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Abstract

Collective adaptive systems (CAS) are large conglomerates of interacting components which may be
not entirely aware of themselves as members of a group and have limited mutual knowledge and
rely only on local rules. However, sophisticated and hardly predictable behaviours often emerges from
components interaction. The distinguishing features of CAS, namely adaptivity, anonymity, scalability,
open-endedness make them attractive as models of modern systems but challenges practitioners to
properly engineer and exploit their power. Attribute based communication is a recently proposed
communication paradigm that seems to be particularly appropriate for CAS programming. This
novel communication mechanism relies on send and receive primitives that allow selective multicast
communication by means of predicates on the attributes exposed in the interface of components
among interacting components. Indeed, attribute based communication offers high-level linguistic
primitives to deal with CAS, but its practical impact to the actual CAS programming has not been
fully investigated yet due to the lacking of efficient run-time environment and programming techniques,
and this has prevented practical use.

In this thesis, we study the impact and the performances of attribute based communication from
the programming and verification point of views. We take as starting point the recently proposed
AbC process calculus and proceed by embedding its primitives in Erlang. We follow two different
approaches. First, we implement in Erlang the process calculus AbC to come up with ABEL, a domain
specific framework with an API very close to that of AbC and with a semantics fully faithful to that
of AbC . Then, we introduce AErlang a direct extension of Erlang with attribute-based interaction
primitives. We show that, by relying on a verification backend whose input is used as target of
a structural translation of AbC systems, properties of ABEL programs can be verified by model
checking. We instead evaluate the efficacy of embedding attribute based communication in the actor-
based programming model by an extensive evaluation of AErlang on a number of case studies. The
evaluation confirms that the overhead resulting from the new communication primitives is acceptable,
and that AErlang prototype successfully preserves Erlang efficiency and scalability.
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Chapter 1

Introduction

1.1 Motivation

Collective adaptive systems (CAS) are a large conglomerates of components which are not entirely
aware of themselves as members of a group and interact according to limited mutual knowledge and
local rules, indirectly triggering global system evolution. The term was first coined in [59] after the
observations of various CAS in modern society, such as stock markets, robot swarms, social networks,
but also in the animal world, e.g. ant colonies or flocks of birds. These systems are usually distributed,
interdependent and heterogeneous and are operating in open, nondeterministic environments. CAS
components have their own attributes, capabilities and objectives, yet they continuously interact with
each other and combine their behaviour to form collectives in order to achieve the system-level goals.
They may also adapt their behaviour in response to changes of the environmental conditions or of
the other components. Eventually, despite the simplicity of the components in isolation, the emerging
global behaviour of the system may end up being quite sophisticated and hardly predictable. The
distinguishing features of CAS can be summarized as:

• anonymity: the identity of components may be not known,

• open-endedness: new components may enter or leave at any time,

• adaptivity: rôles and interests of components may change,

• scalability: the number of components might grow very fast.

The central notion in CAS are collectives which are formed and dissolved dynamically without the
intervention of external entities. Similarly, adaptation and decision making can hardly externally
controlled [27]. These features pose big challenges for software developers and language designers to
find appropriate tools and techniques towards understanding, reasoning and engineering CAS.
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Chapter 1

The work in this thesis is inspired by the research lines centered around the attribute-based com-
munication, which was originally proposed as a feature of the SCEL language [49, 51] to model the
dynamic formation of component ensembles in autonomic computing. In an attribute-based communi-
cation system, components are enriched with a set of attributes that encode relevant features such as
role, status, position, etc. whose values can be modified by means of internal actions. Communication
links among components are dynamically established by the interdependency relations defined through
predicates over their attributes. Groups of interacting partners are dynamically formed and run-time
changes of attributes enable opportunistic interactions among components. The attribute-based sys-
tem is also parameterised with respect to the environment where system components are executed.
The environment has a great impact on how components behave and provides a new mean of indirect
communication, that allows components to mutually influence each other, possibly unintentionally.

This notion of attribute-based communication is at the basis of a kernel calculus, named AbC [25] that
comprises a set of attribute-based related primitives. It was originally designed as a trimmed version
of SCEL with the aim of assessing the impact of the novel communication paradigm and comparing it
with the more classical mechanisms that handle interaction between distributed components by relying
on identities (Actors [14]), on channels (π-calculus [101]), or on broadcast (Bπ-calculus [107]). Later
refinements of AbC [21, 23] added programming idioms for the ease of modeling CAS. Informally, a
command send(v)@π expresses the intention of sending v to all entities satisfying predicate π while
receive(x)@π′ indicates willingness to receive messages from entities satisfying predicate π′ while
binding the received values to x. Sending a message is non blocking while message reception is
blocking in the sense that it may take place only by synchronizing with available sent message. In
addition, components can update their attributes via assignments, [a := v]. This results in implicit
changes of communication groups, which enables adaptive behaviour of components and the system.
Thus, components, by changing their attributes or the communication predicates, can join and leave
a collective at anytime without disrupting systems behaviour.

At a high level view, attribute-based communication can naturally capture the main distinguishing
features of collective adaptive systems at no extra effort. For example, consider a social network
scenario where users aim at forming groups for language exchange. Such groups may be formed by
only considering the language that users wish to learn and the one in which potential partners are
interested. Now, in case of multiple alternatives, it might be desirable to prefer people with similar
age and interests, or even knowledgeable of a second language in common. Relevant attributes would
then be: spoken languages, age, language of interest. Predicates may be built by specifying conditions
on the attributes, e.g., age ≤ 25 ∧ language = English. Here, the identity of users is irrelevant for
forming the groups, and no change in the predicates is required when users join or leave the system, thus
anonymity and open-endedness are no longer a concern. Under other classical paradigms such a task
would require major and time-consuming operations. This is because other communication paradigms
often rely on identities or channels which are independent from runtime status and capabilities of
components.

2
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While AbC offers high level linguistic primitives to model CAS, its efficiency for actual CAS program-
ming is in question. Letting interacting entities communicate by relying on their dynamic attributes
can be helpful in many circumstances, however it requires an efficient middleware that manages pred-
icate evaluation and message exchange among components. Researchers have already developped
implementations for AbC , for example, AbaCus [22] in Java and GoAt [19] in Google Go. These
implementations employ a message broker to relay messages in a broadcast manner. It is the receiving
component which decides whether to use or discard a forwarded message, by checking the sending and
the receiving predicates. Both AbaCus and GoAt claimed to preserve AbC semantics. To increase
the scalability, the latter used a set of brokers collaborating on mediating messages. Its performance
evaluation reported in [19, 20] were conducted though simulation. Thus, the actual performance of
AbC implementations have not yet been considered. Along this direction, we think that there are still
rooms for improvements.

Equally important to obtaining efficient implementations for AbC is determining whether the outcome
of the complex interactions in AbC systems is the expected one. Indeed, the dynamicity and flexibility
of the paradigm may become a source of complexity. In general, the presence of non-linearity and non-
determinism complicates significantly the assessment of specific properties or the forecasting emerging
behaviour of CAS. Components often get involved into complex and diverse interactions and the effect
of environment changes in some components would introduce opportunistic behaviour and indirectly
affect to others. Also the quest for an appropriate trade off between AbC’s expressiveness and efficiency
needs consideration.

This thesis makes an effort towards understanding and exploiting systems featuring attribute-based
communication. To this end, we take the attribute-based communication and its formalization - the
AbC process calculus - as our starting points and investigate the impact of the new paradigm in
programming and verifying distributed and collective adaptive systems.

1.2 Approach

From the programming perspective, it is desirable to support attribute-related primitives in the AbC
style with a programming framework or a language with programming constructs closely corresponding
to AbC ones. The design and implementation of such a framework should relieve programmers from the
burden of working out details such as the explicit handling of attributes, the evaluation of predicates,
while guaranteeing efficient message exchange among components. Our goal is leveraging the benefits of
attribute-based communication at a programming level while addressing the performance concerns. We
follow a pragmatic approach in which we embed AbC programming abstractions on top of an industrial
strength, concurrency oriented programming language - Erlang- to utilize the advanced features of the
language. Erlang [29] is well known for its light weight concurrency model and horizontal scalability
on parallel machine architecture.

3
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Our first attempt to attribute-based communication programming is providing a faithful implementa-
tion of AbC in Erlang, which we call ABEL. ABEL respects the semantics of AbC parallel operator
both at the component and system levels, while its API has a one-to-one correspondence with AbC
primitives. As a result, ABEL programs can be derived straightforwardly from AbC specifications
and their properties can be verified indirectly via the verification of their original AbC specifications.
ABEL can also be thought as an execution environment for AbC where a modeler can execute AbC-like
programs and measure their performance.

Our second attempt takes an open view on assessing attribute-based programming. We do not tie
ourself to AbC but rather consider only the key ingredients behind the paradigm. To this end, we
instantiate programming abstractions in the AbC’s style on Erlang processes and study their impact.
Our prototype, namely AErlang enables attribute-based communication in Erlang, in which standard
communication primitives are replaced by attribute-based versions. Thus, an AErlang program mixes
the actor-based model of the host language with attribute-based primitives. Different from the first
approach, AErlang focuses on different ways of mediating messages and does not impose any order
on message delivery. In addition, message passing among processes is inherently asynchronous, thus
potentially increasing performances.

We provide implementations for both approaches and study their expressiveness and performances by
using a number of case studies.

Regarding the verification aspects of non trivial system properties, our approach relies on an explicit
state model checker. There is no dedicated model checker for AbC yet. When a new formalism is
proposed, the standard initial approach of the formal methods community is to provide systematic
translation from the given formalism to another verifiable one to exploit an external model checker.
The main challenge for this approach is the definition of an appropriate mapping from one formalism
to the other. For this part of the work, we rely on UMC, a well-studied verification framework
developed along the years in the context of several European projects. UMC formal semantics model
is based on doubly labeled transition system (L2TS) [53] which well capture the key aspects of AbC
systems by allowing to label with predicates both systems transitions and systems states. Abstract
system properties are specified in ACTL [52], a branching time logics similar to CTL [52]. We define
a structural translation to derive formally verifiable models from AbC specifications and show how
interesting system properties can be verified in UMC.

1.3 Contributions and Organization

The main contribution of the thesis are the following:

A faithful implementation of AbC. We introduce ABEL, an implementation of AbC in Erlang and
assess its expressiveness and impact from a programming point of view by considering a number non

4
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trivial case studies relying on attribute based communication. We also discuss how ABEL programs
can be analyzed by verifying AbC specifications.

The design and implementation of AErlang. We extend Erlang processes with attribute-based
related primitives of the novel communication paradigm. We perform an extensive evaluation to
demonstrate the usefulness of our prototype in terms of expressiveness and runtime performance by
means of non trivial case studies.

A methodology for verifying attribute-based systems. We propose a structural translation of
AbC terms into another verifiable formalism, subjected to formal analysis and verification with an
external model checker. We demonstrate the feasibility of the approach by verifying a number of the
properties of the considered case studies.

The rest of the thesis is structured as follows. Chapter 2 provides background knowledges related to
the research pursued in this thesis. There we also introduce the specifications of some case studies
using AbC. In Chapter 3, we present ABEL - a faithful implementation of AbC semantics and stress
how easy it is to write ABEL programs starting from a given AbC specifications. The design and
implementation of ABEL API and the strategies used for coordinating processes and components are
also presented. Chapter 4 is dedicated to the problem of verifying AbC specifications. We describe
a structural translation of AbC into another verifiable formalism which is the input accepted by
the UMC verification framework. We then show that non trivial system properties, such as emerging
system behaviour, together with other functional, qualitative properties of the designed communication
protocols, can be specified and verified using our approach. In Chapter 5, we consider another approach
to AbC programming, in which Erlang processes are combined with the notion of attribute-based
communication. AErlang APIs and different strategies of message forwarding are presented. We
show how to program in AErlang by using a number of case studies, and assesses the performance
of our AErlang prototype via extensive experiments. Chapter 6 discusses related works. Chapter 7
contains some concluding remarks and hints for future works.

5



Chapter 2

Background

This chapter presents some background material which is useful for a full appreciation of the implemen-
tations of attribute based communication (AbC ) and of the case studies that will be later considered.
In particular, we first review the syntax and semantics of the AbC calculus with the help of an example
based on the classical version of the stable marriage problem (SMP) that is simple enough to support
reader’s intuition, yet makes use of all AbC constructs. Then, we introduce two more complex case
studies which we use throughout the thesis, namely an attribute variant of the stable marriage problem
and a distributed graph coloring scenario. At a superficial level, all the considered case studies are
modeled as a set of interacting components. However, as their complexity grows, careful design and
coordination of individual components is required for achieving meaningful interactions.

In the rest of the chapter, we review the relevant features of Erlang which is the host language of our
implementations of AbC . We also provide a brief overview of the UMC model checker, its modeling
language and the verification logic. More details on how UMC servers as the verification backend for
the formal analysis of systems specified in AbC are presented in Chapter 4. There, the correctness
of case studies is guaranteed by formal verification. Please, notice that below and in the rest of the
thesis we do use the words agent and component interchangeably.

Example 1 (Stable Marriage Problem). The SMP problem [65] consists of deriving a one-to-one
assignment (a matching)M between elements of two equally-sized sets, which are referred as Men and
Women. Each element corresponds to one single person with a unique identity and a preference list
ranking all members of the opposite set that the person wants to match. A complete matching S is a
set of pairs {(mi1 , wj1), (mi2 , wj2), . . . , (min , wjn)} where i1, . . . in and j1, . . . jn are some permutations
of 1, . . . , n with n the number of men and women. A complete matching S is stable if for any pair
(m,w) in S, there is no any other pair (m′, w′) 6= (m,w) such that m prefers w′ to w and m′ prefers
w to w′. Here, a man m prefers a woman w to another w′ if w appears before w′ in the preference list
of m. A similar explanation applies for women.

6



Chapter 2

2.1 AbC- A calculus for attribute-based communication

The process calculus AbC [21] was developed after the SCEL formal language [51] to study the merit
of the new communication paradigm SCEL introduced. To this end, AbC relies on a set of minimal
constructs that facilitates attribute-based communication where the interaction is based on the satis-
faction of predicates over run-time attributes of communicating components. It is worth noticing that
AbC has undergone several modifications with slightly different syntax and semantics, in what follows
we review the latest version of AbC presented in [23].

2.1.1 AbC syntax

The syntax of AbC is given in Figure 2.1. A component can be a process P associated with an attribute
environment Γ and an interface I, or the parallel composition of two components C1 ‖ C2. Attribute
environment Γ is a partial map A → V from the set of attribute identifiers A to a set of values V that
can be integers, strings or tuples, etc. We are not interested in giving formal syntax of values; the only
constraint is that values do not overlap with the set of attribute names, i.e., A∩V = ∅. The interface
I ⊆ dom(Γ) is a set of exposed attribute names used for controlling interactions between components.

Example 1.1 (An AbC system of SMP). The SMP can be thought as an AbC systems where
each participant is modeled as an autonomous AbC component interacting with the others to form
a stable matching. There are two types of components corresponding to men and women. Their
attributes names can be defined as follows:

• id: a non negative integer representing person’s unique identity

• partner: the matched partner (initially set to value -1)

• pref: the preference list of identifiers

Each woman is modeled as an AbC component of the form Wi = Γi :{id} PW . Each man is modeled as
an AbC component of the form Mi = Γi :{id} PM . Thus the interaction interface between components
is the person identity. This is because the interaction predicates of components only refer to the
attribute id of each other, as the next example will show. A system of n men and n women is then
rendered as:

SY S ,M1 ‖M2 ‖ . . . ‖Mn ‖W1 ‖W2 ‖ . . . ‖Wn

The result of any matching procedure is a complete and stable matching. The matching algorithm is
encoded in the behaviour of men and women components through processes PM and PW as detailed
in Example 1.2.
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(Components) C ::= Γ :I P | C1 ‖ C2

(Processes) P ::= 0 | (Ẽ)@Π.U | Π(x̃).U | 〈Π〉P | P1 + P2 | P1|P2 | K
(Update) U ::= [a := E]U | P

(Predicates) Π ::= tt | ff | p(Ẽ) | Π1 ∧ Π2 | ¬Π
(Expressions) E ::= v | x | a | this.a | f(Ẽ)

Figure 2.1: AbC syntax

The behaviour of a component is modeled by a process P executing actions. A process can be either
an inactive process 0, a prefixing process α.U where the continuation process U may have an attribute
update [a := E] preceding it, an awareness process 〈Π〉P , a choice process P1 + P2, a parallel process
P1|P2, or a process call K under the assumption that each process has a unique definition K , P .

An expression E may be a constant value v, a variable x, an attribute name a, a reference this.a to
attribute a in the environment of the executing component or a k-place function f on a sequence of
expressions Ẽ. A predicate Π can be either boolean constants tt, ff, a decidable k-place predicate p
on a sequence of expressions Ẽ, a logical conjunction of two predicates Π1 ∧ Π2 or a negation of a
predicate ¬Π.

The evaluation of an expression E under an environment Γ is denoted by JEKΓ. It has the effect of
replacing the occurrences of a and this.a with the value Γ(a). The partial evaluation of a predicate Π
under an environment Γ is denoted by {Π}Γ. It returns a predicate Π′ obtained from Π by replacing
every occurrence of this.a in Π with Γ(a). We write Γ |= Π to state that predicate Π holds in
environment Γ. Figure 2.2 defines the satisfaction relation between a predicate Π and an environment
Γ.

The actions of an AbC component are:

(Ẽ)@Π: the attribute-based output that is used to send the evaluation of a sequence of expressions Ẽ
to those components whose attributes satisfy predicate Π;

Π(x̃): the attribute-based input that binds to the sequence of variables x̃ the message received from
any component whose attributes, and possibly the communicated values satisfy the receiving predicate
Π.

Thus, the only syntactic difference between sending and receiving predicates is that the latter can also
refer to the values in the message.

An attribute update [a := E] assigns the evaluation of expression E to attribute a. In AbC , attribute
update is interpreted as the side-effect of communication actions. The execution of an action and
following update(s) (if there any) is atomic.

8
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An awareness predicate Π blocks the execution of a process until it is satisfied. This predicate is
different from the ones used for sending and receiving in that it can only refer to attributes in the local
environment. The activation of an awareness predicate and the execution of any action that follows
are also atomic.

The choice process P1 + P2 can behave either like P1 or P2. The parallel process P1|P2 interleaves
the executions of P1 and P2. Thus, a component may have parallel processes operating on the same
attribute environment. Co-located processes residing within one component do not communicate.
They simply interleave and may indirectly affect the behaviour of the others by modifying the shared
environment.

Variables occurring in a process term are bound by input actions. Specifically, Π(x̃).U acts as a binder
for x̃ in U. This implies that the three types of predicates, i.e., awareness, sending, and receiving, may
also contain variable names.

Remarks. In AbC there are three kinds of predicates.

• Awareness predicate can only relate the local attributes of the executing component.

• Sending predicate can relate the attributes of the local component and those of other components.

• Receiving predicate can relate the attributes of the local component and those of other compo-
nents, in addition to the message to be received.

The interaction predicates (send and receive) are meant to express the properties of the potential
partners who the local component wants to interact with. They can not relate the attributes among
two or more external components. In fact, the design of AbC emphasizes on mutual interest between
a sender and a receiver (see the rules of input and output actions in Figure 2.3).

For the same reason, there is no support for quantifiers (e.g., ∀,∃) to be used along with the interaction
predicates. Nevertheless, we still have a sense of quantifiers (at the communication time) in that
an output action select all components according to the sending predicate (hence ∀) and an input
action receives from any component according to a receiving predicate (hence ∃). This is the natural
consequence of input and output semantics.

We consider AbC predicates as boolean-value functions from variables (in our case, attributes and
messages) to truth values. In Figure 2.1, predicates (and expressions) may have complex forms to which
we deliberately omitted the precise syntax; we only refer them as k-place operators over expressions.

Example 1.2 (Gale Shapley Algorithm). We continue to specify the behaviour of men and
women components following the algorithm conceived by Gale and Shapley. The classical algorithm
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Γ |= tt for all Γ
Γ 6|= ff for all Γ
Γ |= p(E1, . . . , Ek) iff p(JE1KΓ, . . . , JEkKΓ) is true
Γ |= Π1 ∧Π2 iff Γ |= Π1 and Γ |= Π2

Γ |= ¬Π iff not Γ |= Π

Figure 2.2: The satisfaction relation.

of [65] goes through a sequence of proposals initiated by members of one group (the proposers) accord-
ing to their preferences. Members of the other group (the responders) after receiving a proposal, do
choose the best proposer between their current partner and those making advances. It can be proved
that such an algorithm guarantees existence of a unique stable matching. In the message passing
model, we let a man send a proposal message to the first woman in his list and assume the woman
becomes his partner until he gets rejected. When a man gets a reject message, he makes a proposal
to the next woman in his preference list.

This behaviour of a man component can be encoded in AbC as follows:

PM , (‘proposal’, this.id)@(id = hd(this.pref)).[partner := hd(pref), pref := tl(pref)]P ′
M

P ′
M , (x = ‘no’)(x).[partner := −1]PM

We assume the existence of 1-arity functions hd and tl that take a list as parameter and return the head
and the rest of the list, respectively. Literal constants are quoted to avoid confusion with attribute
names. PM basically consists of two actions, an attribute-based send and an attribute-based receive.
The output action uses a sending predicate as id = hd(this.pref), in which id represents the attribute
of other components and this.pref is the value of pref of the executing component. The message to
be sent contains two elements, a constant and the value of attribute id. By executing this action, the
process sends the message to any component whose value of id satisfies the predicate. As a side effect,
the attribute partner gets updated and the first element is removed from pref. After that, PM waits
for a message. In our example, the receiving predicate only constraints on the message content. If
there is one message such that its content equals to ‘no’, the attribute partner is reset atomically, and
PM is recursively called.

A woman on the other hand only waits for incoming proposals. For each proposal, she compares the
new man with her current partner according to her preference list and keeps the better man as partner
while rejecting the other one. This behaviour is encoded as follows:

PW , (x = ‘propose’)(x, y).(HW | PW )

HW , 〈bof(y, partner, pref)〉(‘no’)@(id = this.partner).[partner := y]0

+ 〈¬bof(y, partner,pref)〉(‘no’)@(id = y).0
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PW first waits for a message containing two elements such that the first element is ‘propose’, and then
continues as a parallel process. The continuation is composed of two processes: HW that handles the
received message and PW that guarantees handling of future proposals. This replication mechanism
is useful to allow a component to receive multiple messages in parallel.

In the code of process HW , we handle two cases by using a choice operator. Each branch is guarded
with the condition encoded via a boolean-valued function namely bof . The function returns true if
the first parameter precedes the second parameter in list pref . Intuitively, the first branch is the case
where the sender identified by y is better than the current partner. The activation of this awareness
predicate leads to a message ’no’ that is sent to all components whose id equals to the value of partner.
Atomically, partner is updated in the local environment. In the second branch, we encode a reverse
behaviour where y is considered not better than partner and thus a ‘no’ message is sent.

2.1.2 AbC semantics

The operational semantics of AbC is defined at two different levels: component semantics and system
semantics. Component semantics is useful for reasoning about the behaviour of an individual compo-
nent when it performs communication actions. System semantics is useful for modeling the evolution
of the system as a whole, in particular for parallel composition of sending and receiving components.
Below, we explain the main semantic rules given in Figures 2.3 and 2.4, where the transition relation
7−→ describes components’ behaviour and −→ describes systems’ behaviour.

The semantics is given in terms of labeled transition systems. The transition labels are of the following
forms:

λ ::= Γ .Π(ṽ) | Γ .Π(ṽ) α ::= λ | ˜Γ .Π(ṽ)

λ labels are used to represent input (Γ . Π(ṽ)) and output (Γ . Π(ṽ)) actions. α labels includes
also a negative label ˜Γ .Π(ṽ) to model the case a component is unable to receive a message. The
output label contains the sender predicate, the message and the portion environment as limited by
the interface of the sender. We will sometimes make this intention clear by writing explicitly Γ ↓ I
(that is (Γ ↓ I)(a) = Γ(a) if a ∈ I, and undefined otherwise). Each component can either receive the
message by performing the input action or discard it by exhibiting the negative label.

Rule Brd models the execution of an output action. When a component can do this action, it
broadcasts the evaluation result ṽ of expressions Ẽ, the closure Π′ of the sending predicate Π under
Γ (denoted by {Π}Γ which replaces all the occurrences of this.a with Γ(a)), along with the portion of
environment Γ ↓ I . The executing process evolves from (Ẽ)@Π.U to U . The status of the sending
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Brd JẼKΓ = ṽ {Π}Γ = Π′

Γ :I (Ẽ)@Π.U Γ↓I.Π′(ṽ)7−−−−−−→ {|Γ :I U |}
FBrd

Γ :I (Ẽ)@Π.U Π̃′(ṽ)7−−−→ Γ :I (Ẽ)@Π.U

Rcv Γ′ |= {Π[ṽ/x̃]}Γ Γ |= Π′

Γ :I Π(x̃).U Γ′.Π′(ṽ)7−−−−−→ {|Γ :I U [ṽ/x̃]|}
FRcv Γ′ 6|= {Π[ṽ/x̃]}Γ ∨ Γ 6|= Π′

Γ :I Π(x̃).U Π̃′(ṽ)7−−−→ Γ :I Π(x̃).U

Aware Γ |= Π Γ :I P
λ7−→ Γ :I P ′

Γ :I 〈Π〉P
λ7−→ Γ :I P ′

FAware1 Γ |= Π Γ :I P
Π̃′(ṽ)7−−−→ Γ :I P

Γ :I 〈Π〉P
Π̃′(ṽ)7−−−→ Γ :I 〈Π〉P

FAware2 Γ 6|= Π

Γ :I 〈Π〉P
Π̃′(ṽ)7−−−→ Γ :I 〈Π〉P

Choice Γ :I P1
λ7−→ Γ′ :I P ′1

Γ :I P1 + P2
λ7−→ Γ′ :I P ′1

Int Γ :I P1
λ7−→ Γ′ :I P ′1

Γ :I P1|P2
λ7−→ Γ′ :I P ′1|P2

FChoice Γ :I P1
˜Γ′.Π′(ṽ)7−−−−−→ Γ :I P1 Γ :I P2

˜Γ′.Π′(ṽ)7−−−−−→ Γ :I P2

Γ :I P1 + P2
˜Γ′.Π′(ṽ)7−−−−−→ Γ :I P1 + P2

FInt Γ :I P1
˜Γ′.Π′(ṽ)7−−−−−→ Γ :I P1 Γ :I P2

˜Γ′.Π′(ṽ)7−−−−−→ Γ :I P2

Γ :I P1|P2
˜Γ′.Π′(ṽ)7−−−−−→ Γ :I P1|P2

Figure 2.3: AbC ’s component semantics

component however depends on if the process U contains any attribute update or not. The function
{|C|} is interpreted as follows:

{|C|} =

{|Γ[a 7−→ JEKΓ] :I U |} C ≡ Γ :I [a := E]U

Γ :I P C ≡ Γ :I P
(2.1)

where Γ[a 7−→ v] is an updated environment such that Γ[a 7−→ v](a) = v and Γ[a 7−→ v](a′) = Γ(a′) ∀ a′ 6=
a. That is, attribute updates are consumed one by one until U becomes P with P not prefixed by any
update. It is however more convenient to write a series of attribute updates as [a1 := E1, a2 := E2, . . .],
instead of [a1 := E1][a2 := E2], . . ..

Example 1.3 (The transition of attribute-based output). We illustrate how an attribute-
based output takes place in men components when they send out proposal messages. If we take
M1 = Γ1 :{id} PM with Γ1 = {id = 1, pref = [3, 4]}, partner = −1} and the process PM described in
Example 1.2, by applying the rule Brd, we can have the following transition:

J(′propose′, this.id)KΓ1 = (′propose′, 1) {id = hd([3, 4])}Γ1 = (id = 3)′

Γ1 :I PM
{id=1}.id=3(′propose′,1)7−−−−−−−−−−−−−−−−→ Γ1[partner 7−→ 3, pref 7−→ [4]] :{id} P

′
M
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If a component can only offer an output action, it would discard any incoming messages and stay
unchanged. This fact is expressed by the rule FBrd with the discarding label ˜Γ .Π′(ṽ).

Rule Rcv modeling the execution of an input action states that a receiving component can perform
an input action to receive a sequence of values ṽ, in such case the substitution [ṽ/x̃] is applied to the
continuation process U if two conditions hold:

1. the sending predicate Π′ is satisfied in the receiving environment Γ;

2. the partial evaluation of the receiving predicate Π under the local environment, after binding
the variables x̃ to the received values ṽ, is satisfied in the portion of sender’s environment Γ′.

In case one of the two conditions above is not satisfied the receiving component discards the incoming
message and stays unchanged, as shown by the rule FRcv.

Example 1.4 (The transition of attribute-based input). Let us consider a system of 4 com-
ponents of two men and two women, with the first component being M1 as in the previous example
and the remaining three components with the following attribute environments.

SYS ::= Γ1 :I PM ‖ Γ2 :I PM ‖ Γ3 :I PW ‖ Γ4 :I PW where I = {id} and
Γ2 = {id = 2, pref = [3, 4], partner = −1}
Γ3 = {id = 3, pref = [1, 2], partner = −1}
Γ4 = {id = 4, pref = [1, 2], partner = −1}

By applying rule FRcv, we can derive the following transitions:

Γ2 :{id} PM
{id=1}.(̃id=3)(′propose′,1)7−−−−−−−−−−−−−−−−−−→ Γ2 :{id} PM

Γ4 :{id} PW
{id=1}.(̃id=3)(′propose′,1)7−−−−−−−−−−−−−−−−−−→ Γ4 :{id} PW

This is because the component M2 can only perform an attribute-based output, whereas the compo-
nent W4 discards the message because the sender predicate (id = 3) is not satisfied in its attribute
environment Γ4.

On the other hand, by using rule Rcv, we can derive the following transition:

Γ3 :{id} PW
{id=1}.(id=3)(′propose′,1)7−−−−−−−−−−−−−−−−−−→ Γ3 :{id} HW [1/y] | PW
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ICom Γ :I P
λ7−→ Γ′ :I P ′

Γ :I P
λ−→ Γ′ :I P ′

FCom Γ :I P
˜Γ′.Π′(ṽ)7−−−−−→ Γ :I P

Γ :I P
Γ′.Π′(ṽ)−−−−−→ Γ :I P

Com C1
Γ′.Πṽ7−−−−→ C ′1 C2

Π(ṽ)7−−−→ C ′2

C1 ‖ C2
Πṽ−−→ C ′1 ‖ C ′2

Sync C1
Π(ṽ)7−−−→ C ′1 C2

Π(ṽ)7−−−→ C ′2

C1 ‖ C2
Π(ṽ)−−−→ C ′1 ‖ C ′2

Figure 2.4: AbC’s communication rules

Rules Aware and FAware1 describe the semantics of the awareness operator: the component Γ :I
〈Π〉P behaves as Γ :I P only when Γ |= Π, otherwise it gets stuck (FAware2).

The remaining four rules describe the behaviour of co-located processes inside a component. Choice
and parallel processes have the usual semantics when they are able to perform input or output actions.
For simplicity we have omitted the symmetric rule of Choice and Int. The interesting case is when
they discard a message if both subprocesses discard that message (FChoice, FInt). Although not
presented here, a process invocation on an identifier K has the same behaviour as its process definition
P and an inactive process 0 can only discard messages.

The AbC system semantics is briefly presented in Figure 2.4. Rules (ICom) and (FCom) lift the
transitions from component level to system level. Rule (Com) states that two parallel components
C1 and C2 can communicate if C1 can send a message and C2 can receive it. Rule (Sync) states that
multiple components can receive the same message and in such case, they evolve together in a single
move. Note in rule FCom that, at the system level, discarding of messages by a component, cannot
be observed. That is, an external observer of the system can not tell if a message is consumed or
discarded by a component.

Example 1.5 (An interaction fragment of SMP). Consider again the SMP system in our
example M1 sent a proposal message:

Γ1 :I PM
{id=1}.id=3(′propose′,1)7−−−−−−−−−−−−−−−−→

M ′
1︷ ︸︸ ︷

Γ1[partner 7−→ 3, pref 7−→ [4]] :{id} P
′
M

As explained in Example 1.4,M2 andW4 discard this message whileW3 receives it. The whole system
thus evolves with rule COM with the synchronization ofM1 andW3: M1 ‖M2 ‖W3 ‖W4

id=3(′propose′,1)7−−−−−−−−−−−→

M ′
1 ‖M2 ‖ Γ3 :{id} HW [1/y] | PW ‖W4 .

2.2 Case studies: AbC at work

Having introduced syntax and semantics of the AbC calculus, we proceed in presenting two additional
case studies with the aim of showing how non trivial interaction protocols may be programmed with
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the AbC primitives.

2.2.1 Stable marriage with attributes

The classical version of SMP is helpful to illustrate the basic constructs of AbC , however the commu-
nications among components are essentially point-to-point as the interaction predicates are based on
person’s identity.

We now consider a variant where men components propose with predicates over women’s characteristics
instead of their identifiers. Specifically, we extend the set of attributes of men and women to include
personal characteristics. The notion of preferences is also adjusted to consider specific values of
potential partner characteristics that a person wants to match. In this respect, each agent can be
associated with several attributes as follows:

• m1, . . . ,mk, w1, . . . , wk: k characteristics of a man and of a woman, respectively

• pw1, . . . , pwk, pm1, . . . , pmk: k preferences that a man and a woman have over potential partner
characteristics, respectively

To express the notion of preference lists as in the classical case for men and women, we build a list
of predicates for agents. Each predicate in the list is a conjunction of equality check between the
preferences of an agent and the characteristics of potential partners. In particular, we consider the
highest demand that a man possessing the preferences pwi can have over women as: Π1 = (pw1 =
w1∧pw2 = w2∧ . . .∧pwk = wk). This means that a man prefers the most a parter who satisfies all the
preferences. Other predicates in the list are derived from Π1. A simple schema could be allowing agents
to drop one checking clause at a time1. For example, Π2 = (pw1 = w1∧pw2 = w2∧. . .∧pwk−1 = wk−1)
is the relaxation of Π1, i.e., when the last requirement, pwk, is dropped. Interestingly, Πk = tt states
that the agent is willing to accept any member of the opposite set.

Our goal is the same as the classical problem, i.e., to obtain a complete and stable matching. We
also assume the two sets Men and Women have the same number of elements n. In our model,
men actively use predicates in the list as sending predicates to propose themselves. Women wait for
proposal messages and do the comparison and rejection as before. Given a particular demand (or
requirement) Πi of a man m, we can define the notion that m prefers some woman w to other w′ by
comparing the number of characteristics of w and w′ that match m’s preferences. A similar reasoning
is applied for women.

Before presenting an AbC specification of the problem, we explain the matching algorithm. The key
idea is based on the following observations. Proposal messages from a man may target zero or many

1This is to make our variant realistic, as dropping the preferences results in less selective predicates and in an increase
of the chances of finding a partner.
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women. In the first case, the man tries with the next predicate in the list. In the second case, extra
acknowledgment messages are needed to select a partner. Later on, he may be rejected by his partner,
and he moves on with the next predicate if all interested women have rejected him. In both situations,
the man needs to know how many answers he may receive.

The behaviour of a man is as follows. Before making a proposal, he learns about the number of women
who may answer his proposal. Without further complicating the protocol, we assume that each man
knows the total number of women in the system, i.e., n. Otherwise, this number can be learnt from an
additional agent who keeps track of the number of agents joining the matching system. For instance,
a more involved interaction protocol would need a special agent working in parallel with other agents.
Men and women which join

• Querying. For a specific requirement Πi, man m prepares a query message qi and sends it to all
women. m waits for n messages from women and counts the number of interest messages using
a counter c. If there is no interest messages, m restarts this phase using the next requirement
Πi+1, otherwise proceeds with the proposing phase.

• Proposing. Man m sends a propose message, and waits for c messages. As soon as he receives
a first yes from a woman (if any), he sends her a confirm message and considers himself engaged
to her. He then rejects any other yes answer by sending out a toolate message. If he receives a
no message, the sender is added to a black list.

• Waiting. After a proposing phase, a man can be either alone or engaged. In the first case, he
relaxes the current predicate and goes back to the querying phase. In the second case, he takes
no action unless he receives a bye message from his partner. He adds the new ex-partner to the
black list and propose again without relaxing his predicate, eliminating those in the black list.

On the other hand, a woman keeps listening for messages and processes them as follows.

• Answering. If a woman receives a querying message, she compares the attributes against the
requirement specified in the message, then she replies to the sender either an interested or an
uninterested message.

• Processing. If a woman receives a proposal message, she compares the attributes of the sender
(attached in the message) against those of the current partner. She then replies with a yes

message if the proposer is better or a no message if the proposer is not better. If a woman
receives a confirm message from the proposer, it means that she answered with a yes before.
She breaks with her current partner (if any) by sending it a bye message, and takes the new man
as partner.
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The above matching procedure is a natural extension of the classical algorithm by Gale Shapley. The
key to obtain stability is that a man proceeds with a relaxed requirement only when all the potential
partners satisfying a previous requirement have rejected him. In this way, the algorithm can find
man-optimal matching(s) (i.e., matchings where each man gets the best possible partner among other
existing matchings).

To make our model concrete, we consider k = 2 and define explicitly the following demands for men:
Π1 = (pw1 = w1 ∧ pw2 = w2), Π2 = (pw1 = w1), Π3 = (pw2 = w2), Π4 = tt with the intuition that: if
a man fails to get a partner with a given requirement Πi, he continues the matching procedure with
a lower requirement Πi+1. In the extreme case, a man uses Π4 which would broaden the target set of
women with the hope to find a partner eventually.

In our variant, the matching system is the parallel compositions of men and women, i.e., M1 ‖ M2 ‖
. . . ‖ Mn ‖ W1 ‖ W2 ‖ . . . ‖ Wn. Each man is defined as Mi , Γi :{id,m1,m2} PM where Γi and PM

represent its attribute environment and behaviour, respectively. Similarly, each women is represented
as Wj , Γj :{id,w1,w2} PW with the attribute environment Γj and behaviour PW .

We can now introduce the behaviour of a man. In addition to the attributes representing characteristics
and preferences mentioned above, the attribute environment of men contains also:

• id: a non negative integer representing man’s identity

• partner : the current partner identity, initially, partner = 0

• sent: an attribute used to disable or enable sending propose messages, initially sent = 0

• bl: a set storing women identities who have rejected a man, initially bl = ∅

• n: the number of women in the system

• c: a counter that counts the number of “interest” answers after a man sends a query message,
initially c = 0

• counter : a counter that counts the number of answers after a man sends a query message,
initially counter = 0

Note the role of the list bl. If a woman w rejects a man m, it must happen that w has already paired
with another m’ who is better than m. bl is used to prevent the possibility of m contacting with w
again in the future iterations. This does not violate the stability condition because the pair (m,w) is
not a blocking pair.

The process PM is a parallel composition of several processes. Process Q defines the querying phase,
process P defines the proposing phase, processes R and A together implement the waiting phase.

PM ::= Q | P | R | A
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Q is in charge of querying the number of women in the system whose characteristics match a given
requirement. Recall that we explicitly consider requirements as Π1, Π2 Π3, Π4. Q in turns contains
several parallel processes; they are programmed to be executed in a given order by relying on the
attribute counter. The number of matched women is stored in the attribute c. The code of Q is
reported below.

Q , Q1 |Q2 | Q3 | Q4

Q1 , 〈counter = 0〉(‘q1’, this.id, this.pw1, this.pw2)@(id /∈ this.bl).

[counter := counter + |bl|]Q1’

Q1’ , 〈counter < n〉(x = ‘interest’)(x).[c := c + 1, counter := counter + 1]Q1’

+ 〈counter < n〉(x = ‘uninterest’)(x).[counter := counter + 1]Q1’

Q2 , 〈counter = n ∧ c = |bl|〉(‘q2’, this.id, this.pw1, this.pw2)@(id /∈ this.bl).

[counter := counter + |bl|]Q2’

Q2’ , 〈counter < 2 ∗ n〉(x = ‘interest’)(x).[c := c + 1, counter := counter + 1]Q′
2

+ 〈counter < 2 ∗ n〉(x = ’uninterest’)(x).[counter := counter + 1]Q′
2

Q3 , 〈counter = 2 ∗ n ∧ c = |bl|〉(‘q3’, this.id, this.pw1, this.pw2)@(id /∈ this.bl).

[counter := counter + |bl|]Q3’

Q3’ , 〈counter < 3 ∗ n〉(x = ‘interest’)(x).[c := c + 1, counter := counter + 1]Q3’

+ 〈counter < 3 ∗ n〉(x = ‘uninterest’)(x).[counter := counter + 1]Q′
3

Q4 , 〈counter = 3 ∗ n ∧ c = |bl|〉()@(ff).[counter := counter + 1]0

At the beginning, Q1 sends a query message of a form (‘q1’, this.id, this.pw1, this.pw2) to all women.
After that it counts the number of ‘interest’ replies from women and ignores all ‘uninterest’ messages.
Other querying processes Qi are activated if conditions on c and counter are satisfied. Intuitively, the
condition on counter is to make sure that processes Qi are activated one after another. The important
bit is at the role of the set bl which contains ids of women who have rejected the man. Thus, in
specifying sending predicates, the set of potential destinations are only those whose ids are not in
the bl. The condition c = |bl| implies that either there is no ‘interest’ messages received, or all the
interested women have been added to bl. In both cases, the control is passed to the next querying
process. This condition on c, as we shall see, depends on the proposing process P in which the set bl
is incrementally expanded.

Process P contains several branches that send proposal messages according to a given demand or
requirement. The propose message contains a specific tag ‘propose’ and characteristics of a man.
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Process P is defined below.

P , 〈counter = n ∧ partner = 0 ∧ c > |bl| ∧ sent = 0〉

(‘propose’, this.id, this.w1, this.w2)@(Π1 ∧ id /∈ this.bl).[sent := 1]P

+ 〈counter = 2 ∗ n ∧ partner = 0 ∧ c > |bl| ∧ sent = 0〉

(‘propose’, this.id, this.w1, this.w2)@(Π2 ∧ id /∈ this.bl).[sent := 1]P

+ 〈counter = 3 ∗ n ∧ partner = 0 ∧ c > |bl| ∧ sent = 0〉

(‘propose’, this.id, this.w1, this.w2)@(Π3 ∧ id /∈ this.bl).[sent := 1]P

+ 〈counter = 3 ∗ n+ 1 ∧ partner = 0 ∧ n > |bl| ∧ sent = 0〉

(‘propose’, this.id, this.w1, this.w2)@(Π4 ∧ id /∈ this.bl).[sent := 1]P

Again in here, we use counter in the awareness predicates to schedule the execution of each branch
of P : the first branch takes place only after Q1 has finished, the second one follows the completion
of Q2, and so on. Furthermore, in each branch of P , the attribute sent is used to control when to
send a propose message. The other conditions state that a given branch is activated, i.e., a ‘propose’
message should be sent if there are still interested women (c > |bl|) and if the agent has no partner
(partner = 0).

