
Doctoral Thesis

Centrality maximization in complex
networks

PhD Program in Computer Science: XXIX cycle

Author:

Lorenzo Severini

Supervisors:

Prof. Dr. Pierluigi Crescenzi

Dr. Gianlorenzo D’Angelo

Abstract

One of the main issue in complex networks analysis consists in determining what are the

most important nodes in a network. For this reason, researchers have defined several

centrality indices in order to measure this concept. In several scenarios, having a high

centrality can have a positive impact on the node itself. Hence, in this thesis we study

the problem of determining how much a node can increase its centrality by creating a

limited amount of new edges incident to it. In particular, we cope with the problem of

adopting the best strategy in order to increase the value of two well known centrality

indices namely harmonic centrality (cm-h) and betweenness centrality (cm-b). We show

that cm-h cannot be approximated in polynomial-time within a factor 1− 1
3e in directed

graphs and 1 − 1
15e in undirected graphs, unless P = NP . On the other hand, we

prove that cm-b cannot be approximated in polynomial time within a factor 1 − 1
2e

in both directed and undirected graphs, unless P = NP . We then propose a greedy

approximation algorithm for both problems with an almost tight approximation ratio in

all the cases except for cm-b in undirected networks. We test the performance of our

algorithms on both synthetic and real-world networks and we show that they provide a

good solution in every case. Moreover, we design some heuristics in order to speed up the

computation and run the algorithm on large graphs with millions of nodes and edges. We

also study the problem of improving the ranking according to harmonic centrality (crm-

b) and betweenness centrality (crm-b) by adding a limited amount of edges incident to

a given node and we prove that it does not admit any polynomial-time constant factor

approximation algorithm, unless P = NP . However, we experimentally show that our

greedy algorithms allow a node to reach the top positions in the ranking by adding few

new edges.

Acknowledgements

First of all, I would like to thanks Gianlorenzo D’Angelo for his constant and patient

support and guidance during my PhD. Without his suggestions and his help this thesis

would not have been possible.

Thanks to Pierluigi Crescenzi, for suggesting the topic of my research and for provide

me a lot of useful advices.

I am also grateful to the reviewers of this thesis, Paolo Boldi e David Coudert, for their

careful and precise comments that helped me to improve the quality of this work.

This work could not have been possible without my wonderful GSSI colleagues with

whom I shared joy and pain in this three years.

First and foremost thanks to Yllka for sharing with me most of my research and, above

all, for the great time we spent together in the office and in a lot of (mostly rainy) trips.

Thanks to my former housemate Stefano R. for the long and interesting discussions

on various topics. A special thank to Valentina for having always been a sincere a

trustworthy friend. I am indebted to my many others GSSI colleagues whom shared

with me all the "social life" in L’Aquila: thanks to Catia, Cosimo, Darko, Elena, Emilio,

Feliciano, Gian Luca, Giancarlo, Ivano, Lucia, Matteo C., Matteo D., Marco, Maria,

Marta, Michele, Mora, Stefano D., Venkat.

Thanks to Claudia for make me smile every day.

Finally, thanks to my parents and my sister for their constant and warm encouragement.

iii

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Context and motivations . 1
1.2 Main contributions . 4
1.3 Structure of the thesis . 5

2 Preliminaries 7
2.1 Definitions . 7
2.2 Centrality measures . 8

2.2.1 Geometric measures . 8
2.2.2 Path-based measures . 9
2.2.3 Spectral measures . 9

2.3 Algorithms for computing centrality measures 10
2.4 Maximizing monotone submodular functions 11
2.5 Centrality Maximization problem . 12

2.5.1 Maximum Ranking Improvement problem 13
2.6 Related Works . 13

2.6.1 Eccentricity . 14
2.6.2 PageRank . 16

3 Centrality Maximization problem for harmonic centrality 19
3.1 Problem definition . 19
3.2 Hardness results . 20

3.2.1 Hardness of approximation for directed graphs 20
3.2.2 Hardness of approximation for undirected graphs 22
3.2.3 Improving the position in the ranking 25

3.3 Naive algorithms . 28
3.3.1 Worst case approximation ratio of the naive algorithms 29

3.4 Greedy approximation algorithm . 31
3.4.1 Improving the greedy algorithm running time 33

3.5 Experimental results . 38
3.5.1 Directed graphs . 38

The analysis of the parallel algorithm. 42
3.5.2 Undirected graphs . 43

v

Contents vi

The analysis of the parallel algorithm. 47

4 Centrality Maximization problem for betweenness centrality 55
4.1 Problem definition . 55
4.2 Hardness results . 55

4.2.1 Hardness of approximation for directed graphs 55
4.2.2 Hardness of approximation for undirected graphs 58
4.2.3 Improving the position in the ranking 58

4.3 Naive algorithms . 61
4.3.1 Worst case approximation ratio of the naive algorithms 62

4.4 Greedy approximation algorithm for cm-b 63
4.4.1 Improving the greedy algorithm running time 65
4.4.2 Worst case approximation ratio of the greedy algorithm on undi-

rected graph . 65
4.5 Experimental results . 66

4.5.1 Directed graphs . 67
4.5.2 Undirected graphs . 73

5 Conclusions 77
5.1 Open problems and future research directions 78

Bibliography 88

Chapter 1

Introduction

1.1 Context and motivations

Nowadays, the analysis of complex networks is a very active area of scientific research:

its purpose is to study and model real world systems from different fields like computer

science, physics and biology. When we talk about networks, we usually refer to a set

of multiple items interconnected to each others. We call these items nodes or vertices

and the links between them edges or links [70] and we usually represents a network as

a graph. They are called complex because of the non trivial topological features that

often occurs when modelling real case of systems. World Wide Web, social networks of

acquaintance or other connections between individuals, collaboration networks, organiza-

tional networks and networks of business relations between companies, neural networks,

metabolic networks, food webs, distribution networks such as blood vessels or postal

delivery routes, citation networks, and many other are real world systems that can be

modelled as complex networks.

The study of this area started in the 60s with the analysis of social networks represented

by a set of people or groups of people with some pattern of contacts or interactions

between them. Social scientists provided a set of methods for analysing the structure of

whole social entities as well as a variety of theories explaining the patterns observed in

these structures [93].

One issue in complex networks analysis is to understand how nodes are linked with other

nodes. The famous Milgram experiment [66] introduced the concept of small-world phe-

nomenon or “six-degree of separation” [50]. Milgram asked to random individuals to

forward a letter to a target person living in another town. Each person could not send

directly the mail to the target but he or she can only forward a letter to a single acquain-

tance that he or she knew directly. He noticed that the fraction of letters eventually

1

Introduction 2

arrived to the target took, in median, six steps. Thus, this experiment demonstrated

that short paths are in abundance in social networks (in the case of Milgram experiment,

friendship network). Later on, in order to build a model that captures these features,

Watts and Strogatz [95] developed an algorithm to generate graphs with small-world

properties. However, this model produces an unrealistic degree distribution: it does not

consider the fact that many real networks are scale-free. In general, we define a scale-free

network if the diameter (i.e. the length of longest shortest path) grows proportionally

to the logarithm of the number of the nodes. Then, in 2002, Albert and Barabasi [3]

built another model, based on preferential attachment, that overcome this limitation and

generates scale-free networks.

Another issue in complex network analysis is to understand what are the most important

nodes within the network. For this reason, one of the most studied concepts is that of the

centrality. Informally speaking, a node is considered “central” if it is important within

the network and it is believed that the importance that a node has within a network

reflects, to some extent, the position of the node in the network and, more generally, the

network structure. To mathematically capture these features, several centrality metrics

(also known as centrality measures or centrality indices) are defined in literature. It has

been experimentally observed that being central for a node, according to some centrality

index, has several benefits for the node itself. For example, closeness centrality (the

sum of the length of the shortest paths between a given node and all other nodes in the

graph) is significantly correlated with citation counts of an author in author-citation net-

works [98], betweenness centrality (the number of shortest paths that passing through

a given node divided th number of all possible shortest paths) is correlated with the

efficiency of an airport in transportation networks [62], and both closeness and between-

ness are correlated with the efficiency of an individual to propagate the information in

a social network [61]. Therefore, a lot of research effort has been put on the problems

of efficiently computing the centrality metrics of a given node or determining the most

central nodes of a possibly large network, according to some metric.

A lot of research are done considering centrality indices from a reactive point of view,

designing dynamic algorithms that allow to obtain the centrality of nodes after a network

modification without recomputing all the values from scratch. Indeed, in this thesis, we

look at centrality indices from a proactive point of view, that is we want to modify an

existing network with the aim of improving the centrality of a given node. A network can

be modified by adding or removing edges and nodes. By performing these operations the

centrality of a node can vary with respect to the centrality of other nodes. For example,

by adding edges, the length of the shortest paths between nodes can decrease affecting

the centrality based on the distances between nodes.

Introduction 3

This thesis address the issue of adopting the best “strategy” in order to increase the

centrality value of a node as much as possible. We formulate this question as an opti-

mization problem which consists in finding a limited amount of edges to be added in a

graph in order to maximize the centrality of a given node within a network. We consider

the problem of efficiently determining, for a given vertex v, the set of k edges incident

to v that, when added to the original graph, maximizes the centrality of v, according to

some index. We denote this optimization problem as Centrality Maximization problem

(cm). We force a node to only add edges incident to itself because it is realistic in several

scenarios like collaboration networks in which nodes represent users and links represent

collaboration between users (e.g. authors collaborating in the same papers or actors that

acted in the same movie) or social networks in which links represent friendship relation

between users. In [28] the authors evaluate how the improvement of the harmonic cen-

trality can have a positive effect to the spreading of information of a certain node to all

other vertices in its connected component. To this aim, they perform several experiments

on the Linear Threshold Model, which is a widely studied model in network analysis to

represent the spread of information [49].

Improving the centrality of a given node can have a positive impact also for the link rec-

ommendation problem. The link recommendation task consists in suggesting potential

connections to social network users with the aim of increasing their social circle. Link

recommendations improve the user experience and at the same time help to increase the

connectivity inside the network and speed-up the network growth. Most of the existing

link recommendation methods focus on estimating the likelihood that a link is adopted

by users and recommend links that are likely to be established [5, 60, 80, 99]. Recently,

a new approach has been proposed whose aim is to recommend a set of links that, when

added to the network, increases the centrality of a user in a network. In particular, sug-

gesting links that minimize the expected average distance of a node accurately predicts

the links that will actually appear in the graph [78]. An important step in this approach

is to determine the set of links that, when added to the network, maximizes the specific

centrality measure considered. In our experiments we show that we are able to compute

a set of nodes that highly increases the harmonic centrality in very large collaboration

networks such as those induced by the DBLP and IMDB databases [44, 58]. For these

reasons, in this thesis we study the cm problem for to well-known indices namely har-

monic centrality and betweenness centrality giving both theoretical and experimental

results. We study the computational complexity of the problems, we design approxima-

tion algorithms and we experimentally evaluate the performance on both synthetic and

real networks. In the next sections we state the main contributions and we show in detail

the structure of the document.

Introduction 4

1.2 Main contributions

In this thesis we tackle the problem of maximizing the centrality of a predefined node

adding a certain amount of edges incident to it. In particular, we focus on two well-

known centrality indices namely harmonic centrality (cm-h problem) and betweenness

centrality (cm-b problem): for both problems, we study the computational complexity

and we design several algorithms to solve them exactly and approximately. Moreover,

we evaluate the performance of these algorithms on both synthetic and real-world graphs

and we design and implement some heuristics in order to analyse large networks. In the

following we list the main contributions of this thesis.

• We prove that cm-h problem is hard to be approximated within an approximation

factor greater than 1 − 1
15e in the undirected graph case (respectively, 1 − 1

3e in

the directed case). We analyse different natural algorithms (e.g the algorithm

that adds edges to a set of nodes having highest degree) and we show that the

only approach with bounded approximation factor is the greedy one: it yields a(
1− 1

e

)
-approximation algorithm in both undirected and directed cases.

• For cm-b problem, we prove that it is hard to be approximated within an ap-

proximation factor greater than 1 − 1
2e in both directed and undirected graphs.

We analyse the same natural algorithms studied in the cm-h problem case and

we show that the greedy approach yields a
(
1− 1

e

)
-approximation algorithm in

directed graphs.

• We study a similar problem where the goal is to improve the position in the ranking

induced by the centrality metric, namely Centrality Ranking Maximization problem

(crm), and we prove that it is NP-hard and cannot be approximated with any

constant factor smaller than 1.

• For both cm problems, we present several experiments in order to evaluate how

good is the approximation factor achieved by the greedy algorithm in the case of

relatively small randomly generated graphs. We notice that the greedy algorithm

seems to perform much better than the theoretical results, since it often computes

an optimal solution and, in any case, it achieves an approximation factor signifi-

cantly larger than the theoretical one.

• We compare the solution obtained by the greedy algorithm with the ones obtained

by three natural algorithms. We show that the greedy approach performs much

better than the other heuristics in terms of value and ranking obtained. Moreover,

despite we proved that for cm-b on undirected case the greedy algorithm can

Introduction 5

have an unbounded approximation ratio, it performs by far better than the other

methods.

• Finally, we perform several experiments of the greedy approach applied to real-

world collaboration, citation and transportation networks. By applying the greedy

algorithm to real-world networks we observe that by adding very few edges a vertex

can drastically increase its centrality measure and, hence, its ranking.

1.3 Structure of the thesis

In Chapter 2 we introduce the main definitions and we describe some preliminary results

that will be used in the rest of the thesis. We formally define cm problem and the similar

problem where the aim is to maximize the ranking instead of the value. Then, we focus

on the main results in the literature on the problem of improving graph properties and we

describe in detail the results on Centrality Maximization on PageRank and Eccentricity.

In the following chapters we focus on cm problem for harmonic centrality (cm-h) and

betweenness centrality (cm-b). In Chapter 3 we study the computational complexity of

the cm-h problem and of similar problem where the aim is to optimize the ranking instead

of the value (crm-h), we propose several heuristics and we experimentally evaluate the

quality of the solution and the performance on both synthetic and real network. In

Chapter 4 we do a similar theoretical and experimental study for the cm-b and crm-

b problems. Finally, in Chapter 5, we recapitulate the results achieved in this thesis

on cm and we propose several future research directions. All the results on Centrality

Maximization described in this thesis are summarized in Table 1.1.

Introduction 6

Centrality Graph Inapproximability Approximation

index type Upper/Lower bound algorithms

Harmonic Undirected 1− 1
15e 1− 1

e

[27, 28] p. 22, Theorem 3.2 p. 33, Theorem 3.6

Chapter 3
Directed 1− 1

3e 1− 1
e

p. 20, Theorem 3.1 p. 33, Theorem 3.6

Betweenness Undirected 1− 1
2e OPEN

[12, 30] p. 58, Theorem 4.2

Chapter 4
Directed 1− 1

2e 1− 1
e

p. 56, Theorem 4.1 p. 65, Theorem 4.5

Eccentricity Undirected 3
2

2 + 1
OPT

1 + ε, with O(k log |V |) edges

[32, 79] p. 15, Theorem 2.2 p. 16, Theorems 2.5, 2.6

Chapter 2 Directed OPEN OPEN

Page-rank Undirected OPEN OPEN

[4, 71] Directed NO FPTAS
(
1− α2

) (
1− 1

e

)
Chapter 2 p. 16, Theorem 2.7 p. 17, Theorem 2.9

Table 1.1: Summary of results on cm problem. In bold our results presented in this
thesis.

Chapter 2

Preliminaries

In this section, we give some graph theory definitions and we classify and describe the

main centrality metrics. Then, we will survey the main exact and approximated algo-

rithms to compute them. Later on, we will focus on a result on maximization of a class

of functions that will be used in the rest of the thesis and we will define the Centrality

Maximization problem (cm) and the Centrality Ranking Maximization problem (crm).

Finally, we will describe the state of the art on cm problem.

2.1 Definitions

In the following, we represent complex networks as graphs. Let G = (V,E) be a directed

or undirected graph where |V | = n and |E| = m. For each node v, if G is directed,

N i
v and No

v denote the set of in-neighbours and out-neighbours of v, respectively, i.e.

N i
v = {u | (u, v) ∈ E} and No

v = {u | (v, u) ∈ E}. If G is undirected, Nv denotes

the set of all neighbours of v, Nv = {u | {u, v} ∈ E}. We denote |Nv| as degv, i.e the

degree of node v. Similarly, |N i
v| = degiv and |No

v | = degov. Given two nodes s and t,

we denote by dst, σst, and σstv the distance from s to t in G, the number of shortest

paths from s to t in G, and the number of shortest paths from s to t in G that contain

v, respectively. If there is no path from u to v, we then set dst = ∞. A centrality

index induces an ordering of the nodes in V . The ranking of a node v according to some

centrality index c is the placement of v in the ordering induced by c and it is defined as

rcv = |{u ∈ V | cu > cv}|+ 1.

7

Preliminaries 8

2.2 Centrality measures

Several centrality indices have been proposed in the literature to try to quantitatively

capture the notion of importance within a network. Most of the centrality indices are

based on distances between nodes, on the number of shortest paths passing through or

on spectral properties. In this section we use the classification given by Boldi and Vigna

in [17] to introduce the definitions of the main centrality metrics.

2.2.1 Geometric measures

Geometric measures are defined as a function of the distance among nodes. In particular,

they depend on how many nodes exist at every distance.

Degree Centrality. The degree of a node is the number of incident arcs i.e. the

number of nodes at distance one. It is one of the basic measures in complex network

analysis. It is important in the studies of popularity and activity of nodes because it is

primarily concerned with local point centrality. In a directed network, degree centrality

can be assessed for in-degree and out-degree, where in represents other actors connecting

to a particular actor and out represents that particular actor connecting other actors in

the network [94].

Closeness centrality. Defined by Bavelas [9], the closeness centrality of a node v is

defined as:

cv =
1∑
s dsv

.

where dsv is the length of the shortest path from the node s to v. Intuitively, a central

node has a greater centrality value as it has a small distance toward most of the other

nodes of the network. This index is clearly defined only when the graph is strongly

connected (if there are no paths between two nodes s and v, dsv =∞).

Harmonic Centrality. To take into account disconnected pairs of nodes in weakly

connected networks, alternative definitions of closeness centrality are introduced. The

harmonic centrality [17, 63] of a node v is defined as:

hv =
∑

s∈V \{v}

1

dsv
.

Intuitively, it represents the harmonic mean of the distances from all the other nodes to

node v.

Preliminaries 9

Eccentricity. The Eccentricity of a node v is defined as

ev = max
s∈V

dvs,

and represents the maximum distance between a node v and every other node in the

graph. Using this notion, we can define the diameter D of a network as the maximum ec-

centricity D = maxw∈v ev and the radius R as the minimum eccentricity R = minw∈vev.

2.2.2 Path-based measures

Path based measures take into account not only the existence of a shortest path but all

the possible (shortest) paths passing through a single node.

Betweenness centrality. Betweenness centrality was introduced by Freeman [41] and

it intuitively measures the influence of a node on the flow circulating through the net-

work, under the assumption that the flow follows shortest paths. For each node v, the

betweenness centrality of v is defined as

bv =
∑
s,t∈V

s 6=t;s,t 6=v
σst 6=0

σstv
σst

. (2.1)

The node with greater betweenness is an important junction point for the network. There

are several contexts in which having a high betweenness can be beneficial for the node

itself. For example, in the field of transportation network analysis, the betweenness

centrality seems to be positively related to the efficiency of an airport (see [62], where

a network of 57 European airports has been analyzed). In a street network, increasing

the betweenness of a shop or business would mean more traffic flowing through it and

possibly more customers. In social networks, having high betweenness can be extremely

beneficial for brokers [38].

2.2.3 Spectral measures

Spectral metrics are computed by extracting eigenvalues and eigenvector of some matrix

derived from the graph and they are usually used to assign a certain reputation to a page

in Web graphs.

Preliminaries 10

PageRank. PageRank was introduced by Page et al. [72] for ranking web pages. In a

directed graph, the page-rank of a node v is the probability that a random surfer walk

that starts at a random node in a graph is at v at a given point in time. A random surfer

walk with parameter α, is a walk in the graph defined as follows: start at a random

node in G, given by a starting probability distribution; with probability α, move to an

edge chosen uniformly at random from those outgoing the current node; with probability

1− α, move directly to another node that might be not connected to the current node.

Formally, let us assume that G is a strongly connected directed graph. Let M be a

|V | × |V | matrix where each element muv is defined as muv = 1
|No
u|

if (u, v) ∈ E and

muv = 0 otherwise. For a given parameter α, the page-rank is the eigenvector p̄ associated

to the largest eigenvalue of the matrix

Q =
1− α
|V |

1 + αM.

The page rank of a node v is the element pv in the position associated to v in p̄.

2.3 Algorithms for computing centrality measures

Let us consider a graph G stored using adjacency lists [26]. To compute the degree

centrality of all nodes we visit the entire graph to count the neighbours of each node in

O(n+m) time (for a single node, we simply count its neighbours in O(m)).

Computing closeness and harmonic centrality on unweighted graphs requires to solve All

Pairs Shortest Paths problem (APSP): in general the best approach is running a Breadth

First Search (BFS) from each node. It requires O(n(n+m)) time (O(n+m) for a single

node) and is not applicable on large networks (there is a faster algorithm based on fast

matrix multiplication working on sparse graphs [96] that solves the APSP in O(n2.3737)).

