExperiment(txRate)

11: deliveryRatio← rxRate
txRate

12: // Halve the size of the searching window
13: if deliveryRatio < pdrT hreshold then
14: maxRate← txRate
15: else
16: minRate← txRate
17: end if
18: end loop

Chapter 5 SRv6 performance 67

the PDR finder algorithm. It performs a logarithmic search in the space of possible solutions

which is upper limited by the line rate of the NICs (see lines 1 and 2). It returns an interval

[a,b] of traffic rates estimating with a given confidence (ε) the PDR value. The maximum

interval distance ε is a configurable option that tunes the algorithm precision. The algorithm

starts to decrease the amplitude of the searching window until such value becomes less than

the minimum interval width ε (line 5). At each iteration (loop starting at line 3), the size of the

searching window is halved and the Delivery Ratio (DR) is evaluated for the window middle

point, which is considered to be the current traffic rate (from line 13 to line 17). If the Delivery

Ratio of the middle point is less than the threshold, the upper bound of the window is set to the

current rate. Otherwise, the lower bound of the searching window is set with the current rate.

This process is iterated until the exit condition is triggered: the algorithm terminates when the

difference between a and b is less or equal than ε (b−a≤ ε).

5.4 Testbed description

We deployed on CloudLab [72] our testbed as illustrated in Figure 5.2. CloudLab is a cloud

infrastructure dedicated to scientific research on the future of cloud computing. Our testbed

is composed of two identical nodes (Tester and SUT). Each of these nodes is a bare metal

server equipped with 16 cores Intel Xeon E5-2630 v3 processor clocked at 2.40GHz and 128

GB of RAM. Each server has two Intel 82599ES 10-Gigabit network interface cards. The

tester is running TRex [89] as a traffic generator and has the TRex Python automation libraries

installed [90]. We used the testbed to evaluate the performance of the SRv6 behaviors both in

the Linux kernel (Section 5.5) and VPP (Section 5.6). The reported results are measured using

a single CPU core. The single CPU tests are used to assess the base forwarding performance

on commodity servers.

or the Linux kernel experiments, the SUT machine is running a vanilla Linux kernel (release

5.2) and has the iproute2 [75] tool (release 5.2) installed. The ethtool (release 5.2) is installed

to configure the NIC hardware features such as hardware offloading [100]. We disabled the

CPU hyper-threading feature of the SUT to measure the performance of single physical core,

since the hyper-threading impacts the forwarding performance of servers [101] [102]. We

tuned the testbed to force all received traffic to be processed by a single (physical) CPU core.

We rely on the receive-side scaling (RSS) [103] and SMP IRQ affinity [104] features. RSS is

responsible for distributing the received packets across several hardware-based receive queues.

The number of receive queues scales with the number of CPU cores. Each receive queue is

Chapter 5 SRv6 performance 68

assigned a CPU core to process its packets. The distribution of packets across the receive

queues is based on a hash function which assigns packets of the same traffic flow to the same

receive queue, hence being processed by the same CPU core. However, we also used the SMP

IRQ affinity feature to assign all the receive queues to the same CPU core to guarantee the sin-

gle CPU processing independently from the hash function feature. We disabled all hardware

offloading capabilities of the NICs to measure the kernel performance independently of the

NIC hardware features. We used the ethtool tool to disable the various NIC offloading features

such as large receive offload (LRO) [105], generic receive offload (GRO) [106], generic seg-

mentation offload (GSO) [107] and checksum offloading. For the VPP experiments, the SUT

machine is running VPP release 19.04. We customized the VPP startup configuration to use

single CPU core and disable all hardware offloading capabilities.

5.5 Performance evaluation of SRv6 in the Linux kernel

In this section, we focus on the SRv6 performance in the Linux kernel. The VPP performance

is covered in Section 5.6. To evaluate the SRv6 performance in the Linux kernel, we performed

a set of experiments that compare the performance of the SRv6 behaviors to the plain IPv6

forwarding. In these experiments we measured the PDR values for the various SRv6 behaviors.

The PDR values (Kpps) and the ratio to the plain IPv6 forwarding (RIPv6) of the experiments

are reported in Table 5.1. The reported PDR values represent the mean value of 10 trials. Each

of these trials has a duration of 10 seconds. The measurements reported in this section are

available on GitHub [108]. We have classified these experiments in five categories as follows:

• Exp1: SRv6 transit behaviors.

• Exp2: SRv6 endpoint behaviors with no decapsulation.

• Exp3: SRv6 endpoint behaviors with decapsulation and lookup in a specific routing

table.

• Exp4: SRv6 endpoint behaviors with decapsulation and cross-connect through an out-

going interface.

• Exp5: SRv6 proxy behaviors.

Chapter 5 SRv6 performance 69

Experiment Behavior PDR/RIPv6 IPv6

Exp1

T.Insert
1039.29

1221.05

85.11%

T.Encaps
978.13
80.1%

T.Encaps.L2
828.89
67.88%

Exp2

End
900.52
73.75%

End.T
979.25
80.19%

End.X
123.13
10.08%

Exp3
End.DT4

1027.00
84.11%

End.DT6
960.06
78.63%

Exp4

End.DX2
1299.15
100.66%

End.DX4
929.02
76.08%

End.DX6
122.76
10.05%

Exp5
End.AD

640.88
52.49%

End.AM
759.57
62.21%

Exp6

End.X 1228.71
(patched) 100.63%
End.DX4 1248.29
(patched) 102.23%
End.DX6 1213.06
(patched) 99.35%

Table 5.1: Performance for SRv6 behaviors in Linux (Kpps).

Chapter 5 SRv6 performance 70

Exp1: SRv6 transit behaviors

In the Exp1 experiment category, we evaluated the performance of the three different SRv6

transit behaviors: T.Insert, T.Encaps, and T.Encaps.L2. The details of SRv6 transit behaviors

processing are explained in Section 2.4.1. The results of the experiment are reported in the

Exp1 section of Table 5.1 and shown in Figure 5.4.

Figure 5.4: Performance measurements for Exp1.

The plain IPv6 in the Linux kernel has forwarding of ≈1221 kpps. To measure the plain IPv6

forwarding we used the main routing table of the Linux kernel and we have only one routing

entry which forwards the packets to the TG in the Tester node. This represents the base-line

forwarding of the IPv6 stack in the Linux kernel. Some performance measurements experi-

ments might considers using routing tables of different sizes or use a routing table different

from the main one. These kind of measurements is outside the scope of this thesis. The T.Insert

shows a forwarding performance of ≈1039 kpps which is 85.11% of the performance of plain

IPv6 forwarding. To understand the reasons for the 14.89% decrease of the forwarding capa-

bility, we recall that the T.Insert processing requires inserting an SRH between the IPv6 and

transport headers of the IPv6 packet. Such insertion operation is done in the Linux kernel as

Chapter 5 SRv6 performance 71

follows: i) extending the head of packet buffer with the space required for SRH insertion; ii)

move (i.e. copy) the IPv6 header bytes to the beginning of the buffer head to create a space be-

tween the IPv6 header and the transport header; iii) write the SRH in the created space between

the IPv6 header and the transport header; iv) copy the first SID in the SID list of the inserted

SRH into the destination address of the IPv6 header; v) forward the packet based on the up-

dated destination address. These extra five operations with respect to plain IPv6 forwarding

are the reason for the introduced degradation of forwarding performance. The SRv6 T.Encaps

has a forwarding performance of ≈978 kpps which is ≈5% less than the SRv6 T.Insert. The

reason for such 5% is that the T.Encaps behavior is required to add to the packet an outer IPv6

header in addition to the SRH. For the T.Encaps.L2 behavior, the SUT node is able to forward

≈828.89 kpps. The performance of the T.Encaps.L2 behavior is≈12% less than the T.Encaps.

We have analysed the motivations for this performance degradation. The root cause is that the

current Linux implementation of T.Encaps.L2 is not a real L2 encapsulation solution. It is not

taking a L2 packet and encapsulating it inside an SRv6 packet. Rather, it is taking a L3 (IPv6)

packet and re-constructing the L2 MAC header before encapsulating the packet with an IPv6

header and SRH. The re-construction of the L2 MAC header is performed at L3 because the L2

information are lost before the packet is processed at L3 by the SRv6 components. For these

reason, the performance degradation of T.Encaps.L2 is much higher than the other behaviors

considered in this experiment. This analysis of the performance of the SRv6 behaviors in the

Linux kernel shows that the current Linux implementation of the SRv6 T.Encaps.L2 behavior

does not follow the pseudocode defined in [34].

Exp2: SRv6 endpoint behaviors with no decapsulation

In the Exp2 experiment category, we evaluated the performance of three SRv6 endpoints be-

haviors: End, End.X, and End.X. These behaviors require the active SID not to be the last

SID in the SRH SID list and do not remove the SRv6 encapsulation (IPv6 header and SRH)

from packets (the reason for calling them "no decapsulation"). These SRv6 behaviors update

the destination address of the received SRv6 packets to the next IPv6 address in the SID list.

After the packet destination address is updated, it is sent to the next hop by doing route lookup

in the main routing table (End), by doing route lookup in a specific routing table (End.T) or

cross-connecting the packet through an outgoing interface towards the destination (End.X).

The results of the experiment are reported in the Exp2 section of Table 5.1. Figure 5.5 shows

the performance of the SRv6 endpoint behaviors with no decapsulation along with the plain

IPv6 forwarding.

Chapter 5 SRv6 performance 72

Figure 5.5: Performance measurements for Exp2.

In case of SRv6 End behavior, the SUT node is able to forward ≈900 kpps which is 73.75%

of performance of the plain IPv6 forwarding. The reason for the 26.25% decrease of perfor-

mance is due the extra processing that SRv6 End behavior performs with respect to plain IPv6

forwarding. These processing operations include: i) parse the SRH to get the next active SID,

which is done using ipv6_find_hdr kernel function; ii) update the destination address of the

packet to be the next active SID; iii) perform IP rules lookup to apply the policy-based routing

(if any, not in our measurement experiment) and get the routing table to be used for routing

lookup; iv) perform the IPv6 lookup using the packet destination into the the main routing

table to find the next hop where the packet has to be sent. The SRv6 End.T behavior has a

forwarding throughput ≈979 kpps, which is ≈7% higher than SRv6 End behavior. The SRv6

End.T behavior performs better than the SRv6 End since the routing table used for the lookup

is defined by the control plane, hence the kernel saves the cost of performing IP rules lookup

that are executed in case of the End behavior. The SRv6 End.X behavior shows a very poor

performance of ≈123 kpps. It corresponds to a 90% drop of the performance compared to

plain IPv6 forwarding. The analysis of the root causes of such poor performance is analysed

and fixed in Section 5.5.1.

Chapter 5 SRv6 performance 73

Exp3: SRv6 endpoint behaviors with decapsulation and lookup in a specific routing table

In the Exp3 experiment category, we evaluated the performance of two SRv6 endpoints behav-

iors: End.DT4 and End.DT6 which remove the SRv6 encapsulation from packets and forward

the inner packet towards the next-hop by doing routing lookup in a specific routing table spec-

ified by the control plane. The results of the experiment are reported in the Exp3 section of

Table 5.1. Figure 5.6 shows the performance of the SRv6 endpoint behaviors measured in

Exp3 along with the plain IPv6 forwarding.

Figure 5.6: Performance measurements for Exp3.

The SRv6 End.DT4 has a forwarding throughput ≈1027 kpps, which is ≈84.11% of the plain

IPv6 forwarding. The reduction of the forwarding rate is due to the processing operations of

SRv6 End.DT4 that include: i) parse the SRv6 packet to determine the size the SRv6 encap-

sulation to be removed from the packet; ii) remove the SRv6 encapsulation from the packet

buffer head; iii) forward the inner packet to the next hop towards the destination by doing

IPv4 routing lookup in the routing table associated the SRv6 behavior. For the forwarding of

the inner IPv4 packet, we used a secondary IPv4 routing table that has one a single routing

entry. The SRv6 End.DT6 has a forwarding throughput of ≈960 kpps, which is around 5.48%

Chapter 5 SRv6 performance 74

less than the End.DT4. The reason for this additional decrease of the throughput is the rout-

ing lookup operation performed after removing the SRv6 encapsulation. SRv6 End.DT6 does

IPv6 routing lookup while End.DT4 does IPv4 routing lookup. The SRv6 End.DT6 behavior

uses a secondary IPv6 routing table that has one a single routing entry to perform lookup for

the inner IPv6 packet. In the Linux kernel, the IPv4 stack has a higher throughput than the

IPv6 stack as witnessed by the results in Section 5.6.2.

Exp4: SRv6 endpoint behaviors with decapsulation and cross-connect through an outgo-
ing interface

In the Exp4 experiment category, we evaluated the performance of three SRv6 endpoints be-

haviors: End.DX2, End.DX4 and End.DX6 which remove the SRv6 encapsulation from pack-

ets and forward the inner packet to the next-hop towards the destination by doing cross-connect

through an outgoing interface to the next hop. The results of the experiment are reported in the

Exp4 section of Table 5.1. Figure 5.7 shows the performance of the SRv6 endpoint behaviors

measured in Exp4 along with the plain IPv6 forwarding.

Figure 5.7: Performance measurements for Exp4.