Process A is used to handle ‘yes’ messages. If a man has no partner, he sends a confirm message to
the sender and updates the attribute partner. Otherwise, he answers with a ‘toolate’ message. After
receiving a ‘yes’ message, process A (like Example 1.2) is activated. This is needed to receive other
‘yes’ messages when process H is active.

A , (x = ‘yes’)(x, y).(H | A)

H , (〈partner = 0〉(‘confirm’)@(id = y).[partner := y]0

+ 〈partner > 0〉(‘toolate’)@(id = y).0

Finally, process R is used to handle the case a man receives ‘bye’ and ‘no’ messages. A ‘bye’ message
can come from the man’s partner, in which case, the attribute partner is reset. A ‘no’ message is
received from a woman who rejects the man’s proposal. In both cases, the man adds the id of the
sender to the attribute bl to avoid to contact her in the future. Furthermore, the attribute sent is also
reset, potentially triggering the sending of new proposal in the process P .

R , (x = ‘bye’)(x, y).[partner := 0, bl := bl ∪ {y}, sent := 0]R

+ (x = ‘no’)(x, y).[bl := bl ∪ {y}, sent := 0]R

The behaviour of a woman component is specified by process PW . It is the parallel composition of Rj
processes implementing the answering phase and a W process implementing the processing phase.

PW , P1 |P2 | P3 |W

The attributes of a woman include:
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• id: the unique identity

• w1,w2: the characteristics of a woman

• pm1,pm2: the preferences of a woman has over mens

• partner: the current partner identity, initially partner = 0

• cm1, cm2: the characteristics of the current partner, initially set to 0

• lock: the attribute implementing a lock in order to sequentialize the processing of propose
messages, because a woman may receive many of them in parallel. Initially lock = ff.

• bl: a set storing men identifiers to which a woman does not consider their propose messages,
initially bl = ∅

The processes P1, P2, P3 handle querying messages tagged with ‘q1’, ‘q2’, ‘q3’, respectively. For each
query identified by such a ‘qi’, a woman performs appropriate checks and reply with either an ‘interest’
or ‘uninterest’ message. For example, the tag ‘q1’ indicates the highest level of requirement that a
sender is asking. The process P1, handling this type of query is defined as below.

P1 , (x = ‘q1’)(x, y, z, t).(H1 | P1)

H1 , 〈(z = w1 ∧ t = w2)〉(‘interest’)@(id = y).0

+ 〈¬(z = w1 ∧ t = w2)〉(‘uninterest’)@(id = y).0

The process sends an ‘interest’ message to the sender if the agents characteristics match the require-
ment (i.e., z = w1 ∧ t = w2). Otherwise, it says ‘uninterest’. The parallel composition of P1 with itself
is to make sure that multiple querying messages of this type are eventually processed. Processes P2

and P3 have similar definitions:

P2 , (x = ‘q1’)(x, y, z, t).(H2 | P2)

H2 , 〈(z = w1)〉(’interest’)@(id = y).0

+ 〈¬(z = w1)〉(’uninterest’)@(id = y).0

P3 , (x = ‘q1’)(x, y, z, t).(H3 | P3)

H3 , 〈(t = w2)〉(‘interest’)@(id = y).0

+ 〈¬(t = w2)〉(’uninterest’)@(id = y).0

ProcessW handles propose messages sent from men. After a message is received, the process replicates
itself in order not to loose other ‘propose’ messages. The sender, which is the second element in the
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message, is added to a black list and the received message is handled by process H.

W , (x = ‘propose’ ∧ y /∈ this.bl)(x, y, z, t).[bl := bl ∪ {y}](H |W )

H , A+R

A , 〈new_man_is_better ∧ lock = ff〉(‘yes’, this.id)@(id = y).[lock := tt]A′

R , 〈¬ new_man_is_better〉(‘no’, this.id)@(id = y).0

A′ , (m = ‘confirm’)(m).B

+ (m = ‘toolate’)(m).[lock := ff, bl := bl\{y}]0

B , (‘bye’, this.id)@(id = this.partner).[lock := ff, partner := y, cm1 := z, cm2 := t]0

H models a choice between two possibilities: if the new man is better than the current partner, a
‘yes’ message is sent (process A), otherwise a ‘no’ message is sent (process R). The attribute lock of
process A is set to delay the decision making on other ‘propose’ messages that may be received in the
meanwhile. After sending out a ‘yes’ message, the agent continues as process A′ waiting for either a
‘confirm’ or a ‘toolate’ message.

In the first case, the agent proceeds with the process B that sends a ‘bye’ message to the current
partner that becomes the ex one. A list of attribute updates follows: the identity of new man is
set as partner, his characteristics are kept and the attribute lock is reset. Note that in the above
specification, the pair (cm1, cm2) stores the characteristics of the current partner. An agent, whose
preferences are (pm1, pm2), compares the current partner against a new proposer with characteristics
(z, t) using the condition new_man_is_better, which is encoded as:

(partner = 0 ∨ (z = pm1 ∧ cm1 6= pm1) ∨ (z = cm1 ∧ t = pm2 ∧ cm2 6= pm2)

In the second case, i.e., the agent gets a ‘toolate’ message, the proposer has accepted another woman
as partner. However, he may also propose again. The identity of the proposer, bound to y, is thus
removed from the black list bl to open this possibility, and the attribute lock is reset.

2.2.2 Distributed graph coloring

We consider a distributed variant of the graph coloring problem [30] in which the task is to label
the vertices of a graph with different colors (in our case, integers) in such a way that there are no
adjacent vertices sharing the same color. This problem can be rendered as a AbC system consisting of
components, one for each vertex of the graph, that collaborate on the color selection to complete the
task without any centralized control. A specification in AbC of this scenario has been already presented
in [24]. In what follows, we base our description on that specification. The main difference is at a
modification presented in the end of this section, to make the protocol more robust. In particular, we
spot out a potential issue in the original specification and give it a simple fix. The formal analysis in
Chapter 4 will confirm the necessity of this modification, if the reader is not convinced. Furthermore,
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we experiment with a slightly alternating behaviour of vertices, in order to gain some efficiency and
will confirm this experimentally in Chapter 3.

An undirected graph of N vertices is naturally modeled by components in the form Γi :I V , each
corresponding to a vertex. Each vertex has an unique id and a set of adjacent vertices, which are
captured by attributes id and nbr. Vertices only interact with their neighbors. We define the inter-
action interface for all vertices as I = {id, nbr} and interaction predicates of the form this.id ∈ nbr,
meaning that the predicates involve components whose nbr ’s contains id of the executing component.
Since we are considering undirected graphs, this sending predicate is no different from id ∈ this.nbr.
However under a broadcast implementation, such as ABEL (Chapter 3), the latter would occupy more
bandwidth since the set nbr needs to be sent together with the message.

The coloring scenario is then represented as: Γ1 :I V ‖ Γ2 :I V ‖ . . . ‖ Γn :I V where V is the process
defining the behaviour of each vertex.

To derive a specification for V , we start by illustrating the main algorithmic idea from the point of
view of a participating component. Basically, the procedure consists of a sequence of r rounds. During
each round, a component i can exchange two types of messages with the neighbors in the set nbri:
a ‘try’ message (‘try′, c, r) is used to inform that it wants to have the color c at round r; a ‘done’
message of the form (‘done′, c, r + 1) indicates that color c is definitely used at the end of round r.
At the beginning of each round, component i chooses the first available color c and sends out a ‘try’
message. Component i also collects ‘try’ messages from its neighbors to check for the presence of
conflict. Vertex i can only attain c as its final color if it has the greatest id among neighbors who are
trying to get the same color at the same round. Otherwise, i waits for the startup of a new round,
which is triggered by a message, either ‘done’ or ‘try’ associated with a round r′ such that r′ > r.

The above algorithm can be implemented in AbC . Apart from attributes id and nbr whose values
depend on a specific input graph, components maintain several private attributes for their local com-
putation:

• round: the current round that a component is operating

• counter: a counter that counts the number of try-messages received from neighbors at a given
round

• done: counts the number of neighboring vertices that decided on a color

• color: the color value

• used: the set containing colors that are already used by neighbors

• constraints: the set of the proposed colors of neighbors whose ids are greater than the component
at a given round
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• send: the flag controlling the sending of try-message

• assigned: the flag indicating the coloring status of a vertex

The values of these attributes are initialized as follows: round = counter = done = 0, used =
constraints = ∅, send = tt and assigned = ff, color = -1. The pair of attributes counter and
constraints is used to record the status of neighboring components who are still participating the
color selection. The pair done and used is used to record the status of neighbors who have finished
their coloring. A component can make decision on taking this.color if all neighbors status is known
by checking the condition this.counter+ this.done = |this.nbr| and if there is no conflict this.color /∈
this.used ∪ this.constraints.

All the components execute the same code specified in V . Process V is defined as a parallel composition
of four processes V , F | T | D | A.

Process F chooses the first available color for the vertex and sends this information, along with the
current round to neighbor nodes.

F , 〈send ∧ ¬assigned〉()@(ff).[color := min{i /∈ this.used}]

(‘try’, this.color, this.round)@(id ∈ this.nbr).[send := ff]F

where min{i /∈ this.used} is a function that returns the smallest element which does not appear in the
set this.used. Recall that in the AbC paradigm, attribute updates are side effects of communication
actions. To model a local attribute update, we thus exploit an empty send of the form: ()@(ff).[a := E].
In the above code, color is assigned the value of expression min{i /∈ this.used}. Then, a ‘try’ message,
associated with color and round is sent out. The attribute send is turned off as a side effect of this
action.

Process T collects ‘try’ messages sent from neighbors. The messages may come from vertices operating
during the same round or during a successive round of the algorithm. For each case, the messages
may originate from vertices whose ids are greater or smaller than this vertex’s id. Therefore, we have
four possibilities implemented as alternative nondeterministic choices.

T , (x = ‘try’ ∧ this.id > id ∧ this.round = z)(x, y, z).

[counter := counter + 1]T

+ (x = ‘try’ ∧ this.id < id ∧ this.round = z)(x, y, z).

[counter := counter + 1, constraints := constraints ∪ {y}]T

+ (x = ‘try’ ∧ this.id > id ∧ this.round < z)(x, y, z).

[round :=z, send := tt, counter := 1, constraints := ∅]T

+ (x = ‘try’ ∧ this.id < id ∧ this.round < z)(x, y, z).

[round := z, send := tt, counter := 1, constraints :={y}]T
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The first two branches deal with messages coming from components executing the same round of the
algorithm. The component keeps track of the number of ‘try’ messages in the attribute counter. If the
sender’s id is greater than the receiver’s id, the set constraints has to be updated so that the colors
of these senders would not be taken by the receiver. The last two branches, if executed, can trigger
the execution of a new round. In this case, private attributes are updated accordingly: the new round
is set to z and the flag send is turned on. Furthermore, the counter is reset to 1 because this is also
a ‘try’ message to be collected whereas constraints is reset to a value depending on the sender’s id.

Process D handles the reception of ‘done’ messages and possibly triggers a new round of the executing
component. The private attribute done and used are updated to keep track of neighbors who have
decided their colors. In case the messages belong to an associated greater round, the attributes related
to the execution of a new round, i.e., counter, constraints, send are reset to their initial values, and
round is set to be z.

D , (x = ‘done’ ∧ this.round ≥ z)(x, y, z).

[done := done + 1, used := used ∪ {y}]D

+ (x = ‘done’ ∧ this.round < z)(x, y, z).

[done := done + 1, used := used ∪ {y},

send := tt, counter := 0, constraints := ∅, round :=z]D

ProcessA is used to report the completion of color selection of the executing component. The activation
of A has the effect of sending a ‘done’ message to all neighbors and set assigned to tt. A is then
terminated, indicating that the component does not participate in the color selection any longer.

A , 〈(counter + done = |nbr|) ∧ color > 0 ∧ color /∈ constraints ∪ used)〉

(‘done’, this.color, this.round + 1)@(id ∈ this.nbr).[assigned := tt]0

Our modifications. We have made some modifications to the above specification to prevent a
critical situation. Note that the process F contains two separate actions: the first selecting a color (f1)
and the second sending a ‘try’ message (f2). Because A and F operate in parallel, it could happen an
execution trace containing (f1 – A – f2). This would mean that after reporting the completion of its
coloring (by A), there is a possibility for a component to send a ‘try’ message (by f2). This is because
the awareness predicate of F applies only for f1. The execution of f2 therefore causes inconsistent
counter values at the neighboring components, which prevents their completion.

To fix this problem we may define a process F ′ that combines the two actions of F into one.

F ′ , 〈send ∧ ¬assigned〉(‘try’,min{i /∈ this.used}, this.round)@(id ∈ this.nbr).

[color := min{i /∈ used}, send := ff]F ′

Now F ′ sends out a ‘try’ message containing the selected color, and as a side effect, updates this value
to the attribute color.
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Moreover, it could happen that, at a given round, a component may execute processes T and D before
F and thus obtain some information about the status of its neighbors. When F ′ takes place, it can
make use of this information in proposing the color. In other words, it is better for a component to
propose a color which does not appear in constraints, because it can not take those in constraints at
the same round. To introduce this behaviour, we can rewrite F ′ into

F ′′ , 〈send ∧ ¬assigned〉(‘try’,min{i /∈ this.used ∪ this.constraints}, this.round)@(id ∈ this.nbr).

[color := min{i /∈ used ∪ constraints}, send := ff]F ′′

Our argument is that using F ′′ instead of F ′ can potentially reduce the number of rounds of the
algorithm, however depending on the input graph.

The presented case studies introduce a common communication pattern in distributed systems, in
which an autonomous agent sends out a message and needs to consider a number of replies before
it can take decision. This is a typical situation that often arose in designing coordination protocols,
requiring the capability of an agent to react on a set of messages, instead of a single message. In AbC ,
when a message is sent to destinations specified via a predicate, the sender in general has no idea
of how many potential receivers would receive that message. As a consequence, in order to react on
a set of reply messages from these destinations, a component must know the number of components
who have received the message. This is the case of the stable marriage with attributes, in which, men
agents have to learn this number explicitly by sending querying messages before actually involving
into the matching protocol. The protocol can be made simple if we have somehow a global view of
the system at hand. In the second case study, we do not run into this extra treatment because the
number of interacting partners for any vertex is known (i.e., the number of neighbors). In general,
however, it is useful to provide additional coordination and synchronization abstractions to ease the
programming task. Chapter 5 attempts to provide a simple coordination construct concerning with
the mentioned communication pattern. There we will see how the case studies can be expressed with
the support of such a construct.

2.3 The Erlang programming language

Erlang [31, 40] is a concurrent functional programming language originally designed for building
telecommunication systems [36] and recently successfully adapted to broader contexts, such as large-
scale distributed messaging platforms [91, 104]. It supports concurrency [32] and inter-process com-
munication natively through a compact set of powerful primitives. The lightweight and scalable
concurrency model and the modularity of functional-style programming [82, 83] make Erlang partic-
ularly appropriate for building massively scalable distributed systems. The work of this thesis heavily
relies on Erlang programming as the developed prototypes are entirely based in Erlang. This section
reviews the relevant features of Erlang and of OTP behaviours which are used in our work.
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2.3.1 Process

Erlang is a functional language whose syntax is borrowed from Prolog [30]. Erlang code is organized
into modules which contain functions as building blocks. Functions are first class citizens containing
expressions. The value of a function is the value of the last expression in the function body. Recursion
is the main mechanism for programming loops.

For example,

bof (_,_, [ ] ) -> f a l s e ;
bof (_, 0 _) -> true ;
bof (Y,P , [H|T] ) ->

case H o f
Y -> true ;
P -> f a l s e ;

_ -> bof (Y,P,T)
end .

is a function named bof that takes three parameters. The function contains 3 clauses. Each clause
pattern matches on the value of function parameters where underscores are “don’t care” variables.
bof essentially checks if Y appears before P in the list, which is pattern matched into a head H and
a tail T .

As a functional language, Erlang provides immutable data types such as list, tuples, map; it encourages
the function style rooted at common concepts such as pure functions (i.e., no side effect), referential
transparency (i.e., single assignment), high-order functions (with use of currying and partial evalua-
tion) and pattern matching (on data structures). Erlang is dynamically typed; the lack of a static
type system was considered as a trade off for its hot-code swapping feature.

To this core, Erlang adds concurrency via built-in constructs for processes creation and asynchronous
message passing. Unlike operating system’s threads or processes, Erlang processes are part of the
language and implemented by the Erlang runtime system (which is eventually implemented in C).
Processes have their own memory space which grows and shrinks during their life time. Thus, a
garbage collector can work independently on one process while others are still running. This reduces
the latency of garbage collection pauses and makes Erlang suitable for soft real-time systems.

Process creation in Erlang is obtained by simply calling the built-in spawn(Fun) function that creates
a new process and evaluates Fun. This newly created process is a very light weight thread. Each
process has an unique identifier which is assigned at the creation time as a result of the spawn function.
More importantly, processes can collaborate by point-to-point asynchronous message passing. Process
identifiers must be known by others for the communication purpose. Messages that are sent to a
process are stored in the receiver (theoretically unbounded) mailbox until they are processed. The
arrival order of messages sent from different processes is indeterminate, however a linear order is
guaranteed from messages sent by a specific process. Messages are retrieved from the mailbox by
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pattern matching on their contents, and thus are not necessarily consumed in the same order as they
arrive.

A message is sent by using the bang operator whose the generic form is Pid ! Msg where Pid is
the identifier of the target process. A sender needs not to wait for actual message delivery before
continuing with its own computation.

A receiving processes can extract messages from its mailbox by using the selective receive construct
whose general form is:

r e c e i v e
Pattern1 when Guard1 -> Express ion1 ;
Pattern2 when Guard2 -> Express ion2 ;
. . .

a f t e r TimeOut
TimeoutClause

end

When a process enters a receive construct, it tries to match the oldest message in the mailbox against
the patterns in the body of receive in the order they are presented. If there is a message that matches
one of the patterns and the corresponding guard is satisfied, the corresponding expression is evaluated
and the message is removed from the mailbox. Otherwise, the receive construct tries with the next
message. If there are no messages in the mailbox that can be retrieved in this way, the construct blocks
the executing process. The guards and the after sections are optional. If the latter is specified, the
receive construct will timeout after a TimeOut, expressed in milliseconds, while waiting for a matching
message. In this case, the TimeOutClause will be evaluated.

The inter process communication mechanism is illustrated with the program in Figure 2.5. There
are two types of processes that evaluate functions man and woman, where the last parameter for
both functions are lists. We assume that the list in the function man contains process identifiers of
all woman processes and vice versa. That is, we assume that the code for initialization is written
somewhere else. A man process sends a propose message (line 2) to the first element H of the
parameterized list where H is obtained by pattern matching. This process then blocks until a message
no arrives, to which it performs the same function man with the tail T (line 5). A woman process
waits for a message that matches the pattern at line 10 and binds the variable Y to the second element
in the message; depending on the return value of bof , the process may repeat the procedure with a
new parameter set.

Erlang further adds monitoring (one direction) and linking (two directions) capabilities to processes;
a monitoring process is sent a system message if the monitored process crashes. This is very useful
to build fault-tolerant systems. Some processes can be designed with a “supervisor” role, supervising
another “worker” process or a group of processes: supervisor can then restart the process group
when something goes wrong. In complex systems, this idea is pushed forward to structure multi-level
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1 man( Id , [H|T] ) ->
2 H ! {propose , Id } ,
3 r e c e i v e
4 no ->
5 man( Id ,T)
6 end .

1 woman( Id ,P, Pre f ) ->
2 r e c e i v e
3 {propose , Y} ->
4 case bof (Y,P, Pre f ) o f
5 t rue ->
6 P ! no ,
7 woman( Id ,Y, Pre f ) ;
8 f a l s e ->
9 Y ! no ,

10 woman( Id ,P, Pre f )
11 end
12 end .

Figure 2.5: An example of process communication

hierarchy of supervisors, allowing fine-grain granularity reboots of sub-systems. Methodology and
patterns for structuring applications into a supervision tree are encompassed in the OTP framework.

2.3.2 OTP behaviours

OTP is a middleware and a set of libraries written in Erlang and shipped together with Erlang
distribution. In fact, Erlang standard libraries and OTP are so intertwined nowadays that one may
find it difficult to separate them out. Among other things, OTP provides an application framework for
efficient development of scalable, fault-tolerant and high available systems. The framework promotes
the use of programming patterns which applications may need, such as the server, state machine,
error logger, and so on. Specifically, OTP behaviours formalize recurring patterns of concurrent
programming. For example, a server process in a client model typically sits on a loop and reacts to
requests sent from clients by performing some predefined tasks. Clients may need an explicit reply for
each request. Hence, the server should be designed to handle synchronous or asynchronous requests.
A behaviour gives ready-to-use implementation of these reusable, generic parts in the form of library
modules, besides supporting conventions for structuring applications into supervision trees, dynamic
code upgrades and deployments. Programmers have the responsibility to implement the application-
specific code in a call back module following a conventional template of the behaviour.

In our work, we have exploited two commonly used OTP behaviours, namely: generic server and state
machine that we describe below.

Generic Server

A generic server is implemented as the library module gen_server. This module provides specific
functions for a client process to interact with the behaviour engine (i.e., the server process):
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• gen_server:start_link(ServerName, M, Args, Options) is used to start a server with some op-
tional parameters, i.e., Options. The function returns the server address. The argument Server-
Name is optional; if provided, a different process can interact with the created server via Server-
Name instead of its address. M is the name of the callback module.

• gen_server:call(Server, Msg) sends to Server an asynchronous message Msg and wait for a reply.

• gen_server:cast(Server, Msg) sends to Server an asynchronous message

The start_link function starts a gen_server process in the background. A client sends requests
to this created server using call and cast. The way the server handles requests is defined in the
module M , provided by the programmer. In OTP terms, programmers have the task to provide the
implementation for behaviour interfaces residing in the call back module. This is considered as a
contract in order to make use of the gen_server behaviour.

As an example, let us consider the Erlang program in Figure 2.6 that implements a factorial server.
It is conventional in Erlang that the callback module contains both API functions (used by clients)
and callback functions (used by the behaviour engine). Clients can start/stop the server, and ask for
a factorial computation as well as for the number of requests the sever has received. The server state
is a counter that is increased each time a request is received.

In Figure 2.6, APIs act as wrappers of the three gen_server functions described before. The behaviour
interface is a set of five callback functions2 whose signatures are exported at line 7. Their implemen-
tations start at line 23. The init function is called by the behaviour engine at the startup, and is used
for initializing the server state. Requests sent by clients via functions call and cast are handled by
handle_call and handle_cast, respectively. These functions return a tuple describing the new state
of the server after processing the request, together with a reply to the client (in case of call). Any
other request that does not come from the standard interfaces call, cast is directed to handle_info.
For example, a message is sent directly by the ! operator. The terminate function is used to perform
the necessary cleaning up when the server is about to stop.

Generic State Machine

The generic state machine (gen_statem) is a behaviour that has been recently added to OTP (available
from OTP version 20). It can be thought as a mixing behaviour which combines gen_server and an
event_driven state machine. In an event_driven state machine, a machine in state S that receives an
event E performs a set of actions A and changes its state to S’. Similarly to other gen_∗ behaviour,
gen_statem can react to synchronous or asynchronous requests, it can handle info messages and hook
to the structure of a supervision tree. What makes this behaviour attractive, among other things,

2actually, there are 8 call back functions in total while in the code we only present commonly-used ones. Those
omitted are optional.
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1 -module ( f a c t_se rve r ) .
2 - behaviour ( gen_server ) .
3 %% API
4 - export ( [ s t a r t_ l i nk /0 , get_count /0 , get_fact /1 , stop / 0 ] ) .
5
6 %% behaviour i n t e r f a c e s , to be c a l l e d by the gen_server p roce s s
7 - export ( [ i n i t /1 , handle_ca l l /3 , handle_cast /2 , handle_info /2 ,
8 terminate / 2 ] ) .
9

10 - d e f i n e (SERVER, ?MODULE) .
11 - r ecord ( s ta te , { count } ) .
12
13 %% API func t i on s
14 s t a r t_ l i nk ( ) ->
15 gen_server : s t a r t_ l i nk ({ l o c a l , ?SERVER} , ?MODULE, [ ] , [ ] ) .
16 get_count ( ) ->
17 gen_server : c a l l (?SERVER, get_count ) .
18 get_fact (N) ->
19 gen_server : c a l l (?SERVER, { get_fact , N} ) .
20 stop ( ) ->
21 gen_server : ca s t (?SERVER, stop ) .
22
23 %% c a l l back func t i on s
24 i n i t ( [ ] ) ->
25 {ok , #s t a t e { count = 0}} .
26 handle_ca l l ( get_count , _From, State = #s t a t e { count = Count }) ->
27 { reply , Count , State } ;
28 handle_ca l l ({ get_fact , N} , _From, State = #s t a t e { count = Count }) ->
29 Reply = f a c t (N) ,
30 { reply , Reply , State#s t a t e { count = Count + 1}} .
31 handle_cast ( stop , State ) ->
32 { stop , normal , State ) ;
33 handle_cast (_Msg, State ) ->
34 {noreply , State } .
35
36 handle_info ( _Info , State ) ->
37 {noreply , State } .
38 terminate (_Reason , _State ) ->
39 ok .
40
41 %% in t e r n a l f un c t i on s
42 f a c t (N) -> N * f a c t (N- 1 ) ;
43 f a c t (0 ) -> 1 .

Figure 2.6: A factorial server

is the following set of features: i) postponing events. This is the ability of delaying the processing
of events. In other words, if an event comes in while the machine is in a “not ready” condition to
handle the event, the machine can postpone the event. A deferred event is automatically retried when
the state has changed. Because of this, gen_statem separates two kinds of information: a state part
and a data part. Changes in the data do not account for retrying postponed events. ii) generating
internal events. Internal events are events from the machine to itself. By handling an internal event,
the machine can perform an extra task without any stimulus from the external environment. This is
useful to separate concerns in the business logic. For example, when the machine needs to perform
some task based on a common condition, which is emerged after processing a number of external
events.

These features can be emulated in pure Erlang by using a selective receive construct, but of course
with vastly different levels of efforts.
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2.4 The UMC model checker

UMC [81] is one of the model checkers belonging to the KandISTI [117] formal verification framework
used for analyzing functional properties of concurrent systems. In UMC, a system is represented
as a set of communicating UML-like state machines, each associated with an active object in the
system. UMC adopts doubly-labelled transition systems (L2TS) [53] as semantic model of the system
behaviour. A L2TS is essentially a directed graph in which nodes and edges are labelled with sets of
predicates and of events, respectively. The model checker allows to interactively explore this graph
and to verify behavioral properties specified in the state-event logic UCTL [58]. UCTL allows to
express state predicates over (the labelling of) system states, event predicates over (the labelling of)
single-step system evolutions, and combine these with temporal and boolean operators in the style of
CTL [43] and ACTL [52].

UMC was specifically oriented towards the early analysis of (likely wrong) initial system designs, that
trades the capacity of dealing with very large systems with the capacity of helping users to easily
understand the source of design errors. This is achieved, among other things, by providing interactive
explanations of the results of the evaluations and by allowing the user to observe and reason on systems
at a high level of abstraction without being distracted, if not overwhelmed, by all the details of the
specifications. In the following we briefly review the modeling language and the specification logics
supported in UMC.

The modeling language

As an experimental framework for promoting the use of formal methods according to UML paradigm
[98], UMC supports textual descriptions of UML state charts. A model consists of several classes and
objects instantiations and of a set of abstraction rules that enable us to make observable important
aspects of the model. A UML-like state machine is described in UMC in the form of a class declaration
structured as follows:

class Name is
Signals:
-- asynchronous signals accepted by this class
Vars:
-- local variables of this object
Transitions:
-- transitions that determine the behaviour of the class

end Name

where a list of Signals summarises the set events to which an active object may react3. A signal denotes
an asynchronous event that may trigger the transitions of an object. An object can send signals to

3UMC also supports an Operations section for the definition of synchronous events, which is however not relevant in
our study.
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itself by executing self.signal_name. The Vars section contains the private, non statically-typed, local
variables of the class and optionally their initial values. Values can denote object names, boolean
values, integer values or, recursively, (dynamically sized) sequences of values. The Transitions section
declares a set of transition rules that describe the behaviour of the class and have the following general
form:

source -> ta r g e t { t r i g g e r [ guard ] / a c t i on s }

to denote a state transition from state source to state target. A transition is triggered by a suitable
trigger event trigger (which is a signal name) and if the guard expression is satisfied, all actions inside
the transition body are executed. The execution of actions may in turn change the state of the object
or trigger other transitions.

To illustrate the syntax of UMC, let us look at an example of a COUNTER state machine.

Class COUNTER
Signals: decr
Vars x:int
Transitions:
s1 -> s2 {-/self.decr; x:=2}
s2 -> s2 {decr[x>1]/self.decr;x:=x-1}
s2 -> s3 {decr[x=1]/x:=x-1}
end COUNTER;

Objects: c1 : COUNTER

COUNTER has s1 as the starting state; the machine takes the first move to s2 and the set of actions
to be performed includes sending a signal to itself, and initializing the local variable x to 2. While
COUNTER is in s2, the signal sent from a previous step may trigger one of the two possible transitions:
as long as x is greater than 1, the machine goes in a loop at state s2 where it keeps generating the
internal signal decr and decreases x by 1. Otherwise it transits to the s3 state and set the value of x to
0, which forces the machine to remain in this state. Finally, for the actual creation of state machines,
we need to declare objects of the class. This is illustrated in the last line of the code example.

UMC supports a fairly rich language to specify composite actions, for example, by using conditional
and looping constructs. For more examples and details of the language we refer to the UMC website
[11] and the documentation therein.

While the structure of the semantic in terms of L2TS of an UMC specification is directly defined by the
system behaviour, the labels associated to nodes and edges of the graph are specified by abstraction
rules that allow the designer to define the relevant internal aspects of the system. These rules are
defined inside the Abstractions section:

Abst rac t i ons {
Action : <i n t e r n a l event> -> <edge l abe l >
. . .
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(event formulae) χ := tt | e | τ | ¬χ | χ ∧ χ′
(state formulae) φ ::= true | p | ¬φ | φ ∧ φ′ |Eπ |Aπ
(path formulae) π ::= Xχφ | φχUχ′φ′ | φχWχ′φ′

Table 2.1: UCTL syntax

State : <i n t e r n a l system state> -> <node l abe l >
. . .

}

The possibility of obtaining a L2TS which only focuses on the aspects of the system that are considered
relevant is particularly useful in many cases. For example one can visualize a compact summary of the
computation trees, factorized via appropriate behavioural equivalence notions. Or she/he can model
check abstract L2TS (without any knowledge of the underlying UMC), and reason on systems without
a detailed knowledge of the underlying concrete implementation.

The formal model and specification logic

UMC constructs L2TSs from input UML-like specifications. A L2TS is essentially an extension of LTS
where both states and transitions can be labeled with predicates.

Let AP be a finite set of atomic propositions. A L2TS is a tuple (Q, q0, Evt, R, L) where Q is a finite
set of states, q0 ∈ Q is the initial state, Evt is a set of events, R ⊆ Q×2Evt×Q is a transition relation,
L : Q→ 2AP is a labeling function which labels each state with a subset of AP.

Let e ranges over Evt, and η over 2Evt. In the context of a L2TS, a path σ from a state q is
either empty (σ = q) or a (possible infinite) sequence (q1, η1, q2), (q2, η2, q3), . . . where q1 = q and
(qi, ηi, qi+1) ∈ R ∀i > 0. σ is a full path if it can not be prolonged. If σ is a path, the ith state and
the ith set of events in σ are denoted by σ(i) and σ{i}, respectively. Finally, we let Path(q) be the
set of full paths starting from state q.

UCTL is the temporal logic used by UMC tool for reasoning about UMC models. It supports the
specification of action-based and state-based formulae. The syntax of UCLT is given in Table 2.1:

In the definition above, other logical operators such as ff, false, → (implication), ∨ (or) can be derived
accordingly. Formulae in UCTL can quantify over states or paths with φ used to denote the first kind
and π for the latter. In addition, the π formulae include also event formulae χ. The semantics of these
UCTL formulae is interpreted over a L2TS model. Below, we explain the semantics of UCTL in order.

An event formula χ specifies the property of a L2TS transition labeled with some set of labels η ∈ 2Evt.
The satisfaction relation follows Table 2.2. The formula tt is always true for η, and e is true when e
belongs to the set η. The event formula τ satisfies the empty set of transition labels while negation
and conjunction have the usual meanings.
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η |= tt η |= τ iff η = ∅
η |= e iff e ∈ η η |= ¬χ iff not η |= χ
η |= χ ∧ χ′ iff η |= χ and η |= χ′

Table 2.2: Event formulae semantics

For a state q, the formula true is always true in q. A state label p is true in q if p is in the set of
labels associated to q. E and A are existential and universal operators over paths. Their semantics,
together with other formulae are defined in Table 2.3.

q |= true q |= p iff p ∈ L(q)
q |= ¬φ iff not q |= φ q |= φ ∧ φ′ iff q |= φ and q |= φ′

q |= Eπ iff ∃σ ∈ Path(q) : σ |= π q |= Aπ iff ∀σ ∈ Path(q) : σ |= π

Table 2.3: State formulae semantics

The semantics of path formulae is defined in Table 2.4.

σ |= Xχφ iff σ{1} |= χ and σ(2) |= φ
σ |= φχUχ′φ′ iff ∃j ≥ 1 : σ{j} |= χ′ and σ(j + 1) |= φ′ and ∀i < j : σ{i} |= χ and σ(i) |= φ.
σ |= φχWχ′φ′ iff σ |= φχUχ′φ′ or ∀0 < i : σ{i} |= χ and σ(i) |= φ.

Table 2.4: Path formulae semantics

For a path σ, the formula Xχφ satisfies for σ if φ holds in the next state of the path, reached by a
transition where χ holds. The formula φχUχ′φ′ is true for σ whenever in the future moment there
exists a state in which φ′ holds and χ′ satisfies the last transition reaching to that state; whereas φ
holds in all the states along the path and χ holds for all the transitions in between (as illustrated in
Figure 2.7).

q1 q2 . . . qj qj+1 . . .

φ χ φ χ . . . χ φ χ′ φ′ . . .

Figure 2.7: A path where φχUχ′φ′ holds

The weak until formula φχWχ′φ′ is true for a path if its corresponding until version holds, or for all
states in the path φ holds and for all transitions along the path χ satisfies.

From the syntax of path formulae, other useful formulae can be defined. For example, the formula
truettUttφ is true if φ holds at some future state in the considered path. It is often used to assert
if the system eventually reaches an expected state. UMC provides such useful operators to provide
convenience in expressing properties in UCLT logics. For example:

• φχUφ′ stands for φ′ ∨ φχUχφ′

• AFφ stands for A(truettUφ)

• EFφ stands for E(truettUφ)
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• EFγ stands for E(truettUγtrue)

• AGφ stands for ¬EF¬φ

• FINAL is a formula which is always true in a final state (i.e., without any outgoing transitions)

In [46], we have manually modeled a simple instance of the stable marriage with attributes and verified
some simple properties using UMC. Our experience suggests that encoding a concurrent system using
the UMCmodeling language is a rather tedious task. Every detail of a system under consideration must
be worked out so that a user could inline each transition she/he has in mind into a UMC transition. It
is desirable to obtain UMC models as the result of translations from higher level description languages,
as also noted in [98]. This is crucial to proper model complex systems relying on complex interactions
such as AbC . In Chapter 4, we propose an approach for translating AbC into UMC to bridge this gap.
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ABEL - an Erlang implementation of
AbC

In this chapter, we present an implementation of AbC in Erlang, which we call ABEL. ABEL is a
domain-specific framework with support of an API that mimics AbC constructs for the purpose of de-
veloping and experimenting with systems whose elements interact according to the AbC ’s style. ABEL
employs two coordinators: the intra-coordinator, for coordinating co-located processes within one sin-
gle component, and the inter-coordinator, for coordinating the activities among different components.
The intra-coordinator or simply the coordinator takes charge of implementing the interleaving opera-
tor (|) of AbC processes. The inter-coordinator to which we also refer as coordination infrastructure
implements the parallel operator (||) of AbC .

The design and implementation of ABEL aims at an efficient executor for AbC . Given an AbC speci-
fication, programmers and modelers can derive an ABEL program from the corresponding AbC spec-
ification. Such a task as we shall see, is quite natural. To gain confidence on the actual behaviour of
the program, the same specification can be verified by using the method presented in Chapter 4.

The structure of this chapter is the following. We start by explaining how basic concepts of the AbC
paradigm are supported in ABEL and provide a short description of ABEL’s API. Like in Chapter
2, we use examples and the previously introduced case studies to illustrate the programming model.
We then present the implementation at the system level and at the component level. For the former,
we explain the total order broadcast protocol, defined in [20] on which we have based the ABEL
coordination infrastructure. For the latter, some technical challenges are discussed and an implemen-
tation is presented in details. Finally, we show how the case studies can be naturally programmed in
ABEL starting from their AbC specifications and evaluate ABEL’s performance through a number of
experiments.
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3.1 ABEL’s support for AbC

An ABEL program is based on a number of component definitions. A component definition in turn
includes the definitions of its individual processes, an attribute environment and an interaction in-
terface. In ABEL, a component is started in two steps: (i) it is created and (ii) it gets assigned a
behaviour.

Creating a component. To create a new component, an attribute environment Env and an interface
I are provided to the function new_component(Env,I). new_component returns a unique address C.
Internally, the function creates a coordinator process that maintains the component environment. It
is also responsible for connecting this Comp to the messaging infrastructure. More on this will be
elaborated later.

Environment of a component is represented as an Erlang map whose keys are atoms denoting attribute
names. Attribute values can be any Erlang terms. Interface is a tuple of attributes names exposed for
interaction. For example, Env = {id => 1, pref => [3, 4], partner => −1} declares an environment
with three attributes id, pref and partner together with their initial values. I = {id} declares that id
is the exposed attribute. Accordingly, while components may have many attributes they only interact
considering those attributes whose names appear in their interfaces.

To start the execution of a component whose address is C, ABEL provides the function start_beh with
the following syntax: start_beh(Comp, [BRef ]) where [BRef ] is a list of functions describing com-
ponent processes. Intuitively, this means that the component behaviour consists of several parallel
processes, each with the behaviour described by a function in the provided list. Components exe-
cute concurrently and interact with each other according to the combined behaviour of components
processes.

C = new_component(Env, I),
start_beh(C, [BRef ])

Figure 3.1: Starting a component

Behaviour Definition. The behaviour of a process is defined in terms of Erlang functions with
a restricted structure in their bodies. In essence, process definitions rely heavily on a set of ABEL
library functions mimicking AbC constructs. Since ABEL API is written in Erlang, Erlang code can
also co-locate in an ABEL program. However, it is mainly used for the purpose of defining additional
helper functions, for example, for building the definitions of complex operations like op and p operators
(Chapter 2). To make our intention clear and to enforce writing process definitions in AbC ’s style,
we report the BNF syntax for ABEL processes in Figure 3.2. There, elements wrapped by 〈〉 are
optional and [Elem] is a list of elements of type Elem. Furthermore, we use g,m, s, r, x, u to denote
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an awareness predicate, message, sending, receiving predicates, input-binding variables and attribute
updates, respectively.

A behaviour definition BDef is an Erlang function beh_name with two parameters where the first
denoting the component address C, and the second a list of bound variables V (initially empty and
gradually updated by ABEL). The body of the behaviour definition is a single command that can take
several forms: prefix, choice, parallel or a behaviour call. The reference BRef of a given behaviour is
obtained by means of Erlang anonymous function. BRef is passed to a command so that the process,
after finishing the command can proceed with this referred behaviour. This way of programming is a
sort of continuation-passing style.

In Figure 3.2, the component address C and the list of bound variables V have to be passed to every
command as their parameters.

BDef ::= beh_name(C, V )→ Com.

BRef ::= fun(_V )→ beh_name(C,_V ) end
nil

Act ::= {〈g〉,m, s, 〈u〉} Output
{〈g〉, r, x, 〈u〉} Input

Com ::= prefix(C, V, Act,BRef) Send
choice(C, V, [{Act,BRef}]) Choice
parallel(C, V, [BRef ]) Parallel
call(C, V, BRef) Call

Figure 3.2: ABEL API for process definitions.

Before explaining the commands and their operations, we first describe how the basic AbC terms are
supported in ABEL.

Messages and Variables. Messages that are exchanged among components are represented as
Erlang tuples. From a sending component point of view, a message element m can be either an Erlang
term or a function parameterized with an environment fun(E)→ . . . end. The last form is introduced
for making it possible to refer the value of attributes in a message. For example, {‘done’, fun(E) →
att(colour,E) end, fun(E) → att(round,E) + 1 end} is a message consisting of three elements with
the second referring to the value of attribute color and the third referring to the value of attribute
round plus 1. In AbC terms, this is the same as the message (’done’, this.color, this.round+ 1).

From a receiver point of view, a received message is a tuple whose elements are bound to some variables.
The input binding variables x that come together with an input action are represented as a tuple, e.g,
{x, y, z}. These variable names can be used to access the element of the messages received.
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Interaction Predicates. Interaction predicates including sending and receiving predicates are repre-
sented as binary and ternary functions, respectively. A sending predicate s is a function parameterized
with the sender and receiver environments in that order. A receiving predicate r is a function parame-
terized with both environments of the receiver and the sender, and the communicated message in that
order. In the bodies of these predicates, the value of attribute attr in an environment E is referred
by using the ABEL function att(attr, E). The message content can be referred by using the Erlang
built-in function element(nth, M). Sequential Erlang is exploited to specify the code of predicate.
For convenience, we may specify the parameter names in predicates using L (local environment), R
(remote environment), M (message).

For example, given a set nbr, a sending predicate this.id ∈ nbr in AbC can be represented in ABEL
as the function:

fun(L,R) → sets:is_element(att(id,L),att(nbr,R)) end

where L, R are environments of sender and receiver, respectively. L is supplied first, meaning that it is
also the environment of the executing component. In the function body, attribute values are referred
accordingly based on these names. Erlang sets is used to specify the expected membership relation.

A receiving predicate (x = ‘done’∧z = this.round) that conditions on an incoming message containing
three elements (x, y, z) is written in ABEL as:

fun(L,_,M) → element(1,M) == done andalso element(3,M) == att(round,R) end

which needs three parameters. This predicate constraints only on the message and the local environ-
ment, thus the second parameter may be written as _. In the example, logical operators are of Erlang;
message elements are obtained by the built-in function element.