To overcome this limit, Eppstein and Wang [34] design an approximation algorithms for

closeness centrality based on sampling the set of k source node from which running the

BFS. With k = Θ(log(n)
ε2

), the total running time of this algorithm is O(km) within an

inverse additive error of εD with high probability.

In [15, 16, 24, 25, 48], the authors designed efficient algorithms with a small relative

error guarantee, that can handle graphs with billions of edges, using the technique of

probabilistic counters introduced by Palmer et al. [73].

Computing the eccentricity of all nodes in the graph requires to solve the APSP (for a

single nodes, it can be easily computed by a single BFS). Takes and Kosters [88] propose

two exact and approximated heuristics in order to compute this metric in large graphs.

Preliminaries 11

The best exact algorithm for computing betweenness centrality of all nodes has been

designed by Brandes [20]: the core idea is to define dependency δs(v) =
∑

t∈V
σstv
σst

which can be computed in O(m) for each v ∈ V (the same algorithm is used also to

compute the betweenness of a single node). The time complexity is O(nm) and for this

reason it is infeasible to run it on large networks. Then, several algorithms exploiting

different techniques are developed in order to analyse large graphs. In [36, 85, 92],

the authors propose some heuristics with no analytical guarantee. In [46], the authors

adapt Eppstein andWang’s approach for computing closeness centrality using Hoeffding’s

inequality and the union bound technique: they obtain an estimate of the betweenness

centrality of every node that is correct up to an additive error λ with probability δ, by

sampling O(D
2

λ2
log n

δ) nodes, where D is the diameter of the graph. This approach has

been improved by Riondato and Kornaropoulos in [81] and Riondato and Upfal in [82]

by sampling single shortest paths instead of the whole dependency of a node, introducing

the use of the VC-dimension [91]. This technique decreases the number of sampling to
c
λ2

(blog2(D−2)c+1+log(1
δ)), where D is the diameter of the network i.e. the maximum

eccentricity. Recently, Borassi and Natale [19] propose a new approximation algorithm

based on adaptive sampling technique.

The first algorithm for computing PageRank has been proposed by Page et al. [72].

After that, a lot of algorithms are proposed for the exact computation. Kamvar et

al [47] propose an iterative linear algebraic approach score: it exploits the fact that,

during the computation of PageRank, there are only few nodes taking much longer to

converge. They speeds up the computation by nearly 30% on graphs up to 106 nodes,

avoiding the recomputation of the nodes that converge quickly. Later, Gleich et al [43]

propose a parallel iterative method in order to compute PageRank on graphs with billions

of nodes and edges. Another parallel approach has been proposed by Kohlschütter et

al. [51]. McScherry [64] improves the performance of the sequential algorithm in order

to compute the rank on networks with up to 107 nodes. Broeder et al. [21] propose

an approximation algorithm based on graph aggregation which produces a ranking that

has Spearman rank-order correlation of 0.95 with respect to exact PageRank. Chen et.

al [22] and Bar-Yossef et al. [6] provide approximation algorithm for the local PageRank

i.e compute the score of a target node using only local information provided by a link

server [13].

2.4 Maximizing monotone submodular functions

Some of the algorithms reported in this thesis exploit the results of Nemhauser et al. on

the approximation of monotone submodular objective functions [69]. A function z defined

Preliminaries 12

on subsets of a ground set N , z : 2N → R, is submodular if the following inequality holds

for any pair of sets S ⊆ T ⊆ N and for any element e ∈ N \ T

z(S ∪ {e})− z(S) ≥ z(T ∪ {e})− z(T).

In other words, a submodular function exhibits decreasing marginal gains: the marginal

value of adding a new element to a set decreases as the size/cost/weight etc. of the set

increases. Let us consider the following optimization problem: given a finite set N , an

integer k′, and a real-valued function z defined on the set of subsets of N , find a set

S ⊆ N such that |S| ≤ k′ and z(S) is maximum. If z is monotone and submodular, then

the following greedy algorithm exhibits an approximation of 1 − 1
e [69]: start with the

empty set, and, for k′ iterations, add an element that gives the maximal marginal gain,

that is if S is a partial solution, choose the element j ∈ N \S that maximizes z(S∪{j}).

Theorem 2.1 ([69]). For a non-negative, monotone submodular function z, let S be a

set of size k obtained by selecting elements one at a time, each time choosing an element

that provides the largest marginal increase in the value of z. Then S provides a
(
1− 1

e

)
-

approximation.

We will exploit such results by showing that some centrality indices c are monotone and

submodular with respect to the possible set of edges incident to a given node v.

2.5 Centrality Maximization problem

Given a set S of edges not in E, we denote by G(S) the graph augmented by adding the

edges in S to G, i.e. G(S) = (V,E ∪ S). For a parameter x of G, we denote by x(S)

the same parameter in graph G(S), e.g. the distance from s to t in G(S) is denoted

as dst(S). The centrality index of a node v clearly depends on the graph structure: if

we augment a graph by adding a set of edges S incident to v, then the centrality of v

might change. Generally speaking, adding edges incident to some node v can increase

the centrality of v. We are interested in finding a set S of edges incident to a particular

node v that maximizes such an increment. Therefore, given a centrality index c, we

define the following optimization problem.

Centrality Maximization

Given: A directed or undirected graph G = (V,E); a node v ∈ V ; and an

integer k ∈ N
Solution: A set S of edges incident to v, S = {(u, v) | u ∈ V \ N i

v} (S =

{{u, v} | u ∈ V \Nv}, if G is undirected), such that |S| ≤ k
Goal: Maximize cv(S)

Preliminaries 13

In this thesis we study the Centrality Maximization (cm) problem by using harmonic

centrality (cm-h problem) and betweenness centrality (cm-b problem) as metrics. In

Section 2.6 we report the results from the literature of (cm) problem by using eccentricity

(cmi-e), Page-Rank (cm-p)

2.5.1 Maximum Ranking Improvement problem

Given a centrality index c, maximizing the value of a node v does not necessarily lead to

maximizing the ranking position of v. Therefore, we also consider the problem of finding

a set S of arcs incident to node v that maximizes the increment of the ranking of v with

respect to its original ranking. We denote such an increment as ρcv(S), that is,

ρcv(S) = rcv − rcv(S).

Informally, ρ(S) represents the number of nodes that v “overtakes” by adding arcs in S

to G. Therefore, we define the following optimization problem:

Maximum Ranking Improvement (crm)

Given: A directed or undirected graph G = (V,E); a vertex v ∈ V ; and an

integer k ∈ N
Solution: A set S of edges incident to v, S = {(u, v) | u ∈ V \ N i

v} (S =

{{u, v} | u ∈ V \Nv}, if G is undirected), such that |S| ≤ k
Goal: Maximize ρcv(S)

2.6 Related Works

In the literature, there are several algorithms that aim at optimizing some property of a

graph by adding a limited number of edges.

Meyerson and Tagiku give a constant factor approximation algorithm for the problem of

minimizing the average shortest-path distance between all pairs of nodes [65]. The same

problem has been studied by Papagelis et al. [76] and Parotsidis et al. [77], who propose

new algorithms and experimentally show that they are good in practice. Bauer et al. [8]

study the problem of minimizing the average number of hops in shortest paths of weighted

graphs, prove that, unless P = NP , the problem cannot be approximated within a

logarithmic factor, and propose two approximation algorithms with non-constant ap-

proximation guarantees. Tong et al. [89] and Saha et al. [83] study the problem of

maximizing the leading eigenvalue of the adjacency matrix and give algorithms with

proven approximation guarantees. Bilò et al. [14] and Frati et al. [40] present algorithms

Preliminaries 14

with proven approximation guarantees for the problem of minimizing the diameter of a

graph. Li et al. [59] and Dehghani et al. [31] propose approximation algorithms with

proven guarantees for the problem of making the number of triangles in a graph mini-

mum and maximum, respectively. Demaine et al. [32] and Perumal et al. [79] study the

problem of minimizing the maximum eccentricity of a graph (we will focus on it in sec-

tion 2.6.1). In [75], Papagelis studies the problem of minimizing the characteristic path

length. Ishakian et al. [45] study the problem of maximizing some centrality measures

related to the number of paths passing through a given node on directed acyclic graphs.

Finally, Olsen et al. [71] and Avrachenkov et al. [4] works on improving the importance

of a predefined vertex using other centrality measures like PageRank (we will explain

more in detail these methods in section 2.6.2).

2.6.1 Eccentricity

We now focus on the cmi-e problem studied by Demaine et al. [32] and Perumal et.

al [79]. In this case, a node is considered central if its eccentricity is small, therefore the

cmi-e problem is a minimization problem, that is we want to find the set of edges S

that, when added to G, minimizes the value of ev(S), for some given node v.

We first show that, unless P = NP , the problem cannot be approximated within a

certain constant lower bound, we then give an algorithm that guarantees a constant

approximation ratio and an algorithm that guarantees an arbitrarily small approximation

ratio if an higher number of edges is allowed.

To derive an approximation hardness result for the undirected case, we make use of the

Set Cover (in short, sc) problem, which is defined as follows: given a setX, a collection F
of subsets of X, and an integer B, find a sub-collection F ′ ⊆ F such that ∪Sj∈F ′Sj = X

and |F ′| ≤ B. It is known that the set cover problem is NP -hard [42].

Given an instance (X,F) of sc, we compute a graph G = (V,E), where V = {v, v′} ∪
{vxi | xi ∈ X}∪{vSj | Sj ∈ F} and E = {{v, v′}}∪{{v′, vSj} | Sj ∈ F}∪{{vxi , vSj} | xi ∈
Sj}. Initially, the eccentricity of v is equal to 3. We prove that there exists a feasible

solution for an instance Isc = (X,F) of sc if and only if there exists a solution S for the

instance Icmi-e = (G, v, k), where k = B, of cmi-e such that ev(S) = 2.

If Isc admits a feasible solution F ′, then let us consider the solution S = {{v, vSj} | Sj ∈
F ′} to Icmi-e. Since |F ′| ≤ B, then |S| ≤ k. Moreover, ∪Sj∈F ′Sj = X and then all the

nodes vxi are at distance 2 to v. Therefore, ev(S) = 2.

Let us now assume that Icmi-e admits a solution S such that ev(S) = 2, without loss of

generality, we can assume that S contains only edges {v, vSj} for some Sj ∈ F (see [32]

Preliminaries 15

Algorithm 1: Approximation algorithm for cmi-e.
Input : An undirected graph G = (V,E); a node v ∈ V ; and an integer k ∈ N
Output: Set of edges S ⊆ {{u, v} | u ∈ V \Nv} such that |S| ≤ k

1 S := ∅;
2 U := {v};
3 for i = 1, 2, . . . , k do
4 ui := arg maxu∈V minuj∈U duuj ;
5 U := U ∪ {ui};
6 S := S ∪ {{ui, v}};
7 return S;

for details). Let F ′ be the solution of sc such that Sj ∈ F ′ if and only if {v, vSj} ∈ S.
Since ev(s) = 2 , the distance between v and all the nodes vxi is at most 2 and then

for each vxi there exists an edge {v, vSj} ∈ S such that xi ∈ Sj . This implies that

∪Sj∈F ′Sj = X. Moreover, since |S| ≤ k, then |F ′| ≤ B.

Let us assume that there exists an approximation algorithm A for cmi-e that guarantees

an approximation factor α < 3
2 and let S be the solution obtained by applying algorithm

A to Icmi-e derived from Isc. We have that ev(S) < 3
2OPT . This implies that, if (X,F)

admits a feasible solution, then ev(S) < 3
2 · 2 = 3, that is ev(S) = 2; otherwise, if (X,F)

does not admit a feasible solution, then ev(S) = 3. Therefore, we can determine whether

an instance of sc is feasible or not by means of algorithm A. The next theorem follows.

Theorem 2.2 ([32]). The cmi-e problem on undirected graphs cannot be approximated

within a factor smaller than 3
2 , unless P = NP .

In what follows we describe the algorithm given in [79] to solve the cmi-e problem

in undirected graphs. The algorithm is based on a former solution to the problem of

minimizing the diameter of a graph by adding a limited number of edges [14].

The algorithm is reported in Algorithm 1 and works as follows: first node v is inserted

into a set U , then, a for loop of k iterations is run. At each iteration i = 1, 2, . . . , k,

a node ui that maximizes the minimum distance in G between ui and a vertex in U is

selected and inserted into U . The solution S returned is made of edges that connect

nodes ui in U \ {v} to v, S = {{ui, v} | ui ∈ U \ {v}}.

To analyze the algorithm, we need some further notation. Let IS(G) be the size of a

maximum independent set of graph G = (V,E), that is the size of a maximum subset of

nodes V ′ ⊆ V such that no two nodes in V ′ are joined by an edge in E. Given a subset

of nodes U ⊆ V , the radius of U is defined as rU = minx∈V maxu∈U dxu. Given a graph

G and an integer d ≥ 0, Gd = (V,Ed) is the graph with the same nodes as G and an

edge (x, y) if the distance in G between x and y is at most d.

Preliminaries 16

Let S∗ be an optimal solution for the instance of cmi-e and let OPT denote ev(S∗).

The diameter of G(S∗) is at most 2OPT and therefore IS((G(S∗))2OPT) = 1. The next

lemma implies that IS((G(S∗))2OPT) ≥ IS(G2OPT)− |S∗|.

Lemma 2.3 ([14]). Let G be a graph and let d ≥ 0. For each e ∈ V × V \ E,

IS((G({e}))d) ≥ IS(Gd)− 1.

It follows that IS(G2OPT) ≤ k + 1. Let u0 = v. We partition the set of nodes V into

k + 1 clusters U0, U1, . . . , Uk as follows: for each i = 0, 1, . . . , k, a node u belongs to Ui
if duui ≤ duuj , for each j = 0, 1, . . . , k, ties are arbitrarily broken in order to form a

partition. Sets U0, U1, . . . , Uk are called the clusters induced by Algorithm 1. The next

lemma implies that, for each i = 0, 1, . . . , k, rUi ≤ 2OPT .

Lemma 2.4 ([14]). Let G be a graph, let d ≥ 0, and let U0, U1, . . . , Uk be the clusters

induced by Algorithm 1 on G. If IS(Gd) ≤ k + 1, then for each i = 0, 1, . . . , k, rUi ≤ d.

Clearly |S| ≤ k and the distance between each node u ∈ V and v in G(S) is at most

2OPT + 1 to v, therefore, ev(S) ≤ 2OPT + 1. The approximation factor guaranteed by

Algorithm 1 is then 2 + 1
OPT .

Theorem 2.5 ([79]). In undirected graphs, the cmi-e problem is approximable within a

factor 2 + 1
OPT , where OPT is the value of an optimal solution.

The next theorem shows that if we allow a number of added edges that is higher than k,

then we can obtain a solution that is at most 1 + ε far from the optimal solution of the

case in which only k additional edges are allowed.

Theorem 2.6 ([32]). For any ε > 0, there exists a polynomial-time algorithm that adds

O(k log |V |) edges to reduce the eccentricity of v to at most 1 + ε times the optimum

eccentricity for the case in which k additional edges are allowed.

2.6.2 PageRank

We analyse the cm-p problem studied in [4, 71]. The goal is to find the set of edges

S that, when added to G, maximize the PageRank of v, for some given node v (cm-p

problem).

First of all, the authors show, in the following theorem, that the problem does not admit

a polynomial-time approximation scheme.

Theorem 2.7 ([71]). The cm-p problem does not admit an FPTAS, unless P = NP .

Preliminaries 17

Algorithm 2: Approximation algorithm for cm-p.
Input : An undirected graph G = (V,E); a node v ∈ V ; and an integer k ∈ N
Output: Set of edges S ⊆ {{u, v} | u ∈ V \Nv} such that |S| ≤ k

1 S := ∅;
2 U := {v};
3 for i = 1, 2, . . . , k do
4 ui := arg maxu∈V gv in G = (V,E ∪ S);
5 U := U ∪ {ui};
6 S := S ∪ {{ui, v}};
7 return S;

The proof is quite technical and hence it is omitted here, see [71] for details.

LetM be a |V |×|V |matrix where each elementmuv is defined asmuv = 1
|No
u|

if (u, v) ∈ E
and muv = 0 otherwise. Let I denote the |V | × |V | identity matrix and let us consider

the matrix Z = (I − αM)−1. Then, the entry zuv of Z is the expected number of visits

to node v for a random surfer walk starting at node u [4]. The value gv = pv
zvv

is the

overall reachability of node v from all the other nodes, that is the probability that node

v is reached by a random surfer walk that starts at some node u, for all u ∈ V [71]. Let

us consider a variant of the cm-p problem where the function to maximize is gv and let

us denote such problem as cm-g. The next theorem implies that problem cm-g can be

approximated by the greedy Algorithm 2 with an approximation factor of 1− 1
e .

Theorem 2.8 ([71]). In directed graphs, for each vertex v, function gv is monotone and

submodular with respect to any feasible solution for cm-g.

Let S be the solution of the Algorithm 2 for problem cm-g and let OPT = pOPTv

zOPTvv
denote

the value of an optimal solution for cm-g. The previous theorem implies that

pv(S)

zvv(S)
≥
(

1− 1

e

)
pOPTv

zOPTvv

.

Finally, the next theorem follows by the observation that, for any solution S′, zvv(S′) ≤∑∞
i=0 α

2i = 1
1−α2 and zvv(S′) ≥ 1.

Theorem 2.9 ([71]). In directed graphs, the cm-p problem is approximable within a

factor
(
1− α2

) (
1− 1

e

)
.

Chapter 3

Centrality Maximization problem

for harmonic centrality

In this chapter, we study the problem of cm for harmonic centrality (cm-h). Let us

recall that, given a graph G, the harmonic centrality of a node u is defined as hu =∑
s∈V \{u}

1
dsu

. We will give hardness of approximation results on directed and undirected

networks and analyse several intuitive methods to solve the problem. Then, we propose

a greedy approximation algorithm with an almost tight approximation ratio in both

directed and undirected cases and we evaluate the performance of all the algorithms on

both synthetic and real networks. Moreover, we will also study the approximability of

the similar problem of improving the ranking induced by the harmonic centrality instead

of the value. Most of the results presented in this chapter are included in [27, 28].

3.1 Problem definition

Given a directed (undirected respectively) graph G = (V,E), a vertex u ∈ V , and an

integer k, the Maximum Harmonic Improvement (in short, cm-h) problem consists in

finding a set S of ingoing edges (incident edges respectively) to u not in E, S ⊆ {(u, v) :

v ∈ V \N i
u} (S ⊆ {{(u, v)} : v ∈ V \Nu} in undirected graphs) such that |S| ≤ k and

hu(S) is maximum.

19

Centrality Maximization problem for harmonic centrality 20

3.2 Hardness results

3.2.1 Hardness of approximation for directed graphs

In this section, in order to derive our approximation hardness result for the cm-h problem

on directed graphs, we will make use of the Maximum Set Coverage (in short, msc)

problem, which is defined as follows: given a ground set X of items, a collection F =

{S1, S2, . . . S|F|} of subsets of X, and an integer k, find a sub-collection F ′ ⊆ F such

that |F ′| ≤ k and s(F ′) = | ∪Si∈F ′ Si| is maximised. It is known that the msc problem

cannot be approximated within a factor greater than 1 − 1
e , unless P = NP [39]. We

will now use this result in order to show that the cm-h problem has a polynomial-time

constant factor approximation scheme.

Theorem 3.1. For each γ > 1− 1
3e , there is no γ-approximation algorithm for the cm-h

problem in directed graphs, unless P = NP .

Proof. We give an L-reduction with parameters a and b [74]. In detail, we will give a

polynomial-time algorithm that transforms any instance Imsc of msc into an instance

Icm-h of cm-h and a polynomial-time algorithm that transforms any solution S for Icm-h

into a solution F ′ for Imsc such that the following two conditions are satisfied for some

values a and b:

OPT (Icm-h) ≤ aOPT (Imsc) (3.1)

OPT (Imsc)− s(F ′) ≤ b (OPT (Icm-h)− hu(S)) . (3.2)

where OPT denotes the optimal value of an instance of an optimization problem. If the

above conditions are satisfied and there exists a α-approximation algorithm for cm-h,

then there exists a (1 − ab(1 − α))-approximation algorithm for msc [74]. Since msc is

hard to approximate within a factor greater than 1 − 1
e , then 1 − ab(1 − α) < 1 − 1

e ,

unless P = NP . This implies that α < 1− 1
abe .

Given an instance Imsc = (X,F , k) of msc, we define an instance Icm-h = (G, u, k) of cm-

h as follows (see Fig. 3.1): G = (V,A), where V = {u} ∪ {vxi | xi ∈ X} ∪ {vSj | Sj ∈ F}
and A = {(vxi , vSj) | xi ∈ Sj}.

Without loss of generality, we can assume that any solution S of cm-h contains only arcs

(vSj , u) for some Sj ∈ F . In fact, if a solution does not satisfy this property, then we can

improve it in polynomial time by repeatedly applying the following rule: if S contains

an arc (vxi , u), for some xi ∈ X, then exchange such arc with an arc (vSj , u) such that

(vSj , u) 6∈ S (note that such an arc must exist, since otherwise |F| ≤ k and Imsc could

Centrality Maximization problem for harmonic centrality 21

vx1

vx2

...
vx|X|

vS1

vS2

...
vS|F|

u

Figure 3.1: The reduction used in Theorem 3.2 (in this example, x1 ∈ S1, x1 ∈ S2,
x2 ∈ S1, and x2 ∈ S|F|). The dashed arcs denote those added in a solution.

be easily solved). The above rule does not decrease the value of hu(S): indeed, if we

exchange an arc (vxi , u) with an arc (vSj , u) such that (vSj , u) 6∈ S, then the harmonic

centrality of u decreases by either 1 or 1
2 (because of the deletion of (vxi , u)) but certainly

increases by at least 1 (because of the insertion of (vSj , u)).

