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Abstract

The purpose of this thesis is the derivation of corrector estimates justifying the upscaling
of systems of partial differential equations (PDEs) with coupled fluxes posed in media with
microstructures (like porous media). Such models play an important role in the under-
standing of, for example, drug-delivery mechanisms, where the involved chemical species
diffusing inside the domain are assumed to obey perhaps other transport mechanisms and
certain non-dissipative nonlinear processes within the pore space and at the boundaries of
the perforated media (e.g. interaction, chemical reaction, aggregation, deposition). In this
thesis, our corrector estimates provide a quantitative analysis in terms of convergence rates
in suitable norms, i.e. as the small homogenization parameter tends to zero, the differences
between the micro- and macro-concentrations and between the corresponding micro- and
macro-concentration gradients are controlled in terms of the small parameter. As prepara-
tion, we are first concerned with the weak solvability of the microscopic models as well as
with the fundamental asymptotic homogenization procedures that are behind the derivation
of the corresponding upscaled models. We report results on three connected mathematical
problems:

1. Asymptotic analysis of microscopic semi-linear elliptic equations/systems. We explore the
asymptotic analysis of a prototype model including the interplay between stationary dif-
fusion and both surface and volume chemical reactions in porous media. Our interest
lies in deriving homogenization limits (upscaling) for alike systems, and particularly, in
justifying rigorously the obtained averaged descriptions. We prove the well-posedness
of the microscopic problem ensuring also the positivity and boundedness of the in-
volved concentrations. Then we use the structure of the two-scale expansions to derive
corrector estimates delimitating quantitatively the convergence rate of the asymptotic
approximates to the macroscopic limit concentrations and their gradients. High-order
corrector estimates are also obtained. The semi-linear auxiliary problems are tackled
by a fixed-point homogenization argument. Our techniques include also Moser-like it-
eration techniques, a variational formulation, two-scale asymptotic expansions as well
as suitable energy estimates.

2. Corrector estimates for a Smoluchowski-Soret-Dufour model. We consider a thermo-
diffusion system, which is a coupled system of PDEs and ODEs that account for the
heat-driven diffusion dynamics of hot colloids in periodic heterogeneous media. This
model describes the joint evolution of temperature and colloidal concentrations in a
saturated porous tissue where the Smoluchowski interactions for aggregation process
and a linear deposition process take place. By a fixed-point argument, we prove the
local existence and uniqueness results for the upscaled system. To obtain the corrector
estimates, we exploit the concept of macroscopic reconstructions as well as suitable
integral estimates to control boundary interactions.

3. Corrector estimates for a non-stationary Stokes-Nernst-Planck-Poisson system. We invest-
igate a non-stationary Stokes-Nernst-Planck-Poisson system posed in a perforated do-
main as originally proposed by Knabner and his co-authors (see e.g. [98] and [99]).
Starting off with the setting from [99], we complete the results by proving corrector es-
timates for the homogenization procedure. Main difficulties are connected to the choice
of boundary conditions for the Poisson part of the system as well as with the scaling of
the Stokes part of the system.

Key words: Corrector estimates, PDEs with coupled fluxes, Thermo-diffusion system, Drift-
diffusion-reaction system, Weak solvability, Homogenization
MSC (2010): 35B27, 35C20, 35D30, 65M15
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CHAPTER 1

Introduction

Before delving into the main content of this thesis, we start off with a short description of
what we mean by a medium with microstructures and present a couple of historical remarks
on homogenization. We also get across the central points that brought us to this thesis. In
particular, we begin with the idea of periodic homogenization in Section 1.1 and give a clas-
sical example in Section 1.2. In Section 1.3, we take a glimpse on existing homogenization
methods. The role of Section 1.4 is to give a brief review on the chosen mathematical models
as well as on the used methodologies, drawing also the main goals of this work. The outline
of the thesis is presented in Section 1.5.

1.1 Background

Inhomogeneous media (media with microstructures) are omnipresent. The ubiquity of such
media is apparent in both natural and engineering problems such as carbon-fibre composites
in material sciences, multi-strand ropes in structural mechanics and multi-functional cellular
solids in scaffolds for cell growth. This type of materials is subjected to loads or/and forcing
that vary on a length scale. Often, the experimental understanding refers to a governing
scale that is massively bigger than the characteristic length scales of the microstructure. The
situation is even more complex since besides many length scales, many time scales are also
involved.

Taking into account only length scales at a “frozen” time scale, we consider physical processes
that have two separated continuous length scales: the macroscale and the microscale. The
macroscale describes physical phenomena without the aid of magnifying devices, while the
microscale is essentially linked to the geometrically smaller observations of the objects as
viewed through e.g. a microscope. A typical example of microscale/microstructures is the
output of scanning electron microscope (SEM) of a fabricated microframe in interference
lithography; see Figure 1.1, e.g.

The microscale is usually characterized by some recurring shape properties where the fre-
quency of recurrence is much smaller than the size defining the macroscale. Mathematically,
this fundamental parameter is referred to as 0 < ε� 1. The models posed at the microscale
are called in this context the microscopic system. Passing to the limit ε → 0 in the micro-
scopic system is referred to as homogenization process and is a form of upscaling/averaging.
This terminology is self-explaining, i.e. the corresponding limit model usually no longer pos-
sesses information about microstructures since the size of the recurrence is eliminated. It
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Figure 1.1: SEM image of a microframe (left) and its cross-section (right). The figures are taken from
[79].

consequently reduces to a physical system posed in homogeneous media (an equivalent fic-
titious domain). This is an example of multiscale modeling. It is worth mentioning that in
engineering problems, a microscopic view is helpful in accounting for many physical processes
taking place deep inside the domain. On top of that, the mathematical models that resolve
small length scales are unfortunately complicated and often impossible to solve fast and ef-
ficiently. The number of mesh nodes is, in fact, at least of the order of ε−d (d is the spatial
dimension), which is inversely proportional to the number of periodicity cells in the body.
Ultimately, the complexity as well as elapsed time for computations increase dramatically as
ε → 0. Meanwhile, there is no difficulty in solving numerically nonlinear coupled evolution
systems posed in homogeneous media.

The mathematical literature reports on two kinds of homogenization corresponding to two
practical choices of microstructures: deterministic homogenization and stochastic homogeniz-
ation. This thesis focuses on aspects of deterministic homogenization. For similar concepts
concerning stochastic homogenization, we refer the reader for instance to [16] and [15, 14].

What concerns the deterministic framework, there is a huge mathematical literature on the
periodic homogenization (here, materials are assumed to have a periodic microstructure).
The homogenization process aims at replacing the initial partial differential equation with
rapidly oscillating coefficients describing the composite material by the one with the cor-
responding effective/homogenized coefficients. Interestingly, these effective coefficients can
usually be found by solving a non-oscillating partial differential equation, often of a simple
nature. It is worth noting that the perforated domain indicates in this thesis a material with
holes (empty inclusions), or equivalently solid inclusions (grains) suspended rigidly (and peri-
odically) in air. For examples of non-periodic homogenization scenarios, see for instance, [86]
and [108]. This thesis deals only with periodic scenarios.

1.2 A classical example

To illustrate the homogenization idea, we turn our attention to a one-dimensional elliptic
system with an oscillating coefficient, viz.















d
d x

�

−aε
duε

d x

�

= f in Ω= (0,1) ,

uε (0) = uε (1) = 0,

f ∈ L2 (Ω) .

(1.2.1)
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The oscillating coefficient aε is supposed to be periodic with a given periodΘ and is generated
by means of a bounded positive function a ∈ L∞ (Ω) satisfying

0< α≤ a (x)≤ β <∞ for a.e. x ∈ Ω.

The coefficient is thus assigned by

aε (x) = a
� x
ε

�

for x ∈ Ω.

Observe that the problem admits a unique solution for each fixed ε by the use of the Lax-
Milgram lemma. Moreover, by the Poincaré’s inequality we obtain a uniform a priori estimate
of ‖uε‖H1

0 (Ω)
. In addition, if we denote the flux of uε by

ξε := −aε
duε

d x
,

then the we see that ‖ξε‖L2(Ω) is uniformly controlled as well.
Accordingly, we are led to the fact that there exists a subsequences, such that

uε * u0 weakly in H1 (Ω) ,

ξε *ξ0 weakly in L2 (Ω) ,

aε * a0 weakly-* in L∞ (Ω) .

We denote by a0 the mean value of a, i.e.

a0 ≡M (a) =
1
|Θ|

∫ Θ

0

a (x) d x .

We obtain ξ0
x = f in Ω, and based on the Rellich-Kondrachov Theorem, the convergence

ξε → ξ0 is actually strong in L2 (Ω).
Notice that ξε is the product of two weakly converging quantities. In general, this does not
imply that the limit ξ0 coincides with the product of the limit functions a0 and u0

x . Namely,
ξ0 ≡ −a0u0

x does generally not hold. In fact, we show that

du0

d x
=M

�

a−1
�

ξ0,

which leads to the homogenized (upscaled, averaged,...) equation

−
1

M (a−1)
d2u0

d x2
= f .

In conclusion, we have considered the periodic case with aε being a bounded sequence (not
necessarily periodic) satisfying

1
aε
* A weakly-* in L∞ (Ω) , where A−1 :=

1
M (a−1)

.

The solution uε is shown to converge weakly to u0 in H1
0 (Ω), while u0 is the unique solution

of the problem:






−A−1 d2u0

d x2
= f in Ω,

u0 (0) = u0 (1) = 0.

3



Let us now look at the problem (1.2.1) from a slightly different perspective, i.e. a stationary
heat conduction problem in a composite material formed by a matrix and embedded fibers.
Consequently, in this case the conductivity is given by

aε (x) =

(

a f , if x ∈ fiber,

am, if x ∈matrix.

(1.2.1) includes the continuity of both the temperature uε and of heat flux ξε at the interface
fiber/matrix. Moreover, the rapid oscillation of our conductivity herein is from its changes by
the absolute value

�

�a f − am

�

� when there is a change from the point x by a value of order ε.
In any multiscale numerical scheme, the mesh-grid ∆x must satisfy at least the constraint
∆x � ε. Otherwise, the microstructure information cannot be captured. Assume that our
underlying two-dimensional material has his matrix at a O (1) scale. Then, with the choice ε =
10−5 (inspired from the smallest diameter of a fiber in the superconducting multifilamentary
composite) and ∆x = 10−1ε, the order of degrees of freedom is around

�

10× 105
�2
= 1012,

yielding a greatly high cost of computations. We also emphasize that this is in practice even
more expensive and composites are often heterogeneous on several scales, which makes naive
numerical methods useless. Detailed multiscale numerical results are reported e.g. in the
works by [21, 20].
Denote by ` and L, respectively, the characteristic lengths of the micro-cell and the macro-
body. We have that `� L. From engineering perspectives (e.g. [13] and [12]), ` is a given
physical parameter and cannot be changed, whilst L can somehow undertake the smallness of
the scaling factor ε. Indeed, the parameter ε can be computed as the ratio of the microscale
to the macroscale by ε = `/L. This means that one can choose a suitably large L to get a
small enough ε. This is the reason why the homogenization procedure is often referred to as
upscaling.

1.3 Justifying asymptotics via corrector estimates

The multiscale asymptotic expansion is an important tool in explaining multiscale problems
(see, e.g. the monographs [102, 19] and [16, 27]). The basic notion of this approach consists
in seeking an asymptotic expansion of the form

uε (x) = u0

�

x ,
x
ε

�

+ εu1

�

x ,
x
ε

�

+ ε2u2

�

x ,
x
ε

�

+ ... for x ∈ Ω, (1.3.1)

where um are Y -periodic in the second variable with Y being a unit cell, e.g.
This ansatz indicates that uε shall be close to some macroscopic part u0 for a sufficiently
small ε, provided that uε → u0 in some adequate topology as ε → 0. Here, the function u0

is performed as a suitable limit of uε and thus is expected to be the solution of the limit or
homogenized model. The effective coefficients corresponding to the rapidly oscillatory ones
are determined by solving the so-called cell problems, see Chapter 2 and Chapter 3 for more
details. However, let us remark that using the aforementioned expansion for linear elliptic
problems (like (1.2.1)), one can prove

u0

�

x ,
x
ε

�

= ũ0 (x) ,
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and ũ0 is an excellent candidate as solution of a homogenized problem in which the effective
conductivity does not depend on the position x ∈ Ω, making the fictitious material homo-
geneous. When ε is small enough, ũ0 becomes a good approximation of uε. Accordingly, we
have replaced the composite material by a homogeneous one where their global behaviors
are nearly the same. On the other hand, the cell functions um are solutions to cell problems,
possessing the ũ0-based structures.

Here, it is also possible to give the expected structure of the corrector estimate when using
the asymptotic expansion (1.3.1). The corrector estimate is in general of the form
















uε −
M
∑

m=0

εmum
















H1(Ωε)

≤ CεM−1,

where C > 0 is a generic constant independent of ε and M ≥ 2 is a chosen order of
the asymptotic expansion.

This type of corrector estimate is useful for multiscale finite element methods, e.g. the relation
between the corrector homogenization estimate and the error estimate in conventional finite
element methods is proved in [66]. In fact, the key estimate one normally wants to prove in
this direction quantifies the difference between the exact solution and the so-called interpolant
of the homogenized solution using the multiscale base functions. To do that, it further requires
basic a priori error estimates of the approximation method whose proofs are based on the
structure of corrector estimates (see [66] in Section 5).

1.4 Pore-scale models. Main goals

Modern approaches to modeling focus on multiple scales. Given a multiscale physical prob-
lem, one of the leading questions is to derive upscaled model equations and the corresponding
structure of effective model coefficients (e.g. [37, 107]). We start off from microscopic PDE
models describing the motion of populations of colloidal particles in soils and porous tis-
sues with direct applications to drug-delivery design and control of the spread of radioactive
pollutants. In particular, our background systems are mathematical models for hot-driven
colloidal concentrations–the Smoluchowski-Soret-Dufour model, and for charged colloidal
particles–the Stokes-Nernst-Planck-Poisson model.

A quick overview of these physical systems can be made, as follows:

• The Smoluchowski-Soret-Dufour system (SSD) (see e.g. [49] and [1] concerning the
Smoluchowski interaction aiming at capturing the Alzheimer disease) models natural
changes of the temperature due to a joint with the evolution of colloidal concentrations
within the framework of a coupled thermo-diffusion-reaction process accounting for
adsorption and desorption processes on the micro-surfaces.

• The Stokes-Nernst-Planck-Poisson (SNPP) system is well-developed to describe the dy-
namics of dilute electrolytes and dissolved charged particles in porous media; see e.g.
[72] and [50] for detailed phenomenological descriptions. It also provides insight into
the evolution of charged chemical species within a Newtonian liquid at low Reynolds
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numbers. Concurrent with the Stokes equation, the charged species satisfy the Nernst-
Planck-Poisson equations.

As analytically investigated in [97, 75, 99], these systems are mathematically well-posed and
have been upscaled rigorously. Nevertheless, the question regarding the corrector estimates
that deliminate the error made when homogenizing (averaging, upscaling, coarse graining...)
these microscopic systems has not yet been studied. Thereby, the main purpose of this thesis
is to estimate the speed of convergence as ε → 0 of suitable norms of specific differences in
micro-macro concentrations, velocities, charges, etc. and their micro-macro gradients.
As indicated in Section 1.3, the corrector estimates obtained in this framework can be further
used to design convergent multiscale finite element methods (MsFEM) for the studied PDE
systems (see e.g. [66] for the basic idea of the MsFEM approach). Having available corrector
estimates, on the other side, allows in principle the construction of convergence proofs of
multiscale numerical methods by deriving a priori error estimate for MsFEM applied to prob-
lems in perforated media like in [24], for instance. It is worth mentioning at this point that the
existing literature on corrector estimates justifying the homogenization asymptotics is huge.
One of the best studied problems is the derivation of plate theories from bulk elastic bodies
with various types of perforations; see for instance the reference monographs [77, 90], but
also the more recent concrete applications to transport and (static and dynamic) mechanics
of membranes as indicated in [10, 11], e.g.
To obtain the corrector estimates in our framework, our strategy is to use an energy-like
method and suitable macroscopic reconstructions (cf. e.g. [40] and [41]). This technique
basically relies on the choice of test functions that captures in suitable norms the difference
between the micro-and macro-fields and their transport fluxes. As readily expected, careful
attention needs to be payed to the regularity of the limit solutions as well as of the cell func-
tions involved in the asymptotic procedure; see e.g. [46]. Using more regularity, high-order
corrector estimates can be obtained for semi-linear elliptic systems accounting for the sta-
tionary diffusion of the populations of colloidal particles. This can be done via an iteration
method that uses explicitly the expected structure of the two-scale asymptotic expansion.
Note also from [31], guessing the structure of the corrector merely requires a deep under-
standing of cell functions up to the first order, i.e. the quantity u1. Therefore, the corrector
forms with the aid of macroscopic reconstructions: compare [39, 40] concerning the upscal-
ing of a phase field model posed in high contrast regimes. Besides handling new nonlinear
terms, a novel aspect in our context is the handling of the errors produced in the upscaling
due to micro-surfaces and the presence of coupled fluxes. A similar analysis can be carried
over the settings in [9, 99, 107, 45], e.g.
Besides the energy-like approach used here for a periodic homogenization case, significant
contributions can be obtained using variants of the bulk and boundary unfolding operators:
see, for instance, [60, 91, 46, 85, 81, 100]. Settings involving locally-periodic microstructures
(correctors by special test functions adapted to the local periodicity) can be treated as in [86],
e.g., while the random case is in most of the cases out of reach; see [73, 95, 119] for some
details in this direction.

1.5 Outline of the thesis

This thesis is structured as follows:
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We begin with the study of a stationary diffusion problem in Chapter 2 and Chapter 3, from
which the nonlinear structure of the system is significantly correlated with the SSD and SNPP
models. In the first part of Chapter 2, we mainly discuss the existence of a non-negative weak
solution for this elliptic microscopic system by the minimization approach stated in Theorem
2.3.6. Moreover, uniqueness as well as boundedness results are shown. In the second part of
this chapter, we apply the high-order asymptotic expansion to derive the structure of the limit
system. Besides the use of this expansion, a general corrector estimate for homogenization
limit is presented in Theorem 2.5.1, whose proof relies on energy-like estimates. These results
are supplemented by extensions to the semilinear case of the auxiliary problems and to a
general high-order corrector estimate postulated, respectively, in Section 3.2 and Section 3.3
of Chapter 3.
To tackle the Smoluchowski-Soret-Dufour model in Chapter 4, we introduce its mathematical
description in the first part of the chapter. Here we can find also the technical assumptions
as well as a mathematical interpretation of the chosen perforated domain. In addition, this
part also contains the mathematical analysis of the microscopic system and corresponding
upscaled systems. The corrector estimates are stated in Theorem 4.3.1.
The corrector justification for the Stokes-Nernst-Planck-Poisson model is investigated in Chapter
5. When doing so, we recall the existence of a unique weak solution of the microscopic system
and the expected structure of the limit (upscaled) systems according to several scaling choices
and boundary conditions. The main results are specified in Theorem 5.4.2 and Theorem 5.4.3.
Besides macroscopic reconstructions and energy-like estimates, we further employ boundary
layer estimates to treat the corrector structure for the Stokes equation.
Closing remarks and a list of open issues for forthcoming considerations are added in Chapter
6.
Guideline for the reader. The chapters can be read independently from each other. Whenever
relevant, we state the geometrical settings of physical domains as well as the physical mean-
ing of all quantities and balance laws behind each model. Due to the differently considered
systems, the associated function spaces are defined in every chapter, albeit it perhaps do over
again. Except those notations, we write C∞# (Y ) for the space of functions in C∞

�

Rd
�

that
are Y -periodic. Given a Sobolev space H

�

Rd
�

, we denote by H# (Y ) the space of functions
in Hloc

�

Rd
�

(if it exists) that are Y -periodic, and by H# (Y )/R the space of those functions
whose average over Y vanishes, i.e.

∫

Y

u (y) d y = 0 for u ∈ H# (Y ) .

Proofs of theorems, lemmas or propositions are either closed with the symbol �, or fully
presented in a concrete subsection. The concepts of two-scale convergence and related com-
pactness results are provided in Appendix A to avoid unnecessary repetition (see, in particular,
Definition A.0.1-Definition A.0.3 and Theorem A.0.2-Theorem A.0.4). Additionally, detailed
statements concerning universal inequalities can be found therein.
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CHAPTER 2

Asymptotic analysis of a semi-linear elliptic system in
perforated domains

2.1 Introduction

We study the semi-linear elliptic boundary-value problem of the form

(Pε) :











A εuεi ≡∇ ·
�

−dεi ∇uεi
�

= Ri (uε) , in Ωε ⊂ Rd ,

dεi ∇uεi · n= ε
�

aεi uεi − bεi Fi

�

uεi
��

, across Γ ε,

uεi = 0, across Γ ex t ,

(2.1.1)

for i = {1, ..., N} (N ≥ 2, d ∈ {2, 3}). Following [75], this system models the diffusion in a
porous medium as well as the aggregation, dissociation and surface deposition of N interact-
ing populations of colloidal particles indexed by uεi . As short-hand notation, uε :=

�

uε1, ..., uεN
�

points out the vector of these concentrations. Such scenarios arise in drug-delivery mech-
anisms in human bodies and often include cross- and thermo-diffusion which are triggers of
our motivation (compare [34] for the Sorret and Dufour effects and [52, 116] for related
cross-diffusion and chemotaxis-like systems).
The model (2.1.1) involves a number of parameters: dεi represents molecular diffusion coeffi-
cients, Ri represents the volume reaction rate, aεi , bεi are the so-called deposition coefficients,
while Fi indicates a surface chemical reaction for the immobile species. We refer to (2.1.1)
as problem (Pε).
This chapter is organized as follows: In Section 2.2 we start off with a set of technical pre-
liminaries focusing especially on the working assumptions on the data and the description of
the microstructure of the porous medium. The weak solvability of the microscopic model is
established in Section 2.3. The homogenization method is applied in Section 2.4 to the prob-
lem (Pε). This is the place where we derive the corrector estimates and establish herewith
the convergence rate of the homogenization process. A brief discussion in Section 2.5 and
some concluding remarks in Section 2.6 close the chapter.

2.2 Preliminaries

2.2.1 Description of the geometry

The geometry of our porous medium is sketched in Figure 2.1 (left), together with the choice
of perforation (referred here to also as "microstructure") cf. Figure 2.1 (right). We refer the
reader to [65] for a concise mathematical representation of the perforated geometry. In the
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same spirit, take Ω be a bounded open domain in Rd with a piecewise smooth boundary
Γ = ∂Ω. Let Y be the unit representative cell, i.e.

Y :=

¨

d
∑

i=1

λi~ei : 0< λi < 1

«

,

where we denote by ~ei by ith unit vector in Rd .
Take Y0 the open subset of Y with a piecewise smooth boundary ∂ Y0 in such a way that Y0 ⊂ Y .
In the porous media terminology, Y is the unit cell made of two parts: the gas phase (pore
space) Y \Y0 and the solid phase Y0.
Let Z ⊂ Rd be a hypercube. Then for X ⊂ Z we denote by X k the shifted subset

X k := X +
d
∑

i=1

ki~ei ,

where k = (k1, ..., kd) ∈ Zd is a vector of indices.
Setting Y1 = Y \Y0, we now define the pore skeleton by

Ωε0 :=
⋃

k∈Zd

�

εY k
0 : Y k

0 ⊂ Ω
	

,

where ε is observed as a given scale factor or homogenization parameter.
It thus comes out that the total pore space is

Ωε := Ω\Ωε0,

for εY k
0 the ε-homotetic set of Y k

0 , while the total pore surface of the skeleton is denoted by

Γ ε := ∂Ωε0 =
⋃

k∈Zd

�

εΓ k : Γ k ⊂ Ω
	

.

The exterior boundary of Ωε is certainly a hypersurface in Rd , denoted by Γ ex t = ∂Ωε\Γ ε,
where it has a nonzero (d − 1)-dimensional measure, satisfies Γ ex t ∩ Γ ε = ; and coincides
with Γ . Moreover, n denotes the unit normal vector to Γ ε.
Finally, our perforated domain Ωε is assumed to be connected through the gas phase. Notice
here that Γ ex t is smooth.
N.B. This chapter aims at understanding the problem in two or three space dimensions. How-
ever, all our results hold also for d ≥ 3. Throughout this chapter, C denotes a generic constant
which can change from line to line. If not otherwise stated, the constant C is independent of
the choice of ε.

2.2.2 Notation. Assumptions on the data

We denote by x ∈ Ωε the macroscopic variable and by y = x/ε the microscopic variable
representing fast variations at the microscopic geometry. With this convention in view, we
write

dεi (x) = di

� x
ε

�

= di (y) .

A similar meaning is given to all involved "oscillating" data, e.g. to aεi (x), bεi (x).
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Ω

Γ = ∂Ω

Ωε

Y1 Y

Y0

Figure 2.1: Admissible two-dimensional perforated domain (left) and basic geometry of the microstruc-
ture (right).

We now make the following set of assumptions:
(A1) The diffusion coefficient dεi ∈ L∞

�

Rd
�

is Y -periodic, and there exists a positive constant
αi such that

di (y)ξiξ j ≥ αi |ξ|
2 for any ξ ∈ Rd .

(A2) The deposition coefficients aεi , bεi ∈ L∞ (Γ ε) are positive and Y -periodic.
(A3) The reaction rates Ri : Ωε × [0,∞)N → R and Fi : Γ ε × [0,∞)→ R are Carathéodory
functions, i.e. they are, respectively, continuous in [0,∞)N and [0,∞) with respect to x
variable (in the “almost all” sense), and measurable in Ωε and Γ ε with essential boundedness
with respect to concentrations uεi ≥ 0.
�

A4

�

The chemical rates Ri and Fi are sublinear in the sense that for any p = (p1, ..., pN )

Ri (p)≤ C

 

1+
N
∑

j=1, j 6=i

pi p j

!

for p ≥ 0,

Fi (pi)≤ C (1+ pi) for pi ≥ 0.

Furthermore, assume that Ri (p)/pi is decreasing and Fi (pi)/pi is increasing in pi for any
p > 0.
(A5) For every ε > 0, there exist vectors (x-dependent) rε0 , rε∞, f ε0 , f ε∞ whose elements are

rε0,i = lim
uεi→0+

Ri (uε)
uεi

, rε∞,i = lim
uεi→∞

Ri (uε)
uεi

,

f ε0,i = lim
uεi→0+

ε

�

aεi − bεi
Fi

�

uεi
�

uεi

�

, f ε∞,i = lim
uεi→∞

ε

�

aεi − bεi
Fi

�

uεi
�

uεi

�

.

(A6) Ri and Fi satisfy the growth conditions:

|Ri (x , p)| ≤ C
N
∑

i=1

(1+ pi) for p ≥ 0, (2.2.1)

�

�aεi pi − bεi Fi (pi)
�

�≤ C (1+ pi) for pi ≥ 0. (2.2.2)
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Let us define the function space

V ε :=
�

v ∈ H1 (Ωε) |v = 0 on Γ ex t
	

,

which is a closed subspace of the Hilbert space H1 (Ωε), and thus endowed with the semi-norm

‖v‖V ε =

�

d
∑

i=1

∫

Ωε

�

�

�

�

∂ v
∂ x i

�

�

�

�

2

d x

�1/2

for all v ∈ V ε.

Obviously, this norm is equivalent to the usual H1-norm by the Poincaré inequality. Moreover,
this equivalence is uniform in ε (cf. [31, Lemma 2.1]).
We introduce the Hilbert spaces

H (Ωε) = L2 (Ωε)× ...× L2 (Ωε) , V ε = V ε × ...× V ε,

with the inner products defined respectively by

〈u, v〉H (Ωε) :=
N
∑

i=1

∫

Ωε

ui vid x , u= (u1, ..., uN ) , v = (v1, ..., vN ) ∈H (Ωε) ,

〈u, v〉V ε :=
N
∑

i=1

d
∑

j=1

∫

Ωε

∂ ui

∂ x j

∂ vi

∂ x j
d x , u= (u1, ..., uN ) , v = (v1, ..., vN ) ∈ V ε.

Furthermore, the notationH (Γ ε) indicates the corresponding product of L2 (Γ ε) spaces. For
q ∈ (2,∞], the following spaces are also used

W q (Ωε) = Lq (Ωε)× ...× Lq (Ωε) ,

W q (Γ ε) = Lq (Γ ε)× ...× Lq (Γ ε) .

2.3 Well-posedness of the microscopic model

Before studying the asymptotics behaviour as ε → 0 (the homogenization limit), we must
ensure the well-posedness of the microstructure model. In this section we focus only on the
weak solvability of the problem, the stability with respect to the initial data and all parameter
being straightforward to prove. We remark at this stage that the structure of the model equa-
tion has attracted much attention. For example, Amann used in [8] the method of sub- and
super- solutions to prove the existence of positive solutions when a Robin boundary condi-
tion is considered. Brezis and Oswald introduced in [22] an energy minimization approach
to guarantee the existence, uniqueness and positivity results for the semi-linear elliptic prob-
lem with zero Dirichlet boundary conditions. Very recently, the authors in [55] extended the
result in [22] (and also of other previous works including [25, 32]) to problems involving
nonlinear boundary conditions of mixed type. For what we are concerned here, we will use
Moser-like iterations technique (see the original works in [83, 84]) to prove L∞-bounds for
all concentrations and then follow the strategy provided in [22] to study the well-posedness
of (Pε).
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Definition 2.3.1. A function uε ∈ V ε is a weak solution to (Pε) provided that

N
∑

i=1

∫

Ωε

�

dεi ∇uεi∇ϕi − Ri (u
ε)ϕi

�

d x −
N
∑

i=1

ε

∫

Γ ε

�

aεi uεi − bεi Fi

�

uεi
��

ϕidSε = 0 for all ϕ ∈ V ε.

(2.3.1)

Definition 2.3.2. By means of the usual variational characterization, the principal eigenvalue
of (Pε) is defined by

λ1 (p
ε, qε) := inf

uε∈V ε ,

N
∑

i=1

|uεi |
2
6=0

N
∑

i=1

�

α

∫

Ωε

�

�∇uεi
�

�

2
d x − N

∫

Ωε

pεi
�

�uεi
�

�

2
d x − N

∫

Γ ε

qεi
�

�uεi
�

�

2
dSε

�

N
∑

i=1

∫

Ωε

�

�uεi
�

�

2
d x

,

(2.3.2)
where pεi and qεi are measurable such that either they are simultaneously bounded from above
or from below (this leads to λ1 ∈ (−∞,∞] or λ1 ∈ [−∞,∞), correspondingly). Here, we
denote α :=min {α1, ...,αN}.

Lemma 2.3.3. Assume (A1)-(A5) and replace
�

A4

�

by (A6). Let uε ∈ V ε ∩H (Γ ε) be a weak
solution to (Pε), then uε ∈W∞ (Ωε) and there exists an ε-independent constant C > 0 such that

‖uε‖W∞(Ωε) ≤ C
�

1+ ‖uε‖H (Ωε) + ‖uε‖H (Γ ε)
�

.

Proof. Let β ≥ 1 and ki > 1 for all i = 1, N . We begin by introducing a vector ϕε of test

functions ϕεi = min
n

v
β+ 1

2
i , k

β+ 1
2

i

o

− 1 where vi = uεi + 1 with uεi as in (2.3.1). Thus, it is

straightforward to show that ϕε ∈ V ε ∩H (Γ ε). We have

α

�

β +
1
2

� N
∑

i=1

∫

{vi<ki}
v
β− 1

2
i |∇vi |

2 ≤
N
∑

i=1

�∫

Ωε

Ri (x , uε)ϕεi d x +

∫

Γ ε

Fi

�

x , uεi
�

ϕεi dSε

�

≤ C
N
∑

i=1

∫

Ωε

�

�1+ uεi
�

�

2
v
β+ 1

2
i d x

+ C
N
∑

i=1

∫

Γ ε

�

�1+ uεi
�

�

2
v
β+ 1

2
i dSε

≤ C
N
∑

i=1

�∫

Ωε

v
β+ 3

2
i d x +

∫

Γ ε

v
β+ 3

2
i dSε

�

, (2.3.3)

where we have used (2.2.1) and (2.2.2).