Awareness and Update. We distinguish between awareness predicates and the interaction predicates
mentioned above. An awareness predicate is local to the executing component, and thus is represented
as a unary function, i.e., fun(L) → . . . end.

Attribute update is represented as a list of pairs; in each pair, the first element is an attribute name
and the second denotes the value to be updated. The second element is a function parameterized
with the local environment for the possibility of accessing attributes, i.e., fun(L) → . . . end. This
function, in case the update operation is associated with an input action, is parameterized also with
the communicated message, i.e, fun(L,M) → . . . end.

Communication Actions. In AbC , the awareness predicate and attribute update, if specified at
all, are performed atomically together with the associated communication actions. Thus, in ABEL,
these operations are bundled into send and receive commands. An output action has the form of
{〈g〉,m, s, 〈u〉}. An input action has the form of {〈g〉, r, x, 〈u〉}.

For example, the following code snippet
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M = {‘propose’, fun(L) → att(id,L) end},
SP = fun(L,R) → hd(att(pref,L)) == att(id,R) end,
U = [{partner, fun(L) → hd(att(pref,L)) end}, {pref, fun(L) → tl(att(pref,L)) end}],
Act = {M,SP,U}

corresponds to the AbC output action

(‘propose’, this.id)@(id = hd(this.pref)).[partner := hd(pref), pref := tl(pref)]

whereas the following

RP = fun(_, _, M) → element(1,M) == ‘no’ end,
U = [{partner, −1}],
Act = {RP,{x},U}

corresponds to the AbC input action (x = ‘no’)(x).[partner := −1].

A command Com has parameters C, V bounded by those of an outer function, and a third parameter
specifying basic actions possibly paired with references, depending on the command type. It is worth
mentioning that C and V are names that simply act as place holders in commands and processes
definitions. ABEL supports the following commands.

Prefix Command. takes as parameter an action Act and a continuation BRef . Act can be either
input or output action and its description is a tuple as shown in Figure 3.2. This command executes
Act and then the behaviour encapsulated in BRef . The execution of an input action (if successful)
returns a message; then continues by calling BRef on an updated list of bound variables, calculated by
appending the message to the current list V . If Act is an output action, the continuation is determined
by applying BRef to V .

As an example of prefixing process, the following process definition in AbC (Example 1.2, Section 2.1)

PM , (‘proposal’, this.id)@(id = hd(this.pref)).[partner := hd(pref), pref := tl(pref)]PM1

can be written in ABEL as a behaviour definition

pm(C,V) →
M = {‘propose’, fun(L) → att(id,L) end},
SP = fun(L,R) → hd(att(pref,L)) == att(id, R) end,
U = [{partner, fun(L) → hd(att(pref,L)) end}, {pref, fun(L) → tl(att(pref,L)) end}]),
prefix(C, V, {{M,SP,U}, fun(_V) → pm1(C,_V) end}).

Choice Command. takes as parameter a list of pairs. Each pair provides a description Act of the
prefixing action and a continuation behaviour BRef . This means that each sub-process in a choice
must be started with a prefixing action. This command executes one of the actions and continues with
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the associated behaviour. An example of choice is given in Figure 3.3. ABEL currently does not allow
a choice that mixes sending and receiving processes. This representation simplifies our implementation
in which a coordinator can handles all the branches of the choice in a consistent manner; that eventually
select one possible action among others to execute. Moreover, such a mixing behaviour, if desirable
at all, can be encoded using parallel processes with appropriate awareness predicates.

Parallel Command. The parallel command, when executed creates dynamically processes whose
definitions are supplied in the parameter list. It thus behaves in a similar way to start_beh. Note
that a prefixing action is needed in case one wants to model replication via recursion. A common use
case of replication is at modeling the behaviour that upon receiving a message, process the message
according to a prescribed manner and at the same time being available to deal with another message.
To express this type of behaviour in AbC , we write X , a.(P | X). That is, a parallel construct with
a recursive call in it must be prefixed by an action.

Consider the process PW in Example 1.2 (Chapter 2). It is tempted to specify:

PW , (x = ‘propose’)(x, y).HW |PW

The above code when translated in ABEL looks like the following:

p(C,V) →
parallel(C,V,[fun(_V) → q(C,_V) end, fun(_V) → p(C,_V) end]).

q(C,V) →
prefix(C,V,{fun(_, _, M) → element(1,M) == ‘propose’ end, {x,y}, fun(_V) → h(C,_V) end}).

which spawns an infinite number of processes executing the function p. This use is invalid and must
be avoided. On the other hand, if we specify PW as:

PW , (x = ‘propose’)(x, y).(HW |PW )

In ABEL, this is equivalent to the code snippet

p(C,V) →
prefix(C, V, {fun(_, _, M) → element(1,M) == ‘propose’ end, {x,y}, fun(_V) → q(C,_V) end}).

q(C,V) →
parallel(C,V,[fun(_V) → h(C,_V) end, fun(_V) → p(C,_V) end]).

which spawns a new process only when the prefixing action is consumed. Thus the number of newly
created processes is equal to the number of ‘propose’ messages received.

Call Command. executes the behaviour referenced by BRef by applying BRef to V .

To conclude this section, we show the full definitions (Figure 3.3) of processes for components in
the classical stable marriage problem (Chapter 2). The verbosity of the program is caused by the
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%% The definition of men

pm(C,V) →
M = {‘propose’, fun(L) → att(id,L) end},
SP = fun(L,R) → hd(att(pref,L)) == att(id, R) end,
U = [{partner, fun(L) → hd(att(pref,L)) end}, {pref, fun(L) → tl(att(pref,L)) end}]),
prefix(C, V, {{M,SP,U}, fun(_V) → pm1(C,_V) end}).

pm1(C, V) →
RP = fun(_, _, M) → element(1,M) == ‘no’ end,
U = [{partner, −1}],
prefix(C, V, {RP,{x},U}, fun(_V) → pm(C,_V) end}).

%% The definition of women
pw(C,V) →

RP = fun(_, _, M) → element(1,M) == ‘propose’ end,
prefix(C,V,{RP,{x,y},fun(_V) → pw1(C,_V) end}).

pw1(C,V) →
parallel(C,V,[fun(_V) → h(C,_V) end, fun(_V) → pw(C,_V) end]).

h(C,V) →
G1 = fun(L) → bof(var(y,V), att(partner,L), att(pref,L)) end,
SP1 = fun(_,R) → att(id, R) == var(y,V) end,
G2 = fun(L) → not bof(var(y,V), att(partner,L), att(pref,L)) end,
SP2 = fun(L,R) → att(id, R) == att(partner,L) end,
M = {‘no’},
U =[{partner, var(y,Y)}],
A1 = {G1,M,SP1},
A2 = {G2,M,SP2,U},
choice(C,V,[{A1, nil},{A2, nil}]).

Figure 3.3: The derived code for SMP specification

current presentation of the basic elements such as predicates, messages, . . . that can be addressed by
automatic translation. However, when looking at the uses of ABEL commands (highlight), we can
notice a one-to-one structural correspond between the AbC specification and the derived program.

3.2 ABEL Implementation

This section shows how an implementation can deal with the operators parallel (‖) and interleaving (|)
of AbC . For the former, we are concerned with achieving broadcast communication among components
while ensuring its instantly synchronous semantics. For the later, we are concerned with picking
representative actions among processes within a component while taking into account the affect of
component environment. Accordingly, we present two coordinators, one for coordinating components
in a system and the other for coordinating processes in a component.
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3.2.1 Coordinating components

First, we will discuss the design of the inter-coordinator implementing the parallel operator (‖) among
different components. The actual semantics of ‖ is given in Chapter 2. Informally, when a component
sends a message, the message is delivered to all other components in a single move. They are the
components where the message is delivered that decide whether to actually receive the message or to
discard it, by checking on both the sending and receiving predicates. In the message passing model
of AbC , output actions are non blocking in that they can take place even if there is no component
willing to receive it. Input actions, instead, wait to synchronize on the available messages in order to
be performed. This implies that message passing happens in synchronous rounds of sending actions.
At each round, only one component is scheduled to send its message. A new round starts when the
message in the previous round is delivered to all components in the system. In other words, message
delivery at AbC components is performed according to a total order.

In fact, AbC abstracts away an underlying messaging infrastructure and leaves this issue to the im-
plementation. In [20], the authors proposed a coordination infrastructure to mediate messages among
AbC components. The infrastructure also plays the role of a fixed sequencer [54] to guarantee that
different messages are delivered in the same order to AbC components. The main idea can be summa-
rized as follows. All components joining the system are connected to a common infrastructure. The
internal structures of components at this level are abstracted, i.e., at a given moment, any component
only offers either a send or a receive action. Each component maintains a local counter c, initially set
to 1 and a message set, initially set to ∅. When a component is willing to send a message, it first asks
for a fresh id from the infrastructure. If c = id, the component can actually send a message, labeled
with id to the infrastructure. The latter broadcasts this data message to all other components except
the sender. During this operation, the local counter of the sending component is increased by 1. Data
messages forwarded to a component are stored in its message set. A component delivers a message
in the set if its local counter c equals to the id of the message. By doing so, the local counter of the
receiving component is also increased by 1. The approach is illustrated in Figure 3.4.

Activities performed by participants are presented in the form of a set of rules (started with �) whose
guards, at any time hold will cause the execution of the associated actions. The left of Figure 3.4
shows the behaviour of a connected component. The extra variable mid holds the value of fresh id
(line 14), and is reset each time the component has sent a data message (line 19). It is noted that
while a component is waiting for sending a message after getting a fresh id, other messages might be
dispatched to it (line 9) and possibly delivered (line 22). The right of Figure 3.4 sketches the behaviour
of the infrastructure. On receiving a request message for a fresh id, the infrastructure communicates
to the sender the value of its internal counter (line 8) and increases this value (line 9). On receiving a
data message, the infrastructure buffers the message into a message set (line 12), and only broadcasts
the message to all other components (line 15) if it has the expected id (line 14).
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1 Component compi
2 Initialization:
3 ci := 1
4 msgseti := ∅
5 mid := -1
6 inf := the address of the infrastructure
7 Behavior:
8 receive(id’,m’) →
9 msgseti := msgseti ∪ {(id′,m′)}

10
11 (mid = -1) and request-to-send →
12 send(compi,req) to inf
13 receive(id) →
14 mid := id
15
16 (mid = ci) and (compi is able to send m) →
17 send(compi,(mid,m)) to inf
18 ci := ci + 1
19 mid := -1
20
21 ∃(id,m) ∈ msgseti : id = ci →
22 deliver(m)
23 msgseti := msgseti \ {(id,m)}
24 ci := ci + 1

1 Infrastructre
2 Initialization:
3 c := 1
4 msgset := ∅
5 all := the addresses of all components
6 Behavior:
7 receive(compi,req) →
8 send(c) to compi
9 c := c+ 1

10
11 receive(compi,(id,m)) →
12 msgset := msgset ∪ {(id,m, compi)}
13
14 ∃(id,m, compi) ∈ msgset : id = c →
15 send(id,m) to all \ compi
16 msgset := msgset \ {(id,m, compi)}

Figure 3.4: The fixed sequencer variant for building the total order

To increase efficiency, the messaging infrastructure may be composed out of a set of logically structured
nodes. Out of these nodes, only one is assigned the role of sequencer to guarantee generation of
unique message ids. Nodes in the infrastructure collaborate in forwarding requests and data messages.
Three different structures of the infrastructure have been considered in [20], namely cluster (nodes
are structured as a complete graph, with a distinct counter node), ring (nodes are connected in a
ring topology, with a distinct counter node) and tree (nodes are organized as a tree where the root
is also the counter node). In the same paper, the behaviour of each infrastructure is decribed via an
operational semantics and it is proved that messages are delivered according to the expected total
ordering.

Although our presentation of total order broadcast in Figure 3.4 is slightly different with that in [20],
we believe that its overall is the same and that the delivering ordering is maintained. This claim is
based on the observation that the local counters of each infrastructure component eventually converge
to the same value. Clearly, a sent message causes the sending component to increase its counter by
1 and delivering this message at other components also leads to the increase by 1 of their counters.
Furthermore, a component cannot send a message labeled with a fresh id until all the messages with
id′ < id have been delivered to it. In fact, the local counters of components and of infrastructure
will eventually converge to the same value; the delivery order of messages is the increasing order of
messages ids.

In the above protocol, while waiting for sending a message, a component can deliver some of messages
forwarded to it, and may consume them. At line 16 on the left of Figure 3.4, an actual send can
only happen if at the moment the condition on local counter is satisfied, the component is still be
able to send a message. Since the component state may changed due to consuming a message, there
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may be the case that the actual send is not the same as the one which initiated the request for fresh
id (line 11). Moreover, the changes in one component environment could disable a send. This in
principle can make the overall system blocked. A critical reader may argue that once a component
has “decided to send a message” (i.e., when the component requests a fresh id at line 11), it must send
out the message under any circumstances. For example, assume a component C that decides to send
a ‘umbrella’ when a condition (raining = tt) is true. Then the component should not withdraw this
decision, even if in the meanwhile condition (raining = tt) has become false due to an attribute update
caused by another parallel process. However, this reasoning is only applicable when we consider the
component in isolation. When taking into account other parallel components, a relative schedule over
the components has to be imposed. If we compose C with a W eather

C︷ ︸︸ ︷
Γ1 : 〈raining = tt〉(‘umbrella’)@Π.P1 | (x = ‘sunny’)(x).[raining := ff]P2 | . . . ‖

Weather︷ ︸︸ ︷
Γ2 : (‘sunny’)@Π′.Q

and assume Γ1(raining) = tt, thus C is allowed to send a “umbrella”. In addition, C may have
another process that upon receiving a ‘sunny’, would update attribute raining to ff. Now, notice that
W eather can also send a ‘sunny’ as implied from its process structure. According to AbC’s semantics
of ‖, either C or Weather can take place first (but not both at the same time). If W eather takes the
first move which sends out ‘sunny’, C can not send a ‘umbrella’ afterward. This is because ‘sunny’ is
delivered to all components in the same move, in which C has consumed it.

In the context of the sequencer-based protocol, the above situation falls into the case that W eather
gets a fresh id of 1 and C gets that of 2 from the infrastructure. It follows that both W eather and
C deliver the message ‘sunny’ labeled with id 1. This leads to the output action of C, previously
available, becomes disabled. This means C does not make use of his turn (i.e., fresh id) and thus
indirectly block other components who are waiting for a message to be delivered (imagine the above
example system is composed with more components in the right).

Therefore, the moment an infrastructure component requesting a fresh id should be interpreted as
the component is asking to be scheduled, not as the component has decided to send a message. In
other words, a component decides on an actual send only when the fresh id equals to its local counter.
Nevertheless, this problem can be overcome by letting the components send out empty messages in
case the second clause of the condition at line 16 could not be satisfied. On the other hand, we think
that it could also be avoided at the specification level with careful design of processes behaviour. Note
that this issue was not considered in [20].

A tree-based coordinator

In [20], it was shown that the tree infrastructure offers better performances under different scenarios.
Because of this, we have based our implementation of ABEL on the tree infrastructure and describe
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it below.

In a tree topology, each node knows the addresses of its parent and its children at the initialization
time. As AbC components are anonymous, the implementation relies on a registration node which is
globally named. AbC components contact the registration node which in turn assigns them to one of
the tree nodes. More precisely, a connected component and its assigned node exchange their addresses
at this point for later communications.

Figure 3.5: Binary tree-based infrastructure

Figure 3.5 shows an example of a tree-based infrastructure. The black nodes belong to the tree while
the white nodes are connected AbC components. A node can only communicate with those connected
to it. Similarly, an AbC component interacts with the node to which it has been assigned. Tree
nodes collaborate on dispatching messages sent from connected AbC components, which can be either
requests for fresh ids or actual messages. Since, in the tree, each node is responsible for a group of
components some efficiency can be gained by using more nodes. However, the root of tree, that plays
the role of a single sequencer, is a potential bottleneck.

The message flow in the infrastructure when a component performing different sending requests is
illustrated in Figure 3.6. When a non-root tree node receives a request message for a fresh id the
message is forwarded up to its parent. The procedure is repeated in this way until the message reaches
the root. The root maintains a counter and increases it every time it handles a request message.
The fresh id is forwarded from the root along the same path of its request, but in a reverse order.
Eventually, the tree node which initiated the request receives the fresh id and sends it to the requesting
component. On the other hand, when a tree node receives a data message, it forwards the messages
to the other connected nodes and to connected AbC components, except the sender.
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Figure 3.6: Message flows when a component requests a fresh id (left) and send a message m (right)

The implementation of a tree-based structure follows the behaviour described in the right of Figure 3.4
(in fact, what presented there is for the tree consisting of one node, which is also the root). Accordingly,
every node has its own message set and a local counter. A message in the set is delivered at a node if it
has the id equals to the local counter. The root in addition uses a dedicated counter for allocating fresh
ids. The address list kept by nodes contain their children, parent and AbC components. Therefore,
tree nodes can deal with data messages forwarded in the same manner. To handle fresh id requests, any
node, when forwarding a request (originated from some AbC component) to its parent, also attaches
a list of nodes that the request has traveled so far, including the current node. This list is then used
by nodes when forward a reply (originated from the root), which is shorten each time it passes by one
node. A node replies the fresh id to a AbC component if it is the last node in the chain. Moreover,
note that messages can be exchanged asynchronously between tree nodes.

Erlang gen_server facilitates quick prototyping of the tree: the behaviour of nodes are very similar
in which only some extra pattern matching on list is needed to distinguished between leaves and root
nodes. As a result, the call back module was written with only 150 lines of Erlang code excluding
comments. In our implementation, the tree is started by supplying the number of nodes as the main
parameter. Nodes are then spawned concurrently by a supervisor that keeps track of their addresses.
After this, the supervisor sends a request to form a tree to all nodes. Essentially, this is done by sending
to each node the addresses of its parent and children. In addition, a globally named registration node
is also started and informed of the address list of tree nodes. The registration node will use this list for
assigning components to nodes. Currently, we assume a binary tree topology and that the registration
node assigns components to nodes in a round robin fashion.

3.2.2 Coordinating processes

An AbC component is an autonomous entity with multiple threads of control sharing the same attribute
environment or component state. The behaviour of a component is the one of its processes. As these
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processes operate independently, we need appropriate strategies to coordinate their activities in order
to guarantee the interleaving semantics (|) of AbC . (i) If more than one processes offers an output
actions, then only one of them can take place. (ii) If there is more than one process that can actually
receive a message, again only only one of them can use that message. (iii) A component may discard a
message only if all of its processes discard that message. (iv) The presence of an awareness predicate
may affect the behaviour of the executing component in a subtle way, for example, by disabling some
behaviour which was previously available (or the other way around).

These considerations imply that an executor at any moment should know at least the following infor-
mation, in order to determine the actions of a component:

• the number of processes in the component: this number is dynamic as it may increase due to an
activation of new process in presence of parallel operator (|) in recursive definitions. It can also
decrease when terminated processes are garbage collected. Examples for these are the process
PW in the stable marriage problem and the process A in the graph coloring problem.

• the communication status of each process: at a given time, an active process can either perform
just an input or an output action, regardless of the process definition.

• the attribute environment: AbC actions involve attribute values in their awareness and interac-
tion predicates, and may have immediate side effects on the environment via attribute updates.

For this reason, our view about the attribute environment is that it should not be considered as a
static data store, but a reactive process which acts according to its current state and the incoming
events. A naive implementation is more likely to follow the shared-memory model, in which parallel
threads rely on locks for atomic access to a shared environment. While updates from different processes
on the shared memory may be serialized this way, it is difficult to manage implementations as the
number of processes grows. Our implementation instead treats the attribute environment as a separate
process besides AbC processes. In order to deal with requirements of the (|) operator, this process
is designed as a state machine and plays the role of a coordinator for AbC processes. Figure 3.7
pictures the internal structure of an AbC component in ABEL. The component consists of a number of
AbC processes that are represented by Erlang processes, and a coordinator implementing gen_statem
behaviour. Component processes execute the given process definitions as explained in Section 3.1 while
the coordinator keeps the attribute environment as its state. The processes communicate synchronously
with the coordinator by message passing via commands (expressed in API). Each process commits
one command at a time, and continues only after receiving an acknowledgment message.

For each command received, the coordinator determines whether or not the command can be executed.
If so, it sends back an acknowledgement message in order to unblock the requesting process. Otherwise,
the relevant information about the command is stored for later try. In fact, it is the coordinator that
does most f the work, component processes are state-less and simply propose actions for execution.
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Figure 3.7: AbC component in ABEL

Figure 3.8: Process Monitoring

The relative timing of actions is left to the runtime system. This approach may sound strange in that
processes almost do not perform any computations, yet given the complex behaviour of AbC component
and discussions raised, we think it is the suitable way to implement an interleaving semantics.

A state-machine based coordinator

A coordinator is created for a component by a call to new_component(Env, I). The environment Env
becomes the machine state, the interface I is part of its data. At startup, the coordinator registers itself
to the infrastructure, on the registration node. The component and an assigned tree node exchange
their addresses. The component is monitored by the tree node (Figure 3.8) that will trigger removal
of its address from the infrastructure when it terminates. In general, the coordinator, inheriting the
state machine behaviour receives messages as events that are handled according to their types and
contents. The set of events coming in includes those sent from AbC processes, from the infrastructure
and other implicit kinds.

Messages from AbC processes are external events that are recognized and treated according to the
ABEL commands issuing them. ABEL API are in fact wrappers of functions that, when invoked,
prepare appropriate messages and send them to the coordinator. In our case, the machine designates
an event handler for each command: send, receive, choice and parallel. As already mentioned, a choice
operator cannot mix send and receive actions. Thus, there are two kinds of choices: among sending
processes and among receiving processes. This means, apart from parallel events, the communication
status of processes is made clear by the command they execute.

The coordinator records the communication status of a process each time it receives an event from
the process. The communication status is exploited for message delivery. Basically, processes in a
status of sending are not subjected to receive any message; processes in a status of receiving, instead
can consume a message and thus their status contain also tuples describing their input actions, i.e.,
awareness predicates, receiving predicates and update descriptors. In fact, the status of a process may
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be augmented with more information to deal with specific uses of the API. All this are kept in the
data part of the machine, for instance by using a map where keys are process identifiers (pids) and
values are the corresponding status for each type of action. After successfully executing an action, the
record associated with pid of the corresponding process is removed.

In addition, the coordinator handles external events sent from the infrastructure, i.e., data messages
originating from other components. For this purpose, the coordinator takes charge in the deliver
procedure which are similar to the one in Figure 3.4. It keeps a local counter whose value increases each
time a message is sent or delivered, and a message set for storing the forwarded messages. However,
message delivery can only be activated if the following two conditions hold: there is a message in
the set whose id equals to the local counter and the communication status of all processes have been
collected. The first requirement may be met each time a data message is forwarded. The second may
happen when a process has terminated, or when a process has communicated its status. In other
words, message delivery can be triggered in different event handlers.

In the following, we describe how a coordinator reacts to the different kinds of events it may receive.

Parallel events. These events are generated by calls to start_beh or parallel, to which, the coor-
dinator processes them in the same event handler. An Erlang process is spawned and monitored for
each behaviour definition in the list. In addition, the total number of processes is updated. Thus the
commands parallel and start_beh are essentially the same. Monitoring AbC processes (Figure 3.8)
allows the coordinator to detect their terminations and thus to maintain a consistent view on the total
number of processes.

Data Events. These are the data messages sent from a tree node. On receiving such an event,
the coordinator stores the message in the message set. It can generate an internal event for message
delivery if all processes have communicated their status.

Sending events. On receiving a sending action from a process, the coordinator checks the awareness
predicate preceding this action against the attribute environment. If the guard is not satisfied, the
event is postponed for handling later in a future state different from the current one. Otherwise,
the coordinator proceeds with a send procedure similar to the one in Figure 3.4: if a fresh id is not
available, the coordinator requests for a new id from the tree node it connects to. If the fresh id
equals to the local message counter, the message is labeled with the fresh id and forwarded to the
tree node. Actually, the message to be forwarded is more verbose: it includes the portion of the
environment Env constrained by interface I, the partial evaluation of the sending predicate, a possibly
new message where (some of) elements in the old one have been evaluated to concrete values. This is
the consequence of the broadcast semantics of output action. After the message is being forwarded,
the coordinator updates the environment according to the update descriptor attached in the event.
The sending action is considered to be success and the local counter is increased by 1. The coordinator
also sends an acknowledgement to the process issuing the event. On the other hand, if the fresh id
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is not equal to the local counter, the sending event is postponed. Accordingly, postponed events are
retried if there are changes in the attribute environment or if the local counter equals to the fresh id.

In case of the sending action can not be executed, the communication status of the corresponding
process is marked as discarding, meaning that this process can not accept any message. If the status
of all processes have been collected and if the message set is not empty, an internal event may be
generated for message delivery.

Receiving events. The coordinator records the communication status of the requesting process as
receive. All the related information including awareness predicate, receiving predicate and update
descriptor are stored. Unlike sending events, the coordinator never postponed receiving events; they
simply wait for message delivery. The handler can fire an internal event for dispatching message if
the conditions meet. In the internal transition that handles message delivery, any receiving process
that “wins” a message, it is forwarded the message and the communication status of the process is
removed.

Choice events. Since mixing choice is not allowed, choice events are classified according to their
types: either input or output. The coordinator treats a choice process as a single process and the list
of actions it provides as a single action. The coordinator handles a choice event in a very similar way
to normal send and receive events.

In case of a choice among output actions, the coordinator inspects the list of actions from left to right.
The first available action (i.e., whose awareness predicate is satisfied and the fresh id is equal to the
local counter) is executed. The choice process is acknowledged with the continuation corresponding
to the selected branch. If there is no actions in the list can be enabled, the event is postponed.

Choice among input actions is the same as handling for a normal receiving events. If executed, the
acknowledgement message to the choice process in this case contains both the received message and
the continuation.

Other events. Other events include implicit events caused by info messages generated when the
monitored processes terminate and internal events generated by the machine. For termination events,
the coordinator removes the process status and accordingly updates the total number of processes.
These events, as mentioned may trigger a message delivery.

Finally, the coordinator itself might generate internal events while processing other events to dispatch
data messages. It has an event handler for this event kind where a deliver procedure is exercised: the
message with the smallest id is extracted and removed from the message set. If its id equals to the
local counter, the message is checked against the communication status of receive actions. For each
action, three checks, corresponding to three kinds of predicates, i.e., awareness, sending and receiving
predicates are needed. The first receive action that passes these checks will have its update descriptor
applied to the current state of the coordinator and have the message delivered to its corresponding
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process. If there is no receive action can consume the message in this way, and if there still is pending
messages, the procedure repeats.

3.3 ABEL’s Case Studies

We show how to program for the case studies introduced in Chapter 2 by using ABEL APIs. For
completeness, we repeat the AbC code snippets in Section 2.2, Chapter 2. Our message in this section
is that given an AbC specification, the mapping from AbC to ABEL code is really straightforward.

3.3.1 Attribute Stable Marriage

Following the AbC paradigm, we build a system of interacting components using our API. Basically,
we have two types of components, man and woman. Each component type executes the same code.
It is the specific attribute environments provided when starting components make their behaviour
different.

Man Component

Defining the attribute environment. The function init_m takes as parameters attributes charac-
terizing a man component, from which an environment in form of map is built (line 2). The interface
contains personal id and two characteristics m1,m2. Afterward, the component is created by a call
to start_component. The component starts its execution via an invocation to start_beh.

init_m([Id, M1, M2, PW1, PW2, Size]) →
Env = {id => Id, m1 => M1, m2 => M2, pw1 => PW1, pw2 => PW2,

partner => 0, sent => 0, c => 0, counter => 0, n => Size, bl => sets:new()},
I = {id,m1,m2},
C = new_component(Env,I),
start_beh(C,[q,p,r,a]).

Defining behaviour. A man component has a number of predicates for contacting potential partners.
He would propose in the top down order, i.e., using first the most preferred predicate and down to the
least one. Before sending a propose message, however, a query message is sent to collect the number
of potential receivers. There is one querying process for each type of requirement. Take the definition
of querying process Q in AbC

Q , Q1 | Q2 | Q3 | Q4

one can write this in ABEL using a parallel command as follows:
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q(C,V) →
parallel(C,V,[fun(_V) → q1(C,_V) end, fun(_V) → q2(C,_V) end,

fun(_V) → q3(C,_V) end, fun(_V) → q4(C,_V) end]).

.

In AbC , the querying process for the first requirement has the following definition:

Q1 , 〈counter = 0〉(‘q1’, this.id, this.pw1, this.pw2)@(id /∈ this.bl).[counter := counter + |bl|]Q11

This can be defined in ABEL by using a prefix command, followed by a call to the function q11.

q1(C,V) →
. . . % Defining elements for the command
prefix(C,V,{{G, M, SP, U}, fun(_V) → q11(C) end}).

where the variables passed to the command are defined as:

G = fun(L) → att(counter,L) == 0 end
M = {q1, this(id), this(pw1), this(pw2)}
SP = fun(L,R) → not sets:is_element(att(id,R),att(bl,L)) end
U = [{counter, fun(L) → att(counter,L) + sets:size(att(bl,L)) end}]

The continuation process Q11 in AbC , reported below is a choice process among two receives, both
recursively call the same process as continuations.

Q11 , 〈counter < n〉(x = ‘interest’)(x).[c := c + 1, counter := counter + 1]Q11

+ 〈counter < n〉(x = ‘uninterest’)(x).[counter := counter + 1]Q11

We implement this process in ABEL in function q11 with use of a choice command.

q11(C,V) →
. . . % Defining elements for the command
A1 = {G1, RP1, {x}, U1},
A2 = {G2, RP2, {x}, U2},
Con = fun(_V) → q11(C,_V) end,
choice(C,V,[{A1, Con},{A2, Con}]).

where the variables passed to the command are defined as:

G1 = fun(L) → att(counter,L) < att(n,L) end
RP1 = fun(_,_,M) → element(1,M) == ‘interest’ end
U1 = [{c, fun(L,M) → att(c,L) + 1 end}, {counter, fun(L,_) → att(counter,L) + 1 end}]}
G2 = fun(L) → att(counter,L) < att(n,R) end,
RP2 = fun(_,_,M) → element(1,M) == ‘uninterest’ end,
U2 = [{counter, fun(L,_) → att(counter,L) + 1 end}]}
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Following this way, we implement querying processes for the second and third requirements in functions
q2 and q3 respectively. Their definitions are very similar to q1, as they are derived from AbC code,
to which we sketch how their definitions in ABEL look like in the sequence.

Q2 , 〈counter = n ∧ c = |bl|〉(‘q2’, this.id, this.pw1, this.pw2)@(id /∈ this.bl).

[counter := counter + |bl|]Q22

Q22 , 〈counter < 2 ∗ n〉(x = ‘interest’)(x).[c := c + 1, counter := counter + 1]Q22

+ 〈counter < 2 ∗ n〉(x = ’uninterest’)(x).[counter := counter + 1]Q22

Q3 , 〈counter = 2 ∗ n ∧ c = |bl|〉(‘q3’, this.id, this.pw1, this.pw2)@(id /∈ this.bl).

[counter := counter + |bl|]Q33

Q33 , 〈counter < 3 ∗ n〉(x = ‘interest’)(x).[c := c + 1, counter := counter + 1]Q33

+ 〈counter < 3 ∗ n〉(x = ‘uninterest’)(x).[counter := counter + 1]Q33

q2(C,V) →
. . . % Definitions for elements G, M, SP, U in Q2
prefix(C,V,{{G,M,SP,U}, fun(_V) → q22(C,_V) end}).

q22(C,V) →
. . . % Definitions for elements of actions A1, A2 in Q22
Con = fun(_V) → q22(C,_V) end,
choice(C,V,[{A1, Con},{A2, Con}]).

q3(C,V) →
. . . % Definitions for elements G, M, SP, U in Q3
prefix(C,V,{{G,M,SP,U}, fun(_V) → q33(C,_V) end).

q33(C,V) →
. . . % Definitions for elements of actions A1, A2 in Q33
Con = fun(_V) → q33(C,_V) end,
choice(C,V,[{A1, Con},{A2, Con}]).

The last case is when all the previous requirements have been considered, yet the man is not able find
any partner. This behaviour is modeled as an empty output as illustrated in the AbC process Q4.

Q4 , 〈counter = 3 ∗ n ∧ c = |bl|〉()@(ff).[counter := counter + 1]0

This process is implemented in function q4 as follows:

q4(C,V) →
G = fun(L) → att(counter,L) == 3 ∗ att(n,L) andalso att(c,L) == sets:size(att(bl,L))) end,
M = {},
SP = fun(_,_) → false end,
U = [{counter, fun(L) → att(counter,L) + 1 end}]),
prefix(C, V, {{G, M, SP, U},nil}).
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Next, we report on the process implementing the proposing phase of a man. In AbC , the definition of
this process has the definition as

P , 〈counter = n ∧ partner = 0 ∧ c > |bl| ∧ sent = 0〉

(‘propose’, this.id, this.m1, this.m2)@(Π1 ∧ id /∈ this.bl).[sent := 1]P

+ 〈counter = 2 ∗ n ∧ partner = 0 ∧ c > |bl| ∧ sent = 0〉

(‘propose’, this.id, this.m1, this.m2)@(Π2 ∧ id /∈ this.bl).[sent := 1]P

+ 〈counter = 3 ∗ n ∧ partner = 0 ∧ c > |bl| ∧ sent = 0〉

(‘propose’, this.id, this.m1, this.m2)@(Π3 ∧ id /∈ this.bl).[sent := 1]P

+ 〈counter = 3 ∗ n+ 1 ∧ partner = 0 ∧ n > |bl| ∧ sent = 0〉

(‘propose’, this.id, this.m1, this.m2)@(Π4 ∧ id /∈ this.bl).[sent := 1]P

which uses the values of counter and c collected by querying processes in order to send propose
messages. The behaviour is modeled as a choice among four sending processes, each has an output
action, followed by same continuation. We can derive the ABEL code for this process as below.

p(C,V) →
%% Definitions for elements of A2, A3, A4
A1 = {G1, M, SP1, U},
A2 = {G2, M, SP2, U},
A3 = {G3, M, SP3, U},
A4 = {G4, M, SP4, U},
Con = fun(_V) → p(C,_V) end,
choice(C,V,[{A1, Con}, {A2, Con}, {A3, Con}, {A4, Con}]).

A man component, after sending a ‘propose’ message waits for a number of replies. On receiving a first
‘yes’, the sender is considered as the current partner to which a ‘confirm’ is sent. Other subsequent
senders who reply with a ‘yes’ are instead sent a ‘toolate’. In AbC , we have the definition

A , (x = ‘yes’)(x, y).(H | A)

H , (〈partner = 0〉(‘confirm’)@(id = y).[partner := y]0

+ 〈partner > 0〉(‘toolate’)@(id = y).0

In ABEL terms, we have corresponding functions a and h, reported below.

a(C,V) →
RP = fun(_,_,M) → element(1,M) == yes end,
prefix(C, V, {RP, {x}, fun(_V) → a1(C,_V) end}).

a1(C,V) →
parallel(C, V, [fun(_V) → h(C, _V) end, fun(_V) → a(C,_V) end]).

h(C,V) →
G1 = fun(L) → att(partner,L) == 0 end,
M1 = {‘confirm’},
SP1 = fun(_,R) → att(id,R) == var(y,V) end,
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U = [{partner, var(y,V)}]},
G2 = fun(L) → att(partner,L) > 0 end,
M2 = {‘toolate’},
SP2 = fun(_,R) → att(id,R) == var(y,V) end},
A1 = {G1, M1, SP1, U},
A2 = {G2, M2, SP2},
choice(C,V,[{A1, nil},{A2, nil}]).

On the other hand, whenever receiving a ‘no’, a man adds the sender to bl to not avoid further
consideration. Moreover, during the waiting phase, a man may receives a ‘bye’ message from his
partner. These two kinds of messages are handled by process R in AbC , whose definition is:

R , (x = ‘bye’)(x, y).[bl := bl ∪ {y}, sent := 0, partner := 0]R

+ (x = ‘no’)(x, y).[bl := bl ∪ {y}, sent := 0]R

In ABEL, the function r below uses a choice command where the first branch (A1) receiving ‘bye’ and
the second (A2) receiving ‘no’.

r(C,V) →
RP1 = fun(_,_,M) → element(1,M) == ‘bye’ end,
U1 = [{bl, fun(S,M) → sets:add_element(element(2,M),att(bl,S)) end},{sent, 0},{partner, 0}],
RP2 = fun(S,R,M) → element(1,M) == no end,
U2 = [{bl, fun(S,M) → sets:add_element(element(2,M), att(bl,S)) end},{sent, 0}]},
A1 = {RPred1, Upd1},
A2 = {RPred2, Upd2},
Con = fun(_V) → r(C,_V) end},
choice(C,V,[{A1, Con}, {A2, Con}]).

Woman Component.

Defining attribute environment. The function init_w below takes charge in starting a women
component. Its purpose is the same as init_m. The attribute names and their initial values can be
seen from the code.

init_w([Id, W1, W2, PM1, PM2]) →
Env = {id => Id, w1 => W1, w2 => W2, pm1 => PM1, pm2 => PM2, partner => 0,

cm1 => −1, cm2 => −1, lock => 0, bl => sets:new()}
C = new_component(Env,I),
start_beh(C,[p1,p2,p3,w]).

Defining behaviour. The behaviour is essentially structured according to the types of incoming
messages. First of all, a woman may receive query messages, to which she answers either ‘interest’ or
‘uninterest’. As there are three different levels of a query, we use three parallel processes to handle
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them. Their behaviour are defined in processes P1, P2, P3 in AbC as follows:

P1 , (x = ‘q1’)(x, y, z, t).(H1 | P1)

H1 , 〈(z = w1 ∧ t = w2)〉(‘interest’)@(id = y).0

+ 〈¬(z = w1 ∧ t = w2)〉(‘uninterest’)@(id = y).0

P2 , (x = ‘q2’)(x, y, z, t).(H2 | P2)

H2 , 〈(z = w1)〉(‘interest’)@(id = y).0

+ 〈¬(z = w1)〉(‘uninterest’)@(id = y).0

P3 , (x = ‘q3’)(x, y, z, t).(H3 | P3)

H3 , 〈(t = w2)〉(‘interest’)@(id = y).0

+ 〈¬(t = w2)〉(‘uninterest’)@(id = y).0

to which we can write them in functions p1, p2 and p3 in ABEL, respectively. Below we illustrate
only the definition of p1 as the other definitions follow the same structure.

p1(C,V) →
RP = fun(_,_,M) → element(1,M) == ‘q1’ end,
prefix(C,{RP,{x,y,z,t},fun(_V) → p11(C,_V) end}).

p11(C,V) →
parallel(C,V[fun(_V) → h1(C,_V) end, fun(_V) → p1(C,_V) end]).

h1(C,V) →
A1 = {fun(L) → var(z,V) == att(w1,S) andalso var(t,T) == att(w2,L) end,

{‘interest’},
fun(_,R) → att(id,R) == var(y,V) end},

A2 = {fun(L) → not (var(z,V) == att(w1,L) andalso var(t,V) == att(w2,L)) end,
{‘uninterest’},
fun(_,R) → att(id,R) == var(y,V) end},

choice(C,V,[{A1, nil}, {A2,nil}])

It receives a message whose the first element equals to atom q1, and binds the last three ones to
variables Y, Z, T in that order. There, Y is the id of the sender, Z and T are his first and the second
preferences. The follow-up choice process uses these variables in its awareness predicates to decide a
reply message to be sent. In particular, action A1 send a ‘interest’ message to Y if both characteristics
of the woman match Z and T. Action A2 sends a ‘uninterest’ in the other case. Notice that there is a
replication of p1 because there may be many querying messages from different senders.
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Secondly, a woman also receives and answers to ‘propose’ messages. In AbC , this task is handled by
process W

W , (x = ‘propose’ ∧ y /∈ this.bl)(x, y, z, t).[bl := bl ∪ {y}](H |W )

H ,〈new_man_is_better ∧ lock = 0〉(‘yes’, this.id)@(id = y).[lock := 1]W1

+ 〈¬ new_man_is_better〉(‘no’, this.id)@(id = y).0

W1 , (m = ‘confirm’)(m).B

+ (m = ‘toolate’)(m).[lock := 0, bl := bl\{y}]0

B , (‘bye’, this.id)@(id = this.partner).[lock := 0, partner := y, cm1 := z, cm2 := t]0

to which, we write a function w in ABEL, reported below.

w(C,V) →
RP = fun(L,R,M) → element(1,M) == propose andalso not sets:is_element(att(id,R), att(bl,L)) end,
U = [{bl, fun(L,M) → sets:add_element(element(2,M),att(bl,L)) end}],
prefix(C, V, {{RP, {x,y,z,t}, U}, fun(_V) → wp(C,_V) end}).

wp(C,V) →
parallel(C,V, [fun(_V) → h(C,_V) end, fun(_V) → w(C,_V) end]).

The choice command of h resolves for two possibilities: a proposer Y is better than the current partner
and the opposite. This check is done by a helper function bof, which compares the characteristics of
a proposer and a partner, with respects to the preferences of a woman.

h(C,V) →
G1 = fun(L) → att(lock,L) == 0 andalso

(att(partner,L) == 0 orelse bof(var(z,V),var(t,V), att(cm1,L), att(cm2,L), att(pm1,L), att(pm2,L))) end,
M1 = {‘yes’, fun(L) → att(id,L) end},
SP1 = fun(_,R) → att(id,R) == var(y,V) end,
U = [{lock,1}],
%% Definitions for elements of A2
A1 = {G1,M1,SP1,U}
A2 = {G2,M2,SP2},
choice(C,V,[{A1, fun(_V) → w1(C, _V) end}, {A2, nil}]).

The continuation of A1 is implemented in function w1 that waits for an acknowledgement message
from the same proposer Y. If a ’confirm’ is received, the proposer is updated as the new partner. If a
’toolate’ is received, the proposer is removed from the set bl to enable him to propose again.

w1(C, V) →
A1 = {fun(_,_,M) → element(1,M) == ‘confirm’ end},
A2 = {fun(_,_,M) → element(1,M) == ‘toolate’ end,

[{lock, 0}, {bl, fun(R,_) → sets:del_element(Y,att(bl,R)) end}]},
choice(C,V,[{A1, fun(_V) → b(C,_V) end},{A2, nil}]).

b(C,V) →
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M = {‘bye’, fun(L) → att(id,L) end},
SP = fun(L,R) → att(id,R) == att(partner,L) end,
U = [{lock,0}, {partner,var(y,V)},{cm1, var(z,V)},{cm2, var(t,V)}],
prefix(C,V,{{M,SP,U},nil}).