Given a solution S of cm-h, let F ′ be the solution of msc such that Sj ∈ F ′ if and only

if (vSj , u) ∈ S. We now show that hu(S) = 1
2s(F

′) + k. To this aim, let us note that the

distance from a vertex vxi to u is equal to 2 if an arc (xSj , u) such that xi ∈ Sj belongs
to S, and it is ∞ otherwise. Similarly, the distance from a vertex vSj to u is equal to 1

if (xSj , u) ∈ S, and it is ∞ otherwise. Moreover, the set of elements xi of X such that

dvxiu(S) <∞ is equal to {xi | xi ∈ Sj ∧ (vSj , u) ∈ S} =
⋃
Sj∈F ′ Sj . Therefore,

hu(S) =
∑

v∈V \{u}
dvu(S)<∞

1

dvu(S)
=

∑
xi∈X

dvxiu(S)<∞

1

dvxiu(S)
+

∑
Sj∈F

dvSj u
(S)<∞

1

dvSju(S)

=
1

2
|{xi ∈ X | dvxiu(S) <∞}|+ |{Sj ∈ F | dvSju(S) <∞}|

=
1

2

∣∣∣∣∣∣
⋃

Sj∈F ′
Sj

∣∣∣∣∣∣+ |{Sj | (vSj , u) ∈ S}| = 1

2
s(F ′) + k.

It follows that Conditions (3.1) and (3.2) are satisfied for a = 3
2 and b = 2. Indeed,

OPT (Icm-h) = 1
2OPT (Imsc) + k ≤ 3

2OPT (Imsc), where the inequality is due to the

fact that OPT (Imsc) ≥ k, since otherwise the greedy algorithm would find an optimal

solution for Imsc. Moreover, OPT (Imsc)−s(F ′) = 2 (OPT (Icm-h)− k)−2 (hu(S)− k) =

2 (OPT (Icm-h)− hu(S)). The theorem follows by plugging the values of a and b into

α < 1− 1
abe .

We observe that Theorem 3.1 holds also for the related problem in which the edges to be

added to the graph are outgoing from u and the harmonic centrality considers distances

duv instead of dvu.

Centrality Maximization problem for harmonic centrality 22

3.2.2 Hardness of approximation for undirected graphs

In this section, in order to derive our approximation hardness result for the cm-h problem

on undirected graphs, we will make use of the Minimum Dominating Set (in short,

mds) problem, which is defined as follows: given an undirected graph G = (V,E), find

a dominating set of minimum cardinality, that is, a subset D of V such that V =

D ∪
⋃
u∈DNu. It is known that, for any r with 0 < r < 1, it cannot exist a (r ln |V |)-

approximation algorithm for the mds problem, unless P = NP [33]. We will now use

this result in order to show that the cm-h problem does not admit a polynomial-time

approximation scheme. To this aim, we will design an algorithm A′ that, given an

undirected graph G = (V,E) and given the size k of the optimal dominating set of G, by

using an approximation algorithm A for the cm-h problem will return a dominating set

of G whose approximation ratio is at most (r ln |V |). Clearly, we do not know the value

of k, but we know that this value must be at least 1 and at most |V |: hence, we run

algorithm A′ for each possible value of k, and return the smallest dominating set found.

Algorithm A′ will run the approximation algorithm A for the cm-h problem multiple

times. Each time A will find k nodes u ∈ V which are the “new” neighbours of the node

whose centrality has to be increased: we then add these nodes to the dominating set and

create a smaller instance of the cm-h problem (which will contain, among the others, all

the nodes in V not yet dominated). We continue until all nodes in V are dominated.

Theorem 3.2. For each γ > 1 − 1
15e , there is no γ-approximation algorithm for the

cm-h problem in undirected graphs, unless P = NP .

Proof. We will show that a γ-approximation algorithm A for the cm-h problem, with

γ > 1 − 1
15e , would imply a (r lnn)-approximation algorithm A′ for the mds problem,

thus proving the theorem. In particular, the algorithm A′ is specified in Fig. 3, where

k denotes a “guess” of the size of an optimal solution for mds with input the graph G.

In the following, ω will denote the number of times the while loop is executed. Since,

at each iteration of the loop, we include in the dominating set at most k nodes, at the

end of the execution of algorithm A′ the set D includes at most k · ω nodes. Hence, if

k is the correct guess of the value of the optimal solution for the mds instance, then D

is a ω-approximate solution for the mds problem (as we have already noticed, we don’t

know the correct value of k, but algorithm A′ can be executed for any possible value of

k, that is, for each k ∈ [|V |]).

The first instruction of the while loop of algorithm A′ computes a transformed graph

G′ (to be used as part of the new instance for cm-h) starting from the current graph

G = (V,EV), which is the subgraph of the original graph induced by the set {u1, . . . , un},
where n = |V |, of still not dominated nodes. This computation is done as follows (see

Centrality Maximization problem for harmonic centrality 23

Algorithm 3: The approximation algorithm for the mds problem, given a γ-
approximation algorithm A for the cm-h problem and a “guess” k for the optimal value
of mds.
Algorithm: A′

Input : an undirected graph G = (V,E) and an integer k
Output: a dominating set D

1 D := ∅;
2 while V 6= ∅ do
3 Compute graph G′ starting from G (see Fig. 3.2);
4 S := A(G′, z, k);
5 D′ := {u : {z, u} ∈ S}
6 D := D ∪D′;
7 V := V −D′ −

⋃
u∈D′ Nu;

8 G := subgraph of G induced by V ;

9 return D;

u1

u2

...
un

x1

x2

...
xn

y1

y2

...
yn

z
G

Figure 3.2: The reduction used in Theorem 3.2. The dashed edges between node z
and nodes ui denote those added in a solution to cm-h.

Fig. 3.2). We add a new node z and two new nodes xi and yi, for each i with 1 ≤ i ≤ n.
Moreover, we add to EV the edges {z, yi}, {xi, yi}, and {xi, ui}, for each i with 1 ≤ i ≤ n.
As it is shown in the second line of the while loop, z is the node whose centrality hz
has to be increased by adding at most k edges: that is, the cm-h instance is formed by

G′, z, and k. Observe that any solution for this instance that contains an edge {xi, z}
can be modified, without decreasing its measure, by substituting this edge with {ui, z}:
hence, we can assume that the solution S computed at the second line of the while loop

of algorithm A′ contains only edges connecting z to nodes in V (which are shown by

dashed edges between node z and nodes ui in Fig. 3.2).

First of all, note that, since k is (a guess of) the measure of an optimal solution D∗ for

mds with input G, we have that the measure c∗(G′, z, k) of an optimal solution S∗ for

cm-h with input G′ satisfies the following inequality:

c∗(G′, z, k) ≥ k +
1

2
(n− k) +

3

2
n =

1

2
k + 2n.

This is due to the fact that, by connecting z to all the k nodes in D∗, in the worst case

Centrality Maximization problem for harmonic centrality 24

we have that k nodes in G are at distance 1, n−k nodes in G are at distance 2 (since D∗

is a dominating set), the n nodes yi are at distance 1, and the n nodes xi are at distance

2 from z.

Given the solution S computed by the approximation algorithm A for cm-h, let a and

b denote the number of nodes in G at distance 2 and 3, respectively, from z in G′(S).

Since all nodes in G′ are at distance at most 3 from z, we have that n = k + a + b (we

can assume, without loss of generality, that n ≥ k): hence, a = n − b − k. Since A is a

γ-approximation algorithm for cm-h, we have that hz(S) ≥ γc∗(G′, z, k). That is,

k +
1

2
a+

1

3
b+

3

2
n ≥ γ

(
1

2
k + 2n

)
.

From this inequality, it follows that

a ≥ γ(k + 4n)− 3n− 2k − 2

3
b.

By using the fact that a = n− b− k, we have that

n− b− k ≥ γ(k + 4n)− 3n− 2k − 2

3
b.

That is,

b ≤ 12(1− γ)n+ 3(1− γ)k.

Since k ≤ n, we then have that

b ≤ 15n(1− γ).

Assuming γ > 1− 1
15e >

14
15 (which implies 15(1− γ) < 1), then after one iteration of the

while loop of algorithm A′, the number of nodes in G decreases by a factor 15(1 − γ).

Hence, after ω− 1 iterations, the number n of nodes in the graph G is at most a fraction

[15(1−γ)]ω−1 of the number N of nodes in the original graph. Since we can stop as soon

as n < k, we need to find the maximum value of ω such that k ≤ N [15(1 − γ)]ω−1. By

solving this inequality and by recalling that 15(1− γ) < 1, we obtain

ω − 1 ≤ log15(1−γ)

k

N
≤ log15(1−γ)

1

N
=

ln(N)

ln 1
15(1−γ)

.

One more iteration might be necessary to trivially deal with the remaining nodes, which

are less than k. Hence, the total number ω of iterations is at most ln(N)

ln 1
15(1−γ)

+ 1. If

γ > 1 − 1
15e , we have that r′ = 1

ln 1
15(1−γ)

< 1: as a consequence of the observation at

the beginning of the proof, the solution reported by algorithm A′ is an (r′ lnN + 1)-

approximate solution. Clearly, for any r with 0 < r′ < r < 1, there exists Nr sufficiently

large, such that for any N > Nr, r′ lnN + 1 ≤ r lnN : hence, algorithm A′ would be an

Centrality Maximization problem for harmonic centrality 25

r lnN -approximation algorithm for mds, and, because of the result of [33], P would be

equal to NP . Thus, we have that, if P 6= NP , then γ has to be not greater than 1− 1
15e

and the theorem is proved.

3.2.3 Improving the position in the ranking

We study the problem of improving the position of a node v in the ranking obtained

by sorting all the nodes in non-increasing order according to their harmonic centrality.

The ranking of a node v according to harmonic centrality is the placement of v in the

ordering induced by h and it is defined as rhv = |{u ∈ V | hu > hv}|+1. Given a directed

graph G = (V,E), a vertex u ∈ V , and an integer k, the Maximum Harmonic Ranking

Improvement (in short, crm-h) problem consists in finding a set S of ingoing edges to

u not in E, S ⊆ {(u, v) : v ∈ V \N i
u} such that |S| ≤ k and ρhv(S) is maximum, where

ρhv(S) = rhv − rhv (S). We show that, unless P = NP , we cannot find a polynomial time

approximation algorithm for crm-h with a constant approximation guarantee.

Theorem 3.3. For any constant α ≤ 1, there is no α-approximation algorithm for the

crm-h problem in directed graphs, unless P = NP .

Proof. By contradiction, let us assume that there exists a polynomial time algorithm A

that guarantees an approximation factor of α. We show that we can use A to determine

whether an instance I of the exact cover by 3-sets problem (X3C) admits a feasible

solution or not. Problem X3C is known to be NP -complete [42] and therefore this

implies a contradiction. In the X3C problem we are given a finite set X with |X| = 3q

and a collection C of 3-element subsets of X, with |C| = c, and we ask whether C

contains an exact cover for X, that is, a subcollection C ′ ⊆ C such that every element

of X occurs in exactly one member of C ′. Note that we can assume without loss of

generality that c > q.

Given an instance I = (X,C) of X3C where |X| = n = 3q and |C| = c, we define an

instance I ′ = (G, v, k) of crm-h as follows.

• G = (V,E);

• V = {v} ∪ {vxi | xi ∈ X} ∪ {vTj | Tj ∈ C} ∪ {vm` | ` = 1, 2, . . . ,M} ∪ {z};

• E = {
(
vxi , vTj

)
| xi ∈ Tj} ∪ {(vm` , vxi) | xi ∈ X, ` = 1, 2, . . . ,M} ∪

{
(
vm` , vTj

)
| Tj ∈ C, ` = 1, 2, . . . ,M} ∪ {(z, v)}

• k = q;

Centrality Maximization problem for harmonic centrality 26

vm1

vm2

vm3

...

vmM

vx1

vx2

vx3

...

vx|X|

vT1

vT2

...

vT|C|

v z

Figure 3.3: The reduction used in Theorem 3.3. The dashed arcs denote those added
in a solution to crm-h.

where M = 5q + 2. See Figure 3.3 for a visualization.

The proof proceeds by showing that I admits an exact cover if and only if I ′ admits a

solution S such that ρhv(S) > 0. This implies that, if OPT is an optimal solution for I ′,

then ρhv(OPT) > 0 if and only if I admits an exact cover. Hence, the statement follows

by observing that algorithm A outputs a solution S such that ρhv(S) > αρhv(OPT) and

hence ρhv(S) > 0 if and only if I admits an exact cover.

In I ′, hv = 1, hvTj = M + 3 = 5q + 5, for each Tj ∈ C, hvxi = M = 5q + 2 for each

xi ∈ X, and hw = 0, for each other node w.

Therefore, rhvTj = 1, for each Tj ∈ C, rhvxi = c + 1, for each xi ∈ X, rhv = c + n + 1 and

rhw = n + c + 2, for any other node w. In the proof we will use the observation that, in

instance I ′, adding arcs incident to v does not decrease the harmonic centrality of any

node, that is for any node w ∈ V and for any solution S to I ′, hw(S) ≥ hw.

If instance I of X3C admits an exact cover C ′, then consider the solution S = {(vTj , v) | Tj ∈
C ′} to I ′. Note that |S| = q = k and therefore we only need to show that ρhv(S) > 0.

Indeed, in the following we show that ρhv(S) = n > 0. Since C ′ is an exact cover, then

all nodes vTi are connected to the 3 nodes vxi at distance 2. The same holds for nodes

vTj such that Tj ∈ C ′. Since there are n nodes vxi at distance 2, q nodes vTj such that

Tj ∈ C ′ at distance 1, and M nodes vmj at distance 2, then the harmonic centrality of

v increases to hv(S) = n
2 + M

2 + q + 1 = 5q + 2. Any other node does not change its

harmonic centrality. Therefore, the only nodes that have a value higher than v are the

n nodes vTj . It follows that rhv (S) = c+ 1 and ρhv(S) = n+ c+ 1− (c+ 1) = n > 0.

Let us now assume that I ′ admits solution S such that |S| ≤ k and ρhv(S) > 0. We

first prove that S is only made of arcs in the form (vTj , v) and that hv(S) ≥ 5q + 2 or

Centrality Maximization problem for harmonic centrality 27

that it can be transformed in polynomial time into a solution with such a form without

increasing its size. Assume that S has arcs not in this form, then we can apply one of

the following transformations to each of such arcs e = (w, v).

• If w = vxi for some xi ∈ X and there exists a node vTj such that xi ∈ Tj and

(vTj , v) 6∈ S, then remove e and add arc (vTj , v) to S;

• If w = vxi for some xi ∈ X and (vTj , v) ∈ S for all Tj such that xi ∈ Tj , then

remove e and add to S an arc (vTk , v) 6∈ S;

• if w = vm` for some ` = 1, 2, . . . ,M , then remove e and add to S an arc (vTk , v) 6∈ S.

Let us denote by S′ and S the original solution and the solution that is eventually

obtained by applying the above transformations, respectively. All the above transforma-

tions remove an arc and possibly add another arc, therefore the size of the transformed

solution is at most the original size, that is |S| ≤ |S′| ≤ k. Moreover, the above trans-

formations add only arcs incident to v then, since adding arcs incident to v does not

decrease the harmonic centrality of any node then hv(S
′) ≥ hv(S). Since v has not

outgoing edges, the transformations do not affect the centrality of each other nodes

w 6= v, then hw(S′) = hw(S). Therefore, the ranking of node v does not increase then

rhv (S′) ≤ rhv (S). Since ρhv(S) = rhv − rhv (S) > 0 then ρhv(S′) = rhv − rhv (S′) ≥ ρhv(S) > 0.

It remains to show that ρhv(S′) > 0 implies hv(S) ≥ 5q + 2. Indeed, observe that v is

initially in position n + c + 1 and the only nodes that have an harmonic value higher

than v are the c nodes vxi and the n nodes vT` . Therefore, since ρhv(S′) > 0, and

hvTj > hvx` there is at least a node vxi such that hv(S′) ≥ hvxi (S
′). Moreover, all the

transformations do not decrease the value of hv and then hv(S) ≥ hv(S′) and, considering
that hvxi (S

′) ≥ hvxi = 5q + 2, we obtain hv(S) ≥ 5q + 2.

We now prove that the solution C ′ = {Tj | (vTj , v) ∈ S} to I is an exact cover. By

contradiction, let us assume that an element in X is not contained in any set in C ′ or

that an element in X is contained in more than one set in C ′. The latter case implies

the former one since |C ′| = q, all the sets in C ′ contain exactly 3 elements, and |X| = 3q.

Hence, we assume that an element in |X| is not contained in any set in C ′. This implies

that there exists a node vxi ∈ V such that dvxiv = ∞ and therefore the harmonic

centrality of v is at most 5q + 3
2 , which is a contradiction to hv(S) ≥ 5q + 2.

Centrality Maximization problem for harmonic centrality 28

3.3 Naive algorithms

In this section we list three heuristics to solve the cm-h problem and we prove that

they have an unbounded approximation ratio. In particular we analyse the following

algorithms:

• Random algorithm: connect u to a set of k nodes extracted uniformly at random.

• Degree algorithm: connect u to a set of k nodes having the highest degree.

• Top-k algorithm: connect u to a set of k nodes having the highest harmonic

centrality.

The first two algorithms are easy to describe and implement efficiently. In the next

section we will give more details on the implementation of the Top-k algorithms.

Efficient implementation of Top-k algorithm. The classical algorithm to find the

k nodes having the highest value of centrality, consists, for each node v, in determining

all the distances to v by running a Breadth First Search (BFS) and computing hv.

With such an approach computing the k nodes having the highest value of centrality

requires O(n · (n+m)). We give an algorithm [28] that reduces the computation time by

using a branch-and-bound technique that prunes the unnecessary BFS by comparing the

intermediate results of centrality with a properly defined upper bound (Algorithm 5).

Let Ck be the set of k nodes having the highest harmonic centrality. We represent Ck
with a min-heap in order to find the minimum in constant time. First of all, Top-k

algorithm inserts the k nodes with highest degree in Ck and computes their centrality.

Then, it computes the harmonic centrality of other nodes v by performing a BFS starting

at each v. The algorithm uses the minimum value of centrality in Ck as a lower bound

and prunes the BFS from v when such lower bound is greater than an upper bound (to be

defined later) on hv. Such upper bound is computed every time a node is extracted from

the BFS queue. If the BFS is completed without any pruning, it removes the minimum

from Ck and it inserts the node v in it.

The upper bound estimates the value of the harmonic centrality of a node v. The main

idea is that, at each BFS step, when we extract a node x at distance dvx from v, we can

maintain the exact number of nodes that are at distance dvx and that are not visited

yet. Moreover, we can upper bound the distance to any other node. When x is extracted

from the queue, let Vx be the set of nodes (represented as a queue) at distance dvx from

the source v that are not visited, visited be the set of nodes currently visited during

Centrality Maximization problem for harmonic centrality 29

Algorithm 4: Algorithm PrunedBFS.
Input : An undirected graph G(S); a node v, a double minc
Output: cv

1 Vx := ∅;
2 duv(S ∪ {u, v}) := 0;
3 foreach x ∈ Nv(S) do
4 dux(S ∪ {u, v}) := 1;
5 Vx.push(x);

6 visited := {u, v} ∪Nu(S);
7 hv := 0;
8 while ¬Vx.empty() do
9 x := Vx.pop();

10 hv := 1
dux(S) ;

11 foreach y ∈ Nx(S) do
12 if (y /∈ visited) ∧ (duy(S) > dux(S ∪ {u, v}+ 1)) then
13 duy(S ∪ {u, v}) := dux(S ∪ {u, v}) + 1;
14 Vx.push(y);
15 visited := visited ∪ {y};

16 UBv := hv + |Vx| · 1
dvx

+ (|V | − |visited| − |Vx|) · 1
dvx+1 ;

17 if UBv ≤ minc then
18 return

19 return cv

the BFS, and Currc be the value of the harmonic centrality at the current step, that is

Currc =
∑

y∈visited
1
dvy

. Then, we have that |Vx| nodes are at distance dvx from v, while

the remaining |V | − |visited| − |Vx| nodes are at distance at least dvx + 1 from v. Hence

the upper bound is defined as:

UBv = Currc+ |Vx| ·
1

dvx
+ (|V | − |visited| − |Vx|) ·

1

dvx + 1
.

3.3.1 Worst case approximation ratio of the naive algorithms

We now show that the naive algorithms have an arbitrary small approximation ratio.

We provide counterexamples for Degree and Top-k algorithms. Such counterexamples

are valid also for the Random algorithm because it extracts a set of k nodes uniformly

at random that can be equal to the sets returned by Degree or Top-k algorithms with

probability p > 0. Given an integer x > 0, consider the following instance of cm-h (see

Figure 3.4 for an example).

• graph G = (V,E).