Now, for every i ∈ {1, ..., N}, if we assign ψi =min

�

v
β+ 3

2
2

i , k
β+ 3

2
2

i

�

, then one has

�

β +
1
2

�

v
β− 1

2
i |∇vi |

2χ{vi<ki} =
4
�

β + 1
2

�

�

β + 3
2

�2 |∇ψi |
2 . (2.3.4)

Since Ωε is a Lipschitz domain, then the trace embedding H1 (Ωε) ⊂ Lq (∂Ωε) holds for 1 ≤
q ≤ 2∗

∂Ωε
, where 2∗

∂Ωε
= 2 (d − 1)/ (d − 2) if d ≥ 3, and 2∗

∂Ωε
= ∞ if d = 2 (cf. [44]).

Therefore, given q ∈ (2, 2∗] we apply this embedding to (2.3.3) with the aid of (2.3.4) and
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then obtain

4α
�

β + 1
2

�

�

β + 3
2

�2

N
∑

i=1





�∫

Γ ε

|ψi |
q dSε

�
2
q

−
∫

Ωε

|ψi |
2 d x



≤ C
N
∑

i=1

�∫

Ωε

v
β+ 3

2
i d x +

∫

Γ ε

v
β+ 3

2
i dSε

�

.

(2.3.5)
We see that ψ2

i ≤ vβ+
3
2 and also

1

β + 3
2

≤
4
�

β + 1
2

�

�

β + 3
2

�2 ≤ 4

holds for all β ≥ 1. As a result, (2.3.5) yields

N
∑

i=1

�∫

Γ ε

|ψi |
q dSε

�
2
q

≤ Cα−1
�

β +
3
2

� N
∑

i=1

�∫

Ωε

v
β+ 3

2
i d x +

∫

Γ ε

v
β+ 3

2
i dSε

�

. (2.3.6)

Our next aim is to show that if for some s ≥ 2 we have uε ∈ W s (Ωε) ∩W s (Γ ε), then uε ∈
W ks (Ωε)∩W ks (Γ ε) for k > 1 arbitrary at each ε-level. In fact, assume that uε ∈W β+ 3

2 (Ωε)∩
W β+ 3

2 (Γ ε) then letting k→∞ in (2.3.6) gives

N
∑

i=1

�∫

Γ ε

|vi |
q
2 (β+ 3

2 ) dSε

�
2
q

≤ C
�

β +
3
2

� N
∑

i=1

�∫

Ωε

v
β+ 3

2
i d x +

∫

Γ ε

v
β+ 3

2
i dSε

�

. (2.3.7)

One obtains in the same manner that by the embedding H1 (Ωε) ⊂ Lq (Ωε) (this is valid for
1 ≤ q ≤ 2∗Ωε where 2∗Ωε = 2d/ (d − 2) if d ≥ 3, and 2∗Ωε =∞ if d = 2; thus q given before is
definitely valid), we are led to the following estimate

N
∑

i=1

�∫

Ωε

|vi |
q
2 (β+ 3

2 ) d x

�
2
q

≤ C
�

β +
3
2

� N
∑

i=1

�∫

Ωε

v
β+ 3

2
i d x +

∫

Γ ε

v
β+ 3

2
i dSε

�

. (2.3.8)

Combining (2.3.7), (2.3.8) and the Minkowski inequality (see Lemma A.0.11) enables us to
get

�∫

Ωε

|vi |
q
2 (β+ 3

2 ) d x +

∫

Γ ε

|vi |
q
2 (β+ 3

2 ) dSε

�
2
q

≤ C
�

β +
3
2

� N
∑

i=1

�∫

Ωε

v
β+ 3

2
i d x +

∫

Γ ε

v
β+ 3

2
i dSε

�

,

for all i ∈ {1, ..., N}, which easily leads to, by raising to the power 1/
�

β + 3
2

�

, the fact that uεi ∈
L

q
2 (β+ 3

2 ) (Ωε)∩L
q
2 (β+ 3

2 ) (Γ ε) for all i ∈ {1, ..., N}; and hence uε ∈W
q
2 (β+ 3

2 ) (Ωε)∩W
q
2 (β+ 3

2 ) (Γ ε).
The constant k is indicated by q/2> 1. Thus, if we choose q and β such that

β +
3
2
= 2

�q
2

�n
for n= 0, 1,2, ...,

and iterating the above estimate, we obtain, by induction, that

‖v‖2( q
2 )

n ≤
n
∏

j=0

�

2
�q

2

� j
C
�

1
2

�

2
q

� j

‖v‖2 , (2.3.9)

where we have denoted

‖v‖r :=
N
∑

i=1

�∫

Ωε

|vi |
r d x +

∫

Γ ε

|vi |
r dSε

�
1
r

.
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It is interesting to point out that since the series
∞
∑

n=0

�

2
q

�n

and
∞
∑

n=0

n
�

2
q

�n

are convergent for

q > 2, we have

n
∏

j=0

�

2
�q

2

� j
C
�

1
2

�

2
q

� j

<

√

√

√

√

(2C)

∞
∑

n=0

 

2
q

!n

q

∞
∑

n=0

n

 

2
q

!n

= C .

Therefore, the constant on the right-hand side of (2.3.9) is indeed independent of n, and by
passing n→∞ in (2.3.9), i.e. in the inequality,

‖v‖
W 2( q

2 )
n

(Ωε)
≤ C

�

‖v‖H (Ωε) + ‖v‖H (Γ ε)
�

,

we finally obtain
‖v‖W∞(Ωε) ≤ C

�

‖v‖H (Ωε) + ‖v‖H (Γ ε)
�

.

Consequently, recalling vi = uεi + 1, we have:

‖uε‖W∞(Ωε) ≤ C
�

1+ ‖uε‖H (Ωε) + ‖uε‖H (Γ ε)
�

.

This step completes the proof of the lemma.

Remark 2.3.4. Using the trace inequality (see Lemma A.0.8) and the norm equivalence between
V ε and H1 (Ωε), if uε ∈ V ε then the result in Lemma 2.3.3 reads

‖uε‖W∞(Ωε) ≤ C
�

1+ ε−1/2 ‖uε‖H (Ωε) + ‖uε‖V ε
�

≤ C
�

1+ ε−1/2 ‖uε‖V ε
�

.

Lemma 2.3.5. Assume (A1)-(A5) and that λ1

�

rε∞, f ε∞
�

> 0 and λ1

�

rε0 , f ε0
�

< 0 hold. We define
the following functional

J [uε] :=
1
2

N
∑

i=1

∫

Ωε

dεi
�

�∇uεi
�

�

2
d x −

N
∑

i=1

∫

Ωε

Ri (x , uε) d x −
N
∑

i=1

∫

Γ ε

Fi

�

x , uεi
�

dSε,

where

Ri (x , uε) :=

∫ uεi

0

Ri

�

x , uε1, ...si , ..., uεN
�

dsi ,

Fi

�

x , uεi
�

:=

∫ uεi

0

�

aεi s− bεi Fi (s)
�

ds,

and the nonlinear terms are extended to be Ri (x , 0) and Fi (x , 0) for uεi ≤ 0. Then J is coercive
on V ε and lower semi-continuous for V ε. Moreover, there exists φ ∈ V ε such that J [φ]< 0.

Proof. Step 1: (Coerciveness)
Suppose, by contradiction, that there exists a sequence {uε,m} ⊂ V ε such that ‖uε,m‖V ε →∞
while J [uε,m]≤ C . Setting

si,m =

�∫

Γ ε

�

�uε,mi

�

�

2
dSε

�1/2

, t i,m =

�∫

Ωε

�

�uε,mi

�

�

2
d x

�1/2

, (2.3.10)
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we say that
N
∑

i=1

t2
i,m→∞ up to a subsequence as m→∞. Indeed, the assumption J [uε,m]≤

C yields that

1
2

N
∑

i=1

∫

Ωε

dεi
�

�∇uε,mi

�

�

2
d x ≤

N
∑

i=1

∫

Ωε

Ri (x , uε,m) d x +
N
∑

i=1

∫

Γ ε

Fi

�

x , uε,mi

�

dSε + C , (2.3.11)

which, in combination with (2.3.10) and
�

A4

�

, leads to

1
2

N
∑

i=1

∫

Ωε

dεi
�

�∇uε,mi

�

�

2
d x ≤ C (N)

�

1+
N
∑

i=1

t2
i,m +

N
∑

i=1

s2
i,m

�

. (2.3.12)

Here, if
N
∑

i=1

t2
i,m is convergent, then

N
∑

i=1

s2
i,m cannot be bounded. While putting

vi,m = uε,mi /

N
∑

i=1

si,m,

it enables us to derive that

N
∑

i=1

∫

Ωε

�

�∇vi,m

�

�

2
d x =

N
∑

i=1

∫

Ωε

�

�∇uε,mi

�

�

2
d x

�

N
∑

i=1

si,m

�2 ≤

N
∑

i=1

∫

Ωε

�

�∇uε,mi

�

�

2
d x

N
∑

i=1

s2
i,m

. (2.3.13)

If we assign α :=min {α1, ...,αN}> 0, then it follows from (4.3.15) and (2.3.13) that

α

2

N
∑

i=1

∫

Ωε

�

�∇vi,m

�

�

2
d x ≤

N
∑

i=1

∫

Ωε

dεi
�

�∇uε,mi

�

�

2
d x

2
N
∑

i=1

s2
i,m

≤ C (N)













1+

N
∑

i=1

t2
i,m

N
∑

i=1

s2
i,m

+
1

N
∑

i=1

s2
i,m













≤ C (N) .

Now, we claim that there exists vi ∈ V ε such that vi,m * vi weakly in V ε, and then strongly in
L2 (Ωε) and in L2 (Γ ε). However, it implies here a contradiction. It is because we have vi ≡ 0
in Ωε for all i = 1, N while

N
∑

i=1

∫

Γ ε

|vi |
2 dSε =

�

N
∑

i=1

si

�−2 N
∑

i=1

∫

Γ ε

�

�uεi
�

�

2
dSε ≥ N−1 > 0.

Let us now assume that
N
∑

i=1

t2
i,m is divergent. By putting

wi,m = uε,mi /

N
∑

i=1

t i,m,
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we have, in the same manner, that

α

2

N
∑

i=1

∫

Ωε

�

�∇wi,m

�

�

2
d x ≤ C (N)













1+
1

N
∑

i=1

t2
i,m

+

N
∑

i=1

s2
i,m

N
∑

i=1

t2
i,m













.

From (2.3.10), we know that

N
∑

i=1

∫

Ωε

�

�wi,m

�

�

2
d x =

�

N
∑

i=1

t i,m

�−2 N
∑

i=1

∫

Ωε

�

�uε,mi

�

�

2
d x ≤ 1, (2.3.14)

and

N
∑

i=1

∫

Γ ε

�

�wi,m

�

�

2
dSε ≥ N−1

�

N
∑

i=1

t2
i,m

�−1 N
∑

i=1

∫

Γ ε

�

�uε,mi

�

�

2
dSε ≥

N
∑

i=1

s2
i,m

N
N
∑

i=1

t2
i,m

. (2.3.15)

Combining the trace inequality (cf. Lemma A.0.8) with (2.3.14) and (2.3.15), we obtain
N
∑

i=1

s2
i,m

N
∑

i=1

t2
i,m

≤ N
N
∑

i=1

∫

Γ ε

�

�wi,m

�

�

2
dSε

≤ CN

�

2
N
∑

i=1

�∫

Ωε

�

�wi,m

�

�

2
d x

�1/2�∫

Ωε

�

�∇wi,m

�

�

2
d x

�1/2

+ ε−1
N
∑

i=1

∫

Ωε

�

�wi,m

�

�

2
d x

�

≤ CN

�

2
N
∑

i=1

�∫

Ωε

�

�∇wi,m

�

�

2
d x

�1/2

+ ε−1

�

.

It yields that

N
∑

i=1

∫

Ωε

�

�∇wi,m

�

�

2
d x ≤

2C (N)
α





N
∑

i=1

�∫

Ωε

�

�∇wi,m

�

�

2
d x

�1/2

+ C (ε) +

�

N
∑

i=1

t2
i,m

�−1


 ,

which finally leads to
�

�

�

�

�

�∫

Ωε

�

�∇wi,m

�

�

2
d x

�1/2

−
C (N)
α

�

�

�

�

�

≤ C (N ,ε)

 

1+

�

N
∑

i=1

t2
i,m

�−1!1/2

, (2.3.16)

for all i = 1, N .

Therefore,

∫

Ωε

�

�∇wi,m

�

�

2
d x is bounded by the inequality (2.3.16). So, up to a subsequence,

wi,m * wi weakly in V ε, and then strongly in L2 (Ωε) and L2 (Γ ε). In addition, it can be proved

that
N
∑

i=1

∫

Ωε

|wi |
2 d x ≥ N−1 > 0, and from (2.3.11), it gives us that

α

2

N
∑

i=1

∫

Ωε

�

�∇wi,m

�

�

2
d x ≤

C
N
∑

i=1

t2
i,m

+
N
∑

i=1

∫

Ωε

Ri (x , uε,m)
N
∑

i=1

t2
i,m

d x+
N
∑

i=1

∫

Γ ε

Fi

�

x , uε,mi

�

N
∑

i=1

t2
i,m

dSε. (2.3.17)
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We now consider the second integral on the right-hand side of the above inequality, then
the third one is totally similar. Using the fact that wi,m → wi strongly in L2 (Ωε) and the
assumptions

�

A4

�

-(A5) in combination with the Fatou lemma, we get

limsup
m→∞

N
∑

i=1

∫

Ωε

Ri (x , uε,m)
N
∑

i=1

t2
i,m

d x ≤
N
2

N
∑

i=1

∫

Ωε∩{w>0}
rε∞,i

�

�wi,m

�

�

2
d x ,

where we have also applied the following inequalities

N−1

�

N
∑

i=1

t2
i,m

�−1

≤

�

N
∑

i=1

t i,m

�−2

≤
�

�wi,m

�

�

2 �
�uε,mi

�

�

−2
,

limsup
uεi→∞

Ri (x , uε)
�

�uεi
�

�

2 ≤
1
2

rε∞,i (x) for a.e. x ∈ Ωε.

Thus, passing to the limit in (2.3.17) we are led to

α

2

N
∑

i=1

∫

Ωε

|∇wi |
2 d x ≤

N
2

�

N
∑

i=1

∫

Ωε∩{w>0}
rε∞,i |wi |

2 d x +
N
∑

i=1

∫

Γ ε∩{w>0}
f ε∞,i |wi |

2 dSε

�

.

Recall that λ1

�

rε∞, f ε∞
�

> 0, it then gives us that w+i ≡ 0 for all i = 1, N . As a consequence,

wi ≡ 0 while it contradicts the above result
N
∑

i=1

∫

Ωε
|wi |

2 d x ≥ N−1.

Hence, J is coercive.
Step 2: (Lower semi-continuity)
It can be proved as in [22, 55] that: if uε,m * uε in V ε, then we obtain

lim sup
m→∞

∫

Ωε

Ri (x , uε,m) d x ≤
∫

Ωε

Ri (x , uε) d x ,

limsup
m→∞

∫

Γ ε

Fi

�

x , uε,mi

�

dSε ≤
∫

Γ ε

Fi

�

x , uεi
�

dSε,

by using the growth assumptions
�

A4

�

in combination with the Fatou lemma. Thus, J is lower
semi-continuous.
This result tells us that J achieves the global minimum at a function uε ∈ V ε. If we replace
uε by (uε)+, uε can be supposed to be non-negative. Moreover, the last step shows that uε is
non-trivial.
Step 3: (Non-triviality of the minimisers)
What we need to prove now is that there exists φ ∈ V ε such that J [φ] < 0. In fact, given
ψ ∈ V ε ∩W ε satisfying ‖ψ‖W ε = 1 and

α

N
∑

i=1

∫

Ωε

|∇ψi |
2 d x < N

N
∑

i=1

�∫

Ωε

rε0,i |ψi |
2 d x +

∫

Γ ε

f ε0,i |ψi |
2 dSε

�

.

In fact, here we assume that ψ is non-negative. By the assumptions
�

A4

�

-(A5), we have

lim inf
δ→0+

Ri (x ,δψ)
δ2

≥
1
2

rε0,i (x) |ψ|
2 ≥

1
2

rε0,i (x) |ψi |
2 for a.e. x ∈ Ωε,
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and

lim inf
δ→0+

Fi (x ,δψi)
δ2

≥
1
2

f ε0,i (x) |ψi |
2 for a.e. x ∈ Γ ε.

This coupling with the Fatou lemma enable us to obtain the following

N
∑

i=1

lim inf
δ→0+

∫

Ωε

Ri (x ,δψ)
δ2

d x +
N
∑

i=1

lim inf
δ→0+

Fi (x ,δψi)
δ2

≥
1
2

N
∑

i=1

�∫

Ωε

rε0,i |ψi |
2 d x +

∫

Γ ε

f ε0,i |ψi |
2 dSε

�

,

which leads to

limsup
δ→0+

J [δψ]
δ2

< 0.

Hence, to complete the proof, we need to choose φ = δψ.

Theorem 2.3.6. Assume (A1)-(A5) and λ1

�

rε∞, f ε∞
�

> 0, λ1

�

rε0 , f ε0
�

< 0 hold. Then (Pε)
admits at least a non-negative weak solution uε ∈ V ε ∩W∞ (Ωε).

Proof. We begin the proof by introducing the approximate system

�

Pk,ε
�

:











∇ ·
�

−dεi ∇uεi
�

= Rk
i (u

ε) , in Ωε ⊂ Rd ,

dεi ∇uεi · n= Gk
i

�

uεi
�

, on Γ ε,

uεi = 0, on Γ ex t ,

in which we have defined that for each integer k > 0 the truncated reaction rates

Rk
i (u

ε) :=

(

max
�

−kuεi , Ri (uε)
	

, if uεi ≥ 0,

Ri (0) , if uεi < 0,

and

Gk
i

�

uεi
�

:=

(

εmax
�

−kuεi , aεi uεi − bεi Fi

�

uεi
�	

, if uεi ≥ 0,

−εbεi Fi (0) , if uεi < 0.

It is easy to check that our truncated functions Rk
i and Gk

i fulfill both
�

A4

�

and (A6). In addition,
if we set elements Rk

0,i , Rk
∞,i , Gk

0,i , Gk
∞,i as functions in (A5) by Rk

i and Gk
i , one may prove that

rε0,i ≤ Rk
0,i , rε∞,i ≤ Rk

∞,i , f ε0,i ≤ Gk
0,i , f ε∞,i ≤ Gk

∞,i for all i ∈ {1, ..., N} ,

and λ1

�

Rk
0, Gk

0

�

< 0 and λ1

�

Rk
∞, Gk

∞

�

> 0 for k large (see, e.g. [55]).
Thanks to Lemma 2.3.5, the problem

�

Pk,ε
�

admits a global non-trivial and non-negative min-
imizer, denoted by uk,ε, which belongs to V ε and it is associated with the following functional

J k [uε] :=
1
2

N
∑

i=1

∫

Ωε

dεi
�

�∇uεi
�

� d x −
N
∑

i=1

∫

Ωε

Rk
i (x , uε) d x −

N
∑

i=1

∫

Γ ε

F k
i

�

x , uεi
�

dSε.

Furthermore, uk,ε defines a weak solution to the problem
�

Pk,ε
�

for every k and thus, uk,ε ∈
W∞ (Ωε) by Lemma 2.3.3.
Now, we assign a vector vε whose elements are defined by vεi :=min

�

uεi , uk,ε
i

	

where u ∈ V ε

is the global minimizer constructed from the functional J . We shall prove that J [vε]≤ J [uε].

19



Note that when doing so, vε ∈ W∞ (Ωε) and then define a weak solution u ∈ V ε ∩W∞ (Ωε)
to (Pε).
In fact, one has

J k
�

uk,ε
�

≤ J [φ] for all φ ∈ V ε.

Then by choosing φ such that φi :=max
�

uεi , uk,ε
i

	

we have

N
∑

i=1

∫

{uk,ε
i <uεi }∩Ωε

�

1
2

dεi

�

�

�∇uk,ε
i

�

�

�

2
−Rk

i

�

x , uk,ε
�

�

d x −
N
∑

i=1

∫

{uk,ε
i <uεi }∩Γ ε

F k
i

�

x , uk,ε
i

�

dSε

≤
N
∑

i=1

∫

{uk,ε
i <uεi }∩Ωε

�

1
2

dεi
�

�∇uεi
�

�

2 −Rk
i (x , uε)

�

d x −
N
∑

i=1

∫

{uk,ε
i <uεi }∩Γ ε

F k
i

�

x , uεi
�

dSε. (2.3.18)

In addition, by the choice of J (see in Lemma 2.3.5) we deduce that

J [vε]− J [uε] =
N
∑

i=1

∫

{uk,ε
i <uεi }∩Ωε

1
2

dεi

�
�

�

�∇uk,ε
i

�

�

�

2
−
�

�∇uεi
�

�

�

d x

−
N
∑

i=1

∫

{uk,ε
i <uεi }∩Ωε

�

Ri

�

x , uk,ε
�

−Ri (x , uε)
�

d x

−
N
∑

i=1

∫

{uk,ε
i <uεi }∩Γ ε

�

Fi

�

x , uk,ε
i

�

−Fi

�

x , uεi
��

dSε. (2.3.19)

On the other hand, (2.3.18) yields

N
∑

i=1

∫

{uk,ε
i <uεi }∩Ωε

�

Rk
i

�

x , uk,ε
�

−Rk
i (x , uε)−

�

Ri

�

x , uk,ε
�

−Ri (x , uε)
��

≤ 0, (2.3.20)

and

N
∑

i=1

∫

{uk,ε
i <uεi }∩Γ ε

�

F k
i

�

x , uk,ε
�

−F k
i (x , uε)−

�

Fi

�

x , uk,ε
�

−Fi (x , uε)
��

≤ 0. (2.3.21)

Hence, combining (2.3.18)-(2.3.21) we complete the proof of the lemma. This tells us that un-
der assumptions (A1)-(A5) the problem (Pε) admits a non-negative, non-trivial and bounded
weak vector of solutions uε at each ε-level.

Remark 2.3.7. If Ri (uε) ≥ −Muεi in Ωε (or for each subdomain of Ωε if rigorously stated) for
some ε-dependent constant M > 0 and all i ∈ {1, ..., N}, then (Pε) has at least a positive, non-
trivial and bounded weak solution uε by the Hopf strong maximum principle. Furthermore, one
may prove in the same vein in [55, Lemma 13] that the solution is unique by using vectors of test
functions ϕε

δ
and ψε

δ
whose elements are given by

ϕεδ,i =

�

uεi +δ
�2 −

�

vεi +δ
�2

uεi +δ
, ψεδ,i =

�

uεi +δ
�2 −

�

vεi +δ
�2

vεi +δ
,

where uεi and vεi are two solutions of (Pε) at each layer i ∈ {1, ..., N}, which are expected to equal
to each other.
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Remark 2.3.8. In the case of zero Neumann boundary condition on Γ ε, if the nonlinearity Ri is
globally Lipschitz with the Lipschitz constant, denoted by Li , independent of the scale ε for any
i ∈ {1, ..., N}, then we may use an iterative scheme to deal with the existence and uniqueness of
solutions to our problem. In fact, for n ∈ N such an iterative scheme is given by

�

Pεn
�

:











∇ ·
�

−dεi ∇uε,n+1
i

�

= Ri (uε,n) , in Ωε,

dεi ∇uε,n+1
i · n= 0, on Γ ε,

uε,n+1
i = 0, on Γ ex t ,

(2.3.22)

where the starting point is uε,0 = 0.
This global Lipschitz assumption is an alternative to

�

A4

�

for Ri and it is termed as
�

A′4
�

.

Theorem 2.3.9. Assume (A1) and (A3) hold (without Fi) and suppose that the nonlinearity Ri

satisfy
�

A′4
�

replaced by
�

A4

�

. Then, the problem (Pε) with zero Neumann boundary condition
on Γ ε has a unique solution in V ε if the constant α−1 max1≤i≤N {Li}N is small enough.

Proof. It is worth noting that the problem (2.3.22) admits a unique solution in V ε for any n.
Then, the functional wε,ni = uε,n+1

i − uε,ni ∈ V ε satisfies the following problem:










∇ ·
�

−dεi ∇wε,ni

�

= Ri (uε,n)− Ri

�

uε,n−1
�

, in Ωε,

dεi ∇wε,ni · n= 0, on Γ ε,

wε,ni = 0. on Γ ex t .

Using the test function ψi ∈ V ε we arrive at



dεi wε,ni ,ψi

�

V ε =



Ri (u
ε,n)− Ri

�

uε,n−1
�

,ψi

�

L2(Ωε) .

We may consider an estimate for the above expression:

α

N
∑

i=1

�

�




wε,ni ,ψi

�

V ε

�

�≤
N
∑

i=1

LiN
�

�

�




wε,n−1
i ,ψi

�

L2(Ωε)

�

�

� . (2.3.23)

Thanks to Hölder’s and Poincaré inequalities (cf. Lemma A.0.10 and Lemma A.0.9), we have

N
∑

i=1

�

�




wε,ni ,ψi

�

V ε

�

�≤ Cpα
−1 max

1≤i≤N
{Li}N





wε,n−1






V ε ‖ψ‖V ε ,

where Cp > 0 is the Poincaré constant independent of the choice of ε, but the dimension d of
the media (see, e.g. [31, Lemma 2.1] and [33]).
If the constant α−1 max1≤i≤N {Li}N is small enough such that κp := Cpα

−1 max1≤i≤N {Li}N <
1, then choosing ψi = wε,ni for i ∈ {1, ..., N} we obtain that

‖wε,n‖V ε ≤ κp





wε,n−1






V ε .

Consequently, for some k ∈ N we get




uε,n+k − uε,n






V ε ≤




uε,n+k − uε,n+k−1






V ε + ...+




uε,n+1 − uε,n






V ε

≤ κn+k−1
p





uε,1 − uε,0






V ε + ...+κn
p





uε,1 − uε,0






V ε

≤ κn
p

�

κk−1
p + κk−2

p + ...+ 1
�




uε,1






V ε

≤
κn

p

�

1−κk
p

�

1−κp





uε,1






V ε . (2.3.24)
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Therefore, {uε,n} is a Cauchy sequence in V ε, and then there exists uniquely uε ∈ V ε such
that uε,n → uε strongly in V ε as n→∞. Remarkably, this convergence combining with the
Lipschitz property of Ri leads to the fact that Ri (uε,n)→ Ri (uε) strongly in V ε as n→∞. As
a result, the function uε is the solution of the problem (Pε) when passing to the limit in n.
In addition, when k→∞, it follows from (2.3.24) that

‖uε,n − uε‖V ε ≤
κn

p

1− κp





uε,1






V ε ,

which implies the convergence rate of the linearization and guarantees the stability of the
problem (Pε).

2.4 Homogenization asymptotics. Corrector estimates

2.4.1 Two-scale asymptotic expansions

For every i ∈ {1, ..., N}, we introduce the following M th-order expansion (M ≥ 2):

uεi (x) =
M
∑

m=0

εmui,m (x , y) +O
�

εM+1
�

, x ∈ Ωε, (2.4.1)

where ui,m (x , ·) is Y -periodic for 0≤ m≤ M .
It follows from (3.2.3) that

∇uεi =
�

∇x + ε
−1∇y

�

�

M
∑

m=0

εmui,m +O
�

εM+1
�

�

= ε−1∇yui,0 +
M−1
∑

m=0

εm
�

∇xui,m +∇yui,m+1

�

+O
�

εM
�

. (2.4.2)

Using the relation of the operatorA ε and (3.2.5), we compute that

A εuεi =
�

∇x + ε
−1∇y

�

·

�

−di (y)

�

ε−1∇yui,0 +
M−1
∑

m=0

εm
�

∇xui,m +∇yui,m+1

�

��

+O
�

εM−1
�

,

then after collecting those having the same powers of ε, we obtain

A εuεi = ε
−2∇y ·

�

−di (y)∇yui,0

�

+ ε−1
�

∇x ·
�

−di (y)∇yui,0

�

+∇y ·
�

−di (y)
�

∇xui,0 +∇yui,1

���

+
M−2
∑

m=0

εm
�

∇x ·
�

−di (y)
�

∇xui,m +∇yui,m+1

��

+∇y ·
�

−di (y)
�

∇xui,m+1 +∇yui,m+2

���

+O
�

εM−1
�

. (2.4.3)

In the same vein, we take into consideration the boundary condition at Γ ε as follows:

−dεi ∇uεi · n := −di (y)

�

ε−1∇yui,0 +
M−1
∑

m=0

εm
�

∇xui,m +∇yui,m+1

�

�

· n

= εbi (y) Fi

�

M−1
∑

m=0

εmui,m

�

− ai (y)
M−1
∑

m=0

εm+1ui,m +O
�

εM
�

. (2.4.4)
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It is worth noting that in order to investigate the convergence analysis, we give assumptions
that allow to pull the ε-dependent quantities out of the nonlinearities Ri and Fi:

Ri

�

M
∑

m=0

εmu1,m, ...,
M
∑

m=0

εmuN ,m

�

=
M
∑

m=0

εmR̄i

�

u1,m, ..., uN ,m

�

+O
�

εM+1
�

, (2.4.5)

Fi

�

M
∑

m=0

εmui,m

�

=
M
∑

m=0

εm F̄i

�

ui,m

�

+O
�

εM+1
�

, (2.4.6)

in which R̄i and F̄i are global Lipschitz functions corresponding to the Lipschitz constant Li

and Ki , respectively, for i ∈ {1, ..., N}.
From now on, collecting the coefficients of the same powers of ε in (3.2.6) and (3.2.7) in
combination with using (3.2.8) and (2.4.6), we are led to the following systems of elliptic
problems, which we refer to the auxiliary problems:











A0ui,0 = 0, in Y1,

−di (y)∇yui,0 · n= 0, on ∂ Y0,

ui,0 is Y − periodic in y,

(2.4.7)











A0ui,1 = −A1ui,0, in Y1,

−di (y)
�

∇xui,0 +∇yui,1

�

· n= 0, on ∂ Y0,

ui,1 is Y − periodic in y,

(2.4.8)











A0ui,m+2 = R̄i (um)−A1ui,m+1 −A2ui,m, in Y1,

−di (y)
�

∇xui,m+1 +∇yui,m+2

�

· n= bi (y) F̄i

�

ui,m

�

− ai (y)ui,m, on ∂ Y0,

ui,m+2 is Y − periodic in y,

(2.4.9)

for 0≤ m≤ M − 2.
Here, the notation um is ascribed to the vector containing elements ui,m for all i ∈ {1, ..., N},
and we have denoted by

A0 :=∇y ·
�

−di (y)∇y

�

,

A1 :=∇x ·
�

−di (y)∇y

�

+∇y · (−di (y)∇x) ,

A2 :=∇x · (−di (y)∇x) .