3.3.2 Graph Coloring

The graph coloring problem consisting of assigning a color (a natural number) to each vertex such
that two neighbours do not share the same color. In distributed setting, the proposed algorithm is a
variant of the greedy algorithm. Each vertex is given an unique id, which implies an ordering over
vertices. Color selection goes through a sequence of rounds. In each round, each vertex chooses a
color which has not yet been used by any neighbors and propose to use that color. A vertex can take
a proposed color if it has the greatest id among neighbors who are proposing the same color. In this
case study, we only have one type of component representing for vertices of the input graph.

Defining attribute envionment. The listing below instantiates a vertex. The attribute environment
is defined at line 2, where all the attribute names and their initial values are indicated. Environments
are differ at vertex id and the set of neighbours. Interfaces for all vertices are the same, exposing
vertex id for interaction. We also make use of Erlang sets for operations on sets.

init(Id, Nbr) →
Env = #{id => Id, nbr => Nbr, color => −1, round => 0, done => 0, send => true,

assigned => false, used => sets:new(), counter => 0, constraints => sets:new()},
I = {id,nbr},
C = new_component(Env,I),
start_beh(C,[fun() → f(C) end, fun() → t(C) end, fun() → d(C) end, fun() → a(C) end]).

In the proposed algorithm for distributed graph coloring, each component maintains the following
attributes:

• id: the unique id of a vertex.

• nbr: the set containing ids of neighbors.

• color: the color of a vertex.

• round: the current round a vertex is operating on.

• done: the number of neighbors who have finished color selection.

• counter: the number of neighbors who have not finished coloring (in the same round).

• assigned: a boolean in which a true value indicates the completion of coloring.
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• constraints: a set of colors that have been proposed by neighbors with greater id (in the same
round).

• used: a set of colors that have been used by neighbors.

• send: a boolean which is used to enable the sending of a proposed color.

A component is created by supplying Env and I to the function new_component. After that start_beh
starts the execution of this component. The initial behaviour is a parallel composition of 4 processes
F, T, D and A, whose behaviour definitions are f, t, d and a, respectively.

Defining behaviour. The behaviour of process F is encoded in the function f . If a vertex is not
assigned a color and it has not yet proposed a color, this process sends a ‘try’ message associated with
the value of min_color and the current round. min_color is a helper function returning the minimum
number that does not appear in the argument set.

F , 〈send ∧ ¬assigned〉(‘try’,min{i /∈ this.used}, this.round)@(id ∈ this.nbr).

[color := min{i /∈ used}, send := ff]F

f(C,V) →
G = fun(S) → att(send,S) andalso not att(assigned,S) end,
M = {‘try’, fun(S) → min_color(att(used,S)) end, this(round)},
SP = fun(S,R) → sets:is_element(att(id,S), att(nbr,R) end),
U = [{send, false}, {color, fun(S) → min_color(att(used,S)) end}],
prefix(C, {{G,M,SP,U}, fun(_V) → f(C,_V) end}).

Process T is implemented by a choice command among 4 receiving processes, each contains an input
action and a continuation which is also the process T. Its definition in AbC

T , (x = ‘try’ ∧ this.id > id ∧ this.round = z)(x, y, z).

[counter := counter + 1]T

+ (x = ‘try’ ∧ this.id < id ∧ this.round = z)(x, y, z).

[counter := counter + 1, constraints := constraints ∪ {y}]T

+ (x = ‘try’ ∧ this.id > id ∧ this.round < z)(x, y, z).

[round :=z, send := tt, counter := 1, constraints := ∅]T

+ (x = ‘try’ ∧ this.id < id ∧ this.round < z)(x, y, z).

[round := z, send := tt, counter := 1, constraints :={y}]T

is translated as a function t which makes use of a choice command:

t(C) →
RP1 = fun(R, S, M) → size(M) == 3 andalso element(1,M) == ‘try’

andalso att(id,R) > att(id,S) andalso att(round,R) == element(3,M) end,
U1 = [{counter, fun(S,_) → att(counter,S) + 1 end}],
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A1 = {RP1,U1},
%% Definitions of input actions A2, A3, A4
T = fun() → t(C) end,
choice(C,[{A1, T}, {A2, T},{A3, T},{A4, T]).

In this function, A1, A2, A3, A4 are input descriptions corresponding to the prefix actions of the
4 branches of the choice. Particularly, A1, A2 responsible for receiving messages from neighboring
vertices operating at the same round. These actions both increase the value of counter. A2 further
records the proposed color of neighbors in constraints to avoid conflict. A3 and A4 instead receives
‘try’ messages associated with greater rounds. In which cases, the process indirectly starts a new
round of color selection by enabling send and updating counter, round, constraints. At the startup
of the new round, counter = 1 while constraints may contain the proposed color of a neighbor whose
id is greater than the component’s id.

Process D is also a choice, which receives ‘done’ messages sent from neighbors. Such a message causes
the process to increase the attribute done and to store the color attached in the message in the set used.
However, only messages associated with greater rounds have the effect of triggering a new round at the
executing component. This is handled explicitly in action A2 where relevant attributes are updated
accordingly. In particular, the current round is updated to the greater round, while attributes send,
counter and constraints are reset to their initial values. Below are the process definition in AbC ,
followed by the corresponding ABEL code.

D , (x = ‘done’ ∧ this.round ≥ z)(x, y, z).

[done := done + 1, used := used ∪ {y}]D

+ (x = ‘done’ ∧ this.round < z)(x, y, z).

[done := done + 1, used := used ∪ {y},

send := tt, counter := 0, constraints := ∅, round :=z]D

d(C,V) →
RP1 = fun(R,_,M) → size(M) == 3 andalso

element(1,M) == ‘done’ andalso att(round, R) >= element(3,M) end,
U1 = [{done, fun(R,_) → att(done,R) + 1 end},

{used, fun(R,_) → sets:add_element(element(2,M),att(used,R)) end}],
A1 = {RP1,U1},
%% The definition of A2
D = fun(_V) → d(C,_V) end,
choice(C,V,[{A1, D}, {A2, D}]).

Process A reports the completion of coloring a vertex. This function contains one send command, as
reported below. The command is activated if the component with the environment S has selected a a
color, the information of all neighbours are collected and the selected color does not give rise a conflict.
The message to be sent is a tuple including the final color and the current round plus 1. Finally, the
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atomic update on assigned disables the execution of process F .

A , 〈(counter + done = |nbr|) ∧ color > 0 ∧ color /∈ constraints ∪ used)〉

(‘done’, this.color, this.round + 1)@(id ∈ this.nbr).[assigned := tt]0

a(C,V) →
G = fun(S) → att(color,S) > 0 andalso

att(counter, S) == length(att(nbr, S)) − att(done,S) andalso
not sets:is_element(att(color,S), sets:union(att(constraints,S),att(used,S))) end,

M = {‘done’, this(color), fun(S) → att(round,S) + 1 end},
SP = fun(S,R) → sets:is_element(att(id,S), att(nbr,R)) end,
U = [{assigned, true}],
prefix(C, V, {{G,M,SP,U},nil}).

3.4 ABEL performance on case studies

We have developed a prototype ABEL in Erlang. Our implementation can be found at [2]. We reports
the performance evaluation of the prototype by using two case studies presented above:

• Stable marriage with Attribute (Section 3.3.1)

• Distributed graph coloring (Section 3.3.2)

For experiments, we used a workstation with a dual Intel Xeon processor E5-2643 v3 (12 physical cores)
and 128 GB of memory. The OS version is a 64-bit generic Linux kernel 4.4.0 and the Erlang/OTP
version is 21.1. It is noted that we are not interested in the optimality of the outcomes of these
problems but rather consider if a particular outcome is valid according to the problem settings. In
particular, for stable marriage problem, we are interested in if the matching returned is complete and
stable; for the graph colouring problem, we are interested in if the number of colour in use is bound
by the maximum degree of graph plus 1.

3.4.1 Stable Marriage with Attribute

We perform some experiments to evaluate the ABEL program solving SMA instances. Our input is
randomly generated from the predefined probabilities of attributes and preferences in the following
way. We first define ranges of values for attribute and preference. In a given range, a probability
is associated to each value so that the sum of the probabilities is 1. In this way, an attribute (or
preference) can take a concrete value v with a probability p(v). A generator is implemented to
generate different instances based on these parameters and on the number of agents. At the end, we

62



Chapter 3

consider 2 attributes and 2 preferences with ranges of two values. We select 10 different combinations
of probabilities values and generate 10 instances for each.

For each instance, we ran the ABEL program 5 times over 5 different configurations of the binary tree
structure, and took the average of their execution times. This means that each number reported below
are averaged over 2500 runs. For each matching returned, we have also checked for the completeness
and stability conditions. Note that any men agent can relax his requirement to a “true” predicate,
the matching is expected to be complete.

Table 3.1 presents the numbers for some problem sizes, which correspond to the number of pairs of
AbC components.

# pairs times (s)
60 1.52
80 3.47
100 6.7
200 62.5

Table 3.1: Results of stable marriage with attributes

In addition, we have also measured the number of messages exchanged and noticed that the case study
required a huge number of messages, which increases very fast when adding more agents. Indeed, all
agents need to remain in the matching system (and thus keep delivering messages) until the stability
and completeness conditions are satisfied for a pair of agents, when gets matched can still be split
afterwards. During this time, participating agents get to deliver irrelevant messages, for example,
messages come from those of the same type and extra acknowledgement messages which was meant
to be point to point.

3.4.2 Graph Coloring

To evaluate the performance of the ABEL code modeling the graph coloring scenario, we conducted
some experiments several DIMACS graphs collected from various public sources: flat300_28_0.col (300
vertices and 21695 edges), dsjc500.1.col (500 vertices and 12458 edges), will199GPIA.col (701 vertices
and 7065 edges) and dsjc1000.1.col (1000 vertices and 49629 edges). The datasets chosen provides an
increasing number of vertices which are considered as AbC components.

For each graph, we ran the ABEL code 10 times. In addition, we considered different configurations
of the tree infrastructure in terms of the number of nodes. The following metrics are measured:
the running time in seconds, the number of color used, the number of rounds, the total number of
messages exchanged between vertices and the infrastructure and the total message size in MB. In our
measurement, vertices do not wait for each other to reports the completion of their coloring: as soon
as a vertex decides on a color, it communicates that color, the number of messages exchanged (and
message size) thus far to an external process. This process reports the final outcome once all vertices
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have communicated their colors. To make sure the returning colors are valid, we have also checked
for the presence of conflicts. We have also validated that the number of colors does not exceed the
maximum graph degree plus 1 (due to the greedy nature of the algorithm).

Table 3.2 shows the results of the experiment. T is the number of tree nodes involving in mediating
the messages. These numbers correspond to binary trees with depths from 1 to 5. Next columns to
the right show the numbers for color, round, messages and the total size in that order. The execution
times are the average of 10 runs, other numbers are instead the average over 10 runs and 5 different
configurations.

Graph Execution Times (in seconds) #C #R #Msg
(in milli.)

Size
(in MB)T = 1 T = 3 T = 7 T = 15 T = 31

flat300_28_0 37.4 20.5 15.4 13.8 13.6 47.7 151.7 4.67 22,229
dsjc500.1 29 16.8 12.1 9.7 9 19.6 69.7 5.58 10,449

will199GPIA 71.9 46.7 35.9 27.7 20.4 9.1 165.2 15.9 14,734
dsjc1000.1 372.1 175.5 124 105.3 98.8 31.5 144 46.3 156,966

Table 3.2: Results of graph coloring with different number of tree nodes

Overall, the ABEL code can perform coloring for experiment graphs without any conflicts, and resulted
in speedups when increasing the number of tree nodes. On the other hand, its performance varies on
different graphs. This has something to do with the specific topology of each graph. In general, for
graph with more edges, components are more likely to resolve the color conflict among neighbors and
thus require more interactions. This contributes to an increased number of rounds and messages. For
graph with more vertices, components get to deliver broadcasted messages from non neighbors which
can delay the actual participation in coloring.

Table 3.2 suggests it is the number of rounds and the total message size that affected most to the
performance. The number of rounds varies due to non determinism resulted from the execution of the
program. The total message size does not depends only the number of messages. For example, the
graph with 300 vertices uses less messages than the one with 700 vertices, yet its total message size
is much larger than the latter. The reason for this is as follows. In the current model of the graph
coloring scenario, the interaction interfaces of vertices contain two attributes: an id and neighbor list.
Consequently, every message a vertex sends out has to include also the portion of environment derived
from the interface (see the semantics in Chapter 2). In our case, this portion contains the list of
neighbors of the vertex, which is large for dense graphs (e.g., flat300_28_0.col) and small for spare
graphs (e.g., will199GPIA.col). This shows that a faithful but native implementation of AbC semantics
could make the performance overhead high.

We are interested in understanding better these costs and considering optimization strategies that
may help to mitigate them. First of all, observe that vertices do not need to include their neighbor
lists in messages. This can be seen from receiving predicates in processes T and D where only sender’s
id is needed. Secondly, assigned vertices, although do not involve into graph coloring, still delivers
broadcasted messages and hold the system resources. Note that further guarding T and D with a
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condition on the attribute assigned does not prevent a vertex from delivering messages. However,
assigned vertices can be terminated safely without affecting other vertices. To this end, we perform
another experiment taking into account the following strategies.

(a) At the algorithm-wise, we modify the color proposal process (as explained in Chapter 2) so that
the selection of a color proposal takes into account the set constraints.

(b) At the specification-wise, we limit the portion of environment by introducing a limited interface
containing only the attribute id.

(c) At the system-wise, we terminate assigned vertices by stopping their coordinators upon process-
ing termination events generated by process A.

Although somewhat program-specific, they are helpful for the following reasons. Experimenting with
the first point confirms our intuition when reasoning the coloring scenario at the specification level. It
further implies that ABEL faithfully preserve AbC semantics. The second strategy can be generalized
to apply for other case studies. The last strategy could lead to future works in which new constructs
can be introduced to support expressing when a component can terminate.

We have prepared several programs combining the above strategies and evaluated their performances:
a) the program that uses the modified version of color proposal process, b) the program in which
vertices use a limited interface, c) the program in which assigned vertices are terminated naturally by
the coordinator, d) the program with use of the last two strategies and e) the program with modified
color proposal, featuring the last two strategies.

Tables 3.3, 3.4 show the execution times, the number of colors, the number of rounds, the number of
messages exchanged and the total size of messages for these programs. We only include numbers for
two graphs and for two configurations of the infrastructure, i.e., the smallest and largest ones among
them.

Program Exec. Times (s) #C #R #Msg
(in milli.)

Size
(in MB)T = 1 T = 31

o) orig. 37.4 13.6 47.7 151.7 4.67 22,229
a) mod. 28.2 11.2 47.7 126.3 3.71 17,668
b) orig. + lim. intf. 15.5 8.7 47.6 151.4 4.7 1,471
c) orig. + g.c. 24 9.3 47.5 150.6 4.65 22,138
d) orig. + lim. intf. + g.c. 9.9 5.9 47.5 150.5 4.72 1,444
e) mod. + lim. intf. + g.c. 7.8 5.2 47.7 127 3.77 1,177

Table 3.3: Results on 300 vertices and 21695 edges graph

We can see the differences between the performance of the original program o) and those of optimization
versions in terms of the number of message exchanges, message size and the number of rounds. In
particular, an increasing number of algorithmic rounds has slowed down the coloring procedure (17%
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Program Exec. Times (s) #C #R #Msg
(in milli.)

Size
(in MB)T = 1 T = 31

o) orig. 372.1 98.8 31.5 144 46.3 156,966
a) mod. 310.6 77.6 31.4 124.7 37.6 127,716
b) orig. + lim. intf. 131.3 51.3 31.6 144.5 45.7 14,282
c) orig. + g.c. 226.6 61.7 31.4 144.3 46.1 156,343
d) orig. + lim. intf. + g.c. 85.2 35.6 31.4 144.6 46.2 14,452
e) mod. + lim. intf. + g.c. 71.3 27.3 31.3 124.3 38 11,876

Table 3.4: Results on 1000 vertices, 49629 edges graph

for Table 3.4 and 25% for Table 3.3). With the introduction of limited interface, the differences between
o) and b) shows that the message size is the main overhead. Despite the facts that the number of
messages exchanged and the number of rounds are similar in o) and b), the total message size of b) is
only 7-8% that of o). This reduced the computation times significantly with 60-65%. An interesting
case is at terminating assigned vertices in the program c). The outcome of c) is very similar to o) in
both experiment graphs, however using c) have reduced 35-40% computation times. As a result, when
combining all optimization strategies, we have the best performance.

3.5 Concluding remarks

We have presented ABEL, an implementation of AbC in Erlang. We build an API that mimics AbC
constructs for the purpose of developing and experimenting with the AbC paradigm. The API is
integrated seamlessly with underneath coordination mechanisms that together simulate the original
synchronous semantics. Because of the direct correspondence between the two formal semantics and
our actual implementations, we can perform formal verification of ABEL programs by considering
their AbC abstractions. Indeed, from AbC specifications we can obtain verifiable models that can be
provided as input to model checkers.

Generally, it is still not clear how to detect when an AbC component can be garbage collected. Our
prototype does not provide automatic garbage collection for components. A viable solution is to
provide explicit guidance from the program with support of appropriate constructs, for example by
introducing a kill process such as the one in [93]. Beside this, we are currently investigating an
asynchronous semantics for AbC in order to relax the total order of message delivery.

To conclude this chapter, we elaborate on some knowledge gained in the experiments with ABEL.

The AbC calculus provides a new way to select communicating partners at run-time that are highly
dynamic and flexible. This may be considered as a big advantage compared to other paradigms when
it comes to modelling complex interactions. At the implementation level, it may be challenging to
preserve the AbC semantics.

Previous approaches to providing runtime environments for AbC have two limitations: i) they do
not exactly preserve the original semantics of the calculus, making it hard to reasoning about the
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program and ii) the APIs provided do not closely capture AbC primitives, making the task of deriving
executable code from AbC specification not obvious.

One of the main issues is at the implementation of guards (or awareness). In AbC , the evaluation
of guards, the communication actions and the attribute updates are all performed atomically. The
existing programming frameworks have separated the evaluation of guards from executing actions.
This separation exhibits the chance of interleaving between the evaluation of guards and the execution
of an associated action. The problem arises if an awareness process, say 〈Π1〉P1 becomes active (i.e.,
the predicate Π1 holds). However, before P1 can take any action, another parallel process may change
the shared environment in a way that Π1 is no longer hold. Now, if P1 continues with its action then
we run into semantic problem.

Our experiences with ABEL have showed that:

• a solution for ensuring atomicity between awareness and communication actions is to use a
special process acting as a coordinator (that keeps track of the environment). And it is the
coordinator that decides the actual actions to be executed, not individual processes. ABEL
views component environment as a living process instead of a static data store, reflecting a shift
from “shared memory” (where individual processes execute actions by accessing the environment)
to “message passing” (where individual processes send actions to the environment for execution);

• the development of the intra- and inter-coordinators within ABEL for preserving AbC semantics
are not Erlang- specific. Although we have exploited the OTP library for fast prototyping and
robustness, any framework that follows the main design principles in this chapter can be an
alternative to ABEL;

• the cost of preserving semantics may be high. On the one hand, broadcast is used to ensure
reliable messaging which causes the problem of large message sizes as any sent messages must be
decorated with enough information for receivers to check (i.e., the closure of sending predicate and
the sender environment). On the other hand, the implementation of component must be prepared
to perform the checks for any incoming message. It can happen that the components would waste
times on filtering out uninterested messages instead of involving to actual computations.
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Systematic verification of qualitative
properties

In this chapter, we will be concerned with the automatic verification of systems relying on attribute-
based communication, for which the AbC calculus serves as a vehicle to build formal verifiable models.
Our goal is to understand the complexity of systems described via the AbC calculus, such as those
presented in Chapter 2, and the way properties of interests can be verified against a given specification.
To this end, we discuss how to perform a systematic analysis of AbC models and verify their qualitative
properties. We have not yet considered probabilistic aspects of the model in this attempt, and leave
them for future work.

Our approach relies on the UMC verification framework [73, 81], which provides an execution environ-
ment for UML-like state machines. The underlying formal model of UMC, based on doubly-labeled
transition systems (L2TSs) [53], is well-represented for AbC systems, in which nodes are labelled with
the components attributes, and edged are labelled with the occurring communication events. Prop-
erties of interest that a designer would like to verify can then be specified over (a set of) composite
labels by using the supported event/state based temporal logic, reasoning over the L2TS.

To use the UMC framework, the initial step in our verification approach consists in mechanically
translating AbC terms into UMC. The main effort of our translation lays in the careful modelling
of the attributes, these implicitly require providing some kind of global view of the system. Since
in our target modelling language there is no concept of global data among different state machines,
a simple solution would require implementing shared states and appropriate synchronisation. To
avoid this, we gather all the processes in the initial system, along with their attributes, into a unique
object of the target model, where the behaviour described by a single process term is captured by
one or more transitions. This guarantees direct access to attributes by any of the modelled processes,
while components interleaving is triggered via global conditions which requires some ingenuity to
preserve the semantics of the initial system. To deal with process interleaving, we explicitly track the
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execution points of the processes and introduce appropriate guards on the transitions that can be used
to guarantee that any point of the evolution of the system only feasible transitions are performed.
Eventually, depending on the properties of interest, we may need to instrument the translated model
and introduce appropriate abstraction rules to increase the efficiency of the analysis. The resulting
model and the set of properties can then be used as inputs to UMC model checker.

We illustrate the impact of our approach by considering two case studies, namely stable marriage and
graph coloring problems presented in Chapter 2. For the former, we consider, besides the classical
version [65], other two variants of the problem which allows agents to express their interests in potential
partners by using their attributes rather than their identities ordered by means of an explicit preference
list. Member’s preferences are represented as predicates over the attributes of potential partners. For
one variant, we follow the classical algorithm where men first propose to the women they prefer most
and then relax their expectations if no partner is willing to accept their proposal. In the other variant,
men start proposing with the lowest requirements, to make sure to get a partner, and gradually increase
their expectations hoping to find better partners. We are interested properties such as the stability of
the matching and its completeness, in the existence of a unique solution, and in the level of satisfaction
of the components.

For the latter, our solution is based on the AbC specification originally proposed in [23]. We are
interested in the termination and in the soundness of the algorithm, e.g., in terms of checking valid
final colors assigned to vertices. Interestingly, with our approach we could spot some issues in the
original specification of the graph coloring scenario [24], which have been also mentioned in Section
2.2.2 (Chapter 2).

These properties are first described informally and then rendered as logical formulae to be formally
checked against the generated models. The outcome of our verification allows us to make some
considerations both on the different algorithms and on the used tool. Indeed, the results of our
experiments have shown that systems relying on attribute-based communications can be particularly
complex to design and analyse. However, by exhaustively verifying a specification over all possible
inputs, despite the small problem size considered, we have experienced that many non-trivial emerging
properties and potential problems can indeed be discovered.

In the rest of the chapter, we first briefly describe the syntax of the AbC calculus supported by our
approach. We then present in details the translation from AbC process terms into UMC’s textual
description of UML-like state machines. We show how to specify in AbC algorithmic solutions for
both case studies, and present fragments of the result of our verification and discuss their outcomes.
Finally, we discuss the difference between the previous work [45] and our refinement.
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4.1 Compiling from AbC into UMC

4.1.1 Specifying AbC systems

We define a template, shown in Figure 4.1 for the modeling purpose. It is used to specify an AbC
system in a prescribed manner. Overall, the template allows defining components with given types

- - Component type d e c l a r a t i o n s
component Type

attributes : a t t r1 , att r2 , . . .
observables : a t t r1 , att r2 , . . .
behaviour :

let {
- - p roce s s d e f i n i t i o n s in AbC- l i k e syntax
}
in i t
- - a p roce s s c a l l or a p roce s s exp r e s s i on

end
- - other components d e c l a r a t i o n s . . .

- - an i n s t a n t i a t e o f component Name
C1 : Type ( a t t r 1 → val1 , a t t r 2 → val2 . . . )
- - other i n s t an c e s . . .

Figure 4.1: A template for AbC specification

in blocks starting at component and ending at end. A component consists a set of attributes and
a behaviour description. It supports also the declaration of observables attributes, which is an
optional subset of component attributes. Those attributes declared in this section will be exposed as
state labels in the translated model. The behaviour is described by a set of process expressions, thus
one first defines sub-processes inside the block let {. . .} and initiates the behaviour after the keyword
init which can be either a call or a process expression composed from defined processes. Each concrete
component is then instantiated by assigning concrete values to attributes. Finally, the AbC system is
considered as the collection of component instances defined.

Before presenting the translation, we need to clarify some assumptions made on the input syntax.
Basically, the syntax for process definitions inside the let and init sections (Figure 4.1) follows closely
to that of the AbC calculus ([23], Chapter 2). The syntax is shown in Figure 4.2.

We have adopted the following notational conventions. The inactive process is written as nil. The
notations Ẽ and x̃ stand for sequences E1, E2, . . . and x1, x2, . . ., respectively. Similarly, an update
descriptor [ã := Ẽ] is a shorthand for [a1 := E1, a2 := E2, . . .].

Predicates can be either the constants true and false, or are built from some binary operator ./ over
two expressions. A predicate can combine other predicates by using logical operators and, or, not. The
relational operator ./ can be either comparison operators such as >,<,=, . . . or membership operator
on sets, e.g., in, notin.
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(Processes) P ::= nil | (Ẽ)@(Π).U | (Π)(x̃).U | 〈Π〉P | P + P | P |P | P |mP | K
(Update) U ::= [ã := Ẽ]P | P

(Predicates) Π ::= true | false | E1 ./ E2 | Π and Π | Π or Π | not Π
(Expressions) E ::= v | x | $x | a | this.a | E1 ◦ E2 | E.hd | E.tl | E[E] | |E|

(Relations) ./ ::=> | < | = | / = | <= | >= | in | notin
(Operators) ◦ ::= + | − | ∗ | / | + + | − −

Figure 4.2: Process syntax

An expression can be a constant v, an attribute name a, a variable x, the value $x of a variable,
the value this.a of an attribute a in the local attribute environment, or the result of an arithmetic
operation ◦ between two expressions. A constant v can be either numerals, literals or UMC vectors
[12]. For numeral expressions, operator op are standard ones, i.e., +,−, /, ∗. For a given vector E, the
expressions E.hd, E.tl, E[i], |E| return the first element, the rest, the i-th element and the length of
the vector, respectively. An empty vector is a constant and declared as []. UMC vectors are further
exploited to represent (ordered) sets. Two operators on sets are ++ and −− for set union and set
subtraction.

To guarantee a finite representation of the model, we further assume that the specified system consists
of a fixed number of components and that the interleaving operator generally does not occur inside a
recursive definition. The only allowed exception is the definition of a process of the form P := Q|P ,
where | is replaced by its bounded version |m−1, with m > 1 the number of parallel instances to be
created. For example: P := Q |2 P is interpreted as three processes P := Q1 | Q2 | Q3, where Qi , Q.
This is useful to model replication behaviour.

Example 4.1 As an example, we illustrate modeling the SMP problem using the above interface.
The classical SMP considers matching two equally-sized sets of men and women according to their
preferences specified as an ordered list of partner’s identifiers. The algorithm goes through a sequence
of proposals initiated by men. Men propose themselves to women according to their preference lists.
A woman, when receiving a proposal, chooses the best man between her current partner and the man
making advances. Gale and Shapley [65] showed that such an algorithm guarantees existence of a
unique stable matching, in the sense that the algorithm always leads to a situation where everyone is
engaged and it is not possible that any two, not married, persons prefer each other over their current
partners.

Men (initiators) and Women (responders) are AbC components whose attributes include the identifier
id, the preference list pref, and the current partner. Accordingly, we define two types of components,
Man and Woman. The first component type has the declaration as shown in Figure 4.3.
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component Man
attributes : id , partner , p r e f
observables : partner
behaviour :

let {
M := ( ‘ propose ’ , t h i s . id )@( id = th i s . p r e f . hd ) .

[ partner := pr e f . hd , p r e f := pr e f . t l ]M1
M1 :=(x = ‘no ’ ) ( x ) . [ partner := 0 ]M

}
in i t M

end

Figure 4.3: Declaring component Man

component Woman
attributes : id , partner , p r e f
observables : partner
behaviour :

let {
W := (x = ‘ propose ’ ) (x , y ) .H |^(n - 1 ) W
H := <pre f [ partner ] < pr e f [ $y ] >( ‘no ’ )@( id = th i s . partner ) .

[ partner := $y ] n i l
+
<pre f [ partner ] > pr e f [ $y ] >( ‘no ’ )@( id = $y ) . n i l

}
in i t W

end

Figure 4.4: Declaring component Woman

The behaviour of an individual initiator is specified by process M. It sends a ‘propose’ message to
components whose id equals to the first element of pref, and then updates attributes partner and
pref. The continuation process M1 waits for a ‘no’ message to reset partner, before restarting with M.

The Woman component is declared in a similar fashion. Its behaviour is specified by process W (Figure
4.4). Specifically, W is a parallel composition of several instances of the subprocess (x = ‘propose’)(x, y).H,
each waits for an incoming proposal and proceeds as H. In this way, the component is able to receive
new ‘propose’ messages while processing the current one. The number of messages a woman compo-
nent can receive in parallel is the number of men in the matching system (denoted by n).

Process H checks whether or not the sender, whose id stored in $y is better than the current partner.
We use a reversed form of preference lists pref in order to perform this comparison. In the first case,
H sends a ‘no’ message to the now ex partner, and updates partner to the corresponding sender. In
the second case, H sends a ‘no’ to the sender. Both branches terminate with a nil process.

Finally, assume that we have 3 pairs of agents. The following code shows how to instantiate concrete
components by giving initial values to attributes. Each concrete component is given a name, and is
an instance of a component type. We can see the instantiation of vectors pref and in particular, the
reversed form of pref for Woman components.
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C1 : Man( id -> 1 , partner -> 0 , p r e f -> [ 4 , 5 , 6 ] )

C2 : Man( id -> 2 , partner -> 0 , p r e f -> [ 4 , 5 , 6 ] )

C3 : Man( id -> 3 , partner -> 0 , p r e f -> [ 4 , 5 , 6 ] )

C4 : Woman( id -> 4 , partner -> 0 , p r e f -> [ 0 , 3 , 2 , 1 ] )

C5 : Woman( id -> 5 , partner -> 0 , p r e f -> [ 0 , 1 , 2 , 3 ] )

C6 : Woman( id -> 6 , partner -> 0 , p r e f -> [ 0 , 1 , 3 , 2 ] )

4.1.2 The translation

The input system is a collection of a number of AbC components, in which the specification for the
k-th component, denoted with

Γk : 〈Dk, Pinitk〉

includes an attribute environment Γk, a set Dk of process declarations, and an initial behaviour Pinitk
which refers to the processes defined in Dk. The output of our translation is a UMC class whose
general structure is depicted in Figure 4.5. It includes fixed code snippets (boldfaced) such as the
necessary signals and data structures to model AbC input and output actions. It also contains the
dynamic parts such as the declarations of attributes (line 10), attribute values initialization (line 31),
and the transitions for modeling the components behaviour (lines 21 - 24).

An AbC system is modelled as a UML parallel state machine (SYS), where each component is modelled
by its own region (Ck). In UML the behaviors inside parallel regions proceed in a single move: a trigger
event from the machine queue is dispatched to all the regions, which may be then evolved in parallel,
making a unique system transition. The semantics of attribute input and output is modelled by using
two unique events: i) the bcast(tgt, msg, j) event that triggers all the receive actions in all components.
It carries out the set tgt of component indexes allowed to receive the message msg, and the index
j of the sending component; ii) the allowsend(i) event with i ranges over component indexes, that
is used to schedule the components through interleaving when sending messages. According to the
semantics of AbC , receive actions are blocking and executed together, and send actions of all the
components should be handled in an interleaved way. To accommodate this, we use the event queue of
the state machine to store a set of allowsend(i) signals, one for each AbC component. These signals
are declared in the top state of the system as Defers, to prevent them from being removed from the
event queue when they do not trigger any transition. Moreover, the queue is defined as RANDOM so
that the relative ordering of signals is not considered relevant. In this way, at each step in which an
AbC send has to be performed, a single allowsend(i) signal is nondeterministically selected from the
queue, allowing a single component, whose index equals to i, to proceed.

The Transitions section collects all the transitions generated from the process terms while visiting
the process structure. Transitions have the following form:

SYS .Ck . s0 -> Ck . s0 { Tr igger [ . . . & pc [ k ] [ p]=CNTin ] /
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0 J(Γ0 : 〈D0, Pinit0 〉,Γ1 : 〈D1, Pinit1 〉 . . . ,Γs : 〈Ds, Pinits 〉)K =
1 Class System is
2 Signals: allowsend(i:int),
3 bcast(tgt,msg,j:int);
4 Vars:
5 RANDOMQUEUE;
6 receiving:bool := false;
7 pc:int[];
8 bound:obj[];
9 /* Attributes vectors of the form - attr1:int[]; attr2:int[]; . . .*/

10 AJ(Dom(Γ0), Dom(Γ1), . . . , Dom(Γs))K
11 State Top Defers allowsend(i)
12 Transitions:
13 /* Initial movement of the system */
14 init → SYS {-/
15 /* program counter instantiation */
16 pc := [[1, 1, . . .], [1, 1, . . .], . . . , [1, 1, . . .]];
17 for i in 0..pc.length-1 {
18 self.allowsend(i);
19 }}
20 /* Transitions of all components */
21 SJ〈D0, Pinit0 〉K
22 SJ〈D1, Pinit1 〉K
23 . . .
24 SJ〈Ds, Pinits 〉K
25 end System
26 SYS : System (
27 /* Attributes values instantiation of the form
28 attr1 → [Γ0(attr1),Γ1(attr1), . . . ,Γs(attr1)],
29 attr2 → [Γ0(attr2),Γ1(attr2), . . . ,Γs(attr2)],
30 . . . */
31 VJ(Γ0,Γ1, . . . ,Γs)K
32 )
33 Abstraction {
34 /* labels on communication actions */
35 Action sending($1, $2)→ send($1, $2)
36 Action received($1, $2)→ receive($1, $2)
37
38 /* labels on observable attributes */
39 State attr1[comp_id] = $v → has_attr1(comp_name,$v)
40 State attr2[comp_id] = $v → has_attr2(comp_name,$v)
41 . . .
42 }

Figure 4.5: Translation of AbC specifications.

- - t r a n s i t i o n body

pc [ k ] [ p ] :=CNTout ;

}

where pc[k][p] is the program counter of a process (indexed by) p in a component (indexed by) k. CNT

models the execution point of a transition (or an action of the process), whose values are calculated by
the translation. More concretely, we associate two values to each transition: an entry point CNTin and
an exit point CNTout. A guard pc[k][p] = CNTin on a transition makes sure that the program counter
holds the “address” of the transition so that it can be executed. At the end of a transition, pc[k][p]
is assigned a new value in order to correctly enable the next set of feasible transitions. The values of
pc, CNT, and the full guards are worked out according to the structural mapping procedure described
in the following section.
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4.1.2.1 Structural Mapping.

Let us denote with SJP Kk,p,vρ the function that maps a process P of component k into a number of
UMC transitions, where p the process index, and v the entry point. The information carried while
traversing the process structure is stored in a map ρ, which are necessary for translating a specific
AbC action. Initially, ρ = {upd → ∅, aware → ∅, parent → ∅, visit → [], entry → []}. upd and aware
store the update descriptor and the awareness predicate associated to an action, respectively. For a
process name K indexed by some p, visit[Kp] is a boolean value indicating if Kp has been translated
before. entry[Kp] stores the entry point of Kp, parent instead stores the exit point of the process that
spawns the process P under the translation.

In addition, the translation maintains several global variables: a) the current process index pid[k] of
component k, initially set to 0; b) the global counter cnt[k][p] of a process with index p in component
k, initially set to 1 and c) the set of process declaration Dk for component k. At the beginning,
the parameter set passed to SJ·K contains Pinitk - the initial behaviour of the component k, and p, v
receiving the values of pid[k][p] and cnt[p], respectively.

The translation may perform updates on global variables and modify the parameter map ρ. In the
following translation rules, we write (

y
g
) to express side effects on global variables and use this font to

access global variables. Operators on ρ include accessing the value of a key x in ρ - ρ(x) and creating
a new map ρ′ from an existing ρ by overwriting some key values in ρ, i.e., ρ′ = ρ{x 7−→ val1, . . .}. For
brevity, we write cnt[p] for cnt[k][p] and pid for pid[k].

Figure 4.6 presents our translation rules from AbC process terms to UMC transitions, while Fig-
ure 4.7(b)-(d) gives an idea of how transitions are glued together according to the process structure.

Inaction. An inaction process is translated into nothing.

Awareness. The translation of 〈Π〉P accumulates predicate Π into variable aware of ρ and returns
the translation of P under the updated map ρ′.

Nondeterministic choice. The translation of P1 + P2 is a sequence of two translations of sub-
processes under the same process index p, entry value v, and map ρ.

Parallel composition. The translation of P1|P2 is a sequence of two translations of the sub-processes.
It generates two new processes indices p1 and p2 which are calculated from the current process index
pid, and initialises two new global counters cnt[p1], cnt[p2]. In the case of parallel composition, the
entry points of sub-processes P1, P2 does contain not only their own counters but also the counter v
of the process that spawns P1|P2, whose index is p. Therefore, the translations of P1, P2 store the exit
point of the “parent” process (p, v) in variable parent which will be used as an additional guard for
prefixing actions of P1 and of P2. This however, can be ignored if v = 1, meaning that P1|P2 is not
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SJnilKk,p,vρ = ∅

SJ〈Π〉P Kk,p,vρ = SJP Kk,p,vρ′

where ρ′ = ρ{aware 7→ ρ(aware) ∪Π}
SJP1 + P2Kk,p,vρ = SJP1Kk,p,vρ ;SJP2Kk,p,vρ

SJP1|P2Kk,p,vρ =

SJP1Kk,p,vρ ; (
y

g)SJP2K
k,pid,cnt[pid]
ρ if v = 1

(
y

g)SJP1K
k,pid,cnt[pid]
ρ′ ; (

y
g)SJP2K

k,pid,cnt[pid]
ρ′ otherwise

where
y

g = {pid := pid + 1, cnt[pid] := 1}

ρ′ = ρ{parent 7→ ρ(parent) ∪ (p, v)},
SJQ|mP Kk,p,vρ = (

y
g)SJQ′|Q′| . . . |Q′︸ ︷︷ ︸

m times

Kk,p,vρ

where
y

g = {Dk(Q′) := Q} for Q′ fresh

SJKKk,p,vρ = SJP Kk,p,vρ′

where P = Dk(K),
ρ′ = ρ{visit[Kp] 7→ true, entry[Kp] 7→ v}

SJα.[ã := Ẽ]P Kk,p,vρ = SJα.P Kk,p,vρ′

where ρ′ = ρ{upd 7→ ρ(upd) ∪ [ã := Ẽ]}

SJα.KKk,p,vρ =
{
Srecα if ρ(visit)[Kp] = true
Snomα;SJKKk,p,cnt[p]

ρ′ otherwise
where ρ′ = ρ{upd 7→ ∅, aware 7→ ∅, parent 7→ ∅}

SJα.P Kk,p,vρ = Snomα;SJP Kk,p,cnt[p]
ρ′

where ρ′ = ρ{upd 7→ ∅, aware 7→ ∅, parent 7→ ∅}
Snom(Ẽ)@Π ≡ (

y
g
)BJ(Ẽ)ΠKk,p,v,cnt[p]

ρ

where
y
g

= {cnt[p] := cnt[p] + 2}

SnomΠ(x̃) ≡ (
y
g
)BJΠ(x̃)Kk,p,v,cnt[p]

ρ

where
y
g

= {cnt[p] := cnt[p] + 1}

Srec(Ẽ)@Π ≡ (
y
g
)BJ(Ẽ)ΠKk,p,v,ρ(entry)[Kp]

ρ

where
y
g

= {cnt[p] := cnt[p] + 1}

SrecΠ(x̃) ≡ BJΠ(x̃)Kk,p,v,ρ(entry)[Kp]
ρ

Figure 4.6: Structural translation of processes: semicolon (; ) denotes the completion of the left trans-
lation before starting the right one, a global update (

y
g
) takes place before the follow-up translation,

α denotes either an AbC input or output action, ≡ denotes a textual expansion of the left hand side
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body

[Cin] Cout

entry exit

(a)

α P

[Cin] Cout [Cout]

.

(b)

P2

P1

+

[Cin]

[Cin]

(c)

P2

P1

|

[Cout ∧ C1in]

[Cout ∧ C2in]

(d)

Figure 4.7: Structural mapping to combine generated UMC transitions: (a) graphical representation
of a transition; (b) an action prefixing process α.P has the entry point of α as Cin, and the entry
point of P as the exit point of α (Cout); (c) a choice process P1 +P2 has the same entry point on both
sub-processes P1, P2, which may be the exit point of a previous action (if there any); (d) the entry
points of sub-processes P1, P2 in a parallel process P1|P2 contain also the exit point of a previous

action (if there any)

prefixed by any action. The translation of Q|mP is the translation of Q′|P where Q′ , Q and P is a
parallel composition of m processes Q′.

Process call. The translation of a process call K first looks up the definition P of K in the set of
process declarations Dk, and then returns a translation of P under the new map ρ′, in which the entry
point of Kp is stored and Kp is marked as visited.

Update. The translation of a update process α.[ã := Ẽ]P accumulates the update descriptor [ã := Ẽ]
into variable upd and returns the translation of α.P under the new map.

Action-prefixing. In an action prefix process, the continuation process can be either a process callK,
i.e., a name or a process code P . Separating them out helps the translation in dealing with recursion.
In particular, there are two cases:

• The translation of α.K is a “recursive” translation of α if the name K, indexed by p has been
visited before, otherwise, it is a “normal” translation of α followed by a translation of K.

• The translation of α.P (where P is not a name) is a “normal” translation of α followed by a
translation of P .

In a “normal” translation of α, denoted by Snomα in Figure 4.6, the global counter cnt[p] is increased
by 2 for an output action and by 1 for an input action. This is because we will need two UMC
transitions for modeling an output action and one for an input action. In a “recursive” translation of
α, denoted by Srecα in Figure 4.6, however, the global counter cnt[p] is increased by 1 for an output
action.

The actual UMC code for the α is then generated by the behavioural translation B. It has the form of
BJαKk,p,cin,coutρ , where the parameter set is enriched with an exit point cout. cout, in case of a recursion,
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receives the entry point of the recursive process K, i.e., ρ(entry)[Kp], otherwise, the updated value of
cnt[p].

Finally, the translation of the continuation process, either K or P is parameterised with a new map
ρ′ where the previous accumulated information is reset, and a new entry value, calculated from the
value of global counter for P - cnt[p], is added.