Chapter 5 SRv6 performance 75

The SRv6 End.DX2 has a forwarding throughput of≈1229 kpps which is≈0.66% higher than

the plain IPv6 forwarding. The reason why SRv6 End.DX2 is performing better than plain

IPv6 is that the kernel does not need to perform Layer-3 lookup once the packet has been

decapsulated. Instead, it pushes the packet directly into the transmit queue of the interface

towards the next-hop. SRv6 End.DX4 has a forwarding throughput≈929 kpps which is around

76% of the plain IPv6 forwarding. This result is unexpected, as End.DX4 pushes the packet

after being decapsulated directly into the transmit queue of the interface towards the next-

hop. We expect to have a performance similar to End.DX2. The End.DX6 shows a very poor

performance of ≈122 kpps with around 90% drop in the performance compared to plain IPv6.

The issues of both End.DX4 and End.DX6 behaviors are analysed and fixed in Section 5.5.1.

Exp5: SRv6 proxy behaviors (implemented in the SREXT module).

In the Exp5 experiment category, we evaluated the performance of two SRv6 proxy behaviors:

End.AD and End.AM, which we have implemented in a Linux kernel module called SREXT.

End.AD and End.AM are used to process SRv6 encapsulation on behalf of SRv6-unaware

VNFs as explained in Section 3.5. The results of the experiment are reported in the Exp5 sec-

tion of Table 5.1. Figure 5.8 shows the performance of the SRv6 endpoint behaviors measured

in Exp5 along with the plain IPv6 forwarding. The End.AD and End.AM are implemented in

SREXT [48] as explained in Section 3.6. In case of End.AD, SREXT is able to forward ≈640

kpps, which is around 52% of the forwarding throughput of plain IPv6. The 48% performance

decrease is due to the CPU intensive operations that the proxy has to perform including: pars-

ing SRv6 packets, remove the SRv6 information and save them to the cache, forward the

packet to VNF, intercepts all packets processed by the VNF, retrieve the SR information from

the cache and apply them to the packets coming from the VNF.

We believe that the achieved 640 kpps throughput is still acceptable as forwarding rate for

VNFs running on commodity hardware. Considering the default IPv6 packet size (1280 bytes),

End.AD can deliver≈6.5 (1280∗8∗640) Gbps to SRv6-unaware VNFs. The End.AM behavior

has a forwarding throughput of ≈759 kpps, which is around 10% higher than End.AD. The

reason is that the End.AM does not remove the SRv6 information from the packet, instead it

only updates the destination address to be the last SID in the SRH SID list.

Chapter 5 SRv6 performance 76

Figure 5.8: Performance measurements for Exp5.

5.5.1 Analysis of the performance issues of SRv6 cross-connect behaviors in
Linux

The End.X and End.DX6 behaviors exhibit poor performances compared to the other SRv6

endpoint behaviors as witnessed by the results reported in Table 5.1, and shown in Figures 5.5

and 5.7. The two behaviors share the same logic, they perform different variations of Layer 3

cross-connect to an adjacency set by the control plane. However, the current implementations

of these two behaviors in Linux are not fully compliant with their specifications in the SRv6

network programming document [34]. The document specifies that SRv6 cross connect be-

haviors are used to cross connect packet to the next hop through a specific interface. However,

the current implementations instead uses a layer3 next-hop, defined by the control plane, to

forward the packet.

In the Linux kernel, when a packet has to be forwarded, the routing subsystem needs to find

a route in the routing tables and returns a structure rt6_info as results of the lookup. When

the next-hop of a given packet is already known, the lookup in the routing tables should be

Chapter 5 SRv6 performance 77

avoided. In facts, caches are widely used to avoid a lookup in the routing tables and further

memory allocations for each packet if the next hop is known. However, in the implementation

of End.X and End.DX6 behaviors, the caches are not used and a structure rt6_info is allocated

for each packet to emulate the lookup process. The memory allocation has a huge performance

impact leading to such performance drop. To fix the poor performance of the cross-connect

behaviors we extended their implementation in the Linux kernel to allow forwarding packets

based on a outgoing interface instead of the next-hop. We implemented a new kernel function,

named seg6_xcon6, which is called by the End.X and End.DX6 to cross-connect the IPv6

packet to a given interface. We extended the same logic to the SRv6 End.DX4 behavior by

implementing another kernel function, named seg6_xcon4, which is called by the End.DX4 to

to cross-connect the IPv4 packet to a given interface. The fixes for the cross-connect behaviors

are open source and available on GitHub [109].

Figure 5.9: Performance measurements for Exp6.

Chapter 5 SRv6 performance 78

In the Exp6 experiment category, we evaluated the performance of the patched Linux kernel

for the End.X, End.DX4 and End.DX6. The results of the experiment are reported in the Exp6

section of Table 5.1 and shown in Figure 5.9. The results show a noticeable improvement in

the cross-connect behaviors. The End.X and End.DX6 can forward ≈1233 and ≈1208 Kpps

which is around 17 times faster with respect to the poor performance reported previously. The

patched kernel has shown as well a performance improvement for the End.DX4 behavior of

around ≈300 Kpps.

5.6 Performance evaluation of SRv6 user-space packet for-
warders.

The concept of implementing user-space software packets forwarders has gained a lot of atten-

tion from both industry and the research community. The idea is to map directly the network

interface card (NIC) into user-space by bypassing the underlying kernel. These techniques

relies on a sort of direct memory access (DMA) ring buffers [110] shared between the NIC

driver and user-space, where the NIC driver writes directly to the ring buffer and the user-

space packet forwarder reads directly from there. Netmap [111] and Data Plane Development

Kit (DPDk) [47] are examples of such kernel by-passing mechanisms. DPDK is currently

the most widely deployed kernel by-passing mechanism, supported in several NICs from var-

ious NIC vendors [112]. Several framework for fast packet I/O are built by leveraging DPDK

such as Virtual Packet processor (VPP) [21] and Network Function Framework for Go (NFF-

GO) [113].

In this section, we evaluate the forwarding performance of VPP. We focus on the SRv6 be-

haviors and compare their performance in VPP and Linux kernel. Firstly, we introduce the

architecture of VPP in Section 5.6.1. Then, we carry out several experiments to evaluate the

VPP forwarding performance (Section 5.6.2).

5.6.1 SRv6 support in VPP

VPP is a open source virtual switch and router that provides a high performance forwarder

that can run on commodity CPUs. VPP is a very flexible and modular framework that allows

the addition of new plugins without the need to change the core kernel code. The packet

processing architecture of VPP consists of graph nodes that are composed together. Each

Chapter 5 SRv6 performance 79

graph node performs one function of the processing stack such as IPv6 packets input (ip6-

input), or IPv6 FIB look-up (ip6-lookup). The composition of the several graph nodes of

VPP are decided at runtime. Figure 5.10 shows an example of VPP packet processing graph

running on top on DPDK. VPP also supports batch packet processing [114], a technique that

allows the processing of a batch of packets by one VPP graph nodes before passing them to

the next node. This technique improves the packets processing performance by leveraging the

CPU instruction cache. The analysis of VPP performance is reported in [98] [114]. The main

challenge to use VPP for high performance forwarding is that the server NIC must support

DPDK. Also, the learning curve for using and writing code in VPP is quite steep which can be

a challenge for some researchers.

Figure 5.10: VPP packet processing architecture

SRv6 capabilities were introduced in the 17.04 release of VPP. Most of the SRv6 endpoint

behaviors defined in [34] are supported (e.g. End, End.X, End.DX2, End.DX4, End.DX6,

End.DT4, End.DX6). These behaviors are grouped by the endpoint function type and imple-

mented in dedicated VPP graph nodes. For example, all the encap functions share one single

graph node, while the End and End.X functions are implemented in another VPP graph node.

The SRv6 graph nodes perform the required SRv6 behaviors as well the IPv6 processing (e.g.

decrement Hop Limit). When an SRv6 segment is instantiated, a new IPv6 FIB entry is created

for the segment address that points to the corresponding VPP graph node. SRv6 segments are

allocated off the global IPv6 address space. An API was added to allow developers create new

SRv6 endpoint behaviors using the VPP plugin framework. In this way, a developer can focus

Chapter 5 SRv6 performance 80

on the actual behavior implementation while the segment instantiation, listing and removal are

performed by the existing SRv6 code. Finally, the SR proxy behaviors were introduced as VPP

plugins in release 18.04 [41].

5.6.2 SRv6 performance: VPP vs Linux kernel

In this section, we compare the forwarding performance of the Linux kernel and VPP. We used

the same testbed described in Section 5.4. We carried out several experiments to compare

the forwarding performance of VPP and the Linux kernel. The results of the experiments

are available on GitHub [108] and reported in Table 5.2, where we show the PDR of each

forwarding behavior (VPP and Linux), the line rate of each experiment, and the ratio versus

the line rate of each forwarding behavior. For each experiment, we computed the line rate,

which depends on the size of the packets as shown in Equation 5.1.

PacketLineRate = LineSpeed/[8∗ (Size+Overhead)] (5.1)

Where LineSpeed is the physical bit rate (e.g. 10∗109 for 10GbE, Size is the frame size at Eth-

ernet level, the Overhead for the Ethernet frames is 24 bytes (4 for CRC, 8 for preamble/SFD

and 12 for the inter frame gap). For a 10GbE interface and an IP packet of 64 bytes, the Size

is 78 bytes and the packet line rate is ≈12255 kpps.

We classified the experiments in different categories as follows:

• Exp7: Plain IP forwarding.

• Exp8: SRv6 transit behaviors.

• Exp9: SRv6 endpoint behaviors with no decapsulation.

• Exp10: SRv6 endpoint behaviors with decapsulation and lookup in a specific routing

table.

• Exp11: SRv6 endpoint behaviors with decapsulation and cross-connect through an out-

going interface.

Chapter 5 SRv6 performance 81

Experiment Behavior VPP Linux Line rate

Exp7
IPv4

12252.63 1430.38

12253
99.99% 11.67%

IPv6
11327.51 1221.05
92.44% 9.97%

Exp8

T.Insert
7387.16 1039.29

8802

83.92% 11.81%

T.Encaps
7709.82 978.13
87.58% 11.11%

T.Encaps.L2
8052.85 828.89
91.17% 9.41%

Exp9

End
6867.59 900.52

6868

99.99% 13.11%

End.T
6867.59 979.25
99.99% 14.25%

End.X
6867.59 1228.71
99.99% 17.89%

Exp10
End.DT4

6867.58 1027.00

6868
99.99% 14.95%

End.DT6
6867.59 960.06
99.99% 13.97%

Exp11

End.DX2
6867.58 1299.15

6868

99.99% 18.92%

End.DX4
6867.59 1248.29
99.99% 18.17%

End.DX6
6867.59 1213.06
99.99% 17.66%

Table 5.2: Performance measurements for VPP vs Linux (Kpps).

Exp7: Plain IP forwarding

In the Exp7 experiment category, we measure the performance of plain IP forwarding for both

the Linux kernel and VPP, which allows to understand the base forwarding performance of the

two forwarding engines prior to measuring the SRv6 performance. We use a test packet of size

64 bytes. In case of IPv4, we used an IPv4 packet composed of IPv4 header (20 bytes), UDP

header (8 bytes) and payload (36 bytes). In case of IPv6, we used an IPv6 packet composed

of IPv6 header (40 bytes), UDP header (8 bytes), and payload (16 bytes). The computed line

rate for Exp7 is ≈12253 kpps. The results are reported in the Exp7 section of Table 5.2, and

shown in Figure 5.11.

Chapter 5 SRv6 performance 82

Figure 5.11: Performance measurements for Exp7.

The experiment has shown the capabilities of VPP to forward packets at much higher rate

compared to the Linux kernel. The reason is that VPP is a specialized software for packet

forwarding while the Linux kernel is a general purpose kernel that can be used for packets

forwarding. In addition, VPP utilizes several forwarding optimization techniques such as batch

packet processing that allows to process a vector of packets at once unlike the Linux kernel

which processes packets in one-by-one manner. In addition, VPP uses DPDK [47] to acquire

packets from the NIC, which allows to bypass all the kernel processing and focus just on

packets processing functions. The results show that the IPv4 stack performs better compared

to the IPv6 stack, in both VPP and Linux. In VPP, the IPv6 stack can forward ≈11327 Kpps

which is 7.5% less than the ≈12252 Kpps that the IPv4 stack can forward. In Linux, the IPv4

stack can forward≈1430 Kpps, while the IPv6 stack can only forward≈1221 Kpps. The IPv4

stack has better performance as it has been used for production long time before IPv6, so it

gets updated and optimized more times with respect to the IPv6 stack.

Chapter 5 SRv6 performance 83

Exp8: SRv6 transit behaviors

In the Exp8 experiment category, we measure the performance of the SRv6 T.Insert, T.Encaps

and T.Encaps.L2 transit behaviors. We use the same IPv6 packet described in Exp7. The

line rate for this experiment is ≈8802 Kpps. The results are reported in the Exp8 section of

Table 5.2, and shown in Figure 5.12.

Figure 5.12: Performance measurements for Exp8.

The results show that the SRv6 transit behaviors introduce an overhead in the packets for-

warding path, reducing the forwarding capability. This is the result of several operations that

the SRv6 transit behaviors have to perform on each received packet as described for the ex-

periment category Exp1. In VPP, the SUT machine is able to forward ≈7378, ≈7709, and

≈8052 Kpps respectively for the T.Insert, T.Encaps, and T.Encaps.L2 behaviors. The T.Insert

behavior has the lowest performance among the SRv6 transit behaviors because it implies in-

serting an SRH between the IPv6 header and transport layer header. This requires two memory

copy operations: the first to move the IPv6 header to create the space required for the SRH

insertion, and the second is to copy the actual SRH into the created space. The other SRv6

transit behaviors does not require the first memory copy operation as the SRv6 encapsulation

Chapter 5 SRv6 performance 84

is copied directly in the memory preceding the packet. In case of Linux, the SUT machine

is able to forward ≈1039, ≈978, and ≈828 Kpps respectively for the T.Insert, T.Encaps, and

T.Encaps.L2 behaviors.