Centrality Maximization problem for harmonic centrality 30

Algorithm 5: Algorithm Top-k.
Input : an undirected graph G = (V,E); and an integer k ∈ N
Output: set of nodes S ⊆ V such that |S| = k

1 S: Min priority queue;
2 Let u1, u2, . . . , u|V | be the nodes of G sorted according to their degree in non-ascending
order;

3 for j = 1, 2, . . . , k do
4 Compute the harmonic centrality huj of node uj ;
5 S.push(uj , huj);

6 for j = k + 1, k + 2, . . . , |V | do
7 minc := S.getMin();
8 huj := PrunedBFS(G, uj ,minc);
9 if huj > minc then

10 S.pop();
11 S.push(uj , chj);

12 return S

b11

b12

b21

b22

a′1

a′2

a′3

b1

b2

a1

a2

v

x

x

x+ 1

(a) Degree and Top-k algorithms

b11

b12

b21

b22

a′1

a′2

a′3

b1

b2

a1

a2

v

(b) Optimal solution

Figure 3.4: Counterexample for the naive algorithms for x = 2 on undirected graphs.
The dashed edges are those in a solution to cm-h. The Degree and Top-k algorithms
(left) add the edges {a1, v}, {a2, v} since a1 and a2 are the 2 nodes with highest degree
and harmonic centrality. After adding such edges, the value of hv becomes 7/2. An

optimal solution (right), has value hv({{a1, v}, {b2, v}}) = 29/6.

• V = {v} ∪ A ∪ A′ ∪ B ∪
x⋃
z=1

B′z, where A = {ai}xi=1, A
′ = {a′j}

x+1
j=1 , B = {bi}xi=1,

B′z = {bzr}xr=1;

• E = {{ai, a′j} | ai ∈ A ∧ a′j ∈ A′} ∪ {{bz, b
j
z} | bz ∈ B ∧ bjz ∈ B′z};

• k = x.

Centrality Maximization problem for harmonic centrality 31

The initial values of harmonic centrality are hv = 0, hai = 3x+1
2 , hbi = x, ha′i = 3

2x, and

hbzj = x+1
2 for each z, j = 1, 2, . . . , x. On the other hand, the initial degree are degv = 0,

degai = x+ 1, dega′i = degbi = x, and degbij = 1 for each i, j = 1, 2, . . . , x. Therefore the

k = x nodes with the highest harmonic centrality (Top-k algorithm) and the highest

degree (Degree algorithm) are the nodes {ai}xi=1. The solution obtained with both

algorithms has a value hv({{ai}xi=1, v}) = 3
2x + 1

2 , since there are x nodes at distance

1 in A and x + 1 nodes at distance 2 in A′. Let j be an integer such that 1 ≤ j ≤ x

and B ⊂ B, B = {bi}x−1
i=1 , the optimal solution include edges {{bi}x−1

i=1 , v} and {aj , v},
instead increases hv by 1 + x+1

2 + x−1
3 + x − 1 + x(x−1)

2 = x + x2+1
2 + x−1

3 , since there

are x nodes at distance 1 in B ∪ {aj} and x2 + 1 nodes at distance 2 in A ∪
x−1⋃
z=1

B′z and

x− 1 nodes at distance 3 in A. Therefore, in undirected graphs, the approximation ratio

of the Degree and Top-k algorithms tends to be arbitrarily small as x increases.

Let us consider the directed case: in Figure 3.4, we modify the set of edges in as following:

E = {(a′j , ai) | a′j ∈ A′ ∧ ai ∈ A} ∪ {(bzi , bi) | b
j
i ∈ B

′
z ∧ bi ∈ B}

In this case, the initial values of harmonic centrality are hv = 0, hai = x + 1, hbi = x,

ha′i = 0, and hbzj = 0 for each z, j = 1, 2, . . . , x. On the other hand, the initial degree

are degiv = 0, degiai = x+ 1, degibi = x, and dega′i = degi
bij

= 0 for each i, j = 1, 2, . . . , x.

Therefore the k = x nodes with the highest harmonic centrality (Top-k algorithm) and

the highest degree (Degree algorithm) are the nodes {ai}xi=1. As in the undirected

case, the solution obtained with both algorithms has a value hv({{ai}xi=1, v}) = 3
2x+ 1

2 ,

since there are x nodes at distance 1 in A and x+ 1 nodes at distance 2 in A′. Let j be

an integer such that 1 ≤ j ≤ x and B ⊂ B, B = {bi}x−1
i=1 , the optimal solution include

edges {{bi}x−1
i=1 , v} and {aj , v}, instead increases hv by x+ x2+1

2 , since there are x nodes

at distance 1 in B ∪ {aj} and x2 + 1 nodes at distance 2 in A ∪
x−1⋃
z=1

B′z. Therefore, in

directed graphs, the approximation ratio of the Degree and Top-k algorithms tends

to be arbitrarily small as x increases.

3.4 Greedy approximation algorithm

Let us consider the following optimisation problem. Given a set X and an integer k,

find a subset Y of X of cardinality at most k that maximises the value f(Y), where

f : 2X → N is a specific objective function. As we show in Section 2.4 in Chapter 2, if f

is monotone submodular, that is, if, for any pair of sets S ⊆ T ⊆ X and for any element

e ∈ X \ T , f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T), then the following greedy algorithm

approximates the above problem within a factor 1 − 1
e [69]: start with the empty set,

Centrality Maximization problem for harmonic centrality 32

and repeatedly add an element that gives the maximal marginal gain. In this section, we

exploit this result by showing that hu is monotone and submodular with respect to the

possible set of edges incident to u. Hence, Algorithm 6 provides a
(
1− 1

e

)
-approximation.

Note that the computational complexity of such algorithm is O(k ·n ·g(n,m+k)), where

g(n,m+ k) is the complexity of computing hu in a graph with n nodes and m+ k edges.

Theorem 3.4. Given a directed graph G, for each vertex v, function hv is monotone

and submodular with respect to any feasible solution for cm-h.

Proof. To show that hv is monotone increasing, as shown in [17], it is enough to observe

that for each solution S to cm-h, each vertex u such that (u, v) 6∈ E ∪ S, and each

s ∈ V \ {v} such that dsv(S ∪ {(u, v)}) 6= ∞, then dsv(S ∪ {(u, v)}) ≤ dsv(S) and

therefore 1
dsv(S∪{(u,v)}) ≥

1
dsv(S) . We now show that for each pair S and T of solutions to

cm-h such that S ⊆ T and for each vertex u such that (u, v) 6∈ T ∪ E,

hv(S ∪ {(u, v)})− hv(S) ≥ hv(T ∪ {(u, v)})− hv(T).

To simplify notation, we assume that 1
dst(X) = 0 whenever dst(X) =∞, for any solution

X to cm-h. We prove that each term of hv is submodular, that is, that, for each vertex

s ∈ V \ {v} such that dsv(T ∪ {(u, v)}) 6=∞, we show that

1

dsv(S ∪ {(u, v)})
− 1

dsv(S)
≥ 1

dsv(T ∪ {(u, v)})
− 1

dsv(T)
. (3.3)

Let us consider the shortest paths from s to v in G(T ∪ {(u, v)}). The following two

cases can arise:

1. The last edge of a shortest path from s to v in G(T ∪ {(u, v)}) is (u, v) or belongs

to S ∪ E. In this case, such a path is a shortest path also in G(S ∪ {(u, v)}), as
it cannot contain edges in T \ S. Then, dsv(S ∪ {(u, v)}) = dsv(T ∪ {(u, v)}) and

1
dsv(S∪{(u,v)}) = 1

dsv(T∪{(u,v)}) . Moreover, dsv(S) ≥ dsv(T) and, therefore, − 1
dsv(S) ≥

− 1
dsv(T) .

2. The last edge of all shortest paths from s to v in G(T ∪ {(u, v)}) belongs to T \ S.
In this case, dsv(T) = dsv(T ∪ {(u, v)}) and, therefore, 1

dsv(T∪{(u,v)}) −
1

dsv(T) = 0.

As 1
dsv(S) is monotone increasing, then 1

dsv(S∪{(u,v)}) −
1

dsv(S) ≥ 0.

In both cases, we have that the inequality (3.3) is satisfied and, hence, the theorem

follows.

The proof of Theorem 3.4 can be easily adapted to the undirected graph case, and the

following result holds.

Centrality Maximization problem for harmonic centrality 33

Algorithm 6: Greedy algorithm for cm-h on directed graphs.
Input : A directed graph G = (V,E); a node v ∈ V ; and an integer k ∈ N
Output: Set of edges S ⊆ {(u, v) | u ∈ V \N i

v} such that |S| ≤ k
1 S := ∅;
2 for i = 1, 2, . . . , k do
3 foreach u ∈ V \N i

v(S) do
4 Compute hv(S ∪ {(u, v)});
5 umax := arg max{hv(S ∪ {(u, v)}) | u ∈ V \N i

v(S)};
6 S := S ∪ {(umax, v)};
7 return S;

Theorem 3.5. Given an undirected graph G, for each vertex u, function hu is monotone

and submodular with respect to any feasible solution for cm-h.

Corollary 3.6. The cm-h problem is approximable within a factor
(
1− 1

e

)
on both

directed and undirected graphs.

In Section 3.5 we will analyse the performance, in terms of solution quality, of the greedy

algorithm on relatively small real-world and synthetic graphs.

3.4.1 Improving the greedy algorithm running time

In this section we show how to improve the running time of GreedyImprovement on

directed graph case. Indeed, the algorithm can be easily adapted to the undirected graph

case. This algorithm requires O(k ·n ·g(n,m+k)) computational time, where g(n,m+k)

is the complexity of computing hu in a graph with n nodes andm+k edges. The classical

algorithm to compute hu consists in determining all the distances to u by running a BFS

starting from u. Therefore, with such an approach, GreedyImprovement requires

O(k ·n · (n+m+k)) in the worst case. In this section we provide a dynamic algorithm to

reduce the time required to compute hu. Note that the idea of incrementally updating the

closeness centrality as been already explored in the literature [84]. However, we consider

the harmonic mean to compute the harmonic centrality instead of the arithmetic mean

that is used in other works in literature. The motivation is that the harmonic mean

has been showed to be more robust in the case of undirected disconnected networks or

directed not-strongly connected networks [17]. Therefore, we cannot directly use the

algorithms in the literature and we devise a new dynamic algorithm. Furthermore, we

show how to exploit the submodularity of hu in order to reduce the running time of

iterations i ≥ 2 of the for loop at line 2 of GreedyImprovement.

Let us assume that we add an edge {u, v} 6∈ E ∪ S to graph G(S). The dynamic

algorithm aims at computing only the distances between u and any other node that

Centrality Maximization problem for harmonic centrality 34

change as a consequence of the addition of edge {u, v} (i.e. nodes w such that duw(S) 6=
duw(S∪{u, v})) and keep the old distances to any other node in the graph. The algorithm

is based on the following observation: if we add an edge {u, v} to G(S), then duw(S) 6=
duw(S∪{u, v}), for some w ∈ V , only if the shortest path between u and w inG(S∪{u, v})
contains edge {u, v}. Therefore, we can determine the nodes that change their distance

to u by finding all the shortest paths passing through edge {u, v} in G(S ∪ {u, v}).
To this aim, the dynamic algorithm executes a BFS starting from node v and prunes

the search as soon as a node that does not change its distance to u is extracted from

the queue. We report the dynamic algorithm DynamicBFS in Figure 7. In detail,

Procedure DynamicBFS returns the value ∆Clo which corresponds to the increment

to hu(S) which is obtained by adding edge {u, v}. To compute ∆Clo, the algorithm

computes the distances between u and any node y such that duy(S) 6= duy(S ∪ {u, v}).
First, it computes the distances of u and its neighbors (lines 3–5) and the initial increment

∆Clo that is equal to the difference between the reciprocal of the new distance and that

of the old distance (line 8). Then, it pushes in queue Q the neighbors of u (line 6) and

performs the BFS starting from v (lines 9–16).

For each extracted node, it updates ∆Clo by subtracting the reciprocal of the old distance

and adding the new one (line 11). After that, it enqueues a neighbor y of the extracted

node x only if the old distance duy(S) is greater than the length of the path made of the

shortest path from u to x in G(S∪{u, v}) and the edge {x, y} (that is dux(S∪{u, v})+1,

see the test at line 13). Note that this condition is satisfied only if the shortest path

between u and y passes through edge {u, v}. The procedure repeats this process until

the queue is empty.

We give an example of execution of Algorithm DynamicBFS in Figure 3.5.

In order to analyse the computational complexity of Algorithm DynamicBFS, let us

define as γuv(S) as the set of nodes that change their distance to u as a consequence of

the addition of edge {u, v} to G(S), that is

γuv(S) = {w ∈ V | dxu(S) 6= dxu(S ∪ {{u, v}})}.

Moreover, let Γuv(S) be the number of edges incident to nodes in γuv(S), that is Γuv(S) =∑
w∈γuv(S) |N(w)|. Parameters |γuv(S)| and Γuv(S) measure the minimal number of

nodes and edges, respectively, that must be visited in order to update all the distance

to u after the addition of edge {u, v}. Note that Γuv(S) = O(m + n) in the worst

case, however it is much smaller than m in many practical cases as shown in the next

section. In Figure 3.5, the nodes in γuv(S) are represented in gray, while the number

of double edges is Γuv(S). The next theorem gives the computational complexity of

Algorithm DynamicBFS as a function of O(Γuv(S)).

Centrality Maximization problem for harmonic centrality 35

Algorithm 7: Algorithm DynamicBFS.
Input : An undirected graph G(S); edge {u, v}; distances dux(S), for each x ∈ V
Output: ∆Clo, the increment to cu obtained when adding edge {u, v} to G(S)

1 Q := ∅;
2 visited := ∅;
3 duv(S ∪ {u, v}) := 1;
4 foreach x ∈ Nv(S) do
5 dux(S ∪ {u, v}) := min{2, dux(S)};
6 Q.push(x);

7 visited := {u, v} ∪Nu(S);
8 ∆Clo := 1− 1

duv(S) ;
9 while ¬Q.empty() do

10 x := Q.pop();
11 ∆Clo := ∆Clo+ 1

dux(S∪{u,v})(x) −
1

dux(S) ;
12 foreach y ∈ Nx(S) do
13 if (y /∈ visited) ∧ (duy(S) > dux(S ∪ {u, v}) + 1) then
14 duy(S ∪ {u, v}) := dux(S ∪ {u, v}) + 1;
15 Q.push(y);
16 visited := visited ∪ {y};

17 return ∆Clo

Theorem 3.7. Algorithm DynamicBFS requires O(Γuv(S)) time.

Proof. Lines 1–6 require O(Nv(S)) = O(Γuv(S)) time. In the loop at lines 9–16, variable

visited ensures that each node is inserted into Q at most once. Therefore, the overall time

requirement of such loop is equal to the sum ofNx(S), for all the nodes x that are inserted

into Q. Hence, to prove the statement, we show that all the nodes inserted into Q belong

to γuv(S). We first show that, for each x ∈ γuv(S) all the distances dxu(S ∪ {{u, v}})
between u and x in G(S∪{{u, v}}) are correctly computed by Algorithm DynamicBFS.

By contradiction, suppose that the distance between some node in γuv(S) and u is not

correctly computed and consider a node y ∈ γuv(S) having minimal distance to u among

such nodes. At the last iteration when y is inserted into Q, there exists a node x ∈ N(y)

such that duy(S) > dux(S∪{u, v})+1. It follows that duy(S∪{u, v}) = dux(S∪{u, v})+1

(see the test at line 13). Since the distance between y and u is minimal among those that

are not correctly computed by the algorithm, then dux(S ∪ {u, v}) is correct. It follows

that the distance between y and u is correctly computed at line 14, a contradiction. By

contradiction, suppose that some node not in γuv(S) is inserted into Q and consider a

node y 6∈ γuv(S) having minimal distance to u among such nodes. Since y has minimal

distance to u among the nodes not in γuv(S) inserted into Q, then the node x for which

the condition at line 13 is satisfied when y is inserted into Q must belong to γuv(S). By

the previous arguments, dux(S∪{u, v}) is correctly computed by the algorithm and then

Centrality Maximization problem for harmonic centrality 36

u

a

c

v

g

b

d

f

h

i

j

(a) Graph G, the dashed
edge is the newly added edge
{u, v}, gray nodes and dou-
ble edges are visited by Al-
gorithm DynamicBFS.

Node
Iter. extracted ∆Clo Q

from Q
0 v 2/3 (c, f, g)
1 c 2/3 (f, g)
2 f 5/6 (g, h, d)
3 g 13/12 (h, d)
4 h 7/6 (d, i, j)
5 d 7/6 (i, j)
6 i 7/6 (j)
7 j 7/6 ∅

(b) Iterations of the algorithm: the second col-
umn is the node extracted from Q, the last two
columns represent the status of ∆Clo and Q at
the end of the iteration. Iteration 0 corresponds
to lines 1–6 of Algorithm DynamicBFS.

x dxu dxu({u, v})
u 0 0
a 1 1
b 1 1
c 2 2
d 2 2
v 3 1
f 3 2
g 4 2
h 4 3
i 3 3
j 4 4

(c) Distances before and after
the edge addition.

Figure 3.5: Example of execution of Algorithm DynamicBFS.

duy(S ∪ {u, v}) = dux(S ∪ {u, v}) + 1 < duy(S), a contradiction to the fact that y does

not belong to γuv(S).

The new dynamic algorithm can now be obtained by the GreedyImprovement shown

in Figure 6, by doing the following modifications.

• Before line 2, we compute hu in G.

• At line 4, we incrementally compute hu(S ∪ {u, v}) by making use of algorithm

DynamicBFS instead of a full BFS.

Note that, for each v ∈ V , Γuv(S) is maximized when S = ∅. By contradiction, suppose

that there exists a set S′ such that Γuv(S
′) > Γuv(∅). This means that there exists at

least a node x such that dux(S′∪{u, v}) < dux(S′) and dux({u, v}) = dux(∅). Note that if
dux(S′∪{u, v}) < dux(S′) the addiction of {u, v} decreases the distance between u and x.

Centrality Maximization problem for harmonic centrality 37

Since, by definition, all the edges in S′ are incident to u, the shortest path between u and x

pass through {u, v} and do not traverse any edges in S′. It follows that, for each S′′ ⊆ S′,
dux(S′∪{u, v}) = dux(S′′∪{u, v}) and dux(S′) ≤ dux(S′′) then dux(S′′∪{u, v}) < dux(S′′).

Since ∅ ⊆ S′ then dux({u, v}) < dux(∅), a contradiction. Therefore, the algorithm

requires an overall O(k · nΓ) computational time, where Γ = maxv∈V {Γuv(∅)}.

We now show how to exploit the definition of submodularity to reduce the running time

of iterations i ≥ 2 of the for loop at line 2 of GreedyImprovement. The idea of

speeding up the greedy algorithm through this lazy evaluation was originally proposed

by [67]. The same idea was exploited in [56] in order to solve the problem of detect-

ing outbreaks in a network. Let ∆hu(S ∪ {{u, v}}) be the increment to the centrality

of node u after adding the edge {u, v} to graph G(S). Since hu is submodular, then

∆hu(S ∪ {{u, v}}) is monotonic non-increasing. It follows that ∆hu(S ∪ {{u, v}}) is

upper bounded by ∆hu(S′ ∪ {{u, v}}), where S′ ⊆ S. We exploit this observation in

algorithm DynamicGreedyImprovement given in Figure 8.

Algorithm 8: Algorithm DynamicGreedyImprovement.
Input : An Undirected graph G = (V,E); a vertex v ∈ V ; and an integer k ∈ N
Output: Set of edges S ⊆ {{u, v} | u ∈ V \Nv} such that |S| ≤ k

1 Compute cu by using full BFS;
2 foreach v ∈ V \Nu do
3 ∆hv({{u, v}}) := 0;

4 S := ∅;
5 S′ := ∅;
6 for i = 1, 2, . . . , k do
7 LB := 0;
8 foreach v ∈ V \Nu(S) do
9 if (i = 1) ∨ (LB < ∆hv(S

′ ∪ {{u, v}})) then
10 ∆hv(S ∪ {{u, v}}) := DynamicBFS(G(S), {u, v}, {dux(S)}x∈V);
11 if ∆hv(S ∪ {{u, v}}) > LB then
12 LB := ∆hv(S ∪ {{u, v}});
13 max := v;

14 S′ := S;
15 S := S ∪ {{u,max}};
16 Compute distances dux(S), for each x ∈ V ;

17 return S

First, we compute hu and initialize ∆hu (lines 1–3). For each iteration i of the for loop

at lines 6-16, we use the variable LB (line 7) to maintain the maximum improvement to

harmonic found so far (adding the edge {u,max}), that is LB is a lower bound to the

improvement that will be found at the end of iteration i. If at iteration i ≥ 2, for some

node v ∈ V \Nu(S), we have that LB ≥ ∆hu({S′ ∪ {{u, v}}}) (line 9), where S′ is the

Centrality Maximization problem for harmonic centrality 38

value of S at iteration i− 1, then edge {u, v} cannot increase the value of hu more than

the maximum found so far. Therefore, in this case we prune the search. Otherwise, we

compute ∆hu(S ∪ {{u, v}}) and check whether it improves LB or not (line 11). In the

affirmative case, we update LB (line 12). The DynamicGreedyImprovement algo-

rithm can be adapted to the directed case running the (pruned) BFSs on the transpose

graph of G to reduce the time required to compute cu and to improve the computational

complexity of GreedyImprovement.