4.1.2.2 Behavioural mapping.

We now describe the function BJαKk,p,cin,coutρ which generates the actual UMC code for a specific action
α according to the information accumulated in the map ρ and the parameter set including component
index k, process index p, the entry and exit points associated to this action cin and cout.

Output Action. We model the output action in two steps that are forced to occur in a strict
sequence: the sending to self (i.e., the state machine) of the bcast event (that will be dispatched to all
the parallel components), and the discarding of this very message, as illustrated by the code snippet
in Figure 4.8. The global variable receiving of the state machine works as a lock, to guarantee
the correct ordering of the two transitions. Here the (main) transition is guarded by the following

BJ(Ẽ)@ΠKk,p,cin,cout
ρ =

SYS .Ck . s0 -> Ck . s0 {
a l lowsend ( i ) [ i=k & r e c e i v i n g=f a l s e & pc [ k ] [ p]=cin & Jρ(parent)K ] & Jρ(aware)K ] /
tg t : i n t [ ] ;
f o r j in 0 . . pc . length -1 {

i f (JΠK) then { tg t [ j ] :=1 ; } e l s e { tg t [ j ] :=0 ; }
} ;
r e c e i v i n g := true ;
s e l f . bcast ( tgt , [JẼK] , k ) ;
OUT. send ($2 ,msg) ;
Jρ(upd)K ;
pc [ k ] [ p ] = cin + 1 ;

}
SYS .Ck . s0 -> Ck . s0 {

bcast ( tgt , msg , j ) [ pc [ k ] [ p ] = cin + 1 ] /
r e c e i v i n g := f a l s e ;
s e l f . a l lowsend (k ) ;
pc [ k ] [ p ] = cout ;

}

Figure 4.8: Translation of an output action

conditions:

• i = k means that the component k gets scheduled;

• receiving = false means that there is no other components performing an output action;
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• pc[k][p] = cin means that the program counter holds the execution point of this action, so the
action is ready to be executed;

• and (possibly) conditions on the exit point of the parent process, and the satisfaction of awareness
predicate accumulated in the map ρ. Recall that ρ(parent), if not empty, is a pair of index p’ and
exit point v’. Its translation has the form pc[k][p′] = v′. The translation for awareness predicate
is detailed later.

The transition body includes the computation of the set of potential receivers tgt, a sending operation
in the form of self.bcast(tgt, Msg, k) where Msg stands for the result of translating expressions Ẽ,
and the translation of attribute updates stored in ρ(upd). This transition also sets the global variable
receving to disable “sending” transitions of other components, thus only allowing transitions triggered
by bcast(tgt, msg, k).

Finally, the complementary transition follows resets receiving and updates the program counter of
the current process to cout. In addition, it pushes the signal allowsend(k) to the event queue of the
state machine.

Input Action. An input action is translated into a transition whose general form is shown in
Figure 4.9. The transition is triggered by signal bcast(tgt, msg, j) issued from some sender j. It is
enabled, for a component k (if k is in the target set tgt of receivers), when the receiving predicate Π
and (possibly) the preceding awareness predicates are satisfied. Variable binding is done by assigning
the received message msg to vector bound indexed by k and p. Similarly to the output action, the
transition guard can contain awareness predicates; the transition body can contain update commands.

BJΠ(x̃)Kk,p,cin,cout
ρ =

SYS .Ck . s0 -> Ck . s0 {
bcast ( tgt , msg , j ) [ t g t [ k]=1 & pc [ k ] [ p]= cin & Jρ(parent)K ] & Jρ(aware)K & JΠK ] /
bound [ k ] [ p ] [ 0 ] = msg [ 0 ] ;
bound [ k ] [ p ] [ 1 ] = msg [ 1 ] ;
. . .
Jρ(update)K ;
OUT. r e c e i v ed (k , msg) ;
pc [ k ] [ p ] = cout ;

}

Figure 4.9: Translation of an input action

Other translations. In the above generated transitions, we have smaller translations for specific
AbC terms such as expressions, predicates. Theses are translated into UMC code by a family of
functions J·K whose general definitions are given in Figures 4.10, 4.11.
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JtrueK = true
JfalseK = false

JE1 ./ E2K = JE1K ./ JE2K
JΠ1 and Π2K = JΠ1K and JΠ2K

JΠ1 or Π2K = JΠ1K or JΠ2K
Jnot ΠK = not JΠK

Figure 4.10: Translation of predicates

JvK = v

JxiK = msg[i]
J$xiK = bound[k][p][i]

JaK =
{
a[j] if a appears in interaction predicates
Jthis.aK otherwise

Jthis.aK = a[k]
JE.hdK = JEK.head
JE.tlK = JEK.tail

JE1[E2]K = JE1K.[JE2K]
J|E|K = |JE2K|

JE1 ◦ E2K = JE1K ◦ JE2K

Figure 4.11: Translation of expressions

Notice the case of an attribute name a, the translation depends on the context. If a appears in the
interaction predicates (send and receive), its value is of a remote component, and thus is translated
into a[j]. Otherwise, a is a local attribute and thus is translated into a[k].

The translation of a variable x calculates its position i in the vector msg and then returns msg[i]. The
translation of a value $x calculates its position i in the vector bound and then returns bound[k][p][i]
where k, p are indexes of the corresponding component and process.

Also note that the translation for operators on sets in, notin,++,−− is more involved since UMC does
not support those binary operators. In such cases, the translation makes use of loops and conditional
branching (supported by UMC) to properly simulate their semantics. Furthermore, if a designer
wishes to use more complex expressions, e.g., functions on sub expressions, that can not be directly
represented using our supported syntax, she would need to instrument the generated UMC code herself
to encode such expressions (or predicates).

It is easy to see why our translation terminates. The presented translation rules work on syntactic
categories of AbC terms, decomposing them and translating each AbC action as a basic unit. Since we
do not allow infinite process definitions, the structural mapping function S on a process stops when
it meets either a recursive call (Srec) or a nil process (SJnilK).
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Example 4.2 This example shows how structural mapping works on a man component in the stable
marriage problem, presented in Example 4.1. If we take the first declared component C1

Γ0 : 〈Pinit0 , D0〉

then the set of relevant variables at the beginning is as follows:

• Pinit0 = M

• D0 = {M → α1.u1M1, M1 → α2.u2M} where
α1 = (‘propose’)@(id = this.pref.hd), α2 = (x =‘no’)(x) and
u1 = [partner := pref.hd, pref := pref.tl], u2 = [partner := 0]

• k = 0, pid = 0, cnt[0] = 1

• ρ = {visit→ [], entry → [], aware→ ∅, parent→ ∅, update→ ∅}

The structural mapping takes Pinit0 , ρ, the parameters k = 0, p = pid, v = cnt[0] and proceeds as:

SJMK0,0,1
ρ = SJD0(M)K0,0,1

ρ

= SJα1.u1M1K0,0,1
ρ0

where ρ0 = ρ{visit[M0] 7−→ true, entry[M0] 7−→ 1}

= SJα1.M1K0,0,1
ρ1

where ρ1 = ρ0{upd 7−→ u1}

= Snomα1;SJM1K0,0,cnt[0]
ρ2

where ρ2 = ρ1{upd 7−→ ∅}

Snomα1 ≡ (
y
g
)BJ(‘propose′)@(id = this.pref.hd)K0,0,1,cnt[0]

ρ1
where

y
g

= {cnt[0] := cnt[0] + 2}

= BJ(‘propose′)@(id = this.pref.hd)K0,0,1,3
ρ1

/*cnt[0] = 3 after update */

SJM1K0,0,cnt[0]
ρ2

= SJD0(M1)K0,0,3
ρ2

/*cnt[0] = 3 after update */

= SJα2.u2MK0,0,3
ρ2

= SJα2.MK0,0,1
ρ′

2
where ρ2

′ = ρ2{upd 7−→ u2}

= Srecα2 /*ρ′
2(visit)[M0] = true */

≡ BJ(x = ‘no′)(x)K0,0,3,ρ′
2(entry)[M0]

ρ′
2

= BJ(x = ‘no′)(x)K0,0,3,1
ρ′

2

The behavioural mapping B for actions α1 and α2 can then produces the actual UMC code in the
sequence (Figure 4.12), by using the accumulated information in the parameter set.

Example 4.3 This example shows how structural mapping works on a woman component in the
stable marriage problem, presented in Example 4.1. If we take the first declared component C4

Γ3 : 〈W,D3〉
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BJ(propose, this.id)@(id = this.pref.hd)K0,0,1,3
ρ1 =

SYS .C0 . s0 -> C0 . s0 {
a l lowsend ( i ) [ i=0 & r e c e i v i n g=f a l s e & pc [ 0 ] [ 0 ] = 1 ] /
tg t : i n t [ ] ;
f o r j in 0 . . pc . length -1 {

i f ( id [ j ] = p r e f [ 0 ] . head ) then { tg t [ j ] :=1 ; } e l s e { tg t [ j ] :=0 ; }
} ;
r e c e i v i n g := true ;
s e l f . bcast ( tgt , [ propose , id [ 0 ] ] , 0 ) ;
partner [ 0 ] := pr e f [ 0 ] . head ;
p r e f [ 0 ] := pr e f [ 0 ] . t a i l ;
pc [ 0 ] [ 0 ] = 2 ;

}
SYS .Ck . s0 -> Ck . s0 {

bcast ( tgt , msg , j ) [ pc [ 0 ] [ 0 ] = 2 ]/
r e c e i v i n g := f a l s e ;
s e l f . a l lowsend ( 0 ) ;
pc [ 0 ] [ 0 ] = 3 ;

}

BJ(x = no)(x)K0,0,3,1
ρ′

2
=

SYS .C0 . s0 -> C0 . s0 {
bcast ( tgt , msg , j ) [ t g t [0 ]=1 & pc [ 0 ] [ 0 ]= 3 & msg [ 0 ] = no ] /
bound [ 0 ] [ 0 ] [ 0 ] := msg [ 0 ] ;
partner [ 0 ] := 0 ;
pc [ 0 ] [ 0 ] = 1 ;

}

Figure 4.12: The generated code for a Man component

then the set of relevant variables at the beginning is as follows:

• D3 = {W →W ′|W ′|W ′,W ′ → β.H,H → a1β1.u1nil + a2β2.nil} where
β = (x=‘propose’)(x,y),
a1 = 〈pref [partner] < pref [$y]〉, u1 = [partner := $y] and
a2 = 〈pref [partner] > pref [$y]〉, β2 = (‘no′)@(id = $y).

• k = 3, pid = 0, cnt[0] = 1

• ρ = {visit→ [], entry → [], aware→ ∅, parent→ ∅, update→ ∅}
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The structural mapping takes W , ρ, the parameters k = 3, p = pid, v = cnt[0] and proceeds as below.

SJW K3,0,1
ρ = SJW ′K3,0,1

ρ ; (
y
g
)SJW ′K3,pid,cnt[pid]

ρ ; (
y
g
)SJW ′K3,pid,cnt[pid]

ρ

where
y
g

= {pid := pid + 1, cnt[pid] := 1}

= SJW ′K3,0,1
ρ ;SJW ′K3,1,1

ρ ;SJW ′K3,2,1
ρ

SJW ′K3,0,1
ρ = SJβ.HK3,0,1

ρ

= (
y
g
)BJ(x = ‘propose′)(x, y)K3,0,1,cnt[0]

ρ ;SJHK3,0,cnt[0]
ρ where

y
g

= {cnt[0] := cnt[0] + 1}

= BJ(x = ‘propose′)(x, y)K3,0,1,2
ρ ;SJHK3,0,2

ρ

SJHK3,0,2
ρ = SJP1K3,0,2

ρ ;SJP2K3,0,2
ρ

= SJβ1.nilK3,0,2
ρ1

;SJβ2.nilK3,0,2
ρ2

where ρ1 = ρ{aware 7−→ a1, upd 7−→ u1}, ρ2 = ρ{aware 7−→ a2}

= (
y
g
)BJ(‘no′)@(id = this.partner)K3,0,2,cnt[0]

ρ1
; (

y
g
)BJ(‘no′)@(id = $y)K3,0,2,cnt[0]

ρ2

where
y
g

= {cnt[0] := cnt[0] + 2}

= BJ(‘no′)@(id = this.partner)K3,0,2,4
ρ1

;BJ(‘no′)@(id = $y)K3,0,2,6
ρ2

SJW ′K3,1,1
ρ = . . . /* a similar translation of this instance */

SJW ′K3,2,1
ρ = . . . /* another similar translation */

Here, we omit the translation details for other parallel instances of the code W ′ and the generated
UMC code by the behavioural translation B.

The above examples illustrated the use of structural mapping in dealing with prefixing action, process
recursion, non-deterministic choice and parallel composition. Figure 4.13 shows entry and exit points
of the generated transitions. They are characterized by corresponding actions α, β and are connected
via a match on the exit point of one action with the entry point of other action. We subscript execution
points in Figure 4.13 (b) to denote the process of index 0 of a Woman component. The other two
instances have the similar values on their transitions. However, their executions would be independent
due to the difference in process indexes.

To conclude this section, we briefly explain the other translation parts in Figure 4.5. The function
A simply aggregates all attribute names of all components and output empty attribute vectors, one
for each attribute (for declaration purpose). The function V instead declares attribute vectors and
associated initial values, obtained from components instantiations. The code of a component k is
therefore able to access its local attribute values by using its index k. Finally, the program counter pc
is a vector of 1’s, one for each component. For a component k with the maximum process index pid,
pc[k] has the length of pid + 1.
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α1 α2

[1] 3 [3] 1

(a)

β

β2

β1

+

[10] 20

[20] 60

[20] 40

(b)

Figure 4.13: Transitions are glued by matching entry and exit points: (a) transitions of a man
component; (b) transitions of a woman component (for one process instance)

4.1.3 Implementation and Optimizations

We have developed a tool implementing the above translation rules in Erlang. The tool [1] contains
about 1000 lines of Erlang code, in addition to 200 lines of grammar rules for parsing AbC-like speci-
fications. It is worth mentioning that we have also added some optimizations to the basic translation
scheme. These include:

• Eliminating dead variables: Every process uses a vector bound[k][p] to store the received mes-
sages. This vector can be reset to its initial value, i.e., 0 in the “last” translated transition,
whenever the translation encounters a nil or a recursion.

• Handling empty send: Associated examples come with the AbC calculus [21, 22] often use the
construct [ã := Ẽ]()@(false) in order to model updating attributes ã. In this case, the translation
can create one transition (instead of two) that performs only updates. Likewise, in case of a
normal send in which the computed set of potential receivers (i.e., tgt) is empty, the main
transition of an output can set the program counter to be the exit point in order to skip the
second complementary transition.

• Scheduling parallel instances: the use of |n creates parallel processes executing the same code.
For example, P := Q |ˆ(n-1) P generates n copies of Q. This implies that it does not matter
which copy Qi performs the first action. Our implementation sets an extra guard on the first
action of these parallel processes, so that a specific instance Qj can move only if a “previous”
instance Qj−1 has already moved.

4.2 Case studies

We apply our verification methodology to algorithmic solutions of the two case studies, namely stable
marriage and graph coloring problems in order to check a selection of properties of interest. For each
solution, we provide a short informal description along with the resulting formal specifications in AbC.
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Similarly, we present a number of properties first informally and then as a precise logical property of
the state machines generated from the formal specifications. We show how to instrument these state
machines for property checking. As we go along, we also consider a few additional program-specific
properties that we used as a guidance to refine the formal specifications themselves.

4.2.1 Stable Marriage

The Stable Marriage Problem (SMP) [65] is a well studied problem that has applications in a variety of
real-world situations, such as assigning students to colleges or appointing graduating medical students
to their first hospital. SMP that has been initially formulated in terms of peers that make offer to
potential partners by taking into account a preference list is easily adaptable to a context in which
partners are selected according to their attributes. Indeed, due to its simple formulation and its
intrinsically concurrent nature, SMP has been already used to show the advantages of AbC as a very
high-level formalism to describe complex systems [46, 47]. In this section, we use it to show how our
framework can be used to reason about properties of attribute-based systems.

Our first algorithm implements the classical solution, where preferences are represented as complete
ordered lists of identifiers. Initiators and responders are programmed as individual processes that
interact using their local preference lists in a point-to-point fashion using their identity. The AbC
system for this algorithm has been given in the Example 4.1.

The other two programs adapt the classical solution to the context of attribute-based communication,
where partners are selected by considering predicates over the attributes of the potential partners.
The two new solutions differ for the way initiators choose their potential partners. They can start
by either making proposals to the responder they prefer most and then relax their expectations or
making proposals with the lowest requirements, to make sure to get a partner, and gradually increase
their expectations.

Top-down Strategy. In this case preferences are expressed as predicates over the attributes of
partners rather than as lists of people. For example, a person might be interested in finding a partner
from a specific country who speaks a specific language. A suitable communication predicate would
be country = this.favcountry ∧ language = this.favlanguage, where language and country are
two attributes of initiators and responders, and favcountry and favlanguage are used to express
preferences.

In the solution to this variant of SMP, the initiator starts by making offers to responders that satisfy
its highest requirements, i.e., have all wanted attributes. In case nobody satisfy these requirements,
the initiator retries after weakening the predicate by eliminating one of the preferred attributes and
waits for a reaction. The system then evolves as follows.
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component Man
attributes : id , m1, m2, pw1 , pw2 , partner , bl , send , c , counter , n , n2 , n3 , n4
observables : partner
behaviour :

let {
Q1 := . . .
Q2 := . . .
Q3 := . . .
Q4 := . . .
P := . . .
A := . . .
R := . . .

}
in i t Q1 | Q2 | Q3 | Q4 | P | R | A

end

Figure 4.14: A template for Man component

A single initiator that receives a yes considers himself engaged and sends out a confirm message; it
keeps proposing if a no is received. An engaged initiator that receives a yes notifies the interested
responder that meanwhile another partner has been found by sending a toolate message. An engaged
initiator dropped by its current partner with a bye message restarts immediately proposing.

An engaged responder reacts upon receiving a proposal by comparing the new initiator with the current
partner. If the new proposer is not better, it will receive a no message. Otherwise, the responder sends
a yes to notify the proposer her availability, and waits for a reply. Upon receiving a confirm, the
responder changes partner and sends bye to the ex partner; in case a toolate message is received the
responder continues without changes.

Essentially this is the matching algorithm presented in Section 2.2.1, Chapter 2. Here we will encode
it using our template.

AbC Specification. We model a scenario where each agent exposes two characteristics besides their
identifiers: id, m1, m2 for proposers and id, w1, w2 for responders. Furthermore, participants have their
own preferences on which are modeled by pw1, pw2 and pm1, pm2. The set of preferences for each
agent is also the set of predicates it has over partner characteristics. In particular, we will consider 4
predicates to express the matching intention. For example, the set of predicates that an initiator uses
to find partner is derived in the following order: Π1 = (pw1 = w1 and pw2 = w2), Π2 = (pw1 = w1),
Π3 = (pw2 = w2), Π4 = true. Likewise, each responder uses a similar mechanism to compare two any
proposers in order to select a better one.

In our template, the Man component has the form as shown in Figure 4.14. The set of attributes
include in addition: the current partner, initially set to 0 which is also made observable for later
analysis, bl is a set of responders that a proposer does not want to contact, initially the empty set.
send is used to control making proposals. c is the number of responders who are willing to answer the
‘propose’ message (for each preference), counter, n, n2, n3, n4 are helper variables used to calculate
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Q1 := <counter = 0 and c = | b l |>
( ‘ q1 ’ , t h i s . id , t h i s . pw1 , t h i s . pw2)@( id not in t h i s . b l ) .
[ counter := counter + | b l | ] Q11

Q11 := <counter < n>(x = ‘ i n t e r e s t ’ ) ( x ) .
[ c := c + 1 , counter := counter + 1 ]Q11
+

<counter < n>(x = ‘ un in t e r e s t ’ ) ( x ) .
[ counter := counter + 1 ]Q11

Q2 := <counter = n and c = | b l |>
( ‘ q2 ’ , t h i s . id , t h i s . pw1 , t h i s . pw2)@( id not in t h i s . b l ) .
[ counter := counter + | b l | ] Q22

Q22 := <counter < n2>(x = ‘ i n t e r e s t ’ ) ( x ) .
[ c := c + 1 , counter := counter + 1 ]Q22
+

<counter < n2>(x = ‘ un in t e r e s t ’ ) ( x ) .
[ counter := counter + 1 ]Q22

Q3 := <counter = n2 and c = | b l |>
( ‘ q3 ’ , t h i s . id , t h i s . pw1 , t h i s . pw2)@( id not in t h i s . b l ) .
[ counter := counter + | b l | ] Q33

Q33 := <counter < n3>(x = ‘ i n t e r e s t ’ ) ( x ) .
[ c := c + 1 , counter := counter + 1 ]Q33
+

<counter < n3>(x = ‘ un in t e r e s t ’ ) ( x ) .
[ counter := counter + 1 ]Q33

Q4 := <counter = n3 and c = | b l | >()@( f a l s e ) .
[ counter := counter + 1 ] n i l

Figure 4.15: Querying processes

c. Initially, counter = 0, n is the problem size (i.e., the total number of responders) while n2, n3, n4

stands for values n ∗ 2, n ∗ 3 and n ∗ 3 + 11, respectively.

The initial behaviour, as indicated in the code is a parallel composition of processes Q(s) for querying
a given matching intention, process P used to make proposals, and processes R, A used for handling
replies.

We first describe querying processes Q used for querying the number of interesting women (responders)
in the system. Their code share the same structure, as reported in Figure 4.15. A query message is
sent to all women (n) except those in bl, triggered by conditions on counter and c. Replies messages
are expected of either ‘interest’ or ‘uninterest’ for which counter is increased while c only counts
the number of ‘interest’ messages. The number of replies for a given query would be n− |bl|, thus
counter is also increased by the size of the set bl. For example, Q1 sends a message tagged with ‘q1’
denoting the current level of preferences that the proposer is asking for. Other messages elements are
proposer id (so that a responder can send reply), and his two preferences pw1, pw2 (so that a responder
can answer if its characteristics match this requirement (‘interest’) or not (‘uninterest’)).

1UMC does not allow arithmetic calculations inside transition guards
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P := <counter = n and c > | b l | and partner = 0 and send = 0>
( ‘ propose ’ , t h i s . id , t h i s .m1, t h i s .m2)@(w1 = th i s . pw1 and w2 = th i s . pw2 and id

not in t h i s . b l ) . [ send := 1 ]P
+
<counter = n2 and c > | b l | and partner = 0 and send = 0>
( ‘ propose ’ , t h i s . id , t h i s .m1, t h i s .m2)@(w1 = th i s . pw1 and id not in t h i s . b l ) . [ send

:= 1 ]P
+
<counter = n3 and c > | b l | and partner = 0 and send = 0>
( ‘ propose ’ , t h i s . id , t h i s .m1, t h i s .m2)@(w2 = th i s . pw2 and id not in t h i s . b l ) . [ send

:= 1 ]P
+
<counter = n4 and n > | b l | and partner = 0 and send = 0>
( ’ propose ’ , t h i s . id , t h i s .m1, t h i s .m2)@( id not in t h i s . b l ) . [ send := 1 ]P

Figure 4.16: Proposing process

A := (x = ‘ yes ’ ) (x , y ) .H |^(n - 1 ) A
H := <partner = 0>( ‘ confirm ’ )@( id = $y ) . [ partner := $y ]A

+
<partner > 0>( ‘ too l a t e ’ )@( id = $y ) .A

R := (x = ‘ bye ’ ) (x , y ) . [ partner := 0 , b l := bl ++ [ $y ] , send := 0 ]R
+
(x = ‘no ’ ) (x , y ) . [ b l := bl ++ [ $y ] , send := 0 ]R

Figure 4.17: Handling replies processes

After querying for the requirement ‘q1’, c is the number of interesting responders which will be used
by the proposing process P (presented below). A new query messages with a lower level, e.g, ‘q2’ will
be sent if c = |bl|, which means the proposer could not find any partner at the level ‘q1’.

Process Q4 deserves a little more explanation. It handles the last requirement in which all the specific
requirements over partners attributes have been considered, yet the proposer is still single (i.e., the
condition counter = n3 and c = |bl| holds). In this case, there is no query message is sent out. The
attribute counter is increased by 1, making its value into n4, so that P can exploit this fact for making
proposals with no requirement (i.e., a true predicate).

Process P (Figure 4.16), guarded by two conditions partner = 0 and send = 0, becomes active when
a single proposer has not yet sent a proposal. After that, it sets the flag send and continues as P. To
model the adaptive behaviour of proposers needed to relax their preferences, we need to enrich P with
the condition c > |bl| where bl is a set of responders that the proposer does not want to contact. This
set is updated when a proposer receives a ‘no’ or a ‘bye’ message. This allows them to know when to
relax their requirements.

A proposer may receive multiple replies and takes care of them according to the message type. In
particular, process A handles ‘yes’ messages while R handles ‘bye’ and ‘no’ messages, as shown in
Figure 4.17. A is composed by n parallel instances of (x = ‘yes’)(x, y).H. Process R, due to containing
one single action and its recursive behaviour, needs no parallel instances. On receiving a ′yes’ message,
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component Woman
attributes : id , w1 , w2 , pm1, pm2, partner , cm1 , cm2 , bl , lock , n
observables : partner
behaviour :

let {
P1 := (x = ‘ q1 ’ ) (x , y , z , t ) .H1 |^(n - 1 ) P1
P2 := (x = ‘ q2 ’ ) (x , y , z , t ) .H2 |^(n - 1 ) P2
P3 := (x = ‘ q3 ’ ) (x , y , z , t ) .H3 |^(n - 1 ) P3
W :=
}

in i t P1 | P2 | P3 | W
end

Figure 4.18: A template for the component Woman

H1 := <$z = w1 and $t = w2>( ‘ i n t e r e s t ’ )@( id = $y ) . n i l
+

<not ( $z = w1 and $t = w2) >( ‘ un in t e r e s t ’ )@( id = $y ) . n i l

H2 := <$z = w1>( ‘ i n t e r e s t ’ )@( id = $y ) . n i l
+

<not ( $z = w1) >(‘ un in t e r e s t ’ )@( id = $y ) . n i l

H3 := <$t = w2>( ‘ i n t e r e s t ’ )@( id = $y ) . n i l
+

<not ( $t = w2) >(‘ un in t e r e s t ’ )@( id = $y ) . n i l

Figure 4.19: Responding to queries

a single proposer sends back a ‘confirm’ and updates the new partner, otherwise he sends a ‘toolate’
message. On receiving a ‘bye’ or a ′no’, a proposer adds the id of the sender to bl because there is
no way he could get this sender as partner. The attribute send is then reset to possibly trigger the
sending of a ‘propose’ message in P. Furthermore, in case of receiving a ‘bye’, the proposer becomes
single and thus the attribute partner is reset to 0.

The definition of a component Woman, representing for responders has the general form, presented in
Figure 4.18. The set of attributes for a responder includes its id, characteristics w1, w2, preferences
over partner characteristics pm1, pm2; in addition to the current partner and characteristics cm1, cm2.
Attribute bl is a set storing the identities of proposers from which a responder does not want to consider
‘propose’ messages. Attribute lock is used to sequentialize the processing of parallel ‘propose’
messages. Initially, bl is an empty set, partner = 0, lock = 0, cm1 = cm2 = −1, n is the problem
size, i.e, the number of proposers in the system.

The initial behaviour of a woman, including handling querying messages in parallel with answering
proposal messages. First of all, it is necessary to have three processes P(s) to handle three different
types of querying messages that may come from proposers. As shown in Figure 4.18, these processes
input messages whose the first elements are ‘q1’, ‘q2’, ‘q3’, respectively. Each of them then proceeds
with a corresponding behaviour Hs whose definitions are elaborated in Figure 4.19.
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W := (x = ‘ propose ’ and id not in t h i s . b l ) (x , y , z , t ) .
[ b l := bl ++ [ $y ] ] (A + R) |^(n - 1 ) W

A := <(partner = 0 or
( $z = pm1 and cm1 /= pm1) or ( $z = cm1 and $t = pm2 and cm2 /= pm2) )
and lock = 0>

( ’ yes ’ , t h i s . id )@( id = $y ) . [ l o ck := 1 ]A1
A1 := (x = ‘ confirm ’ ) ( x ) . ( ‘ bye ’ , t h i s . id )@( id = th i s . partner ) .

[ partner := $y , cm1 := $z , cm2 := $t , l o ck := 0 ]W
+
(x = ‘ too l a t e ’ ) ( x ) . [ l o ck := 0 , b l := bl - - [ $y ] ]W

R := <not ( partner = 0 or
( $z = pm1 and cm1 /= pm1) or ( $z = cm1 and $t = pm2 and cm2 /= pm2) )>
( ‘ no ’ , t h i s . id )@( id = $y ) .W

Figure 4.20: The main behaviour of a woman component

Basically, messages to be answered by processes H(s) may be of ‘interest’ or ‘uninterest’, depending
on the query type and on the satisfaction of their awareness predicates.

The main behaviour of a responder is specified by W (Figure 4.20). A responder is willing to listen to
‘propose’ messages from people who are not in the set bl, as indicated in the receiving predicate of
W. On receving such a message, the sender id bound to variable y is added to the set bl. The parallel
composition with the same process |ˆ(n − 1) W guarantees that other ‘propose’ messages would not
be lost. Then, for each message, a responder can proceed either like A (accept) or R (reject).

In the process A, the awareness predicate encodes the condition that the new comer is better than the
current partner by comparing their attributes with respect to the responder’s preferences. If this is
the case and if there is no other pending processing, i.e., lock = 0, the responder replies with a ‘yes’,
setting the lock to 1 to wait for a decision from the same proposer.

The continuation A1 encodes this behaviour. If the proposer decides to match by sending a ‘confirm’,
the responder rejects the current partner, updates the proposer as the new partner (together with his
characteristic) and gets rid of the critical region (i.e., via setting lock = 0). In the other case where
the proposer replies a ‘toolate’ message, the responder returns the lock and remove the proposer
from bl to allow him to propose again later.

In the process R, the new comer is not better than the current partner and thus is sent a ‘no’ message.
Both A and R recursively call W after their processing so to reuse the behaviour of W2.

Bottom-up Stable Marriage. We have also experimented with another approach to attribute-
based stable marriage, where men start proposing to the women they like less, and try to incrementally
improve their level of satisfaction by continuously proposing themselves even after finding a partner
in the attempt to find someone they like more then their current partner. In this case both men and
women can be dropped by their current partner if a more desirable option shows up.

2One alternative is to terminate them with a nil process. In this case, it would be necessary to specify the number of
parallel instances of W as n*(n-1) - the maximum number of ‘propose’ messages can arrive in a system of n proposers.
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This strategy assumes that lower expectations of men include the higher ones. This is indeed the case
of our relaxation scheme, in which a strong preference Π{a1,a2} requires matching with exactly two
attributes {a1, a2}, its lower versions can be Π{a2}, Π{a2},Πtrue. This assumption leads to a “bottom
up” matching idea in that a man starts issuing a proposal with lower expectations and then increase
the preference only when he got a partner. Compared to the previous solutions, in this solution the
men can exchange their current partners for better ones, and women should handle the case of being
actively dropped. The protocol is summarized as follows: Initiator

• When a man with no partner receives a yes he sends a confirm to the partner and then issues
a new proposal with higher expectation

• When a man with a partner receives a yes from somebody he prefers to his current partner, he
sends a bye to the current partner, and a confirm to the new partner. Otherwise he sends back
a toolate message.

• When a man receives a bye he resets his partnership status and restarts issuing a proposal
starting with the lowest expectations

Responder

• When a woman with no partner receives proposal she replies yes.

• When a woman with a partner receives a proposal from somebody she prefers to her current
partner, she sends yes to the new potential partner.

• When a woman with no partner receives a confirm she updates her partnership status.

• When a woman with a partner receives a confirm from a partner not better than the current
one she sends a bye to the new proposer.

• When a woman receives a toolate she continues without changes.

• When a woman receives a bye she resets her partnership status and continue.

AbC Specification. We have implemented this protocol in AbC using a slightly different approach. We
used an extra process in both components Man and Woman that plays the role of a message queue
manager. This process appends every incoming messages to the tail of queue, while another process
implementing the main behaviour retrieves messages from the queue and processes them sequentially.
The resulting specification mainly uses choice processes for cases analysis, as can be read from the
above matching protocol. Here we omit the presentation of this specification. The interested reader
can refer to the appendix section B.1 for full specification of this approach. In any case, all the artifacts
relevant to this chapter are also available at [1].
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4.2.2 Graph coloring

Given an undirected graph, we would like to assign colors to vertices of the graph such that vertices
that share an edge do not receive the same color. In AbC terms, a graph is modeled naturally by a
set of AbC components, one for each vertex, with attributes id representing a unique vertex id, and
nei representing a set of neighbors ids that the vertex connects to.

A distributed algorithm encapsulated in a AbC specification for the graph coloring problem was
proposed in [24]. Vertices communicate with their neighbors to achieve a proper coloring. Each vertex
executes a coloring procedure, which takes place in rounds, independently from each other. A sending
predicate has the form of this.id ∈ nei, used by a vertex id to send messages to other vertices whose
attributes nei containing id. There are two types of messages exchanged between neighboring vertices.
A try message of the form (‘try’, c, r) is sent to inform others that the sending vertex wants to attain
color c at round r. A done message of the form (‘done’, c, r + 1) is sent to inform others that the
color c has been chosen at the end of round r. Vertices may propose the same color at the same round.
This conflict is resolved by using the unique identifiers of vertices. Only the vertex with greatest id
among its neighbors has the right to attain its proposed color.

To select a color for a ‘try’ message, each vertex keeps a copy of the set used colors, initially an empty
set and gradually updated via exchanging ‘done’ messages. A color is selected as the first available
color which has not been used by any neighbors. In other words, mini{i /∈ used} returns the smallest
positive number that does not appear in the set used.

On the other hand, by collecting both ‘try’ and ‘done’ messages, a vertex can keep track of the coloring
status of its neighbors. The vertex uses these information to decide if it can issue a ‘done’ message,
or it would need to try a new color, i.e., starting a new round. A new round is started at a vertex, if
it receives a message associated with a greater round than its current round. More details on vertex
operations are elaborated in what follows.

AbC Specification. Chapter 2 discussed two slightly different specifications. One is originally presented
in [24]. The other version contains a modified vertex behaviour. Here we refer them as Col Fix
(modified) and Col (original), and present their specifications in our template in sequence.

There is one type of component Vertex for all vertices of an input graph. Private attributes involved
to local computations of vertices include: counter - the number of neighbors who are trying a color at
a given round, done - the number of neighbors who have done their coloring, used - the set of colors
which have already used, constraints - the set of colors proposed by neighbors with greater ids. In
addition, color is the current proposed color, assigned is a boolean indicating the completion of the
vertex in coloring procedure. send is used to control when to make a color proposal.

The initial values for private attributes are the following. color = undefined, assigned = ff,
send = tt, round = 0, used = constraints = [], done = counter = 0.
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Col Fix. The vertex behaviour is a combination of 4 independent processes F, T, D, A. Process F sends try
messages when able to do so (send = tt) and if it have not reached to a final decision (assigned = ff).
The output action sends a message of three elements, in which the second one - ‘min_color’ is simply
a place holder. Actually, this place holder stands for the function mini{i /∈ this.used} that selects the
first available color in the set used. Currently expressions of this kind can not be expressed directly
in our template. To get around this problem, we put such a place holder for it, and later instrument
the output model to get the right semantics of the function (see the Appendix section C.1).

component Vertex
attributes : id , nei , co lo r , counter , done , c on s t r a i n t s , used , send ,

round , a s s i gned
observables : co lo r , a s s i gned
behaviour :
let {

F := <send = t t and as s i gned = f f >
( ‘ try ’ , ‘ min_color ’ , t h i s . round )@( t h i s . id in ne i ) .
[ send := f f , c o l o r := ‘ min_color ’ ] F

T := (x = ‘ try ’ and t h i s . id > id and t h i s . round = z ) (x , y , z ) .
[ counter := counter + 1 ]T

+
(x = ‘ try ’ and t h i s . id < id and t h i s . round = z ) (x , y , z ) .
[ counter := counter + 1 , c on s t r a i n t s := c on s t r a i n t s ++ [ $y ] ]T

+
(x = ‘ try ’ and t h i s . id > id and t h i s . round < z ) (x , y , z ) .
[ round := $z , send := tt , counter := 1 , c on s t r a i n t s := [ ] ] T

+
(x = ‘ try ’ and t h i s . id < id and t h i s . round < z ) (x , y , z ) .
[ round := $z , send := tt , counter := 1 , c on s t r a i n t s := [ $y ] ]T

D := (x = ‘ done ’ and t h i s . round >= z ) (x , y , z ) .
[ done := done + 1 , used := used ++ [ $y ] ]D
+
(x = ‘ done ’ and t h i s . round < z ) (x , y , z ) .
[ round := $z , done := done + 1 , send := tt ,
counter := 0 , used := used ++ [ $y ] , c on s t r a i n t s := [ ] ]D

A := <(| ne i | = counter + done ) and co l o r /= ‘ undef ined ’
and ( c o l o r not in c on s t r a i n t s ++ used )>

( ‘ done ’ , t h i s . co lo r , t h i s . round + 1)@( t h i s . id in ne i ) .
[ a s s i gned := t t ] n i l

}
in i t F | T | D | A

end

Figure 4.21: The Vertex component

Process T collects ‘try’ messages according to the message contents. First, messages that come from
neighbors who are executing the same round as this.round cause the attribute counter increased
by 1. Also, the try colors (bound to $y) of neighbors with id greater than this.id are stored in the
set constraints to avoid conflict. Second, messages that come from neighbors who are executing
a greater round than this.round causes the triggering of a new round. For this purpose, relevant
variables are updated, i.e., send = tt, round := $z, counter := 1. The set constraints is instead
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updated with a value depending on the sender’s id, which is either an empty set (if id < this.id) or
a singleton set of the try color (if id > this.id).

Process D collects ‘done’ messages according to the message contents, in which attribute done is
increased by 1 for each incoming message and used accumulated the used color ($y). Similarly to
process T, messages associated with a greater round number z >= this.round trigger the startup of
a new round. For this, attributes round, send, counter, constraints are updated accordingly.

Process A waits for reporting the completion of coloring, so to set the attribute assigned to true
and terminates. A vertex can take this.color as it final color if it has all neighbors information
|nei| = counter + done and if its current color is a valid one, i.e., color/ = ‘undefined’ and there is
no conflict color notin constraints + + used.

Col. Next, we provide the specification for the original AbC version [24] of graph coloring in our
template. We would like to analyse of this specification in order to uncover the issues mentioned in
Chapter 2.

Figure 4.22 presents the definition of the vertex component, called Vertex1. The difference between
this specification with the one reported in Figure 4.21 is at the definitions of process F1, for making
color proposals. Other details such as the set of attributes and their initial values, the definitions of
T, D, A are the same.

component Vertex1
attributes : id , nei , co lo r , counter , done , c on s t r a i n t s , used , send ,

round , a s s i gned
observables : co lo r , a s s i gned
behaviour :
let {

F1 := <send = t t and as s i gned = f f >()@( f a l s e ) . [ c o l o r := ‘ min_color ’ ]
( ‘ try ’ , t h i s . co lo r , t h i s . round )@( t h i s . id in ne i ) . [ send := 1 ]F

T := . . . \*same as be f o r e *\

D := . . . \*same as be f o r e *\

A := . . . \*same as be f o r e *\
}

in i t F1 | T | D | A
end

Figure 4.22: The Vertex1 Component

We can notice that F1 has two separate actions: the first one exploits an empty send to select a color;
the second one sends a try message associated with the updated color and sets the attribute send to
1. On the contrary, process F (Figure 4.21) combined these two actions into one single action.
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4.3 Formal analysis and verification

We have used the developed tool to translate the AbC specifications for case studies into UMC models.
The number of generated UMC code lines varies depending on specification and on the input instances.
For example, speaking only for a component type in case of classical stable marriage, the number of
UMC lines is constant for a component Man, while it increases proportionally with the size of the
problem for a component Woman due to the use of operator |n. On the other hand, the translated code
lines for graph coloring, being a constant since a component Vertex contains a constant number of
processes (4), regardless of the graph order.

The input UMC models used in the following analysis are actually composed by two objects: the
generated SYS object, triggered by a start(< inputdata > event, modelling the behaviour of the
AbC system with the given inputdata, and an object Driver which generates all the possible input
data and activates the SYS object. For checking the generic (i.e for all inputs) validity of a formula φ
we therefore evaluate the formula A[{not start} W {start} φ], which says that φ holds in the initial
state of any of the possible scenarios. The number of generated system states reported in the rest of
this section refers to the cumulative data over the whole input domain. For conducting experiments,
we use a machine with an Intel Core i5 2.6 GHz, 8GB RAM, running OS X and UMC v4.4.

4.3.1 Stable marriage

UMC models and annotations

In order to verify the following properties of interests, we have annotated the generated UMC models
with abstraction rules to make observable labels on states and actions.

Abst rac t i ons {
- - Auto generated
Action sending ( $1 , $2 ) -> send ( $1 , $2 )
Action r e c e i v ed ( $1 , $2 ) -> r e c e i v ed ( $1 , $2 )
State SYS . partner [0 ]= $2 -> has_partner (C1 , $2 )
State SYS . partner [1 ]= $2 -> has_partner (C2 , $2 )
. . .
- - Manual instruments
Action man_level ( $1 , $2 , $3 ) -> man_level ( $1 , $2 , $3 )
Action woman_level ( $1 , $2 , $3 ) -> woman_level ( $1 , $2 , $3 )

}

Here rules starting with States expose labels has_partner($1, $2) in all system states, where $1 is
the component name and $2 is the value of its attribute partner. We assume that the identifiers of
initiators and responders are in the ranges [1 . . . n] and [n + 1 . . . 2n] respectively, with n being the
problem size. Rules starts with Actions instead expose send and receive labels on all transitions
denoting attribute send and receive actions.
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We have additionally instrumented the models with more involved annotations. In particular, we
store the current level of satisfaction of people, computed when a component updates its partner. In
classical SMP, the level of satisfaction of initiators and responders is determined by the position of the
current partner in the preference list. In the attribute-based variant, this number is calculated based
on the similarity between one’s own preferences and the characteristics of partners. The procedure
issues a signal man_level($1, $2, $3) (and similarly woman_level($∗)) where $1 is the component
name, $2 is a previous value of satisfaction level and $3 is the value to be updated.