Exp9: SRv6 endpoint behaviors without decapsulation

In the Exp9 experiment category, we evaluate the performance of three SRv6 endpoints behav-

iors: End, End.T, and End.X. These behaviors do not require removing the SRv6 encapsulation

from packets. We use an SRv6 packet comprised of an outer IPv6 header (40 bytes), an SRH

containing two SRv6 SIDs (40 bytes) and inner packet (64 bytes). The SRv6 packet has a total

length of 144 bytes which allows to send packets at line rate of ≈6868 Kpps. The results are

reported in the Exp9 section of Table 5.2, and shown in Figure 5.13.

Figure 5.13: Performance measurements for Exp9.

In VPP, the End, End.T and End.X behaviors are performing at Line rate, which means that

the SUT machine is able to forward all the received packets (≈6868 Kpps). In Linux, the SUT

machine is able to forward ≈900, ≈979 and ≈1228 Kpps respectively for the End, End.T and

End.X behaviors.

Chapter 5 SRv6 performance 85

Exp10: SRv6 endpoint behaviors with decapsulation and lookup in a specific routing
table

In the Exp10 experiment category, we evaluate the performance of two SRv6 endpoints behav-

iors: End.DT4 and End.DT6. These behaviors decapsulate the SRv6 information and perform

routing lookup in a specific routing table associated with the SRv6 SID. We use the same SRv6

packet format used for Exp9. The line rate for this experiment is the same as in Exp9 (≈6868

Kpps) as we use the same packet format. The results are reported in the Exp10 section of

Table 5.2, and shown in Figure 5.14.

Figure 5.14: Performance measurements for Exp10.

In VPP, the End.DT4 and End.DT6 behaviors are performing at line rate. In Linux, the SUT

machine is able to forward ≈1027 and ≈960 Kpps respectively for the End.DT4 and End.DT6

behaviors.

Chapter 5 SRv6 performance 86

Exp11: SRv6 endpoint behaviors with decapsulation and cross-connect through an out-
going interface

In the Exp11 experiment category, we evaluate the performance of three SRv6 endpoints be-

haviors: End.DX2, End.DX4, and End.DX6. These behaviors remove the SRv6 information

and send the inner packet towards the final destination by doing cross-connect to an outgoing

interface associated with the SRv6 SID. We use the same SRv6 packet format of Exp9. The

line rate for this experiment is the same as in Exp9 (≈6868 Kpps). The results are reported in

the Exp11 section of Table 5.2, and shown in Figure 5.15.

Figure 5.15: Performance measurements for Exp11.

In VPP, the End.DX2, End.DX4 and End.DX6 behaviors are performing at Line rate (≈6868

Kpps). In Linux, the SUT machine is able to forward≈1299, ≈1248 and≈1213 Kpps respec-

tively for the End.DX2, End.DX4, and End.DX6 behaviors.

Chapter 5 SRv6 performance 87

5.7 Related work

The era of SDN and NFV results in revolution in the development of software forwarding el-

ements (e.g., virtual routers and switches). These forwarding elements gives a great flexibility

to add new data plane features, at very fast pace, compared to previous hardware based for-

warders. Software forwarders utilizes commodity hardware’s CPU for forwarding operations.

However, the software forwarder performance on commodity CPUs require careful measure-

ment and analysis as such CPUs were not designed specifically for traffic forwarding. In order

to address these needs, several frameworks have been developed. However, none of the works

found in literature have fully addressed the performance of SRv6 data-plane implementation

either in Linux kernel and other software router implementations (e.g., VPP).

DPDK [47] is the state of the art technology for accelerating the virtual forwarding elements.

It bypasses the kernel processing and balances the incoming flow of packets over all the CPU

cores and processes packets by batches to make a better use of the CPU cache. In [115], the

authors presented an analytical queuing model to evaluate the performance of a DPDK-based

vSwitch. The authors studied several characteristics of DPDK such as average queue size,

average sojourn time and loss rate under different arrival loads measured in packet per second

(pps).

In [116], the performance of several virtual switch implementations including Open vSwitch

(OVS) [57], SR-IOV and VPP are investigated. The work focuses on the NFV use-cases

where multiple VNFs run in x86 servers. The work shows the system throughput in a multi-

VNF environment. However, this work considers only IPv4 type of traffic and does not address

SRv6 related performance. In [117], this work has been extended by replacing OVS with OVS-

DPDK [118], which promises to significantly increase the I/O performance for virtualized

network functions. They use DPDK-enabled VNFs and show how OVS-DPDK compares

from a throughput perspective to SR-IOV and VPP as the number of VNFs is increased under

multiple feature configurations. However, the work still considers only plain IPv4 forwarding.

In [114], the authors explain the main architecture principles and components of VPP includ-

ing: vector processing, kernel bypass, packets batch processing, multi-loop, branch-prediction,

function flattening and direct cache access. To validate the high speed forwarding capabilities

of VPP, the authors have reported some performance measurements such as packet forwarding

rate for different vector sizes (i.e, number of packets processed as a single batch), the impact

of multi-loop programming practice on the per-packet processing cost as well the variation of

Chapter 5 SRv6 performance 88

the packet processing rate as a function of the input workload process. However, this work

does not analyse VPP performance for different types of traffic such as IPv6 or SRv6.

Open Platform for NFV Project (OPNFV) [119] is a Linux foundation project which aims to

provide carrier-grade, integrated platform to introduce quickly in the industry new products

and services. The NFVbench [120] toolkit, developed under the OPNFV umbrella, allows de-

velopers, system integrators, testers and customers to measure and assess the L2/L3 forwarding

performance of an NFV-infrastructure solution stack using a black-box approach. The toolkit

is agnostic of the installer, hardware, controller or the network stack used. VSPERF [121] is

another project within the OPNFV specialized for benchmarking virtual switch performance.

VSPERF reported results for both VPP and OVS which are based on daily executed series of

test-cases [122].

The FD.io project has released a technical paper [123] for analysing the performance of several

data plane implementations such as DPDK, VPP, OVS-DPDK. The work reports a comparison

between DPDK L2 forwarding, OVS-DPDK L2 Cross-Connect, VPP L2 Cross-Connect and

VPP IPv4 forwarding in terms of throughput measured in pps. The FD.io Continuous System

Integration and Testing (CSIT) project released a report characterizing VPP performance [98].

The report describes a methodology to test VPP forwarding performance for several test cases

including: L2 forwarding, L3 IPv4 forwarding, L3 IPv6 forwarding as well as some SRv6

behaviors. Regarding the latter, the report shows the performance of SRv6 T.Encaps, End.AD,

End.AM and End.As behaviors in VPP. However, the report does not cover the performance of

the rest of SRv6 transit and endpoint behaviors in VPP. Moreover, the framework is designed

only for VPP and can not be used to measure the performance of other forwarder (e.g., Linux

Kernel).

The performance of some SRv6 behaviors is reported in [35], [36]. The work has mainly

focused on the SRv6 transit behaviors, namely T.Insert and T.Encaps. The reported results

show the overhead introduced by applying the SRv6 encapsulation to IPv6 traffic. However,

the performance reported in this work can be considered out-dated as it considered the SRv6

implementations in Linux kernel 4.12 release. Moreover, the work does not report the per-

formance of any SRv6 endpoint behavior as they were not supported in the kernel by that

time.

Chapter 6

Conclusions

Telecommunication networks are continuously evolving to satisfy the bandwidth and quality-

of-service demands of the growing number of connected users and devices. Technologies such

as Software Defined Networking (SDN) and Network Function Virtualization (NFV) play a

major role in such evolution. They allow networks to offer advanced services beyond mere

packet forwarding. Yet, service function chaining (SFC) is one of the most challenging use-

cases in telecommunication networks. In this thesis, we provided a scalable solution for the

SFC problem, which leverages the IPv6 segment routing (SRv6) architecture. Being SRv6-

based, our approach does not need to maintain per-chain state information in the network

fabric. Our solution is thus more scalable than existing traditional alternatives.

We addressed an important problem faced by researchers when they need to implement a

new networking feature in the Linux kernel. As the available documentation of the Linux

kernel is either outdated or incomplete, we provided a tutorial on Linux kernel networking and

on the SRv6 implementation. The tutorial (Appendix A) is based on tracing and deep walk

through the Linux kernel source code and all available documentation. In this tutorial, we

explained the main data-structures of the Linux kernel IPv6 network stack such IPv6 packet

and IPv6 FIB (Forwarding Information Base) entry. In addition, we discussed the different

sub-systems of the IPv6 protocol stack in the Linux kernel. Also, we presented the Netfilter

framework architecture and how it can be used extend the Linux network stack by attaching

kernel modules. Finally, we provided a detailed discussion of the SRv6 support across the

various releases of the Linux kernel.

89

Chapter 6 Conclusions 90

In Chapter 3, we designed a scalable SRv6-based SFC architecture. We defined both the data

and control planes aspects of our SFC architecture. In this architecture, we differentiated be-

tween two types of VNFs: SRv6-aware and SRv6-unaware VNFs. The SRv6-aware VNFs

can be integrated directly in our SFC architecture. For the SRv6-unaware VNFs, we defined

several SRv6-proxy behaviors as a solution to include these VNFs into our architecture. The

proxy behaviors include static, dynamic, shared-memory and masquerading proxies. We pro-

vided an open source implementation for these proxy behaviors. The implementation is in

the form of Linux kernel module. We also contributed to the work of integrating the proxy

implementation in the mainline of the Linux kernel.

In Chapter 4, we took a forward-looking approach by designing and implementing several

SRv6-aware VNFs. These VNFs can be integrated directly into our SRv6-based SFC archi-

tecture without the need of the SRv6 proxy. They can also perform advanced SRv6 actions

such as skipping the next SID in the segment list, so that it is possible to operate a “branching”

instead of the usual linear exploration of the VNF chain, when some conditions on the packet

are met. We implemented several SRv6-aware VNFs, including SERA, SR-Snort, SR-nftables

and SR-tcpdump. SERA is an SRv6-aware firewall capable of applying normal firewall behav-

iors to packets with SRv6 information. It can also perform stateless SRv6-specific actions on

packets. We provided an open source implementation of SERA which extends the commonly

used iptables firewall. In SR-Snort, we extended the widely deployed open source IDS/IPS

(Snort) to be SRv6-aware. SR-nftables, is another SRv6-aware network function which ex-

tends the next generation Linux firewall (nftables). SR-tcpdump is a tool that allows analyzing

and debugging SRv6 traffic. It extends the tcpdump tool with a dissector for SRv6. The differ-

ent SRv6-aware network functions developed for this thesis allow to build a fully automated

SRv6-based SFC architecture. We contributed our implementations of SRv6-aware network

functions to several open-source projects to be used by network operators as well as other re-

searchers. Several parts of these implementations are currently integrated into the mainline of

the Linux kernel, like the iptables and nftables components and the tcpdump tool.

In Chapter 5, we designed a performance evaluation framework for SRv6 (SRPerf). The main

motivation for designing such framework is that SRv6 has been deployed in several service

providers networks and data-centers. Hence, it is critical to assess non-functional properties of

SRv6 such as scalability and fault tolerance. SRPerf complies with the network benchmarking

guidelines defined in RFC2544. SRPerf supports SRv6 and plain IP forwarding. It can use

Linux networking stack or VPP (Vector Packet Processing) as forwarding engine but new

forwarding engines can be easily added. It reports different throughput measures such as NDR

Chapter 6 Conclusions 91

(No Drop Rate), PDR (Partial Drop Rate). We have used SRPerf to evaluate the performance of

the SRv6 implementation in the Linux kernel and VPP. The framework allowed us to identify

some performance issues of the SRv6 implementation which we have fixed in new revisions.

Appendix A

Linux kernel networking

The Linux kernel is the largest open source software project on the planet [124]. It was origi-

nally developed by Linux Torvalds in 1991 [125]. It has been very successful as an operating

system and a software project [126] [127]. Release 4.13 of the Linux kernel has over 24 mil-

lion lines of code, and has been contributed by around 1681 developers [128]. Linux is the

operating system for over 95% of the top one-million domains and 75% of cloud-enabled enter-

prises [129]. The Linux kernel community provides different learning resources for developers

and users including LWN.net [130], documentation [131], man pages [132], and mailing list

archives [133]. However, the learning curve is very steep due to out-dated and very generic, or

sometimes fragmented information between different learning resources.

In this appendix, we discuss the networking subsystem of the Linux kernel, as it is the plat-

form used for all the implementations throughout the thesis work. The content is based on

tracing and deep walk through the Linux kernel source code and all available documenta-

tion. This appendix is a guide for understanding the SRv6 implementations in Linux kernel.

In Section A.1, we explain the main building blocks of the the networking subsystem of the

Linux kernel focusing on the IPv6 protocol stack. In Section A.2, we introduce the netfilter

framework. Finally, Section A.3 provides the details of SRv6 support in Linux.

A.1 Linux networking subsystem

In this section we explain in detail the various components of the IPv6 protocol stack of the

Linux kernel shown in Figure A.1.