For the first auxiliary problem (3.2.9), it is trivial to prove that the solution to (3.2.9) is
independent of y , and hence we obtain

ui,0 (x , y) = ũi,0 (x) . (2.4.10)

For the second auxiliary problem (3.2.10), we recall the result in [93, Lemma 2.1] to ensure
the existence and uniqueness of periodic solutions to the elliptic problem, which is called the
solvability condition. In this case, this condition satisfies itself because we easily get from the
PDE in (3.2.10) that

−
∫

∂ Y1

di (y)∇yui,1 · ndSy =

∫

∂ Y0

di (y)∇x ũi,0 · ndSy ,

by Gauß’s theorem. Thus, it claims the existence of a unique weak solution to (3.2.10).
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Moreover, this solution is sought by using separation of variables:

ui,1 (x , y) = −χi (y) · ∇x ũi,0 (x) +Ci (x) . (2.4.11)

Substituting (2.4.11) into (3.2.10), we obtain the ith cell problem:










A0χi =∇y di (y) , in Y1,

−di (y)∇yχi · n= di (y) · n, on ∂ Y0,

χi is Y − periodic in y,

(2.4.12)

in which the field χi (y) is called cell function. Additionally, by the definition of the mean
value, we have

MY (χi) :=
1
|Y |

∫

Y1

χid y = 0. (2.4.13)

As a consequence, it can be proved that χi belongs to the space H1
# (Y1)/R and satisfies

(2.4.13).
Now, it only remains to consider the third auxiliary problem (3.2.11). Assume that we have
in mind the functions um and um+1, then to find um+2 let us remark that the right-hand side
of the PDE in (3.2.11) can be rewritten as

R̄i (um)−A1ui,m+1 −A2ui,m = R̄i (um) +∇y ·
�

di (y)∇xui,m+1

�

+∇x ·
�

di (y)
�

∇xui,m +∇yui,m+1

��

. (2.4.14)

We define the operator Li (ψ) for i ∈ {1, ..., N} by multiplying (2.4.14) by a test function
ψ ∈ C∞# (Y1), as follows:

Li (ψ) :=

∫

Y1

R̄i (um)ψd y +

∫

Y1

∇y ·
�

di (y)∇xui,m+1

�

ψd y

+

∫

Y1

∇x ·
�

di (y)
�

∇xui,m +∇yui,m+1

��

ψd y

=

∫

Y1

R̄i (um)ψd y −
∫

Y1

di (y)∇xui,m+1 · ∇yψd y

+

∫

Y1

∇x ·
�

di (y)
�

∇xui,m +∇yui,m+1

��

ψd y.

To apply the Lax-Milgram type lemma provided by [31, Lemma 2.2], we need Li (ψ1) =
Li (ψ2) for ψ1,ψ2 ∈ H1

# (Y1)/R with ψ1 'ψ2, or it is equivalent to
∫

Y1

R̄i (um) (ψ1 −ψ2) d y +

∫

Y1

∇x ·
�

di (y)
�

∇xui,m +∇yui,m+1

��

(ψ1 −ψ2) d y = 0. (2.4.15)

Note that ψ1 −ψ2 is independent of y . Hence, (2.4.15) becomes
∫

Y1

∇x ·
�

−di (y)
�

∇xui,m +∇yui,m+1

��

d y =

∫

Y1

R̄i (um) d y. (2.4.16)

For simplicity, we first take m = 0. Remind from (2.4.10) and (2.4.11) that ui,0 and ui,1 are
known, while the term Ri (u0) depends on x only, then one has

∫

Y1

∇x ·
�

−di (y)
�

−∇yχi∇x ũi,0 +∇x ũi,0

��

d y = |Y1| R̄i (u0) ,
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or equivalently,

∫

Y1

∇x ·
�

−di (y)
�

−∇yχi + I
�

∇x ũi,0

�

d y = |Y1| R̄i (u0) .

Thus, if we set the homogenized (or effective) coefficient

qi =
1
|Y |

∫

Y1

di (y)
�

−∇yχi + I
�

d y,

the ũi,0 must satisfy (in the “almost all” sense)

−∇x ·
�

qi∇x ũi,0

�

= |Y |−1 |Y1| R̄i (u0) , in Ω. (2.4.17)

On the other hand, it is associated with ũi,0 = 0 at Γ ex t and still satisfies the ellipticity condi-
tion.
Let us now determine ui,2. At first, the PDE in (3.2.11) (for m= 0) is given by

A0ui,2 = R̄i (u0)− di (y)∇yχi∇2
x ũi,0 −∇y (di (y)χi)∇2

x ũi,0 + di (y)∇2
x ũi,0, in Y1. (2.4.18)

Next, the boundary condition reads

−di (y)∇yui,2 · n= bi (y) F̄i

�

ui,0

�

− ai (y)ui,0 − di (y)χi∇2
x ũi,0 · n, on ∂ Y0.

Note that (2.4.18) can be rewritten as

A0ui,2 −∇y ·
�

di (y)χi∇2
x ũi,0

�

= R̄i (u0)− di (y)
�

∇yχi − I
�

∇2
x ũi,0.

Using the relation (2.4.17), we have

A0ui,2 +A0

�

χi∇2
x ũi,0

�

= −|Y1|
−1 |Y |∇x ·

�

qi∇x ũi,0

�

− di (y)
�

∇yχi − I
�

∇2
x ũi,0. (2.4.19)

Therefore, (2.4.19) allows us to look for ui,2 of the form

ui,2 (x , y) = θi (y)∇2
x ũi,0, (2.4.20)

in which such a function θi is the solution of the following problem











A0

�

∇yθi −χi

�

= −|Y1|
−1 |Y |qi − di (y)

�

∇yχi − I
�

, in Y1,

−di (y)
�

∇yθi −χi

�

· n= bi (y) F̄i

�

ui,0

�

− ai (y)ui,0, on ∂ Y0,

θi is Y − periodic in y.

(2.4.21)

In conclusion, we have derived an expansion of uεi (x) up to the second-order corrector. In
particular, we deduced that

uεi (x) = ũi,0 (x)− εχi

� x
ε

�

· ∇x ũi,0 (x) + ε
2θi

� x
ε

�

∇2
x ũi,0 (x) +O

�

ε3
�

, x ∈ Ωε, (2.4.22)

where ũi,0 can be solved by the microscopic problem (3.2.9), χi satisfies the cell problem
(2.4.12), and θi satisfies the cell problem (2.4.21). Moreover, the homogenized equation is
defined in (2.4.17).
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For the time being, it remains to derive the macroscopic equation from the PDE for ui,2 in
(3.2.11) for m= 0. When doing so, the following solvability condition has to be fulfilled:
∫

Y1

�

R̄i (u0)−A1ui,1 −A2ũi,0

�

d y =

∫

∂ Y0

�

bi (y) F̄i

�

ũi,0

�

− ai (y) ũi,0 + di (y)∇xui,1 · n
�

dSy .

(2.4.23)
The left-hand side of (2.4.23) can be rewritten as
∫

Y1

R̄i (u0) d y +

∫

Y1

∇y ·
�

di (y)∇xui,1

�

d y +

∫

Y1

∇x ·
�

di (y)
�

∇x ũi,0 +∇yui,1

��

d y. (2.4.24)

Let us consider the last two integrals in (2.4.24). In fact, we have

∫

Y1

∇x

�

di (y)∇x ũi,0

�

d y =∇x ·

��

∫

Y1

di (y) d y

�

∇x ũi,0

�

=

�

∫

Y1

di (y) d y

�

:∇x∇x ũi,0, (2.4.25)

where we have used the inner product (or exactly, double dot product) between two matrices

A : B := tr
�

AT B
�

=
∑

i j

ai j bi j .

In addition, by periodicity and Gauß’s theorem we obtain
∫

Y1

∇y ·
�

di (y)∇xui,1

�

d y =

∫

∂ Y0

di (y)∇xui,1 · ndSy . (2.4.26)

Next, employing the double dot product again, we get
∫

Y1

∇x ·
�

di (y)∇yui,1

�

d y = −
∫

Y1

�

di (y)∇yχi

�

d y :∇x∇x ũi,0. (2.4.27)

Combining (2.4.23), (2.4.25)-(2.4.27) yields the macroscopic equation:
�

∫

Y1

�

di (y)− di (y)∇yχi

�

d y

�

:∇x∇x ũi,0 = 〈bi〉 F̄i

�

ũi,0

�

− 〈ai〉 ũi,0 − |Y1| R̄i (u0) ,

where we have denoted by

〈ai〉 :=

∫

∂ Y0

ai (y) d y and 〈bi〉 :=

∫

∂ Y0

bi (y) d y.

Furthermore, this equation is associated with the boundary condition ũi,0 = 0 at Γ ex t .

2.4.2 Corrector estimates. Justification of the asymptotics

From the point of view of applications, upper bound estimates on convergence rates over the
space V ε in terms of quantitative analysis tell how fast one can approximate both uε, the
solution of systems (Pε), and ∇uε by the asymptotic expansion (2.4.22). On the other hand,
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it also gives rise to the question that: how much information on data will we need via such
averaging techniques?
We introduce the well-known cut-off function mε ∈ C∞c (Ω) such that ε |∇mε| ≤ C and

mε(x) :=

(

0, if dist (x , Γ )≤ ε,
1, if dist (x , Γ )≥ 2ε.

For i ∈ {1, ..., N}, we define the function Ψεi by

Ψεi := ϕεi + (1−mε)
�

εui,1 + ε
2ui,2

�

,

where we have denoted by

ϕεi := uεi −
�

ui,0 + εui,1 + ε
2ui,2

�

.

Due to the auxiliary problems (3.2.9)-(3.2.11), we have

A εϕεi = Ri (u
ε)− R̄i (u0)− ε

�

A2ui,1 +A1ui,2

�

− ε2A2ui,2, x ∈ Ωε, (2.4.28)

while on the boundary Γ ε, the function ϕεi satisfies

− dεi ∇xϕ
ε
i · n= ε

2dεi ∇xui,2 · n+ ε
�

aεi
�

ui,0 − uεi
�

+ bεi
�

Fi

�

uεi
�

− F̄i

�

ui,0

���

. (2.4.29)

Rewriting the above information, the function ϕεi satisfies the following system:

(

A εϕεi = Ri (uε)− R̄i (u0) + εgεi , in Ωε,

−dεi ∇xϕ
ε
i · n= ε

2hεi · n+ εl
ε
i , on Γ ε,

(2.4.30)

where we have denoted by

gεi :=− di

� x
ε

�

χi

� x
ε

�

∇3
x ũi,0 + di

� x
ε

�

θi

� x
ε

�

∇3
x ũi,0

+∇y

�

di

� x
ε

�

θi

� x
ε

��

∇3
x ũi,0 + εdi

� x
ε

�

θi

� x
ε

�

∇4
x ũi,0,

hεi :=di

� x
ε

�

θi

� x
ε

�

∇3
x ũi,0,

lεi :=ai

� x
ε

�

�

ũi,0 − uεi
�

+ bi

� x
ε

�

�

Fi

�

uεi
�

− F̄i

�

ũi,0

��

.

Now, multiplying the PDE in (3.2.16) by ϕi ∈ Vε for i ∈ {1, ..., N} and integrating by parts,
we get that




dεi ϕ
ε
i ,ϕi

�

V ε =



Ri (u
ε)− R̄i (u0) ,ϕi

�

L2(Ωε) + ε



gεi ,ϕi

�

L2(Ωε)

− ε



lεi ,ϕi

�

L2(Γ ε) − ε
2

∫

Γ ε

hεi · nϕidSε. (2.4.31)

To guarantee all the derivatives appearing in gεi (up to higher order correctors), ũi,0, which
is the solution to (2.4.17), needs to be smooth enough, says L∞ (Ω) (cf. [3]), and the cell
functions χi and θi to (2.4.12) and (2.4.21), respectively, belong at least to H1

# (Y1) as derived
above. Consequently, it allows us to estimate gεi by an ε-independent constant, i.e.





gεi






L2(Ωε) ≤ C for all i ∈ {1, ..., N} . (2.4.32)
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Furthermore, it is easy to estimate the integral including hεi in (3.2.17) by the following (see,
e.g. [31]):

∫

Γ ε

hεi · ndSε ≈ Cε−1,

which leads to




hεi · n






L2(Γ ε) ≤ Cε−1/2. (2.4.33)

Now, it remains to estimate the third integral in (3.2.17). Thanks to (A2) and (2.4.6), we may
have

�

�

�




lεi ,ϕi

�

L2(Γ ε)

�

�

�≤ C
�

1+ K̄i

�



uεi − ũi,0







L2(Γ ε) ‖ϕi‖L2(Γ ε) . (2.4.34)

In the same vein, we get
�

�

�




Ri (u
ε)− R̄i (u0) ,ϕi

�

L2(Ωε)

�

�

�≤ C L̄i ‖uε − ũ0‖V ε ‖ϕi‖L2(Ωε) . (2.4.35)

Combining (3.2.17)-(2.4.35) with (A1) and putting L̄ := max
�

L̄1, ..., L̄N

	

and K̄ := 1 +
max

�

K̄1, ..., K̄N

	

, we are led to the estimate:

α

N
∑

i=1

�

�




ϕεi ,ϕi

�

V ε

�

�≤ C
�

L̄ ‖uε − ũ0‖V ε + ε
�

‖ϕ‖V ε

+ C
�

K̄ε ‖uε − ũ0‖H (Γ ε) + ε
3/2
�

‖ϕ‖H (Γ ε)
≤ C

�

ε + ε1/2
�

‖ϕ‖V ε ≤ Cε1/2 ‖ϕ‖V ε , (2.4.36)

where we have made use of the trace inequality ‖ϕ‖H (Γ ε) ≤ Cε−1/2 ‖ϕ‖V ε (cf. Lemma A.0.8)
and the Poincaré inequality ‖ϕ‖H (Ωε) ≤ C ‖ϕ‖V ε .
Recall that our aim is to estimate ‖Ψε‖V ε , it remains to control the following term:




(1−mε)
�

εui,1 + ε
2ui,2

�

,ϕi

�

V ε for ϕi ∈ V ε.

In fact, one easily has that

N
∑

i=1

�

�




(1−mε)
�

εui,1 + ε
2ui,2

�

,ϕi

�

V ε

�

�≤ Cε ‖∇ (1−mε)‖H (Ωε) ‖ϕ‖V ε

+ C




(1−mε)∇
�

εu1 + ε
2u2

�





H (Ωε) ‖ϕ‖V ε

≤ C
�

ε1/2 + ε3/2
�

‖ϕ‖V ε ≤ Cε1/2 ‖ϕ‖V ε , (2.4.37)

where we have used

‖∇ (1−mε)‖2
H (Ωε) ≤ N

�

∫

Ωε∩{x |dist(x ,Γ )≤2ε}
|∇mε|2 d x

�

≤ Cε−1,





(1−mε)∇
�

εu1 + ε
2u2

�





2

H (Ωε) ≤ Nε2 |Ωε|
∫

Ωε∩{x |dist(x ,Γ )≤2ε}
|∇mε|2 d x ≤ Cε3.

Hence, by using the triangle inequality in (2.4.36) and (2.4.37) it yields that

N
∑

i=1

�

�




Ψεi ,ϕi

�

V ε

�

�≤ Cε1/2 ‖ϕ‖V ε ,
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which finally leads to
‖Ψε‖V ε ≤ Cε1/2,

by choosing ϕ = Ψε.
All in all, we can now state of the following theorem.

Theorem 2.4.1. Let uε be the solution of the elliptic system (Pε) with assumptions (A1)-(A3) and
(3.2.8)-(2.4.6) up to M = 2. Suppose the unique pair (u0, um) ∈W∞ (Ω)×W∞

�

Ω; H1
# (Y1)/R

�

for m ∈ {1,2}. The following corrector with second order for the homogenization limit holds:




uε − u0 −mε
�

εu1 + ε
2u2

�





V ε ≤ Cε1/2,

where u0, u1 and u2 are vectors whose elements are defined by (2.4.10), (2.4.11) and (2.4.20),
respectively.

2.5 Discussion

In real-world applications, the nonlinear reaction term Ri is often locally Lipschitz. However,
relying on Lemma 2.3.3 the L∞-type estimate of the positive solution makes the nonlinearity
globally Lipschitz. The telling example can be seen through the mass action kinetic determ-
inistic model of the simplest autocatalytic reaction X1 + X2 � 2X1, which implies N = 2
species with the rates R1 (u1, u2) = u1u2 − u2

1 = −R2 (u1, u2). Considering the first rate R1 for
simplicity, we have

|R1 (u1, u2)− R1 (v1, v2)| ≤max
�

‖u2‖L∞ ,‖u1‖L∞ + ‖v1‖L∞
	

(|u1 − v1|+ |u2 − v2|) .

In addition, for M = 1 we compute that

R1

�

u1,0 + εu1,1, u2,0 + εu2,1

�

= u1,0u2,0 + ε
�

u1,1u2,0 + u1,0u2,1 − 2u1,0u1,1

�

+O
�

ε2
�

. (2.5.1)

Consequently, it follows from (2.5.1) that

R1

 

∑

m∈{0,1}

εmu1,m,
∑

m∈{0,1}

εmu2,m

!

=
∑

m∈{0,1}

εm
�

(1−m)u1,0u2,0

+m
�

u1,1u2,0 + u1,0u2,1 − 2u1,0u1,1

��

+O
�

ε2
�

.

which implies R̄1 := (1−m)u1,0u2,0 +m
�

u1,1u2,0 + u1,0u2,1 − 2u1,0u1,1

�

.
If ui,m, vi,m ∈ L∞ (Ω) for all i, m, we thus arrive at

�

�R̄1

�

u1,0, u1,1, u2,0, u2,1

�

− R̄1

�

v1,0, v1,1, v2,0, v2,1

��

�≤ L1

∑

m∈{0,1},i∈{1,2}

�

�ui,m − vi,m

�

� ,

where we compute that

L1 = 4 max
¦




u2,0







L∞(Ω) ,




v1,0







L∞(Ω) ,




v1,1







L∞(Ω) ,




v2,1







L∞(Ω) ,




u1,0







L(Ωε) , 1
©

.

A similar discussion for the nonlinear surface rates Fi . In particular, note that that if L∞

bounds are available (up to the boundary) then also the exponential function F (u) = eu can
be treated conveniently.
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We may repeat the homogenization procedure by the auxiliary problems (3.2.9)-(3.2.11) to
obtain not only the general expansion of the concentrations and corresponding problems, but
also the higher order of corrector estimate due to the ũ0-based construction of um. Taking
the M -level expansion (3.2.3) into consideration, the general corrector can be found easily.
Indeed, by induction we have from (2.4.28) that for x ∈ Ωε

A εϕεi =A
εuεi − ε

−2A0ui,0 − ε−1
�

A0ui,1 +A1ui,0

�

−
M−2
∑

m=0

εm
�

A0ui,m+2 +A1ui,m+1 +A2ui,m

�

− εM−1
�

A1ui,M +A2ui,M−1

�

− εMA2ui,M

= Ri (u
ε)−

M−2
∑

m=0

εmR̄i (um)− εM−1
�

A1ui,M +A2ui,M−1

�

− εMA2ui,M ,

while (2.4.29) becomes

−dεi ∇xϕ
ε
i · n= ε

M dεi ∇xui,M + ε

�

aεi

�

M−2
∑

m=0

εmui,m − uεi

�

+ bεi

�

F
�

uεi
�

−
M−2
∑

m=0

εm F̄
�

ui,m

�

��

.

Thanks to the assumptions (3.2.8) and (2.4.6), we are totally in a position to prove the gen-
eralization of Theorem 2.4.1. Since we just need to follow the above procedure, we shall give
the following theorem while skipping the proof.

Theorem 2.5.1. Let uε be the solution of the elliptic system (Pε) with assumptions (A1)-(A3) and
(3.2.8)-(2.4.6) up to M-level of expansion. Suppose that the unique pair (u0, um) ∈W∞ (Ωε)×
W∞

�

Ωε; H1
# (Y1)/R

�

for all 0≤ m≤ M. The following correctors for the homogenization limit
hold:
















uε −
M
∑

m=0

εmum
















V ε

≤ CεM−1,
















uε − u0 −mε
M
∑

m=1

εmum
















V ε

≤ C
M
∑

m=1

εm−1/2.

2.6 Concluding remarks

In this chapter, we have proved results on the weak solvability and homogenization of a
microscopic semi-linear elliptic system posed in perforated media. The model presented in
this chapter explores the interplay between stationary diffusion and both surface and volume
chemical reactions in porous media. More precisely, we have derived homogenization lim-
its (upscaling) for alike systems and particularly justified rigorously the obtained averaged
descriptions. Based on Moser-like iteration techniques with the minimization approach, we
have proved the well-posedness of the microscopic problem ensuring also the positivity and
boundedness of the involved concentrations. Then, we have used the structure of the formal
two-scale expansions and followed energy-like estimates to derive corrector estimates delim-
itating this way the convergence rate of the asymptotic approximates to the macroscopic limit
concentrations.
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Let us mention that by the same approach, we can also derive general high-order corrector
estimates. We observe, on the other side, that the linearity of the auxiliary problems typically
relies on the structure of the reaction term. These results shall be given in Chapter 3 as an
extension of this chapter.
It is worth noting that the correctors estimates stated in Theorem 2.4.1 and Theorem 2.5.1 can
be improved if one handles the eventual boundary layers occurring due to the presence of the
Dirichlet condition uεi = 0 holding across Γ ex t . A major gain would be to be able to account
for the effect of the presence of the corners on the convergence speed of the homogenization
limit. We expect that the working techniques used in [17] are applicable also in our setting;
compare to [117] for additional related references on boundary layers correctors, and plan
to approach this matter in a forthcoming work.
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CHAPTER 3

Notes on semi-linear auxiliary problems and a high-
order corrector estimate

3.1 Introduction

This chapter has a two-fold target:

1. to elucidate the cases where auxiliary problems are semi-linear;

2. to derive additional high-order corrector estimates.

Henceforward, this chapter is structured as follows. In Section 3.2, we show that the structure
of the volume reaction rate may lead to the semi-linear auxiliary problems. We then present
a simple and efficient monotone iterations, based on [92, 71], to derive also the structure of
high-order correctors for the homogenization limit. On the other hand, Section 3.3 is devoted
to generalizing all aforementioned corrector estimates by the same arguments and techniques.
It is worth noting that the domain Ωε ⊂ Rd considered here approximates a porous medium.
The precise description of Ωε is already showed in [65] and further in Chapter 2. In Figure
2.1 (left), we sketch an admissible geometry of our medium, pointing out the sample micro-
structure in Figure 2.1 (right). We also follow the notation from the previous chapter. Finally,
we end up with this chapter by Section 3.4 in which some open problems are discussed and
provided.

3.2 Derivation of semi-linear auxiliary problems

3.2.1 Problem setting

We are concerned with the study of the semi-linear elliptic boundary-value problem of the
form











A εuε = R (uε) , in Ωε,

uε = 0, across Γ ex t ,

∇uε · n= 0, across Γ ε,

(3.2.1)

where the operatorA εuε :=∇·(−dε∇uε) involves dε termed as the molecular diffusion while
R represents the volume reaction rate. We take into account the following assumptions:
(A1) the diffusion coefficient dε ∈ L∞

�

Rd
�

for d ∈ N is Y -periodic and symmetric, and it
guarantees the ellipticity ofA ε as follows:

dεξiξ j ≥ α |ξ|
2 for any ξ ∈ Rd ;

33



(A2) the reaction coefficient R ∈ L∞ (Ωε ×R) is globally L-Lipschitzian, i.e. there exists L > 0
independent of ε such that

|R (u)− R (v)| ≤ L |u− v| for u, v ∈ R.

Remark 3.2.1. Recall that we denote the space V ε by

V ε :=
�

v ∈ H1(Ωε)|v = 0 on Γ ex t
	

(3.2.2)

endowed with the norm

‖v‖V ε =

�∫

Ωε

|∇v|2 d x

�1/2

.

This norm is equivalent (uniformly in the homogenization parameter ε) to the usual H1 norm
by the Poincaré inequality.

3.2.2 Main results

We begin with the M th-order expansion (M ≥ 2) which reads

uε (x) =
M
∑

m=0

εmum (x , y) +O
�

εM+1
�

, x ∈ Ωε, (3.2.3)

where um (x , ·) is Y -periodic for 0≤ m≤ M .
Following standard homogenization procedures, we deduce the so-called auxiliary problems
(see e.g. [16]). To do so, we consider the functional Φ (x , y) depending on two variables: the
macroscopic x and y = x/ε the microscopic presentation, and denote Φε (x) = Φ (x , y). The
simple chain rule allows us to derive the fact that

∇Φε (x) =∇xΦ
�

x ,
x
ε

�

+ ε−1∇yΦ
�

x ,
x
ε

�

. (3.2.4)

The quantities ∇uε and A εuε must be expanded correspondingly. In fact, it follows from
(3.2.4) and (3.3.1) that

∇uε =
�

∇x + ε
−1∇y

�

�

M
∑

m=0

εmum +O
�

εM+1
�

�

= ε−1∇yu0 +
M−1
∑

m=0

εm
�

∇xum +∇yum+1

�

+O
�

εM
�

. (3.2.5)

Using the structure of the operatorA ε, we obtain the following:

A εuε = ε−2∇y ·
�

−d (y)∇yu0

�

+ ε−1
�

∇x ·
�

−d (y)∇yu0

�

+∇y ·
�

−d (y)
�

∇xu0 +∇yu1

���

+
M−2
∑

m=0

εm
�

∇x ·
�

−d (y)
�

∇xum +∇yum+1

��

+∇y ·
�

−d (y)
�

∇xum+1 +∇yum+2

���

+O
�

εM−1
�

. (3.2.6)
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Concerning the boundary condition at Γ ε, we note:

dε∇uε · n= di (y)

�

ε−1∇yu0 +
M−1
∑

m=0

εm
�

∇xum +∇yum+1

�

�

· n. (3.2.7)

From here on, we introduce the following key structure of the reaction term:

R

�

M
∑

m=0

εmum

�

=
M
∑

m=0

εm−rR (um) +O
�

εM−r+1
�

for r ∈ Z, r ≤ 2. (3.2.8)

At this point we see, if r ∈ {1, 2} solving nonlinear auxiliary problems is then needed. To see
the impediment, let us focus on r = 2. By collecting the coefficients of the same powers of
ε in (3.2.6) and (3.2.7), we are led to the following systems, which we refer to the auxiliary
problems:











A0u0 = R (u0) , in Y1,

−d (y)∇yu0 · n= 0, on ∂ Y0,

u0 is Y − periodic in y,

(3.2.9)











A0u1 = R (u1)−A1u0, in Y1,

−d (y)
�

∇xu0 +∇yu1

�

· n= 0, on ∂ Y0,

u1 is Y − periodic in y,

(3.2.10)











A0um+2 = R (um+2)−A1um+1 −A2um, in Y1,

−d (y)
�

∇xum+1 +∇yum+2

�

· n= 0, on ∂ Y0,

um+2 is Y − periodic in y,

(3.2.11)

for 0≤ m≤ M − 2.
Here, we have denoted

A0 :=∇y ·
�

−d (y)∇y

�

,

A1 :=∇x ·
�

−d (y)∇y

�

+∇y · (−d (y)∇x) , (3.2.12)

A2 :=∇x · (−d (y)∇x) .

Remark 3.2.2. In the case r ≤ 0, it is trivial to not only prove the well-posedness of these
auxiliary problems (3.3.8)-(3.3.10), but also to compute the solutions by many approaches due
to its linearity. For details, the reader is referred here to [31].

The idea is now to linearize the auxiliary problems. Inspired by the fact that a fixed-point
homogenization argument seems to be applicable in this framework, and also by the way a
priori error estimates are proven for difference schemes, we suggest an iteration technique
to "linearize" the involved PDE systems. We start the procedure by choosing the initial point
u(0)m = 0 for m ∈ {0, ..., M}. As next step, we consider the following systems corresponding to
the nonlinear auxiliary problems:











A0u(n0)
0 = R

�

u(n0−1)
0

�

, in Y1,

−d (y)∇yu(n0)
0 · n= 0, on ∂ Y0,

u(n0)
0 is Y − periodic in y,

(3.2.13)
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









A0u(n1)
1 = R

�

u(n1−1)
1

�

−A1u(n0)
0 , in Y1,

−d (y)
�

∇xu(n0)
0 +∇yu(n1)

1

�

· n= 0, on ∂ Y0,

u(n1)
1 is Y − periodic in y,

(3.2.14)











A0u(nm+2)
m+2 = R

�

u(nm+2−1)
m+2

�

−A1u(nm+1)
m+1 −A2u(nm)

m , in Y1,

−d (y)
�

∇xu(nm+1)
m+1 +∇yu(nm+2)

m+2

�

· n= 0, on ∂ Y0,

u(nm+2)
m+2 is Y − periodic in y,

(3.2.15)

for 0≤ m≤ M − 2. Note that the quantity nm is independent of ε.
Since the approximate auxiliary problems became linear, standard procedures are able to find
the solutions u(nm)

m for 0 ≤ m ≤ M . Note that these problems admit a unique solution (see,
e.g. [31, Lemma 2.2]) on V , i.e. the quotient space of VY1

defined by

VY1
:=
�

ϕ|ϕ ∈ H1 (Y1) ,ϕ is Y − periodic
	

.

If κp := Cp Lα−1 < 1 holds (here Cp is the Poincaré constant depending only on the dimension
of Y1), then we easily obtain that for every m,

�

u(nm)
m

	

is a Cauchy sequence in H1 (Y1). Hereby,
it naturally claims the existence and uniqueness of the nonlinear auxiliary problems (3.3.8)-
(3.3.10). Moreover, the convergence rate of the iteration procedure is given by





u(nm)
m − um







H1(Y1)
≤

κnm
p

1−κnm
p





u(1)m







H1(Y1)
.

For more details in this sense, see [71, Theorem 2.2].
To prove the corrector estimate, we suppose that the solutions of the auxiliary problems
(3.3.8)-(3.3.10) belong to the space L∞ (Ωε; V ). Let us introduce the following function:

ϕε := uε −
M
∑

m=0

εmum.

Relying on the auxiliary problems (3.3.8)-(3.3.10), note that the function ϕε satisfies the
following system:



















A εϕε = R (uε)−
M−2
∑

m=0

εm−2R (um)

−εM−1 (A1uM +A2uM−1)− εMA2uM , in Ωε,

−dε∇xϕ
ε · n= εM dε∇xuM · n, on Γ ε.

(3.2.16)

Now, multiplying the PDE in (3.2.16) by ϕ ∈ V ε and integrating by parts, we arrive at

〈dεϕε,ϕ〉V ε =

®

R (uε)−
M−2
∑

m=0

εm−2R (um) ,ϕ

¸

L2(Ωε)

− εM−1 〈A1uM +A2uM−1 + εA2uM ,ϕ〉L2(Ωε)

− εM

∫

Γ ε

dε∇xuM · nϕdSε. (3.2.17)
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From here on, we estimate the integrals on the right-hand side of (3.3.13), which is a standard
procedure; see [31] for similar calculations. Thus, we claim that

�

�

�

�

�

®

R (uε)−
M−2
∑

m=0

εm−2R (um) ,ϕ

¸

L2(Ωε)

�

�

�

�

�

≤ C L
















uε −
M
∑

m=0

εmum +O
�

εM−1
�
















V ε

‖ϕ‖L2(Ωε) ,

(3.2.18)
where we have essentially used the global Lipschitz condition on the reaction term, the as-
sumption (3.2.8), and the Poincaré inequality (cf. Lemma ??). Next, we get

εM−1
�

�〈A1uM +A2uM−1 + εA2uM ,ϕ〉L2(Ωε)

�

�≤ CεM−1 ‖ϕ‖L2(Ωε) , (3.2.19)

while using the trace inequality (cf. Lemma A.0.8) to deal with the the last integral, it gives

εM

�

�

�

�

∫

Γ ε

dε∇xuM · nϕdSε

�

�

�

�

≤ CεM−1 ‖ϕ‖L2(Ωε) . (3.2.20)

Combining (3.3.14)-(3.3.17), we provide that

α
�

�〈ϕε,ϕ〉V ε
�

�≤ CεM−1 ‖ϕ‖L2(Ωε) ,

which finally leads to ‖ϕε‖V ε ≤ CεM−1 by choosing ϕ = ϕε, very much in the spirit of energy
estimates.
Ultimately, we state our results in the frame of the following theorems.