We can improve the performance of DynamicGreedyImprovement by means of two

further heuristics. First, we sort the nodes of Nv(S), for each v ∈ V , in non-increasing or-

der of distance from u and we stop the for loop of lines 12-16 of algorithm DynamicBFS

when a node y such that duy(S) ≤ dux(S ∪{u, v}) + 1 is extracted. In fact, for any other

node adjacent to x with a distance to u greater than duy(S) the condition at line 13

is not satisfied. Then, we can easily parallelize algorithm DynamicGreedyImprove-

ment over p processors since V \ (Nv(S)) can be divided into sets of
⌊
|V \(Nv(S))|

p

⌋
nodes

and the for loop at lines 8-13 of algorithm DynamicGreedyImprovement can be

executed in parallel for each set. In this case, LB is given by the maximum over each

subset.

3.5 Experimental results

In this section we analyse the greedy algorithm from an experimental point of view. First,

we compare the solution of the greedy algorithm with the optimal solution computed by

using an integer program formulation of the cm-h problem, in order to assess its real

performance in terms of solution quality. Then, we compare the greedy algorithm with

the naive algorithms described in Section 3.3 (in Section 3.3 we propose an efficient

implementation of Top-k algorithm). Moreover, we show the results of our experiments

on real-world graphs by measuring the improvement in the value of harmonic centrality

and in the ranking.

All our experiments have been performed on a computer equipped with two Intel Xeon

E5-2643 CPUs, each with 6 cores clocked at 3.4GHz and 128GB of main memory, and

our programs have been implemented in C++ (gcc compiler v4.8.2 with optimization

level O3).

3.5.1 Directed graphs

We now analyse the performance of the greedy algorithm on both synthetic and real

world directed networks.

Centrality Maximization problem for harmonic centrality 39

Evaluating the solution quality. Wemeasured the approximation ratio of the greedy

algorithm on five types of randomly generated directed networks, namely directed Pref-

erential Attachment (in short, PA) [18], Erdős-Rényi (in short, ER) [35], Copying (in

short, COPY) [52], Compressible Web (in short, COMP) [23] and Forest Fire (in short,

FF) [55]. The size of the graphs is reported in Table 3.1. For each combination (n, m),

we generated five random directed graphs. We focused our attention on twenty vertices

u (also called pivots), which have been chosen on the basis of their original harmonic

centrality ranking. In particular, we have divided the list of vertices, sorted by their

original ranking, in four intervals, and chosen five random vertices uniformly at random

in each interval: we denote by uX% the average value of the vertices in the interval of

the top Xth percentile. The value of k ranged from 1 to 10. In the experiments, we

measured the ratio between the value of the solution found by the greedy algorithm and

the optimal value computed by using the integer programming formulation of the cm-h

problem, defined as follows.

Maximize
∑

s∈V \{u}
v∈V \Nu

(
1

dsu((u, v))
− 1

dsu

)
ysv +

∑
s∈V \{u}

1

dsu

subject to
∑

v∈V \Nu

ysv ≤ 1, ∀ s ∈ V \ {u}

ysv ≤ xv, ∀ s ∈ V \ {u}, v ∈ V \Nu,∑
v∈V \Nu

xv ≤ k,

xv, ysv ∈ {0, 1}, ∀ s ∈ V \ {u}, v ∈ V \Nu.

The decision variables xv and ysv specify a solution S of the cm-h problem as follows.

For any v ∈ V \Nu,

xv =

1 if (u, v) ∈ S,

0 otherwise,

and, for each s ∈ V \ {u} and v ∈ V \Nu,

ysv =

1 if a shortest path from s to u in G((u, v)) passes through edge {u, v},

0 otherwise.

The first constraint of the integer program ensures that each node s can be covered by

at most one edge (u, v) and, hence, that the distance from s to u is counted only once in

the objective function, while the second constraint ensures that if ysv = 1, then xv = 1

and, hence, that the shortest path from s to u passing through {u, v} is considered only

Centrality Maximization problem for harmonic centrality 40

Network n = |V | m = |E| Min Approx. Ratio
PA 100 130 0.9816
PA 500 650 0.9956
PA 1000 1300 1
ER 100 200 0.9668
ER 100 500 0.9744
ER 100 1000 0.9780
ER 500 5000 0.9890
ER 500 12500 0.9819
ER 500 25000 0.9994

COMP 100 200 0.9968
COMP 100 500 0.9764
COMP 100 1000 1
COMP 500 5000 0.9848
COMP 500 12500 1
COMP 500 25000 1
COPY 100 200 0.9911
COPY 100 500 0.9753
COPY 100 1000 0.9820
COPY 500 5000 0.9825
COPY 500 12500 0.9726
COPY 500 25000 0.9690
FF 100 200 0.9911
FF 200 400 0.9714
FF 500 1000 0.9892

Table 3.1: Comparison between the GreedyImprovement algorithm and the opti-
mum. The first three columns report the type and size of the graphs; the fourth column

reports the approximation ratio.

if {u, v} ∈ S. Finally, note that in the objective function, the value of 1
dsu((u,v)) and 1

dsu

can be preprocessed, and that the term
∑

s∈V \{u}
1
dsu

is a constant. We solved the above

integer program by using the GLPK solver [2].

The results are reported in Table 3.1 where we show the minimum (i.e. worst-case)

approximation ratio obtained by the greedy algorithm. The experiments clearly show

that the experimental approximation ratio is by far better than the theoretical one proven

in Corollary 3.6. In fact, in the worst case the ratio is 0.9668. Notice that it is not possible

to process graphs with more than 600 nodes with the exact method.

The analysis of the improvement in the value and in the ranking. We used

real-world citation networks obtained from the Arnetminer database [1] (see Table 3.2

for details). In the Arnetminer’s networks, there is a vertex for each author and an arc

from vertex x to vertex y if the author corresponding to vertex x cited in his paper one

paper written by the author corresponding to y. We parsed the Arnetminer database in

Centrality Maximization problem for harmonic centrality 41

Network n = |V | m = |E| Time (k = 10) [s]
Software Engineering 3141 14787 0.01
Information Security 1067 4253 0.87

Computer Graphics Multimedia 8336 41925 1.79
Theoretical Computer Science 4172 14272 0.43

Artificial Intelligence 27617 268460 0.01
High-Performance Computing 4869 35036 0.04

Computer Networks 9420 53003 0.10
Interdisciplinary Studies 577 1504 0.10

Table 3.2: Collaboration networks obtained from Arnetminer database and running
time of the DynamicGreedyImprovement algorithm with k = 10.

order to select a sub-network induced by the authors that published at least a paper in

one of the main conferences or journals. As in the previous experiment, for each graph,

we used twenty vertices as u. The value of k ranges from 1 to 10.

The results for the citation network Information Security are plotted in Fig. 3.6. In the

two charts we plot the harmonic centrality and the ranking of vertex u as a function of

k. We observe that any vertex becomes central by adding just few arcs. For example a

vertex with the smallest harmonic centrality which initially has harmonic 0 and is ranked

509, improves its value and ranking to 213.32 and 1, respectively, by adding only 7 arcs.

The comparison with naive algorithms. In the chart in Fig. 3.7 we compare the

greedy algorithm with the other approaches. We report the comparison of the average

percentage ranking position i.e. the ranks multiplied by 100
n , since n is the maximum

rank a node can have in a graph with n nodes reached by the nodes. Notice that each

point represents the average over the 10 pivots. The experiments show that the greedy

algorithm outperforms the other approaches. Similar results hold if we use the harmonic

value instead of the ranking position to compare the greedy algorithm against the other

approaches.

We further used the DynamicGreedyImprovement algorithm to analyse a web net-

work [54]. The results for the web network uk-2007 (n = 100000, m = 3050615) are

plotted in Fig. 3.8. In the right chart we report the execution time of the algorithm.

The DynamicGreedyImprovement algorithm is up to 103 times faster than the basic

GreedyImprovement algorithm and for all the iteration it visits only the 0.18% of the

arcs of the graph: using the DynamicGreedyImprovement algorithm, it is possible to

solve the cm-h problem on very large graphs where it is impossible to obtain a solution

using the GreedyImprovement algorithm.

Centrality Maximization problem for harmonic centrality 42

0 2 4 6 8 10
k

0

50

100

150

200

250

300

H
ar

m
on

ic
ce

nt
ra

lit
y

u25%

u50%

u75%

u100%

0 2 4 6 8 10
k

0

100

200

300

400

500

R
an

ki
ng

u25%

u50%

u75%

u100%

Figure 3.6: Performance of the DirectedGreedyImprovement algorithm on net-
work Information Security.

The analysis of the parallel algorithm. In order to test the scalability of the

parallelized version of DynamicGreedyImprovement algorithm, we run the same set

of experiments with different numbers of cores and we measured the execution time and

the speedup i.e. the ratio between the execution time with 1 core and the execution time

with p cores for p = 2, 4, 6, 8. The results are reported in Table 3.3. We notice that the

parallel algorithm shows a good scalability in terms of execution time.

Centrality Maximization problem for harmonic centrality 43

Figure 3.7: Average percentage ranking as a function of the number k of inserted
edges for the four heuristics for the Information_security network.

Avg. Avg. Avg. Avg. Avg.
Execution Time Speedup Speedup Speedup Speedup

Network (1 core) (2 cores) (4 cores) (6 cores) (8 cores)
uk-2007 1382 s 1,83 3,70 5,58 7,44

Table 3.3: Execution time and speedup of DynamicGreedyImprovement algo-
rithm on uk-2007 network with different number of cores.

3.5.2 Undirected graphs

We now focus on the performance of the greedy algorithm on both synthetic and real

world undirected networks.

The evaluation of the solution quality. In this section we evaluate the quality of

the solution produced by the greedy algorithm by measuring its approximation ratio on

several, relatively small, randomly generated networks and on four real-world networks.

In particular, we considered four random graph generating models, that is, undirected

Preferential Attachment (in short, PA) [7], Erdős-Rényi (in short, ER) [35], Configuration

Model (in short, CM) [11, 68], and Watts-Strogatz model (in short WS) [95]. The size

of the generated graphs is reported in Table 3.4. For each combination (n, m), we

generated five random undirected graphs. Moreover, we considered the four real-world

graphs, whose size is reported in Table 3.5. The first graph is the collaboration network

between Jazz musicians that have played together in a band, and it has been obtained

Centrality Maximization problem for harmonic centrality 44

0 1 2 3 4 5 6 7 8 9
k

32000

34000

36000

38000

40000

42000

44000

H
ar

m
on

ic
ce

nt
ra

lit
y

u25%

u50%

u75%

u100%

0 2 4 6 8 10
k

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
im

e
(s

)

u25%

u50%

u75%

u100%

Figure 3.8: Performance of the DynamicGreedyImprovement algorithm on net-
work uk-2007.

from the Konect database [53], while the last three graphs have been downloaded from

the Uri AlonLab [90] database: in particular, s838_st is an electronic network, while the

other two graphs are biological networks.

We show, similarly to the directed graph case, the minimum ratio obtained. The exper-

iments show that in the worst case the ratio is 0.9798.

Centrality Maximization problem for harmonic centrality 45

Network n = |V | m = |E| Min Approx.
PA 100 130 0.9939
PA 500 650 0.9921
ER 100 200 0.9828
ER 100 500 0.9938
ER 100 1000 0.9970
ER 500 5000 0.9971
ER 500 12500 0.9991
ER 500 25000 1
CM 100 200 0.9946
CM 500 1000 0.9995
WS 100 500 0.9798
WS 100 600 0.9798
WS 100 800 0.9856
WS 100 1200 0.9946

Table 3.4: Comparison between the GreedyImprovement algorithm and the opti-
mum in random graphs. The first three columns reports the type and size of the graphs;

the fourth column reports the minimum measured approximation ratio.

Network n = |V | m = |E| Min Approx.
s838_ st 512 819 0.9862

jazz 198 2742 0.9968
coli1 328 456 0.9947

celegans_metabolic 346 1493 0.9981

Table 3.5: Comparison between the GreedyImprovement algorithm and the opti-
mum in real-world graphs. The first three columns reports the name and size of the

graphs; the fourth column reports the minimum measured approximation ratio.

In Fig. 3.9 and Fig. 3.10, instead, we plot the average harmonic centrality and ranking of

vertices u as a function of k in a small real-world network, namely the s838_st electrical

network. We observe that the charts on the top, where the values are computed using

the GreedyImprovement algorithm, and the charts on the bottom, in which we used

the optimal algorithm, are almost identical. Indeed, the approximation ratio in the

worst case is 0.9862: that is, the GreedyImprovement algorithm performs very well

in practice.

Finally, we tested our algorithm on several artificial instances generated by the Erdős-

Rényi and the Watts-Strogatz models with n = 100 and n = 500. In the former model

we can choose appropriate values of the graph density, while in the latter one we can

choose the clustering coefficient. It turned out that the performance of our algorithm is

not influenced by these two factors. Indeed, the approximation ratio ranges in [0.9798, 1]

and improves a little when the density is very high (i.e. m > 0.5n2).

Centrality Maximization problem for harmonic centrality 46

The analysis of the improvement in the value and in the ranking. Wemeasured

the improvement in the value of harmonic centrality of u and in the harmonic ranking of

u within the network. In particular, we studied two large real-world networks obtained

from the DBLP [58] and IMDB database [44]. In such networks, the nodes are authors

or actors and there is an edge connecting vertex x and vertex y if the author, or actor,

corresponding to vertex x collaborated with y for writing a paper or for acting in the same

movie. For each graph, we used twenty pivots as u but, differently from the experiments

on random graphs, these vertices have been chosen on the basis of their degree ranking:

in particular, we divided the list of vertices sorted by their ranking in 4 parts and chosen

randomly five vertices for each interval. The value of k ranges from 1 to 10.

The analysis of these two large networks has been possible only by using the Dy-

namicGreedyImprovement algorithm, since this algorithm visits only few edges of

the graph (as explained in the previous section): in particular, for all the iterations

i = 1, 2, . . . , k the algorithm visits only 0.09% of the edges. The results for the DBLP

network (n = 1305445, m = 6108727) are plotted in Fig. 3.11, while the results for the

IMDB network (n = 1797446, m = 72880156) are similar and are shown in Fig. 3.12. In

the chart on the left we plot the harmonic centrality of vertex u as a function of k. We

observe that any vertex improves its harmonic value by adding just few edges. In order to

provide a lower bound on the value of the harmonic centrality we compute the diameter

D using the iFUB algorithm [29]: the lower bound LBh is equal to 1 + n−D
D . In DBLP

network, D = 23 and LBh = 56758 and in IMDB network D = 14 and LBh = 128389.

In the right chart we plot the execution time of the algorithm DynamicGreedyIm-

provement. We notice that the computational effort is high for k = 1 but then it is

almost constant for k > 1: this is due to the submodularity property.

The great difference in execution time between different nodes is due to the dynamic

algorithm: indeed the most a node has a low degree the most it is likely that, adding

and edge incident to a central node u, can affect the majority of the distances between

u and the other nodes (running the dynamic algorithms on nodes with small degree has

complexity O(Γuv(S)) ∼ O(m + n)). Due to the fact that the degree distribution in

the big networks analysed is not uniform, the difference between the execution time of

the between u25% and u50%, u50% and u75%, u75% and u100% is not proportional to the

difference of the positions in the initial ranking.

The comparison with naive algorithms. In order to compare the solution ob-

tained by the GreedyImprovement algorithm with that obtained by using the other

aforementioned approaches, described in Section 3.3, we run all the algorithms on sev-

eral real-world networks reported in Tables 3.5 and 3.7. In what follows we compare

Centrality Maximization problem for harmonic centrality 47

Avg. Avg. Avg. Avg. Avg.
Execution Time Speedup Speedup Speedup Speedup

Network (1 core) (2 cores) (4 cores) (6 cores) (8 cores)
DBLP 17671 s 1.91 3.01 4.01 4.63
IMDB 10710 s 1.57 2.10 3.12 3.27

Table 3.6: Execution time and speedup of DynamicGreedyImprovement algo-
rithm on DBLP and IMDB networks with different number of cores.

Network n = |V | m = |E| Time (k = 10) [s]
advogato 5272 45903 0.07
ca-AstroPh 17903 196972 4.32
ca-CondMat 21363 91286 3.86
ca-HepPh 11204 117619 0.88
ca-HepTh 8638 24806 0.44

dip20090126 19928 41202 8.10
Newman-Cond_mat_95-99 22015 58578 3.19

PGPgiantcompo 10680 24316 1.23

Table 3.7: Real-world graphs used in the comparison between the GreedyImprove-
ment algorithm and the other baselines and running time of the DynamicGreedy-

Improvement algorithm with k = 10.

GreedyImprovement with Degree, Random, and Top-k on network ca-HepPh,

which is a well known collaboration network obtained from the SNAP database [57].

The results for the other networks are similar.

Regarding the greedy algorithm, in Fig. 3.13 we plot the harmonic centrality and the

ranking of vertex u as a function of k on network ca-HepPh. We observe that any vertex

becomes central by adding just few edges. In Fig. 3.14, we compare the ranking obtained

with the solution given by our algorithm with that obtained with the solution given by

the other approaches on the same network. In particular, we show the average percentage

ranking as in the directed graph case. We observe that the greedy algorithm significantly

outperforms Random, Degree, and Top-k, whenever k > 1.

We confirm that our algorithm is by far better than the other approaches.

We observe that similar results hold if we use the harmonic value instead of the ranking

position to compare the greedy algorithm against the other baselines.

The analysis of the parallel algorithm. Like in the directed case, we run the same

set of experiments with different numbers of cores and we measured the execution time

and the speedup i.e. the ratio between the execution time with 1 core and the execution

time with p cores for p = 2, 4, 6, 8. The results are reported in Table 3.6. We notice that

Centrality Maximization problem for harmonic centrality 48

the parallel algorithm shows a good scalability in terms of execution time. Note that the

small increase in the case of 8 cores is due to the fact that in our machine, each CPU

has 6 physical cores and hence in the case of 8 cores the computation is performed by

two different processors.

Centrality Maximization problem for harmonic centrality 49

(a) GreedyImprovement algorithm.

(b) Optimal algorithm.

Figure 3.9: Harmonic centrality of vertices in the four intervals u as a function of k in
the network s838_st. Comparison between the GreedyImprovement algorithm and

the optimal one.

Centrality Maximization problem for harmonic centrality 50

0 2 4 6 8 10
k

0

20

40

60

80

100

R
an

ki
ng

u25%

u50%

u75%

u100%

(a) GreedyImprovement algorithm.

0 2 4 6 8 10
k

0

20

40

60

80

100

R
an

ki
ng

u25%

u50%

u75%

u100%

(b) Optimal algorithm.

Figure 3.10: Ranking of vertices in the four intervals u as a function of k in the
network s838_st. Comparison between the GreedyImprovement algorithm and the

optimal one.

Centrality Maximization problem for harmonic centrality 51

0 2 4 6 8 10
k

290000

295000

300000

305000

310000

315000

320000

325000

H
ar

m
on

ic
ce

nt
ra

lit
y

u25%

u50%

u75%

u100%

0 2 4 6 8 10
k

0

10000

20000

30000

40000

50000

60000

T
im

e
(s

)

u25%

u50%

u75%

u100%

Figure 3.11: Performance of DynamicGreedyImprovement algorithm on network
DBLP.

Centrality Maximization problem for harmonic centrality 52

0 2 4 6 8 10
k

480000

490000

500000

510000

520000

530000

540000

550000

560000

570000

H
ar

m
on

ic
ce

nt
ra

lit
y

u25%

u50%

u75%

u100%

0 2 4 6 8 10
k

0

5000

10000

15000

20000

25000

30000

35000

T
im

e
(s

)

u25%

u50%

u75%

u100%

Figure 3.12: Performance of DynamicGreedyImprovement algorithm on network
IMDB.

Centrality Maximization problem for harmonic centrality 53

0 2 4 6 8 10
k

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800
H

ar
m

on
ic

ce
nt

ra
lit

y

u25%

u50%

u75%

u100%

0 2 4 6 8 10
k

0

10

20

30

40

50

60

70

80

90

R
an

ki
ng

u25%

u50%

u75%

u100%

Figure 3.13: Harmonic centrality and ranking of vertex u as a function of k in network
ca-HepPh.

Centrality Maximization problem for harmonic centrality 54

0 2 4 6 8 10
k

0

10

20

30

40

50

R
an

ki
ng

Greedy
Top-k Harmonic
Degree
Random

Figure 3.14: Percentage ranking position between the Ranking of the solution ob-
tained by the GreedyImprovement algorithm and the different baselines in network

ca-HepPh.

Chapter 4

Centrality Maximization problem

for betweenness centrality

In this chapter, we study the cm problem on betweenness centrality (cm-b). We first

theoretically analyse different algorithms and then we experimentally evaluate their per-

formance. Unlike the cm-h case, we have an approximation algorithm with exact guaran-

tee only for directed graphs. However, also in the undirected graphs case, the algorithm

that select edges in a greedy way has experimentally the best performance in terms of

value and ranking compared to previous proposals. Most of the results presented in this

chapter are included in [12, 30].

4.1 Problem definition

Given a directed (respectively undirected) graph G = (V,E), a vertex u ∈ V , and an

integer k, the Maximum Betweenness Improvement (in short, cm-b) problem consists

in finding a set S of ingoing edges (respectively incident edges) to u not in E (that is,

S ⊆ {(v, u) : v ∈ V \Nu}) such that |S| ≤ k and bu(S) is maximum.