Appendix A Linux kernel networking 93

OutputForward

MulticastInput

Receive

ipv6_rcv()

ip6_rcv_finish()

NF_INET_PRE_ROUTING

Routing

ip6_input()

ip6_input_finish()

ip6_forward()

NF_INET_FORWARD

ip6_mr_input()

ip6mr_forward2_finish()

ip6_mr_forward()

ip6_output()

ip6_finish_output()

Network Driver

NF_INET_LOCAL_IN

ip6_forward_finish()

NF_INET_POST_ROUTING

NF_INET_FORWARD

Local

ip6_local_out()

NF_INET_LOCAL_OUT

Neighbour

__ipv6_neigh_lookup
_noref()

dev_queue_xmit()

neigh_output()

__ip6_local_out()

ip6_mr_forward2()

ip6_finish_output2()

Transport Layer (TCPv6/UDPv6/….)

Routing

Figure A.1: IPv6 protocol stack in the Linux kernel

Appendix A Linux kernel networking 94

A.1.1 IPv6 packet

In the Linux kernel, IPv6 packets just as any other type of packets are represented by struct

sk_buff, which is often referred to as skb [134]. Listing A.1 shows few of the skb structure

members. These fields are used as follows:

Listing A.1: Socket buffer structure

s t r u c t sk_buff {
.
s t r u c t sock * sk ;
s t r u c t net_device *dev ;
unsigned i n t l en ;
unsigned long _skb_refdst ;
__u8 cloned : 1
__u8 encapsu la t i on : 1 ;
__be16 inner_protoco l ;
__u16 inner_transport_header ;
__u16 inner_network_header ;
__u16 inner_mac_header ;
__be16 pro to co l ;
__u16 transport_header ;
__u16 network_header ;
__u16 mac_header ;
sk_buff_data_t t a i l ;
sk_buff_data_t end ;
unsigned char *head ;
unsigned char *data ;
.

} ;

- sk: The socket that owns the skb.

- dev: The network interface associated with the skb. It can be the network interface on

which the packet arrives, or the network interface on which the packet is going to be

sent.

- len: The total length of the IPv6 packet in bytes. It covers the packet headers and

payload.

Appendix A Linux kernel networking 95

- _skb_refdst: A pointer to struct dst_entry that has the route decision for the skb.

The dst_entry has two callback functions (input and output) to handle the skb in both

receive (Rx) and transmit (Tx) path. When the routing subsystem finds a match between

an skb and a routing entry, it sets the _skb_refdst to point to the dst_entry of the

matched routing entry.

- cloned: Buffer might have been cloned.

- encapsulation: A single-bit field indicating whether the values of fields

inner_protocol, inner_mac_header, inner_network_header, and in-

ner_transport_header are valid or not.

- inner_protocol: Internet protocol of the inner packet.

- inner_transport_header: The offset of outer transport header in the skb’s data.

- inner_network_header: The offset of inner network header in the skb’s data.

- inner_mac_header: The offset of the inner mac header in the skb’s data.

- protocol: The internet protocol of outer packet.

- network_header: The offset of the outer network header in the skb’s data.

- mac_header: The offset of the outer mac header in the skb’s data.

- tail: A pointer to the tail room of skb.

- end: A pointer to the end of skb.

- head: A pointer to the head room of skb.

- data: A pointer to the data of skb.

A.1.2 IPv6 FIB entry

The forwarding information base (FIB) is composed of a set of entries, knows as FIB en-

tries, that contain the necessary information to make a forwarding decision on a particular

packet [135]. In the Linux kernel, IPv6 FIB entries are represented by struct rt6_info [136],

as shown in Listing A.2.

Appendix A Linux kernel networking 96

Listing A.2: IPv6 routing entry structure

s t r u c t r t6_in fo {
s t r u c t dst_entry dst ;
s t r u c t f ib6_tab l e * r t6 i_tab l e ;
s t r u c t in6_addr rt6i_gateway ;
. . .
s t r u c t rt6key rt6 i_dst ;
u32 r t 6 i_ f l a g s ;
s t r u c t rt6key r t6 i_s r c ;
. . .
s t r u c t inet6_dev * rt6 i_idev ;
. . .
u32 r t6 i_metr i c ;
u32 rt6i_pmtu ;
. . .
u8 r t 6 i_pro toco l ;

} ;

- dst: A struct dst_entry that holds the route information for those IPv6 packets that

match with the FIB entry.

- rt6i_table: The routing table that contains the FIB entry. When inserting a new route

entry, this member instructs the kernel on which table to insert a new entry.

- rt6i_gateway: The Next hop associated with a FIB entry.

- rt6i_dst: The IPv6 destination prefix of a FIB entry.

- rt6i_flags: The flags of the FIB entry.

- rt6i_src: Source prefix of the FIB entry. Used for source address based routing.

- rt6i_idev: The configuration of the interface associated with the FIB entry.

- rt6i_metric: The metric of the FIB entry.

- rt6i_pmtu: The path MTU associated with the FIB entry.

- rt6i_protocol: The source of the routing update that triggers the addition of the route

entry. It can be an administrator (using iproute2), routing daemon (OSPF, BGP), or it

can the kernel itself. A complete list of possible sources is defined in [137].

Appendix A Linux kernel networking 97

The struct dst_entry [138] is shown in Listing A.3. The input and output callbacks are

used to handle IPv6 packets in the receive (Rx) and transmit (Tx) paths.

Listing A.3: Destination entry structure

s t r u c t dst_entry {
. . .
i n t (* input) (s t r u c t sk_buff *) ;
i n t (* output) (s t r u c t sk_buff *) ;
. . .

} ;

A.1.3 Manipulating IPv6 FIB

In Linux kernel, multiple events can trigger the creation, deletion, or update of an IPv6

FIB entry. Such events can be classified as are either kernel-space or user-space. Kernel-

space events could be (re)configuring an interface, receiving neighbor discovery messages,

receiving ICMP redirect messages. User-space events are usually generated by iproute2 [75]

(iproute2 is a set of user-space programs for interacting with the Linux networking) or a

routing daemon such as OSPF [2] or BGP [1]. Considering the addition of a FIB entry,

user-space added entries are passed to the kernel in the form of netlink [139] new route

(RTM_NEWROUTE) message over a netlink socket. New route messages are handled in the

kernel by rtnetlink_rcv() as shown in Figure A.2. Eventually the inet6_rtm_newroute()

is invoked to add a new IPv6 FIB entry. The FIB configuration is extracted from the netlink

message using rtm_to_fib6_config().

The process is performed in ip6_route_add() by calling ip6_route_info_create() to

create the actual FIB entry. Finally the FIB entry is inserted into the FIB table using

__ip6_ins_rt() function. The struct rt6_info is created by ip6_route_info_create().

In the ip6_route_info_create() the callback functions are assigned. The output callback

for all IPv6 FIB entries is ip6_output(). The input callback is assigned as follows:

- ip6_input(): FIB entries with local address.

- ip6_mc_input(): FIB entries with multicast address.

- ip6_forward(): other FIB entries.

Appendix A Linux kernel networking 98

The routing subsystem is invoked per packet to match the skb against the FIB entries. Once

an skb matches a FIB entry, the _skb_refdst is set to point to the struct dst_entry of the

FIB entry. The Rx and Tx processing is done by invoking the input and output of the assigned

dst_entry.

Kernel Space

User Space

Routing Daemoniproute2

ip -6 route add <prefix> via <nexthop> OSPF IS-IS BGP

Send netlink RTM_NEWROUTE message

rtnetlink_rcv()

inet6_rtm_newroute()

rtm_to_fib6_config()

ip6_route_add()

ip6_route_info_create()

__ip6_ins_rt()

FIB Table

Figure A.2: Adding IPv6 FIB entries from user space

A.1.4 Linux Lightweight tunnels

The infrastructure to support lightweight tunnels (lwtunnel) was introduced in Linux kernel

4.3 [140]. Tunnels allow for scalable flow-based encapsulation (e.g., MPLS). The infrastruc-

ture allows to parse, dump, or store encap information for those lightweight tunnels. The

encap information for such tunnels is associated with FIB entries. Two new callbacks are

defined: lwtunnel_input(), lwtunnel_output(), which respectively override the input and

output callbacks of a FIB entry. These callbacks can apply custom processing to IPv6 packets.

Appendix A Linux kernel networking 99

IP6-in-IP6 tunnels, SRv6 transit behaviors, SRv6 end behaviors are example implementations

that use such callbacks. While lightweight tunnels were implemented with encapsulation in

mind, the overriding input and output callbacks have no obligation to encapsulate the processed

packet at all (e.g., the SRv6 end behaviors that do not encapsulate processed packets).

A.1.5 IPv6 protocol stack in Linux

The IPv6 protocol stack of the Linux kernel can be divided into eight main subsystems; Re-

ceive, Routing, Input, Forward, Multicast, Local, Output and Neighbor. As shown in Fig-

ure A.1, received IPv6 packets are passed by the network driver to the Receive subsystem.

Then the Routing subsystem, based on the destination address or other attributes (e.g., source

address), decides the next subsystem to process the packet. It may hand over the packet to the

Input, Forward, or Multicast subsystem. The Input subsystem handles packets destined to a

local unicast IPv6 address and hence delivers the packets to upper-layer protocols. The For-

ward subsystem handles packets to non-local addresses that should be forwarded (i.e., there

is a route to the destination). The Multicast subsystem processes packets with an IPv6 multi-

cast destination address. Packets processed by Multicast, Forward, and Local (handles locally

generated IPv6 packets) subsystems are passed to the Output subsystem, which performs the

final processing of the packet before handing it over to the Neighbor subsystem. For example,

it checks whether a packet needs to be fragmented. Finally, the Neighbor subsystem pushes

packets to the send queue of the network driver.

Receive subsystem

In the Linux kernel, the default handler for received IPv6 traffic (including multicast) is the

ipv6_rcv() kernel function. It handles received ethernet frames that have an ethertype of

ETH_P_IPV6 (0x86DD). Some sanity checks are performed on the received packet, such

as verifying that the IPv6 header of a packet is not malformed, or that the source address

of a received packet is not a multicast one [141]. In case a Hop-by-Hop options header is

present, it must be the first one and will be parsed by ipv6_parse_hopopts(). After the

packet passes all the sanity checks, the netfilter pre-routing (NF_INET_PRE_ROUTING)

registered callbacks are invoked, if any (Section A.2). If the packet is not dropped in the

pre-routing hook, then the ip6_rcv_finish() is invoked which performs lookup in the routing

subsystem by calling ip6_route_input().

Appendix A Linux kernel networking 100

Routing subsystem

The Routing subsystem, shown in Figure A.3, is invoked by calling ip6_route_input(). It

extracts the flow information (struct flowi6) from skb. Then it drops the dst reference count,

if a reference was taken, by calling skb_dst_drop(). The IPv6 FIB lookup process is invoked

by calling ip6_route_input_lookup(), which calls fib6_rule_lookup(). There are two dif-

ferent implementations of fib6_rule_lookup(): one for policy-based routing (PBR) enabled

kernels [142], and the other for non-PBR enabled kernels [143].

Forward

Multicast

Input
ip6_input()

ip6_forward()

ip6_mr_input()

Routing

ip6_route_input()

skb_dst_drop()

ip6_route_input_lookup()

fib6_rule_lookup()

dst_input()

skb_dst_set()

ip6_rcv_finish()

Figure A.3: Routing subsystem in Linux kernel

- If the kernel has PBR enabled and there are custom IPv6 FIB rules, then the

fib_rules_lookup() is called to match the flow information (struct flowi6) with the

custom defined rules.

- If the kernel has PBR enabled but there are no custom IPv6 FIB rules, then the

ip6_pol_route_input() is called to match flow information (struct flowi6) with en-

tries of the local FIB table.

Appendix A Linux kernel networking 101

- If the kernel has PBR disabled, then the same ip6_pol_route_input() is called to

match flow information (struct flowi6) with entries of the main FIB table.

Once a match is found, the _skb_refdst of skb is set to point to dst (struct dst_entry) of

the matched FIB entry (or FIB rule). Finally, the routing subsystem hands the packet to the

next subsystem by calling the dst_input() function, which in turn invokes the input callback

associated with the packet. As mentioned before, the input callback might be ip6_input(),

ip6_forward(), lwtunnel_input(), or ip6_mc_input().

Input subsystem

The input subsystem handles packets destined to the local machine. The ip6_input()

is called by the Routing subsystem which does nothing but invoke netfilter input

(NF_INET_LOCAL_IN) registered callbacks, if any. IPv6 extension headers are parsed

in the ip6_input_finish() via the appropriate handler for each extension header. For exam-

ple, ipv6_rthdr_rcv() is the handler for IPv6 routing extension header (Next Header=43).

The ip6_input_finish() function continues to parse received IPv6 packets until the transport

layer protocol is found then the associated handler with such protocol is called (e.g., tcpv6,

udpv6, icmpv6). In some cases, packets may be inserted again (re-cycled) into the routing

subsystem (e.g. IPv6 packet with routing extension header).

Forward subsystem

If the routing decision was to forward a packet out, then the packet is passed to Forward-

ing subsystem by calling ip6_forward(). The Forward subsystem has to validate that IPv6

forwarding is enabled by checking the proc file system (procfs) configuration. Procfs is an

interface that allows to configure kernel run-time parameters from user-space using the sysctl

command [144]. IPv6 forwarding can be configured as shown in Listing A.4.