Properties Verification

We now consider the following properties of interest that we shall verify for all the algorithmic solutions.
These include:

F1 (convergence) The system converges to final states:
AF FINAL 3

F2a (completeness of matching) Everybody has a partner:
AF (FINAL and not has_partner(*,0))

F2b (uniqueness of matching) There exists only one final matching:
AG (((EF(FINAL and has_partner(C1,4))) implies AF (FINAL and has_partner(C1,4)))

and ((EF(FINAL and has_partner(C1,5))) implies AF(FINAL and has_partner(C1,5)))

and ((EF(FINAL and has_partner(C1,6))) implies AF(FINAL and has_partner(C1,6))))

F2c (symmetry of matching) The matchings are symmetric:
AG (FINAL implies ((has_partner(C1,4) implies has_partner(C4,1))

and (has_partner(C1,5) implies has_partner(C5,1))

and (has_partner(C1,6) implies has_partner(C6,1)))

F3 (satisf. of responders) The level of satisfaction of responders always increases:
AG[man_level($1,$2,$3)] (%2 ≥ %3)

F4 (satisf. of proposers) The level of satisfaction of proposers always increases:
AG[woman_level($1,$2,$3)] (%2 ≥ %3)

We performed the analysis for the three proposed solutions on the whole input space. For the classical
case, we considered the systems of 6 agents (i.e., three proposers and three responders), making up of
12 parallel processes. For the attribute-based variants we considered systems of 4 agents, making up
of 32 parallel processes.

3FINAL is a shortcut for “not EX {true} true”
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In the classical solution, each agent is characterised by its preference list and thus the input space
has 66 = 46656 configurations. In the attribute-based variant of stable marriage, each agent has four
attributes (two for expressing their preferences about partners, and two for modelling their features),
each having two possible values. The input space therefore has 164 = 65536 configurations.

The results of our verification are reported in Table 4.1. A [X] means that the formula is satisfied by
all possible inputs, while a [×] means that the formula does not hold for at least one input.

property F1 F2a F2b F2c F3 F4
Classical X X X X X ×
Top-down X X × X X ×
Bottom-up × × × X × ×

Table 4.1: Verification results of three algorithmic solutions

By looking at these results we can attempt some considerations:

Classical. Formulae F1, F2a, F2b, F2c do hold, confirming that the classical algorithm always returns
a unique and complete matching. The fact that formula F3 holds while F4 does not hold further
reflects that a responder keeps trading up its partners for better ones, while proposers can be dropped
at any time.

Top-down. Since formula F2a does hold and F2b does not, we can conclude that the top-down
strategy will in general return multiple but complete matchings. This is not surprising, since attribute-
based stable marriage is a general case of stable marriage with ties and incomplete list (SMTI) [47],
and it is known that one instance of SMTI may have multiple matchings [96]. When verifying F3 and
F4, we obtain the same results of the classical case.

Bottom-up. F1 does not hold indicating that this approach is not guaranteed to converge. This
happens in any configuration containing a cycle in the preferences which makes partners chasing each
other. Formula F2b does not hold because there might be two proposers competing for one responder
w.r.t. their lowest requirements, thus one of the two remains single. We also verified that both formulas
F3, and F4 do not hold. This reflects that the satisfaction levels of components may decrease because
partners from both sides may drop them for better ones at any moment.

In addition to previous properties, we also considered a few protocol-related properties to increase to
double check the correctness of the specifications derived from informal requirements. In particular,
we verified the following property of the classical solution:
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F5. After a proposer receives a no, it will eventually send a new proposal4:
AG ([received($1,no)] AF {send(%1,propose)} true)

As expected, UMC answered true when verifying F5. This guarantees that the proposer will send a
proposal again, thus confirming that our specification in that regard meets the informal requirements.

As we have specified a communication protocol for matching entities, the following properties of the
top-down solution are important to determine whether the implementation conforms to the require-
ments:

F6. If a proposer receives a bye, it will always eventually send a new proposal:
AG([received($1, bye)] AF{send(%1, propose)} true)

F7. If a responder sends yes it will eventually receive a toolate or confirm:
AG[send($1, yes)] AF{received(%1, confirm) or received(%1, toolate)}

F8. After sending a proposal an initiator does not send further proposals until it receives a no:
AG[send($1, propose)] A[{not send(%1, propose)}W{received(%1, no)}]

By verifying the above properties, we have found out that F7 holds, while F6 and F8 do not. Formula F8

can be false, because, after sending a proposal, an initiator may receive a yes, and then a bye message
which forces it to send a new proposal. F6 does not always hold because a initiator after receiving a
bye message from his partner, may immediately receive a yes message from another responder. In this
case, it can confirm the new responder without the needs of sending new proposals.

Notice that the informal description of the top-down strategy is not quite rigorous. We have two
statements somewhat in contrast, one statement saying that after a yes an initiator without a partner
should send a confirm, and another statement saying that after a bye an initiator should send a
new proposal. When a bye and a confirm arrive in sequence, the informal description is not clear in
describing the intended behaviour. The formalisation of this requirement in terms of a logical formula,
its verification w.r.t. the formal specification of the system, and the observation of the generated
counter-example has allowed us to detect and understand this kind of ambiguities.

State Space. We comment on the state spaces of different solutions. The top-down solution requires
the largest number of states with about 49 millions, compared with 0.5 and 2.7 millions of states of
the classical and of the bottom-up solution, respectively.

The complexity of the top-down specification is the main reason for its state explosion, which stems
from the use of many state variables (attributes) and parallel processes in components. Specifically,
proposers and responders consist of parallel processes performing more actions than their classical
counterparts, mostly for exchanging extra acknowledgment messages: in a querying phase, a proposer

4$id and %id are used to match the identities of the sending and receiving components.
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would need to collect answers from all responders; in a proposing phase, ‘confirm’ messages are needed
for selecting one partner out of many. This greatly increases the interleaving of actions of processes
and thus the whole state space.

4.3.2 Graph Coloring

UMC models and annotations

We have annotated the generated UMC models for graph coloring specifications with the following
abstraction rules.

Abst rac t i ons {
- - Auto generated
Action sending ( $1 , $2 ) -> send ( $1 , $2 )
Action r e c e i v ed ( $1 , $2 ) -> r e c e i v ed ( $1 , $2 )
State SYS . c o l o r [0 ]= $2 -> has_color (C1 , $2 )
State SYS . a s s i gned [0 ]= $2 -> has_assigned (C1 , $2 )
. . .
- - Manual instruments
- - Soundness
State SYS . matrix [ 0 ] [ 1 ] > 0 and SYS . c o l o r [ 0 ] = SYS . c o l o r [ 1 ] -> not_sound
State SYS . matrix [ 0 ] [ 2 ] > 0 and SYS . c o l o r [ 0 ] = SYS . c o l o r [ 2 ] -> not_sound
. . .
- - \ de l t a + 1 algor i thm
State SYS . maxt < SYS . c o l o r [ 0 ] -> bad_alg
State SYS . maxt < SYS . c o l o r [ 1 ] -> bad_alg
. . .

}

The rules enable some aspects of the underlying L2TS model that we want to observe. First it is the
attributes color and assigned of each vertex. Generally, a component with a name C exposes a label
on the system states as has_attrname(C, attrval) where attrname is some observable attribute,
declared in the specification and attrval is the corresponding value. Second, we label any state as
not_sound if the color of two any adjacent vertices is the same. This is achieved by relying on a
variable storing the adjacency matrix of the graph under verification. Finally, a label bad_alg is
made exposed to states if the maximum degree + 1 (stored in a variable maxt) is smaller than the
color value of any vertex. Note that color numbers starts from 1.

Proprerties verification

In this case study, we are interested in checking the following properties:

G1 (Termination) The system converges to final states:
AF FINAL
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G2 (completeness of coloring) Every vertex has a valid color :
AF (FINAL and not has_color(*,undefined))

G3 (soundness of coloring) Adjacent vertices do not share the same color:
AF (FINAL and not not_sound)

G4 (not bad algorithm) The algorithm is (∆ + 1) - coloring:
AF (FINAL and not bad_alg)

G1 states that the algorithm terminates while G2 say every vertex gets assigned with a valid color.
The property G3 assesses the soundness of the algorithm by saying that no adjacent vertices share the
same color. Finally G4 concerns with the total number colors in use, which asserts that it should not
exceed the maximum degree of the graph plus 1.

We have verified these properties for both specification Col and Col Fix considering the input space
of graphs of sizes 2-5 . In order to generate all possible graphs for a given size n, we first used a tool
called nauty [100] that can generate all non-isomorphic graphs in the form of adjacency matrices. For
example, a graph of 5 vertices has 34 possible adjacency matrices. After that, all graphs of size n is
generated by permuting the set of unique ids in the range (1 . . . n), assigning them to vertices, one
permutation for each adjacency matrix.

The verification results are presented in Figure 4.2. UMC model checker verified that that all the
above properties do hold for our Col Fix specification for all possible graphs of the considered sizes.
The number of states generated when verifying the property AF FINAL is also included, giving an
idea of the state space for each graph size.

property G1 G2 G3 G4
Col X × n/a n/a

Col Fix X X X X
graph size 2 3 4 5
state space 85 1469 42980 2549301

Table 4.2: Verification results of graph coloring scenario

When verifying the specification Col, property G1 holds showing that Col terminated. However, as
expected the property G2 do not hold, meaning that vertices eventually do not have assigned as true.
To see why this is case, we used UMC to generate counter examples for graph size of 2, as reported in
Figure 4.23. The execution path reveled that G2 is false in a connected graph of two vertices. After
getting assigned a color (vertex id 2), a vertex still sends a try message afterward, which would affect
the counter value of neighbors (vertex id 1). This makes the termination condition of those neighbors,
i.e., |nei| = done + counter never happened. This is because in the Col specification, process F1 has
separated the action of color selection from the action of sending a try message. Thus there are chances
for these two actions to be interleaved with process A1.
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AF (FINAL and not has_assigned (* , f a l s e ) ) i s FOUND_FALSE in State C1
This happens because :
. . .
C13 --> C68 {} /* ne i : = [ [ 2 ] , [ 1 ] ] ; matrix : = [ [ - 1 , 1 ] , [ 1 , - 1 ] ] ; */
C68 --> C69 {} /* c o l o r [ 0 ] : = 1 ; */
C69 --> C70 { send (C1 , [ tryc , 1 , 0 ] ) } /* send [ 0 ] := f a l s e ; */
C70 --> C71 { r e c e i v e (C2 , [ tryc , 1 , 0 ] ) } /* counter [ 1 ] := 1 ; */
C71 --> C228 {} /* c o l o r [ 1 ] : = 1 ; */
C228 --> C238 { send (C2 , [ donec , 1 , 1 ] ) } /* as s i gned [ 1 ] := true ; */
C238 --> C239 { r e c e i v e (C1 , [ donec , 1 , 1 ] ) } /* round [ 0 ] := 1 ; done [ 0 ] := 1 ;

send [ 0 ] := true ; counter [ 0 ] := 0 ; used [ 0 ] : = [ 1 ] ; c o n s t r a i n t s [ 0 ] : = [ ] ; */
C239 --> C240 {} /* c o l o r [ 0 ] : = 2 ; */
C240 --> C241 { send (C1 , [ tryc , 2 , 1 ] ) } /* send [ 0 ] := f a l s e ; */
C241 --> C242 { r e c e i v e (C2 , [ tryc , 2 , 1 ] ) } /* send [ 1 ] := true ; counter [ 1 ] := 1 ;

c on s t r a i n t s [ 1 ] : = [ ] ; */
C242 --> C245 { send (C2 , [ tryc , 1 , 1 ] ) } /* send [ 1 ] := f a l s e ; */
C245 --> C246 { r e c e i v e (C1 , [ tryc , 1 , 1 ] ) } /* counter [ 0 ] := 1 ; c on s t r a i n t s [ 0 ] : = [ 1 ] ; */

(C246 i s f i n a l )

Figure 4.23: Counter example for property G2

4.4 Concluding remarks

We have presented a model-checking approach to the verification of attribute-based communication
systems. Starting from informal requirements, we have devised formal specifications in AbC . We have
then shown how to systematically translate these into verifiable models accepted by the UMC model
checker. The main idea has been published in [45]. There, we considered the verification for a fragment
of another version of the AbC calculus [21]. Here, we have refined our work to consider the most recent
version of AbC (Chapter 2).

In a previous work [46], we have exploited the strong relation between AbC and UMC specification
language for modelling the stable marriage example with attributes. However the modelling was based
on a manual translation only where a common center broker class is employed for keeping attribute
environments of all components. Instead in [45] we provided a systematic way to handle all AbC
constructs, together with tool support. In this chapter, the translation is presented in greater detail
and a new case study is added. We have also refined the specifications for the stable marriage case
study. The verification has been also re conducted. In the previous work [45], the top down strategy
for the stable marriage problem was specified with the help of a global awareness operator whose
original ideas was borrowed from Linda coordination language. Using global awareness, men does not
need to send querying messages to learn about the availability of interested partners; he can directly
get to know them. However, for a uniform modeling approach and reasoning over case studies used
through out this thesis, we omitted the use of global awareness.

The translation proposed in this chapter, although has been implemented thanks to its implementable
semantics, currently still lacks a correctness treatment. We consider this as a shortcoming of our ap-
proach and will work on this issue in near future. In particular, we anticipate that a formal relationship
between the generated UML state machine and an AbC system can be established by focusing on the
following steps.
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1. prove syntactically that there exists one parallel state machine for one AbC specification by
applying our translation rules.

2. formalizing the operational semantics of parallel state machine in UMC with focuses on event
queue, enabling conditions on transitions and the behaviour of concurrent regions.

3. show how a total order broadcast among concurrent regions is achieved from the uses of the
global lock receiving and allowsend events.

4. show how AbC interleaving semantics among concurrent regions is achieved from the use of
program counter pc
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AErlang - Extending Erlang with
attribute-based communication

In this chapter we present an approach to programming with attribute-based communication. Differ-
ently from Chapter 3, we are not concerned much with mimicking the AbC syntax or semantics, but
rather taking the notion of attribute-based communication in a general sense.

The communication model of AbC is based on message passing in which sending is non-blocking while
receiving is not. Semantically speaking, in AbC message delivery is instantaneous in which input
actions wait to synchronize on the available messages sent by asynchronous output actions. However,
when considering at the level of implementation, having different components receiving a message at
the same time is not possible and mechanisms are needed to guarantee causality of actions. In the
previous chapter, we have seen how to relax this “instantaneous” assumption by considering message
delivery occurring in synchronous communication rounds. In this way, a component can not send a
message until a previous message has been delivered to all other components. As a result, the system
evolves in a lock-step fashion in that only one sending component is allowed to send the message at
each step.

We have implemented this system semantics by enforcing a total order on message delivery. Although
the implementation exposes some degree of asynchrony, imposing a total order is too strict and may
be inefficient. On the other hand, many interaction protocols can work without needing a total order.
For example, in two-phase commit protocol, a coordinator first sends out a vote request to its managed
sites and then waits for their votes in order to decide committing a transaction. Clearly, the votes can
arrive at the coordinator in any order without affecting the scenario. This is because the coordinator
only cares about the number of votes, not their arrival order. Similarly, in our example of graph
colouring presented before, each vertex waits to collect messages sent from its neighbours without
requiring any specific ordering of messages.
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For this reason, we think that while the AbC instantaneous semantics gives rise to nice algebraic
properties that are of theoretical interest, a reasonable implementation should be asynchronous to
be useful in practice. In this chapter we will take this standpoint to enrich Erlang - a concurrency
oriented programming language [29] with attribute based communication.

In fact, any general-purpose programming language can make attribute-based communication possible
by providing the following key ingredients:

• Attribute Environment: to provide a collection of attributes whose values represent the status
of a component and influence its run-time behaviour.

• Attribute-based operations: to establish the communication links between different components
according to specific predicates over their attributes. In particular, there are:

– send(ṽ)@π that is used to send a sequence of values ṽ to the components whose attributes
satisfy predicate π;

– receive(x̃)@π that binds to the variables in the tuple x̃ the message received from any
component whose attributes satisfy the receiving predicate π.

• Attribute update operation: to change the values of the attributes according to contextual con-
ditions and to adapt the component’s behaviour.

We have chosen Erlang for its light-weight concurrency model, and for its set of standard libraries
which have been battle-tested through years of its use in large-scale systems, e.g., [57, 91, 104]. Pro-
cesses in Erlang are widely regarded as actors in the actor model [14] although they were developed
independently1. Erlang processes are inherently concurrent entities which share no states and com-
municate to one another by asynchronous point-to-point message passing. Processes encapsulate local
states, have unique names while messaging is realized by copying. Incoming messages are buffered
in processes mailboxes and processed one at time, thus in principles prevents problems such as race
conditions [103], atomicity violations [94]. In response to a message received, a process can send a
finite number of messages, create new processes and possibly change its state. This actor-based model
represents a different school of thoughts in programming distributed systems, in which the concurrency
model is unified with the underlying programming model, encouraging thinking of the application do-
main as a set of autonomous processes. It is argued that actors makes distributed programming easier
than the dominant thread-based model present in other languages. In practice, the model has gained
traction in the last decade with the arrival of many languages and frameworks, e.g.,[4, 6, 7, 10, 87].

Our proposed prototype, namely AErlang lifts Erlang’s send and receive communication primitives to
attribute-based reasoning. In Erlang, for exchanging messages, the send primitive requires an explicit

1Joe Armstrong never mentioned actors in [29], but in [32] he writes that the Erlang views of the world are “broadly
similar” to that of actors.
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destination address, such as a registered name or a process identifier. In contrast, AErlang processes
are not aware of the presence and identity of each other, and communicate by using predicates over
attributes. AErlang aims at relieving programmers from the burden of working out details such as
the explicit handling of attributes, the evaluation of predicates, and so on, while at the same time
preserving Erlang’s excellent scalability.

Our prototype is implemented as a centralized middleware that plays the role of global process registry
and takes charge of forwarding messages from senders to receivers. Although being centralized, the
components process registry and message broker serve processes requests by spawning handlers on the
fly, potentially exploit parallelism.

Unlike ABEL’s approach which aims at preserving the semantics of the AbC calculus, AErlang focuses
on efficient message exchanges while its programming style follows the actor-based model of Erlang.
Consequently, the current drawback of AErlang is the lack of a formal semantics which would be helpful
to prove the correctness and to facilitate automated verification of AErlang programs. However, the
relevant texts in this section still provide informal semantics of the supported programming constructs.

We also demonstrate the use of AErlang through a number of case studies and provide a performance
evaluation of our prototype in terms of efficiency and scalability. In particular, we assess the effec-
tiveness of our prototype by using it to program a solution to stable marriage that aims at matching
members according to their preferences. For this problem, we consider implementations of different
variants in different languages. Namely, we first consider a variant explicitly based on (predicates
over) attributes and provide an implementation in AErlang. Then, we derive preference lists from the
predicates and implement the classical algorithm in AErlang, Erlang, and X10, a language specifically
designed to scale with the number of cores. The different implementations are instrumental to compare
performances of our solutions.

5.1 AErlang support for attribute-based communication

AErlang’s programming interface is presented in Figure 5.1. The commands for initialising the system,
registering or de-registering processes, and handling process environments and attributes are shown in
the leftmost column of the figure. The attribute-based communication system is initialised by invoking
function start with an operating Mode to select the strategy for inter-process message dispatching.
Our prototype provides the broadcast operating mode, in which a sent messages is forwarded to other
processes whose exposed attributes appears in the sender’s predicate. Additionally, it provides three
alternative operating modes (push, pull, and pushpull) to improve the efficiency on some classes of
systems (see Sect. 5.3 for details).

An Erlang process joins the AErlang system by invoking the function register and declares its own
attribute environment Env in form of a list or a map, i.e., sets of attribute name-value pairs. The
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identifiers of all the exposed process attributes are assumed to be public among all processes, so that
they can specify predicates over attributes of each other. In AErlang, exposed attributes are those
appearing in the portion of attribute environment when a process registers. After registering, processes
can manipulate their local environments by using the setAtt and getAtt functions. Processes leaving
the system may actively unregister, and when a process unregisters, then it is no longer able to use
attribute-based communication.

% i n i t i a l i z a t i o n
aerl : start (Mode)

% j o i n and l eave
aerl : register (Env)
aerl : unregister ( )

% environment handl ing
aerl : setAtt ( L i s t )
aerl : getAtt ( L i s t )

% at t r i bu t e - based
% send and receive
to ( Pred ) ! Msg

from( Pred ) ,
receive

Pattern_1 -> Expression_1 ;
. . .
Pattern_n -> Expression_n

end

% att r i bu t e - based
% send and receive with count ing
Count = to ( Pred ) ! Msg

from( Pred , Count ) ,
receive

Pattern_1 -> Expression_1 ;
. . .
Pattern_n -> Expression_n

end

Figure 5.1: AErlang programming interface.

Registered AErlang processes interact via attribute-based commands, as shown in the mid column of
Fig. 5.1. Differently from standard Erlang, this pair of communication primitives replace source and
destination identifiers with arbitrary conditions expressed by predicates over the declared attributes.

Predicates are strings containing Boolean expressions that can refer to attribute names (Erlang
atoms), constants (identified by a leading underscore, e.g., _constant), process-local references to
attributes (such as this.a), and process-local variables representing values (for instance $X). Predi-
cate terms can be combined with comparison operators, logical connectives, and arithmetic operators
such as +, ∗, /,−. Furthermore, predicates can contain the operator in, which denotes the membership
relation between an element and a list, and user-defined functions.

The attribute-based send operation to(Pred) ! Msg has the effect of sending message Msg to all pro-
cesses whose attributes satisfy predicate Pred. At the other end, similarly, the attribute-based receive
operation from(Pred) is invoked to receive messages from all senders satisfying predicate Pred. In
particular, a receive operation has the effect of retrieving from the mailbox of the receiver any mes-
sage from senders whose attributes match the given predicate. The message content is instead filtered
by patterns declared in the receive clause in the Erlang style.

Our prototype also implements counting-based variants of the attribute-based communication prim-
itives, so that processes can be aware of how many peers they are trying to interact with (see the
rightmost column of Fig. 5.1). These primitives are not part of the original AbC calculus. A sending op-
eration Count = to(Pred) ! Msg returns the number of selected receivers (whom our middleware for-
wards the message to) at communication time. A matching multi-receive operation from(Pred, Count)
can later be invoked within the same process to receive up to that amount of messages.

106



Chapter 5

Intuitively, counting is helpful for processes to react to groups of messages from sets of peers, rather
than single messages from specific peers. We observe that one of the main interaction patterns in
group-based systems is that one component/agent makes decision by collecting a number of messages
from its peers. This is useful for instance when a process, having contacted multiple peers with a
request, needs to consider all their answers before moving on. This ability has proved to be useful
in many coordination schemes [64, 115] and has been the main motivation of a broadcast calculus
with counting [84]. Without the support of constructs of this kind, programmers have to then encode
the pattern by themselves, mixing computation and communication patterns which often result in
programs that are error-prone and hard to reason.

Some ingenuity is required to prevent multi-receive operations from blocking when the number of in-
coming messages does not reach the count. Depending on the operating mode, the outbound messages
may be further filtered at the receiver’s end during a send operation. The actual number of targeted
receivers, and thus the triggered answers to expect from them later, would then be less than the
original count. Such a circumstance is not a problem as AErlang makes use of implicit acknowledge
messages to automatically compensate for this mismatch. However, this still does not guarantee that
a multi-receive operation will never block. In the general case to guarantee a proper counting mech-
anism, it may be necessary to adopt adequate interaction protocols between the involved peers. As
a rule of thumb every process receiving a message should always send back an answer. More sophis-
ticated protocols may additionally be required depending on the specific application. An example of
using attribute-based primitives with counting is shown in Figure 5.3 and explained in Section 5.5.1. A
discussion on the benefits, in terms of language expressiveness, of the counting-based versions (within
the attribute-based communication primitives) can be found at the end of Section 5.5.3.

5.2 Prototype Architecture

There are two main components in AErlang: a message broker (MB) that undertakes the delivery of
outbound messages, and a process registry that keeps track of all process-related details that are used
by the message broker to deliver messages. The message broker and the process registry jointly access
a distributed database to handle all the information needed for running the system. Each AErlang
process also has its own local data store. The actual interplay between the above components, the
handling of the data structures, and the local behaviour of the involved communication endpoints,
depend on the specific operating mode. In the rest of this section, we only describe the general
architecture of our prototype. The different operating modes are described in Section 5.3. Further
technical details of our prototype implementation are provided in Section 5.4.

The process registry handles all process-related data. It stores on the main database the process
identifiers and the attributes to be used by the message broker for delivering messages. When a
process joins the system, a service request to the process registry is performed to insert the identifier
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(a) Broadcast (b) Pull

(c) Push (d) Push-pull

Figure 5.2: Operating modes of AErlang.

of the process, along with its attribute environment (if the chosen operating mode requires it) into
the main database. Depending on the operating mode, the process registry also stores other details,
such as the receiving predicates of the processes interested in receiving messages, or even their full
environments. The environment of a process is also stored locally. All the above information is removed
when the unregistering procedure is invoked.

The message broker listens for requests of attribute-based send operations. When receiving a send
request, it selects from the database the set of targeted receivers and forwards the message to them.

Depending on the operating mode, the message broker can also be involved in filtering the messages
according to the communication predicates.

5.3 Forwarding Strategies

This section presents in detail the operating modes supported by our prototype implementation of
attribute-based communication in Erlang. The operating modes take into account the exposed at-
tributes of registered processes to make sure that a message is only forwarded to those who are
interested in the interaction. This treatment realizes the role of interaction interfaces of AbC com-
ponents. Otherwise stated, we will assume that processes have the same set of exposed attributes.
Forwarding strategies do not impose any order on forwarded messages.
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Broadcast. AErlang’s default operating mode, broadcast, is similar to the semantics of AbC output
action. The message broker immediately forwards all outbound messages to every other process than
the sender, regardless of any interest at the other end in receiving the forwarded message. The burden
of filtering messages is postponed to receiving time.

As illustrated in Figure 5.2(a), process A sends message Msg along with its predicate ΠA and its own
environment ΓA. Every process, other than the sender, then receives the content forwarded by the
message broker and decides whether to keep the message on the basis of the sending predicate ΠA, its
own receiving predicate, and the environments of both the involved communication endpoints. Please
notice that the sender’s environment ΓA is included in the message as it may be needed to evaluate
the predicates at the receiver’s end (more details on this are reported in Sect. 5.4).

An advantage of broadcast is that it keeps the system design simple, because the required global
information is essentially limited to the identity of registered processes. The main disadvantages of
broadcast are the high overhead and the limited scalability. The number of forwarded messages at each
send operation depends, in fact, on the size of the system rather than on the specific communication
predicates. Communication-intensive tasks in a large system would therefore likely result in huge
quantities of messages being unnecessarily forwarded. The transmission and the subsequent predicate
evaluations to discard those messages would, in turn, cause extra communication and computational
costs. Distribution, or slow transmission, and complex predicates would further exacerbate this issue.

We introduced different operating modes to address the above shortcomings. The intuition is to reduce
the number of unnecessarily forwarded messages. We replicate in the process registry (part of) the
information needed to compute the targeted communication endpoints. We then use this information
to filter the messages to be forwarded. This improves efficiency but comes at the cost of deviating from
the semantics of attribute-based communication actions. Specifically, mismatches between process-
local information and their replica in the process registry can cause reception of unwanted messages,
or loss of expected ones.

Pull. The pull operating mode can reduce broadcast overhead by considering the possible interests of
the receivers to filter outbound messages up front, in a publish-subscribe fashion [34]. The system keeps
track of the receiving predicates of all processes willing to receive messages, and uses such predicates
to pre-select the receivers. This early server-side check avoids forwarding messages to processes that
are not interested in interacting with some senders, or even in performing a receive operation at all.

Figure 5.2(b) sketches this operating mode. The message broker checks the receiving predicates of
processes B, C, D and E (collectively represented in the figure as ΠX) against the environment ΓA of
the sender. As an effect of this check, no message is forwarded to process B. Note the difference from
broadcast (see Fig. 5.2(a)), where B gets a message anyway.

The pull operating mode requires the receiving predicates to be replicated in the process registry.
Therefore, it is prone to message loss or reception of unsolicited messages. Tolerance to this problem
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depends on the specific application, for example in wireless sensor networks message loss is somehow
expected. This forwarding strategy tends to be effective when the receiving predicates do not change
frequently.

The pull mode is appropriate to model topic-based and publish-subscribe systems, where the receiving
predicates correspond to subscriptions and the sending actions to publications. In attribute-based
communication, a publisher (sender) will expose an attribute to denote the topic of the provided
content, whereas subscribers (receivers) will express the topics of interest via receiving predicates. In
this scenario, unnecessarily forwarded information is reduced because topics are filtered upfront based
on the interests of the subscribers. At the same time, changes in the subscriptions presumably will not
occur frequently, in which case the problem of lost or unsolicited messages can be considered negligible.

Push. The push operating mode, similarly to pull, attempts to reduce the broadcast overhead by
avoiding unnecessarily forwarding outbound messages to some receivers. The filtering in this case is
done by considering the sending predicate and the attribute environments of the potential receivers.
A global replica of the attribute environments of all processes is maintained in the process registry,
and process-local attribute update operations are notified to it.

Figure 5.2(c) shows that, given the availability of the attribute environments, sending predicate ΠA

is checked against the environment of each potential receiver, reported in the figure as ΓX , where X
represents the receiving processes, i.e., B, C, D, and E. The check needed to select the sender is left
to the receivers.

When updating attributes, problems might arise due to the interval of time passing from the local
update of the environment of a process and the update of the corresponding environment in the system.
As in pull mode, there may be lost or unsolicited messages. The push operating mode is suitable to
scenarios where processes’ attributes do not change frequently, or message loss is acceptable. For
instance, in social networks, users’ attributes (e.g., age, spoken languages, and education) are updated
only rarely, which makes this policy convenient.

Push-pull. In the push-pull operating mode the sending and the receiving predicates are both checked
by the message broker, so that communication only happens between interested endpoints.

This mode, shown in Figure 5.2(d), minimises the overall number of messages, and thus the system
overhead. Another advantage is that the push-pull mode facilitates the implementation of counting-
based communication patterns (see the rightmost column of Fig. 5.1 and Sect. 5.1), because the count
of targeted receivers returned at the moment of sending and the actual number of receivers are usually
the same, or it is quite close.

As in the case of push and pull, the main drawback of the push-pull operating mode is in the possible
inconsistency between the local environment of a process and its global replica stored in the process
registry. Also, the workload may increase significantly for the message broker, as it has to perform
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predicate checking and handle environment update notifications for the whole system. The impact of
this issue on the efficiency and scalability of our prototype can be somehow limited by parallelising
the message broker, and spawning dynamically independent lightweight processes to handle incoming
messages (see Sect. 5.2). Indeed, the push-pull operating mode provides fast attribute-based commu-
nication at the cost of an increased risk of losing or receiving unsolicited messages. Therefore, it can
be convenient when aiming at high-speed rather than at fully-reliable systems.

Selection criteria for forwarding strategies. Table 5.1 serves as a first guidance for choosing an
appropriate forwarding strategy for a given system.

In highly-dynamic scenarios where attributes and predicates change frequently, broadcast is the policy
to go for. In pull mode, the system keeps track of the receiving predicates, thus this strategy is usually
suitable to applications that rarely update them. In push mode, the attribute environments of the
potential receivers are considered for enabling end-to-end communication; this strategy is thus suitable
to applications where the attributes of the communicating entities are not updated frequently. Finally,
the push-pull mode relies on verifying upfront both the attributes and the predicates, hence it can be
used in applications where none of them changes frequently.

Attributes
Predicates dynamic static

dynamic broadcast pull
static push push-pull

Table 5.1: Selection of forwarding strategies driven by features of attributes and predicates.

Note that the alternative policies can be applied beyond the suggested cases, as long as they are
complemented with additional checks that modify the interaction protocol to handle the possibility of
receiving unsolicited messages or not receiving expected ones.

Let us consider, as an example, a swarm of robots collaborating for rescuing victims in a disaster
area. Once a robot finds a victim, it looks for other robots supporting the mission in the surrounding
area. The sending predicate can be targeting robots whose location is within a certain zone. However,
locations of robots tend to change rapidly, and, because of this, some robots may receive unwanted
messages, while others may miss some. To handle this situation, a programmer can slightly alter
the local behaviour so that senders periodically re-scan their neighbourhood, or receivers have the
possibility of double-checking the locations. A more detailed example on how to effectively take
advantage of the alternative operating modes is reported in Sect. 5.5.3.

5.4 Implementation

In this section we discuss AErlang implementation details. Both the process registry and the message
broker implement Erlang’s generic server behaviour, accepting service requests by AErlang processes
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when they join the system, perform an attribute update, or send a message. Our prototype uses
Mnesia, Erlang’s built-in database, as the main backend for distributed storage. The process registry
uses this database to store process identifiers and attributes. Attributes are kept in separate columns
for increased performance and at the expense of some extra memory. Table records are indexed by
process identifier. The message broker uses this information for delivering messages. The attribute
environment of a process is also stored locally into the Erlang built-in term storage. A reference to
this table is stored into the process dictionary.

We seamlessly integrate the AErlang primitives (Fig. 5.1) into Erlang’s syntax via source-to-source
translation. This functionality is already implemented in the host language by the built-in parse
transformation feature, i.e., essentially a function that takes as input an Erlang module and performs
pattern-based substitutions on the abstract representation of the input, returning as output the trans-
formed module. We use parse transformation to expand all invocations to AErlang primitives into
fragments of Erlang code. In what follows, we elaborate on how translated code works in agreement
with the message broker in order to achieve the desirable behaviour.

Attribute-based Send. An attribute-based sending operation to(Pred) ! Msg, where a message
Msg targets a group of receivers specified by the sending predicate Pred, is translated as follows:

1 Envs = a e r l : getEnv ( ) ,
2 Ps = a e r l : e v a l l p (Pred , Envs ) ,
3 gen_server : ca s t ( aer l_broker , { s e l f ( ) , Ps ,Msg , Envs })

The sender retrieves its attribute environment Envs (line 1) to be used in a local evaluation of the
sending predicate. The purpose of the call to evallp (line 2) is to provide all local information
needed for a remote evaluation of the sending predicate Pred, either by the message broker or by
some receiver. The function replaces every reference to local attributes (such as this.a) with the
corresponding values from the environment. If the sending predicate contains references to variables
(of the form $X), evallp also builds a list of bindings for them. Eventually, the sender sends a message
containing its identifier, the parsed predicate, the actual message content and the environment to the
message broker via a gen_server cast (line 3).

Message Broker. The message broker spawns a separate handler to process an incoming sending
request operation. A sending request has the form {Pid, Ps, Msg, Envs}, and contains the process
identifier, the sending predicate, the message, and the sender’s environment. The handler computes
the set of targeted receivers, and forwards the message to them. In broadcast mode, the message
broker selects all registered processes except the sender, and forwards the message {Ps, Msg, Envs}
to them. Each receiver then checks both the sending and receiving predicates. Note that, unlike
Erlang but similarly to traditional actors, AErlang does not guarantee the message ordering due to
the generation of a new handler for each sending request.
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In push mode, the message broker translates the sending predicate Ps into a database query in the
form of a matchspecification. The query includes an additional condition to exclude the process
identifier Pid of the sender. The result is a list of process identifiers (potential receivers), to which the
message broker forwards the message {true, Msg, Envs}. The first element of the message prevents the
receiver from checking the sending predicate a second time.

In pull mode, the message broker filters the set of processes whose receiving predicates are satisfied in
the sender’s environment. This is accomplished by first checking the receiving predicates against the
environment of the sender, and then forwarding the message {Ps, Msg, ok}. The last element prevents
the receivers from checking the receiving predicate a second time.

In pushpull mode, the message broker selects the set of potential receivers and performs filtering
according to the receivers’ viewpoint. A second query retrieves the list of receiving predicates. The
message {true, Msg, ok} is then forwarded only to receivers whose receiving predicates are satisfied
in the sender’s environment. The first and third elements of the message prevent further predicate
checks.

Note that, depending on the operating mode, predicates can be evaluated at the broker or at the
receiver’s end. If local variables are used in a predicate, then the binding with the actual value of
these variables is included as part of the partially-evaluated predicate. This enables remote predicate
evaluation without replicating process-local variables at the message broker. Moreover, the message
forwarded is also decorated with an extra field, e.g., sender’s identifier, which may be used at the
receiver side for point-to-point acknowledgement. Acknowledgement is needed when the message was
sent by a process invoking the construct send with counting.

Attribute-based Receive. An attribute-based receive
from(Pred), receive Pattern1→ Exp1; ...end is expanded into the following Erlang code:

1 Envr = aerl : getEnv ( ) ,
2 Mode = aerl : get_mode ( ) ,
3 Pr = aerl : e v a l l p (Pred , Envr ,Mode) ,
4 F = fun (Foo )
5 receive
6 {Ps , Pattern1 , Envs} ->
7 case aerl : check (Ps , Envr ) andalso aerl : check (Pr , Envs ) o f
8 t rue -> Exp1 ;
9 f a l s e -> aerl : hand le_fa l se ( . . . ) , Foo (Foo )

10 end ;
11 // code f o r other pat t e rns
12 end
13 end , F(F)

Similarly to a sending action, the receiving predicate is first partially evaluated under the local en-
vironment of the receiving process (line 3). In the case of pull and push− pull modes, the parsed
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predicate is also automatically updated in the registry. A function F is introduced (line 4) to wrap the
user-defined receive construct with checks for the predicates. In the body of this function, the message
patterns are extended with additional components to capture the messages forwarded by the broker
(line 6), where Ps and Envs denote the sending predicate and the sender’s environment, respectively.
If the predicate checks (line 7) are satisfied, the corresponding user-defined expressions (line 8) are
executed. Otherwise, the receiver first invokes the function handle_false and then keeps waiting for
new messages (line 9). handle_false is responsible for the situation where the discarded message is
originated from those senders who use the send construct with counting. In such a case the sender
needs an explicit response; handle_false detects those senders, e.g., by using extra information
attached in the message, and sends a special acknowledgment message to them.

The check functions (line 7) do verify the truth of the exposed predicates in the given environment
while taking into account the forwarding strategy. Some of the checks are ignored; for example, in
push mode, the check on the sending predicate Ps always returns true. Similarly, in pull mode, the
check for the receiving predicate Pr is satisfied regardless of the sender’s environment.

Send and Receive with counting As mentioned before, AErlang provides the counting variants
of send and receive (see the third column of Fig. 5.1) to express useful communication and syn-
chronization patterns between processes. A send with counting returns the number of receivers that
the message broker has forwarded the sent message to. In the operating modes such as push and
push-pull in which the broker can access the attributes environment of other processes, this number
is calculated by evaluating the sending predicate against their attribute environments. In broadcast
and pull modes, however, the broker simply returns the number of processes whose attribute names
appear in the sending predicate. A receive construct supplied with a count collects such messages
from senders whose attributes satisfy the receiving predicate. In the body of this receive, a process
can react to each message received, or stores them in some attributes for later processing.

These programming abstractions allows a process collecting a number of answers from other peers
before making a decision. This ability of responding to a number of messages has been demonstrated
useful in some coordination schemes [64, 106, 115]. For example, in a voting protocol [69], an agent
sends an inquiry message and waits for a certain number of replies in order to decide a final result
on behalf of the population. This behaviour can be emulated by using a pair of send and receive
with counting: a requester sends an inquiry message and obtains the number of potential receivers;
a receive construct parameterized with this number is used afterward to handle answers. However, it
can happen that the number of actual replies does not match the number that a process is expecting.
This is because the requester of an inquiry message may be not interested by the some receivers.
We handle this problem by using implicit acknowledgements: the process identifier of a requester is
included in the sent message, denoting for the need of acknowledgement. Upon checking, any process
sends an ack message to the sender, even if discarding the message.
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The receive with counting specifies the number of messages Count it intends to receive from senders
satisfying the receiving predicate. The generated code for this construct has the following form:

1 Envr = aerl : getEnv ( ) ,
2 Pr = aerl : e v a l l p (Pred , Envr ) ,
3 F = fun Foo (0 ) -> ok ;
4 Foo (_Cnt) ->
5 receive
6 {Ps , Pattern_1 , Envs} ->
7 case aerl : check (Ps , Envr ) andalso aerl : check (Pr , Envs ) o f
8 t rue -> Expression_1 ,
9 Foo (_Cnt - 1 )

10 f a l s e -> aerl : hand le_fa l se ( . . . ) % handle f a l s e f o r sender
11 Foo (_Cnt)
12 end ;
13
14 // code f o r other r e c e i v i n g pat t e rn s . . .
15
16 % receive an e x p l i c i t acknowledge f o r the sent message
17 ack_msg_discarded -> Foo (_Cnt - 1 )
18 end
19 end , F(Count )

As opposite to the receive without counting, the generated function F takes the Count parameter (line
19) and enters a receive loop. The body of this receive includes a pattern to discard the acknowledgment
message (line 17), meaning that the inquiry message is discarded by some process. The value _Cnt is
decreased when a message is accepted (line 9) or an acknowledgment message of the sent message is
received (line 17).

5.5 Case Studies

In this section we show how AErlang can be used for attribute-based programming. A first case study
is the well-known problem of Stable Marriage (SM), and we describe a program that implements the
classical solution for this problem, and then consider progressively more elaborate variants. The
purpose is to show the convenience of relying on attributes for interactions. We also discuss how the
proposed approach can be generalised to model realistic examples of collective adaptive systems, such
as social networks.

As a second case study, we consider an interactive market where users aim at trading goods. We
present a possible interaction protocol and an AErlang program that implements it. Moreover, we
discuss the counting mechanism for modelling more complex interaction patterns that cannot be easily
expressed otherwise.

Finally, we describe the program for the graph coloring problem (see Section 2.2.2) in AErlang. We
use it to highlight the differences between the two programming models, i.e., AErlang and ABEL.
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SM consists in finding a matching between sets of men and women, where each person has a preference
list of members of the opposite gender [65]. A matching is a set of one-to-one assignments between men
and women. Each assignment is denoted by a pair (m,w), where m and w indicate the two matched
partners. A pair is blocking if, according to their respective preference lists, both the matched man
and woman prefer someone else to their partners. A matching is stable if there is no blocking pair. A
matching is complete when everybody is matched, incomplete otherwise.

SM was originally used to match hospitals to resident doctors [108], but it has many other practical
applications [79]. Recently, it has been adopted for public school admissions [13], transplant of human
organs [110], matching of sailors to ships [92], or primary school students to secondary schools [116].
Other applications include computer networks, for global load balancing in content delivery networks
[95], and even economics, e.g., for market trading [109]. SM has been intensively studied in the
literature, together with its variants [85]. In the classical form, the preference lists are strictly-ordered
and complete. For this, Gale and Shapley gave an efficient algorithm to find a stable matching [65].
It can be informally summarized as follows. Each man actively proposes himself to his most favourite
woman according to his preference list. Whenever a man is rejected, he tries again with the next
woman in the list. On the other hand, each woman continuously waits for incoming proposals. A
woman without a partner immediately accepts any proposal, otherwise she compares the proposer
with her current partner. She then rejects the man whom she likes less, according to her preference
list. The algorithm terminates when every man has a partner.