4.2 Hardness results

4.2.1 Hardness of approximation for directed graphs

In this section we first show that it is NP -hard to approximate problem cm-b within

a factor greater than 1 − 1
2e . Then, we focus on the Maximum Betweenness Ranking

55

Centrality Maximization problem for betweenness centrality 56

Improvement problem (crm-b) and show that it cannot be approximated within any

multiplicative constant bound, unless P = NP .

Theorem 4.1. For each γ > 1− 1
2e , there is no γ-approximation algorithm for the cm-b

problem in directed graphs, unless P = NP .

Proof. The proof is similar to the proof of Theorem 3.1. We give an L-reduction with

parameters a and β [97, Chapter 16] to the maximum set coverage problem (msc) defined

in Section 3.2.1. In detail, we will give a polynomial-time algorithm that transforms any

instance Imsc of msc into an instance Icm-b of cm-b and a polynomial-time algorithm

that transforms any solution Scm-b for Icm-b into a solution Smsc for Imsc such that the

following two conditions are satisfied for some values a and β:

OPT (Icm-b) ≤ aOPT (Imsc) (4.1)

OPT (Imsc)− s(Smsc) ≤ β (OPT (Icm-b)− bv(Scm-b)) , (4.2)

where OPT denotes the optimal value of an instance of an optimization problem. If the

above conditions are satisfied and there exists an α-approximation algorithm Acm-b for

cm-b, then there exists a (1 − aβ(1 − α))-approximation algorithm Amsc for msc [97,

Chapter 16]. Since it is NP -hard to approximate msc within a factor greater than

1 − 1
e [39], then the approximation factor of Amsc must be smaller than 1 − 1

e , unless

P = NP . This implies that 1− aβ(1−α) < 1− 1
e that is, the approximation factor α of

Acm-b must satisfy α < 1− 1
aβe , unless P = NP . In the following, we give an L-reduction

and determine the constant parameters a and β. In the reduction, each element xi and

each set Sj in an instance of msc corresponds to a vertex in an instance of cm-b, denoted

by vxi and vSj , respectively. There is an arc from vxi to vSj if and only if xi ∈ Sj . The

cm-b instance contains two further nodes v and t and an arc (v, t). A solution to such

an instance consists of arcs from nodes vSj to v and the aim is to cover with such arcs

the maximum number of shortest paths from nodes vxi to t. We will prove that we can

transform a solution to cm-b into a solution to msc such that any node vxi that has a

shortest path passing trough v corresponds to a covered element xi ∈ X. We give more

detail in what follows.

Given an instance Imsc = (X,F , k′) of msc, where F = {S1, S2, . . . S|F|}, we define an

instance Icm-b = (G, v, k) of cm-b, where:

• G = (V,E);

• V = {v, t} ∪ {vxi | xi ∈ X} ∪ {vSj | Sj ∈ F};

• E = {(v, t)} ∪ {(vxi , vSj) | xi ∈ Sj};

Centrality Maximization problem for betweenness centrality 57

vx1

vx2

...

vx|X|

vS1

vS2

...

vS|F|

v t

Figure 4.1: Reduction used in Theorem 4.1. In the example x1 ∈ S1, x1 ∈ S2,
x2 ∈ S1, and x2 ∈ SF . The dashed arcs denote those added in a solution.

• k = k′.

See Figure 4.1 for a visualization.

Without loss of generality, we can assume that any solution Scm-b to cm-b contains only

arcs (vSj , v) for some Sj ∈ F . In fact, if a solution does not satisfy this property, then we

can improve it in polynomial time by repeatedly applying the following transformation:

for each arc e = (vxi , v) in Scm-b such that xi ∈ X, exchange e with an arc (vSj , v) such

that xi ∈ Sj and (vSj , v) 6∈ Scm-b if it exists or remove e otherwise. Note that if no arc

(vSj , v) such that xi ∈ Sj and (vSj , v) 6∈ Scm-b exists, then all the shortest paths from xi

to t pass through v and therefore the arc (vxi , v) can be removed without changing the

value of bv(Scm-b). Such a transformation does not decrease the value of bv(Scm-b) in

fact, all the shortest paths passing through v in the original solution still pass through

v in the obtained solution. Moreover, if Condition (4.2) is satisfied for the obtained

solution, then it is satisfied also for the original solution. In such a solution, all the paths

(if any) from vxi to t, for each xi ∈ X, and from vSj to t, for each Sj ∈ F pass through

v and therefore the ratio σstv(Scm-b)
σst(Scm-b) is 1, for each s ∈ V \ {v, t} such that σst(Scm-b) 6= 0.

We can further assume, again without loss of generality, that any solution Scm-b is such

that |Scm-b| = k, in fact, if |Scm-b| < k, then we can add to Scm-b an arc (vSj , v) that is

not yet in Scm-b. Note that such an arc must exists otherwise k > |F| and this operation

does not decrease the value of bv(Scm-b).

Given a solution Scm-b = {(vSj , v) | Sj ∈ F} to cm-b, we construct the solution Smsc =

{Sj | (vSj , v) ∈ Scm-b} to msc. By construction, |Smsc| = |Scm-b| = k = k′. Moreover,

the set of elements xi of X such that σvxi t(Scm-b) 6= 0 is equal to {xi ∈ Sj | (vSj , v) ∈

Centrality Maximization problem for betweenness centrality 58

Scm-b} =
⋃
Sj∈Smsc

Sj . Therefore, the betweenness centrality of v in G(Scm-b) is:

bv(Scm-b) =
∑

s∈V \{v,t}
σst(Scm-b)6=0

σstv(Scm-b)

σst(Scm-b)

=
∑
xi∈X

σvxi t(Scm-b)6=0

σvxi tv(Scm-b)

σvxi t(Scm-b)
+

∑
Sj∈F

σvSj t
(Scm-b)6=0

σvSj tv(Scm-b)

σvSj t(Scm-b)

=|{xi ∈ Sj | (vSj , v) ∈ Scm-b}|+ |{Sj | (vSj , v) ∈ Scm-b}|

=

∣∣∣∣∣∣
⋃

Sj∈Smsc

Sj

∣∣∣∣∣∣+ |Smsc|

=s(Smsc) + k.

It follows that Conditions (4.1) and (4.2) are satisfied for a = 2, β = 1 since: OPT (Icm-b) =

OPT (Imsc) + k ≤ 2OPT (Imsc) and OPT (Imsc) − s(Smsc) = OPT (Icm-b) − bv(Scm-b),

where the first inequality is due to the fact that OPT (Imsc) ≥ k. Notice that if

OPT (Imsc) < k, then the greedy algorithm finds an optimal solution for msc. The

statement follows by plugging the values of a and b into α < 1− 1
aβe .

4.2.2 Hardness of approximation for undirected graphs

In this section we study the cm-b problem on undirected graphs Set Coverage (msc)

problem defined as follows. Given a ground set X, a family of subsets of X, F =

{S1, S2, . . . S|F|}, and an integer k′, find a family F ′ ⊆ F such that |F ′| ≤ k′ that

maximize s(F ′) = | ∪Si∈F ′ Si|.

Theorem 4.2. For each γ > 1− 1
2e , there is no γ-approximation algorithm for the cm-b

problem in undirected graphs, unless P = NP .

The proof is similar to that of the directed graph case.

4.2.3 Improving the position in the ranking

We study the problem of improving the position of a node v in the ranking obtained

by sorting all the nodes in non-increasing order according to their harmonic centrality.

The ranking of a node v according to betweenness centrality is the placement of v in the

ordering induced by b and it is defined as rbv = |{u ∈ V | bu > bv}|+ 1. Given a directed

graph G = (V,E), a vertex u ∈ V , and an integer k, the Maximum Betweenness Ranking

Improvement (in short, crm-b) problem consists in finding a set S of ingoing edges to

Centrality Maximization problem for betweenness centrality 59

vx1

vx2

...

vxn

vT1

vT2

...

vTm

vT 1
1

vT 2
1

...
vTM1

vT 1
2

vT 2
2

...
vTM2

vT 1
m

vT 2
m

...
vTMm

v

u

t1

t2

t3

Figure 4.2: The reduction used in Theorem 4.3. The dashed arcs denote those added
in a solution to crm-b.

u not in E, S ⊆ {(u, v) : v ∈ V \N i
u} such that |S| ≤ k and ρbv(S) is maximum, where

ρbv(S) = rbv − rbv(S). We show that, unless P = NP , we cannot find a polynomial time

approximation algorithm for crm-b with a constant approximation guarantee.

Theorem 4.3. For any constant α ≤ 1, there is no α-approximation algorithm for the

crm-b problem in directed graphs, unless P = NP .

Proof. The proof is similar to the proof of Theorem 3.3. By contradiction, let us assume

that there exists a polynomial time algorithm A that guarantees an approximation factor

of α. As in the harmonic case, we show that we can use A to determine whether an

instance I of the exact cover by 3-sets problem (X3C) admits a feasible solution or not.

Note that we can assume without loss of generality that m > q.

Given an instance I = (X,C) of X3C where |X| = n = 3q and |C| = m, we define an

instance I ′ = (G, v, k) of crm-b as follows.

• G = (V,E);

• V = {v, u, t1, t2, t3} ∪ {vxi | xi ∈ X} ∪ {vTj | Tj ∈ C} ∪ {vT `j | Tj ∈ C, ` =

1, 2, . . . ,M};

• E = {(vxi , vTj) | xi ∈ Tj}∪{(vTj , vT `j) | Tj ∈ C, ` = 1, 2, . . . ,M}∪{(u, v), (v, t1), (v, t2), (v, t3)};

• k = q.

where M = 5q + 1. See Figure 4.2 for a visualization.

Centrality Maximization problem for betweenness centrality 60

The proof proceeds by showing that I admits an exact cover if and only if I ′ admits a

solution S such that ρbv(S) > 0. This implies that, if OPT is an optimal solution for I ′,

then ρbv(OPT) > 0 if and only if I admits an exact cover. Hence, the statement follows

by observing that algorithm A outputs a solution S such that ρbv(S) > αρbv(OPT) and

hence ρbv(S) > 0 if and only if I admits an exact cover.

In I ′, bv = 3, bvTj = 3M = 15q + 3, for each Tj ∈ C, and bw = 0, for any other node w.

Therefore, rTj = 1, for each Tj ∈ C, rv = m + 1, and rw = m + 2, for any other node

w. In the proof we will use the observation that, in instance I ′, adding arcs incident to

v does not decrease the betweenness value of any node, that is for any node w ∈ V and

for any solution S to I ′, bw(S) ≥ bw.

If instance I of X3C admits an exact cover C ′, then consider the solution S = {(vT 1
j
, v) | Tj ∈

C ′} to I ′. Note that |S| = q = k and therefore we only need to show that ρbv(S) > 0.

Indeed, in the following we show that ρbv(S) = m − q > 0. Since C ′ is an exact cover,

then all nodes vxi are connected to the 3 nodes ti and all the paths connecting them pass

through v. The same holds for nodes vTj and vT 1
j
such that Tj ∈ C ′. Since there are

3q nodes vxi , q nodes vTj such that Tj ∈ C ′, and q nodes vT 1
j
such that Tj ∈ C ′, then

the betweenness centrality of v increases to bv(S) = 3(5q + 1) = 15q + 3. Nodes vTj and

vT 1
j
such that Tj ∈ C ′ increase their centrality to bvTj (S) = 3(M + 4) = 15q + 15 and

bv
T1
j

(S) = 16, respectively. Any other node does not change its betweenness centrality.

Therefore the only nodes that have a betweenness higher than v are the q nodes vT 1
j
such

that Tj ∈ C ′. It follows that rbv(S) = q + 1 and ρbv(S) = m+ 1− (q + 1) = m− q > 0.

Let us now assume that I ′ admits solution S such that |S| ≤ k and ρbv(S) > 0. We

first prove that S is only made of arcs in the form (vT 1
j
, v) and that bv(S) ≥ 15q + 3 or

that it can be transformed in polynomial time into a solution with such a form without

increasing its size. Assume that S has arcs not in this form, then we can apply one of

the following transformations to each of such arcs e = (w, v).

• If w = vxi for some xi ∈ X and there exists a node vT 1
j
such that xi ∈ Tj and

(vT 1
j
, v) 6∈ S, then remove e and add arc (vT 1

j
, v) to S;

• If w = vxi for some xi ∈ X and (vT 1
j
, v) ∈ S for all Tj such that xi ∈ Tj , then

remove e;

• If w = vTj for some Tj ∈ C and (vT 1
j
, v) 6∈ S, then remove e and add arc (vT 1

j
, v)

to S;

• If w = vTj for some Tj ∈ C and (vT 1
j
, v) ∈ S, then remove e;

• If w = vT ij
for some Tj ∈ C and i > 1, and (vT 1

j
, v) 6∈ S, then remove e and add

arc (vT 1
j
, v) to S;

Centrality Maximization problem for betweenness centrality 61

• If w = vT ij
for some Tj ∈ C and i > 1, and (vT 1

j
, v) ∈ S, then remove e and add

arc (vT 1
j′
, v) to S for some j′ such that (vT 1

j′
, v) 6∈ S;1

• If w = ti for i ∈ {1, 2, 3}, then remove e and add arc (vT 1
j′
, v) to S for some j′ such

that (vT 1
j′
, v) 6∈ S.

Let us denote by S′ and S the original solution and the solution that is eventually

obtained by applying the above transformations, respectively. All the above transforma-

tions remove an arc and possibly add another arc, therefore the size of the transformed

solution is at most the original size, that is |S| ≤ |S′| ≤ k. It remains to show that

ρbv(S
′) > 0 implies bv(S) ≥ 15q + 3. Indeed, observe that v is initially in position

m+ 1 and the only nodes that have a betweenness value higher than v are the m nodes

vTj . Therefore, since ρbv(S′) > 0, there is at least a node vTj such that bv(S′) ≥ bvTj (S
′).

Moreover, all the transformations do not decrease the value of bv and then bv(S) ≥ bv(S′)
and, considering that bvTj (S

′) ≥ bvTj = 15q + 3, we obtain bv(S) ≥ 15q + 3.

We now prove that the solution C ′ = {Tj | (vT 1
j
, v) ∈ S} to I is an exact cover. By

contradiction, let us assume that an element in X is not contained in any set in C ′

or that an element in X is contained in more than one set in C ′. The latter case

implies the former one since |C ′| = q, all the sets in C ′ contain exactly 3 elements, and

|X| = 3q. Hence, we assume that an element in |X| is not contained in any set in C ′.

This implies that there exists a node vxi ∈ V that has no path to nodes ti and therefore

the betweenness of v is at most 3(1 + 3q − 1 + 2q) = 15q, which is a contradiction to

bv(S) ≥ 15q + 3.

4.3 Naive algorithms

We now study and analyse the algorithms to solve cm-b problem [12, 27, 30].

• Random algorithm: connect u to a set of k nodes extracted uniformly at random.

• Degree algorithm: connect u to a set of k nodes having the highest degree.

• Top-k algorithm: connect u to a set of k nodes having the highest betweenness

centrality.

Centrality Maximization problem for betweenness centrality 62

c1

c2

a1

a2

a3

a4

c

a

b

v t

(a) Degree and Top-k algorithms

c1

c2

a1

a2

a3

a4

c

a

b

v t

(b) Optimal solution

Figure 4.3: Counterexample for the Degree and Top-k algorithms for x = 4. The
dashed edges are those in a solution to cm-b. The Degree and Top-k algorithms
(left) adds edges {a, v} and {b, v} and the value bv({a, v}, {b, v}) is 6.20. An optimal

solution (right), has value bv({{a, v}, {c, v}}) = 27.

4.3.1 Worst case approximation ratio of the naive algorithms

We now show that the naive algorithms have an arbitrary small approximation ratio.

We provide counterexamples for Degree and Top-k algorithms. Such counterexamples

are valid also for the Random algorithm because it extracts a set of k nodes uniformly

at random that can be equal to the sets returned by Degree or Top-k algorithms with

probability p > 0. Consider the following instance of cm-b on undirected graphs, see

Figure 4.3 for an example.

• graph G = (V,E).

• V = {v, t, a, b, c}∪A∪C, where A = {ai}xi=1, C = {ci}yi=1, and y = x−2, for some

x > 2;

• E = {{v, t}} ∪ {{ai, a} | ai ∈ A} ∪ {{ai, b} | ai ∈ A} ∪ {{ci, c} | ci ∈ C};

• All the edges have weight 1;

• k = 1.

The initial values of degree are degv = 1, dega = degb = x, degc = y, bai = 2, for each

i = 1, 2, . . . , x The initial values of betweenness are bv = 0, ba = bb = x(x−1)
4 , bc = y(y−1)

2 ,

bai = 1
x , for each i = 1, 2, . . . , x. Therefore, for x > 2, the two nodes with the highest

betweenness and the highest degree are a and b and Degree and Top-k algorithms

add edges {a, v} and {b, v}. The solution obtained has a value bv({a, v}) = x+ 2 + 1
x+1 ,

1Note that such j′ must exists, otherwise m < q.

Centrality Maximization problem for betweenness centrality 63

Algorithm 9: GreedyImprovement algorithm.
Input : A directed graph G = (V,E); a vertex v ∈ V ; and an integer k ∈ N
Output: Set of edges S ⊆ {(u, v) | u ∈ V \Nv} such that |S| ≤ k

1 S ← ∅;
2 for i = 1, 2, . . . , k do
3 foreach u ∈ V \ (Nv(S)) do
4 Compute bv(S ∪ {(u, v)})
5 umax ← arg max{bv(S ∪ {(u, v)}) | u ∈ V \ (Nv(S))};
6 S ← S ∪ {(umax, v)};
7 return S;

since there are x + 2 paths between nodes in A ∪ {a, b} and t passing through v and 1

path over x + 1 paths from a to b passing through v. Adding edges {a, v} and {c, v},
instead increases bv by y · x+ y + 1 + x+ 1 + y + x+ 1 + x = x2 + 3x− 1, since all the

paths from A∪ {a, b} to C ∪ {c} pass through v. Therefore, the approximation ratios of

the Degree and Top-k algorithms tend to be arbitrarily small as x increases. Let us

consider the directed case: we modify the Figure 4.3 adding two opposite directed edges

for each undirected arc and adding only incident edges to node v. It is easy to see that

also in this case we can obtained an unbounded approximation ratio.

4.4 Greedy approximation algorithm for cm-b

In this section we propose an algorithm that guarantees a constant approximation ra-

tio for the cm-b problem. We show that the objective function bv is monotone and

submodular with respect to the possible set of arcs incident to v. Hence, we define a

greedy algorithm, reported in Algorithm 9, that provides a
(
1− 1

e

)
-approximation. Al-

gorithm 6 iterates k times and, at each iteration, it adds to a solution S an arc (u, v)

that, when added to G(S), gives the largest marginal increase in the betweenness of v,

that is, bv(S ∪ {(u, v)}) is maximum among all the possible arcs not in E ∪ S incident

to v. The next theorem shows that the objective function is monotone and submodular.

Theorem 4.4. For each node v, function bv is monotone and submodular with respect

to any feasible solution for cm-b in directed graphs.

Proof. We prove that each term of the sum in the formula of bv is monotone increasing

and submodular. For each pair s, t ∈ V such that s 6= t and s, t 6= v, we denote such

term by bstv(X) = σstv(X)
σst(X) , for each solution X to cm-b.

We first give two observations that will be used in the proof. Let X,Y be two solutions

to cm-b such that X ⊆ Y .

Centrality Maximization problem for betweenness centrality 64

• Any shortest path from s to t in G(X) exists also in G(Y). It follows that dst(Y) ≤
dst(X).

• If dst(Y) < dst(X), then any shortest path from s to t in G(Y) pass through arcs in

Y \X. Therefore, all such paths pass through v. It follows that if dst(Y) < dst(X),

then bstv(Y) = 1.

We now show that bv is monotone increasing, that is for each solution S to cm-b and

for each node u such that (u, v) 6∈ S ∪ E,

bstv(S ∪ {(u, v)}) ≥ bstv(S).

If dst(S) > dst(S∪{(u, v)}), then bstv(S∪{(u, v)}) = 1 and since by definition bstv(S) ≤ 1,

then the statement holds. If dst(S) = dst(S∪{(u, v)}), then either (u, v) does not belong

to any shortest path from s to t and then bstv(S ∪ {(u, v)}) = bstv(S), or (u, v) belongs

to a newly added shortest path from s to t with the same weight and bstv(S∪{(u, v)}) =
σstv(S)+δ
σst(S)+δ > σstv(S)

σst(S) = bstv(S), where δ ≥ 1 is the number of shortest paths from s to t

that pass through arc (u, v) in G(S ∪ {(u, v)}). In any case the statement holds.

We now show that bstv is submodular, that is for each pair of solutions to cm-b S, T

such that S ⊆ T and for each node u such that (u, v) 6∈ T ∪ E,

bstv(S ∪ {(u, v)})− bstv(S) ≥ bstv(T ∪ {(u, v)})− bstv(T).

We analyze the following cases:

• dst(S) > dst(T). In this case, bstv(T ∪ {(u, v)}) − bstv(T) = 0 since in any case

bstv(T ∪ {(u, v)}) = bstv(T) = 1. As bstv is monotone increasing, then bstv(S ∪
{(u, v)})− bstv(S) ≥ 0.