If the kernel is configured to forward IPv6 traffic, then ip6_forward() has to verify that the

packet can be forwarded further (hoplimit > 1) otherwise it just drops the packet and sends

back an ICMPv6 time exceeded message to the source of that packet [145]. It also has to vali-

date that the packet size is less than or equal to path MTU. Then it decrements the hop limit of

the packet and invokes the netfilter forward (NF_INET_FORWARD) registered callbacks,

Appendix A Linux kernel networking 102

Listing A.4: The Linux kernel configuration for IPv6 forwarding

E n a b l e IPv6 f o r w a r d i n g
$ s y s c t l -w net . ipv6 . conf . a l l . fo rwarding=1
D i s a b l e IPv6 f o r w a r d i n g
$ s y s c t l -w net . ipv6 . conf . a l l . fo rwarding=0

if any. Eventually the ip6_forward_finish() passes the packet to the Output subsystem by

invoking the output callback ip6_output() associated with the skb.

Multicast subsystem

The multicast subsystem processes packets with an IPv6 multicast destination address. How-

ever, processing of IPv6 multicast traffic is out of the scope of the thesis.

Local subsystem

Packets created on the local host are sent to the routing subsystem. If the packet destination

address matches an entry in the the IPv6 routing table, then the packet will be handed to

ip6_local_out(). It internally calls the __ip6_local_out() function to set the Payload

Length field of the IPv6 header to be equal to the len field of skb. It also sets the protocol

field value of skb to IPv6 (ETH_P_IPV6). Finally, netfilter (NF_INET_LOCAL_OUT)

registered callbacks are invoked, if any, before handing the packet to the Output subsystem.

Output subsystem

Both forwarded and locally-generated packets are processed by the Output subsystem

before being sent out. The ip6_output() function invokes the netfilter post-routing

(NF_INET_POST_ROUTING) registered callbacks, if any, then passes the skb to the

ip6_finish_output(), which in turn compares the packet size with the MTU. If frag-

mentation is needed, the ip6_fragment() function is called to handle it; otherwise, the

ip6_finish_output2() function is called. The ip6_finish_output2() uses the Neighbour

subsystem to get the layer-two (L2) address of the next hop.

Appendix A Linux kernel networking 103

Neighbor subsystem

The Neighbor subsystem is the packet’s last stop right before the network driver.

The rt6_nexthop() function is used to get the L2 address of the next hop. The

__ipv6_neigh_lookup_noref() searches into the neighbor table for the L2 address cor-

responding to the next hop. If there no entry for the next hop, the neighbour discovery process

is invoked by calling the _neigh_create() function; otherwise, the neigh_output() is in-

voked. Eventually the packet is pushed to the sending queue of the network device driver by

calling dev_queue_xmit().

OutputForward

MulticastInput

Receive

NF_INET_PRE_ROUTING

Routing Subsystem NF_INET_FORWARD

Network Driver

NF_INET_LOCAL_INPUT

NF_INET_POST_ROUTING

NF_INET_FORWARD

Neighbour

Transport Layer (TCPv6/UDPv6/….)

Local

NF_INET_LOCAL_OUT

Figure A.4: Netfilter framework architecture

A.2 Netfilter framework

The netfilter framework is a set of hooks in the packet traversal path through the Linux network

stack as shown in Figure A.4. It allows access to packets at different points [71]. The current

Appendix A Linux kernel networking 104

netfilter implementation provides five different hooks distributed along the receive and transmit

path of packets. The currently supported hooks can be described as follows:

- NF_INET_PRE_ROUTING: the first netfilter hook in the path of received packets.

It allows to access received packets before being processed by the routing subsystem.

- NF_INET_INPUT: allows access to packets that are destined to the local machine. It

is triggered after the routing subsystem decides to send the packet to local application.

- NF_INET_FORWARD: allows access to packets that have to be forwarded to another

host. It is triggered after the routing subsystem decides to send the packet to another

host.

- NF_INET_LOCAL_OUT: handles locally created outbound traffic.

- NF_INET_POST_ROUTING: triggered before handing the packets over to the net-

work interface card.

Kernel modules can register callback functions at any of these hooks. A callback function can

apply different kinds of processing to the packet. Packets can be modified or dropped by the

callback function. Finally, the callback function returns the action to be taken on the packet to

the netfilter hook. The following set of actions are currently supported by the netfilter hooks.

- NF_ACCEPT: instruct the kernel to continue the traversal of the packet normally.

- NF_DROP: stop the packet traversal though the network stack and just drop it.

- NF_STOLEN: notify the kernel that the callback will take care of the packet. The

kernel simply has to forget about the packet.

- NF_QUEUE: instruct the kernel to push the packet into a specific queue (usually for

user-space processing).

- NF_REPEAT: recall again all callback functions registered in the hook to process the

packet one more time.

The netfilter provides a flexible way to add new features to the Linux kernel without the need

to modify or recompile the kernel. The new features are implemented as kernel modules and

then plugged into one of the netfilter hooks. The implementation of several network functions

such as NAT and Firewall totally relies on netfilter framework.

Appendix A Linux kernel networking 105

A.3 SRv6 support

A.3.1 IPv6 routing extension headers processing

An IPv6 packet may carry zero, one, or more extension headers, each identified by the Next

Header field of the preceding header. IPv6 extension headers (except hop-by-hop) are not

examined or processed by any node along a packet’s delivery path until the packet reaches the

node identified in the destination address field of the IPv6 header [8].

In the Linux kernel, IPv6 extension headers are processed by the Input subsystem of the net-

work stack. Except hop-by-hop, there is a protocol handler registered to process each different

extension header. The registered protocol handler for all IPv6 routing extension headers types

is ipv6_rthdr_rcv(). It is called from ip6_input_finish() once an IPv6 routing extension

header is found while parsing an IPv6 packet. Firstly, ipv6_rthdr_rcv() checks the kernel

configuration for processing source routing traffic. The Linux kernel configuration for accept-

ing IPv6 source routing traffic (i.e. IPv6 packets that contains a Routing Header extension) is

shown in Listing A.5.

Listing A.5: The Linux kernel configuration for IPv6 source routing

E n a b l e s o u r c e r o u t i n g g e n e r a l l y
$ s y s c t l -w net . ipv6 . conf . a l l . accept_source_route=1
E n a b l e s o u r c e r o u t i n g on a s p e c i f i c i n t e r f a c e
$ s y s c t l -w net . ipv6 . conf .<dev x>. accept_source_route=1

The default Linux kernel configuration is to drop all source routing packets. Note that this

check is enforced when the IPv6 destination address of the packet is a local address, so that

the received packet is processed by the Input subsystem.

- If the procfs configuration does not accept source routing (i.e., accept_source_route

proc file is set to 0), the kernel drops the packet and replies to the sender with an

ICMP parameter problem (ICMPV6_PARAMPROB) message, pointing to the rout-

ing header.

- If the procfs configuration allows source routing, then the processing is different for ker-

nel before 4.10 or kernel 4.10 and later kernels as explained in Sections A.3.2 and A.3.3

respectively.

Appendix A Linux kernel networking 106

A.3.2 Kernels before 4.10

The source routing support before kernel 4.10 was mainly for routing header type-0, which

was then deprecated. Given that the procfs configuration accepts source routing, the Linux

kernel checks the Segments Left value and the processing will be as follows:

- If Segments Left is zero, the kernel ignores the routing header and proceeds to process

the next header in the packet, whose type is identified by the Next Header field in the

routing header.

- If Segments Left is non-zero, the kernel examines the routing Type field. If the type is

unrecognized, the packet is dropped and an ICMP parameter problem message, pointing

to the unrecognized Routing Type, is sent back to the packet’s source address.

SRH extends the generic routing header defined by the IPv6 specifications, which already

contains the Segments Left field. SRv6 traffic with Segments Left equal to zero is processed

without any problem since the kernel does not look into the routing header. SRv6 traffic with

Segments Left value greater than zero should be processed by the kernel. However, routing

type 4 (SR) is not supported by kernels before 4.10. Accordingly, the kernel drops the packets

and sends back an ICMP parameter problem message, pointing to the SRH type.

A.3.3 Kernel 4.10

The SRv6 capabilities were firstly merged in Linux kernel 4.10 [35]. The SRH is introduced

and defined as struct ipv6_sr_hdr [146] as shown in Listing A.6.

SRv6 endpoint behaviors

The ipv6_srh_rcv() function [147] is added as a default handler for SRv6 traffic. It is called

from ipv6_rthdr_rcv() for packets with routing type 4 (IPV6_SRCRT_TYPE_4). A per-

interface sysctl (seg6_enabled) is added, to accept or deny received SRv6 traffic. If the sysctl

is set, then SRH is processed as described in section 2.3.3, otherwise the packet is dropped

silently. After SRH is processed and the packet IPv6 destination address is updated, the kernel

feeds the packet again to the routing subsystem (ip6_route_input()) to be forwarded based

on the new destination address.

Appendix A Linux kernel networking 107

Listing A.6: IPv6 segment routing header (SRH)

s t r u c t ipv6_sr_hdr {
__u8 nexthdr ;
__u8 hdr len ;
__u8 type ;
__u8 segments_le f t ;
__u8 f i r s t_segment ;
__u8 f l a g s ;
__u16 tag ;
s t r u c t in6_addr segments [0] ;

} ;

The Linux kernel configuration for accepting SRv6 traffic is shown in Listing A.7. The

seg6_enabled sysctl is configured by default to drop SRv6 traffic. All IPv6 addresses as-

signed to an SRv6-enabled interface are treated as local SIDs. In order to add a SID, one has

to add an IPv6 address to an existing interface. The Linux kernel configuration for adding or

deleting local SIDs is shown in Listing A.8.

Listing A.7: The Linux kernel configuration for SRv6 forwarding

E n a b l e r e c e i v i n g SRv6 g e n e r a l l y
$ s y s c t l -w net . ipv6 . conf . a l l . seg6_enabled=1
E n a b l e r e c e i v i n g SRv6 f o r a s p e c i f i c i n t e r f a c e
$ s y s c t l -w net . ipv6 . conf .<dev x>. seg6_enabled=1

Listing A.8: The Linux kernel configuration for configuring SRv6 SIDs

Add ing a new l o c a l s i d
$ ip -6 addr add <IPv6 pr e f i x > <dev x>
D e l e t i n g an e x i s t i n g l o c a l s i d
$ ip -6 addr de l <IPv6 pr e f i x > <dev x>

Listing A.9: Adding an SRv6 SID with transit behavior

$ ip -6 route add <pre f i x > encap seg6 mode \
<encapmode> seg s <segments> dev <device>

Appendix A Linux kernel networking 108

SRv6 transit behaviors

The SRv6 transit behaviors are implemented as Linux lightweight tunnels (seg6_iptunnel).

A new encapsulation type (LWTUNNEL_ENCAP_SEG6) is added. Two new callbacks,

seg6_input() and seg6_output(), are introduced to serve as input and output callbacks for

seg6_iptunnel respectively. The ipv6_push_rthdr4() function was added to support SRH

injection through setsockopt(), which enables the applications to define a per-socket SRH.

The iproute2 user-space utility is extended to support adding an SRv6 SID associated with an

SRv6 transit behavior as shown in Listing A.9, where:

- prefix: IPv6 prefix of the route.

- encapmode: The SRv6 transit behavior. It can be encap to SRv6 T.Encaps behavior. It

can be inline for SRv6 T.Insert behavior.

- segments: comma-separated list of segments (e.g., fc00::1,fc00::2).

- device: any non-loopback device.

An SRv6 SID with transit behavior is added as an IPv6 FIB entry into the kernel main

routing table. It has seg6_input() as an input callback that calls seg6_do_srh() to per-

form the transit behavior corresponding to the matching SID. The transit could be T.Insert

which is implemented in seg6_do_srh_inline(), or T.Encaps which is implemented in

seg6_do_srh_encap(). After the SRH encapsulation is added to a received packet, the kernel

feeds the packet again to the routing subsystem by calling ip6_route_input().

Limitations of SRv6 implementation in kernel 4.10

1. Any local IPv6 address is treated as an End SID. However, the network programming

model states that SIDs should be explicitly enabled as such and associated with a spe-

cific endpoint behavior [34]. Hence, there is no way for the kernel to determine which

endpoint behavior is associated with the active SID.

2. An IPv6 packet is processed by the SRv6 engine only if an SRH is present. However,

the network programming model states that a node may receive a packet with an SRv6

SID in the destination address without an SRH. In such case the packet should still be

processed by the SR engine.

Appendix A Linux kernel networking 109

A.3.4 kernel 4.14

Kernel 4.14 is another milestone for SRv6 support in Linux kernel. A new

set of SRv6 behaviors has been added to the kernel [36]. A new Linux

lightweight tunnel (seg6_local_lwtunnel) as well as a new encapsulation type

(LWTUNNEL_ENCAP_SEG6_LOCAL) have been added to the kernel. The in-

put and output callbacks for the new lightweight tunnel are seg6_local_input() and

seg6_local_output() respectively. The netlink and iproute2 implementation were extended

to support adding a localsid with the newly supported SRv6 behavior.