Variations of this algorithm are based on different kinds of preference lists: incomplete (SMI), with
ties (SMT), or both (SMTI). While the first two variants can be solved similarly to the classical case,
SMTI is hard [86]. In this section we investigate a new variant of the algorithm where the matching
happens by taking into account the mutual interests of partners characteristics (attributes), rather
than preference lists of identifiers. We call this variant stable marriage with attributes (SMA).

5.5.1 Stable Marriage with preference list

In this section we consider the variant of SM known as SMTI [86], in which the preference list is
incomplete and partially ordered, i.e., a man or a woman may like several people at the same level.
The preference list is thus a list of sets rather than single elements and we refer to such sets as ties.

We model this problem in AErlang by introducing an attribute id to represent people identifiers and
predicates over them to specify the preferences. As an example, Table 5.2 shows the predicate lists
induced from a SMTI instance (on the left) where ties are enclosed by parentheses. To implement
preference list we use predicates over the attribute id, and model ties as disjunctions of comparisons.
We refer to the newly derived lists shown in Table 5.2 (on the right) as predicate lists.
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id preference list
m1 w1, w2

m2 w1, w2

w1 (m1, m2)
w2 m1

id predicate list
m1 id = w1, id = w2

m2 id = w1, id = w2

w1 id = m1 ∨ id = m2

w2 id = m1

Table 5.2: Correspondence between preference lists and predicate lists.

1 man( Prefs , Id ) ->
2 [H|T]=Prefs ,
3 Count=to (" id in $H") ! {propose , Id } ,
4 from(" id in $H" ,Count ) ,
5 receive
6 {yes ,W} ->
7 case aerl : getA ( partner ) o f
8 none ->
9 to (" id=$W") ! confirm ,

10 aerl : setAtt ( partner ,W) ;
11 _ ->
12 to (" id=$W") ! busy
13 end
14 end ,
15 case aerl : getA ( partner ) o f
16 none -> man(T, Id ) ;
17 _ -> from(" id=th i s . partner ") ,
18 receive
19 goodbye ->
20 aerl : setAtt ( partner , none ) ,
21 man( Prefs , Id )
22 end
23 end .

24 woman( Prefs , Id ,P) ->
25 from(" bof ( $Prefs , $P , id ) " ) ,
26 receive
27 {propose ,M} ->
28 to (" id=$M") ! {yes , Id } ,
29 from(" id=$M") ,
30 receive
31 conf i rm ->
32 to (" id=$P") ! goodbye ,
33 woman( Prefs , Id ,M)
34 busy ->
35 woman( Prefs , Id ,P)
36 end
37 end .

Figure 5.3: Stable Marriage with preference lists in AErlang (SMTI-aerl).

We then solve the problem under this new representation of preferences by using a similar solution
to the classical Gale-Shapley algorithm described above, but using a slightly different protocol and
relying on message-passing.

The AErlang program for STMI is shown in Figure 5.3. Function man() takes as arguments the
preference list Prefs of a man and his identifier Id. The first element in Prefs is bound to variable H

by pattern matching on list (line 2). A man goes through a proposing phase from lines 3 to 14. First,
he sends a propose message using “id in $H“ as the sending predicate (line 3) which has the effect
of contacting all women whose id belongs to the list H. He then waits for enough answers from the
women he contacted using the attribute-based receive construct with counting (line 4), with the same
predicate used when sending. Inside the body of this receive operation, the man is only interested in
yes messages. He becomes aware of his status by checking attribute partner (line 7) to take a decision.
If he has no partner, he sends a confirm message to the first woman who said yes by using her identifier
W attached in the reply message. He then considers this woman as his current partner (line 10), and
informs any other interested women that he is no longer available by sending them a busy message
(line 12).

After the proposing phase, a man can either be alone or engaged (checked by line 15). In the first
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case, he does not consider any woman in the current predicate H and tries to propose himself again to
the women in the remaining part of his preference list (line 16). In the second case, he takes no action
unless he receives a goodbye message from his partner (lines 17-19), in which case he tries proposing
himself again using his current predicate unchanged (line 21). The man keeps the predicate unchanged
as it may include other women.

Function woman() takes as arguments a preference list Prefs, an identifier Id, and the partner’s iden-
tifier P. A woman always waits for proposals from men who are better than her current partner. This
comparison is performed with the bof function (line 25) that checks if a proposer precedes the current
partner P in the woman’s preference list. If this is the case, then the woman sends back a yes message
and waits for a confirm message from the new man M. After M confirms to her, the woman gets
engaged to him by keeping M in the recursive call (line 33), after rejecting her current partner P.
Otherwise, she keeps listening for other proposals (line 35).

5.5.2 Stable Marriage with attributes

In this variant each person has a set of attributes describing their own characteristics and some pref-
erences over the attributes of their potential partners. Each attribute has a finite domain, while
preferences are represented by logical expressions over the attributes of the partners. For simplic-
ity, in this section we only consider simple predicates where preferences are conjunctions of equality
comparisons.

Table 5.3 shows an example of SMA instance of size four where each person has two attributes, which
in turn have two possible values. This example points out the expressive power of attribute-based
communication. In fact, our program for SMA (see Fig. 5.4) is very similar to the program proposed
in previous the section (see Fig. 5.3), and the differences are mostly accommodated by altering the
predicates. In addition, men can progressively adapt their preferences to increase the chances to
find a partner. For example, no woman in Table 5.3 satisfies the requirements of man m1, hence
he looks for partners partially matching his initial preferences. This adaptive behaviour is achieved
by transforming preferences into predicate lists, as shown in Table 5.4. For example, when man m1

relaxes his preferences and looks for women with amber eyes only, then there are women w1 and w2

satisfying such predicate. We assume that the ordering of attributes within a predicate indicates their
priority.

Figure 5.4 shows a possible AErlang implementation for SMA. Function man() takes as arguments
the predicates list Prefs of a man, his Id and characteristics Atts. The first element in Prefs (i.e., the
most demanding predicate) is bound to variable H by pattern matching on list (line 2). The proposing
phase of a man is implemented via lines 3-14 and follows the same behaviour described in previous
section.
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id wealth body preference
m1 rich strong eyes=amber ∧ hair=red
m2 rich weak eyes=green ∧ hair=dark
m3 poor strong eyes=green ∧ hair=red
m4 poor weak eyes=amber ∧ hair=red

id eyes hair preference
w1 amber dark wealth=poor ∧ body=weak
w2 amber dark wealth=rich ∧ body=strong
w3 green red wealth=rich ∧ body=strong
w4 green dark wealth=rich ∧ body=weak

Table 5.3: Attributes and preferences for men and women.

id predicate list
m1 eyes=amber ∧ hair=red eyes=amber hair=red
m2 eyes=green ∧ hair=dark eyes=green hair=dark
m3 eyes=green ∧ hair=red eyes=green hair=red
m4 eyes=amber ∧ hair=red eyes=amber hair=red

Table 5.4: Predicate lists with relaxed preferences for men.

1 man( Prefs , Id , Atts ) ->
2 [H|T]=Prefs ,
3 Count=to (H) ! {propose , Id , Atts } ,
4 from(H, Count ) ,
5 receive
6 {yes ,W} ->
7 case aerl : getA ( partner ) o f
8 none ->
9 to (" id=$W") ! confirm ,

10 aerl : setA ( partner ,W) ;
11 _ ->
12 to (" id=$W") ! busy
13 end
14 end ,
15 case aerl : getA ( partner ) o f
16 none -> man(T, Id , Atts ) ;
17 _ -> from(" id=th i s . partner ") ,
18 receive
19 goodbye ->
20 aerl : setA ( partner , none ) ,
21 man( Prefs , Id , Atts )
22 end
23 end .

24 woman( Prefs , Id ,P,PA) ->
25 from(" bof ( $Prefs , $PA, wealth , body )" ) ,
26 receive
27 {propose ,M,MA} ->
28 to (" id=$M") ! {yes , Id } ,
29 from(" id=$M") ,
30 receive
31 conf i rm ->
32 to (" id=$P") ! goodbye ,
33 woman( Prefs , Id ,M,MA)
34 busy ->
35 woman( Prefs , Id ,P,PA)
36 end
37 end .

Figure 5.4: Stable Marriage with attributes in AErlang (SMA-aerl).

Function woman() takes as arguments the preferences Prefs, an identifier Id, in addition to arguments
P and PA to keep the current partner’s information. A woman waits for proposals from men whose
attributes are better than her current partner. This comparison is performed with the bof boolean
function (line 25) that checks if a proposer is characterized by attributes wealth and body, better
than the partner P characterized by the variable PA. If this function provides true as output, then the
woman sends a yes message back and waits for an acknowledge message confirm from this man M. If
M confirms to her, the woman gets engaged to him by keeping M and his characteristics MA in the
recursive call (line 33), after rejecting her current partner P. Otherwise, she keeps listening for other
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proposals (line 35).

5.5.3 An interactive market

We consider the case of a decentralised market where users intend to trade goods. Everyone has an
initial budget and a list of items that they either own and are willing to sell, or are seeking to buy, at
a given price. To promote the activities, users regularly advertise their sales. At the same time, they
also consider advertisement from the others, reacting accordingly whenever possible.

A system of this kind can be programmed quite naturally in AErlang. Users can be implemented
as separate AErlang processes with attributes to represent their balance, the list of items on sale
with their ask price (or sales list), and the list of wanted items along with their bid price (wish list).
The exchange of items is simply modelled with appropriate predicates. Depending on the specific
interaction protocol, the communication predicates may be more or less complex, and some of the
attributes may not have to be publicly exposed. In any case, the idea is to use predicates to take into
account the interests of the users, so to increase the overall efficiency of the system.

Interaction protocol. Alice and Bob are two users of our interactive market system acting as a
seller and a buyer, respectively. Initially, Alice advertises her sales by sending to every potential buyer
the type of the item, the price, and her contact details. She then waits for incoming answers from any
interested user, or advertisements about other items.

When Bob receives the sales advertisement, he first checks his wish list to compare the sales price with
the price he had in mind. Then if he is still interested and can afford it, he informs Alice of his interest
in buying and sends his contact details to her. Bob then waits for Alice to confirm or to cancel the
sale (if in the meantime she has sold the item to someone else).

At the other end, Alice receives Bob’s message and double checks whether the item is still in her
sales list. If the item is available, she immediately notifies Bob and updates her sales list and account
balance accordingly. Otherwise, Alice tells Bob that the item is no longer available. She then keeps
advertising her sales and answering to incoming messages. Bob adds the new item to his sales list and
adjusts his account balance if he receives a confirmation message from Alice2. Otherwise, he moves
on to advertising his own items and answering to incoming messages in the same way as Alice.

Also in this case, the advantage of using attributes is evident. A buyer only involves those users that
are offering the goods of interest and to start does not need to know their identities. Moreover users
can seamlessly join and leave.

2It might sound strange that one puts back on sale immediately an item he has just acquired. We took this design
choice to increase the number of interactions and thus more informative performance evaluations.
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Implementation In a realistic implementation of our interactive market, a service that limits the
overall number of messages is preferable over a more reliable one that uses a lot of bandwidth. On the
one hand, choosing to run the service in push-pull mode rather than broadcast would make it easier
to fulfil this requirement. On the other hand, in push-pull mode any delayed update of the attribute
environments or of the receiving predicates at the message broker can lead to lost and unsolicited
messages (see Sect. 5.3). To avoid this kind of problems, we introduce a few local variables to keep
track of the previously contacted sellers and the items already booked, as described below.

An AErlang program for our interactive market is shown in Figure 5.5. Here, attribute id expresses
the identity of the user, slist the sales list, and wlist the wish list. For simplicity, we use individual
attributes item1, . . . , itemn associated with the price of an item. Moreover, we use local variables
Balance, Sellers, and Booked to represent the account balance, the identifiers of the contacted sellers,
and the identifiers of the items that a user is interested in buying, respectively. We also store the list
Advertised of items previously advertised, to make sure users advertise every time a different item,
and that each item is advertised at most once.

1 loop ( Balance , S e l l e r s , Booked , Advert i sed ) ->
2 Adv = case aerl : getAtt ( s l i s t ) - - Advert i sed o f
3 L when length (L) > 0 ->
4 SItem = l i s t s : nth ( rand : uniform ( l ength (L) ) , L) ,
5 to (" $SItem in w l i s t ") ! {adver , SItem , aerl : getAtt ( SItem ) , aerl : getAtt ( id )} ,
6 [ SItem ] ;
7 [ ] -> [ ]
8 end ,
9 Advert i sed2 = Advert i sed ++ Adv ,

10 from("match ( s l i s t , t h i s . w l i s t ) or id in $ S e l l e r s " ) ,
11 receive
12 {adver , Item , Price , S e l l e r } ->
13 case not l i s t s : member( Item , Booked ) and Pr i ce =< aerl : getAtt ( Item ) o f
14 t rue ->
15 to (" id = $S e l l e r ") ! { i n t e r e s t , Item , aerl : getAtt ( id )} ,
16 loop ( Balance - Price , S e l l e r s ++ [ S e l l e r ] , Booked ++ [ Item ] , Advert i sed2 ) ;
17 f a l s e ->
18 loop ( Balance , S e l l e r s , Booked , Advert i sed2 ) ;
19 end ;
20 { i n t e r e s t , Item , Buyer} ->
21 case l i s t s : member( Item , aerl : getAtt ( s l i s t ) ) o f
22 t rue ->
23 to (" id = $Buyer ") ! { so ld , Item , aerl : getAtt ( Item ) , aerl : getAtt ( id )} ,
24 aerl : setAtt ( s l i s t , aerl : getAtt ( s l i s t ) - - [ Item ] ) ,
25 loop ( Balance + aerl : getAtt ( Item ) , S e l l e r s , Booked , Advert i sed2 ) ;
26 f a l s e ->
27 to (" id = $Buyer ") ! { cance l , Item , aerl : getAtt ( Item ) , aerl : getAtt ( id )} ,
28 loop ( Balance , S e l l e r s , Booked , Advert i sed2 )
29 end ;
30 { sold , Item , Price , S e l l e r } ->
31 aerl : setAtt ( w l i s t , aerl : getAtt ( w l i s t ) - - [ Item ] ) ,
32 aerl : setAtt ( s l i s t , aerl : getAtt ( s l i s t ) ++ [ Item ] ) ,
33 loop ( Balance , S e l l e r s - - [ S e l l e r ] , Booked ) ;
34 { cance l , Item , Price , S e l l e r } ->
35 loop ( Balance+Price , S e l l e r s - - [ S e l l e r ] , Booked - - [ Item ] , Advert i sed2 ) ;
36 a f t e r 0 ->
37 loop ( Balance , S e l l e r s , Booked , Advert i sed2 )
38 end .

Figure 5.5: User behaviour for the interactive market.
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Advertisement is performed in lines 2 to 8. A user extracts a random item from the sales list and
sends an advertisement message to everybody whose wish list contains that item.

When receiving an advertisement message (line 12), a user checks whether he can afford it and he had
not booked the item already. In this case, he sends an interest message to the seller and adds the item
to the Booked list. This makes the interaction protocol more robust in push-pull mode. To see why,
suppose that a user has just bought an item, but the update of his wish list at the message broker is
delayed. In such a circumstance, further (unsolicited) advertisement messages from other sellers about
the same item would still make it through the check at line 10. Without double-checking the list of
booked items (line 13), the user would buy the item again. To avoid that, the user keeps track of the
item (line 16), so that the check at line 13 can only be satisfied once for the same item.

When a user receives an interest message for an item, he checks whether the item is still in his sale list
(line 21). If so, he confirms the sale and updates his sale list and balance accordingly (lines 23-25).

Upon receiving a sold message that confirms a successful sale, a user moves the item from the wish
list to the sales list. If the seller cancels the deal, the user removes the item from his booked list so
that he can try again.

Expressiveness of counting. With particular regard to the case study considered in this section,
it may be worth making a few considerations about how counting can indeed support intuitive design
of complex interaction patterns. Specifically, the counting supports scenarios where the behaviour of
the involved entities evolves according to gathered groups of answers rather then replies from single
peers (see Sect. 5.1 for a more general discussion, and program 5.3 from Sect. 5.5.1 for an example).

To make the interactive market more attractive to advertisers, for instance, one might think to give
to sellers the opportunity to sell at the highest possible price. Roughly speaking, to add this feature,
one could slightly change the program in Fig. 5.5 in such a way that an interested buyer discloses his
bid price when notifying his interest in buying. The seller could then use counting to collect all the
answers from the users reached by his advertisement, and sell to the highest bidder.

Similarly, let us consider the case of a seller looking for a quick sale, and for this reason prepared to
lower the ask price after a given number of unsuccessful attempts to sell an item. Obviously, at the
same time the seller wants to minimise the chances of lowering the sale price while somebody is still
interested in buying at the current price. Without counting, the seller is not able to decide when it is
reasonable to stop looking for interested potential buyers, and thus the described variation would not
be obvious to implement.
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5.5.4 Graph Colouring

Consider the graph colouring problem in a message passing model where each vertex is implemented as
a process. Vertices exchange messages asynchronously in order to reach a final color assignment such
that all vertices eventually get assigned and adjacent vertices are colored differently. Furthermore, the
number of colors used should not exceed the maximum degree of the input graph plus one.

A solution to graph colouring in AErlang is similar to the one presented in Chapter 2, in which vertices
use their unique identifiers to resolve conflicts (that arise when two neighboring vertices propose the
same color). Each vertex iterates through a number of rounds. In each round, vertices exchange color
proposal messages with their neighbors; only the vertex with greatest id wins the conflict color. This
means that after sending a propose message, a vertex should consider all the messages from neighbors
in order to make a decision. We will use a receive with counting to program this behaviour.

Any vertex that wins a color then sends a message ‘done’ to its neighbors and terminates, other vertices
instead send a message ‘not_done’ to inform their status anyway. The ‘not_done’ vertices also collect
the coloring status from their neighbors in order to update the palette. This behaviour is again easily
captured by using a receive with counting of AErlang.

More concretely, we will enrich processes with the following attributes to model the graph colouring
scenario in AErlang:

• id: the unique vertex identifier

• nlist: the list containing ids of neighboring vertices

• maximal: the attribute recording if the executing process has the greatest id among unfinished
neighbors in a given round

• done: counts the number of neighbors which has already finished their coloring

• used: the set containing color values already taken

• round: the round number

The behaviour of a vertex is given in Figure 5.6. For convenience in accessing id and round, we keep
them as the parameters of the function. When starting a round, a vertex chooses the first color which
does not appear in the set used (line 2) and sends a ‘try’ message to neighbors (line 5). It then collects
a number of try messages from its neighbors, except those that have completed the coloring (line 6).
The attribute maximal is set to true if the vertex has the greatest id among neighbors. This implies
that the vertex will send a ‘done’ message (line 15). Otherwise, the vertex can not have the proposed
color, in which case it sends a ‘not_done’ message (line 17). It then waits for a number of replies
by using another receive construct with counting. This second multi-receive is necessary because
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1 ver tex ( Id , Round) ->
2 C = min_color ( aerl : getAtt ( used ) ) ,
3 N = length ( aerl : getAtt ( n l i s t ) ) ,
4 aerl : setAtt (maximal , t rue ) ,
5 to (" t h i s . id in n l i s t ") ! { ‘ try ’ , Id , C} ,
6 from(" id in t h i s . n l i s t " , N - aerl : getAtt ( done ) ) ,
7 receive
8 { ‘ try ’ , SId , C} when SId > Id ->
9 aerl : setAtt (maximal , f a l s e ) ;

10 { tryc , _, _} ->
11 ok
12 end ,
13 case aerl : getAtt (maximal ) o f
14 t rue ->
15 to (" t h i s . id in n l i s t ") ! {done , C} ;
16 f a l s e ->
17 to (" t h i s . id in n l i s t ") ! {not_done , Id } ,
18 from(" id in t h i s . n l i s t " , N - aerl : getAtt ( done ) ) ,
19 receive
20 {done , SColor } ->
21 aerl : setAtt ( done , aerl : getAtt ( done ) + 1) ,
22 aerl : setAtt ( used , s e t s : add_element ( SColor , aerl : getAtt ( used ) ) ) ;
23 {not_done , _} ->
24 ok
25 end ,
26 ver tex ( Id , Round + 1)
27 end .

Figure 5.6: Vertex program.

there may be more than one ‘done’ message sent from neighbors. Any color SColor associated in an
incoming ‘done’ message is then recorded as used while other messages are discarded. Finally the
vertex proceeds with the next round (line 26).

5.6 AErlang Performance Evaluation

In this section we discuss the performance evaluation of AErlang; the prototype is publicly available [3]
to reproduce the experimental results. Our experimentation focuses on the following aspects:

1. efficiency in terms of run-time overhead – Sect. 5.6.1;

2. scalability in terms of size of the instances and hardware resources – Sect. 5.6.2;

3. comparison of the broadcast and push forwarding strategies – Sect. 5.6.3;

4. comparison of the broadcast and push-pull forwarding strategies – Sect. 5.6.4;

5. comparison of ABEL and AErlang broadcast – Sect. 5.6.5.

Multiple case studies are used for the evaluation of these aspects. Specifically, the first three items
above are evaluated by relying on the stable marriage case study. The fourth aspect considers the
interactive market, and for the fifth point we make use of the distributed graph coloring problem.
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size
100 200 300 400 500

SMTI-aerl / SMTI-erl 2.99 1.73 1.92 1.98 2.20
SMA-aerl / SMTI-erl 2.21 1.36 1.36 1.43 1.65
SMA-aerl / SMTI-aerl 0.73 0.71 0.72 0.72 0.75

Table 5.5: AErlang to Erlang runtime ratios.

5.6.1 Efficiency

To evaluate the efficiency of AErlang, we compare the runtime performance of SMA-aerl, SMTI-aerl
(Fig. 5.3), and SMTI-erl. The latter being an Erlang program implementing the same matching
protocol used in SMTI-aerl and reported in the Appendix (Fig. A.1). The hardware environment used
for our experimentation is a machine consisting of 4 CPUs AMD Opteron 6376 2.3 GHz, 2MB Cache,
64GB RAM. The versions of OS and Erlang are Linux 4.4.0-62-generic and 19.1, respectively.

We generated multiple random input instances by considering problem sizes from 100 to 500. We
considered two attributes for women and two for men, each attribute having a domain of two values
(like in Table 5.3), with a probability of occurrence ranging from 0.1 to 0.9. We used the same ranges
for preferences. We selected 24 different combinations in the given probability ranges, and generated
10 instances for each combination. Since SMTI-erl and SMTI-aerl take preference lists as input, we
have also converted the problem instances to use preference lists. In fact, SMA can always be cast
into SM by converting preferences over attributes to preferences over identifiers. This can be done by
assigning a weight to each attribute and summing up the weights of all the attributes exposed by the
identifiers to obtain the preference list. Finally, we ran each instance 10 times and took the average
execution times.

For these experiments we rely on the push operating mode since in SMA predicates are dynamic and
attribute are static (see Sect. 5.3). The upper part of Table 5.5 reports the runtime ratio of the
SMTI-aerl and SMA-aerl programs with respect to SMTI-erl. Here, columns list the instance size,
whereas rows enumerate the compared variants. We observe that the ratio is always within the same
order of magnitude, more precisely we found a maximum ratio of 2.99 (observed for SMTI-aerl vs
SMTI-erl with 100 instance size), as highlighted by the bold entry in Table 5.5, and a minimum one
of 1.36 (observed for SMA-aerl vs SMTI-erl with 200 and 300 instance size). This suggests that the
new programming abstractions introduce an acceptable performance overhead (always within the same
order of magnitude) which is minimized when attributes are considered for predicate evaluation. In
fact, in Table 5.5 we can notice that SMA-aerl always shows lower ratios with respect to SMTI-aerl.
This is not affected by the instance size, i.e., with larger instance sizes the ratio remains within the
min-max values observed for rather small instance sizes.

It is worth noticing that the SMA-aerl variant always outperforms SMTI-aerl, as showed in the last
row of Table 5.5. This is due to the different cost of predicate evaluation, in fact the former uses sending
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predicates whose complexity is independent from the input size (e.g., ”hair = blonde and eye = amber”)
whereas the corresponding predicates of the latter need to check membership of identifiers within ties
and therefore may be as large as the size of the tie itself (e.g., ”id = w1 or id = w2 or...”). Note that
this also holds at the receiver side.

5.6.2 Scalability

The scalability of our prototype is evaluated by increasing: (i) the size of the input instances from
1k to 5k and comparing AErlang with AS-X10; (ii) the number of cores from 2 to 48 and comparing
AErlang with its Erlang counterpart. Similarly to previous section, in these experiments we used
the push operating mode. The hardware environment used for these experiments is an idle local
workstation equipped with 128 GB of memory, a dual Intel Xeon processor E5-2643 v3 (12 physical
cores in total) clocked at 3.40 GHz. The operating system is a 64-bit generic Linux kernel version
4.4.0, the used software is Erlang/OTP version 19.1, and X10 version 2.4.2.

Comparison with AS-X10

In [102], the authors proposed adaptive search as an efficient approach to the solution of the SMTI
and SMI problems. They model SMTI as a permutation problem and try to resolve blocking pairs
until an acceptable size of the matching is achieved. Their framework, namely AS-X10 implemented
in the X10 programming language [41], can handle instances up to the size of 1000 pairs with good
performance and scalability on a large number of cores thanks to a fine-tuned cooperation mechanism
between many parallel solvers.

SMTI aims at finding a matching of maximum size, since there might exist different matchings that
represent a solution for a SMTI instance. In [102] there is a reset mechanism to guide the search out
of sub-optimal solutions and try to achieve perfect matchings, i.e., when the matching size coincides
with the problem size. Since there is no guarantee that a perfect matching exists, the search stops
after a fixed number of steps.

To improve the matching size and guarantee a fair comparison with AS-X10, we adopted the lo-
cal approximation algorithm proposed in [88] and modified accordingly our SMTI-aerl program (see
Fig. 5.3). The idea is that an unmatched man, once his preference list is exhausted, can start afresh
once more. On this second attempt, a woman can prefer him to her current partner if they both have
the same priority on the woman’s preference list. This heuristic resulted in very good solutions, i.e.,
perfect matchings for all the problem instances used when comparing the performance of SMTI-aerl
with AS-X10.

In this experiment we used the inputs originally described in [72], which are generated by using
the tool [8] that takes three parameters as input; namely, size of the instance (n), probability of
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incompleteness (p1), probability of ties (p2). The generator has also been used in empirical studies of
SMP and its variants, for example, in the local search approach [67] and in constraint programming
[37]. We generated two classes of instances while considering instance sizes up to 5k pairs of elements
and the following sets of parameters: (i) 80% of incompleteness and no-ties instances (i.e., p1 = 0.8,
p2 = 0); (ii) 95% of incompleteness and 80% of no-ties instances (i.e., p1 = 0.95, p2 = 0.8). These
parameters were intentionally selected to be in line with those chosen in the evaluation of the adaptive
search approach, for a fair comparison [102].
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Figure 5.7: AErlang vs AS-X10: scalability over problem size.
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Figure 5.7 compares the performance of AErlang and X10 in solving multiple instances of SMTI,
while varying the problem size from one to five thousands. Data points represent the average runtime
ratio over one hundred runs between the two approaches. We can notice that X10 performs faster
than AErlang only on small instances with one thousand pairs of elements. However we do notice
that when increasing the size of the instances the AErlang program scales considerably better. This
gap tends to increase with size, making the AErlang program very competitive on larger instances.

Figure 5.8 compares the performance of AErlang and X10 while varying the number of cores from 1 to
12. For each problem size, a graph shows on the y-axis the runtime overhead expressed in seconds, and
the number of cores is reported on the x-axis. For small instances, X10 exhibits very good scalability,
but for larger instances, this no longer holds. On the contrary, AErlang’s scalability appears to be
quite modest but more consistent across all the considered sizes.

Comparison with Erlang

We implemented an Erlang program for the classical algorithm by Gale-Shapley, and used it to
compare runtime performance with the AErlang program for SMTI and SMI. We also used the same
input generator to generate problem instances for both SMTI and SMI problems, while considering
instance sizes up to 10k pairs of elements and the following set of parameters: 80% of incompleteness
and no-ties instances (i.e., p1 = 0.8, p2 = 0).

We ran the AErlang program for SMTI (see Fig. 5.3) and the Erlang program for SMI (see Fig. A.2)
to safely exclude any hidden complexity due to the management of the ties. The size of the instances
is fixed to the largest available option, i.e., 10 thousands of pairs of elements, and by ranging the
number of cores from 2 to 48. We ran 10 instances, 10 times each, and collected the average execution
times. This experiment was performed on a computing cluster [114] where we had access to nodes
with 64 Intel CPUs clocked at 2.3 GHz and 110 GB of memory running a scientific Linux distribution.

The results are presented in Figure 5.9, where the x-axis denotes the number of cores and the y-axis
reports the execution time in seconds on a logarithmic scale. Interestingly, the pronounced fluctuations
in the running times are consistent for both AErlang and Erlang programs. This suggests that
performance glitches within the Erlang subsystem end up affecting our AErlang prototype too.
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Figure 5.9: AErlang vs Erlang: scalability over cores.
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Figure 5.10: AErlang vs Erlang: scalability over problem sizes.

We also ran the Erlang and AErlang programs for the SMI problem, while ranging the size of the
instances from 1 to 8 thousands and the number of cores from 1 to 4. Figure 5.10 shows the execution
times of the two programs (in seconds) where each data point is the average of one hundred runs. We
notice that the performance gap between AErlang and Erlang reduces when increasing the number
of cores.

Summarizing, we can conclude that introducing the attribute-based programming abstraction leads to
a performance overhead that can be considered acceptable for some application scenarios, especially if
one considers the prototype nature of our AErlang implementation. The experimental results confirm
that nevertheless the scalability provided by the underlying runtime system is not significantly affected.

5.6.3 Broadcasting vs. Pushing

In this section we report the experimental results aimed to compare the performance of the push and
broadcast operating modes. We used SMA instances with size varying from 100 to 500, and we ran
the AErlang programs one hundred times for each size, and then we reported the average values.

The hardware environment used for these experiments is an idle local workstation equipped with 128
GB of memory, a dual Intel Xeon processor E5-2643 v3 (12 physical cores in total) clocked at 3.40 GHz.
The operating system is a 64-bit generic Linux kernel version 4.4.0, the used software is Erlang/OTP
version 19.1.

Figure 5.11 shows the performance runtime (expressed in seconds on a logarithmic scale) of the broad-
cast and push forwarding policies while varying the problem size. We observe a large performance gap
between the two policies. The execution time of the push strategy grows linearly with the problem size,
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whereas the broadcast explodes. In particular, with problem sizes of 100, 200 and 300, the time ratios
between the two policies are roughly 15, 190 and 750, respectively. For problem instances larger than
300, broadcast frequently timed out after 1000 seconds. By contrast, the push strategy can handle
the rest of the experimental dataset with a runtime overhead slightly larger than 3 seconds.
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Figure 5.11: Varying problem sizes.
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Figure 5.12: Varying CPU cores.

A further experiment was conducted by fixing the problem size at 200 pairs of communicating entities
and varying the number of cores. The experimental results are shown in Figure 5.12 where the
performance runtime is reported on a logarithmic scale, similarly to Figure 5.11. We can notice that
both policies follow the same trend as they are both able to achieve a certain speed up when the
number of cores increases. A difference is that the push strategy seems to stabilize when considering
a number of cores varying from 8 to 12, whereas broadcast keeps a decreasing trend. Similarly to
Figure 5.11, the runtime ratio between the two policies is quite large, in fact it goes from a speedup
factor of 191 on 12 cores (as shown in Fig. 5.11), to 794 on a single core.

To analyse the factors behind runtime overhead, we instrumented the AErlang program to collect
further details. Table 5.6 reports the information extracted during the execution of the AErlang
program on problem sizes varying in the interval 100-300. In particular, the columns in the mid-section
of Table 5.6 show the average execution times in seconds, the number of messages, the acknowledgement
messages due to counting, the filtering operations, and the total size of messages. The results attest
both communication and computational overhead. The difference between the number of exchanged
messages (and thus the size of messages) is indeed not negligible. Moreover, exchanging more messages
has the effect of increasing the local computational load, because processes have more messages to
filter.

On the other hand, as pointed out in Section 3.2, using modes other than broadcast may result in an
increased likelihood of inconsistencies between the local environment of a process and the replica stored
globally. To further investigate this aspect, we have compared the quality of the output under the two
operating modes. In particular we measured the size of the matching and the level of satisfaction of
partners, i.e., the similarity between one’s own preferences and the attributes of partners calculated
as a weighted sum. As reported in the two rightmost columns of Table 5.6, we observe no significant
gap between push and broadcast. This confirms that the push operating mode is definitely more
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filtering msgs matching satisf.
size mode time (s) msgs (k) acks (k) ops (k) size (MB) size level

100 push 0.13 13 4 4 3 88.6 496.8
broadcast 2.04 1149 20 368 352 88.6 496.9

200 push 0.49 50 17 17 11 176.0 988.8
broadcast 99.84 8919 79 3051 2835 175.8 988.2

300 push 1.25 113 37 37 24 265.0 1494.0
broadcast 929.10 30600 181704 10510 9503 265.1 1493.6

Table 5.6: Push vs. Broadcast comparison details.

appropriate han broadcast for the considered scenario, since it yields considerable performance speedup
without compromising the quality of the computed solution.

5.6.4 Broadcasting vs. Push-Pulling

The goal of the experimentation described in this section is to compare the efficiency of the push-
pull and broadcast operating modes on the interactive market case study. We generate the datasets
according to the following parameters. We considered systems of 20 users, 200 overall different items
to exchange with randomly generated prices between 10 and 50, size of the wish list 20 or 40, size of
the sale list 20. For each user, we allocate an initial budget sufficient to buy all items of interest. We
performed this experiment on the same machine as Sec. 5.6.3.

We let the system run up to a market time, i.e., essentially a timeout on the next successful sale, of
10s and 20s. We stop taking the measures either after the given market time, or when the wish list
of even a single user gets empty. This last condition avoids bias against broadcast, because when the
wish list of a user is empty the system keeps generating useless advertisement messages.

The main cause of concern when running a system in push-pull mode is in the possible delays when
updating an attribute or a receiving predicate in the message broker (see Sect. 5.3). Such a circum-
stance, however, would be unlikely when using a single machine for experiments, due to the very short
time window occurring between the local update and the update in the message broker. To reproduce
more realistic scenarios, we simulated network delays by artificially slowing down any communication
among the processes themselves, and between processes and the message broker. We considered delays
of 0ms, 2ms, 20ms, and 40ms [74]. For each combination of the above parameters we generated ten
instances, and run each instance ten times.

To evaluate the broadcast and push-pull operating modes in a realistic setting, we compared them
in terms of cost and quality of the service. Intuitively, a service provider implementing a platform
for the interactive market may want to cut on communication costs by limiting the overall number of
exchanged messages. On the other hand, to be motivated to use the service, a seller would like an
advertisement to lead to a successful sale, whenever possible. Under the considered operating modes,
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we thus measured: (a) the number of messages per successful sale, and (b) the number of successful
sales.

Tables 5.7 and 5.8 report the average measures considering the size of the wish list equal to 20 and
40, respectively. We report the number of exchanged messages (expressed in thousands), the number
of sales, and the number of messages per sale. We note that mode push-pull requires less (almost one
order of magnitude) exchanged messages per sale with respect to broadcast, while at the same time
not affecting the overall number of successful sales. Interestingly, the number of sales under push-pull
mode is actually slightly greater than in broadcast, due to the fact that in broadcast mode processes
spend some time in filtering inbound messages instead of focusing on the market activity. The above
considerations are consistent over the considered network delays.

t=10s delay
0ms 2ms 20ms 40ms

mode msg sales m/s msg sales m/s msg sales m/s msg sales m/s
push-pull 2.5 161.7 15.7 2.6 165.5 15.6 2.6 162.7 15.7 2.5 161.2 15.7
broadcast 21.4 154.3 138.6 21.8 158.6 137.1 21.9 159.5 137.3 21.9 159.9 137.2

t=20s delay
0ms 2ms 20ms 40ms

mode msg sales m/s msg sales m/s msg sales m/s msg sales m/s
push-pull 2.5 163.3 15.6 2.6 165.9 15.5 2.6 163.0 15.7 2.5 161.4 15.7
broadcast 21.5 156.7 137.2 21.7 158.8 137.0 21.9 160.0 137.2 21.9 160.0 137.3

Table 5.7: Experimental results (wish list size = 20).

t=10s delay
0ms 2ms 20ms 40ms

mode msg sales m/s msg sales m/s msg sales m/s msg sales m/s
push-pull 5.7 314.2 18.3 5.8 310.8 18.6 57.9 309.8 18.7 5.7 306.7 18.7
broadcast 39.4 285.6 138.0 40.7 298.0 136.6 40.9 300.2 136.4 40.9 300.5 136.3

t=20s delay
0ms 2ms 20ms 40ms

mode msg sales m/s msg sales m/s msg sales m/s msg sales m/s
push-pull 5.7 314.1 18.3 5.8 311.7 18.6 5.8 308.5 18.7 5.7 307.1 18.7
broadcast 39.2 283.2 138.4 40.6 297.7 136.4 40.9 300.7 136.1 41.0 301.2 136.0

Table 5.8: Experimental results (wish list size = 40).

5.6.5 AErlang broadcast vs. ABEL broadcast

In this section we compare ABEL with AErlang operating in broadcast mode. This is because ABEL
always broadcasts messages. The difference between the two is that AErlang uses one single broker
(featuring parallel message forwarding), whereas ABEL parameterizes with the number of brokers
(i.e., tree nodes).

We take the same set of input graphs reported in Section 3.4.2 (see Chapter 3) and ran the AErlang
program (see Figure 5.6) to color each graph. Table 5.9 shows the execution times, the number of
colors, the number of rounds, the number of messages, and the total size of messages. All the numbers
reported in Table 5.9 are the average over 50 runs.
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Graph Time (s) #C #R msg
(in milli.)

msg size
(in MB)

flat300_28_0 2.6 48 48 2.8 6,752
dsjc500.1 1.79 20 20 3.1 3,099

will199GPIA 2.71 9 19 5.7 2,971
dsjc1000.1 25.3 32 32 19.9 35,044

Table 5.9: The results of graph coloring in AErlang.

For the comparison, we also report the original results of ABEL in Table 5.10 where the execution
times are shown for 1 and 31 brokers.

Graph Times (in seconds) #C #R msg
(in milli.)

msg size
(in MB)T = 1 T = 31

flat300_28_0 37.4 13.6 47.7 151.7 4.67 22,229
dsjc500.1 29 9 19.6 69.7 5.58 10,449

will199GPIA 71.9 20.4 9.1 165.2 15.9 14,734
dsjc1000.1 372.1 98.8 31.5 144 46.3 156,966

Table 5.10: The results of graph coloring in ABEL.

We can see that the performance of ABEL is about one order of magnitude worse than AErlang broad-
cast, even when it uses up to 31 brokers. About the other metrics, AErlang program uses less messages
and bandwidth to color the same set of input graphs, but at the same time returns the similar number
of colors. Furthermore, the number of execution rounds and colors used by AErlang are the same for
all runs of each input, while ABEL varies. This implies that the proposed algorithm, implemented
in AErlang is deterministic. Indeed, AErlang’s synchronization constructs enabled vertices to agree
on the common coloring status (i.e., the colors taken, the number of neighbors that completed the
coloring process) with their neighbors, before proceeding with the next round. Moreover, the starting
of a new round is autonomous in AErlang processes. By contrast, in the ABEL program, vertices
indirectly influence the starting of new rounds at others.

Nevertheless, with the application of some optimization strategies, ABEL performance can be compa-
rable to that of AErlang. Table 5.11 reports the results of ABEL program (using 31 brokers) where
we disabled the message delivery at ‘done’ vertices, plus constraining the interface to eliminate the
inclusion of neighbors lists in every message (see Section 3.4.2, Chapter 3).

Graph Time (s) #C #R msg
(in milli.)

msg size
(in MB)

flat300_28_0 5.9 47.5 150.5 4.72 1,444
dsjc500.1 4.7 19.5 72.3 5.69 1,781

will199GPIA 12.4 9 166.2 16.3 5,089
dsjc1000.1 35.6 31.4 144.6 46.2 14,452

Table 5.11: Optimizing the results of graph coloring in ABEL.

In comparison with the best results of ABEL, AErlang broadcast still performs about 2 to 4 times
better, despite the larger consumption of the bandwidth. The fact that AErlang exposes a larger
message size is because it considered registered attributes as processes interfaces. In the considered
case study, this means AErlang has included the neighbors lists of vertices in every messages.
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The difference between AErlang and ABEL performances can also be inferred by looking at their
implementation details. In ABEL, components features parallel processes which relies on a local
coordinator for interleaved executions. In the meanwhile, message passing occurs via two steps: a
request of a fresh id for the message to be sent, and the actual send of the message to the connected
broker. While requesting fresh ids are independent between components, message passing in ABEL is
sequentialized. In AErlang, message passing is inherently asynchronous and there is no need of fresh
ids.

5.7 Concluding Remarks

Our prototype language extension, AErlang, is a middleware enabling attribute-based communication
among Erlang processes, with the aim of preserving Erlang’s scalability. AErlang plays the role of
global process registry which allows processes to register and update their attributes. It also takes
charge of forwarding messages from senders to receivers by evaluating the predicates they supply.
Currently, AErlang implements four message forwarding strategies with different performance and re-
liability: broadcast, pull, push, and push-pull. In broadcast mode, the system immediately broadcasts
any outbound message from any sender; at the other end, each receiver individually evaluates both
the sending and the receiving predicates to discard irrelevant messages. In pull mode, the system per-
forms an early check on the receiving predicates of the interested receivers and only forwards outbound
messages from selected senders; the messages are then further filtered by the receivers according to
the sending predicate. In push mode, the system checks the sending predicate and only forwards the
outbound message to selected receivers; the messages are then further filtered by each receiver sepa-
rately according to the receiving predicates. In push-pull mode, the system checks both the sending
and the receiving predicates, then forwards the message to the appropriate peers.

Unlike the approach in Chapter 3 that aims at having a one to one correspondence between ABEL
and AbC constructs, an AErlang process is an Erlang process with support for multicast and syn-
chronization. A program written using AErlang may deviate from an AbC specification for two main
reasons: components have a single thread of control and messages sent to a group of receivers are not
ordered. For the former, programmers have to rely on process mailbox and the reactivity nature of
processes to properly code the desired behaviour. Because of the latter, programmers have to mix
synchronization code with functionality code when processing delivered messages in mailboxes. From
AbC point of view, an interaction protocol that works can not be directly rendered as an AErlang
program. Rather, it is required to reconsider the actual interactions among AErlang processes.