Theorem 3.2.3. Suppose (3.2.8) holds for r ∈ {1,2} and assume κp := Cp Lα−1 < 1 for the
given Poincaré constant. Let

�

u(nm)
m

	

nm∈N
be the schemes that approximate the nonlinear auxiliary

problems (3.2.13)-(3.2.15). Then (3.2.13)-(3.2.15) admit a unique solution um for all m ∈
{0, ..., M} with the speed of convergence:





u(nm)
m − um







H1(Y1)
≤

Cκn
p

1−κn
p

for all nm ∈ N and m ∈ {0, ..., M} ,

where C > 0 is a generic ε-independent constant and n :=max {n0, ..., nM}.

Theorem 3.2.4. Let uε be the solution of the elliptic system (3.2.1) with the assumptions (A1)-
(A2) stated above and suppose that (3.2.8) holds for r ∈ {1, 2}. For m ∈ {0, . . . , M} with M ≥ 2,
we consider um the solutions of the auxiliary problems (3.2.13)-(3.2.15). Then we obtain the
following corrector estimate:
















uε −
M
∑

m=0

εmum
















V ε

≤ CεM−1,

where C > 0 is a generic ε-independent constant.

Remark 3.2.5. If the Lipschitz constant L depends on the homogenization parameter ε for a
given order of O (εq), q ∈ R, then the same result can be obtained. In fact, such a constant
only appears in (3.3.14). Then an increase in the order M of the expansion is necessary to
guarantee the convergence when q is negative. Note that, the more the order M is exploited, the
more complicated becomes the computation procedure. On the other hand, such M-dependence
broadens the applicability of our approach. For instance, a simple example having an ε-dependent
L and satisfying (3.2.8) is R(u) = ε−1u. Here one has L = ε−1 and r = 1, and hence, with M ≥ 3
the corrector estimate is of the order O

�

εM−2
�

.
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Remark 3.2.6. An improved version of the above iterations can be proposed by adding a sta-
bilization term. For example, if the quantity Ls

�

u(n0)
0 − u(n0−1)

0

�

(with Ls being a free-to-choose
positive number) is inserted into the right-hand side of the PDE of the auxiliary problem (3.2.13),
we are led to a new mild restriction (L + Ls)Cp/min {α, Ls}< 1.

Remark 3.2.7. The structural condition (3.2.8) must be viewed here as a prototype. Modifying
it accordingly allows the treatment of many classes of reaction rates, including those mentioned
in [63, 94, 96]. Note that although in many multiscale problems the impediment r ∈ {1,2} is not
present, the high-order corrector (as well as the technicalities coming with its derivation) are still
available. It is worth noting that extensions can also include Arrhenius-like laws (i.e. exponential
rates of the type R(u) = e|u|). The control of the oscillations can be then done in terms of the
elementary inequality

�

�ea − eb
�

�≤max
�

ea |a− b| , eb |a− b|
	

, for a, b ≥ 0, provided L∞-bounds
on the solution are available.

3.3 A high-order corrector estimate

3.3.1 Problem setting

Recalling the macroscopic elliptic system we have considered in Chapter 2, i.e.

A εuεi ≡∇ ·
�

−dεi ∇uεi
�

= Ri

�

uε1, ..., uεN
�

in Ωε,

associated with the boundary conditions

dεi ∇uεi · n= ε
�

aεi uεi − bεi Fi

�

uεi
��

across Γ ε,

uεi = 0 across Γ ex t ,

for i ∈ {1, ..., N} with N ≥ 2 being the number of involved concentrations. For simplicity, we
once again refer to this problem as (Pε).
This problem is connected to the Smoluchowski-Soret-Dufour modeling of the evolution of
temperature and colloid concentrations [34, 75]. Here, uε :=

�

uε1, ..., uεN
�

denotes the vector
of the concentrations, dεi represents the molecular diffusion with Ri being the volume reac-
tion rate and aεi , bεi are deposition coefficients, whilst Fi indicates a surface chemical reaction
for the immobile species. Notice that the quantity ε is called the homogenization parameter
or the scale factor. Denote by x ∈ Ωε the macroscopic variable and by y = x/ε the micro-
scopic variable representing high oscillations at the microscopic geometry. Henceforward, we
understand throughout this subsection the following convention:

dεi (x) = di

� x
ε

�

= di (y) , x ∈ Ωε, y ∈ Y1,

with the same meaning for all the oscillating data such as aεi , bεi , e.g.
Our above-mentioned corrector estimate evaluation starts from the two--scale asymptotic ex-
pansion up to M th-level (M ≥ 2) given by

uεi (x) =
M
∑

m=0

εmui,m (x , y) +O
�

εM+1
�

, x ∈ Ωε, (3.3.1)

where ui,m (x , ·) is Y -periodic for 0≤ m≤ M and i ∈ {1, ..., N}.
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It is worth noting that in Chapter 2, we have analyzed the solvability of (Pε) using the en-
ergy minimization approach and derived the upscaled equations as well as the corresponding
effective coefficients. Furthermore, we showed that using the separation of variables, the
functions ui,m(x , y) for 0≤ m≤ M can be structured as, e.g.

ui,0 (x , y) = ũi,0 (x) ,

ui,1 (x , y) = −χi,1 (y) · ∇x ũi,0 (x) ,

ui,2 (x , y) = χi,2 (y)∇2
x ũi,0 (x) ,

with ũi,0 (x) being determined uniquely from the auxiliary problem and χi,m satisfy the cor-
responding cell problems. One can also rule out the ũi,0-based construction of ui,m that
ui,m (x , y) = (−1)mχi,m (y)∇m

x ũi,0 (x) for 1≤ m≤ M .
In this scenario, we wish to obtain the error estimate up to a high-order expansion for the
differences of concentrations and their gradients, albeit some types have been investigated so
far. In particular, we prove in this part a corrector in the form of

uε −
K
∑

k=0

εkuk −mε
M
∑

m=K+1

εmum, (3.3.2)

in which we fix K ∈ N such that 0 ≤ K ≤ M − 2 and mε ∈ C∞c (Ω) is a cut-off function such
that ε |∇mε| ≤ C and

mε (x) :=

(

0, if dist (x , Γ )≤ ε,
1, if dist (x , Γ )≥ 2ε,

(see [31] for more properties of mε).
With the above definition of mε, the second term in (3.3.2) vanishes everywhere except in a
neighborhood of the boundary of Ωε. In other words, the appearance of mε provides that the
speed of convergence in the interior of the material is better than the rate at the vicinity of
the boundary, albeit the standard result expected that ‖uε − u0‖H1(Ωε) ≤ Cε1/2. It is then easy
to see that (3.3.2) includes the cases

uε −
M
∑

m=0

εmum and uε − u0 −mε
M
∑

m=1

εmum, M ≥ 2,

reported in Theorem 2.5.1 and further in [31].
The similarity between Theorem 3.3.1 and Theorem 2.5.1 in Chapter 2 is that under the
energy-type method, we employ the cut-off function mε to distinguish the speeds of conver-
gence in H1-norm of the limit u0 in the interior part of the perforated material and at the
boundary of inclusions. The main difference consists in showing that if K = M − 2, the cor-
rector (3.3.5) yields the order of O (εM− 3

2 ), whilst it only gives the order O (ε
1
2 ) in Theorem

2.5.1.
Further comments can be found in Remark 3.3.2 and Remark 3.3.3, discussing the a priori
assumptions on the smoothness of the limit u0 and on the structure of the cell problems for
arbitrarily high-order correctors.
With V ε postulated in (3.2.2), we define V ε := V ε × ...× V ε as well as some other function
spaces such as W p,q (Ωε) := W p,q(Ωε) × ... ×W p,q(Ωε) the Sobolev space of functions with
index of differentiability p ∈ N and integrability q and W q (Ωε) := Lq (Ωε)× ...× Lq (Ωε) for
q ∈ (2,∞].
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To handle the corrector estimates, we need the following assumptions:
(A1) The diffusion coefficient dεi ∈ L∞

�

Rd
�

is Lipschitz and Y -periodic, and there exists a
positive constant αi such that

di (y)ξiξ j ≥ αi |ξ|
2 for any ξ ∈ Rd .

(A2) The deposition coefficients aεi , bεi ∈ L∞ (Γ ε) are positive and Y -periodic.
(A3) The reaction rates Ri : Ωε × [0,∞)N → R and Fi : Γ ε × [0,∞)→ R are Carathéodory
functions. Moreover, they satisfy the structural assumptions:

Ri

�

M
∑

m=0

εmu1,m, ...,
M
∑

m=0

εmuN ,m

�

=
M
∑

m=0

εmR̄i

�

u1,m, ..., uN ,m

�

+O
�

εM+1
�

, (3.3.3)

Fi

�

M
∑

m=0

εmui,m

�

=
M
∑

m=0

εm F̄i

�

ui,m

�

+O
�

εM+1
�

, (3.3.4)

where R̄i and F̄i are global Lipschitz functions with the Lipschitz constants Li and Ki for
i ∈ {1, ..., N}, in the sense that

�

�R̄i

�

u1,m, ..., uN ,m

�

− R̄i

�

v1,m, ..., vN ,m

��

�≤ Li

N
∑

i=1

�

�ui,m − vi,m

�

� ,

�

�F̄i

�

u1,m, ..., uN ,m

�

− F̄i

�

v1,m, ..., vN ,m

��

�≤ Ki

N
∑

i=1

�

�ui,m − vi,m

�

� ,

for every 0≤ m≤ M .

3.3.2 Main results

Theorem 3.3.1. Assume (A1)-(A3) hold. Let uε be the vector of solutions of the elliptic system
(Pε). Consider the high-order asymptotic expansion (3.3.1) up to M-level (M ≥ 2) and take
u0 ∈ W M+2,∞(Ωε) ∩W M+1,∞(Γ ε) and um ∈ W∞

�

Ωε; H1
# (Y1)/R

�

for all 0 ≤ m ≤ M. For a
fixed K ∈ N such that 0≤ K ≤ M − 2, the following corrector estimate holds:
















uε −
K
∑

k=0

εkuk −mε
M
∑

m=K+1

εmum
















V ε

≤ C

�

εM−1 + εM +
M
∑

m=K+1

�

εm− 1
2 + εm+ 1

2

�

�

, (3.3.5)

where C > 0 is a generic ε-independent constant.

Proof. Before giving the proof, let us recall the structural inequalities of the cut-off function
mε. The following useful estimates (cf. [40]) hold true:

‖1−mε‖L2(Ωε) ≤ Cε1/2, ε ‖∇mε‖L2(Ωε) ≤ Cε1/2. (3.3.6)

To bound from above in terms of ε the quantity (3.3.2), we can reduce the discussion to the
corrector at ith concentration which is defined as

Ψεi := uεi −
K
∑

k=0

εkui,k −mε
M
∑

m=K+1

εmui,m for i ∈ {1, ..., N} .
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We observe that Ψεi can be decomposed further as

Ψεi = uεi −
M
∑

m=0

εmui,m

︸ ︷︷ ︸

ϕεi

+(1−mε)
M
∑

m=K+1

εmui,m

︸ ︷︷ ︸

γεi

. (3.3.7)

As in Chapter 3, we use the auxiliary problems










A0ui,0 = 0, in Y1,

−di (y)∇yui,0 · n= 0, on ∂ Y0,

ui,0 is Y − periodic in y,

(3.3.8)











A0ui,1 = −A1ui,0, in Y1,

−di (y)
�

∇xui,0 +∇yui,1

�

· n= 0, on ∂ Y0,

ui,1 is Y − periodic in y,

(3.3.9)











A0ui,m+2 = R̄i (um)−A1ui,m+1 −A2ui,m, in Y1,

−di (y)
�

∇xui,m+1 +∇yui,m+2

�

· n= bi (y) F̄i

�

ui,m

�

− ai (y)ui,m, on ∂ Y0,

ui,m+2 is Y − periodic in y,

(3.3.10)

for 0≤ m≤ M − 2.
In (3.3.8)-(3.3.10), the operatorsA0,A1 andA2 are defined in (3.2.12), respectively.
By induction, one can easily obtain that the first part of decomposition (3.3.7), the function
ϕεi , satisfies the following equation:

A εϕεi = Ri (u
ε)−

M−2
∑

m=0

εmR̄i (um)− εM−1
�

A1ui,M +A2ui,M−1

�

− εMA2ui,M in Ωε, (3.3.11)

associated with the following boundary condition at Γ ε

−dεi ∇xϕ
ε
i · n= ε

M dεi ∇xui,M · n

+ ε

�

aεi

�

M−2
∑

m=0

εmui,m − uεi

�

+ bεi

�

Fi

�

uεi
�

−
M−2
∑

m=0

εm F̄i

�

ui,m

�

��

. (3.3.12)

Multiplying (3.3.11) by ϕi ∈ V ε, integrating the result by parts, and finally using (3.3.12),
we arrive at

∫

Ωε

dεi ∇ϕ
ε
i · ∇ϕid x =

®

Ri (u
ε)−

M−2
∑

m=0

εmR̄i (um) ,ϕi

¸

L2(Ωε)

− εM−1



A1ui,M +A2ui,M−1 + εA2ui,M ,ϕi

�

L2(Ωε)

− ε

®

aεi

�

M−2
∑

m=0

εmui,m − uεi

�

,ϕi

¸

L2(Γ ε)

− ε

®

bεi

�

Fi

�

uεi
�

−
M−2
∑

m=0

εm F̄i

�

ui,m

�

�

,ϕi

¸

L2(Γ ε)

− εM

∫

Γ ε

dεi ∇xui,M · nϕidSε. (3.3.13)
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We can now gain the first part of the corrector (3.3.5), i.e. we shall estimate each integral
(having the same orders of ε) on the right-hand side of (3.3.13), which we denote by I1, I2,
I3 and I4, respectively.
Let L̄ := max

�

L̄1, ..., L̄N

	

. Using the structural assumption (3.3.3) in combination with the
inequality





R̄i (um)






L2(Ωε) ≤ L̄ ‖um‖W 2(Ωε) +




R̄i (0)






L2(Ωε) for all 0≤ m≤ M , we see that

�

�

�

�

�

®

Ri (u
ε)−

M−2
∑

m=0

εmR̄i (um) ,ϕi

¸

L2(Ωε)

�

�

�

�

�

≤
�

εM−1
�

L̄ ‖uM−1‖W 2(Ωε) +




R̄i (0)






L2(Ωε)

�

+ εM
�

L̄ ‖uM‖W 2(Ωε) +




R̄i (0)






L2(Ωε)

��

‖ϕi‖L2(Ωε)

≤ C
�

εM−1 + εM
�

‖ϕi‖L2(Ωε) . (3.3.14)

Direct computations give

A1ui,M = (−1)M+1
h

di

� x
ε

�

χi,M

� x
ε

�

+∇y

�

di

� x
ε

�

χi,M

� x
ε

��i

∇M+1
x ũi,0,

A2ui,M−1 = (−1)M di

� x
ε

�

χi,M−1

� x
ε

�

∇M+1
x ũi,0,

A2ui,M = (−1)M+1 di

� x
ε

�

χi,M

� x
ε

�

∇M+2
x ũi,0.

Due to ui,0 ∈W M+2,∞(Ωε) and ui,m ∈ L∞
�

Ωε; H1
# (Y1)/R

�

for all 0 ≤ m ≤ M in combination
with (A1), the second integral I2 can be bounded from above by

εM−1
�

�

�




A1ui,M +A2ui,M−1 + εA2ui,M ,ϕi

�

L2(Ωε)

�

�

�≤ CεM−1 ‖ϕi‖L2(Ωε) . (3.3.15)

Let K̄ := 1+max
�

K̄1, ..., K̄N

	

. For the integral I3, we proceed as in the proof of (3.3.14). We
thus claim that

ε

�

�

�

�

�

®

aεi

�

M−2
∑

m=0

εmui,m − uεi

�

+ bεi

�

Fi

�

uεi
�

−
M−2
∑

m=0

εm F̄i

�

ui,m

�

�

,ϕi

¸

L2(Γ ε)

�

�

�

�

�

≤ C
�

εM−1 + εM
�

‖ϕi‖L2(Ωε) , (3.3.16)

in which we use (3.3.1) and (3.3.4) together with (A2) and the Hölder inequality, as well as
the trace inequality. On top of that, it yields for the last integral I4 that

εM

�

�

�

�

∫

Γ ε

dεi ∇xui,M · nϕidSε

�

�

�

�

≤ εM




dεi ∇xui,M · n






L2(Γ ε) ‖ϕi‖L2(Γ ε)

≤ CεM−1 ‖ϕi‖L2(Ωε) , (3.3.17)

where we follow the computations that




dεi ∇xui,M · n






L2(Γ ε) ≤ Cε−1/2 and apply again the
trace inequality.
Combining (3.3.13)-(3.3.17), we observe that

�

�




ϕεi ,ϕi

�

V ε

�

�≤ C
�

εM−1 + εM
�

‖ϕi‖L2(Ωε) for ϕi ∈ V ε and i ∈ {1, ..., N} , (3.3.18)

which then leads to




ϕεi







V ε ≤ CεM−1 by choosing ϕi = ϕεi for i ∈ {1, ..., N}.
It remains to estimate the second part of decomposition (3.3.7). We consider the following
quantity:




γεi ,ϕi

�

V ε for ϕi ∈ V ε and i ∈ {1, ..., N} .
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At this stage, the following estimate is straightforward due to (3.3.6):
�

�

�

�

�

®

(1−mε)
M
∑

m=K+1

εmui,m,ϕi

¸

V ε

�

�

�

�

�

≤ C
















∇ (1−mε)

�

M
∑

m=K+1

εmui,m

�
















L2(Ωε)

‖ϕi‖V ε

+ C
















(1−mε)∇

�

M
∑

m=K+1

εmui,m

�
















L2(Ωε)

‖ϕi‖V ε

≤ C
M
∑

m=K+1

εm ‖∇ (1−mε)‖L2(Ωε) ‖ϕi‖V ε

+ C
M
∑

m=K+1

εm ‖1−mε‖L2(Ωε) ‖ϕi‖V ε

≤ C
M
∑

m=K+1

�

εm− 1
2 + εm+ 1

2

�

‖ϕi‖V ε for all ϕi ∈ V ε. (3.3.19)

Thanks to the triangle inequality, we combine (3.3.18) and (3.3.19) to get

�

�




Ψεi ,ϕi

�

V ε

�

�≤ C

�

εM−1 + εM +
M
∑

m=K+1

�

εm− 1
2 + εm+ 1

2

�

�

‖ϕi‖V ε for ϕi ∈ V ε.

By choosing ϕi = Ψεi and then by simplifying both sides of the resulting estimate by




Ψεi







V ε ,
we obtain that





Ψεi







V ε ≤ C

�

εM−1 + εM +
M
∑

m=K+1

�

εm− 1
2 + εm+ 1

2

�

�

.

This completes the proof of Theorem 3.3.1.

Remark 3.3.2. To obtain high-order corrector estimates, the limit u0 has to be very smooth
as stated e.g. in Theorem 3.3.1. The reason is that at the Mth level of expansion, we need ε-
independent L∞-bounds of the terms∇M+1

x ũi,0,∇M+2
x ũi,0 in Ωε and of∇M

x ũi,M on Γ ε. To support
this approach, recall that u0 is solution of a homogenized system ∇x · (−qi∇xui,0) = R̄i(u0), i ∈
{1, ..., N} in which qi are (positive constant) homogenized coefficients given by

qi =
1
|Y1|

∫

Y1

di(y)(−∇yχi,1 + I)d y,

while I stands for the identity matrix. This homogenized system is associated with the zero
Dirichlet boundary condition at Γ ex t and still satisfies the ellipticity condition.
Note that if we suppose, for simplicity, that R̄i is linear functions with respect to u0, then the
homogenized system becomes the nonhomogeneous elliptic equation in the vectorial form. There-
fore, we can apply the classical results in [3, Theorem 12.4] to guarantee that the derivatives
of u0 up to the desired order are in L∞(Ω). Thus, the needed smoothness of u0 when dealing
with the high-order correctors (M ≥ 2) is obtainable. This result can be used similarly when we
consider the correctors for uε−u0 and uε−u0−εu1 derived from (3.3.2) with K = 0 and K = 1,
respectively.

Remark 3.3.3. From the high-order auxiliary problems (3.3.8)-(3.3.10) and the fact already
stated that ui,m (x , y) = (−1)mχi,m (y)∇m

x ũi,0 (x) for 1 ≤ m ≤ M, one can derive the corres-
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ponding cell problems for the high-order corrector:











A0χi,1 =∇y di (y) , in Y1,

−di (y)∇yχi,1 · n= di (y) · n, on ∂ Y0,

χi,1 is Y − periodic in y,

and






































∇y ·
�

−di (y)
�

∇yχi,m+2 −χi,m+1

��

∇m+2
x ũi,0

= (−1)m R̄i

�

(−1)mχ1,m∇m
x ũ1,0, ..., (−1)mχN ,m∇m

x ũN ,0

�

− (di (y)− I)∇yχi,m+1 (y)∇m+2
x ũi,0, in Y1,

−di (y)
�

∇yχi,m+2 −χi,m+1

�

∇m+2
x ũi,0 · n

= (−1)m bi (y) F̄i

�

(−1)mχi,m∇m
x ũi,0

�

− ai (y)χi,m∇m
x ũi,0, on ∂ Y0,

χi,m+2 is Y − periodic in y,

where x ∈ Ω is viewed here as the involved parameter, while 0≤ m≤ M − 2 with i ∈ {1, ..., N}.
Obviously, these problems are linear and ensuring their solvability is standard.
We also remark that from elliptic regularity theory in [103, 56], since Y1 is a non-convex polygon,
the above cell system for χi,m only admits a unique solution whose regularity is H1+s(Y1) for
s ∈ (−1/2,1/2) (cf. [103]), and we cannot go further from this regularity no matter how
smooth the involved terms are. In addition, the non-existence result for this type of problems can
be found e.g. in [56, Theorem 14.11].

3.4 Concluding remarks

In Section 3.2, we have shown that the structure of the volume reaction rate affects the struc-
ture of the auxiliary problems. In particular, we have focused on the monotone iterations to
gain also the high-order homogenization corrector. The single-species model can be adapted
to handle more complex scenarios including, for instance, nonlinearities posed at the bound-
ary of perforations. In Section 3.3, a general high-order corrector estimate has been proved in
Theorem 2.5.1. In parallel with that, the corresponding cell problems for the high-order cor-
rector are also constructed. Let us remark that the price one has to pay for getting a high-order
corrector estimate is very expensive since the structure of the components in the expansion is
based on the limit function ũ0. More precisely, it requires ũ0 ∈ W M+2,∞(Ωε) ∩W M+1,∞(Γ ε)
at the M th order of expansion.
In the near future, we can study the following microscopic system:











A εuε = εαR (uε) in Ωε,

uε = 0 across Γ ex t ,

∇uε · n= εβ F (uε) across Γ ε.

(3.4.1)

This is a semi-linear elliptic Dirichlet-Robin problem sometimes also referred to as a semi-
linear elliptic problem with Fourier boundary condition. The parameters α and β represent
scaling choices potentially arising in applications with coextensive scales on both the domain
and micro-surfaces. The study of (3.4.1) connects e.g. with the works done in [26, 29, 28, 99].
The main difficulty is the presence of arbitrary scaling parameters.
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CHAPTER 4

Correctors justification for a Smoluchowski-Soret-Dufour
system in perforated domains

4.1 Introduction

Diffusion and heat conduction, taken separately, are well understood processes at a large vari-
ety of space scales. However, as soon as diffusion interplays with the conduction of heat, it ap-
pears that the structure of the model equations is not so clear as one would expect, especially
if one wants to describe settings away from the somewhat better understood thermodynamic
equilibrium, where statistical mechanics is the main investigation tool.
Driven by possible applications in the context of efficient drug-delivery and in the design
of intelligent packaging materials, we wish to understand mathematically the upscaling of
the following basic thermo-diffusion scenario: We look at a population of colloidal particles
(monomers) driven by a flux linearly combining Fick and Fourier contributions. We assume
that monomers undergo a Smoluchowski-like dynamics producing populations of i-mers that
finally meet and travel through a transversal porous membrane. The microscopic boundaries
(i.e. those at the level of the membrane pores) are active in the sense that they host adsorption
and desorption of clusters of colloidal particles.
The starting PDE model is formulated in [74] by Krehel and his co-authors. Their thermo-
diffusion system is posed in a perforated medium with uniform periodicity inside the domain.
As main outcome, they prove both the global weak solvability of the model as well as the
periodic homogenization limit. As byproduct, they also obtain the precise structure of the
effective transport parameters. Now, is the moment to: Justify the two-scale asymptotics by
proving corrector/error estimates for the homogenization limit for periodic arrangements of
membrane pores/microstructures.
In our context, the structure of the corrector estimate for the involved concentrations and
temperature fields we wish to prove is





θ ε − θ ε0






2
L2((0,T )×Ωε) +





uε − uε0






2
L2((0,T )×Ωε) +





∇
�

θ ε − θ ε1
�





2

L2((0,T )×Ωε)

+




∇
�

uε − uε1
�





2

L2((0,T )×Ωε) + ε




vε − vε0






2
L2((0,T )×Γ ε) ≤ Cε, (4.1.1)

where C > 0 is a generic constant independent of the choice of the scale parameter
ε > 0.

This chapter is structured as follows: Section 4.2 is devoted to the presentation of the Smolu-
chowski-Soret-Dufour model and the geometry of our perforated domain. In this section, we
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also list a couple of preliminary results about the weak solvability of both the microscopic and
limit models (recalling from [74]). Our main result is Theorem 4.3.1, as presented in Section
4.3. We then introduce the derivation of the difference system resulting from the microscopic
problem and the "macroscopically reconstructed" system. On top of that, we prepare in this
part a few helpful integral estimates. The proof of Theorem 4.3.1 is provided in Subsection
4.3.3. We conclude the paper with the remarks from Section 4.4.

4.2 Setting of the problem

4.2.1 The coupled thermo-diffusion model

A geometrical interpretation of porous medium

LetΩ be a bounded open domain inRd (d ∈ {2,3}) with ∂Ω ∈ C0,1. Without loss of generality,
we reduce ourselves to consider Ω as the parallelepiped (0, a1)× ...× (0, ad) with ai > 0, i ∈
{1, ..., d}. Let Y be the representative unit cell defined by

Y :=

¨

d
∑

i=1

λi~ei : 0< λi < 1

«

,

where ~ei is the ith unit vector in Rd .
Let Y0 be an open subset of Y with a Lipschitz boundary Γ = ∂ Y0 which is divided into two
disjoint closed parts ΓN and ΓR with a nonzero (d − 1)-dimensional measure, i.e. Γ = ΓN ∪ ΓR
with ΓN ∩ ΓR = ;.
Let Z ∈ Rd be a hypercube. Then for X ⊂ Z we denote by X k the shifted subset

X k := X +
d
∑

i=1

ki~ei ,

where k = (k1, ..., kd) ∈ Zd is a vector of indices.
Assume that a scale factor ε > 0 is given. The pore skeleton is then defined as the union of
εY k

0 the ε-homothetic sets of Y k
0 , i.e.

Ωε0 :=
⋃

k∈Zd

�

εY k
0 : Y k

0 ⊂ Ω
	

.

Thus, the total pore space we have in mind is Ωε = Ω\Ωε0.
Set Y1 := Y \Y0. The unit cell Y is made of two parts including the gas phase Y1 and the solid
phase Y0. We denote the total pore surface of the skeleton by Γ ε := ∂Ωε0. The pore surface Γ ε

consists of two parts satisfying Γ ε = Γ εN∪Γ
ε
R where Γ εN and Γ εR are disjoint closed sets possessing

a nonzero (d − 1)-dimensional measure. The Neumann boundary Γ εN indicates the insulation
for the heat flow, whilst at Γ εR we allow for a flux of mass through a Robin-type condition.
The union of the cell regions εY k

1 (without the solid grains εY k
0 ) represents the total available

space for thermo-diffusion.
In Figure 4.1 and Figure 4.2, we show an admissible two-dimensional domain with micro-
structures. We let throughout the paper n := (n1, ..., nd) be the unit outward normal vector on
the boundary ∂Ωε. The representation of the periodic geometries is inspired from [65, 69, 99]
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and references cited therein, but other possibilities exist as well. The practical problem usu-
ally delimitates the freedom in choosing the precise structure of Y0; see Figure 4.2 for a couple
of options.

ε

ε

Figure 4.1: An admissible two-dimensional perforated domain.

ΓN

ΓR

ΓN

ΓR

ΓR ΓN

Figure 4.2: Possible choices for Y0. The choice of (a) fits to the geometry described in Figure 4.1.

Model description

Before describing the microscopic problem (which we refer to as (Pε)), we define some useful
notation. For δ > 0, let ∇δ be the so-called mollified gradient

∇δ f (x) :=∇

�

∫

B(x ,δ)
Jδ (x − y) f (y) d y

�

,

where Jδ is a mollifier (see e.g. [43]) and B (x ,δ) is the ball centered in x ∈ Ω with radius δ.
The radius δ is assumed to be an ε-independent constant.
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We denote by x ∈ Ωε the macroscopic variable and by y = x/ε the microscopic variable
representing fast variations at the microscopic geometry. With this convention, we write

κε (x) = κ
� x
ε

�

= κ (y) .

The same convention applies to all the other oscillating coefficients involved in our problem.
Let m ≥ 1 be the number of balance equations in the system. We denote by A ε

T the second-
order elliptic operator in divergence form with rapidly oscillating coefficients, i.e.

A ε
T :=∇ ·

�

−T
� x
ε

�

∇
�

=
∂

∂ x i

�

−τi j

� x
ε

� ∂

∂ x j

�

, (4.2.1)

where the Einstein summation convention is used.
Concerning the structure of A ε

T , we assume that for all y ∈ Y , T (y) =
�

τi j (y)
�

: Rd → Rd2

for 1 ≤ i, j ≤ d is a second-order tensor that depends on the position vector y and satisfies
an uniform (in ε) ellipticity condition. Depending on the situation, we have either T is the
tensor κ (heat conductivity) or the tensor di (diffusion coefficients).
In this framework, we consider that maximum N > 2 colloidal species are involved in the
thermo-diffusion process. We denote by

�

θ ε, uεi , vεi
�

for i ∈ {1, ..., N} the triplet of real-valued
solutions of our thermo-diffusion model, i.e. a system of coupled ordinary differential equa-
tions with semi-linear parabolic equations for the evolution of temperature and colloid con-
centrations. Denote by uε :=

�

uε1, ..., uεN
�

the vector of all active colloidal concentrations uεi .
We assume that these species obey the population balance equation as postulated [109], i.e.