The supported SRv6 Endpoint behaviors included in kernel 4.14 are: End.X, End.T, End.DX2,

End.DX4, End.DX6, End.DT6, End.B6, End.B6.Encaps. Along with the newly supported

SRv6 Endpoint behaviors, some new transit behaviors have been added including: T.Encaps4

which steers IPv4 packets through an SRv6 policy and T.Encaps.L2 which encapsulates a

packet along with the L2 frame (i.e. the received Ethernet header and its optional VLAN

header) in the payload of the outer IPv6 packet. The seg6_iptunnel implementation has

been extended with a new tunnel mode (SEG6_IPTUN_MODE_L2ENCAP) to support

T.Encaps.L2. In order to support T.Encaps4, seg6_do_srh_encap() was slightly changed to

accept the protocol family of the received packet.

Some generic SRv6 processing functions were added, that may be leveraged by other subsys-

tems processing SRv6 packets including: get_srh() to parse IPv6 packets to get the SRH,

decap_and_validate() to decapsulate and validate SRv6 packets, advance_nextseg() to

advance to the next SID of the SRH and update the destination address of the IPv6 header

with the next SID, and lookup_nexthop() to route the IPv6 packet after SRv6 behav-

iors have been applied. The SRv6 localsid table is supported. The kernel options CON-

FIG_IPV6_MULTIPLE_TABLES and CONFIG_IPV6_SUBTREES needs to be en-

abled. A tutorial of kernel 4.14 advanced configuration is provided in [148].

Limitations of SRv6 implementation in Linux kernel 4.14

1. Some SRv6 Endpoint behaviors are still not supported. For example, none of the SR

proxy behaviors is supported [41].

2. The kernel option CONFIG_IPV6_MULTIPL_TABLES should be enabled, which,

according to the IPv6 route lookup performance on Linux, has a fixed cost of 100 ns per

lookup if the option is enabled [149].

Bibliography

[1] Y. Rekhter, S. Hares, and T. Li, “A Border Gateway Protocol 4 (BGP-4),” RFC 4271,

Jan. 2006. [Online]. Available: https://rfc-editor.org/rfc/rfc4271.txt

[2] J. Moy, “OSPF Version 2,” RFC 2328, Apr. 1998. [Online]. Available: https:

//rfc-editor.org/rfc/rfc2328.txt

[3] “OSI IS-IS Intra-domain Routing Protocol,” RFC 1142, Feb. 1990. [Online]. Available:

https://rfc-editor.org/rfc/rfc1142

[4] M. Shand and S. Bryant, “IP Fast Reroute Framework,” RFC 5714, Jan. 2010. [Online].

Available: https://rfc-editor.org/rfc/rfc5714.txt

[5] S. Previdi, C. Filsfils, B. Decraene, S. Litkowski, M. Horneffer, and R. Shakir, “Source

Packet Routing in Networking (SPRING) Problem Statement and Requirements,” RFC

7855, May 2016. [Online]. Available: https://rfc-editor.org/rfc/rfc7855.txt

[6] K. R. Fall and W. R. Stevens, TCP/IP Illustrated, Volume 1 : The Protocols, Second

Edition. Addison-Wesley Professional Computing Series, Dec 2011, vol. 1.

[7] “Internet Protocol,” RFC 791, Sep. 1981. [Online]. Available: https://rfc-editor.org/rfc/

rfc791.txt

[8] D. S. E. Deering and B. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,”

RFC 8200, Jul. 2017. [Online]. Available: https://rfc-editor.org/rfc/rfc8200.txt

[9] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, and

S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of the

IEEE, vol. 103, no. 1, pp. 14–76, Jan 2015.

[10] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner, “Openflow: Enabling innovation in campus networks,” SIG-

COMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, Mar. 2008.

110

https://rfc-editor.org/rfc/rfc4271.txt
https://rfc-editor.org/rfc/rfc2328.txt
https://rfc-editor.org/rfc/rfc2328.txt
https://rfc-editor.org/rfc/rfc1142
https://rfc-editor.org/rfc/rfc5714.txt
https://rfc-editor.org/rfc/rfc7855.txt
https://rfc-editor.org/rfc/rfc791.txt
https://rfc-editor.org/rfc/rfc791.txt
https://rfc-editor.org/rfc/rfc8200.txt

BIBLIOGRAPHY 111

[11] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtualization: Chal-

lenges and opportunities for innovations,” IEEE Communications Magazine, vol. 53,

no. 2, pp. 90–97, Feb 2015.

[12] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and R. Boutaba, “Network

function virtualization: State-of-the-art and research challenges,” IEEE Communica-

tions Surveys Tutorials, vol. 18, no. 1, pp. 236–262, 2016.

[13] J. M. Halpern and C. Pignataro, “Service Function Chaining (SFC) Architecture,” RFC

7665, Oct. 2015. [Online]. Available: https://rfc-editor.org/rfc/rfc7665.txt

[14] P. Quinn and T. Nadeau, “Problem Statement for Service Function Chaining,” RFC

7498, Apr. 2015. [Online]. Available: https://rfc-editor.org/rfc/rfc7498.txt

[15] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and R. Shakir,

“Segment Routing Architecture,” RFC 8402, Jul. 2018. [Online]. Available:

https://rfc-editor.org/rfc/rfc8402.txt

[16] C. Blogs, “Celebrating Segment Routing’s 5th Birthday,” https://blogs.cisco.com/sp/

celebrating-segment-routings-5th-birthday.

[17] “SRv6 Scientific Papers and Research Publications,” http://www.segment-routing.net/

scientific-papers/.

[18] A. Viswanathan, E. C. Rosen, and R. Callon, “Multiprotocol Label Switching

Architecture,” RFC 3031, Jan. 2001. [Online]. Available: https://rfc-editor.org/rfc/

rfc3031.txt

[19] F. Gont, R. Atkinson, and C. Pignataro, “Recommendations on Filtering of IPv4

Packets Containing IPv4 Options,” RFC 7126, Feb. 2014. [Online]. Available:

https://rfc-editor.org/rfc/rfc7126.txt

[20] G. Neville-Neil, P. Savola, and J. Abley, “Deprecation of Type 0 Routing Headers in

IPv6,” RFC 5095, Dec. 2007. [Online]. Available: https://rfc-editor.org/rfc/rfc5095.txt

[21] “What is VPP ?” https://wiki.fd.io/view/VPP.

[22] S. Matsushima, C. Filsfils, Z. Ali, Z. Li, and K. Rajaraman,

“SRv6 Implementation and Deployment Status,” Internet Engineering Task

Force, Internet-Draft draft-matsushima-spring-srv6-deployment-status-07, Apr. 2020,

https://rfc-editor.org/rfc/rfc7665.txt
https://rfc-editor.org/rfc/rfc7498.txt
https://rfc-editor.org/rfc/rfc8402.txt
https://blogs.cisco.com/sp/celebrating-segment-routings-5th-birthday
https://blogs.cisco.com/sp/celebrating-segment-routings-5th-birthday
http://www.segment-routing.net/scientific-papers/
http://www.segment-routing.net/scientific-papers/
https://rfc-editor.org/rfc/rfc3031.txt
https://rfc-editor.org/rfc/rfc3031.txt
https://rfc-editor.org/rfc/rfc7126.txt
https://rfc-editor.org/rfc/rfc5095.txt
https://wiki.fd.io/view/VPP

BIBLIOGRAPHY 112

work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/

draft-matsushima-spring-srv6-deployment-status-07

[23] C. Filsfils, F. Clad, P. C. Garvia, A. Abdelsalam, S. Salsano, O. Bonaventure, J. Horn,

and J. Liste, “SRv6 interoperability report,” Internet Engineering Task Force, Internet-

Draft draft-filsfils-spring-srv6-interop-02, Mar. 2019, work in Progress. [Online].

Available: https://datatracker.ietf.org/doc/html/draft-filsfils-spring-srv6-interop-02

[24] A. Bashandy, C. Filsfils, S. Previdi, B. Decraene, S. Litkowski, and R. Shakir,

“Segment Routing with the MPLS Data Plane,” RFC 8660, Dec. 2019. [Online].

Available: https://rfc-editor.org/rfc/rfc8660.txt

[25] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois, “The Segment

Routing architecture,” in Global Communications Conference (GLOBECOM), 2015

IEEE. IEEE, 2015, pp. 1–6.

[26] R. Enns, M. Björklund, A. Bierman, and J. Schönwälder, “Network Configuration

Protocol (NETCONF),” RFC 6241, Jun. 2011. [Online]. Available: https:

//rfc-editor.org/rfc/rfc6241.txt

[27] J. Vasseur and J.-L. L. Roux, “Path Computation Element (PCE) Communication

Protocol (PCEP),” RFC 5440, Mar. 2009. [Online]. Available: https://rfc-editor.org/rfc/

rfc5440.txt

[28] “OpenDaylight Project,” https://www.opendaylight.org.

[29] “Internet Assigned Numbers Authority,” https://www.iana.org/.

[30] D. B. Johnson, J. Arkko, and C. E. Perkins, “Mobility Support in IPv6,” RFC 6275,

Jul. 2011. [Online]. Available: https://rfc-editor.org/rfc/rfc6275.txt

[31] C. Filsfils, D. Dukes, S. Previdi, J. Leddy, S. Matsushima, and D. Voyer, “IPv6

Segment Routing Header (SRH),” RFC 8754, Mar. 2020. [Online]. Available:

https://rfc-editor.org/rfc/rfc8754.txt

[32] IANA, “Protocol Numbers,” https://www.iana.org/assignments/protocol-numbers/

protocol-numbers.txt.

[33] Wikipedia, “Type-length-value,” https://en.wikipedia.org/wiki/Type-length-value.

https://datatracker.ietf.org/doc/html/draft-matsushima-spring-srv6-deployment-status-07
https://datatracker.ietf.org/doc/html/draft-matsushima-spring-srv6-deployment-status-07
https://datatracker.ietf.org/doc/html/draft-filsfils-spring-srv6-interop-02
https://rfc-editor.org/rfc/rfc8660.txt
https://rfc-editor.org/rfc/rfc6241.txt
https://rfc-editor.org/rfc/rfc6241.txt
https://rfc-editor.org/rfc/rfc5440.txt
https://rfc-editor.org/rfc/rfc5440.txt
https://www.opendaylight.org
https://www.iana.org/
https://rfc-editor.org/rfc/rfc6275.txt
https://rfc-editor.org/rfc/rfc8754.txt
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.txt
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.txt
https://en.wikipedia.org/wiki/Type-length-value

BIBLIOGRAPHY 113

[34] C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima, and Z. Li, “SRv6 Network

Programming,” Internet Engineering Task Force, Internet-Draft draft-ietf-spring-

srv6-network-programming-16, Jun. 2020, work in Progress. [Online]. Available:

https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-network-programming-16

[35] D. Lebrun and O. Bonaventure, “Implementing IPv6 Segment Routing in the Linux

Kernel,” in Proceedings of the Applied Networking Research Workshop. ACM, 2017,

pp. 35–41.

[36] D. Lebrun, “Reaping the benefits of ipv6 segment routing,” 2017. [Online]. Available:

https://inl.info.ucl.ac.be/system/files/phdthesis-lebrun.pdf

[37] A. Abdelsalam et al., “Implementation of Virtual Network Function chaining through

Segment Routing in a Linux-based NFV infrastructure,” in 2017 IEEE Conference on

Network Softwarization (NetSoft), July 2017, pp. 1–5.

[38] A. Mayer, S. Salsano, P. L. Ventre, A. Abdelsalam, L. Chiaraviglio, and C. Filsfils, “An

Efficient Linux Kernel Implementation of Service Function Chaining for legacy VNFs

based on IPv6 Segment Routing,” in 5th IEEE International Conference on Network

Softwarization (NetSoft 2019). IEEE, June 2019.

[39] P. L. Ventre, S. Salsano, M. Polverini, A. Cianfrani, A. Abdelsalam, C. Filsfils,

P. Camarillo, and F. Clad, “Segment Routing: a Comprehensive Survey of Re-

search Activities, Standardization Efforts and Implementation Results,” arXiv preprint

arXiv:1904.03471v2, 2019.

[40] A. Abdelsalam, “Demo: Chaining of Segment Routing aware and unaware Service

Functions,” in IFIP Networking 2018. IEEE, May 2018.

[41] F. Clad, X. Xu, C. Filsfils, daniel.bernier@bell.ca, C. Li, B. Decraene, S. Ma,

C. Yadlapalli, W. Henderickx, and S. Salsano, “Service Programming with

Segment Routing,” Internet Engineering Task Force, Internet-Draft draft-ietf-spring-

sr-service-programming-02, Mar. 2020, work in Progress. [Online]. Available:

https://datatracker.ietf.org/doc/html/draft-ietf-spring-sr-service-programming-02

[42] B. Thekkedath, Network Functions Virtualization For Dummies. Wiley, 2016.

[43] T. Li, D. Farinacci, S. P. Hanks, D. Meyer, and P. S. Traina, “Generic

Routing Encapsulation (GRE),” RFC 2784, Mar. 2000. [Online]. Available:

https://rfc-editor.org/rfc/rfc2784.txt

https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-network-programming-16
https://inl.info.ucl.ac.be/system/files/phdthesis-lebrun.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-spring-sr-service-programming-02
https://rfc-editor.org/rfc/rfc2784.txt

BIBLIOGRAPHY 114

[44] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell,

and C. Wright, “Virtual eXtensible Local Area Network (VXLAN): A Framework for

Overlaying Virtualized Layer 2 Networks over Layer 3 Networks,” RFC 7348, Aug.

2014. [Online]. Available: https://rfc-editor.org/rfc/rfc7348.txt

[45] H.-W. Braun, “Models of policy based routing,” RFC 1104, Jun. 1989. [Online].