• dst(S) = dst(T).

– dst(S) > dst(S∪{(u, v)}). In this case, dst(T) > dst(T ∪{(u, v)}) and bstv(T ∪
{(u, v)}) = bstv(S ∪ {(u, v)}) = 1. Moreover bstv(T) ≥ bstv(S). Therefore

bstv(S ∪ {(u, v)})− bstv(S) ≥ bstv(T ∪ {(u, v)})− bstv(T).

– dst(S) = dst(S∪{(u, v)}). In this case dst(T) = dst(T∪{(u, v)}). Let us denote
bstv(S) = α

β , then we have that bstv(T) = α+γ
β+γ , bstv(S ∪ {(u, v)}) = α+δ

β+δ , and

bstv(T ∪ {(u, v)}) = α+γ+δ
β+γ+δ , where γ and δ are the number of shortest paths

between s and t in G(T) that pass through arcs in T \ S and arc (u, v),

respectively. The statement follows since α+δ
β+δ −

α
β ≥

α+γ+δ
β+γ+δ −

α+γ
β+γ for any

α ≤ β, i.e. σstv(S) ≤ σst(S).

Centrality Maximization problem for betweenness centrality 65

Corollary 4.5. Algorithm 9 provides a
(
1− 1

e

)
-approximation for the cm-b problem in

directed graphs.

It is easy to compute the computational complexity of Algorithm GreedyImprove-

ment. Line 2 iterates over all the numbers from 1 to k. Then, in Line 3, all the nodes u

that are not yet neighbors of v are scanned. The number of these nodes is clearly O(n).

Finally, in Line 4, for each node u in Line 3, we add the edge {u, v} to the graph and com-

pute the betweenness in the new graph. Since computing betweenness requires O(nm)

operations in unweighted graphs, the total running time of GreedyImprovement is

O(kn2m).

4.4.1 Improving the greedy algorithm running time

To speed up the computation of GreedyImprovement algorithm, we use the dynamic

algorithm described in [12]. This algorithm is based on QUINCA algorithm [86] for

incremental APSP. The main idea is to keep track of information regarding the graph

and just update the parts that have changed as a consequence of the edge insertion. The

dynamic algorithm updates the betweenness centrality of the nodes in linear time with

respect to the number of pairs of nodes u, v which distance duv is affected by the edge

insertion.

In [12], the authors show that this algorithm outperforms the static and dynamic al-

gorithms in the literature with respect to the recomputation of the betweenness of a

single node after and edge update. We refer to this algorithms has DynamicGreedy-

Betweenness algorithm.

4.4.2 Worst case approximation ratio of the greedy algorithm on undi-
rected graph

We now show that the greedy algorithm exhibits an arbitrary small approximation ratio

in undirected graphs. Consider the following instance of cm-b, see Figure 4.4 for an

example.

• Graph G = (V,E).

• V = {v, t, a, b, c, a′, b′, c′}∪A∪B∪C, where A = {ai}yi=1, B = {bi}xi=1, C = {ci}yi=1,

and y = x− 2, for some x > 2;

Centrality Maximization problem for betweenness centrality 66

a1

a2b1

b2

b3

b4
c1

c2

a

b

c

a′

c′

v t

(a) Greedy algorithm

a1

a2b1

b2

b3

b4
c1

c2

a

b

c

a′

c′

v t

(b) Optimal solution

Figure 4.4: Counterexample for the greedy algorithm for x = 4. The dashed edges
are those in a solution to cm-b. The greedy algorithm (left) in the first iteration adds
edge {b, v} since it increases the most the centrality of v. After adding such edge the
new value of bv is 5. In the second iteration the algorithm adds edge {a2, v}, then the
value of bv becomes 11. An optimal solution (right), has value bv({{a, v}, {c, v}}) = 13.

• E = {{v, t}, {a, b}, {b, c}, {a, a′}, {b, b′}, {c, c′}, {a′, t}, {b′, t}, {c′, t}}∪{{ai, a} | ai ∈
A} ∪ {{bi, b} | bi ∈ B} ∪ {{ci, c} | ci ∈ C};

• All the edges have weight 1;

• k = 2.

The initial value of bv is zero. The greedy algorithm first chooses edge {b, v} and then

edge {ai, v}, for some ai ∈ A (or equivalently {ci, v}, for some ci ∈ A). The value

of bv({b, v}, {ai, v}) is 2x + 3. In fact, the following pairs have shortest paths passing

through v in G({b, v}, {ai, v}): nodes in B ∪{b} and t (x+ 1 shortest paths), ai and t (1

shortest path), ai and nodes in B∪{b} (x+1
2 shortest paths), ai and nodes in C∪{c} (y+1

2

shortest paths), and ai and c′ (1 shortest path). An optimal solution, instead, is made of

edges {a, v} and {c, v} where bv({{a, v}, {c, v}}) = x2+3x−2
2 , where the quadratic term

comes from the fact that there are (y + 1)2 paths passing through v between nodes in

A∪{a} and nodes in C∪{c}. Therefore, the approximation ratio of the greedy algorithm

tends to be arbitrarily small as x increases. The bad approximation ratio of the greedy

algorithm is due to the fact that it does not consider the shortest paths that pass through

v by using both edges.

4.5 Experimental results

In this section we evaluate GreedyImprovement in terms of accuracy and we compare

it both with the optimum and with the naive algorithms described in Section 4.3. All

Centrality Maximization problem for betweenness centrality 67

algorithms compared in our experiments are implemented in C++, building on the open-

source NetworKit [87] framework. The experiments were done on a machine equipped

with 256 GB RAM and a 2.7 GHz Intel Xeon CPU E5-2680 having 2 processors with 8

cores each. To make the comparison with previous work more meaningful, we use only

one of the 16 cores. The machine runs 64 bit SUSE Linux and we compiled our code

with g++-4.8.1 and OpenMP 3.1.

Since computing the optimum by examining all possible k-tuples would be too expensive

even on small graphs, we use an Integer Programming (IP) formulation, described in the

following Section.

4.5.1 Directed graphs

Evaluating the solution quality. We measure the approximation ratio of the greedy

algorithm on three types of randomly generated directed networks, namely directed Pref-

erential Attachment (in short, PA) [18], Copying (in short, COPY) [52], Compressible

Web (in short, COMP) [23]. For each graph type, we generate 5 different instances with

the same size. We focus our attention on twenty vertices v, which have been chosen

on the basis of their original betweenness ranking. In particular, we divide the list of

vertices, sorted by their original ranking, in four intervals, and choose five random ver-

tices uniformly at random in each interval. In each experiment, we add k = {1, 2, ..., 7}
edges. We evaluate the quality of the solution produced by the greedy algorithm by

measuring its approximation ratio and we report the results in Table 4.1. We write the

following Nonlinear program to compute the optimal solution and we solve it with the

Mixed-Integer Nonlinear Programming Solver Couenne [10].

Let S be a solution to an instance of cm-b. Given a node v, we define a variable xu for

each node u ∈ V \ (Nv ∪ {v})

xu =

1 if (u, v) ∈ S

0 otherwise.

We define a variable yst for each s, t ∈ V \ {v}, s 6= t.

yst =

1 If all shortest paths from s to t in G(S) pass through node v

0 otherwise.

For each pair of nodes s, t ∈ V \ {v}, s 6= t, we denote by A(s, t) the set of nodes u not

in Nv such that all the shortest paths between s and t in G({(u, v)}) pass through edge

Centrality Maximization problem for betweenness centrality 68

(u, v) and hence through node v. Note that in this case, dst > dst({(u, v)}) and hence

A(s, t) is defined as A(s, t) = {u | dst > dst({(u, v)})}. Set B(s, t) is defined as the set

of nodes u not in Nv such that at least a shortest path between s and t in G({(u, v)})
does not pass through edge (u, v) and hence B(s, t) = V \ (A(s, t) ∪Nv). We denote by

σ̄stv(u) the number of shortest paths from s to t in G({(u, v)}) passing thorough edge

(u, v).

The following non linear formulation solves the cm-b problem:

max
∑
s,t∈V

s 6=t;s,t 6=v

(
(1− yst)

σstv +
∑

u∈B(s,t) xuσ̄stv(u)

σst +
∑

u∈B(s,t) xuσ̄stv(u)
+ yst

)
(4.3)

subject to
∑

u∈A(s,t)

xu ≥ yst, s, t ∈ V \ {v}, s 6= t

(4.4)∑
u∈V \(Nv∪{v})

xu ≤ k,

xu, yst ∈ {0, 1} s ∈ V \ {v}, t ∈ V \ {v, s}

Let us consider a solution S to the above formulation. In the case that yst = 1, for some

pair of nodes s, t ∈ V \ {v}, s 6= t, then Constraint (4.4) implies that, for at least a

node u ∈ A(s, t), variable xu must be set to 1 and hence all the shortest paths between

s and t in G(S) pass through v. In this case, the term corresponding to pair (s, t) in the

objective function (4.3) is correctly set to be equal to 1.

If yst = 0 and xu = 0, for each u ∈ A(s, t), then the number of shortest paths between

s and t in G(S) passing trough v is equal to σstv +
∑

u∈B(s,t) xuσ̄stv(u) and the overall

number of shortest paths between s and t in G(S) is equal to σst+
∑

u∈B(s,t) xuσ̄stv(u). In

this case, the term corresponding to pair (s, t) in the objective function (4.3) is correctly

set to be equal to
σstv+

∑
u∈B(s,t) xuσ̄stv(u)

σst+
∑
u∈B(s,t) xuσ̄stv(u) .

Note that,
σstv+

∑
u∈B(s,t) xuσ̄stv(u)

σst+
∑
u∈B(s,t) xuσ̄stv(u) ≤ 1 and therefore a solution in which yst = 0 and

xu = 1, for some u ∈ A(s, t) is at least as good as a solution in which yst is set to 1

instead of 0 and the other variables are unchanged. Hence, we can assume without loss

of generality that the case in which yst = 0 and xu = 1, for some u ∈ A(s, t), cannot

occur in an optimal solution.

The experiments clearly show that the experimental approximation ratio is by far better

than the theoretical one proven in Section 4.4, that is 1 − 1
e ∼ 0.63. In fact, in all our

tests, the experimental ratio is always greater than 0.96. Notice that is not possible to

process graphs with more than about 200 nodes in reasonable time.

Centrality Maximization problem for betweenness centrality 69

Table 4.1: Comparison between the GreedyImprovement algorithm and the opti-
mum. The first three columns report the type and size of the graphs; the fourth column

reports the approximation ratio.

Network n = |V | m = |E| Min. approx. ratio
PA 100 130 1

COPY 100 200 0.98
COMP 100 200 0.98
COMP 100 500 0.96

The comparison with naive algorithms. We also analyze the performance of Greedy-

Improvement on the real-world directed networks of Table 4.2. Since finding the op-

timum on these networks would take too long, we compare the solution of GreedyIm-

provement with the algorithms described in Section 4.3.

Table 4.2: Running times of the betweenness algorithms on directed real-world graphs
using the incremental algorithm for the betweenness of all nodes described in [12].

Network n = |V | m = |E| Time (k = 10) [s]
subelj-jung 6 120 50 535 9.64
wiki-Vote 7 115 100 762 8.64

elec 7 118 103 617 13.28
freeassoc 10 617 63 788 140.14
dblp-cite 12 591 49 728 348.16
subelj-cora 23 166 91 500 348.16
ego-twitter 23 370 33 101 5.79
ego-gplus 23 628 39 242 45.20

munmun-digg 30 398 85 247 732.67
linux 30 837 213 424 453.36

For each graph, we pick one node at random, compute its betweenness on the initial graph

and try to increase it with the four heuristics. We refer to the selected node as pivot. Since

the results may vary depending on the initial betweenness of the pivot, we also repeat

each experiment with 10 different pivots and report the average results over the different

pivots. In each experiment, we add k = {1, 2, ..., 10} edges and compute the ranking

and betweenness of the pivot after each insertion. Figure 4.5 reports the results for two

directed graphs, namely munmun-digg-reply (top) and linux (bottom). We define the

percentage betweenness of a node v as bv · 100
(n−1)(n−2) , where bv is the betweenness of v and

(n−1)(n−2) represents the maximum theoretical betweenness a node can have in a graph

with n nodes. For each value of k, the plots show the average percentage betweenness

of a pivot after the insertion of k edges (each point represents the average over the 10

pivots). Clearly, the pivot’s betweenness after k insertions is a non-decreasing function of

k, since the insertion of an edge can only increase (or leave unchanged) the betweenness

Centrality Maximization problem for betweenness centrality 70

0 2 4 6 8 10
k

0.05

0.10

0.15

0.20

0.25

B
et

w
ee

nn
es

s
ce

nt
ra

lit
y

Greedy
Top-k Betweenness
Degree
Random

0 2 4 6 8 10
k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

B
et

w
ee

nn
es

s
ce

nt
ra

lit
y

Greedy
Top-k Betweenness
Degree
Random

Figure 4.5: Percentage betweenness of the pivot as a function of the number k of
inserted edges for the four heuristics. Top: results for the munmun-digg-reply graph.

Bottom: results for the linux graph.

of one of its endpoints. In both plots, GreedyImprovement outperforms the other

heuristics. For example, after k edge insertions, the average betweenness of a pivot in the

munmun-digg-reply graph is 81460 with GreedyImprovement, 43638 with Degree,

36690 with Top-k and 28513 with Random. A similar behaviour can be observed for

the average ranks of the pivots, reported in Figure 4.6. The figures report the percentage

ranks, i.e. the ranks multiplied by 100
n , since n is the maximum rank a node can have in

Centrality Maximization problem for betweenness centrality 71

0 2 4 6 8 10
k

5

10

15

20

25

30

35

40

45

R
an

ki
ng

Greedy
Top-k Betweenness
Degree
Random

0 2 4 6 8 10
k

0

5

10

15

20

25

30

35

40

45

R
an

ki
ng

Greedy
Top-k Betweenness
Degree
Random

Figure 4.6: Percentage rank of the pivot as a function of the number k of inserted
edges for the four heuristics. Top: results for the munmun-digg-reply graph. Bottom:

results for the linux graph.

a graph with n nodes. This can be seen as the fraction of nodes with higher betweenness

than the pivot. On munmun-digg-reply , the average initial rank is 2620 (about 43%).

After 10 insertions, the rank obtained using GreedyImprovement is 476 (about 7%),

whereas the one obtained by the other approaches is never lower than 1188 (about 19%).

It is interesting to notice that 3 edge insertions with GreedyImprovement yield a

rank of 1011, which is better than the one obtained by the other approaches after 10

Centrality Maximization problem for betweenness centrality 72

0 2 4 6 8 10
k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

B
et

w
ee

nn
es

s
ce

nt
ra

lit
y

Greedy
Top-k Betweenness
Degree
Random

0 2 4 6 8 10
k

0

5

10

15

20

25

R
an

ki
ng

Greedy
Top-k Betweenness
Degree
Random

Figure 4.7: Average results over all directed networks. On the top, average percentage
betweenness of the pivots as a function of k. On the bottom, average percentage rank

of the pivots.

insertions. Similarly, also on the linux graph, 3 iterations of GreedyImprovement

are enough to bring down the rank from 2498 (45.6%) to 247 (4.4%), whereas the other

approaches cannot go below 299 (5.3%) with 10 iterations. Similar results can be observed

on the other tested (directed) instances. Figure 4.7 reports the average results over all

directed networks, both in terms of betweenness (top) and rank (bottom) improvement.

The initial average betweenness of the sample pivots is 0.015%. GreedyImprovement

Centrality Maximization problem for betweenness centrality 73

is by far the best approach, with an average final percentage betweenness (after 10

iterations) of 0.38% and an average final percentage rank of 1.4%. As a comparison,

the best alternative approach (Degree) yields a percentage betweenness of 0.22% and

a percentage rank of 7.3%. Not surprisingly, the worst approach is Random, which in

10 iterations yields a final percentage betweenness of 0.04% and an average percentage

rank of 10.2%. On average, a single iteration of GreedyImprovement is sufficient for

a percentage rank of 5.5%, better than the one obtained by all other approaches in 10

iterations. Also, it is interesting to notice that in our experiments Degree performs

significantly better than Top-k. This means that, for the betweenness of a node in a

directed graph, it is more important to have incoming edges from nodes with high out-

degree than with high betweenness. We will see in the following that our results show a

different behaviour for undirected graphs.

Also, notice that, although the percentage betweenness scores are quite low, the im-

provement using GreedyImprovement is still large: with 10 insertions, on average the

scores change from an initial 0.015% to 0.38%, which is about 25 times the initial value.

4.5.2 Undirected graphs

Although it was proven [30] that GreedyImprovement has an unbounded approxima-

tion ratio for undirected graphs, it is still not clear how it actually performs in practice.

Therefore, we compare GreedyImprovement with Top-k Betweenness, Top-k De-

gree and Random also on several undirected real-world networks, listed in Table 4.3.

Figure 4.8 shows the percentage betweenness and ranking, averaged over the undirected

networks of Table 4.3. Also in this case, GreedyImprovement outperforms the other

heuristics. In particular, the average initial betweenness of the pivots in the different

graphs is 0.05%. After 10 iterations, the betweenness goes up to 3.7% with Greedy-

Improvement, 1.6% with Degree, 2.1% with Top-k and only 0.17% with Random.

The average initial rank is 45%. GreedyImprovement brings it down to 0.7% with

ten iterations and below 5% already with two. Using the other approaches, the average

rank is always worse than 10% for Top-k Betweenness, 15% for Degree and 20%

for Random. As mentioned before, differently from directed graphs, Top-k performs

significantly better than Degree in undirected graphs.

Also, notice that in undirected graphs the percentage betweenness scores of the nodes

in the examined graphs are significantly larger than those in the directed graphs. This

could be due to the fact that many node pairs have an infinite distance in the examined

directed graphs, meaning that these pairs do not contribute to the betweenness of any

Centrality Maximization problem for betweenness centrality 74

0 2 4 6 8 10
k

0

1

2

3

4

5

B
et

w
ee

nn
es

s
ce

nt
ra

lit
y

Greedy
Top-k Betweenness
Degree
Random

0 2 4 6 8 10
k

0

5

10

15

20

25

30

35

40

45

R
an

ki
ng

Greedy
Top-k Betweenness
Degree
Random

Figure 4.8: Average results over all undirected networks. On the top, average percent-
age betweenness of the pivots as a function of k. On the bottom, average percentage

rank of the pivots.

node. Also, say we want to increase the betweenness of x by adding edge (v, x). The

pairs (s, t) for which we can have a shortcut (leading to an increase in the betweenness

of x) are limited to the ones such that s can reach v and such that t is reachable from

x, which might be a small fraction of the total number of pairs. On the contrary, most

undirected graphs have a giant connected component containing the greatest majority

of the nodes. Therefore, it is very likely that a pivot belongs to the giant component or

Centrality Maximization problem for betweenness centrality 75

Table 4.3: Running times of the betweenness algorithms on undirected real-world
graphs using the incremental algorithm for the betweenness of all nodes described

in [12].

Network n = |V | m = |E| Time (k = 10) [s]
Mus-musculus 4 610 5 747 575.3
HC-BIOGRID 4 039 10 321 760.0
Caenor-eleg 4 723 9 842 557.3
ca-GrQc 5 241 14 484 310.8
advogato 7 418 42 892 190.7
hprd-pp 9 465 37 039 1097.7
ca-HepTh 9 877 25 973 2933.3
dr-melanog 10 625 40 781 1410.2
oregon1 11 174 23 409 596.7
oregon2 11 461 32 730 430.2

Homo-sapiens 13 690 61 130 2259.6
GoogleNw 15 763 148 585 691.9

CA-CondMat 21 363 91 342 28832

that it will after the first edge insertion.

It is interesting to notice that, despite the unbounded approximation ratio, the improve-

ment achieved by GreedyImprovement on undirected graphs is even larger than for

the directed ones: on average 74 times the initial score.

Chapter 5

Conclusions

One of the main issues in complex networks analysis is to identify what are the most

important nodes within a network. To mathematically capture this concept, several cen-

trality metrics are defined in literature. In this thesis we studied how to increase the

centrality value of a node as much as possible. To this aim we defined the optimiza-

tion problem of finding a limited amount of edges to be added in a network in order to

maximize the centrality of a given node. We tackled the Centrality Maximization (cm)

problem for two of the most important centrality measures namely harmonic central-

ity (cm-h) and betweenness centrality (cm-b). Regarding cm-h, we designed a greedy

(1− 1/e)-approximation algorithm for both directed and undirected graphs. We exper-

imentally evaluated the quality of the solution and the performance on both synthetic

and real networks. We also developed a dynamic algorithm to speed up the computation

and analyse large networks. Instead, regarding cm-b, we proposed a greedy (1 − 1/e)-

approximation algorithm ratio only for directed graphs. Despite we proved that the same

algorithm can have an unbounded approximation ratio on undirected graphs, it exhibits

experimentally good performance in terms of value and ranking. We showed that cm-h

cannot be approximated in polynomial-time within a factor 1 − 1
3e in directed graphs

(1 − 1
15e in undirected graphs), unless P = NP . On the other hand, we proved that

cm-b cannot be approximated in polynomial time within a factor 1− 1
2e in both directed

and undirected graphs, unless P = NP . We also show that the problems of improv-

ing the ranking according to harmonic (crm-h) and betweenness (crm-b) centralities

adding a limited amount of edges incident do not admit a polynomial time approxima-

tion algorithm, unless P = NP . Our experiments show that the solution achieved by

the greedy algorithms is far better in practice than the theoretical approximation factor

and they perform better in terms of quality of the solutions than several simple natural

algorithms. Despite we proved that the crm problem for harmonic and betweenness

centralities does not admit a polynomial time approximation algorithm, we notice that

77

Conclusions 78

the greedy algorithms allow to reach the top positions in the ranking with few edges

addition. Moreover, our heuristics allow to solve the problems on large graphs with mil-

lions of nodes and edges adding any amount of edges in reasonable time and this means

that our methods can be applied in real world systems where having a high harmonic

centrality or betweenness centrality can have a positive impact on the node itself.