Ri (s) :=
1
2

∑

k+ j=i

βk jsks j −
N
∑

j=1

βi jsis j , (with Ri : RN → R, i ∈ {1, ..., N})

theoretically representing a quadratic-like rate of change of si . The presence of coagulation
coefficients βi j > 0 accounts for the rate aggregation and fragmentation between populations
of particles of size i and j. For further modeling details, we refer the reader to [42, 57, 58]
and [75], e.g.
We denote the parabolic cylinders as QεT := (0, T )×Ωε and QT := (0, T )×Ω. Now, we detail
the structure of our microscopic problem (Pε). For i ∈ {1, ..., N}, we consider the following
coupled thermo-diffusion system:

∂tθ
ε +A ε

κθ
ε = τε

N
∑

i=1

∇δuεi · ∇θ
ε in QεT , (4.2.2)

∂tu
ε
i +A

ε
di

uεi = ρ
ε
i∇

δθ ε · ∇uεi + Ri (u
ε) in QεT , (4.2.3)

∂t v
ε
i = aεi uεi − bεi vεi on (0, T )× Γ ε, (4.2.4)

subject to the boundary conditions

−κε∇θ ε · n= 0 on (0, T )× Γ εN , (4.2.5)

−κε∇θ ε · n= εgε0θ
ε on (0, T )× Γ εR , (4.2.6)

−κε∇θ ε · n= 0 on (0, T )× ∂Ω, (4.2.7)

−dεi ∇uεi · n= ε
�

aεi uεi − bεi vεi
�

on (0, T )× Γ ε, (4.2.8)

−dεi ∇uεi · n= 0 on (0, T )× ∂Ω, (4.2.9)
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κε heat conductivity (tensor)
τε Soret coefficient (tensor)
gε0 heat absorption (scalar)
dεi diffusion coefficients (tensor)
ρεi Dufour coefficients (tensor)

aεi , bεi deposition rate coefficients (scalars)

Table 4.1: Physical parameters in the microscopic problem (Pε).

and the initial data

θ ε (0, x) = θ ε,0 (x) for x ∈ Ωε, (4.2.10)

uεi (0, x) = uε,0i (x) for x ∈ Ωε, (4.2.11)

vεi (0, x) = vε,0i (x) for x ∈ Γ ε. (4.2.12)

Henceforward, (4.2.2)-(4.2.12) form our microscopic problem (Pε).

Remark 4.2.1. Our thermo-diffusion system is made of N + 1 equations where the short-hand
explanation for physical parameters in this model can be found in Table 4.1. Physically, equation
(4.2.2) describes the changes of the temperature θ ε inΩε according to a heat conduction equation
with a production term depending on ∇δuεi , whilst the colloidal concentration uεi is assumed
to satisfy N reaction-diffusion like equations given by (4.2.3) with a chemical reaction term
depending on ∇δθ ε. This type of special right-hand sides is mimicking the so-called Soret and
Dufour effects. In (4.2.8), vεi denotes the mass of the deposited species on the boundary of the
pore skeleton Γ ε. These quantities are also supposed to satisfy the following ordinary differential
equations (4.2.4).

We make use of the following assumptions:
(A1) The positive coefficients κε,τε, dεi ,ρεi ∈ [H

1(Ωε)]d
2
∩ [L∞(Ωε)]d

2
, gε0 ∈ L∞(Γ εR ) and

aεi , bεi ∈ L∞ (Γ ε) are Y -periodic. Also, there exist positive constants κmin, κmax, τmin, τmax,
dmin, dmax, ρmin, ρmax, amin, amax, bmin, bmax such that κmin ≤ κ jk ≤ κmax, τmin ≤ τ jk ≤ τmax,

dmin ≤ d jk
i ≤ dmax, ρmin ≤ ρ

jk
i ≤ ρmax, amin ≤ aεi ≤ amax, bmin ≤ bεi ≤ bmax for i ∈ {1, ..., N}

and j, k ∈ {1, ..., d}. Furthermore, there also exist positive constants αi for i ∈ {0, ..., N} such
that

κ jk (y)ξ jξk ≥ α0 |ξ|
2 and d jk

i (y)ξ jξk ≥ αi |ξ|
2

for any ξ ∈ Rd , i ∈ {1, ..., N} , j and k ∈ {1, ..., d} to guarantee the ellipticity of the operators
A ε
κ andA ε

di
.

The parameter δ is fixed such that δ � ε, pointing out a length scale comparable with
diam (Ω) not interfering with the perforations.
(A2) The positive initial conditions satisfy θ ε,0 ∈ L∞ (Ωε)∩H1 (Ωε), uε,0i ∈ L∞ (Ωε)∩H1 (Ωε),
vε,0i ∈ L∞ (Γ ε) for i ∈ {1, ..., N}, such that we can find C0 > 0 satisfying





θ ε,0






H1(Ωε) +
N
∑

i=1

�




uε,0i







H1(Ωε) +




vε,0i







L∞(Γ ε)

�

≤ C0,

where C0 is independent of the choice of ε.
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Remark 4.2.2. By the definitions of κ,τ, di ,ρi and (A1), there exist positive constants that
bound from below and above these coefficients on Y for each choice of ε.
The presence of δ > 0 in the model equations is needed to keep (an uniform in ε) control on the
terms ∇δuεi ·∇θ

ε and ∇δθ ε ·∇uεi . In 1D, the presence of δ is not essential since by compactness
arguments it can be removed (see e.g. [62] for a compactness argument used to remove such δ
arising in a similar system modeling consolidation of saturated porous media). In higher space
dimensions, a complete removal of δ is not possible, see [4, Theorem 2.2].
A working example for the mollifier is given by

Jδ (x) :=







Cexp

�

1

|x |2 −δ2

�

, |x |< δ,

0, |x | ≥ δ,

where the constant C > 0 is selected such that
∫

Rd Jδ (x) d x = 1. Then, for f ∈ L1 (Ωε) the
mollified gradient is

∇δ f :=∇

�

∫

B(x ,δ)
Jδ (x − y) f̄ (y) d y

�

,

with

f̄ (x) :=

(

f (x) , x ∈ Ωε,
0, x ∈ Rd\Ωε.

We remark that the function f̄ is well-defined in L1 (B (x ,δ)) for x ∈ Ωε since the intersection
Ωε ∩ B (x ,δ) is Lebesgue measurable. According to [43], there holds ∇δ f ∈ C∞ (Ωε) and there
exists Cδ > 0 such that for all f ∈ L2 (Ωε), the following inequality holds





∇δ f






L∞(Ω) ≤ Cδ ‖ f ‖L2(Ωε) .

In this scenario, one can choose δ > 2εdiam (Y ).

Unless otherwise specified, all the constants C are independent of the homogenization para-
meter ε, but the precise values may differ from line to line or even within a single chain of
estimates. Throughout this paper, we use the superscript ε to emphasize the dependence on
the heterogeneity of the material characterized by the homogenization parameter ε. In the
sequel, we use dSε where Sε can be viewed as a common notation for a boundary of any
surface. Moreover, the notation |·| for a domain indicates in this work the volume of that
domain.

4.2.2 Preliminary results

In this subsection, we present the fact already known concerning the weak solvability and
periodic homogenization of (Pε). It is important to note that, for our choice of Y0, the interior
extension from H1 (Ωε) into H1 (Ω) exists with extension constants independent of ε (see [65,
Lemma 5] and [31, Theorem 2.10]).

Definition 4.2.3. The weak formulation of (Pε)
For i ∈ {1, ..., N}, the triplet

�

θ ε, uεi , vεi
�

satisfying

θ ε, uεi ∈ H1
�

0, T ; L2 (Ωε)
�

∩ L∞
�

0, T ; H1 (Ωε)
�

∩ L∞ ((0, T )×Ωε) ,
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vεi ∈ H1
�

0, T ; L2 (Γ ε)
�

∩ L∞ ((0, T )× Γ ε) .

is a weak solution to (Pε) provided that































































∫

Ωε

∂tθ
εϕd x +

∫

Ωε

κε∇θ ε · ∇ϕd x + ε

∫

Γ εR

g0θ
εϕdSε =

∫

Ωε

τε
N
∑

i=1

∇δuεi · ∇θ
εϕd x ,

∫

Ωε

∂tu
ε
iφid x +

∫

Ωε

dεi ∇uεi · ∇φid x + ε

∫

Γ ε

�

aεi uεi − bεi vεi
�

φidSε

=

∫

Ωε

Ri (u
ε)φid x +

∫

Ωε

ρεi∇
δθ ε · ∇uεiφid x ,

ε

∫

Γ ε

∂t v
ε
i ψidSε = ε

∫

Γ ε

�

aεi uεi − bεi vεi
�

ψidSε,

(4.2.13)
for all (ϕ,φi ,ψi) ∈ H1 (Ωε)×H1 (Ωε)× L2 (Γ ε).

Theorem 4.2.4. Well-posedness and Positivity of solution
Assume (A1)-(A2) and i ∈ {1, ..., N}. The microscopic problem (Pε) admits a unique solution
�

θ ε, uεi , vεi
�

in the sense of Definition 5.3.1, belonging to

K(T, M) :=
�

z ∈ L2((0, T )×Ωε) : |z| ≤ M a.e. in (0, T )×Ωε
	

for some M > 0. Additionally,

θ ε, uεi ∈ H1
�

0, T ; L2 (Ωε)
�

∩ L∞
�

0, T ; H1 (Ωε)
�

∩ L∞ ((0, T )×Ωε) ,

vεi ∈ H1
�

0, T ; L2 (Γ ε)
�

∩ L∞ ((0, T )× Γ ε) .

Furthermore, this triplet
�

θ ε, uεi , vεi
�

is positive and the following energy estimates hold

κmin ‖∇θ ε (t)‖
2
L2(Ωε) +

∫ t

0

‖∂tθ
ε (t)‖2

L2(Ωε) d t ≤ C ,





∇uεi (t)






2
L2(Ωε) +

∫ T

0

�




∂tu
ε
i (t)







2
L2(Ωε) +





∂t v
ε
i (t)







2
L2(Γ ε)

�

d t ≤ C for a.e. t ∈ (0, T] .

We denote by
�

P0
�

the strong formulation of the macroscopic (limit) problem. We introduce
below the limit problem whose precise structure has been obtained via a two-scale conver-
gence procedure in [74]. When doing so, the effective constants are defined, as follows: For
i ∈ {1, ..., N} and j, k ∈ {1, ..., d},

K0 :=
1
|Y1|

∫

Y1

κ (y) d y, Ki j :=
1
|Y1|

∫

Y1

κ (y)
∂ θ̄ j

∂ yi
d y, (4.2.14)

T i
0 :=

1
|Y1|

∫

Y1

τi (y) d y, T i
jk :=

1
|Y1|

∫

Y1

τi (y)
∂ θ̄ j

∂ yi
d y, (4.2.15)

Di :=
1
|Y1|

∫

Y1

di (y) d y, Di
0 :=

�

1
|Y1|

∫

Y1

di (y)
∂ ū j

i

∂ yk
d y

�

jk

, (4.2.16)
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Fi :=
1
|Y1|

∫

Y1

ρi (y) d y, Fi :=

�

1
|Y1|

∫

Y1

ρi (y)
∂ ū j

i

∂ yk
d y

�

jk

, (4.2.17)

Ai :=
1
|Y1|

∫

∂ Y0

aid y, Bi :=
1
|Y1|

∫

∂ Y0

bid y. (4.2.18)

The reader can find in [74] the precise arguments behind the derivation of these effective
coefficients.

Theorem 4.2.5. Strong formulation of the macroscopic problem – (P0)

Assume (A1)-(A2). For i ∈ {1, ..., N}, the triplet
�

θ 0, u0
i , v0

i

�

of limit solutions
�

θ ε, uεi , vεi
�

to (Pε)
in the sense of Definition 5.3.1 satisfies the following macroscopic system

∂tθ
0 +∇ ·

�

−K∇θ 0
�

+ g0
|ΓR|
|Y1|
θ 0 =

N
∑

i=1

�

Ti∇δu0
i

�

· ∇θ 0 in QT , (4.2.19)

∂tu
0
i +∇ ·

�

−Di∇u0
i

�

+ Aiu
0
i − Bi v

0
i =

�

Fi∇u0
i

�

· ∇δθ 0 + Ri

�

u0
�

in QT , (4.2.20)

subject to the boundary conditions

−K∇θ 0 · n= 0 on (0, T )× ∂Ω, (4.2.21)

−Di∇u0
i · n= 0 on (0, T )× ∂Ω, (4.2.22)

and associated with the ordinary differential equations

∂t v
0
i = Aiu

0
i − Bi v

0
i in QT , (4.2.23)

where we have denoted by K= K0I+
�

Ki j

�

i j , T
i = T i

0I+
�

T i
jk

�

jk
, Di = DiI+Di

0, Fi = FiI+Fi
0 for

j, k ∈ {1, ..., d} with I standing for the identity matrix and the quantities K0, Ki j , T i
0, T i

jk, Di , Di
0,

Fi , Fi , Ai , Bi being effective constants corresponding, respectively, to the oscillating coefficients
and defined in (4.2.14)-(4.2.18).

Furthermore, the initial conditions are provided by

θ 0 (t = 0) = θ 0,0 in Ω, (4.2.24)

u0
i (t = 0) = u0,0

i in Ω, (4.2.25)

v0
i (t = 0) = v0,0

i on Γ . (4.2.26)

Theorem 4.2.6. The weak formulation of the macroscopic problem (P0)

Assume (A1)-(A2) and take i ∈ {1, ..., N}, the triplet
�

θ 0, u0
i , v0

i

�

satifying

θ 0, u0
i ∈ H1

�

0, T ; L2 (Ω)
�

∩ L2
�

0, T ; H1 (Ω)
�

∩ L∞ ((0, T )×Ω) ,

v0
i ∈ H1

�

0, T ; L2 (Ω)
�

∩ L∞ ((0, T )×Ω) ,
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is a weak solution to (P0) provided that































































∫

Ω

∂tθ
0ϕd x +

∫

Ω

K∇θ 0 · ∇ϕd x + g0
|ΓR|
|Y1|

∫

Ω

θ 0ϕd x =

∫

Ω

N
∑

i=1

�

Ti∇δu0
i

�

· ∇θ 0ϕd x ,

∫

Ω

∂tu
0
iφid x +

∫

Ω

Di∇u0
i · ∇φid x +

∫

Ω

�

Aiu
0
i − Bi v

0
i

�

φid x

=

∫

Ω

�

Fi∇u0
i

�

· ∇δθ 0φid x +

∫

Ω

Ri

�

u0
�

φid x ,

∫

Ω

∂t v
0
i ψid x =

∫

Ω

�

Aiu
0
i − Bi v

0
i

�

ψid x ,

(4.2.27)
hold for all (ϕ,φi ,ψi) ∈ C∞ (Ω)× C∞ (Ω)× C∞ (Ω).

Hereby, the functions θ̄ and ūi linearly formulate the limit functions θ 1 and u1
i by θ 1 :=

θ̄ · ∇xθ
0 =

d
∑

j=1

∂x j
θ 0θ̄ j and u1

i := ūi · ∇xu0
i =

d
∑

j=1

∂x j
u0

i ū j
i for i ∈ {1, ..., N}. Moreover, they

solve, respectively, the cell problems introduced in the following Theorem.

Theorem 4.2.7. The cell problems
Assume (A1) holds. The limit functions θ 1 and u1

i defined as above solve the following cell prob-
lems:











∇y ·
�

−κ (y)∇y θ̄
j(x , y)

�

=∇y · (κn j) in Y1,

−κ (y)∇y θ̄
j · n= κn j on ∂ Y0,

θ̄ j is Y -periodic,

(4.2.28)











∇y ·
�

−di (y)∇y ū j
i (x , y)

�

=∇y · (din j) in Y1,

−di (y)∇y ū j
i · n= din j on ∂ Y0,

ū j
i is Y -periodic,

(4.2.29)

where n j is the jth unit vector of Rd and i ∈ {1, ..., N} , j ∈ {1, ..., d}. Furthermore,

1. If κ, di ∈ [H1
�

Ȳ1

�

]d
2

are Lipschitz continuous, the system (4.2.28)-(4.2.29) admits a

unique solution
�

θ̄ j , ū j
i

�

∈ H2
loc (Y1)×H2

loc (Y1);

2. If k, di ∈ [H1 (Y1)]d
2
∩ [H−

1
2+s (∂ Y0)]d

2
for every s ∈

�

− 1
2 , 1

2

�

are Lipschitz continuous,

the system (4.2.28)-(4.2.29) admits a unique solution
�

θ̄ j , ū j
i

�

∈ H1+s (Y1)×H1+s (Y1).

The weak solvability of the cell problems (4.2.28) and (4.2.29) shall be further discussed in
the proof of Theorem 4.3.1 (see Section 4.3). To derive the corrector estimate (4.1.1), we
need a number of elementary inequalities.

• For all 1≤ p ≤∞, the following estimates hold:




∇δ f · g






Lp(Ωε) ≤ Cδ ‖ f ‖L∞(Ωε) ‖g‖[Lp(Ωε)]d for f ∈ L∞ (Ωε) , g ∈ [Lp (Ωε)]d , (4.2.30)




∇δ f






Lp(Ωε) ≤ Cδ ‖ f ‖L2(Ωε) for f ∈ L2 (Ωε) , (4.2.31)

where Cδ > 0 depends only on δ. See [74], e.g., for a proof of (4.2.30) and (4.2.31).
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• To estimate the correctors for both the temperature θ ε and colloidal concentrations
uεi , we consider the real-valued cut-off function mε ∈ C1

0 (Ω) satisfying 0 ≤ mε ≤ 1,
ε |∇mε| ≤ C , and mε = 1 on {x ∈ Ω : dist (x , Γ )≥ ε}. Furthermore, one can prove that

‖1−mε‖L2(Ωε) ≤ Cε1/2, ε ‖∇mε‖L2(Ωε) ≤ Cε1/2. (4.2.32)

Theorem 4.2.8. Existence and uniqueness results for (P0)
Assume (A1)-(A2). For i ∈ {1, ..., N}, the macroscopic problem

�

P0
�

admits a unique (local) weak
solution in L2 ((0, T )×Ω).

Proof. Due to the homogenization limit results in [74, Lemma 4.3], the existence of the triplet
�

θ 0, u0
i , v0

i

�

in Theorem 4.2.6 is guaranteed. The contraction of these functions in a closed
subspace of [L2((0, T )×Ω)]N+2 can be proved concisely by a contraction argument. The proof
can be sketched as follows: We define

K1 (M , T ) :=
�

z ∈ L2 ((0, T )×Ω) : |z| ≤ M a.e. in QT

	

.

For i ∈ {1, ..., N}, let θ 0,1, u0,1
i , v0,1

i ∈ K1 (M1, T1) and θ 0,2, u0,2
i , v0,2

i ∈ K1 (M2, T2) be two
pairs of (weak) solutions of the macroscopic system. By choosing T = min {T1, T2} and
M = 2max {M1, M2} and suitable test functions ϕ,φi ,ψi in (4.2.27), we get d

�

θ 0
�

:= θ 0,1−
θ 0,2, d

�

u0
i

�

:= u0,1
i − u0,2

i , d
�

v0
i

�

:= v0,1
i − v0,2

i ∈ K1 (M , T ), which satisfy the following equal-
ities:

1
2
∂t





d
�

θ 0
�





2

L2(Ω) +K




∇d
�

θ 0
�





2

L2(Ω) + g0
|ΓR|
|Y1|





d
�

θ 0
�





2

L2(Ω)

=

∫

Ω

N
∑

i=1

��

Ti∇δu0,1
i

�

· ∇θ 0,1 −
�

Ti∇δu0,2
i

�

· ∇θ 0,2
�

d
�

θ 0
�

d x ,

1
2
∂t





d
�

u0
i

�





2

L2(Ω) +D
i




∇d
�

u0
i

�





2

L2(Ω) + Ai





d
�

u0
i

�





2

L2(Ω) −
∫

Ω

Bid
�

v0
i

�

d
�

u0
i

�

d x

=

∫

Ω

��

Fi∇u0,1
i

�

· ∇δθ 0,1 −
�

Fi∇u0,2
i

�

· ∇δθ 0,2
�

d
�

u0
i

�

d x

+

∫

Ω

�

Ri

�

u0,1
i

�

− Ri

�

u0,2
i

��

d
�

u0
i

�

d x ,

1
2
∂t





d
�

v0
i

�





2

L2(Ω) + Bi





d
�

v0
i

�





2

L2(Ω) =

∫

Ω

Aid
�

u0
i

�

d
�

v0
i

�

d x .

Here, the contraction is obtained for t < T0, where T0 is small enough. For n ∈ N, we
can construct an approximation scheme

�

θ 0,n, u0,n
i , v0,n

i

�

for n ∈ N for the macroscopic system
involving only linear terms. Based on the contraction argument, we can prove that

�

θ 0,n
	

n∈N ,
�

u0,n
i

	

n∈N and
�

v0,n
i

	

n∈N are Cauchy sequences in K1 (M , T0). Thus, the local existence and
uniqueness of solutions in [L2((0, T )×Ω)]N+2 to

�

P0
�

is guaranteed.

4.3 Corrector estimates

The main result of this chapter is stated in the next Theorem whose applicability is delim-
ited by the assumptions (A1)-(A2), extra regularity and ε-control of the initial data. Note
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that the involved macroscopic reconstructions θ ε0 , uεi,0, vεi,0 for i ∈ {1, ..., N} are introduced in
Subsection 4.3.1.

Theorem 4.3.1. Assume (A1)-(A2). Let
�

θ ε, uεi , vεi
�

and
�

θ 0, u0
i , v0

i

�

for i ∈ {1, ..., N} be weak
solutions to (Pε) and (P0) in the sense of Definition 5.3.1 and Theorem 4.2.6, respectively. Let
θ̄ , ūi be the cell functions solving the cell problems (4.2.28)-(4.2.29) and satisfying

θ̄ , ūi ∈ L∞
�

Ωε; W 1+s,2
# (Y1)

�

∩H1
�

Ωε; W s,2
# (Y1)

�

for s > d/2.

For every t ∈ (0, T], we also assume that θ 0 (t, ·) , u0
i (t, ·) ∈ W 1,∞ (Ωε) ∩ H2 (Ωε) for i ∈

{1, ..., N}. On top of that, we assume





θ ε,0 − θ 0,0






2
L2(Ωε) +

N
∑

i=1





uε,0i − u0,0
i







2

L2(Ωε) +
N
∑

i=1





vε,0i − v0,0
i







2

L2(Γ ε) ≤ ε
γ,

for some γ ∈ R+. Then the following corrector estimate holds





θ ε − θ 0






2
L2((0,T )×Ωε) +

N
∑

i=1





uεi − u0
i







2
L2((0,T )×Ωε)

+




∇
�

θ ε − θ ε1
�





2

L2(0,T ;[L2(Ωε)]d) +
N
∑

i=1








∇
�

uεi − uεi,1
�










2

L2(0,T ;[L2(Ωε)]d)
≤ C max {ε,εγ} .

Furthermore, if γ≥ 1, then we obtain

ε

N
∑

i=1





vεi − v0
i







2
L2((0,T )×Γ ε) ≤ Cε.

4.3.1 Macroscopic reconstruction

To derive correctors estimates for our problem, we use the concept of the macroscopic recon-
struction. We borrow this terminology from [40], but note that it is also connected to similar
concepts in the a posteriori numerical analysis of PDEs (see e.g. [76]). It turns out that we
derive operators that could bring us the link between the strong formulations (Pε) and

�

P0
�

.
For a.e. t ∈ [0, T] and x ∈ Ωε we provide that

θ ε0 (t, x) := θ 0 (t, x) , (4.3.1)

uεi,0 (t, x) := u0
i (t, x) , (4.3.2)

vεi,0 (t, x) := v0
i (t, x) . (4.3.3)

Henceforward, we obtain the system of macroscopic reconstruction whose expression is sim-
ilar to the strong formulations

�

P0
�

, but acting on x ∈ Ωε. We accordingly subtract this system
from the microscopic system (Pε) equation-by-equation and gain the difference system over
Ωε. Then we proceed to the correctors justification by the following choice of test functions:

ϕ (t, x) := θ ε (t, x)−
�

θ ε0 (t, x) + εmε (x) θ̄
�

x ,
x
ε

�

· ∇xθ
0 (t, x)

�

, (4.3.4)

φi (t, x) := uεi (t, x)−
�

uεi,0 (t, x) + εmε (x) ūi

�

x ,
x
ε

�

· ∇xu0
i (t, x)

�

, (4.3.5)
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where mε is a cut-off function with the properties (4.2.32).
Multiplying the difference system by the test functions ϕ,φi ∈ H1(Ωε) and integrating the
resulting equations over Ωε, we obtain the system, denoted by

�

P̄ε
�

, as follows:
∫

Ωε0

∂t

�

θ ε − θ ε0
�

ϕd x +

∫

Ωε

�

κε∇θ ε −K∇θ ε0
�

· ∇ϕd x + ε

∫

Γ εR

g0θ
εϕdSε − g0

|ΓR|
|Y1|

∫

Ωε

θ ε0ϕd x

=

∫

Ωε

�

τε
N
∑

i=1

∇δuεi · ∇θ
ε −

N
∑

i=1

�

Ti∇δuεi,0
�

· ∇θ ε0

�

ϕd x ,

∫

Ωε

∂t

�

uεi − uεi,0
�

φid x +

∫

Ωε

�

dεi ∇uεi −D
i∇uεi,0

�

· ∇φid x

+ ε

∫

Γ ε

�

aεi uεi − bεi vεi
�

φidSε −
∫

Ωε

�

Aiu
ε
i,0 − Bi v

ε
i,0

�

φid x

=

∫

Ωε

�

ρεi∇
δθ ε · ∇uεi −

�

Fi∇uεi,0
�

· ∇δθ ε0
�

φid x +

∫

Ωε

�

Ri (u
ε)− Ri

�

uε0
��

φid x ,

According to the system
�

P̄ε
�

, we denote the following terms:

I1 :=

∫

Ωε

∂t

�

θ ε − θ ε0
�

ϕd x , (4.3.6)

I2 :=

∫

Ωε

�

κε∇θ ε −K∇θ ε0
�

· ∇ϕd x , (4.3.7)

I3 := ε

∫

Γ εR

g0θ
εϕdSε − g0

|ΓR|
|Y1|

∫

Ωε

θ ε0ϕd x , (4.3.8)

I4 :=

∫

Ωε

�

τε
N
∑

i=1

∇δuεi · ∇θ
ε −

N
∑

i=1

�

Ti∇δu0
i

�

· ∇θ ε0

�

ϕd x , (4.3.9)

J i
1 :=

∫

Ωε

∂t

�

uεi − uεi,0
�

φid x , (4.3.10)

J i
2 :=

∫

Ωε

�

dεi ∇uεi −D
i∇uεi,0

�

· ∇φid x , (4.3.11)

J i
3 := ε

∫

Γ ε

�

aεi uεi − bεi vεi
�

φidSε −
∫

Ωε

�

Aiu
ε
i,0 − Bi v

ε
i,0

�

φid x , (4.3.12)

J i
4 :=

∫

Ωε

�

ρεi∇
δθ ε · ∇uεi −

�

Fi∇uεi,0
�

· ∇δθ ε0
�

φid x +

∫

Ωε

�

Ri (u
ε)− Ri

�

uε0
��

φid x . (4.3.13)

We introduce, in the same spirit as for (4.3.1) and (4.3.2), another macroscopic reconstruction
θ ε1 (t, x) and uεi,1(t, x) defined as follows:

θ ε1 (t, x) := θ ε0 (t, x) + εθ̄
�

x ,
x
ε

�

· ∇xθ
0(t, x),

uεi,1(t, x) := uεi,0(t, x) + εūi

�

x ,
x
ε

�

· ∇xu0
i (t, x),

where θ̄ and ūi are the cell functions introduced in Theorem 4.2.7 as weak solutions to the
problems (4.2.28) and (4.2.29), respectively.
By definitions (4.3.1)-(4.3.2), the macroscopic reconstructions θ ε0 (t, x) and uεi,0(t, x) are in-
terchangeable, respectively, in notation with the limit functions θ 0(t, x) and u0

i (t, x) in The-
orem 4.3.1.
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4.3.2 Integral estimates

Remark 4.3.2. From Lemma 4.3.3, one can apply directly the L2-estimate between the space-
dependent physical parameters of the microscopic problem (e.g. κε, τε) and their averages, even
if the parameters in discussion are actually tensors. To this end, these estimates are controlled as
‖pε − p̄‖L2(Ωε) ≤ Cε1/2, where pε refers to the oscillating coefficient and p̄ denotes its average.

Lemma 4.3.3. Let Y1 as defined in Subsection 4.2.1. Let pε (x) := p (x/ε) belong to H1 (Ωε)
satisfying

p̄ :=
1
|Y1|

∫

Y1

p (y) d y.

Then the following estimate holds

‖pε − p̄‖L2(Ωε) ≤ Cε1/2 ‖pε‖H1(Ωε) .

Proof. We consider the periodic geometry described in Figure 4.1 in Subsection 4.2.1. For a
fixed test function φ ∈ H1 (Ωε), we see that

∫

Ωε

(pε − p̄)φd x =
∑

k∈Zd

∫

εY k
1

(pε − p̄)φd x ≤ Cε−d

∫

εY1

(pε − p̄)φd x .

By changing the variable x = ε y , the relations
∫

εY1

p
� x
ε

�

φ (x) d x = εd

∫

Y1

p (y)φ (ε y) d y,

∫

εY1

∫

Y1

p (y)φ (x) d yd x = εd

∫

Y1

∫

Y1

p (y)φ (εz) d ydz,

enable us to write:
∫

εY1

(pε − p̄)φd x = εd |Y1|
−1

∫

Y1

∫

Y1

(p (y)φ (ε y)− p (y)φ (εz)) dzd y. (4.3.14)

Since ∂Ωε0 ∈ C0,1 and a smooth path with finite length avoiding perforations can be taken,
one can get

|φ (ε y)−φ (εz)| ≤ ε c̄
∫ 1

0

|∇φ (tε y + (1− t)εz) · (y − z)| d t,

with ξ= t y+(1− t) z, η= y−z and c̄ independent of ε, then (4.3.14) can be bounded from
above by

�

�

�

�

�

∫

εY1

(pε − p̄)φd x

�

�

�

�

�

≤ εd+1 |Y1|
−1

�

∫

Y1

∫

Y2

|∇φ (εξ) ·η|2 dηdξ

�1/2�∫

Y1

∫

Y1

|p (y)|2 d ydz

�1/2

.

(4.3.15)
In (4.3.15), we have denoted Y2 := {y − z : for y, z ∈ Y1}. Also, (4.3.15) leads to

∫

Ωε

(pε − p̄)φd x ≤ Cε ‖pε‖L2(Ωε) ‖∇φ‖L2(Ωε) ,
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and withφ = pε−p̄ and (A.0.1), (4.3.15) becomes ‖pε − p̄‖2
L2(Ωε) ≤ Cε

�

‖pε‖2
L2(Ωε) + ‖∇pε‖2

L2(Ωε)

�

and hence, we finally get

‖pε − p̄‖L2(Ωε) ≤ Cε1/2 ‖pε‖H1(Ωε) .

This completes the proof of the lemma.

We define the following function spaces playing a role in Lemma 4.3.4:

H1
�

Γ εN
�

:=
�

v ∈ H1 (Γ ε) | −κε∇vε · n= 0 on Γ εN
	

,

which is a closed subspace of H1(Γ ε), and

H1
+ (D) :=

�

v ∈ H1 (D) |v ≥ 0 in D
	

,

L∞+ (D) := {v ∈ L∞ (D) |v ≥ 0 in D} ,

where D is a suitably measurable set e.g. Ωε or Γ ε.

Lemma 4.3.4. Let θ ε ∈ L2
�

0, T ; H1
�

Γ εN
��

and θ 0 ∈ L2
�

0, T ; H1 (Ωε)
�

. For any

f1 ∈ C
�

[0, T] ; H1
+ (Ω

ε)∩ L∞+ (Ω
ε)
�

,

f2 ∈ C
�

[0, T] ; H1
+ (Γ

ε)∩ L∞+ (Γ
ε)
�

,

suppose that there exists f3 ∈ C [0, T] such that
∫

Ωε

f1θ
0d x =

∫

Γ εR

f2θ
εdSε + ε f3.