Available: https://rfc-editor.org/rfc/rfc1104.txt

[46] A. Abdelsalam, S. Salsano, F. Clad, P. Camarillo, and C. Filsfils, “SERA: SEgment

Routing Aware Firewall for Service Function Chaining scenarios,” in 2018 IFIP Net-

working Conference (IFIP Networking) and Workshops, May 2018, pp. 46–54.

[47] “DPDK.” [Online]. Available: https://www.dpdk.org/

[48] “srext - a Linux kernel module implementing SRv6 Network Programming model.”

[Online]. Available: https://github.com/netgroup/SRv6-net-prog/

[49] “VirtualBox home page,” http://www.virtualbox.org/.

[50] “Vagrant home page,” http://www.vagrantup.com/.

[51] “SRv6 open source softwares,” https://www.segment-routing.net/open-software/.

[52] Kentaro Ebisawa, “JANOG43 Forefront of SRv6, Open Source

Implementations,” https://www.slideshare.net/kentaroebisawa/

janog43-forefront-of-srv6-open-source-implementations.

[53] “SRNK- An SR proxy for SR-unaware VNFs.” [Online]. Available: https:

//netgroup.github.io/srnk/

[54] “SRNK - kernel implementation.” [Online]. Available: https://github.com/netgroup/

srnk-kernel

[55] “SRNK - iproute2 implementation.” [Online]. Available: https://github.com/netgroup/

srnk-iproute2

[56] P. Quinn, U. Elzur, and C. Pignataro, “Network Service Header (NSH),” RFC 8300,

Jan. 2018. [Online]. Available: https://rfc-editor.org/rfc/rfc8300.txt

[57] “Open vSwitch.” [Online]. Available: http://openvswitch.org

[58] “OpenvSwitch nsh patch.” [Online]. Available: https://github.com/pritesh/ovs/tree/

nsh-v8

https://rfc-editor.org/rfc/rfc7348.txt
https://rfc-editor.org/rfc/rfc1104.txt
https://www.dpdk.org/
https://github.com/netgroup/SRv6-net-prog/
http://www.virtualbox.org/
http://www.vagrantup.com/
https://www.segment-routing.net/open-software/
https://www.slideshare.net/kentaroebisawa/janog43-forefront-of-srv6-open-source-implementations
https://www.slideshare.net/kentaroebisawa/janog43-forefront-of-srv6-open-source-implementations
https://netgroup.github.io/srnk/
https://netgroup.github.io/srnk/
https://github.com/netgroup/srnk-kernel
https://github.com/netgroup/srnk-kernel
https://github.com/netgroup/srnk-iproute2
https://github.com/netgroup/srnk-iproute2
https://rfc-editor.org/rfc/rfc8300.txt
http://openvswitch.org
https://github.com/pritesh/ovs/tree/nsh-v8
https://github.com/pritesh/ovs/tree/nsh-v8

BIBLIOGRAPHY 115

[59] OpenDaylight Project, “Service function chaining,” http://wiki.opendaylight.org/view/

Service_Function_Chaining:Main.

[60] “Neutron home page,” https://wiki.openstack.org/wiki/Neutron.

[61] “OpenStack home page,” https://www.openstack.org/.

[62] “Neutron - Service Function Chaining,” http://wiki.openstack.org/wiki/Neutron/

ServiceInsertionAndChaining.

[63] A. Abdelsalam, S. Salsano, F. Clad, P. Camarillo, and C. Filsfils, “SR-Snort: IPv6

Segment Routing Aware IDS/IPS,” in 2018 IEEE Conference on Network Function Vir-

tualization and Software Defined Networks (NFV-SDN), Nov 2018, pp. 1–2.

[64] “Snort- network intrusion detection & prevention system.” [Online]. Available:

https://www.snort.org

[65] “The netfilter.org "nftables" project.” [Online]. Available: https://netfilter.org/projects/

nftables/

[66] “Tcpdump/libpcap public repository.” [Online]. Available: https://www.tcpdump.org

[67] J. R. Vacca and S. Ellis, Firewalls: Jump start for Network and Systems Administrators.

Elsevier, 2005.

[68] “SERA - SEgment Routing Aware Firewall,” https://github.com/SRouting/SERA.

[69] KernelNewbies, “Linux 4.16 changelog,” https://kernelnewbies.org/Linux_4.16.

[70] “iptables releases. iptables-1.6.2 changelog,” https://netfilter.org/projects/iptables/

downloads.html#iptables-1.6.2, February 2018.

[71] R. Russell and H. Welte, “Linux netfilter Hacking Howto,” http://www.netfilter.org/

documentation/HOWTO/netfilter-hacking-HOWTO.html.

[72] “CloudLab home page,” https://www.cloudlab.us/.

[73] Robert Ricci, Eric Eide, and the CloudLab Team, “Introducing CloudLab: Scientific in-

frastructure for advancing cloud architectures and applications,” ; login:: the magazine

of USENIX & SAGE, vol. 39, no. 6, pp. 36–38, 2014.

[74] “Kernel 4.14 release,” https://kernelnewbies.org/Linux_4.14.

http://wiki.opendaylight.org/view/Service_Function_Chaining:Main
http://wiki.opendaylight.org/view/Service_Function_Chaining:Main
https://wiki.openstack.org/wiki/Neutron
https://www.openstack.org/
http://wiki.openstack.org/wiki/Neutron/ServiceInsertionAndChaining
http://wiki.openstack.org/wiki/Neutron/ServiceInsertionAndChaining
https://www.snort.org
https://netfilter.org/projects/nftables/
https://netfilter.org/projects/nftables/
https://www.tcpdump.org
https://github.com/SRouting/SERA
https://kernelnewbies.org/Linux_4.16
https://netfilter.org/projects/iptables/downloads.html#iptables-1.6.2
https://netfilter.org/projects/iptables/downloads.html#iptables-1.6.2
http://www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO.html
http://www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO.html
https://www.cloudlab.us/
https://kernelnewbies.org/Linux_4.14

BIBLIOGRAPHY 116

[75] “Linux Foundation Wiki - iproute2.” [Online]. Available: https://wiki.linuxfoundation.

org/networking/iproute2

[76] “iPerf - The ultimate speed test tool for TCP, UDP and SCTP.” [Online]. Available:

http://iperf.fr

[77] M. Roesch et al., “Snort: Lightweight intrusion detection for networks.” in Lisa, vol. 99,

no. 1, 1999, pp. 229–238.

[78] “The libpcap interface to various kernel packet capture mechanism.” [Online].

Available: https://github.com/the-tcpdump-group/libpcap

[79] “Snort Users Manual.” [Online]. Available: http://manual-snort-org.

s3-website-us-east-1.amazonaws.com/

[80] “SR-Snort: IPv6 Segment Routing Aware Snort.” [Online]. Available: https:

//github.com/SRouting/SR-Snort

[81] A. Abdelsalam, S. Salsano, F. Clad, P. Camarillo, and C. Filsfils, “SR-Snort: IPv6

Segment Routing Aware IDS/IPS,” in 2018 IEEE Conference on Network Function Vir-

tualization and Software Defined Networks (NFV-SDN), Nov 2018, pp. 1–2.

[82] “nftables 0.8.4 release.” [Online]. Available: https://lwn.net/Articles/753302/

[83] “Tcpdump- Add support for IPv6 routing header type 4.”

[Online]. Available: https://github.com/the-tcpdump-group/tcpdump/commit/

9c33608cb2fb6a64e1b76745efa530a63de08100

[84] “Tcpdump - Fix checksum calculation for IPv6 Segment Routing (SRv6) traf-

fic.” [Online]. Available: https://github.com/the-tcpdump-group/tcpdump/commit/

a87d6a044893dace0534e91d77ce236a101d5794

[85] M. Konstantynowicz et al., “Benchmarking and Analysis of Software Data Planes,”

Dec 2017. [Online]. Available: https://fd.io/wp-content/uploads/sites/34/2018/01/

performance_analysis_sw_data_planes_dec21_2017.pdf

[86] S. Bradner and J. McQuaid, “Benchmarking Methodology for Network Interconnect

Devices,” Internet Requests for Comments, RFC Editor, RFC 2544, March 1999.

[Online]. Available: https://tools.ietf.org/html/rfc2544

https://wiki.linuxfoundation.org/networking/iproute2
https://wiki.linuxfoundation.org/networking/iproute2
http://iperf.fr
https://github.com/the-tcpdump-group/libpcap
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/
https://github.com/SRouting/SR-Snort
https://github.com/SRouting/SR-Snort
https://lwn.net/Articles/753302/
https://github.com/the-tcpdump-group/tcpdump/commit/9c33608cb2fb6a64e1b76745efa530a63de08100
https://github.com/the-tcpdump-group/tcpdump/commit/9c33608cb2fb6a64e1b76745efa530a63de08100
https://github.com/the-tcpdump-group/tcpdump/commit/a87d6a044893dace0534e91d77ce236a101d5794
https://github.com/the-tcpdump-group/tcpdump/commit/a87d6a044893dace0534e91d77ce236a101d5794
https://fd.io/wp-content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf
https://fd.io/wp-content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf
https://tools.ietf.org/html/rfc2544

BIBLIOGRAPHY 117

[87] A. Abdelsalam, P. L. Ventre, A. Mayer, S. Salsano, P. Camarillo, F. Clad, and C. Fils-

fils, “Performance of ipv6 segment routing in linux kernel,” in 2018 14th International

Conference on Network and Service Management (CNSM), Nov 2018, pp. 414–419.

[88] A. Abdelsalam, P. L. Ventre, C. Scarpitta, A. Mayer, S. Salsano, P. Camarillo, F. Clad,

and C. Filsfils, “Srperf: a performance evaluation framework for ipv6 segment routing,”

arXiv preprint arXiv:2001.06182, 2020.

[89] “TRex realistic traffic generator.” [Online]. Available: https://trex-tgn.cisco.com/

[90] “Trex stateless python api.” [Online]. Available: https://trex-tgn.cisco.com/trex/doc/

cp_stl_docs/index.html

[91] “Scapy - packet crafting for python,” https://scapy.net/.

[92] O. Ben-Kiki et al., “Yaml ain’t markup language,” http://www.yaml.org/spec/1.2/spec.

html, 2009.

[93] “PyYAML.” [Online]. Available: https://pyyaml.org

[94] “JSON-RPC.” [Online]. Available: https://www.jsonrpc.org

[95] “ZeroMQ.” [Online]. Available: https://zeromq.org

[96] “SRPerf - Performance Evaluation Framework for Segment Routing.” [Online].

Available: https://github.com/SRouting/SRPerf

[97] S. Bradner, “Benchmarking Terminology for Network Interconnection Devices,”

Internet Requests for Comments, RFC Editor, RFC 1242, July 1991. [Online].

Available: https://tools.ietf.org/html/rfc1242

[98] “CSIT REPORT - The Fast Data I/O Project (FD.io) Continuous System Integration and

Testing (CSIT) project report for CSIT master system testing of VPP-18.04 release.”

[Online]. Available: https://docs.fd.io/csit/master/report/_static/archive/csit_master.pdf

[99] A. Hothan et al., “NFVBench Documentation - Release 1.5.1,” June 2018. [Online].

Available: https://media.readthedocs.org/pdf/opnfv-nfvbench/stable/opnfv-nfvbench.

pdf

[100] “ethtool - Linux man page.” [Online]. Available: https://linux.die.net/man/8/ethtool

[101] A. Shaw, “Multi-queue network interfaces with SMP on Linux,” https://greenhost.nl/

2013/04/10/multi-queue-network-interfaces-with-smp-on-linux/.

https://trex-tgn.cisco.com/
https://trex-tgn.cisco.com/trex/doc/cp_stl_docs/index.html
https://trex-tgn.cisco.com/trex/doc/cp_stl_docs/index.html
https://scapy.net/
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
https://pyyaml.org
https://www.jsonrpc.org
https://zeromq.org
https://github.com/SRouting/SRPerf
https://tools.ietf.org/html/rfc1242
https://docs.fd.io/csit/master/report/_static/archive/csit_master.pdf
https://media.readthedocs.org/pdf/opnfv-nfvbench/stable/opnfv-nfvbench.pdf
https://media.readthedocs.org/pdf/opnfv-nfvbench/stable/opnfv-nfvbench.pdf
https://linux.die.net/man/8/ethtool
https://greenhost.nl/2013/04/10/multi-queue-network-interfaces-with-smp-on-linux/
https://greenhost.nl/2013/04/10/multi-queue-network-interfaces-with-smp-on-linux/

BIBLIOGRAPHY 118

[102] T. Szigeti, D. Zacks, M. Falkner, and S. Arena, Cisco Digital Network Architecture:

Intent-based Networking for the Enterprise. Addison-Wesley Professional Computing

Series, Dec 2011, vol. 1.

[103] L. kernel documentations, “Scaling in the Linux Networking Stack,” https://www.

kernel.org/doc/Documentation/networking/scaling.txt.

[104] ——, “SMP IRQ affinity,” https://www.kernel.org/doc/Documentation/IRQ-affinity.txt.

[105] J. Corbet, “Large receive offload,” https://lwn.net/Articles/243949/.

[106] ——, “Generic receive offload,” https://lwn.net/Articles/358910/.

[107] H. X. Corbet, “GSO: Generic Segmentation Offload,” https://lwn.net/Articles/188489/.

[108] “SRPerf-measurements - The performance measurements of the SRv6 behaviors.”