5.1 Open problems and future research directions

There are a lot of open problems related to cm that deserve further investigation. In the

following we list several possible research directions.

• First of all, it would be interesting to close open cases pointed out in Table 1.1

and to close the gaps between approximation and inapproximability results. In

particular, it would be nice to design an approximation algorithm for cm-b on

undirected graphs, because we shown in Section 4.4.2 that the greedy algorithm

can have an unbounded approximation ratio. Moreover, it would be interesting to

study the cm problem with other centrality indices.

• Sometimes in real networks it can be easier to create a link to a closer node (e.g a

neighbour of your neighbours) instead of a farther one. It would be nice to define

and study cm problem with edge cost based on this property.

• It is easy to imagine a scenario in which two or more nodes try to increase their

centrality by adding new edges. In such context, the best strategy that each node

should adopt might be different from the greedy one. It would then be interesting

to study this scenario from a game theoretic perspective.

• To capture the centrality of a group or a particular class of nodes, the notion of

centrality index of a node can be extended to a set of nodes in the graph [37].

Informally, given a centrality index c and a subset of nodes U ⊆ V , the group

centrality index c on U is the centrality computed without taking into account the

edges with endpoints in U (we can consider U as a single “virtual” node). It would

be worth to study the cm problem with the aim to maximize the group centrality

of a certain group of vertices.

• The dynamic algorithms described in Chapter 3 and in [12] are based on shortest

path updating. In order to speed up the computation and analyse larger networks,

it would nice to include distance estimators like the sketches described in [24, 25].

• It would be interesting to study the “dual” problem of cm in which we want to

minimize the centrality of a given node by deleting edges incident to that node.

Conclusions 79

Examples are applications in which one wants to reduce the traffic flow in nodes

of a road or a communication networks or reduce the spread of disease in epidemic

and social networks.

• Finally, it would be challenging to study the problem where it is possible to add

edges incident to other vertices or weight changes to the existing edges.

Bibliography

[1] Arnetminer. http://arnetminer.org. Accessed: 2015-01-15.

[2] GLPK – GNU Linear Programming Kit. http://www.gnu.org/software/glpk.

[3] R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews

of modern physics, 74(1):47, 2002.

[4] K. Avrachenkov and N. Litvak. The effect of new links on google pagerank. Stochastic

Models, 22(2):319–331, 2006.

[5] L. Backstrom and J. Leskovec. Supervised random walks: Predicting and recom-

mending links in social networks. In Proceedings of the 4th ACM International

Conference on Web Search and Data Mining, pages 635–644. ACM, 2011.

[6] Z. Bar-Yossef and L.-T. Mashiach. Local approximation of pagerank and reverse

pagerank. In Proceedings of the 17th ACM conference on Information and knowledge

management, pages 279–288. ACM, 2008.

[7] A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,

286(5439):509–512, 1999.

[8] R. Bauer, G. D’Angelo, D. Delling, A. Schumm, and D. Wagner. The shortcut

problem - complexity and algorithms. J. Graph Algorithms Appl., 16(2):447–481,

2012.

[9] A. Bavelas. A mathematical model for group structures. Human organization,

7(3):16–30, 1948.

[10] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and bounds

tightening techniques for non-convex minlp. Optimization Methods and Software,

24(4-5):597–634, 2009.

[11] E. A. Bender and E. Canfield. The asymptotic number of labeled graphs with given

degree sequences. Journal of Combinatorial Theory, Series A, 24(3):296 – 307, 1978.

81

http://arnetminer.org
http://www.gnu.org/software/glpk

Bibliography 82

[12] E. Bergamini, P. Crescenzi, G. D’Angelo, H. Meyerhenke, L. Severini, and Y. Velaj.

Improving the betweenness centrality of a node by adding links. arXiv preprint

arXiv:1702.05284, 2017.

[13] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and S. Venkatasubramanian. The

connectivity server: Fast access to linkage information on the web. Computer net-

works and ISDN Systems, 30(1):469–477, 1998.

[14] D. Bilò, L. Gualà, and G. Proietti. Improved approximability and non-

approximability results for graph diameter decreasing problems. Theoretical Com-

puter Science, 417:12–22, 2012.

[15] P. Boldi, M. Rosa, and S. Vigna. Hyperanf: Approximating the neighbourhood

function of very large graphs on a budget. In Proceedings of the 20th international

conference on World wide web, pages 625–634. ACM, 2011.

[16] P. Boldi and S. Vigna. Four degrees of separation, really. In Advances in Social

Networks Analysis and Mining (ASONAM), 2012 IEEE/ACM International Con-

ference on, pages 1222–1227. IEEE, 2012.

[17] P. Boldi and S. Vigna. Axioms for centrality. Internet Mathematics, 10(3–4):222–

262, 2014.

[18] B. Bollobás, C. Borgs, J. Chayes, and O. Riordan. Directed scale-free graphs. In

Proceedings of the 14th annual ACM-SIAM symposium on Discrete algorithms, pages

132–139. SIAM, 2003.

[19] M. Borassi and E. Natale. KADABRA is an ADaptive Algorithm for Betweenness

via Random Approximation. In Proceedings of the 24th Annual European Symposium

on Algorithms, volume 57, pages 20:1–20:18. Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, 2016.

[20] U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical

Sociology, 25(2):163–177, 2001.

[21] A. Z. Broder, R. Lempel, F. Maghoul, and J. Pedersen. Efficient pagerank approx-

imation via graph aggregation. Information Retrieval, 9(2):123–138, 2006.

[22] Y.-Y. Chen, Q. Gan, and T. Suel. Local methods for estimating pagerank values. In

Proceedings of the 13th ACM international conference on Information and knowledge

management, pages 381–389. ACM, 2004.

[23] F. Chierichetti, R. Kumar, S. Lattanzi, A. Panconesi, and P. Raghavan. Models for

the compressible web. In Proceedings of the 50th Annual Symposium on Foundations

of Computer Science, pages 331–340. IEEE, 2009.

Bibliography 83

[24] E. Cohen. All-distances sketches, revisited: Hip estimators for massive graphs anal-

ysis. IEEE Transactions on Knowledge and Data Engineering, 27(9):2320–2334,

2015.

[25] E. Cohen, D. Delling, T. Pajor, and R. F. Werneck. Computing classic closeness

centrality, at scale. In Proceedings of the 2nd ACM conference on Online social

networks, pages 37–50. ACM, 2014.

[26] T. H. Cormen. Introduction to algorithms. MIT press, 2009.

[27] P. Crescenzi, G. D’Angelo, L. Severini, and Y. Velaj. Greedily improving our own

centrality in a network. In Proceedings of the 14th International Symposium on

Experimental Algorithms, volume 9125 of Lecture Notes in Computer Science, pages

43–55. Springer, 2015.

[28] P. Crescenzi, G. D’Angelo, L. Severini, and Y. Velaj. Greedily improving our own

closeness centrality in a network. ACM Transactions on Knowledge Discovery from

Data, 11(1):9:1–9:32, 2016.

[29] P. Crescenzi, R. Grossi, M. Habib, L. Lanzi, and A. Marino. On computing the

diameter of real-world undirected graphs. Theoretical Computer Science, 514:84–95,

2013.

[30] G. D’Angelo, L. Severini, and Y. Velaj. On the maximum betweenness improve-

ment problem. Electronic Notes in Theoretical Computer Science, 322:153 – 168,

2016. Proceedings of the 16th Italian Conference on Theoretical Computer Science

(ICTCS15).

[31] S. Dehghani, M. A. Fazli, J. Habibi, and S. Yazdanbod. Using shortcut edges to

maximize the number of triangles in graphs. Operations Research Letters, 43(6),

2015.

[32] E. D. Demaine and M. Zadimoghaddam. Minimizing the diameter of a network using

shortcut edges. In Proceedings of the 12th Scandinavian Symposium and Workshops

on Algorithm Theory, volume 6139 of Lecture Notes in Computer Science, pages

420–431. Springer, 2010.

[33] I. Dinur and D. Steurer. Analytical approach to parallel repetition. In Proceedings of

the 46th Annual ACM Symposium on Theory of Computing, pages 624–633. ACM,

2014.

[34] D. Eppstein and J. Wang. Fast approximation of centrality. In Proceedings of the

12th annual ACM-SIAM symposium on Discrete algorithms, pages 228–229. Society

for Industrial and Applied Mathematics, 2001.

Bibliography 84

[35] P. Erdős and A. Rényi. On random graphs I. Publicationes Mathematicae, 6:290–

297, 1959.

[36] D. Erdős, V. Ishakian, A. Bestavros, and E. Terzi. A divide-and-conquer algorithm

for betweenness centrality. In Proceedings of the 2015 SIAM International Confer-

ence on Data Mining. SIAM, 2015.

[37] M. G. Everett and S. P. Borgatti. The centrality of groups and classes. The Journal

of Mathematical Sociology, 23(3):181–201, 1999.

[38] M. G. Everett and T. W. Valente. Bridging, brokerage and betweenness. Social

Networks, 44:202–208, 2016.

[39] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM,

45(4), 1998.

[40] F. Frati, S. Gaspers, J. Gudmundsson, and L. Mathieson. Augmenting graphs to

minimize the diameter. Algorithmica, 72(4):995–1010, 2015.

[41] L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry,

pages 35–41, 1977.

[42] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the

Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

[43] D. Gleich, L. Zhukov, and P. Berkhin. Fast parallel pagerank: A linear sys-

tem approach. Yahoo! Research Technical Report YRL-2004-038, available via

http://research. yahoo. com/publication/YRL-2004-038. pdf, 13:22, 2004.

[44] IMDB. http://www.imdb.com. Accessed: 2015-01-15.

[45] V. Ishakian, D. Erdös, E. Terzi, and A. Bestavros. A framework for the evaluation

and management of network centrality. In Proceedings of the 2012 SIAM Interna-

tional Conference on Data Mining, pages 427–438. SIAM, 2012.

[46] R. Jacob, D. Koschützki, K. A. Lehmann, L. Peeters, and D. Tenfelde-Podehl.

Algorithms for centrality indices. In Network Analysis, pages 62–82. Springer, 2005.

[47] S. Kamvar, T. Haveliwala, and G. Golub. Adaptive methods for the computation

of pagerank. Linear Algebra and its Applications, 386:51–65, 2004.

[48] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec. Hadi:

Mining radii of large graphs. ACM Trans. Knowl. Discov. Data, 5(2):8:1–8:24, Feb.

2011.

http://www.imdb.com

Bibliography 85

[49] D. Kempe, J. Kleinberg, and Éva Tardos. Maximizing the spread of influence

through a social network. Theory of Computing, 11(4):105–147, 2015.

[50] J. Kleinberg. The small-world phenomenon: An algorithmic perspective. In Proceed-

ings of the 32nd annual ACM symposium on Theory of computing, pages 163–170.

ACM, 2000.

[51] C. Kohlschütter, P.-A. Chirita, and W. Nejdl. Efficient parallel computation of

pagerank. In Proceedings of the 28th European Conference on Information Retrieval,

pages 241–252. Springer, 2006.

[52] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal.

Stochastic models for the web graph. In Proceedings ot the 41st Annual Symposium

on Foundations of Computer Science, pages 57–65. IEEE, 2000.

[53] J. Kunegis. KONECT - The Koblenz network collection. In Proceedings of the 1st

International Web Observatory Workshop, pages 1343–1350, 2013.

[54] Laboratory for Web Algorithmics. http://law.di.unimi.it/index.php. Accessed:

2015-01-15.

[55] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and

shrinking diameters. ACM Transactions on Knowledge Discovery from Data, 1(1),

Mar. 2007.

[56] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance.

Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

420–429. ACM, 2007.

[57] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collec-

tion. http://snap.stanford.edu/data, June 2014.

[58] M. Ley. DBLP. http://dblp.uni-trier.de/. Accessed: 2015-01-15.

[59] R. Li and J. X. Yu. Triangle minimization in large networks. Knowledge and

Information Systems, 45(3):617–643, 2015.

[60] D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks.

In Proceedings of the 12th International Conference on Information and Knowledge

Management, pages 556–559. ACM, 2003.

[61] B. Macdonald, P. Shakarian, N. Howard, and G. Moores. Spreaders in the network

SIR model: An empirical study. CoRR, abs/1208.4269, 2012.

http://law.di.unimi.it/index.php
http://snap.stanford.edu/data
http://dblp.uni-trier.de/

Bibliography 86

[62] P. Malighetti, G. Martini, S. Paleari, and R. Redondi. The impacts of airport

centrality in the EU network and inter-airport competition on airport efficiency.

Technical Report MPRA-7673, 2009.

[63] M. Marchiori and V. Latora. Harmony in the small-world. Physica A: Statistical

Mechanics and its Applications, 285(3):539–546, 2000.

[64] F. McSherry. A uniform approach to accelerated pagerank computation. In Pro-

ceedings of the 14th international conference on World Wide Web, pages 575–582.

ACM, 2005.

[65] A. Meyerson and B. Tagiku. Minimizing average shortest path distances via shortcut

edge addition. In Proceedings of the 12th International Workshop on Approximation

Algorithms for Combinatorial Optimization Problems, volume 5687 of Lecture Notes

in Computer Science, pages 272–285. Springer, 2009.

[66] S. Milgram. The small world problem. Psychology today, 2(1):60–67, 1967.

[67] M. Minoux. Accelerated greedy algorithms for maximizing submodular set functions.

In Optimization Techniques, pages 234–243. Springer, 1978.

[68] M. Molloy and B. Reed. A critical point for random graphs with a given degree

sequence. Random Structures & Algorithms, 6(2–3):161–180, 1995.

[69] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for max-

imizing submodular set functions–I. Mathematical Programming, 14(1):265–294,

1978.

[70] M. E. Newman. The structure and function of complex networks. SIAM review,

45(2):167–256, 2003.

[71] M. Olsen and A. Viglas. On the approximability of the link building problem.

Theoretical Computer Science, 518:96–116, 2014.

[72] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:

bringing order to the web. 1999.

[73] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. Anf: A fast and scalable tool for data

mining in massive graphs. In Proceedings of the eighth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 81–90. ACM, 2002.

[74] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-

plexity classes. Journal of Computer and System Sciences, 43(3):425–440, 1991.

[75] M. Papagelis. Refining social graph connectivity via shortcut edge addition. ACM

Transactions on Knowledge Discovery from Data, 10(2):12, 2015.

Bibliography 87

[76] M. Papagelis, F. Bonchi, and A. Gionis. Suggesting ghost edges for a smaller

world. In Proceedings of the 20th ACM International Conference on Information

and Knowledge Management, pages 2305–2308. ACM, 2011.

[77] N. Parotsidis, E. Pitoura, and P. Tsaparas. Selecting shortcuts for a smaller world.

In Proceedings of the 2015 SIAM International Conference on Data Mining, pages

28–36. SIAM, 2015.

[78] N. Parotsidis, E. Pitoura, and P. Tsaparas. Centrality-aware link recommendations.

In Proceedings of the 9th ACM International Conference on Web Search and Data

Mining, pages 503–512. ACM, 2016.

[79] S. Perumal, P. Basu, and Z. Guan. Minimizing eccentricity in composite networks

via constrained edge additions. In Proceedings of the 32th IEEE Military Commu-

nications Conference, pages 1894–1899. IEEE, 2013.

[80] A. Popescul and L. H. Ungar. Statistical relational learning for link prediction. In

IJCAI workshop on learning statistical models from relational data, 2003.

[81] M. Riondato and E. M. Kornaropoulos. Fast approximation of betweenness cen-

trality through sampling. Data Mining and Knowledge Discovery, 30(2):438–475,

2016.

[82] M. Riondato and E. Upfal. ABRA: approximating betweenness centrality in static

and dynamic graphs with rademacher averages. In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages

1145–1154. ACM, 2016.

[83] S. Saha, A. Adiga, B. A. Prakash, and A. K. S. Vullikanti. Approximation algorithms

for reducing the spectral radius to control epidemic spread. In Proceedings of the

2015 SIAM International Conference on Data Mining, pages 568–576. SIAM, 2015.

[84] A. E. Sariyüce, K. Kaya, E. Saule, and Ü. V. Çatalyürek. Incremental algorithms

for closeness centrality. In Proceedings of the 2013 IEEE International Conference

on Big Data, pages 487–492. IEEE, 2013.

[85] A. E. Sariyüce, E. Saule, K. Kaya, and Ü. V. Çatalyürek. Shattering and com-

pressing networks for betweenness centrality. In Proceedings of the 2013 SIAM

International Conference on Data Mining. SIAM, 2013.

[86] A. Slobbe, E. Bergamini, and H. Meyerhenke. Faster incremental all-pairs shortest

paths. Karlsruhe Reports in Informatics, 2016.

[87] C. L. Staudt, A. Sazonovs, and H. Meyerhenke. Networkit: An interactive tool suite

for high-performance network analysis. arXiv preprint arXiv:1403.3005, 2014.

Bibliography 88

[88] F. W. Takes and W. A. Kosters. Computing the eccentricity distribution of large

graphs. Algorithms, 6(1):100–118, 2013.

[89] H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and C. Faloutsos. Gelling,

and melting, large graphs by edge manipulation. In Proceedings of the 21st ACM

International Conference on Information and Knowledge Management, pages 245–

254. ACM, 2012.

[90] Uri alonlab. http://www.weizmann.ac.il/mcb/UriAlon/. Accessed: 2015-01-15.

[91] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative

frequencies of events to their probabilities. In Measures of Complexity, pages 11–30.

Springer, 2015.

[92] F. Vella, G. Carbone, and M. Bernaschi. Algorithms and heuristics for scal-

able betweenness centrality computation on multi-gpu systems. arXiv preprint

arXiv:1602.00963, 2016.

[93] S. Wasserman and K. Faust. Social network analysis: Methods and applications,

volume 8. Cambridge university press, 1994.

[94] S. Wasserman and K. Faust. Social network analysis: Methods and applications,

volume 8. Cambridge university press, 1994.

[95] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks.

Nature, 393(6684):440–442, 1998.

[96] V. V. Williams. Multiplying matrices faster than coppersmith-winograd. In Proceed-

ings of the 44th annual ACM symposium on Theory of computing, pages 887–898.

ACM, 2012.

[97] D. Williamson and D. Shmoys. The Design of Approximation Algorithms. Cam-

bridge University Press, 2011.

[98] E. Yan and Y. Ding. Applying centrality measures to impact analysis: A coau-

thorship network analysis. Journal of the Association for Information Science and

Technology, 60(10):2107–2118, 2009.

[99] Z. Yin, M. Gupta, T. Weninger, and J. Han. A unified framework for link recommen-

dation using random walks. In Proceedings of the 2010 International Conference on

Advances in Social Networks Analysis and Mining, pages 152–159. IEEE Computer

Society, 2010.

http://www.weizmann.ac.il/mcb/UriAlon/

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Context and motivations
	1.2 Main contributions
	1.3 Structure of the thesis

	2 Preliminaries
	2.1 Definitions
	2.2 Centrality measures
	2.2.1 Geometric measures
	2.2.2 Path-based measures
	2.2.3 Spectral measures

	2.3 Algorithms for computing centrality measures
	2.4 Maximizing monotone submodular functions
	2.5 Centrality Maximization problem
	2.5.1 Maximum Ranking Improvement problem

	2.6 Related Works
	2.6.1 Eccentricity
	2.6.2 PageRank

	3 Centrality Maximization problem for harmonic centrality
	3.1 Problem definition
	3.2 Hardness results
	3.2.1 Hardness of approximation for directed graphs
	3.2.2 Hardness of approximation for undirected graphs
	3.2.3 Improving the position in the ranking

	3.3 Naive algorithms
	3.3.1 Worst case approximation ratio of the naive algorithms

	3.4 Greedy approximation algorithm
	3.4.1 Improving the greedy algorithm running time

	3.5 Experimental results
	3.5.1 Directed graphs
	The analysis of the parallel algorithm.

	3.5.2 Undirected graphs
	The analysis of the parallel algorithm.

	4 Centrality Maximization problem for betweenness centrality
	4.1 Problem definition
	4.2 Hardness results
	4.2.1 Hardness of approximation for directed graphs
	4.2.2 Hardness of approximation for undirected graphs
	4.2.3 Improving the position in the ranking

	4.3 Naive algorithms
	4.3.1 Worst case approximation ratio of the naive algorithms

	4.4 Greedy approximation algorithm for cm-b
	4.4.1 Improving the greedy algorithm running time
	4.4.2 Worst case approximation ratio of the greedy algorithm on undirected graph

	4.5 Experimental results
	4.5.1 Directed graphs
	4.5.2 Undirected graphs

	5 Conclusions
	5.1 Open problems and future research directions

	Bibliography