Then, it exists a C > 0 such that
�

�

�

�

�

∫

Ωε

f1θ
0ϕd x − ε

∫

Γ εR

( f2θ
ε + ε f3)ϕdSε

�

�

�

�

�

≤ εC ‖ϕ‖H1(Ωε) ,

for any ϕ ∈ H1 (Ωε).

Proof. We adapt Lemma 5.2 from [86] to our context. The proof of the lemma is based on
the following auxiliary problem: Given f1, f2,θ ε,θ 0 as in the hypothesis of Lemma 4.3.4 and
f̃ ∈ C[0, T], find Ψ such that











∆y Ψ (·, x , y)|y= x
ε
= f1θ

0 for x ∈ Ωε,
∇yΨ (·, x , y) · n= f2θ

ε + ε f̃ for (x , y) ∈ Γ εR ,

∇yΨ · n= 0 at Γ εN .

(4.3.16)

By [93, Lemma 2.1] and also [30], the problem (4.3.16) has a (weak) Y -periodic solution

Ψ (·, x , y)|y= x
ε
∈ L2

�

0, T ; H1 (Ωε)
�

satisfying the integral equality
∫

Ωε

f1θ
0d x =

∫

Γ ε

�

f2θ
ε + ε f̃

�

dSε =

∫

Γ εR

f2θ
εSε + ε f3,
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with f3 being
�

�Γ εR

�

�

−1
f̃ . Moreover, that solution is unique up to an additive constant.

Multiplying the first equation in (4.3.16) by ϕ ∈ H1 (Ωε) and then integrating the resulting
equation over Ωε, we arrive at

�

�

�

�

∫

Ωε

f1θ
0ϕd x − ε

∫

Γ εR

�

f2θ
ε + ε f̃

�

ϕdSε

�

�

�

�

�

=

�

�

�

�

�

∫

Ωε

∆y Ψ (·, x , y)|y= x
ε
ϕd x − ε

∫

Γ εR

f2θ
εϕdSε − ε2

∫

Γ εR

f̃ ϕdSε

�

�

�

�

�

=

�

�

�

�

∫

Ωε

ε
�

∇x

�

∇y Ψ (·, x , y)|y= x
ε

�

−∇x∇y Ψ (·, x , y)|y= x
ε

�

ϕ

− ε
∫

Γ εR

f2θ
εϕdSε − ε2

�

�Γ εR

�

�

−1
∫

Γ εR

f3ϕdSε

�

�

�

�

�

=

�

�

�

�

ε

∫

Γ ε

�

∇y Ψ (·, x , y)|y= x
ε
· nϕdSε − ε

∫

Ωε

∇y Ψ (·, x , y)|y= x
ε
∇xϕd x

�

− ε
∫

Ωε

∇x∇y Ψ (·, x , y)|y= x
ε
ϕd x − ε

∫

Γ εR

f2θ
εϕdSε

− ε2
�

�Γ εR

�

�

−1
∫

Γ εR

f3ϕdSε

�

�

�

�

�

. (4.3.17)

Since Γ ε = Γ εR∪Γ
ε
N , the choice of boundary conditions in (4.3.16) allows the boundary integrals

in (4.3.17) to disappear. It follows from the triangle inequality and the Hölder inequality that

�

�

�

�

�

∫

Ωε

f1θ
0ϕd x − ε

∫

Γ εR

�

f2θ
ε + ε f̃

�

ϕdSε

�

�

�

�

�

≤ ε
��

�

�

�

∫

Ωε

∇y Ψ (·, x , y)|y= x
ε
∇xϕd x

�

�

�

�

+

�

�

�

�

∫

Ωε

∇x∇y Ψ (·, x , y)|y= x
ε
ϕd x

�

�

�

�

�

≤ Cε ‖ϕ‖H1(Ωε) .

This completes the proof of the lemma.

4.3.3 Proof of Theorem 4.3.1

The proof of Theorem 4.3.1 relies on a fine control of the ε-dependence needed to estimate
each term in (4.3.6)-(4.3.13), following the line of arguments indicated in [40]. At first, the
term I1 can be rewritten as:

∫

Ωε

∂t

�

θ ε − θ 0
�

�

θ ε − θ 0 − εmεθ̄
�

x ,
x
ε

�

· ∇xθ
0
�

=
1
2

d
d t





θ ε (t)− θ 0 (t)






2
L2(Ωε) − ε

∫

Ωε

∂t

�

θ ε − θ 0
�

mεθ̄
�

x ,
x
ε

�

· ∇xθ
0d x . (4.3.18)
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Similarly, we proceed to estimate J i
1 as follows:

∫

Ωε

∂t

�

uεi − u0
i

�

�

uεi − u0
i − εm

εūi

�

x ,
x
ε

�

· ∇xu0
i

�

=
1
2

d
d t





uεi (t)− u0
i (t)







2
L2(Ωε) − ε

∫

Ωε

∂t

�

uεi − u0
i

�

mεūi

�

x ,
x
ε

�

· ∇xu0
i d x . (4.3.19)

Using the decomposition

κε∇θ ε −K∇θ 0 = κε∇
�

θ ε − θ ε1
�

+ κε∇θ ε1 −K∇θ
0,

the term I2 thus becomes

I2 =

∫

Ωε

κε∇
�

θ ε − θ ε1
�

· ∇ϕd x +

∫

Ωε

�

κε∇θ ε1 −K∇θ
0
�

· ∇ϕd x . (4.3.20)

Concerning the first term on the right-hand side of (4.3.20), we get

∫

Ωε

κε∇
�

θ ε − θ ε1
�

· ∇ϕd x ≥
κmin

2





∇
�

θ ε − θ ε1
�

(t)






2

L2(Ωε)

− Cε2




∇
�

(1−mε) θ̄ ε · ∇xθ
0 (t)

�





2

L2(Ωε) .

It is worth pointing out that the cell problems (4.2.28) and (4.2.29) require more regularity on
the heat conductivity κ and the diffusion coefficient di , namely we need κ, di ∈ H1(Ȳ1). On the
other side, since these cell problems are elliptic problems on a non-convex polygon, it is well-
known that the cell functions θ̄ and ūi usually do not belong to H2(Y1) in y regardless how
smooth the right-hand sides of (4.2.28) and (4.2.29) are (cf. [61]). Due to the extra regularity
on κ and di leading to their Lipschitz property in space and due to the Lipschitz boundary of
the microstructure, the solutions can be at most in H2

loc(Ȳ1) (see, e.g. [61, Theorem 2.2.2.3]).
Notably, that result will not change even if the microstructure boundary is very smooth as in
this case. We also emphasize that when investigating problems on domains without holes,
the cell problems are then considered to hold in the unit cell Y and, by the convexity of the
cell, one obtains the H2(Y ) regularity of the cell functions.

It follows from [103, Theorem 4] that the cell problems (4.2.28)-(4.2.29) admit a unique
solution (θ̄ , ūi) ∈ H1+s

# (Y1) × H1+r
# (Y1) for some s, r ∈ (− 1

2 , 1
2 ). Essentially, this hinders

us when dealing with the term ε




∇
�

(1−mε) θ̄ ε · ∇xθ
0 (t)

�





L2(Ωε). In fact, we need θ̄ ∈
L∞(Ωε; C1

#(Ȳ1)), whereas its maximal regularity only gives L∞(Ωε; H1+s
# (Y1)) (a similar situ-

ation holds for ūi). Recall the Sobolev embedding W j+s,p(Y1) ⊂ C j(Ȳ1) for sp > d (cf.
[2]). Our Hilbertian framework, i.e. p = 2, j = 1, requires s > d/2 ≥ 1/2 which leads
to the impossibility of getting C1

#(Ȳ1) from H1+s
# (Y1). Obviously, one of the possibilities is

to working with the domain without holes in one-dimensional, i.e. d = 1 and s = 1. The
fact that (θ̄ , ūi) ∈ [L∞(Ωε; W 1+s,2

# (Y1))]2 for s > d/2 is strictly needed to obtain (θ̄ , ūi) ∈
[L∞(Ωε; C1

#(Ȳ1))]2. Then, with the assumption θ 0(t, ·) ∈ W 1,∞(Ωε) ∩ H2(Ωε) and the extra
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regularity θ̄ ∈ H1(Ωε; W s,2
# (Y1)) providing θ̄ ∈ H1(Ωε; C#(Ȳ1)), we estimate that

ε




∇
�

(1−mε) θ̄ ε · ∇xθ
0 (t)

�





L2(Ωε) ≤ ε ‖∇mε‖L2(Ωε)





θ̄






L∞(Ωε ;C(Ȳ1))




θ 0 (t)






W 1,∞(Ωε)

+ ε




∇x θ̄






L2(Ωε ;C(Ȳ1))




θ 0 (t)






W 1,∞(Ωε)

+ ‖1−mε‖L2(Ωε)





∇y θ̄






L∞(Ωε ;C(Ȳ1))




θ 0 (t)






W 1,∞(Ωε)

+ ε




θ̄






L∞(Ωε ;C(Ȳ1))




θ 0 (t)






H2(Ωε)

≤ C
�

ε + ε1/2
�

,

where we use the inequalities (4.2.32) together with the relation ∇=∇x + ε−1∇y .
Observe that

∇θ ε1 =∇xθ
0 +

�

∇y θ̄
�ε∇xθ

0 + εθ̄ ε∇x∇θ 0 + ε
�

∇x θ̄
�ε∇xθ

0. (4.3.21)

Hence, we get

κε∇θ ε1 −K∇θ
0 = κε

�

∇θ 0 +
�

∇y θ̄
�ε∇xθ

0
�

−K∇θ 0

+ κεε
�

θ̄ ε∇x∇θ 0 +
�

∇x θ̄
�ε∇xθ

0
�

. (4.3.22)

We note that the L2-norm of the second term on the right-hand side of (4.3.22) is bounded
from above by

ε




κε
�

θ̄ ε∇x∇θ 0 +
�

∇x θ̄
�ε∇xθ

0
�





L2(Ωε) ≤ Cε




θ̄






L∞(Ωε ;C(Ȳ1))




θ 0






H2(Ωε)

+ Cε




∇x θ̄






L2(Ωε ;C(Ȳ1))




θ 0






W 1,∞(Ωε) .

Let us handle now the remaining quantity κε
�

∇θ 0 +
�

∇y θ̄
�ε∇xθ

0
�

−K∇θ 0. In fact, recall
that G := κ(I+∇y θ̄ )−K is divergence-free with respect to y ∈ Y1 due to the structure of the
cell problems in Theorem 4.2.7. Moreover, we know that its average also vanishes, i.e.

∫

Y1

G d y = 0,

by virtue of the definition of the homogenized heat conductivity K in Theorem 4.2.5.
As a consequence, G possesses a vector potential V and this vector potential is skew-symmetric
such that G =∇yV. In general, the selection of the vector potential is non-unique. However,
we can choose V to solve the Poisson equation ∆yV = η(x , y)∇yG for some function η
just depending on the dimensions. Using this equation together with the periodic boundary
conditions at ∂ Y0 and the vanishing cell average, we can determine this vector potential V
uniquely. Now, we formulate the quantity G ε∇θ 0 = κε

�

∇θ 0 +
�

∇y θ̄
�ε∇xθ

0
�

− K∇θ 0 in
terms of this vector potential. Using the relation ∇y = ε∇− ε∇x , we have

G ε∇θ 0 = ε∇ · (Vε∇θ 0)− εVε∆θ 0 − ε(∇xV)ε∇θ 0. (4.3.23)

Due to the skew-symmetry of V (and also that of Vε), the first term on the right-hand side
of (4.3.23) is divergence-free, indicating the boundedness in L2(Ωε) with the order of O (ε).
In addition, combining θ̄ ∈ L∞(Ωε; W 1+s,2

# (Y1)) ∩ H1(Ωε; W s,2
# (Y1)) with the above Poisson

equation ∆yV= η(x , y)∇yG subject to the periodic boundary condition yields

‖V‖W 1+s,2(Y1) ≤ C ‖G‖W s,2(Y1) .
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By the compact embedding W s,2(Y1) ,→,→ C(Ȳ1) for s > d/2≥ 1, we thus get

V ∈ L∞
�

Ωε; C#

�

Ȳ1

��

∩H1
�

Ωε; C#

�

Ȳ1

��

.

As a consequence, the boundedness in L2(Ωε) of the second and third terms on the right-hand
side of (4.3.23) is given by

ε




Vε∆θ 0 + (∇xV)ε∇θ 0






L2(Ωε) ≤ ε ‖V‖L∞(Ωε ;C(Ȳ1))




θ 0






H2(Ωε)

+ ε ‖V‖H1(Ωε ;C(Ȳ1))




θ 0






W 1,∞(Ωε) .

Therefore, with the help of the Hölder inequality, we note that

∫

Ωε

�

κε∇θ ε1 −K∇θ
0
�

· ∇ϕd x ≤ Cε,

which completes the estimates for I2.

Consequently, we can write

I2 ≥ C




∇
�

θ ε − θ ε1
�

(t)






2

[L2(Ωε)]d − C
�

ε2 + ε
�

. (4.3.24)

Similarly, estimating the term J i
2 leads to

J i
2 ≥ C








∇
�

uεi − uεi,1
�

(t)









2

[L2(Ωε)]d
− C

�

ε2 + ε
�

. (4.3.25)

Concerning the estimate of the term I3, we note the following: Thanks to the compatibility
constraint (Theorem 4.3.4) with the choice ϕ = θ ε − θ 0, we get that

I3 ≤ Cε ‖ϕ‖H1(Ωε)

≤ Cε
�




θ ε − θ 0






L2(Ωε) +




∇
�

θ ε − θ ε1
�





[L2(Ωε)]d +




∇
�

θ ε1 − θ
0
�





[L2(Ωε)]d

�

≤ Cε
�




θ ε − θ 0






L2(Ωε) +




∇
�

θ ε − θ ε1
�





[L2(Ωε)]d + C(1+ ε)
�

, (4.3.26)

where we use again the difference relation (4.3.21) and get the following bound from above





∇
�

θ ε1 − θ
0
�





L2(Ωε) ≤




∇y θ̄






L∞(Ωε ;C(Ȳ1))




θ 0






W 1,∞(Ωε)

+ ε
�





θ̄






L∞(Ωε ;C(Ȳ1))




θ 0






H2(Ωε) +




∇x θ̄






L2(Ωε ;C(Ȳ1))




θ 0






W 1,∞(Ωε)

�

.

Similarly, the term J i
3 is bounded from above by

J i
3 ≤ Cε

�





uεi − u0
i







L2(Ωε) +







∇
�

uεi − uεi,1
�










[L2(Ωε)]d
+ C(1+ ε)

�

. (4.3.27)

Note the elementary decomposition:

τε∇δuεi · ∇θ
ε −

�

Ti∇δu0
i

�

· ∇θ 0 =
�

τε −Ti
�

∇δuεi · ∇θ
ε

+Ti
�

∇δuεi −∇
δu0

i

�

· ∇θ ε +Ti
�

∇θ ε −∇θ 0
�

· ∇δu0
i .

62



Multiplying the above equation by the test function ϕ, we arrive at
�

τε∇δuεi · ∇θ
ε −

�

Ti∇δu0
i

�

· ∇θ 0
�

ϕ =
�

τε −Ti
�

∇δuεi · ∇θ
ε
�

θ ε − θ 0
�

− ε
�

τε −Ti
�

∇δuεi · ∇θ
εmεθ̄ ε · ∇xθ

0

+Ti
�

∇δuεi −∇
δu0

i

�

· ∇θ ε
�

θ ε − θ 0
�

− εTi
�

∇δuεi −∇
δu0

i

�

· ∇θ εmεθ̄ ε · ∇xθ
0

+Ti
�

∇θ ε −∇θ 0
�

· ∇δu0
i

�

θ ε − θ 0
�

− εTi
�

∇θ ε −∇θ 0
�

· ∇δu0
i mεθ̄ ε · ∇xθ

0

=
6
∑

k=1

I k
4 .

To be able to estimate I4, we need to ensure the boundedness of each of the terms
∫

Ωε
I ki

4

for ki ∈ {1, ..., 6} and i ∈ {1, ..., N}. We obtain:
∫

Ωε

�

�I 2
4

�

� d x ≤ ε




∇δuεi · ∇θ
ε






L2(Ωε)










�

τε −Ti
�

mεθ̄
� x
ε

�

· ∇xθ
0









L2(Ωε)

≤ ε




uεi






L∞(Ωε) ‖∇θ
ε‖[L2(Ωε)]d





θ̄






L∞(Ωε ;C(Y1))





θ 0






W 1,∞(Ωε)





τε −Ti






L2(Ωε) ,

(4.3.28)

and
∫

Ωε

�

�I 4
4

�

� d x ≤
ε

2

�

�Ti
�

�







�

∇δuεi −∇
δu0

i

�

· ∇θ ε






L2(Ωε)








mεθ̄
� x
ε

�

· ∇xθ
0









L2(Ωε)

≤
ε

2

�

�Ti
�

�C2
δ





uεi − u0
i







L2(Ωε) ‖∇θ
ε‖[L2(Ωε)]d





θ̄






L∞(Ωε ;C(Y1))





θ 0






W 1,∞(Ωε) . (4.3.29)

Furthermore, we estimate
∫

Ωε

�

�I 1
4

�

� d x ≤




τε −Ti






L2(Ωε)





∇δuεi · ∇θ
ε






L2(Ωε)





θ ε − θ 0






L∞(Ωε)

≤ Cδ




τε −Ti






L2(Ωε)





uεi






L∞(Ωε) ‖∇θ
ε‖[L2(Ωε)]d

�

‖θ ε‖L∞(Ωε) +




θ 0






W 1,∞(Ωε)

�

,

(4.3.30)

and by Young’s inequality (cf. Lemma A.0.7), it yields
∫

Ωε

�

�I 3
4

�

� d x ≤

�

�Ti
�

�

2

2
C2
δ





∇δuεi −∇
δu0

i







2
L∞(Ωε) ‖∇θ

ε‖2
[L2(Ωε)]d

+
1
2





θ ε − θ 0






2
L2(Ωε)

≤

�

�Ti
�

�

2

2
C4
δ
‖∇θ ε‖2

[L2(Ωε)]d




uεi − u0
i







2
L2(Ωε) +

1
2





θ ε − θ 0






2
L2(Ωε) , (4.3.31)

and
∫

Ωε

�

�I 5
4

�

� d x ≤
|Ti |

2

2







�

∇θ ε −∇θ 0
�

· ∇δu0
i







2

L2(Ωε) +
1
2





θ ε − θ 0






2
L2(Ωε)

≤
|Ti |

2

2
C2
δ





u0
i







2
L∞(Ωε)





∇θ ε −∇θ 0






2
[L2(Ωε)]d +

1
2





θ ε − θ 0






2
L2(Ωε) , (4.3.32)

∫

Ωε

�

�I 6
4

�

� d x ≤
ε |Ti |

2

2





u0
i







2
L∞(Ωε)





∇θ ε −∇θ 0






2
[L2(Ωε)]d +

ε

2





θ̄






2
L∞(Ωε ;C(Ȳ1))





θ 0






2
W 1,∞(Ωε) .

(4.3.33)

63



Remark that the first integral in J i
4 can be estimated similarly. On top of that, observe that

we can find constants CRi
> 0 (independent of ε) such that





Ri (u
ε)− Ri

�

u0
�





L2(Ωε) ≤ CRi

N
∑

j=1








uεj − u0
j










L2(Ωε)
for i ∈ {1, . . . , N} ,

in which the constants CRi
depend on the L∞-bounds of the concentrations uε, u0 as discussed

in [69, Section 5].

The estimate on the second integral of J i
4 can be computed directly. Note that for i ∈

{1, . . . , N}, we have:

�

Ri (u
ε)− Ri

�

u0
��

φi =
�

Ri (u
ε)− Ri

�

u0
�� �

uεi − u0
i

�

− ε
�

Ri (u
ε)− Ri

�

u0
��

mεūi

� x
ε

�

· ∇xu0
i .

This gives

∫

Ωε

�

Ri (u
ε)− Ri

�

u0
��

φid x ≤ CRi

N
∑

j=1








uεj − u0
j










L2(Ωε)

�




uεi − u0
i







L2(Ωε)

+ε ‖ūi‖L∞(Ωε ;C(Ȳ1))




u0
i







W 1,∞(Ωε)

�

. (4.3.34)

Collecting the estimates (4.3.24), (4.3.25), (4.3.26), (4.3.27), (4.3.28)-(4.3.33) and (4.3.34),
we obtain:





∇
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θ ε − θ ε1
�

(t)






2

[L2(Ωε)]d +
N
∑
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∇
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uεi − uεi,1
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+Cε
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∇
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∇
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(t)






2

[L2(Ωε)]d

�

+ Cε.

Notably, Theorem 4.3.3 provides us that the L2-error estimates between the Soret and Dufour
coefficients and their homogenized (averaged) versions, i.e.





τε −Ti






L2(Ωε) and




ρεi − F
i






L2(Ωε)
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are of the order O (ε1/2). It thus yields that





∇
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[L2(Ωε)]d

�

. (4.3.35)

It now remains to estimate the second term on the right-hand side of (4.3.18)-(4.3.19). In
fact, integrating by parts gives

∫ t

0

∫

Ωε

mε∂t

�

uεi − u0
i

�

ūi

� x
ε

�

· ∇xu0
i (s, x) d xds

=

∫
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mε
�

uεi − u0
i

�

ūi

� x
ε

�

· ∇xu0
i (s, x) d x

�

�

�

�

s=t

s=0

−
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0

∫
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mε
�

uεi − u0
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�

ūi

� x
ε

�

· ∇x∂tu
0
i (s, x) d xds.

We then observe that

ε

�

�

�

�

∫
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,

and hence,
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�
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For all t ∈ (0, T], we set
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2

L2(Ωε) .
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Then, when integrating (4.3.35) and (4.3.18)-(4.3.19) from 0 to t, we are led to the following
Gronwall-like estimate

w1 (t) +

∫ t

0

w2 (s) ds ≤ C

�

ε2 + ε + (1+ ε)w0 + ε

∫ t

0

w1 (s) ds

�

,

which can be rewritten as

w1 (t) +

∫ t

0

w2 (s) ds ≤ C (ε + (1+ ε)w0) e
Cεt for t ∈ [0, T]. (4.3.36)

Finally, we turn our attention to the corrector estimate for vεi . For i ∈ {1, ..., N} we consider
the equation for the reconstruction vεi,0 = v0

i , obtained from (4.2.23), with the test function
ψi ∈ L2 (Γ ε) and integrate the resulting equation over Γ ε to get

ε

∫

Γ ε

∂t v
0
i ψidSε = ε

∫

Γ ε

�

Aiu
0
i − Bi v

0
i

�

ψidSε. (4.3.37)

Then, we find the difference equation for the micro concentration vεi and the reconstruction
v0

i by subtracting the third equation of (4.2.13) and (4.3.37), provided that

ε
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∫
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�
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�

aεi − Ai

�
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∫

Γ ε

�

bεi
�

vεi − v0
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bεi − Bi

�
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�

ψidSε.

Hereby, we choose ψi = vεi − v0
i to obtain the following estimate
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� dSε. (4.3.38)

SinceΩε is a Lipschitz domain, we recall the trace embedding H1 (Ωε) ⊂ Lq (∂Ωε)which holds
for 1 ≤ q ≤ 2∗

∂Ωε
where 2∗

∂Ωε
= 2 (d − 1)/ (d − 2) if d ≥ 3, and 2∗

∂Ωε
=∞ if d = 2 (cf. [44]).

Therefore, if d = 2, then we continue to estimate (4.3.38) as follows:
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.

Using the trace inequality (A.0.2) for the difference norms
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L2(Γ ε) together with Lemma 4.3.3 and (4.3.36) gives
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L2(Γ ε) . (4.3.39)
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Note herein that the gradient norms are ignored when applying the trace inequality to the
differences. It is simply because that they are of the order O (ε2) by their own regularity.
Henceforward, we apply the Gronwall inequality to (4.3.39) and obtain

ε

N
∑

i=1





vεi − v0
i







2
L2(Γ ε) ≤ C max {ε,εγ} eCεt .

In the same manner, if d ≥ 3, we can now bound in (4.3.38) the absolute differences
�

�aεi − Ai

�

�

and
�

�bεi − Bi

�

� from above by a constant C independent of ε (by (A1)) and then get back the
estimate (4.3.39).
This completes the proof of Theorem 4.3.1.

4.4 Concluding remarks

In this work, we have presented corrector estimates for the homogenization limit for a thermo-
diffusion system with Smoluchowski interactions coupled with a system of differential equa-
tions, posed in a perforated domain. This type of error-control justifies the formal homogen-
ization asymptotics obtained in [75] and completes the convergence result in [74] by giving
convergence rates. This is done using the concept of macroscopic reconstruction together
with fine integral estimates on the solution and oscillating coefficients. Compared to Chapter
2 and Chapter 3, we see that the estimates are rather complicated when dealing with a more
realistic model with several equations. The required regularity of the involved limit and cell
functions is also different. However, in general we all need higher regularity to get strong
convergences. Accordingly, that is the price as one can expect. Moreover, the speed of con-
vergence is now affected by the choice of the initial value of reconstructions. This means that
if the initial homogenization limit is large, there is no way to get a good approximation of
the micro-concentrations in any time. Essentially, our working technique can be applied to a
larger class of coupled nonlinear systems of partial differential equations posed in perforated
media.
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CHAPTER 5

Correctors justification for a Stokes-Nernst-Planck-Poisson
model in perforated domains

5.1 Introduction

Colloidal dynamics is a relevant research topic of interest from both theoretical perspectives
and modern industrial applications. Relevant technological applications include oil recovery
and transport [110], drug-delivery design [82], motion of micro-organisms in biological sus-
pensions [38], harvesting energy via solar cells [18], and also, sol-gel synthesis [23]. Typically,
they all involve different phases of dispersed media (solid morphologies), which resemble at
least remotely to homogeneous domains paved with arrays of contrasting microstructures that
are distributed periodically. Mathematically, the interplay between populations of colloidal
particles leads to work in the multiscale analysis of PDEs especially what concerns the Smo-
luchowski coagulation-fragmentation system and the Stokes-Nernst-Planck-Poisson system,
which is our target here.

It is well known (cf. [35], e.g.) that many particles in colloidal chemistry are able to carry
electrical charges (positive or negative) and, in some circumstances, they can be described
using intensive quantities like the number density or ions concentration, say c±ε . Following
[42], we consider such concentrations c±ε of electrically charged colloidal particles to be in-
volved as unknowns in the Nernst-Planck equations. These equations model the diffusion,
deposition, convection and electrostatic interaction within a porous medium. The associated
electrostatic potential, called here Φε, is usually determined by a Poisson equation linearly
coupled with the densities of charged species, describing the electric field formation inside
the heterogeneous domain. Colloidal particles are always immersed in a background fluid.
Here, we assume that the fluid velocity vε fulfills a suitable variant of the Stokes equations.

It is the aim of this chapter to explore mathematically the upscaling of such non-stationary
Stokes-Nernst-Planck-Poisson (SNPP) systems posed in a porous medium Ωε ⊂ Rd , where
ε ∈ (0,1) represents the scale parameter relative to the perforation (pore sizes) of the domain.
To be more precise, we wish to justify the homogenization asymptotics for a class of SNPP
systems developed by the group of Prof. P. Knabner in Erlangen, Germany, that fit well to the
motion of charged colloidal particles through saturated soils.

As starting point of the discussion, we consider the following microscopic Stokes-Nernst-
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Planck-Poisson (SNPP) system:

− ε2∆vε +∇pε = −εβ
�

c+ε − c−ε
�

∇Φε in QεT := (0, T )×Ωε, (5.1.1)

∇ · vε = 0 in QεT , (5.1.2)

vε = 0 on (0, T )× (Γ ε ∪ ∂Ω) , (5.1.3)

− εα∆Φε = c+ε − c−ε in QεT , (5.1.4)

εα∇Φε · n= 0 on (0, T )× ∂Ω, (5.1.5)

∂t c
±
ε +∇ ·

�

vεc
±
ε −∇c±ε ∓ ε

γc±ε ∇Φε
�

= R±ε
�

c+ε , c−ε
�

in QεT , (5.1.6)

−
�

vεc
±
ε −∇c±ε ∓ ε

γc±ε ∇Φε
�

· n =0 on (0, T )× (Γ ε ∪ ∂Ω) , (5.1.7)

c±ε = c±,0 in {t = 0} ×Ωε. (5.1.8)

We refer to (5.1.1)-(5.1.8) as (Pε). The system (5.1.1)-(5.1.8) is endowed either with

εα∇Φε · n= εσ on (0, T )× Γ εN , (5.1.9)

or with
Φε = ΦD on (0, T )× Γ εD. (5.1.10)

We deliberately use variable scaling parameters α,β ,γ for the ratio of the magnitudes of
differently incorporated physical processes to weigh the effect a certain heterogeneity (mor-
phology) has on effective transport coefficients.
A few additional remarks are in order: The background fluid (solvent) is assumed to be iso-
thermal, incompressible and electrically neutral. The movement of this liquid at low Reynolds
numbers decides the momentum equation behind our Stokes flow (see in (5.1.1)-(5.1.3)).
The Stokes equation further couples to the mass balance equations of the involved colloidal
species as described by the Nernst-Planck equations in (5.1.6)-(5.1.8). The initial charged
densities c±,0 are present cf. (5.1.8). The Poisson-type equation points out an induced elec-
tric field acting on the liquid as well as on the charges carried by the colloidal species (see
in (5.1.4)-(5.1.5)). The surface charge density σ of the porous medium is prescribed as in
(5.1.9).
Although it can in principle introduce a boundary layer potentially interacting with the homo-
genization asymptotics, the magnitude of the ζ-potential ΦD in (5.1.10) does not influence
our theoretical results. Here, it only indicates the degree of electrostatic repulsion between
charged colloidal particles within a dispersion. In fact, experiments provide that colloids
with high ζ-potential (i.e. ΦD � 1 or ΦD � −1) are electrically stabilized while with low
ζ-potential, they tend to coagulate or flocculate rapidly (see e.g. [59, 88] for a detailed cal-
culation).
Specific scenarios for averaging Poisson-Nernst-Planck (PNP) systems as well as Stokes-Nernst-
Planck-Poisson (SNPP) systems were discussed in a number of recent papers; see e.g. [106,
104, 50, 47, 54, 53]. The SNPP-type models are more difficult to handle mathematically
mostly because of the oscillations introduced by the presence of the Stokes flow. The SNPP
systems shown in [99, 51] are endowed with several scaling choices to cover various types of
SNPP systems including Schmuck’s work cf. [104] and the study of a stationary and linear-
ized SNPP system by Allaire et al. cf. [7]. As main results, the global weak solvability of the
respective models as well as their periodic homogenization limit procedures were obtained.
We refer to reader to the lit. cit. also for the precise structure of the associated effective trans-
port tensor parameters and upscaled equations. It is worth also mentioning that sometimes,
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vε : QεT → R velocity
pε : QεT → R pressure
Φε : QεT → R electrostatic potential
c±ε : QεT → R number densities
c±,0 : Ωε → R initial charged densities
σ ∈ R surface charge density
ΦD ∈ R ζ-potential

R±ε : R2→ R reaction rates
α,β ,γ ∈ R variable choices of scalings

Table 5.1: Physical unknowns and parameters arising in the microscopic problem (Pε).

like e.g. in [106, 104, 105], a classification of the upscaling results is done depending on the
choice of boundary conditions for the Poisson equation.