[Online]. Available: https://github.com/SRouting/SRPerf-measurements

[109] “Linux-SRPerf - Linux kernel for SRPerf,” https://github.com/SRouting/Linux-SRPerf.

[110] S. Seth and M. A. Venkatesulu, Transmission and Reception of Packets. John

Wiley & Sons, Ltd, 2008, ch. 18, pp. 697–722. [Online]. Available: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/9780470377833.ch18

[111] L. Rizzo, “netmap: A novel framework for fast packet i/o,” in 2012 USENIX

Annual Technical Conference (USENIX ATC 12). Boston, MA: USENIX Association,

2012, pp. 101–112. [Online]. Available: https://www.usenix.org/conference/atc12/

technical-sessions/presentation/rizzo

[112] “DPDK - Supported Hardware.” [Online]. Available: https://core.dpdk.org/supported/

[113] “Network Function Framework for Go.” [Online]. Available: https://github.com/

intel-go/nff-go

[114] D. Barach, L. Linguaglossa, D. Marion, P. Pfister, S. Pontarelli, D. Rossi, and J. Tol-

let, “Batched packet processing for high-speed software data plane functions,” in IEEE

INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFO-

COM WKSHPS), April 2018, pp. 1–2.

[115] T. Begin, B. Baynat, G. A. Gallardo, and V. Jardin, “An accurate and efficient model-

ing framework for the performance evaluation of dpdk-based virtual switches,” IEEE

Transactions on Network and Service Management, 2018.

https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/IRQ-affinity.txt
https://lwn.net/Articles/243949/
https://lwn.net/Articles/358910/
https://lwn.net/Articles/188489/
https://github.com/SRouting/SRPerf-measurements
https://github.com/SRouting/Linux-SRPerf
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470377833.ch18
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470377833.ch18
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://core.dpdk.org/supported/
https://github.com/intel-go/nff-go
https://github.com/intel-go/nff-go

BIBLIOGRAPHY 119

[116] N. Pitaev, M. Falkner, A. Leivadeasy, and I. Lambadarisy, “Multi-vnf performance

characterization for virtualized network functions,” in 2017 IEEE Conference on Net-

work Softwarization (NetSoft), July 2017, pp. 1–5.

[117] N. Pitaev, M. Falkner, A. Leivadeas, and I. Lambadaris, “Characterizing the perfor-

mance of concurrent virtualized network functions with ovs-dpdk, fd. io vpp and sr-

iov,” in Proceedings of the 2018 ACM/SPEC International Conference on Performance

Engineering. ACM, 2018, pp. 285–292.

[118] “Open vSwitch with DPDK.” [Online]. Available: http://docs.openvswitch.org/en/

latest/intro/install/dpdk/

[119] “Open Platform for NFV (OPNFV).” [Online]. Available: https://www.opnfv.org/

[120] “NFVbench home.” [Online]. Available: https://wiki.opnfv.org/display/nfvbench/

NFVbench

[121] “VSPERF home,” https://wiki.opnfv.org/display/vsperf/VSperf+Home.

[122] “VSPERF CI Results.” [Online]. Available: https://wiki.opnfv.org/display/vsperf/

VSPERF+CI+Results

[123] Maciek Konstantynowic and Patrick Lu and Shrikant M. Shah, “Benchmarking and

Analysis of Software Data Planes,” https://fd.io/wp-content/uploads/sites/34/2018/01/

performance_analysis_sw_data_planes_dec21_2017.pdf.

[124] “Linux is the largest software development project

on the planet,” https://www.cio.com/article/3069529/linux/

linux-is-the-largest-software-development-project-on-the-planet-greg-kroah-hartman.

html.

[125] Wikipedia, “History of Linux,” https://en.wikipedia.org/wiki/History_of_Linux.

[126] G. Xiao, Z. Zheng, and H. Wang, “Evolution of linux operating system network,” Phys-

ica A: Statistical Mechanics and its Applications, vol. 466, pp. 249–258, 2017.

[127] A. Israeli and D. G. Feitelson, “The linux kernel as a case study in software evolution,”

Journal of Systems and Software, vol. 83, no. 3, pp. 485–501, 2010.

[128] J. Corbet and G. Kroah-Hartman, “2017 Linux Kernel Development Report,” https:

//www.linuxfoundation.org/2017-linux-kernel-report-landing-page/.

http://docs.openvswitch.org/en/latest/intro/install/dpdk/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
https://www.opnfv.org/
https://wiki.opnfv.org/display/nfvbench/NFVbench
https://wiki.opnfv.org/display/nfvbench/NFVbench
https://wiki.opnfv.org/display/vsperf/VSperf+Home
https://wiki.opnfv.org/display/vsperf/VSPERF+CI+Results
https://wiki.opnfv.org/display/vsperf/VSPERF+CI+Results
https://fd.io/wp-content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf
https://fd.io/wp-content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf
https://www.cio.com/article/3069529/linux/linux-is-the-largest-software-development-project-on-the-planet-greg-kroah-hartman.html
https://www.cio.com/article/3069529/linux/linux-is-the-largest-software-development-project-on-the-planet-greg-kroah-hartman.html
https://www.cio.com/article/3069529/linux/linux-is-the-largest-software-development-project-on-the-planet-greg-kroah-hartman.html
https://en.wikipedia.org/wiki/History_of_Linux
https://www.linuxfoundation.org/2017-linux-kernel-report-landing-page/
https://www.linuxfoundation.org/2017-linux-kernel-report-landing-page/

BIBLIOGRAPHY 120

[129] “The Linux Foundation,” https://www.linuxfoundation.org/about/.

[130] “The premier news and information source for the free software community,” https:

//lwn.net/.

[131] “Linux Kernel Documentation,” https://www.kernel.org/doc/.

[132] “The Linux man-pages project,” https://www.kernel.org/doc/man-pages/.

[133] “The kernel mailing list archives,” https://lkml.org/.

[134] “Socket buffer header file,” https://elixir.free-electrons.com/linux/latest/source/include/

linux/skbuff.h.

[135] G. M. Trotter, “Terminology for Forwarding Information Base (FIB) based Router

Performance,” RFC 3222, Dec. 2001. [Online]. Available: https://rfc-editor.org/rfc/

rfc3222.txt

[136] “IPv6 FIB header file,” https://elixir.free-electrons.com/linux/latest/source/include/net/

ip6_fib.h.

[137] “Rtnetlink "rtnetlink.h",” http://elixir.free-electrons.com/linux/latest/source/include/

uapi/linux/rtnetlink.h.

[138] “Protocol independent destination cache definitions,” https://elixir.free-electrons.com/

linux/latest/source/include/net/dst.h.

[139] A. Kleen, H. M. Khosravi, A. Kuznetsov, and J. H. Salim, “Linux Netlink

as an IP Services Protocol,” RFC 3549, Jul. 2003. [Online]. Available: https:

//rfc-editor.org/rfc/rfc3549.txt

[140] “Linux Kernel 4.3,” https://kernelnewbies.org/Linux_4.3.

[141] D. S. E. Deering and B. Hinden, “IP Version 6 Addressing Architecture,” RFC 4291,

Feb. 2006. [Online]. Available: https://rfc-editor.org/rfc/rfc4291.txt

[142] “IPv6 Routing Policy Rules implementation,” http://elixir.free-electrons.com/linux/

latest/source/net/ipv6/fib6_rules.c.

[143] “IPv6 Forwarding Information Database ’fib6’ implementation,” http://elixir.

free-electrons.com/linux/latest/source/net/ipv6/ip6_fib.c.

https://www.linuxfoundation.org/about/
https://lwn.net/
https://lwn.net/
https://www.kernel.org/doc/
https://www.kernel.org/doc/man-pages/
https://lkml.org/
https://elixir.free-electrons.com/linux/latest/source/include/linux/skbuff.h
https://elixir.free-electrons.com/linux/latest/source/include/linux/skbuff.h
https://rfc-editor.org/rfc/rfc3222.txt
https://rfc-editor.org/rfc/rfc3222.txt
https://elixir.free-electrons.com/linux/latest/source/include/net/ip6_fib.h
https://elixir.free-electrons.com/linux/latest/source/include/net/ip6_fib.h
http://elixir.free-electrons.com/linux/latest/source/include/uapi/linux/rtnetlink.h
http://elixir.free-electrons.com/linux/latest/source/include/uapi/linux/rtnetlink.h
https://elixir.free-electrons.com/linux/latest/source/include/net/dst.h
https://elixir.free-electrons.com/linux/latest/source/include/net/dst.h
https://rfc-editor.org/rfc/rfc3549.txt
https://rfc-editor.org/rfc/rfc3549.txt
https://kernelnewbies.org/Linux_4.3
https://rfc-editor.org/rfc/rfc4291.txt
http://elixir.free-electrons.com/linux/latest/source/net/ipv6/fib6_rules.c
http://elixir.free-electrons.com/linux/latest/source/net/ipv6/fib6_rules.c
http://elixir.free-electrons.com/linux/latest/source/net/ipv6/ip6_fib.c
http://elixir.free-electrons.com/linux/latest/source/net/ipv6/ip6_fib.c

BIBLIOGRAPHY 121

[144] “The proc file system,” https://www.kernel.org/doc/Documentation/filesystems/proc.

txt.

[145] M. Gupta and A. Conta, “Internet Control Message Protocol (ICMPv6) for the Internet

Protocol Version 6 (IPv6) Specification,” RFC 4443, Mar. 2006. [Online]. Available:

https://rfc-editor.org/rfc/rfc4443.txt

[146] “SR-IPv6 implementation ’seg6’,” https://elixir.free-electrons.com/linux/latest/source/

include/uapi/linux/seg6.h.

[147] “Extension Header handling for IPv6,” http://elixir.free-electrons.com/linux/latest/

source/net/ipv6/exthdrs.c.

[148] “SRv6 - Advanced Configuration,” http://segment-routing.org/index.php/

Implementation/AdvancedConf.

[149] V. Bernat, “IPv6 route lookup on Linux,” https://vincent.bernat.im/en/blog/

2017-ipv6-route-lookup-linux.

https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://rfc-editor.org/rfc/rfc4443.txt
https://elixir.free-electrons.com/linux/latest/source/include/uapi/linux/seg6.h
https://elixir.free-electrons.com/linux/latest/source/include/uapi/linux/seg6.h
http://elixir.free-electrons.com/linux/latest/source/net/ipv6/exthdrs.c
http://elixir.free-electrons.com/linux/latest/source/net/ipv6/exthdrs.c
http://segment-routing.org/index.php/Implementation/AdvancedConf
http://segment-routing.org/index.php/Implementation/AdvancedConf
https://vincent.bernat.im/en/blog/2017-ipv6-route-lookup-linux
https://vincent.bernat.im/en/blog/2017-ipv6-route-lookup-linux

	Abstract
	Bibliographic notes
	Acknowledgment
	List of Figures
	List of Tables
	1 Introduction
	2 Segment Routing
	2.1 Introduction
	2.2 Segment Routing architecture
	2.2.1 SR-MPLS
	2.2.2 SRv6
	2.2.3 SR control plane

	2.3 Segment Routing Header
	2.3.1 SRH TLVs
	2.3.2 HMAC TLV
	2.3.3 SRH processing

	2.4 SRv6 network programming
	2.4.1 Transit behaviors
	2.4.2 Endpoint behaviors
	2.4.3 SRv6 support in Linux

	3 Service Function Chaining
	3.1 Introduction
	3.2 Service Function Chaining
	3.3 SFC architecture
	3.4 SRv6 based SFC Architecture
	3.4.1 Design principles
	3.4.2 Data plane
	3.4.3 Control plane

	3.5 SRv6-unaware VNFs
	3.5.1 Static proxy
	3.5.2 Dynamic proxy
	3.5.3 Shared-memory proxy
	3.5.4 Masquerading proxy
	3.5.5 Packet processing

	3.6 Implementation
	3.6.1 SREXT
	3.6.2 Integration in the Linux kernel mainline

	3.7 Related work

	4 SRv6-aware network functions
	4.1 Introduction
	4.2 Designing SRv6-aware NFs
	4.3 SERA (SEgment Routing Aware firewall)
	4.3.1 SERA basic mode
	4.3.2 SERA advanced mode
	4.3.3 SERA Implementation
	4.3.4 SERA Performance

	4.4 SR-Snort
	4.5 SR-nftables
	4.6 SR-tcpdump

	5 SRv6 performance
	5.1 Introduction
	5.2 Designing a performance evaluation framework
	5.3 SRPerf
	5.3.1 SRPerf Architecture
	5.3.2 Evaluation methodology
	5.3.3 PDR finder algorithm

	5.4 Testbed description
	5.5 Performance evaluation of SRv6 in the Linux kernel
	5.5.1 Analysis of the performance issues of SRv6 cross-connect behaviors in Linux

	5.6 Performance evaluation of SRv6 user-space packet forwarders.
	5.6.1 SRv6 support in VPP
	5.6.2 SRv6 performance: VPP vs Linux kernel

	5.7 Related work

	6 Conclusions
	A Linux kernel networking
	A.1 Linux networking subsystem
	A.1.1 IPv6 packet
	A.1.2 IPv6 FIB entry
	A.1.3 Manipulating IPv6 FIB
	A.1.4 Linux Lightweight tunnels
	A.1.5 IPv6 protocol stack in Linux

	A.2 Netfilter framework
	A.3 SRv6 support
	A.3.1 IPv6 routing extension headers processing
	A.3.2 Kernels before 4.10
	A.3.3 Kernel 4.10
	A.3.4 kernel 4.14