We have evaluated the efficiency and scalability of our AErlang approach with a number of experiments
that compared the runtime performance of actor-based implementations for a known solution to a
hard matching problem. We have shown that the overhead resulting from the new communication
primitives is acceptable, and our prototype successfully preserves Erlang’s efficiency and scalability.
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We have also implemented a variant of the above matching problem that requires a more involved
interaction pattern and have compared it with an ad-hoc parallel version based on adaptive search
implemented in X10 that can scale very well when increasing the number of cores. The experimental
results have shown that our prototype does not currently scale well when increasing the number of
cores. However, AErlang does indeed scale considerably well on large instances, whereas these turn
out to be progressively out of reach for the algorithm based on adaptive search implemented in X10.
We have also studied the impact of using different strategies for exchanging messages and evaluating
the sending and receiving predicates that determine information exchange.

In our view, the choice of the forwarding strategy does depend on the specific class of problems under
consideration. Generally, the broadcast mode is better suited for modelling highly-dynamic systems
where attributes and predicates change frequently, but it requires a high number of message exchanges,
and thus may not be suitable to large systems. On the other hand, the push mode is appropriate for
systems whose attributes do not change frequently, while push-pull works well when also the predicates
are quite static. In our experiments, broadcast turns out to be affected by a considerable computational
and communication overhead that makes it not suitable to large-sized systems. In contrast, we have
seen that, for some classes of systems, alternative operating modes (such as push or push-pull) can
efficiently compute solutions of comparable quality, and are therefore definitely more appropriate.

As a final remark, we think that the proposed approach of AErlang can be applied to other concurrent
languages such as Scala, Elixir as these share same concurrency model with Erlang. Specifically, the
extension of communication primitives to their attribute-based version can be done for these languages.
On the other hand, the design of message dispatching policies are quite general. It would be interesting
to see if enriching ABEL with some messaging policies can improve its performance.
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Related Works

The general theme of our work has touched on several lines of researches, particularly related to other
communication models with mechanisms for establishing group communication among processes and
to other implementations of the AbC calculus.

6.1 Communication and coordination models.

Separating the functional part from the coordination mechanisms has been proposed to model complex
interactions in some classes of multi-agent systems. Coordination models such as [28, 69, 112] allow
the programmer to (compositionally) describe the communication patterns without considering the
local behaviour of the components. In these approaches, the focuses of programming is at identifying
communication patterns between participating agents and to define the aggregated and conditional
behavior for each communication. Thus, communication is treated as first class citizens which can
be manipulated by programming constructs. In comparison, AErlang and ABEL (being based on
attributes) embrace the relationship between the exposed features of the components and their pos-
sible interactions. The communication patterns are naturally described by logical predicates over the
attributes, thereby the behaviour of the system is the result of the interaction between individuals.

The ability of a process to reacts based on a set of messages was proposed in [64]. They introduced
the notion of activators and receptionists. An activator is a command that blocks the executing
process until a certain set of messages satisfying a boolean condition arrives. Receptionists are entities
communicated in an inquiry message, and used by the activator command as the reply destinations
for responses. In [70] these two concepts are merged in a single command, namely multicall, that
explicitly handles the creation of the activator and the receptionists for the caller, in addition the
command allows aggregating the received messages. In both models, the process may unblock without
having to wait for responses from all the recipients of the inquiry message. The counting constructs of
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AErlang share a similar idea, i.e., they allows a process to multicast an inquiry and collects responses
from a set of processes. However, a process on waiting for a number of replies can also react to
each response. The unblocking condition is based on counting the number of response instead of the
satisfaction of the boolean condition over messages contents.

ActorSpace [15] is a programming paradigm which extends actor-based point-to-point communication
to group-based communication. The model utilizes pattern matching on actors attributes to select
groups of receivers. A sender can specify such groups by patterns represented as regular expressions
over static actors attributes. The pattern is interpreted at run time to determine the intended receivers.
However, only senders can select their partners; receivers have no control on incoming messages. In
addition, ActorSpace provides primitives for explicit control of passive containers of actors called spaces
that represent contexts for matching patterns. Spaces are first class entities that can be created and
destroyed by programmers and may be nested or overlap. By contrast, attribute-based communication
paradigm abstracts from the notion of explicit groups. Interacting partners are selected dynamically
depending on the evaluation of the send and receive predicates.

Linda [68] is one of the first coordination languages for programming distributed systems. Processes
communicate via a shared memory called tuple space, where any process can add, read or withdraw
data objects. The communication model is time and space decoupling, and allows processes to exchange
information regardless of the availability of interacting entities in the interim. Although simple and
intuitive, tuple spaces have not been widely used. A comprehensive comparison between tuple spaces
implementations can be found in [38]. Attribute-based communication, instead is categorized as a
message passing model. Information exchange thus only happens at the communication time, and
requires the presence of the involved agents.

6.2 Implementations of AbC

There has been other work aiming at extending well established languages to enrich them with the
primitives of the AbC calculus and thus to enable programmers to directly use attribute-based com-
munication.

AbaCus [26] is based on Java and, like AErlang, relies on a centralised broker that keeps track of
all components, intercepts every message and forwards it to all registered components. It is then the
responsibility of each component to decide whether to receive or discard the message. In contrast, in
AErlang (depending on the operating mode), to avoid broadcast, the broker relies on an attribute
registry, where components store their attribute values for message filtering.

GoAT [19] extends Go [9]; it relies on an attribute-based programming interface that is parametric
with respect to different brokering distributed infrastructures for message exchange to mediate the
interaction between components. The distributed infrastructures, originally proposed in [20] and
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therein proved correct with respect to the original centralised semantics, are instrumental to avoid the
bottleneck of a single centralised broker. It would be interesting to experiment with the distributed
implementation of the broker also in AErlang and to study the effect of combining message filtering
and distributed broker.

ABEL and GoAT shares some similarity in terms of implementation as both replicated the idea
of the distributed coordination infrastructure [20]. GoAt provides the ring and the cluster shapes, in
addition to the tree-based infrastructure. At the programming levels, non deterministic choices are (as
traditionally) implemented as if then else constructs, process recursion is implemented as infinite loop
in both AbaCus and GoAt. In this respect, ABEL APIs is closer to the calculus than that of GoAT
and AbaCus. This fact could make program transformations easier such as automatic translating AbC
specifications into ABEL programs, or develop domain specific languages for AbC on top of ABEL.

jRESP [5] adds attribute-based communication to Java but takes the SCEL paradigm [51] as starting
point rather than AbC and is more oriented towards programming autonomic and adaptive systems.
jRESP designates ports with specific roles at nodes (or components) for communication. Nodes
agreeing to interact via a port can use any of the communication protocols (such as broadcast via a
central server, multicast or point-to-point) supported by the chosen port. jRESP also requires that
all messages are delivered to all components; this choice simplifies the design and the implementation
of the message broker but introduces significant communication overhead, especially in large systems.

Erlang has been used as the host language for incorporating domain specific abstractions to deal
with multi-agents and self-adaptive systems [55, 90, 111]. Among these, we touch on ContextEr-
lang [111], an extension of Erlang for context-oriented programming [80]. ContextErlang extends
Erlang’s gen_server behaviour with context_agent whose callback functions can be overridden by
(functions implementing) variations at runtime. During operation, a context change triggers the ac-
tivation of the corresponding variations, which leads to changing the behaviour of context_agents.
The difference from our approach is that we exploit exposed attributes, thus processes can adapt
their behaviour implicitly using predicate-based message passing. In practice, we can model context-
awareness by updating attributes when receiving information from appropriate sensors. Extended
communication primitives for Erlang have been considered also in other works. The most closed one
is JErlang [106] that extends Erlang’s receive operations into a receive-like join construct inspired
from Join-Calculus [61]. Differently from AErlang, entirely based on source-to-source translations,
JErlang embeds the new receive primitive with low-level optimisations within an altered version of
Erlang’s VM.
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6.3 Verification

Analysing concurrent systems by relying on process algebraic specifications has been considered in [76].
Other works, [97, 113] have taken an approach similar to ours and perform verification by translating a
specification formalism into a verifiable one that could make use of existing model checkers. There are a
few works towards the verification of ensemble-based systems which are of some relevance. In [50], the
authors translated a simplified version of SCEL into Promela, the input language of the SPIN model
checker. Similarly, [89] translated HELENA specifications into Promela specification and proved that
the translation preserves satisfaction of LTL formulae. Both tools exploited the SPIN model checker
for verifying liveness properties and deadlock freedom. The SCEL operational semantics has also been
implemented in Maude [33] for assessing qualitative and quantitative properties.

Symbolic verification of systems expressed in a variant of AbC has been considered in [44]. The basic
idea is to translate the system specifications into non-deterministic C programs to be analysed with
existing general-purpose SAT-based techniques.
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Conclusions and Future Works

In this thesis, we studied the merits of attribute-based communication with a focus on programming
and verification. The general benefits of using predicate-based message passing as a novel paradigm
are by now rather clear; it has indeed been shown in a number of papers [21, 23, 93] that components
interactions benefits significantly from the use of predicates. However, implementability, scalability,
performance and proof of correctness of systems specified by resorting to the new communication
primitives are still a concern.

For programming and experimenting with attribute-based communication, we have initially instanti-
ated the novel programming abstractions on top of Erlang. This language was chosen for its lightweight
concurrency model and its advanced features encompassed in battle-tested standard libraries. Our
work considered two different approaches in providing language supports for the novel paradigm.

First, starting from the semantics of AbC - a kernel calculus that formalizes attribute-based communi-
cation, we designed and implemented a domain-specific framework for AbC in Erlang, namely ABEL.
Its programming constructs are designed to mimic AbC primitives. Thus, programming in ABEL
is similar to specifying models in AbC . Furthermore the direct correspondence between AbC speci-
fications and ABEL programs paved the way to formal verification of programs via model checking
the original AbC specification. Indeed, the explicit-state model checker [81] helped us to verify early
designs of the case studies and to come up with correct specifications. From the verified specifications
we have then derived the ABEL programs introduced Chapter 3.

To implement the broadcasting parallel operator among AbC components while guaranteeing the
expected synchronous semantics we resorted to a sequencer based protocol that takes care of delivering
messages according to a total ordering [20]. The parallel operator among processes inside components
is instead implemented by using a reactive state machines associated to the component that coordinates
input and output actions of parallel processes. We have provided a number of experiments to analyse
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the performance of ABEL programs. These experiments showed that the cost of running programs
that fully respect AbC semantics is quite high.

In the second approach, we sacrificed the semantics of AbC calculus and more simply extended
Erlang processes with programming abstractions for attribute-based communication. We thus pro-
posed AErlang, a prototype that enables attribute-based communication among Erlang processes.
AErlang conveniently combines the benefits of the novel paradigm with the efficiency and scalability
of Erlang; in addition, it supports several policies for arbitrating messages exchanges which depending
on the nature of attributes and predicates changes can cut down communication and computational
overheads of broadcast. Our experiments with AErlang showed that the approach copes well with the
main sources of complexity of collective adaptive systems, such as anonymity, open-endedness, adap-
tivity, and their large size. Thus, it allows programmers to concentrate on the essence of the system
to implement, by relieving them from the burden of working out low-level details to be approached on
a case-by-case basis.

We also considered the issue of automatic verification and based the reasoning about AbC specifications
on the UMC model checker [81]. UMC relies on doubly-labelled transition systems as a formal model
and on a customized temporal, branching time logic called UCTL. We have proposed a structural
translation that brides the gap between the high-level syntax categories of AbC and the UMC modeling
language. Specifically, the specification of a given AbC system is mapped into a unique UML-like state
machine, where interesting component attributes and communication actions are made observable.
We have showed that our approach can be helpful for identifying emerging properties and unwanted
behaviours on a number of non-trivial case studies.

Future Works

Much work remains to be done to make our prototype implementations more attractive in practice.
For example, an extensive evaluation on arbitrarily large instances that use complex predicates and
frequently changing attributes would be useful to assess the overall robustness. An in-depth perfor-
mance evaluation to understand whether the large size of the system stresses the underlying scheduling
mechanisms would be very helpful. A systematic evaluation of the cost of predicate handling would
be very useful to improve efficiency. Indeed, since predicates can have an arbitrary complexity, their
evaluation may add a significant overhead, and efficient predicate evaluation is known to be non-
trivial [60]; looking for more efficient ways to handle it is thus very important. A comprehensive
experimentation by varying the number of attributes, the size of the domains, the frequency of their
updates, and their probability distribution would be very useful to devise different handling strategies
according to a finer-grained classification of the attributes.
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We think that attribute-based communication can be implemented in other concurrent languages
by following our Erlang approaches, in particular, actor languages such as Scala, Elixir. Generally,
extending the paradigm across different programming environments would certainly allow a deeper
investigation on the effectiveness of attribute-based communication.

For improving AErlang, we notice that some optimization strategies can be applied. First, AErlang
predicates are represented in form of strings, which requires parsing every time a communication
action taking place. We may gain some efficiency by representing predicates as anonymous functions
(similar to ABEL). In addition, AErlang, by default considers registered attribute names as processes
interfaces, and thus includes this portion of the environment in every messages. It is not always the
case that receiving processes would use this portion of sender’s environment. We would like to study
to what extent we can reduce the message size based on remote attribute names appearing in receiving
predicates (e.g., using static analysis). Second, a more serious treatment of the declared interfaces
is helpful to classify processes into groups. Currently, AErlang keeps all attributes in a single, flat
table. The cost of scanning the whole table for selecting partners can be huge. Registered processes
however, can be grouped based on their public interface. Each group can be taken care by different
process registries and message brokers. Message forwarding among processes would then be able to
work out if a sent message is internal to a group or should be directed to another group, possibly
in a way similar to [39]. Along this direction, message forwarding policies could be re-designed and
re-evaluated. Moreover, language abstractions that support for expressing useful communication and
synchronization patterns [18, 61, 63] can be added. Last but not least, we would like to study a formal
semantics for AErlang, possibly separating out its operating modes. This would general increase the
confidence of writing and reasoning about AErlang programs. One may provide a formal semantics
for AErlang, e.g., following the approach in [111] which distills a formal semantics for ContextErlang
from an implementation. In our case, this task would be simpler when considering separately AErlang
operational modes. On the other hand, we would like to study the approach in [71] which provides a
semantics of a communication layer, independently from actors computations. The main advantages
is that their approach separates functional concerns from communication concerns (which is usually
complex), and allows composing simple communication patterns into more expressive ones.

For improving ABEL, we plan to equip it with an asynchronous semantics to relax the total ordering
of message delivery. We would like also to automatically generate ABEL code from the verified AbC
specifications. This would facilitate a model-driven development approach for the AbC paradigm,
similar to the study [105] done for the Spi-calculus and its implementations in Java.

For automatic verification, we would like to port our approach to other model checkers, different
from UMC. The tool selection depends on some major factors such as the expressiveness of modeling
language, the support for property definition and verification performance. A recent survey [99] for
seven well-known verification frameworks suggested us that nuSMV [42], mCRL2 [75], CADP [66]
provide best support in terms of property definition language (i.e., both CTL and LTL), while the
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nuSMV tool outperforms the others in terms of performance. It thus is interesting to provide mappings
from AbC into these selected toolset. Furthermore, the program verification approach used in [44] for
a variant of AbC is promising and worth to considered.

Alternatively, since AErlang is automatically translated to Erlang (Sect. 5.4), any general-purpose
verification technique for Erlang can in principle be applied to AErlang. Existing verification tech-
niques for Erlang are based on traditional model checking, and work either directly on the program’s
source code [62, 78], or on process-algebraic specifications obtained by abstracting from the pro-
gram [77]. A more sophisticated technique combines infinite-state model checking and static analysis
via abstract interpretation, but assumes a restricted version of the language and only considers safety
properties [56].

Further evaluations can be conducted by extending AbC with a probabilistic-based specification, i.e.,
the communication among interacting entities may be regulated by probability distribution functions
expressing the probability of success in matching exposed users’ attributes, similarly to the preferences
studied in [35]. This leads to probabilistic reasoning of AbC and it is possible to analyze the stochastic
interactions between communicating entities according to the probability of matching predicates with
attributes. Properties of interest in this setting can be the probability of reaching a matching within
a certain number of rounds, or the expected number of rounds to reach a stable matching. In this
direction, we would like to also consider techniques developed for modeling and analysing probabilistic
systems [16, 17, 118].

Finally, we would like to remark that the synchronous semantics of AbC appears to be too demanding
for many applications and to be a serious limitation when large scale distributed systems are consid-
ered. In fact, some of the case studies showed that a total ordering of the exchanged message in a
multicast is not necessary. For example, vertices in our graph colouring scenario can send messages
asynchronously without changing the final outcome and in the stable marriage scenario, the result is
the same irrespectively of the order women process messages. In a forthcoming paper, we will consider
an asynchronous semantics of AbC , that by relaxing the total ordering requirement will give rise to
more efficient computation.
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Erlang programming

A.1 Erlang program for SMTI problem

The Erlang program that implements the matching algorithm for the SMTI problem (see Section
5.5.1) is reported in Figure A.1. This program was used for the experiments that lead to the results
reported in Sect. 5.6.1 (see Table 5.5).

In comparison with SMTI-aerl (see Figure 5.3), SMTI-erl is more intricate and longer (i.e., 37 vs 47
lines of code). Moreover, the Erlang program only works on the input where identifiers are provided,
in fact we use the global module for registering agents identifiers and for sending messages. In case
the input is in attribute format, and in general in case of more complex interaction predicates, there
is no obvious way to encode the attribute-based interaction directly in Erlang.

A.2 Erlang program for SMI problem

Figure A.2 presents the Erlang program that was used as a basis for the experiments about scalability
whose outcome is reported in Sect. 5.6.2 (see Figures 5.9 and 5.10).
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1 man( Prefs , Id ,P) ->
2 [H|T] = Prefs ,
3 Cnt = [ g l oba l : send (X,{ propose , Id }) | |
4 X <- H] ,
5 NP = rece ive_count ( Id , l ength (Cnt ) ,P) ,
6 case NP o f
7 none ->
8 man(T, Id ,P) ;
9 _ ->

10 r e c e i v e
11 {goodbye ,NP} ->
12 man( Prefs , Id , none )
13 end
14 end .
15
16 rece ive_count (_, 0 ,P) -> P;
17 rece ive_count ( Id , Cnt ,P) ->
18 r e c e i v e
19 {yes ,W} ->
20 case P o f
21 none ->
22 g l oba l : send (W,{ confirm , Id }) ,
23 rece ive_count ( Id , Cnt - 1 ,W) ;
24 _ ->
25 g l oba l : send (W,{ busy , Id }) ,
26 rece ive_count ( Id , Cnt - 1 ,P)
27 end ;
28 no ->
29 rece ive_count ( Id , Cnt - 1 ,P)
30 end .

1 woman( Prefs , Id ,P) ->
2 r e c e i v e
3 {propose , M} ->
4 case bof ( Prefs ,P,M) o f
5 t rue ->
6 g l oba l : send (M,{ yes , Id }) ,
7 r e c e i v e
8 { confirm ,M} ->
9 g l oba l : send (P, {goodbye , Id }) ,

10 woman( Prefs , Id ,M) ;
11 {busy ,M} ->
12 woman( Prefs , Id ,P ) ;
13 f a l s e ->
14 g l oba l : send (M, no ) ,
15 woman( Prefs , Id ,P)
16 end
17 end .

Figure A.1: Stable Marriage with preference lists in Erlang (SMTI-erl).

1 man( Prefs , Id ) ->
2 [H|T] = Prefs ,
3 g l oba l : send (H, { propose , Id }) ,
4 r e c e i v e
5 no ->
6 man(T, Id )
7 end .

1 woman( Prefs , Id , Partner ) ->
2 r e c e i v e
3 {propose , Man} ->
4 case bof ( Prefs , Partner ,Man) o f
5 t rue ->
6 g l oba l : send ( Partner , no ) ,
7 woman( Prefs , Id ,Man) ;
8 f a l s e ->
9 g l oba l : send (Man, no ) ,

10 woman( Prefs , Id , Partner ) ;
11 end
12 end .

Figure A.2: Classical Stable Marriage with preference lists in Erlang (SMI-erl).
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An AbC specification

We provide the specification for the bottom up solution of the stable marriage problem mentioned in
Chapter 4.

B.1 Bottom-up Stable marriage

component Man
attributes : id , partner , m1, m2, pw1 , pw2 , cw1 , cw2 , queue
observables : par tner
behaviour :

let {
Q := (x = ‘ yes ’ ) (x , y , z , t ) . [ queue := queue +[ [ $x , $y , $z , $t ] ] ]Q

H := ( ’ propose ’ , t h i s . id , t h i s .m1, t h i s .m2)@(pw2 = th i s . pw2) .HF
HF :=

% accept cur rent partner even i f not bes t
<queue /= [ ] and partner = 0>
( ‘ confirm ’ , t h i s . id , t h i s .m1, t h i s .m2)@( id = th i s . queue . hd [ 1 ] ) .
[ partner := queue . hd [ 1 ] , cw1 := queue . hd [ 2 ] , cw2 := queue . hd [ 3 ] ,
queue := queue . t l ]HF

+
% i f a be t t e r match i s a l s o a r r i v ed prepare send bye and swap

(<queue /= [ ] and partner /= 0 and ( queue . hd [ 3 ] = pw2 and cw2 /= pw2)>
( ‘ bye ’ , t h i s . id )@( id = th i s . partner ) .
[ partner := 0 , cw1 := 0 , cw2 := 0 ]HS)

+
% no t i f y t o o l a t e f o r delayed r e p l i e s ( not b e t t e r then cur rent match )

(<queue /= [ ] and partner /= 0 and ( queue . hd [ 3 ] /= pw2 or cw2 = pw2)>
( ‘ too l a t e ’ , t h i s . id )@( id = th i s . queue . hd [ 1 ] ) .
[ queue := queue . t l ]HF)

+
% i f abandoned by cur rent partner , but queue not empty cont inue

<queue /= [ ] >(x = ‘ bye ’ and y = th i s . partner ) (x , y ) .
[ partner := 0 , cw1 := 0 , cw2 := 0 ]HF

+
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% i f abandoned by cur rent partner , and empty queue r e s t a r t with low expec ta t i on s
<queue = [ ] >(x = ‘ bye ’ and y = th i s . partner ) (x , y ) .
[ partner := 0 , cw1 := 0 , cw2 := 0 ]H

+
% i f empty queue but not best make be t t e r proposa l

<queue = [ ] and partner /= 0 and ch /= ph>
( ‘ propose ’ , t h i s . id , t h i s .m1, t h i s .m2)@(w1 = th i s . pw1 and w2 = th i s . pw2) .HS

HS :=
% accept cur rent partner ( j u s t swapped , i s s u r e l y the best )

<queue /= [ ] and partner = 0>
( ‘ confirm ’ , t h i s . id , t h i s .m1, t h i s .m2)@( id = th i s . queue . hd [ 1 ] ) .
[ partner := queue . hd [ 1 ] , cw1 := queue . hd [ 2 ] , cw2 := queue . hd [ 3 ] ,
queue := queue . t l ]HS
+

% no t i f y t o o l a t e f o r a l l o ther queued r e p l i e s ( cannot be be t t e r )
(<queue /= [ ] and partner /= 0 and ( queue . hd [ 3 ] /= pw2 or cw2 = pw2)>
( ‘ too l a t e ’ , t h i s . id )@( id = th i s . queue . hd [ 1 ] ) .
[ queue := queue . t l ]HS)

+
% r e c e i v e f i r s t r ep ly o f t h i s s t r onge r requirment , bye ex " lower " partner

<queue /= [ ] and partner /= 0 and ( cw2 /= pw2 and queue . hd [ 3 ] = pw2)>
( ‘ bye ’ , t h i s . id )@( id = th i s . partner ) .
[ partner := 0 , cw1 := 0 , cw2 := 0 ]HS

+
% i f abandoned by cur rent partner , but queue not empty cont inue

<queue /= [ ] >(x = ‘ bye ’ and y = th i s . partner ) (x , y ) .
[ partner := 0 , cw1 := 0 , cw2 := 0 ]HF

+
% i f abandoned by cur rent partner and empty queue , then r e s t a r t with low expec ta t i on s

<queue = [ ] >(x = ‘ bye ’ and y = th i s . partner ) (x , y ) .
[ partner := 0 , cw1 := 0 , cw2 := 0 ]H

}
in i t Q | H

end

component Woman
attributes : id , partner , w1 , w2 , pm1, pm2, cm1 , cm2 , queue
observables : par tner
behaviour :

let {
Q := (x = ’ propose ’ ) (x , y , z , t ) . [ queue := queue +[ [ $x , $y , $z , $t ] ] ]Q

H :=
% accept s when being s i n g l e

<queue /= [ ] and partner=0>
( ‘ yes ’ , t h i s . id , t h i s .w1 , t h i s .w2)@( id = th i s . queue . hd [ 1 ] ) .

(
( x = ‘ confirm ’ ) (x , y , z , t ) .
[ partner := queue . hd [ 1 ] , cw := queue . hd [ 2 ] , cb := queue . hd [ 3 ] ,
queue := queue . t l ]H
+

(x = ‘ too l a t e ’ ) (x , y ) . [ queue := queue . t l ]H
)

+
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% compare two men , new man i s b e t t e r
<queue /= [ ] and partner /= 0 and ( ( cm1 /= pm1 and queue . hd [ 2 ] = pm1)

or ( cm1 = queue . hd [ 2 ] and cm2 /= pm2 and queue . hd [ 3 ] = pm2) )>
( ‘ yes ’ , t h i s . id , t h i s .w1 , t h i s .w2)@( id = th i s . queue . hd [ 1 ] ) .

(
% wait con f i rmat ion or t o o l a t e no t i c e

( x = ‘ confirm ’ ) (x , y , z , t ) .
(
( ‘ bye ’ , t h i s . id )@( id = th i s . partner ) .
[ partner := queue . hd [ 1 ] , cm1 := queue . hd [ 2 ] , cm2 := queue . hd [ 3 ] ,
queue := queue . t l ]H
+
% abandoned by now ex partner

( x = ‘ bye ’ and y = th i s . queue . hd [ 1 ] ) (x , y ) . [ queue := queue . t l ]H
)

+
(x =’ too l a t e ’ ) (x , y ) . [ queue := queue . t l ]H

)
+

% i f the new man i s not bet te r , d i s ca rd message
<queue /= [ ] and partner /= 0 and ( ( cm1 = pm1 and queue . hd [ 2 ] /= pm1)

or (cm1 = queue . hd [ 2 ] and pm2 /= queue . hd [ 3 ] and cm2 = pm2)
or (cm1 = queue . hd [ 2 ] and cm2 = queue . hd [ 3 ] ) )>
( )@( f a l s e ) . [ queue := queue . t l ]H

+
% abandoned by cur rent partner , r e s e t s t a tu s and cont inute

(x = ‘ bye ’ and y = th i s . partner ) (x , y ) .
[ partner := 0 , cm1 := 0 , cm2 := 0 ]H

}
in i t Q | H

end
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A generated UMC model

We provide the generated UMC code for graph coloring scenario in order to show specific parts that
required user manipulations.

C.1 UMC Model for Graph Coloring

Our implementation in practice translates for each component type. The specific code for components
is then replicated from their type with supplied indexes. In the code below, $1 is the variable holding a
component index, $2 is the variable holding a component name. User code is commented accordingly
in the first transition of component.

The purpose of this section, apart from presenting a generated UMC model, is to highlight specific
parts of the model that needed user manipulation. Since expressions and predicates which can be
arbitrarily complex, currently there is no uniform way of encoding and thus enable translating them
automatically.

Class System with n i c e p a r a l l e l i sm i s

S i gna l s :

a l lowsend ( i : i n t ) ;

broadcast ( tgt , msg , j : i n t ) ;

Vars :

RANDOMQUEUE;

r e c e i v i n g : bool := f a l s e ;

pc : i n t [ ] ;

bound : i n t [ ] ;

- - attributes
as s i gned ;

c o l o r ;

c o n s t r a i n t s ;

counter ;
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done ;

id ;

nbr ;

round ;

send ;

used ;

State Top Defer s a l lowsend ( i )

in i t -> SYS { -/

pc := [ [ 1 , 1 , 1 , 1 ] , [ 1 , 1 , 1 , 1 ] , [ 1 , 1 , 1 , 1 ] , [ 1 , 1 , 1 , 1 ] , [ 1 , 1 , 1 , 1 ] ] ;

f o r i in 0 . . pc . length -1 {

s e l f . a l lowsend ( i ) ;

}}

- - - - - Send - - - - -

SYS . $2 . s0 -> $2 . s0 {

a l lowsend ( i ) [ r e c e i v i n g = f a l s e and i = $1 and

( send [ $1 ] = true and as s i gned [ $1 ] = f a l s e ) and pc [ $1 ] [ 0 ] = 1 ]/

−− begin user code ( implementing the min_color func t i on )

temp : i n t = 0 ;

f o r v3 in 1 . . used [ $1 ] . l ength {

i f v3 < used [ $1 ] [ v3 - 1 ] and temp = 0 then {

temp = 1 ;

c o l o r [ $1 ] = v3 ;

} ;

} ;

i f temp = 0 then {

c o l o r [ $1 ] = used [ $1 ] . l ength + 1 ;

} ;

−− end user code
t a r g e t : i n t [ ] ;

f o r j in 0 . . pc . length -1 {

tumccounter : bool = f a l s e ;

f o r z in 0 . . nbr [ $1 ] . l ength -1 {

i f not tumccounter1 and ( id [ j ]=nbr [ $1 ] [ z ] ) then { tumccounter := true ; }

} ;

i f ( tumccounter1 ) then

{ ta r g e t [ j ] := 1} e l s e { t a r g e t [ j ] :=0 ; }

} ;

r e c e i v i n g=true ;

s e l f . broadcast ( target , [ try , c o l o r [ $1 ] , round [ $1 ] ] , $1 ) ;

OUT. sending ($2 , [ try , c o l o r [ $1 ] , round [ $1 ] ] ) ;

- - - a t t r update - - -

send [ $1 ] := f a l s e ;

- - c o l o r [ $1 ] := min ;

pc [ $1 ] [ 0 ] = 2 ;

}

SYS . $2 . s0 -> $2 . s0 {

broadcast ( tgt , msg , j ) [ pc [ $1 ] [ 0 ] = 2 ]/

r e c e i v i n g=f a l s e ;
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s e l f . a l lowsend ($1) ;

pc [ $1 ] [ 0 ] = 1 ;

bound [ $1 ] [ 0 ] := 0 ;

}

- - - - - Receive - - - - -

SYS . $2 . s0 -> $2 . s0 {

broadcast ( tgt , msg , j ) [ t g t [ $1 ] = 1 and (msg [ 0 ] = try and

id [ $1 ] > id [ j ] and round [ $1 ] = msg [ 2 ] ) and pc [ $1 ] [ 1 ] = 1 ]/

bound [ $1 ] [ 1 ] [ 0 ] = msg [ 0 ] ;

bound [ $1 ] [ 1 ] [ 1 ] = msg [ 1 ] ;

bound [ $1 ] [ 1 ] [ 2 ] = msg [ 2 ] ;

counter [ $1 ] := counter [ $1 ]+1;

OUT. r e c e i v ed ($2 ,msg) ;

pc [ $1 ] [ 1 ] = 1 ;

bound [ $1 ] [ 1 ] := 0 ;

}

- - - - - Receive - - - - -

SYS . $2 . s0 -> $2 . s0 {

broadcast ( tgt , msg , j ) [ t g t [ $1 ] = 1 and (msg [ 0 ] = try and

id [ $1 ] < id [ j ] and round [ $1 ] = msg [ 2 ] ) and pc [ $1 ] [ 1 ] = 1 ]/

bound [ $1 ] [ 1 ] [ 0 ] = msg [ 0 ] ;

bound [ $1 ] [ 1 ] [ 1 ] = msg [ 1 ] ;

bound [ $1 ] [ 1 ] [ 2 ] = msg [ 2 ] ;

counter [ $1 ] := counter [ $1 ]+1;

c on s t r a i n t s [ $1 ] := c on s t r a i n t s [ $1 ]+[ bound [ $1 ] [ 1 ] [ 1 ] ] ;

i f c o n s t r a i n t s [ $1 ] . l ength > 1 then {

f o r v1 in 0 . . c o n s t r a i n t s [ $1 ] . l ength - 1 {

f o r v2 in v1 +1. . c o n s t r a i n t s [ $1 ] . l ength -1 {

i f c o n s t r a i n t s [ $1 ] [ v1 ] > con s t r a i n t s [ $1 ] [ v2 ] then {

temp : i n t := c on s t r a i n t s [ $1 ] [ v1 ] ;

c o n s t r a i n t s [ $1 ] [ v1 ] := c on s t r a i n t s [ $1 ] [ v2 ] ;

c o n s t r a i n t s [ $1 ] [ v2 ] := temp ;}}

} ;

umctemp : i n t := 0 ;

umctemplength : i n t := c on s t r a i n t s [ $1 ] . l ength ;

umctempvec : obj ;

f o r v1 in 0 . . umctemplength - 2 {

i f c o n s t r a i n t s [ $1 ] [ v1 ] /= con s t r a i n t s [ $1 ] [ v1+1] then {

umctempvec [ umctemp ] = con s t r a i n t s [ $1 ] [ v1 ] ;

umctemp = umctemp + 1 ; } ;

umctempvec [ umctemp ] = con s t r a i n t s [ $1 ] [ umctemplength - 1 ] ; } ;

c o n s t r a i n t s [ $1 ] := umctempvec ;

} ;

OUT. r e c e i v ed ($2 ,msg) ;

pc [ $1 ] [ 1 ] = 1 ;

bound [ $1 ] [ 1 ] := 0 ;

}
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- - - - - Receive - - - - -

SYS . $2 . s0 -> $2 . s0 {

broadcast ( tgt , msg , j ) [ t g t [ $1 ] = 1 and (msg [ 0 ] = try and id [ $1 ] > id [ j ]

and round [ $1 ] < msg [ 2 ] ) and pc [ $1 ] [ 1 ] = 1 ]/

bound [ $1 ] [ 1 ] [ 0 ] = msg [ 0 ] ;

bound [ $1 ] [ 1 ] [ 1 ] = msg [ 1 ] ;

bound [ $1 ] [ 1 ] [ 2 ] = msg [ 2 ] ;

round [ $1 ] := msg [ 2 ] ;

send [ $1 ] := true ;

counter [ $1 ] := 1 ;

c on s t r a i n t s [ $1 ] := [ ] ;

OUT. r e c e i v ed ($2 ,msg) ;

pc [ $1 ] [ 1 ] = 1 ;

bound [ $1 ] [ 1 ] := 0 ;

}

- - - - - Receive - - - - -

SYS . $2 . s0 -> $2 . s0 {

broadcast ( tgt , msg , j ) [ t g t [ $1 ] = 1 and (msg [ 0 ] = try and id [ $1 ] < id [ j ]

and round [ $1 ] < msg [ 2 ] ) and pc [ $1 ] [ 1 ] = 1 ]/

bound [ $1 ] [ 1 ] [ 0 ] = msg [ 0 ] ;

bound [ $1 ] [ 1 ] [ 1 ] = msg [ 1 ] ;

bound [ $1 ] [ 1 ] [ 2 ] = msg [ 2 ] ;

round [ $1 ] := bound [ $1 ] [ 1 ] [ 2 ] ;

send [ $1 ] := true ;

counter [ $1 ] := 1 ;

c on s t r a i n t s [ $1 ] := [ bound [ $1 ] [ 1 ] [ 1 ] ] ;

OUT. r e c e i v ed ($2 ,msg) ;

pc [ $1 ] [ 1 ] = 1 ;

bound [ $1 ] [ 1 ] := 0 ;

}

- - - - - Receive - - - - -

SYS . $2 . s0 -> $2 . s0 {

broadcast ( tgt , msg , j ) [ t g t [ $1 ] = 1 and (msg [ 0 ] = donec and

round [ $1 ] >=msg [ 2 ] ) and pc [ $1 ] [ 2 ] = 1 ]/

bound [ $1 ] [ 2 ] [ 0 ] = msg [ 0 ] ;

bound [ $1 ] [ 2 ] [ 1 ] = msg [ 1 ] ;

bound [ $1 ] [ 2 ] [ 2 ] = msg [ 2 ] ;

done [ $1 ] := done [ $1 ]+1;

used [ $1 ] := used [ $1 ]+[ bound [ $1 ] [ 2 ] [ 1 ] ] ;

i f used [ $1 ] . l ength > 1 then {

f o r v1 in 0 . . used [ $1 ] . l ength - 1 {

f o r v2 in v1 +1. . used [ $1 ] . l ength -1 {

i f used [ $1 ] [ v1 ] > used [ $1 ] [ v2 ] then {

temp : i n t := used [ $1 ] [ v1 ] ; used [ $1 ] [ v1 ] := used [ $1 ] [ v2 ] ; used [ $1 ] [ v2 ] := temp ;}}

} ;
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umctemp : i n t := 0 ;

umctemplength : i n t := used [ $1 ] . l ength ;

umctempvec : obj ;

f o r v1 in 0 . . umctemplength - 2 {

i f used [ $1 ] [ v1 ] /= used [ $1 ] [ v1+1] then {

umctempvec [ umctemp ] = used [ $1 ] [ v1 ] ;

umctemp = umctemp + 1 ; } ;

umctempvec [ umctemp ] = used [ $1 ] [ umctemplength - 1 ] ; } ;

used [ $1 ] := umctempvec ;

} ;

OUT. r e c e i v ed ($2 ,msg) ;

pc [ $1 ] [ 2 ] = 1 ;

bound [ $1 ] [ 2 ] := 0 ;

}

- - - - - Receive - - - - -

SYS . $2 . s0 -> $2 . s0 {

broadcast ( tgt , msg , j ) [ t g t [ $1 ] = 1 and (msg [ 0 ] = donec and

round [ $1 ] < msg [ 2 ] ) and pc [ $1 ] [ 2 ] = 1 ]/

bound [ $1 ] [ 2 ] [ 0 ] = msg [ 0 ] ;

bound [ $1 ] [ 2 ] [ 1 ] = msg [ 1 ] ;

bound [ $1 ] [ 2 ] [ 2 ] = msg [ 2 ] ;

round [ $1 ] := bound [ $1 ] [ 2 ] [ 2 ] ;

done [ $1 ] := done [ $1 ]+1;

send [ $1 ] := true ;

counter [ $1 ] := 0 ;

used [ $1 ] := used [ $1 ]+[ bound [ $1 ] [ 2 ] [ 1 ] ] ;

i f used [ $1 ] . l ength > 1 then {

f o r v1 in 0 . . used [ $1 ] . l ength - 1 {

f o r v2 in v1 +1. . used [ $1 ] . l ength -1 {

i f used [ $1 ] [ v1 ] > used [ $1 ] [ v2 ] then {

temp : i n t := used [ $1 ] [ v1 ] ; used [ $1 ] [ v1 ] := used [ $1 ] [ v2 ] ; used [ $1 ] [ v2 ] := temp ;}}

} ;

umctemp : i n t := 0 ;

umctemplength : i n t := used [ $1 ] . l ength ;

umctempvec : obj ;

f o r v1 in 0 . . umctemplength - 2 {

i f used [ $1 ] [ v1 ] /= used [ $1 ] [ v1+1] then {

umctempvec [ umctemp ] = used [ $1 ] [ v1 ] ;

umctemp = umctemp + 1 ; } ;

umctempvec [ umctemp ] = used [ $1 ] [ umctemplength - 1 ] ; } ;

used [ $1 ] := umctempvec ;

} ;

c on s t r a i n t s [ $1 ] := [ ] ;

OUT. r e c e i v ed ($2 ,msg) ;

pc [ $1 ] [ 2 ] = 1 ;

bound [ $1 ] [ 2 ] := 0 ;

}



Appendix C

- - - - - Send - - - - -

SYS . $2 . s0 -> $2 . s0 {

a l lowsend ( i ) [ r e c e i v i n g = f a l s e and i = $1 and

( nbr [ $1 ] . l ength = counter [ $1]+done [ $1 ] and c o l o r [ $1 ] != undef ined and

( not ( f a l s e or c o l o r [ $1]= c on s t r a i n t s [ $1 ] [ 0 ] or c o l o r [ $1]= c on s t r a i n t s [ $1 ] [ 1 ] or

c o l o r [ $1]= c on s t r a i n t s [ $1 ] [ 2 ] or c o l o r [ $1]= c on s t r a i n t s [ $1 ] [ 3 ] or

c o l o r [ $1]= c on s t r a i n t s [ $1 ] [ 4 ] or c o l o r [ $1]= c on s t r a i n t s [ $1 ] [ 5 ] or

c o l o r [ $1]= c on s t r a i n t s [ $1 ] [ 6 ] or c o l o r [ $1]= c on s t r a i n t s [ $1 ] [ 7 ] or

c o l o r [ $1]=used [ $1 ] [ 0 ] or c o l o r [ $1]=used [ $1 ] [ 1 ] or

c o l o r [ $1]=used [ $1 ] [ 2 ] or c o l o r [ $1]=used [ $1 ] [ 3 ] or

c o l o r [ $1]=used [ $1 ] [ 4 ] or c o l o r [ $1]=used [ $1 ] [ 5 ] or

c o l o r [ $1]=used [ $1 ] [ 6 ] or c o l o r [ $1]=used [ $1 ] [ 7 ] ) ) )

and pc [ $1 ] [ 3 ] = 1 ]/

t a r g e t : i n t [ ] ;

f o r j in 0 . . pc . length -1 {

tumccounter : bool = f a l s e ;

f o r z in 0 . . nbr [ $1 ] . l ength -1 {

i f not tumccounter1 and ( id [ j ]=nbr [ $1 ] [ z ] ) then { tumccounter := true ; }

} ;

i f ( tumccounter ) then

{ ta r g e t [ j ] := 1} e l s e { t a r g e t [ j ] :=0 ; }

} ;

r e c e i v i n g=true ;

temp : i n t = round [ $1 ]+1;

s e l f . broadcast ( target , [ donec , c o l o r [ $1 ] , temp ] , $1 ) ;

OUT. sending ($2 , [ donec , c o l o r [ $1 ] , temp ] ) ;

- - - a t t r update - - -

a s s i gned [ $1 ] := true ;

pc [ $1 ] [ 3 ] = 2 ;

}

SYS . $2 . s0 -> $2 . s0 {

broadcast ( tgt , msg , j ) [ pc [ $1 ] [ 3 ] = 2 ]/

r e c e i v i n g=f a l s e ;

s e l f . a l lowsend ($1) ;

pc [ $1 ] [ 3 ] = 3 ;

bound [ $1 ] [ 3 ] := 0 ;

pc [ $1 ] [ 3 ] : = 0 ;

})
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