The main theme of this chapter is the derivation of corrector estimates quantifying the con-
vergence rate of the periodic homogenization limit process leading to upscaled SNPP systems.
This should be seen as a quantitative check of the quality of the two-scale averaging procedure.
Getting grip on corrector estimates is a needed step in designing convergent multiscale finite
element methods (see, e.g. [66]) and can play an important role also in studying multiscale
inverse problems.

Our main results are reported in Theorem 5.4.2 in and Theorem 5.4.3. Here both the Neu-
mann and Dirichlet boundary data for the electrostatic potential are considered. The two
types of boundary conditions for the electrostatic potential will lead to different structures of
the upscaled systems, and hence, also the structure of the correctors will be different. To ob-
tain these corrector estimates, we rely on the energy method combined with integral estimates
for periodically oscillating functions as well as with appropriate macroscopic reconstructions,
regularity results on limit and cell functions as well as the smoothness assumptions for the
microscopic boundaries and data. It is worth mentioning that the corrector estimate for the
closest model to ours, i.e. for the PNP equations in [105, Theorem 2.3], reveals already a class
of possible assumptions on the cell functions (taken in W 1,∞) as well as on the smoothness of
the interior and exterior boundaries (taken in C∞). Also, we borrowed ideas from both lin-
ear elliptic theory [3] as well as from the techniques behind the previously obtained corrector
estimates [31, 69, 70, 68] for periodically perforated media. Concerning the locally periodic
case, we refer the reader to [86] and references cited therein or to Zhang et al. [118]. In
the latter paper, the authors have studied the homogenization of a steady reaction-diffusion
system in a chemical vapor infiltration (CVI) process and have also deduced the convergence
rate for the homogenization limit.

The reader should bear in mind that our way of deriving corrector estimates does not extend
to the stochastic homogenization setting, but can cover, involving only minimal technical
modifications, the locally periodic homogenization setting.

The corrector estimates we claim are the following:

Case 1: If the electrostatic potential Φε satisfies the homogeneous Neumann boundary con-
dition, then it holds
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Φ̃ε − Φ̃ε0






L2((0,T )×Ωε) +




c±ε − c±,ε
0







L2((0,T )×Ωε)

+




∇
�

Φ̃ε − Φ̃ε1
�





[L2((0,T )×Ωε)]d ≤ C max
¦

ε
1
2 ,ε

µ
2

©

, (5.1.11)




∇
�

c±ε − c±,ε
1

�





[L2((0,T )×Ωε)]d ≤ C max
¦

ε
1
4 ,ε

µ
2

©

, (5.1.12)




vε − |Yl |
−1Dvε0 − ε |Yl |

−1Dvε1






[L2((0,T )×Ωε)]d

+ ‖pε − p0‖L2(Ω)/R ≤ C
�

max
¦

ε
1
2 ,ε

µ
2

©

+ ε
λ
2 + ε1− 3λ

2 + ε
1
2−λ
�

, (5.1.13)

where µ ∈ R+ and λ ∈ (0,1).

Case 2: If the electrostatic potential Φε satisfies the homogeneous Dirichlet boundary condi-
tion, then it holds





Φ̃ε − Φ̃ε0






L2((0,T )×Ωε) +




c±ε − c±,ε
0







L2((0,T )×Ωε) +




∇
�

Φ̃ε − Φ̃ε0
�





[L2((0,T )×Ωε)]d

+




∇
�

c±ε − c±,ε
1

�





[L2((0,T )×Ωε)]d ≤ C max
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ε
1
2 ,ε

µ
2

©

, (5.1.14)




vε − |Yl |
−1Dvε0 − ε |Yl |

−1Dvε1






[L2((0,T )×Ωε)]d

+ ‖pε − p0‖L2(Ω)/R ≤ C
�

max
¦

ε
1
2 ,ε

µ
2

©

+ ε
λ
2 + ε1− 3λ

2 + ε
1
2−λ
�

. (5.1.15)

The chapter is organized as follows. In Section 5.2, the geometry of our perforated domains
is introduced together with some notation and conventions. The list of assumptions on the
data is also reported here. In Section 5.3, we provide the weak and strong formulations of
all systems of PDEs mentioned in this framework (including the microscopic and macroscopic
evolution systems, the cell problems). Section 5.4 is devoted to the statement of our main
results and to the corresponding proofs. The remarks from Section 5.5 conclude the chapter.

5.2 Technical preliminaries

5.2.1 A geometrical interpretation of porous media

Let Ω be a bounded and open domain in Rd with ∂Ω ∈ C0,1. Without loss of generality,
we reduce ourselves to consider Ω as the parallelepiped (0, a1) × ... × (0, ad) for ai > 0, i ∈
{1, ..., d}.
Let Y be the unit cell defined by

Y :=

¨

d
∑

i=1

λi~ei : 0< λi < 1

«

,

where ~ei denotes the ith unit vector in Rd . We suppose that Y consists of two open sets Yl and
Ys which respectively represent the liquid part (the pore) and the solid part (the skeleton) such
that Ȳl∪ Ȳs = Ȳ and Yl∩Ys = ;, while Ȳl∩ Ȳs = Γ has a non-zero (d − 1)-dimensional Hausdorff
measure. Additionally, we do not allow the solid part Ys to touch the outer boundary ∂ Y of
the unit cell. As a consequence, the fluid part is connected (see Figure 5.1).
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Let Z ⊂ Rd be a hypercube. For X ⊂ Z we denote by X k the shifted subset

X k := X +
d
∑

i=1

ki~ei ,

where k = (k1, ..., kd) ∈ Zd is a vector of indices.
Let ε > 0 be a given scale factor. We assume that Ω is completely covered by a regular array
of ε-scaled shifted cells. In porous media terminology, the solid part/pore skeleton is defined
as the union of cell regions εY k

s , i.e.

Ωε0 :=
⋃

k∈Zd

εY k
s ,

while the fluid part, which is filling up the total space, is represented by

Ωε :=
⋃

k∈Zd

εY k
l .

We denote the total pore surface of the skeleton by Γ ε := ∂Ωε0. This description indicates that
the porous medium we have in mind is saturated with the fluid.
Note that we use the subscripts N and D in (5.1.9)-(5.1.10) to distinguish, respectively, the
case when the Neumann and Dirichlet conditions are applied across the pore surface. Fur-
thermore, the assumption ∂Ω∩ Γ ε = ; holds.
In Figure 5.1, we show an admissible geometry mimicking a porous meidum with periodic
microstructures. We let nε := (n1, ..., nd) be the unit outward normal vector on the boundary
Γ ε. The representation of the periodic geometries is in line with [65, 69, 99] and references
cited therein.
We denote by x ∈ Ωε the macroscopic variable and by y = x/ε the microscopic variable
representing fast variations at the microscopic geometry. In the following, the upper index ε
thus denotes the corresponding quantity evaluated at y = x/ε. Suppose that our total pore
space Ωε is bounded, connected and possesses C0,1-boundary.
In the sequel, all the constants C are independent of the homogenization parameter ε, but
their precise values may differ from line to line and may change even within a single chain
of estimates. Throughout this chapter, we use the superscript ε to emphasize the dependence
on the heterogeneity of the material characterized by the homogenization parameter. In the
following, we use dSε to indicate the surface measure of oscillating surfaces (boundary of
microstructures). In addition, depending on the context, by |·| we denote either the volume
measure of a domain or the absolute value of a function domain.
When writing the superscript ± or ∓ in e.g. c±ε , we mean both the positive c+ε and negative
densities c−ε .
Due to our choice of microstructures, the interior extension from H1 (Ωε) into H1 (Ω) exists
and the extension constant is independent of ε (see [65, Lemma 5]).

5.2.2 Assumptions on the data

To ensure the weak solvability of our SNPP system, we need essentially several assumptions
on the involved data and parameters.
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Figure 5.1: An admissible perforated domain. The perforations are referred here as microstructures.

(A1) The initial data of charged densities are non-negative and bounded independently of ε,
i.e. there exists an ε-independent constant C0 > 0 such that

0≤ c±,0 (x)≤ C0 for a.e. x ∈ Ω.

(A2) The initial data of charged densities satisfy the compatibility condition:
∫

Ωε

�

c+,0 − c−,0
�

d x =

∫

Γ ε

σdSε.

(A3) The chemical reaction rates are structured as R±ε
�

c+ε , c−ε
�

= ∓
�

c+ε − c−ε
�

.
�

A4

�

The surface charge density σ and ζ-potential ΦD are constants.
(A5) The electrostatic potential Φε has zero mean value in the fluid part, i.e. it satisfies

∫

Ωε

Φεd x = 0.

(A6) The pressure pε has zero mean value in the fluid part, i.e. it satisfies
∫

Ωε

pε(t, x)d x = 0 for all t ≥ 0.

Remark 5.2.1. Assumption (A1) implies that at the initial moment, our charged colloidal particles
are either neutral or positive in the macroscopic domain and their maximum voltage is known.
Based on (A2), if the surface charge density is static (i.e. σ = 0), then we obtain the so-called
global charge neutrality which means that the charge density of our colloidal particles c±ε is ini-
tially in neutrality. This global electroneutrality condition is particularly helpful in the analysis
work (well-posedness, upscaling approach and numerical scheme) of related systems as stated in
e.g. [101, 106, 99]. Nevertheless, it is not used in the derivation of the corrector estimates in
this work. Cf. (A3), the reaction rates are linear and ensure the conservation of mass for the
concentration fields.
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5.3 Weak settings of SNPP models

5.3.1 Preliminary results

In this subsection, we recall the results on the weak solvability and periodic homogenization
of the problem (Pε), which are derived rigorously in [97, 99], e.g.

Definition 5.3.1. Weak formulation of (Pε)
A pair of functions

�

vε, pε,Φε, c±ε
�

satisfying

vε ∈ L∞
�

0, T ; H1
0 (Ω

ε)
�

, pε ∈ L∞
�

0, T ; L2 (Ωε)
�

,Φε ∈ L∞
�

0, T ; H1 (Ωε)
�

,

c±ε ∈ L∞
�

0, T ; L2 (Ωε)
�

∩ L2
�

0, T ; H1 (Ωε)
�

,∂t c
±
ε ∈ L2

�

0, T ;
�

H1 (Ωε)
�′�

,

is a weak solution to (Pε) provided that
∫

Ωε

�

ε2∇vε · ∇ϕ1 − pε∇ ·ϕ1

�

d x = −
∫

Ωε

εβ
�

c+ε − c−ε
�

∇Φε ·ϕ1d x ,

∫

Ωε

vε · ∇ψd x = 0,

∫

Ωε

εα∇Φε · ∇ϕ2d x −
∫

Γ ε

εα∇Φε · nϕ2dSε =

∫

Ωε

�

c+ε − c−ε
�

ϕ2d x ,




∂t c
±
ε ,ϕ3

�

(H1(Ωε))′,H1(Ωε) +

∫

Ωε

�

−vεc
±
ε +∇c±ε ± ε

γc±ε ∇Φε
�

· ∇ϕ3d x

=

∫

Ωε

R±ε
�

c+ε , c−ε
�

ϕ3d x .

for all (ϕ1,ϕ2,ϕ3,ψ) ∈
�

H1
0 (Ω

ε)
�d ×H1 (Ωε)×H1 (Ωε)×H1 (Ωε).

Theorem 5.3.2. Existence and Uniqueness of solution
Assume (A1)-(A6). For each ε > 0, the microscopic problem (Pε) admits a unique weak solution
�

vε, pε,Φε, c±ε
�

in the sense of Definition 5.3.1.

The proof of Theorem 5.3.2 can be found in [99] (see Theorem 3.7) and [97].

Theorem 5.3.3. Averaged tensors and Cell problems
The averaged macroscopic permittivity/diffusion tensor D=

�

Di j

�

1≤i, j≤d is defined by

Di j :=

∫

Yl

�

δi j + ∂yi
ϕ j (y)

�

d y,

where ϕ j = ϕ j (y) for 1≤ j ≤ d are unique weak solutions in H1 (Yl) of the following family of
cell problems











−∆yϕ j (y) = 0 in Yl ,

∇yϕ j (y) · n= −e j · n on Γ ,

ϕ j periodic in y.

(5.3.1)

Furthermore, the averaged macroscopic permeability tensor K=
�

Ki j

�

1≤i, j≤d is defined by

Ki j :=

∫

Yl

wi
jd y,
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where w j = w j (y) together with π j = π j (y) for 1 ≤ j ≤ d are unique weak solutions, respect-
ively, in H1 (Yl) and L2 (Yl) of the following family of cell problems























−∆y w j +∇yπ j = e j in Yl ,

∇y ·w j = 0 in Yl ,

w j = 0 in Γ ,

w j ,π j periodic in y.

(5.3.2)

Also, we define the following cell problem











−∆yϕ (y) = 1 in Yl ,

ϕ (y) = 0 on Γ ,

ϕ periodic in y,

(5.3.3)

which admits a unique weak solution in H1 (Yl).
Note that δi j denotes the Kronecker symbol and e j is the jth unit vector of Rd .

The proof of Theorem 5.3.3 can be found in [99] (see Definition 4.4) and [97].

Remark 5.3.4. Fundamental results for elliptic equations provide that the problems (5.3.1) and
(5.3.3) admit a unique weak solution in H1 (Yl). Similarly, the solutions wi

j andπ j (1≤ i, j ≤ d)

of (5.3.2) are in H1 (Yl) and L2 (Yl), respectively. Particularly, for every s ∈
�

− 1
2 , 1

2

�

it follows
from Theorem 4 and Theorem 7 in [103] that for 1≤ i, j ≤ d,

ϕi
j ∈ H1+s (Yl) and wi

j ∈ H1+s (Yl) ,π j ∈ H s (Yl)

are unique weak solution uniquely to (5.3.1) and (5.3.2), respectively.
The permeability tensor K is symmetric and positive definite (cf. [102, Proposition 2.2,Chapter
7]), whilst the same properties of the permittivity tensor D are proven in [31].

5.3.2 Neumann condition for the electrostatic potential

Theorem 5.3.5. Positivity and Boundedness of solution
Assume (A1)-

�

A4

�

. Let
�

vε, pε,Φε, c±ε
�

be a weak solution of the microscopic problem (Pε) with
the Neumann condition (5.1.9) in the sense of Definition 5.3.1. Then the concentration fields c±ε
are non-negative and essentially bounded from above uniformly in ε.

The proof of Theorem 5.3.5 can be found in [99] (see Theorems 3.3 and 3.4) and [97].

Theorem 5.3.6. A priori estimates
Assume (A1)-(A6). The following a priori estimates hold:
For the electrostatic potential, we have

εα ‖Φε‖L2(0,T ;H1(Ωε)) ≤ C . (5.3.4)

If β ≥ α, it holds
‖vε‖L2((0,T )×Ωε) + ε ‖∇vε‖L2((0,T )×Ωε) ≤ C , (5.3.5)
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and additionally if γ≥ α, it holds

max
t∈[0,T]





c−ε






L2(Ωε) + max
t∈[0,T]





c+ε






L2(Ωε) +




∇c−ε






L2((0,T )×Ωε) +




∇c+ε






L2((0,T )×Ωε)

+




∂t c
−
ε







L2(0,T ;(H1(Ωε))′) +




∂t c
+
ε







L2(0,T ;(H1(Ωε))′) ≤ C . (5.3.6)

The proof of Theorem 5.3.6 can be found in [99] (see Theorem 3.5) and [97].

Theorem 5.3.7. Homogenization of (PεN )
Let the a priori estimates (5.3.4)-(5.3.6) of Theorem 5.3.13 be valid. Taking Φ̃ε := εαΦε, there
exist functions Φ̃0 ∈ L2

�

0, T ; H1 (Ω)
�

and Φ̃1 ∈ L2
�

(0, T )×Ω; H1
# (Y )

�

such that, up to a sub-
sequence, we have

Φ̃ε
2
* Φ̃0,

∇Φ̃ε
2
*∇x Φ̃0 +∇y Φ̃1.

If β ≥ α, then there exist functions v0 ∈ L2
�

(0, T )×Ω; H1
# (Y )

�

and p0 (t, x , y) ∈ L2 ((0, T )×Ω× Y )
such that, up to a subsequence, we have

vε
2
* v0,

ε∇vε
2
*∇y v0,

pε
2
* p0.

Moreover, the convergence for the pressure is strong in L2 (Ω)/R.
If γ≥ α, then there exist functions c±0 ∈ L2

�

0, T ; H1 (Ω)
�

and c±1 ∈ L2
�

(0, T )×Ω; H1
# (Y )

�

such
that, up to a subsequence, we have

c±ε → c±0 strongly in L2 ((0, T )×Ω) ,

∇c±ε
2
*∇x c±0 +∇y c±1 .

Theorem 5.3.8. Strong formulation of the macroscopic problem in the Neuman case -
(P0

N )
Let

�

vε, pε,Φε, c±ε
�

be a weak solution of (Pε) in the sense of Definition 5.3.1 with Neumann
boundary conditions. According to Theorem 5.3.7, we have the following results:
Let Φ̃0 be the two-scale limit of the electrostatic potential Φ̃ε, it then satisfies the following mac-
roscopic system:

(

−∇x ·
�

D∇x Φ̃0 (t, x)
�

= σ̄+ |Yl |
�

c+0 (t, x)− c−0 (t, x)
�

in (0, T )×Ω,

D∇x Φ̃0 (t, x) · n= 0 on (0, T )× ∂Ω,

where σ̄ :=
∫

Γ
σdSy and the permittivity/diffusion tensor D is defined in Theorem 5.3.3.

Let v0 be the two-scale limit of the velocity field vε. With additionally β ≥ α, it then satisfies the
following macroscopic system:































v̄0 (t, x) +K∇x p0 (t, x)

= −K
�

c+0 (t, x)− c−0 (t, x)
�

∇x Φ̃0 (t, x) in (0, T )×Ω, if β = α,

v̄0 (t, x) +K∇x p0 (t, x) = 0 in (0, T )×Ω, if β > α,

∇x · v̄0 (t, x) = 0 in (0, T )×Ω,

v̄0 (t, x) · n= 0 on (0, T )× ∂Ω,
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where v̄0 (t, x) =
∫

Yl
v0 (t, x , y) d y and the permeability tensor K is defined in Theorem 5.3.3.

Let c±0 be the two-scale limits of the concentration fields c±ε . With γ= α, they satisfy the following
macroscopic system:











|Yl |∂t c
±
0 (t, x) +∇x ·

�

c±0 (t, x) v̄0 (t, x)−D∇x c±0 (t, x)
�

∓∇x ·
�

c±0 (t, x)D∇x Φ̃0 (t, x)
�

= |Yl |R±0
�

c+0 (t, x) , c−0 (t, x)
�

in (0, T )×Ω,
�

c±0 (t, x)
�

v̄0 (t, x)∓D∇x Φ̃0 (t, x)
�

−D∇x c±0 (t, x)
�

· n= 0 on (0, T )× ∂Ω,

while with γ > α, they satisfy











|Yl |∂t c
±
0 (t, x) +∇x ·

�

c±0 (t, x) v̄0 (t, x)−D∇x c±0 (t, x)
�

= |Yl |R±0
�

c+0 (t, x) , c−0 (t, x)
�

in (0, T )×Ω,
�

c±0 (t, x) v̄0 (t, x)−D∇x c±0 (t, x)
�

· n= 0 on (0, T )× ∂Ω.

Remark 5.3.9. Due to the a priori estimate for the electrostatic potential in Theorem 5.3.13, Φε
and its gradient ∇Φε converge to zero when α < 0. In Theorem 5.3.8, the number densities c±0
in the macroscopic Poisson equations with permittivity tensor D positions itself as forcing terms.
Similarly, the forcing terms in the macroscopic Stokes equations with the case β = α dwell in the
part of the electrostatic potential Φ̃0 and the distribution of the number densities c±0 . Clearly, the
macroscopic Nernst-Planck equations in the case γ = α yield the fully coupled system of partial
differential equations, whilst with γ > α it reduces to a convection-diffusion-reaction system due
to also the structure of the reaction terms R±0 .

Let us define the function space

H1
N (Ω) :=

�

v ∈ H1 (Ω) : −D∇xu · n= 0 on ∂Ω
	

,

which is a closed subspace of H1(Ω). This Hilbert space plays a role when writing the weak
formulation of the macroscopic systems in Theorem 5.3.10 and Theorem 5.3.17.

Theorem 5.3.10. Weak formulation of (P0
N )

Let a pair of functions
�

v0, p0, Φ̃0, c±0
�

be defined as in Theorem 5.3.8. Then, it satisfies

v̄0 ∈ L2 ((0, T )×Ω) , p0 ∈ L2 ((0, T )×Ω) ,

Φ̃0 ∈ L2
�

0, T ; H1 (Ω)
�

, c±0 ∈ L2
�

0, T ; H1 (Ω)
�

,∂t c
±
0 ∈ L2

�

0, T ;
�

H1 (Ω)
�′�
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and becomes a weak solution to
�

P0
N

�

provided that
∫

Ω

(v̄0ϕ1 −Kp0∇ ·ϕ1) d x = −K
∫

Ω

�

c+0 − c−0
�

∇Φ̃0 ·ϕ1d x if β = α,

∫

Ω

(v̄0ϕ1 −Kp0∇ ·ϕ1) d x = 0 if β > α,

∫

Ω

v̄0 · ∇ψd x = 0,

∫

Ω

|Yl |
−1D∇Φ̃0 · ∇ϕ2d x − |Yl |

−1 σ̄

∫

Ω

ϕ2d x =

∫

Ω

�

c+0 − c−0
�

ϕ2d x ,




∂t c
±
0 ,ϕ3

�

(H1)′,H1 +

∫

Ω

|Yl |
−1 �−c±0

�

v̄0 ∓D∇Φ̃0

�

+D∇c±0
�

· ∇ϕ3d x

=

∫

Ω

R±0
�

c+0 , c−0
�

ϕ3d x if γ= α,




∂t c
±
0 ,ϕ3

�

(H1)′,H1 +

∫

Ω

|Yl |
−1 �−c±0 v̄0 +D∇c±0

�

· ∇ϕ3d x =

∫

Ω

R±0
�

c+0 , c−0
�

ϕ3d x if γ > α,

for all (ϕ1,ϕ2,ϕ3,ψ) ∈
�

H1
0 (Ω)

�d ×H1
N (Ω)×H1 (Ω)×H1 (Ω).

The proof of Theorems 5.3.7, 5.3.8 and 5.3.10 are collected from Theorems 4.5-4.10 in [99]
and can also be found in [97].

5.3.3 Dirichlet condition for the electrostatic potential

Remark 5.3.11. In Theorem 5.3.5, the proof (as mentioned in [99, Theorem 3.3, Theorem
3.4]) consists in suitable choices of test functions, based on the energy-estimates arguments.
Nevertheless, for the problem where the Dirichlet boundary condition (5.1.10) is prescribed, the
volume additivity constraint c+ε + c−ε = 1 is required to guarantee the ε-independent boundedness
of the concentration fields.

Definition 5.3.12. Assume (A1)-
�

A4

�

. Let Φε be a solution of the microscopic problem (Pε)
in the sense of Definition 5.3.1. Then the transformed electrostatic potential Φhom

ε := Φε−ΦD

satifies the following system:

− εα∆Φhom
ε = c+ε − c−ε in QεT ,

Φhom
ε = 0 in (0, T )× Γ εD,

εα∇Φhom
ε · n= 0 in (0, T )× ∂Ω.

Theorem 5.3.13. A priori estimates
Assume (A1)-

�

A4

�

. The following a priori estimates hold:
For the electrostatic potential, we have

εα−2




Φhom
ε







L2((0,T )×Ωε) + ε
α−1





∇Φhom
ε







L2((0,T )×Ωε) ≤ C .

If β ≥ α− 1, it holds
‖vε‖L2((0,T )×Ωε) + ε ‖∇vε‖L2((0,T )×Ωε) ≤ C ,

79



and additionally if γ≥ α− 1, it holds

max
t∈[0,T]





c−ε






L2(Ωε) + max
t∈[0,T]





c+ε






L2(Ωε) +




∇c−ε






L2((0,T )×Ωε) +




∇c+ε






L2((0,T )×Ωε)

+




∂t c
−
ε







L2(0,T ;(H1(Ωε))′) +




∂t c
+
ε







L2(0,T ;(H1(Ωε))′) ≤ C .

The proof of Theorem 5.3.13 can be found in [99] (see Theorem 3.6) and [97].

Theorem 5.3.14. Homogenization of (PεD)
Let the a priori estimates of Theorem 5.3.13 be valid. Let Φhom

ε be as defined in Definition 5.3.12.
Taking Φ̃ε := εα−2Φhom

ε , then it satisfies the following system:

− ε2∆Φ̃ε = c+ε − c−ε in QεT ,

Φ̃ε = 0 in (0, T )× Γε,

ε2∇Φ̃ε · n= 0 in (0, T )× ∂Ω.

Therefore, we can find a function Φ̃0 ∈ L2
�

(0, T )×Ω; H1
# (Y )

�

such that, up to a subsequence,

Φ̃ε
2
* Φ̃0,

ε∇Φ̃ε
2
*∇y Φ̃0.

If additionally β ≥ α−1, then there exist functions v0 ∈ L2
�

(0, T )×Ω; H1
# (Y )

�

and p0 (t, x , y) ∈
L2 ((0, T )×Ω× Y ) such that, up to a subsequence, we have

vε
2
* v0,

ε∇vε
2
*∇y v0,

pε
2
* p0.

Furthermore, there exist functions c±0 ∈ L2
�

0, T ; H1 (Ω)
�

and c±1 ∈ L2
�

(0, T )×Ω; H1
# (Y )

�

such
that, up to a subsequence, we have

c±ε → c±0 strongly in L2 ((0, T )×Ω) ,

∇c±ε
2
*∇x c±0 +∇y c±1 .

Theorem 5.3.15. Strong formulation of the macroscopic problem in the Dirichlet case -
(P0

D)
Let

�

vε, pε,Φε, c±ε
�

be a weak solution of (Pε) in the sense of Definition 5.3.1. According to
Theorem 5.3.14, we have the following results:
Let Φ̃0 be the two-scale limit of the electrostatic potential Φ̃ε, it then satisfies the following mac-
roscopic equation:

Φ̃0 (t, x) =

�

∫

Yl

ϕ (y) d y

�

�

c+0 (t, x)− c−0 (t, x)
�

,

where Φ̃0 (t, x) =
∫

Yl
Φ̃0 (t, x , y) d y and ϕ is the solution of the cell problem (5.3.3).

Let v0 be the two-scale limit of the velocity field vε. With β ≥ α−1, it then satisfies the following
macroscopic system:











v̄0 (t, x) +K∇x p0 (t, x) = 0 in (0, T )×Ω,

∇x · v̄0 (t, x) = 0 in (0, T )×Ω,

v̄0 (t, x) · n= 0 on (0, T )× ∂Ω,
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where v̄0 (t, x) =
∫

Yl
v0 (t, x , y) d y and the permeability tensor K is defined in Theorem 5.3.3.

Let c±0 be the two-scale limits of the concentration fields c±ε . With γ ≥ α − 1, they satisfy the
following macroscopic system:











|Yl |∂t c
±
0 (t, x) +∇x ·

�

c±0 (t, x) v̄0 (t, x)−D∇x c±0 (t, x)
�

= |Yl |R±0
�

c+0 (t, x) , c−0 (t, x)
�

in (0, T )×Ω,
�

c±0 (t, x) v̄0 (t, x)−D∇x c±0 (t, x)
�

· n= 0 on (0, T )× ∂Ω.

where the permittivity/diffusion tensor D is defined in Theorem 5.3.3.

Remark 5.3.16. Due to the a priori estimate for the electrostatic potential in Theorem 5.3.13,
Φε converges to ΦD as α < 2. Moreover, in the case α < 1 we obtain the convergence of Φε and
its gradient ∇Φε to the ζ-potential ΦD and zero, respectively. When α = 2, then Φ̃ε = Φhom

ε :=
Φε −ΦD holds, we compute that

Φ̄0 (t, x) =

∫

Yl

�

Φhom
0 (t, x , y) +ΦD

�

d y =

�

∫

Yl

ϕ (y) d y

�

�

c+0 (t, x)− c−0 (t, x)
�

+ |Yl |ΦD.

(5.3.7)
In Theorem 5.3.15, we see that in contrast to Theorem 5.3.8, the electrostatic potential is not
present in the macroscopic Stokes and Nernst-Planck equations. In addition, the macroscopic
Poisson system for the electrostatic potential reduces from the partial differential equations in
the Neumann case to the macroscopic “representation” in the Dirichlet case. Both cases are all
coupled with the concentration fields c±0 . Note that in both Neumann and Dirichlet cases, we
need the strong convergence of the concentration fields, i.e. c±ε → c±0 in L2 ((0, T )×Ω), to derive
the macroscopic systems for the electrostatic potential, the fluid flow as well as for the pressure,
respectively.

Theorem 5.3.17. Weak formulation of (P0
D)

Let the quadruple of functions
�

v0, p0, Φ̃0, c±0
�

be defined as in Theorem 5.3.15. Then, it satisfies

v̄0 ∈ L2 ((0, T )×Ω) , p0 ∈ L2 ((0, T )×Ω) ,

Φ̃0 ∈ L2 ((0, T )×Ω) , c±0 ∈ L2
�

0, T ; H1 (Ω)
�

,∂t c
±
0 ∈ L2

�

0, T ;
�

H1 (Ω)
�′�

and is a weak solution to
�

P0
N

�

provided that
∫

Ω

(v̄0ϕ1 −Kp0∇ ·ϕ1) d x = 0,

∫

Ω

v̄0 · ∇ψd x = 0,

∫

Ω

Φ̃0ϕ2d x =

�

∫

Yl

ϕ (y) d y

�

∫

Ω

�

c+0 − c−0
�

ϕ2d x ,




∂t c
±
0 ,ϕ3

�

(H1)′,H1 +

∫

Ω

|Yl |
−1 �−c±0 v̄0 +D∇c±0

�

· ∇ϕ3d x =

∫

Ω

R±0
�

c+0 , c−0
�

ϕ3d x ,

for all (ϕ1,ϕ2,ϕ3,ψ) ∈
�

H1
0 (Ω)

�d ×H1
N (Ω)×H1 (Ω)×H1 (Ω).

The proof of Theorems 5.3.14, 5.3.15 and 5.3.17 are collected from Theorems 4.11-4.16 in
[99] and can also be found in [97].

81



5.3.4 Discussions

According to proofs of the macroscopic systems in Theorems 4.6, 4.8, 4.10, 4.12, 4.14 and
4.16 cf. [97], we formulate here the first-order limit functions of the systems (P0

N ) and (P0
D),

respectively.
When the electric potential satisfies the Neumann condition on the micro-surface, we deduce
that Φ̃1 can be formulated by

Φ̃1 (t, x , y) =
d
∑

j=1

ϕ j (y)∂x j
Φ̃0 (t, x) ,

with ϕ j being solutions of the cell problems (5.3.1). We also remark that the limit function
p0 for the pressure is proved to be independent of y , i.e. p0 (t, x , y) = p0 (t, x), due to the
structure of the Stokes equation, see Theorem 5.3.7. Accordingly, the representation of the
limit function v0 for the fluid flow is given by

v0 (t, x , y) =



















−
d
∑

j=1

w j (y)
�

�

c+0 (t, x)− c−0 (t, x)
�

∂x j
Φ̃0 (t, x) + ∂x j

p0 (t, x)
�

if β = α,

−
d
∑

j=1

w j (y)∂x j
p0 (t, x) if β > α,

where w j = w j (y) for 1 ≤ j ≤ d are the solutions of the cell problems (5.3.2). We are able
to determine the (extended) macroscopic Darcy’s law by the following pressure:

p̃1 (t, x , y) = p1 (t, x , y) +
�

c+0 (t, x)− c−0 (t, x)
�

Φ̃1 (t, x , y) ,

where with π j = π j (y) for 1 ≤ j ≤ d are the solutions of the cell problems (5.3.2), we
compute that

p1 (t, x , y) =



















−
d
∑

j=1

π j (y)
�

�

c+0 (t, x)− c−0 (t, x)
�

∂x j
Φ̃0 (t, x) + ∂x j

p0 (t, x)
�

if β = α,

−
d
∑

j=1

π j (y)∂x j
p0 (t, x) if β > α.

On the other hand, the representation of the first-order functions c±1 is

c±1 (t, x , y) =



















d
∑

j=1

�

ϕ j (y)∂x j
c±0 (t, x)∓ c±0 (t, x)∂x j

Φ̃0 (t, x)
�

if γ= α,

d
∑

j=1

ϕ j (y)∂x j
c±0 (t, x) if γ > α,

where ϕ j = ϕ j (y) for 1≤ j ≤ d are the solutions of the cell problems (5.3.1).
When the electric potential satisfies the Dirichlet condition on the micro-surface, we obtain a
different scenario. In fact, the macroscopic electrostatic potential Φ̃0 in this case is dependent

of y and it can be computed by the averaged-like term Φ̃0 (see Theorem 5.3.15 and the special
case in (5.3.7)). We obtain the same manner with the macroscopic velocity v0 in Theorem
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5.3.15. However, the limit function p0 for the pressure remains independent of y . As a
consequence, the representation of the first-order functions c±1 is

c±1 (t, x , y) =



















d
∑

j=1

�

ϕ j (y)∂x j
c±0 (t, x)∓ c±0 (t, x) Φ̃0 (t, x)

�

if γ= α− 1,

d
∑

j=1

ϕ j (y)∂x j
c±0 (t, x) if γ > α− 1,

where ϕ j = ϕ j (y) for 1≤ j ≤ d are the solutions of the cell problems (5.3.1).
It is worth mentioning that upscaling the microscopic system (Pε) is done by the two-scale
convergence method. This approach, which aims to derive the limit system, does not require
the derivation of the first-order macroscopic velocity, denoted by v1 herein. To gain the cor-
rector for the oscillating pressure arising in the Stokes equation, we use the same procedures
as in [80], and thus, we need the structure of v1.
Following [102], we have in the Neumann case for the electrostatic potential that

v1

�

t, x ,
x
ε

�

=



















−
d
∑

i, j=1

ri j

� x
ε

�

∂x i

�

�

c+0 − c−0
�

∂x j
Φ̃0 (t, x) + ∂x j

p0 (t, x)
�

if β = α,

−
d
∑

i, j=1

ri j

� x
ε

�

∂ 2
x i x j

p0 (t, x) if β > α,

where ri j ∈ H1 (Yl) for 1≤ i, j ≤ d is the solution for the following cell problem











∇y · ri j +wi
j = |Yl |

−1 Ki j in Yl ,

ri j = 0 on Γ ,

ri j periodic in y.

(5.3.8)

It holds

v1

�

t, x ,
x
ε

�

= −
d
∑

i, j=1

ri j

� x
ε

�

∂ 2
x i x j

p0 (t, x) ,

provided the electrostatic potential satisfies the Dirichlet boundary data on the micro-surfaces.

5.3.5 Auxiliary estimates

Here, we let Yl and Ωε as defined in Subsubsection 5.2.1.

Lemma 5.3.18. (cf. [70]) Let pε (x) := p (x/ε) ∈ H1 (Ωε) satisfy

p̄ :=
1
|Yl |

∫

Yl

p (y) d y,

then the following estimate holds:

‖pε − p̄‖L2(Ωε) ≤ Cε
1
2 ‖pε‖H1(Ωε) .
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Lemma 5.3.19. (cf. [80]) Assume ∂Ω ∈ C k for k ≥ 4 holds. Then, there exists δ0 > 0 and
a function ηδ ∈

�

C k−1
�

Ω̄
��d

such that ηδ = v̄0 on ∂Ω with v̄0 being the averaged macroscopic
velocity defined in Theorem 5.3.8, ∇x ·ηδ = 0 in Ω and for any 1≤ q ≤∞ and 0≤ `≤ k− 1,
the following estimate holds:





∇`ηδ






Lq(Ω) ≤ Cδ
1
q−` for δ ∈ (0,δ0] . (5.3.9)

Proof. We adapt the notation from [80] (see Lemma 1) to our proof here. It is well known
from [56, Lemma 14.16] that there exists an ε-independent γ > 0 such that the distance
function z (x) = dist (x ,∂Ω) belongs to C k

�

Sγ
�

where

Sγ :=
�

x ∈ Ω : dist (x ,∂Ω)≤ γ
	

. (5.3.10)

By definition, we have

∂Ω :=
�

x ∈ Rd : z (x) = 0
	

and n := −
∇z
|∇z|

for x ∈ Sγ.

If we define a function V (z,ξ) by

V (z,ξ) := −
v̄0 (x)
|∇z (x)|

for x = x (z,ξ) ∈ Sγ (5.3.11)

where ξ is the tangential component of z along ∂Ω. We observe that |∇z|> 0 for x ∈ Sγ and
the trace V (0,ξ) is well-defined as a function in C k

�

Sγ
�

.
Following the same spirit of the argument as in [112] in e.g. Proposition 2.3, we aim to take
ηδ as curlψ, where ψ is chosen in such a way that

∂ψ

∂ τ
= 0 on ∂Ω,

where we denote by τ the tangential component of ψ, and

∇ψ · n= v̄0 ·τ on ∂Ω.

Note from the structure of the macroscopic Stokes system (cf. Theorem 5.3.8 and Theorem
5.3.15) that v̄0 · n = 0 on ∂Ω and from the fact that the tangential component is different
from 0 in principle. We aim to choose ψ = 0 on ∂Ω. Based on the function V (z,ξ), defined
in (5.3.11), we choose

ψ (x) = z (x)exp
�

−
z (x)
δ

�

V (0,ξ) ·τ (x) .

Due to the presence of z, it is clear that ψ= 0 on ∂Ω. Furthermore, we can check that

∇ψ · n= −
∇z
|∇z|

·
�

∇z
∂ψ

∂ z

�

= −|∇z|
�

1−
z
δ

�

exp
�

−
z
δ

�

V (0,ξ) ·τ (x) = v̄0 ·τ

holds on ∂Ω.
Therefore, we are now allowed to take ηδ = curlψ in Sγ.
We can now complete the proof of the lemma. Indeed, we estimate that

‖∇ψ‖q

Lq(Sγ)
≤ C

∫

Sγ

�

�

�

�

�

1−
z
δ

�

exp
�

−
z
δ

�

V (0,ξ)
�

�

�

2
+

�

�

�

�

zexp
�

−
z
δ

� ∂ V
∂ ξ
(0,ξ)

�

�

�

�

2�
q
2

d x

≤ Cδ.
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Owning to the C k-smoothness of ∂Ω, we can proceed as above to obtain the following high-
order estimate:





∇`+1ψ






Lq(Sγ) ≤ Cδ
1
q−` for 0≤ `≤ k− 1.

Hence, for δ� γ the functionψ is exponentially small at S̄γ =
�

x ∈ Ω : dist (x ,∂Ω) = γ
	

and
we can extend it to a function, which is denoted again by ψ, in C k

�

Ω
�

such that it satisfies
ηδ = curlψ and thus the estimate (5.3.9).

By Lemma 5.3.19, we can introduce a cut-off function mε ∈ D
�

Ω
�

corresponding to ∂Ω,
satisfying

mε (x) =

(

0 if dist (x ,∂Ω)≤ ε,
1 if dist (x ,∂Ω)≥ 2ε,

and




∇`mε






L∞(Ω) ≤ Cε−` for ` ∈ [0,2] .

As a consequence, one can also show that

‖1−mε‖L2(Ωε) ≤ Cε
1
2 , ε ‖∇mε‖L2(Ωε) ≤ Cε

1
2 . (5.3.12)

Lemma 5.3.20. (cf. [102, Lemma 1, Appendix]) For any u ∈ H1
0 (Ω

ε), it holds

‖u‖L2(Ωε) ≤ Cε ‖∇u‖[L2(Ωε)]d .

5.4 Macroscopic reconstructions and corrector estimates

In this section, we begin by introducing the so-called macroscopic reconstructions and provide
supplementary estimates needed for the proof of our main results stated in Theorem 5.4.2
and Theorem 5.4.3. Our working methodology was used in [40] and successfully applied to
derive the corrector estimates for a thermo-diffusion system in a uniformly periodic medium
(cf. [70]) and an advection-diffusion-reaction system in a locally-periodic medium (cf. [86]).
In principle, the asymptotic expansion can be justified by estimating the differences of the
solutions of the micro model (Pε) and macroscopic reconstructions which can be defined
from the macroscopic models

�

P0
N

�

and
�

P0
D

�

.
Our main results correspond to two cases:

Case 1: The electric potential satisfies the Neumann boundary condition at the
boundary of the perforations

Case 2: The electric potential satisfies the Dirichlet boundary condition at the bound-
ary of the perforations

Remark 5.4.1. To gain the corrector estimates, we require more regularity assumptions on the
involved functions as well as the smoothness of the boundaries of the macroscopic domain; com-
pare to the assumptions obtained when upscaling (Pε). In fact, it is worth pointing out that in
Theorem 5.4.2 and Theorem 5.4.3 we assume the regularity properties on the limit functions,
postulated in Theorem 5.3.10 for Case 1 and in Theorem 5.3.17 for Case 2, as follows:

Φ̃0, c±0 ∈W 1,∞ (Ωε)∩H2 (Ωε) , v̄0 ∈ L∞ (Ωε) . (5.4.1)
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The cell functions ϕ j for 1 ≤ j ≤ d solving the family of cell problems (5.3.1) are supposed to
fulfill

ϕ j ∈W 1+s,2 (Yl) for s > d/2. (5.4.2)

Moreover, the cell functions wi
j , π j and ri j for 1 ≤ i, j ≤ d solving the cell problems (5.3.2) and

(5.3.8), respectively, satisfy

wi
j ∈W 2+s,2 (Yl) ,π j ∈W 1+s,2 (Yl) and ri j ∈W 1+s,2 (Yl) for s > d/2. (5.4.3)

In addition, we stress that the corrector estimates for the Stokes equation can be gained if we take
∂Ω ∈ C4. This assumption is only needed to handle Lemma 5.3.19.

5.4.1 Main results

Theorem 5.4.2. Corrector estimates for Case 1
Assume (A1)− (A6). Let the quadruples

�

vε, pε,Φε, c±ε
�

and
�

v0, p0,Φ0, c±0
�

be weak solutions to
(Pε) and

�

P0
N

�

in the sense of Definition 5.3.1 and Theorem 5.3.10, respectively. Furthermore,
we assume that the limit solutions satisfy the regularity property (5.4.1). Let ϕ j for 1 ≤ j ≤ d
be the cell functions solving the family of cell problems (5.3.1) and satisfy (5.4.2). Assume that
the initial homogenization limit is of the rate





c±,0
ε − c±,0

0







2

L2(Ωε) ≤ Cεµ for some µ ∈ R+.

Then the following corrector estimates hold:




vε − v̄ε0






L2((0,T )×Ωε) ≤ Cε
1
2 ,





Φ̃ε − Φ̃ε0






L2((0,T )×Ωε) +




c±ε − c±,ε
0







L2((0,T )×Ωε)

+




∇
�

Φ̃ε − Φ̃ε1
�





[L2((0,T )×Ωε)]d ≤ C max
¦

ε
1
2 ,ε

µ
2

©

,




∇
�

c±ε − c±,ε
1

�





[L2((0,T )×Ωε)]d ≤ C max
¦

ε
1
4 ,ε

µ
2

©

,

where v̄ε0 , Φε0, c±,ε
0 , Φ̃ε1, c±,ε

1 are the macroscopic reconstructions defined in (5.4.4)-(5.4.8).
Let wi

j , π j and ri j for 1 ≤ i, j ≤ d be the cell functions solving the cell problems (5.3.2) and
(5.3.8), respectively, and satisfy (5.4.3). If we further assume that

Φ̃0 ∈ H4 (Ωε) , c±0 ∈W 2,∞ (Ωε) , p0 ∈ H4 (Ωε) ,

then for any λ ∈ (0, 1), the following corrector estimates hold:





vε − |Yl |
−1Dvε0 − ε |Yl |

−1Dvε1






[L2((0,T )×Ωε)]d ≤ C
�

max
¦

ε
1
2 ,ε

µ
2

©

+ ε
λ
2 + ε1− 3λ

2 + ε
1
2−λ
�

,

‖pε − p0‖L2(Ω)/R ≤ C
�

max
¦

ε
1
2 ,ε

µ
2

©

+ ε
λ
2 + ε1− 3λ

2 + ε
1
2−λ
�

,

where vε0 and vε1 are defined in (5.4.9) and (5.4.10), respectively.

Theorem 5.4.3. Assume (A1)−
�

A4

�

. Let the quadruples
�

vε, pε,Φε, c±ε
�

and
�

v0, p0,Φ0, c±0
�

be
weak solutions to (Pε) and

�

P0
D

�

in the sense of Definition 5.3.1 and Theorem 5.3.17, respectively.
Furthermore, we assume that the limit solutions satisfy the regularity property (5.4.1). Let ϕ j
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for 1≤ j ≤ d be the cell functions solving the family of cell problems (5.3.1) and satisfy (5.4.2).
Assume that the initial homogenization limit is of the rate





c±,0
ε − c±,0

0







2

L2(Ωε) ≤ Cεµ for some µ ∈ R+.

Then the following corrector estimates hold:





Φ̃ε − Φ̃ε0






L2((0,T )×Ωε) +




∇
�

Φ̃ε − Φ̃ε0
�





[L2((0,T )×Ωε)]d +




c±ε − c±,ε
0







L2((0,T )×Ωε)

+




∇
�

c±ε − c±,ε
1

�





[L2((0,T )×Ωε)]d +







Φ̃ε − Φ̃
ε

0










L2((0,T )×Ωε)
≤ C max

¦

ε
1
2 ,ε

µ
2

©

,

where c±,ε
0 , c±,ε

1 , Φε0, Φ̃
ε

0 are the macroscopic reconstructions defined in (5.4.54)-(5.4.55) and
(5.4.56)-(5.4.57).

Let wi
j , π j and ri j for 1 ≤ i, j ≤ d be the cell functions solving the cell problems (5.3.2) and

(5.3.8), respectively, and satisfy (5.4.3). If we further assume that p0 ∈ H4 (Ωε), then for any
λ ∈ (0,1), the following corrector estimates hold:





vε − |Yl |
−1Dvε0 − ε |Yl |

−1Dvε1






[L2((0,T )×Ωε)]d ≤ C
�

max
¦

ε
1
2 ,ε

µ
2

©

+ ε
λ
2 + ε1− 3λ

2 + ε
1
2−λ
�

,

‖pε − p0‖L2(Ω)/R ≤ C
�

max
¦

ε
1
2 ,ε

µ
2

©

+ ε
λ
2 + ε1− 3λ

2 + ε
1
2−λ
�

,

where vε0 and vε1 are defined in (5.4.52) and (5.4.53), respectively.

5.4.2 Proof of Theorem 5.4.2

To study the homogenization limit, the existence of asymptotic expansions

vε (t, x) = v0

�

t, x ,
x
ε

�

+ εv1

�

t, x ,
x
ε

�

+ ε2v2

�

t, x ,
x
ε

�

+ ...

pε (t, x) = p0

�

t, x ,
x
ε

�

+ εp1

�

t, x ,
x
ε

�

+ ε2p2

�

t, x ,
x
ε

�

+ ...

Φ̃ε (t, x) = Φ̃0

�

t, x ,
x
ε

�

+ εΦ̃1

�

t, x ,
x
ε

�

+ ε2Φ̃2

�

t, x ,
x
ε

�

+ ...

c±ε (t, x) = c±0

�

t, x ,
x
ε

�

+ εc±1
�

t, x ,
x
ε

�

+ ε2c±2

�

t, x ,
x
ε

�

+ ...,

is assumed and some terms (e.g. v0, p0, Φ̃0, c±0 ) have been determined in the previous section.
Since the route to derive the corrector for Stokes’ equation is different from the usual con-
struction of corrector estimates for the other equations, we shall postpone for a moment the
proof of the corrector for the pressure.
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We define the macroscopic reconstructions, as follows:

v̄ε0 (t, x) := |Yl |
−1 v̄0 (t, x) , (5.4.4)

Φ̃ε0 (t, x) := Φ̃0 (t, x) , (5.4.5)

Φ̃ε1 (t, x) := Φ̃ε0 (t, x) + ε
d
∑

j=1

ϕ j

� x
ε

�

∂x j
Φ̃ε0 (t, x) , (5.4.6)

c±,ε
0 (t, x) := c±0 (t, x) , (5.4.7)

c±,ε
1 (t, x) := c±,ε

0 (t, x) + ε
d
∑

j=1

ϕ j

� x
ε

�

∂x j
c±,ε

0 (t, x) , (5.4.8)

vε0 (t, x) := v0

�

t, x ,
x
ε

�

, (5.4.9)

vε1 (t, x) := v1

�

t, x ,
x
ε

�

. (5.4.10)

Lemma 5.3.18 ensures the following estimate:





vε − v̄ε0






L2((0,T )×Ωε) ≤ Cε
1
2 , (5.4.11)

where Definition 5.3.1 and Theorem 5.3.2 guarantee the regularity for vε.
Let us now consider the correctors for the electrostatic potential and the concentrations. We
take the difference of the microscopic and macroscopic Poisson equations in Definition 5.3.1
and Theorem 5.3.8, respectively, with the test function ϕ2 ∈ H1 (Ωε) and thus obtain

∫

Ωε

�

∇Φ̃ε − |Yl |
−1D∇Φ̃0

�

· ∇ϕ2d x + |Yl |
−1 σ̄

∫

Ωε

ϕ2d x − ε
∫

Γ ε

σϕ2dSε

=

∫

Ωε

�

c+ε − c+0 + c−0 − c−ε
�

ϕ2d x , (5.4.12)

where we recall that Φ̃ε = εαΦε cf. Theorem 5.3.7.
Similarly, forϕ3 ∈ H1 (Ωε)we also find the difference equation for the Nernst-Planck equation,
as follows:




∂t

�

c±ε − c±0
�

,ϕ3

�

(H1)′,H1 +

∫

Ωε

�

∇c±ε − |Yl |
−1D∇c±0

�

· ∇ϕ3d x

+

∫

Ωε

�

|Yl |
−1 c±0

�

v̄0 ∓D∇Φ̃0

�

− c±ε
�

vε ∓∇Φ̃ε
��

· ∇ϕ3d x

=

∫

Ωε

�

R±ε
�

c+ε , c−ε
�

− R±0
�

c+0 , c−0
��

ϕ3d x . (5.4.13)

We start the investigation of these corrector justifications by the following choice of test func-
tions:

ϕ2 (t, x) := Φ̃ε (t, x)−

 

Φ̃ε0 (t, x) + εmε (x)
d
∑

j=1

ϕ j

� x
ε

�

∂x j
Φ̃0 (t, x)

!

, (5.4.14)

ϕ3 (t, x) := c±ε (t, x)−

 

c±,ε
0 (t, x) + εmε (x)

d
∑

j=1

ϕ j

� x
ε

�

∂x j
c±0 (t, x)

!

. (5.4.15)
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To get the estimates from (5.4.12) and (5.4.13), we denote the following terms just for ease
of presentation:

J1 :=

∫

Ωε

�

∇Φ̃ε − |Yl |
−1D∇Φ̃0

�

· ∇ϕ2d x ,

J2 := |Yl |
−1 σ̄

∫

Ωε

ϕ2d x − ε
∫

Γ ε

σϕ2dSε,

J3 :=

∫

Ωε

�

c+ε − c+0 + c−0 − c−ε
�

ϕ2d x ,

K1 :=



∂t

�

c±ε − c±0
�

,ϕ3

�

(H1)′,H1 =

∫

Ωε

∂t

�

c±ε − c±0
�

ϕ3d x ,

K2 :=

∫

Ωε

�

∇c±ε − |Yl |
−1D∇c±0

�

· ∇ϕ3d x ,

K3 :=

∫

Ωε

�

|Yl |
−1 c±0

�

v̄0 ∓D∇Φ̃0

�

− c±ε
�

vε ∓∇Φ̃ε
��

· ∇ϕ3d x ,

K4 :=

∫

Ωε

�

R±ε
�

c+ε , c−ε
�

− R±0
�

c+0 , c−0
��

ϕ3d x .

Using the representation

∇Φ̃ε − |Yl |
−1D∇Φ̃0 =∇

�

Φ̃ε − Φ̃ε1
�

+∇Φ̃ε1 − |Yl |
−1D∇Φ̃0,

the term J1 thus becomes

J1 =

∫

Ωε

∇
�

Φ̃ε − Φ̃ε1
�

· ∇ϕ2d x +

∫

Ωε

�

∇Φ̃ε1 − |Yl |
−1D∇Φ̃0

�

· ∇ϕ2d x .

With the choice of ϕ2 in (5.4.14), we have
∫

Ωε

∇
�

Φ̃ε − Φ̃ε1
�

· ∇ϕ2d x ≥ C




∇
�

Φ̃ε − Φ̃ε1
�





2

[L2(Ωε)]d

− Cε2
















∇

 

(1−mε)
d
∑

j=1

ϕεj ∂x j
Φ̃0

!














2

[L2(Ωε)]d

. (5.4.16)

To estimate the second term on the right-hand side of (5.4.16), we assume that Φ̃0 ∈W 1,∞ (Ωε)∩
H2 (Ωε) and ϕ j ∈ W 1+s,2 (Yl) for s > d/2 and 1 ≤ j ≤ d. Using the Sobolev embedding
W 1+s,2 (Yl) ⊂ C1

�

Ȳl

�

together with the inequalities in (5.3.12), we estimate that

ε
















∇

 

(1−mε)
d
∑

j=1

ϕεj ∂x j
Φ̃0

!














[L2(Ωε)]d

≤ ε ‖∇mε‖[L2(Ωε)]d




Φ̃0







W 1,∞(Ωε)

d
∑

j=1





ϕ j







C(Ȳl)

+ ‖1−mε‖L2(Ωε)





Φ̃0







W 1,∞(Ωε)

d
∑

j=1





∇yϕ j







[C(Ȳl)]
d

+ ε




Φ̃0







H2(Ωε)

d
∑

j=1





ϕ j







C(Ȳl)

≤ C
�

ε + ε
1
2

�

.
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Taking into account the explicit computation of ∇Φ̃ε1 which reads

∇Φ̃ε1 =∇x Φ̃0 +
�

∇y ϕ̄
�ε∇x Φ̃0 + εϕ̄

ε∇x∇Φ̃0 for ϕ̄ =
�

ϕ j

�

j=1,d ,

we can write

∇Φ̃ε1 − |Yl |
−1D∇Φ̃0 =∇Φ̃0 +

�

∇y ϕ̄
�ε∇x Φ̃0 − |Yl |

−1D∇Φ̃0 + εϕ̄
ε∇x∇Φ̃0. (5.4.17)

Due to the smoothness of the involved functions, the fourth term in (5.4.17) is bounded in
L2-norm by

ε




ϕ̄ε∇x∇Φ̃0







[L2(Ωε)]d ≤ Cε ‖ϕ̄‖[C(Ȳl)]
d





Φ̃0







H2(Ωε) . (5.4.18)

On the other hand, from the structure of the cell problem 5.3.1 we see that G := I+∇y ϕ̄ −
|Yl |
−1D is divergence-free with respect to y . In parallel with that, its average also vanishes in

the sense that
∫

Yl

G d y = 0.

Consequently, the function G possesses a vector potential V which is skew-symmetric and
satisfies G =∇yV. Note that the choice of this potential is not unique in general, but V can be
chosen in such a way that it solves a Poisson equation ∆yV= f (y)∇yG for some constant f
only dependent of the cell’s dimensions. Therefore, to determine V uniquely, we associate this
Poisson equation with the periodic boundary condition at Γ and the vanishing cell average.
Using the simple relation ∇y = ε∇− ε∇x , we arrive at

G ε∇Φ̃0 = ε∇ ·
�

Vε∇Φ̃0

�

− εVε∆Φ̃0. (5.4.19)

Due to the skew-symmetry of V, the first term on the right-hand side of (5.4.19) is divergence-

free and its boundedness in L2 (Ωε) is thus with the order of ε. Since ϕ̄ ∈
�

W 1+s,2 (Yl)
�d

for
s > d/2 is assumed, it yields from the Poisson equation for V that

‖V‖W 1+s,2(Yl ) ≤ C ‖G‖W s,2(Yl ) .

Applying again the compact embedding W s,2 (Yl) ⊂ C
�

Ȳl

�

for s > d/2, we obtain V ∈ C
�

Ȳl

�

and it enables us to get the boundedness of the second term on the right-hand side of (5.4.19).
In fact, it gives

ε




Vε∆Φ̃0







L2(Ωε) ≤ ε ‖V‖C(Ȳl)




Φ̃0







H2(Ωε) .

Combining this with (5.4.17), (5.4.18) and using the Hölder’s inequality, we conclude that
∫

Ωε

�

∇Φ̃ε1 − |Yl |
−1D∇Φ̃0

�

· ∇ϕ2d x ≤ Cε.

This step completes the estimates for J1. More precisely, we obtain

J1 ≥ C




∇
�

Φ̃ε − Φ̃ε1
�





2

[L2(Ωε)]d − C
�

ε2 + ε
�

. (5.4.20)

In the same vein, we can estimate the term K2 with the aid of the a priori arguments c±0 ∈
W 1,∞ (Ωε)∩H2 (Ωε) and ϕ j ∈W 1+s,2 (Yl) for s > d/2 and 1≤ j ≤ d. We thus get

K2 ≥ C




∇
�

c±ε − c±,ε
1

�





2

[L2(Ωε)]d − C
�

ε2 + ε
�

. (5.4.21)
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We now turn our attention to the estimates for J2 and J3. Noticing σ̄ =
∫

Γ
σdSy which

implies that

|Yl |
−1

∫

Yl

σ̄d y =

∫

Γ

σdSy ,

we then apply [86, Lemma 5.2] to gain

|J2| ≤ Cε ‖ϕ2‖H1(Ωε) .

Note that due to the choice of ϕ2 in (5.4.14), we have

‖ϕ2‖H1(Ωε) ≤




Φ̃ε − Φ̃0







L2(Ωε) +




∇
�

Φ̃ε − Φ̃ε1
�





[L2(Ωε)]d

+




∇
�

Φ̃ε1 − Φ̃0

�





[L2(Ωε)]d + ε




mεϕ̄ · ∇x Φ̃0







H1(Ωε)

≤




Φ̃ε − Φ̃0







L2(Ωε) +




∇
�

Φ̃ε − Φ̃ε1
�





[L2(Ωε)]d + C
�

1+ ε + ε
1
2

�

, (5.4.22)

where we use the inequalities (5.3.12) with the regularity assumptions on ϕ̄ and Φ̃0, and the
following bound:





∇
�

Φ̃ε1 − Φ̃0

�





[L2(Ωε)]d ≤




∇y ϕ̄






C(Ȳl)




Φ̃0







W 1,∞(Ωε) + ε ‖ϕ̄‖C(Ȳl)




Φ̃0







H2(Ωε) .

Therefore, we can write that

|J2| ≤ Cε
�




Φ̃ε − Φ̃0







L2(Ωε) +




∇
�

Φ̃ε − Φ̃ε1
�





[L2(Ωε)]d + 1
�

. (5.4.23)

The estimate for J3 can be derived by the Hölder inequality, which reads

|J3| ≤ C
�




c+ε − c+0






L2(Ωε) +




c−ε − c−0






L2(Ωε)

�

‖ϕ2‖L2(Ωε) ,

and then leads to

|J3| ≤ C
�




c+ε − c+0






L2(Ωε) +




c−ε − c−0






L2(Ωε)

��




Φ̃ε − Φ̃0







L2(Ωε) + 1
�

. (5.4.24)

Let us now consider the term K1 and K4. Note that K1 can be rewritten as
∫

Ωε

∂t

�

c±ε − c±0
� �

c±ε (t, x)−
�

c±,ε
0 (t, x) + εmεϕ̄ε · ∇x c±0

��

d x

=
1
2

d
d t





c±ε − c0







2
L2(Ωε) − ε

∫

Ωε

∂t

�

c±ε − c±0
�

mεϕ̄ · ∇x c±0 d x , (5.4.25)

while from the structure of the reaction in (A3), we have the similar result forK4 (to J3), i.e.
�

�K4

�

�≤ C
�




c+ε − c+0






L2(Ωε) +




c−ε − c−0






L2(Ωε)

��




c±ε − c±0






L2(Ωε) + 1
�

. (5.4.26)

The estimate for K3 relies on the following decomposition:

|Yl |
−1 c±0

�

v̄0 ∓D∇Φ̃0

�

− c±ε
�

vε ∓∇Φ̃ε
�

=
�

c±0 − c±ε
� �

|Yl |
−1 v̄0 ∓ |Yl |

−1D∇Φ̃0

�

+ c±ε
�

|Yl |
−1 v̄0 − vε

�

∓ c±ε
�

|Yl |
−1D∇Φ̃0 −∇Φ̃ε

�

.

Clearly, if v̄0 ∈ L∞ (Ωε) and the fact already assumed that Φ̃0 ∈W 1,∞ (Ωε)∩H2 (Ωε), one can
estimate, by Hölder’s inequality, that
∫

Ωε

�

c±0 − c±ε
� �

|Yl |
−1 v̄0 ∓ |Yl |

−1D∇Φ̃0

�

· ∇ϕ3d x ≤ C




c±ε − c±0






L2(Ωε) ‖∇ϕ3‖[L2(Ωε)]d . (5.4.27)
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By using the same arguments in estimating the norm ‖ϕ2‖H1(Ωε) in (5.4.22), we get from
(5.4.27) that

∫

Ωε

�

c±0 − c±ε
� �

|Yl |
−1 v̄0 ∓ |Yl |

−1D∇Φ̃0

�

· ∇ϕ3d x

≤ C




c±ε − c±0






L2(Ωε)

�




∇
�

c±ε − c±,ε
1

�





[L2(Ωε)]d + 1
�

. (5.4.28)

Next, we observe that
∫

Ωε

c±ε
�

|Yl |
−1 v̄0 − vε

�

· ∇ϕ3d x

≤ C




vε − v̄ε0






L2(Ωε)

�




∇
�

c±ε − c±,ε
1

�





[L2(Ωε)]d + 1
�

≤ Cε
1
2

�




∇
�

c±ε − c±,ε
1

�





[L2(Ωε)]d + 1
�

, (5.4.29)

which is a direct result from (5.4.11) and of the fact that all the microscopic solutions are
bounded from above uniformly in the choice of ε (see Theorem 5.3.5).
Using again Theorem 5.3.5, we estimate that

∫

Ωε

c±ε
�

|Yl |
−1D∇Φ̃0 −∇Φ̃ε

�

· ∇ϕ3d x

≤ C
�




∇
�

Φ̃ε − Φ̃ε1
�





[L2(Ωε)]d + ε
��




∇
�

c±ε − c±,ε
1

�





[L2(Ωε)]d + 1
�

, (5.4.30)

which also completes the estimates for K3.
Combining (5.4.20), (5.4.21), (5.4.23), (5.4.24), (5.4.26), (5.4.28), (5.4.29) and (5.4.30),
we obtain, after some rearrangements, that





∇
�

Φ̃ε − Φ̃ε1
�





2

[L2(Ωε)]d + ε




∇
�

c±ε − c±,ε
1

�





2

[L2(Ωε)]d

≤ C
�

ε2 + ε
�

+ Cε
3
2

�




∇
�

c±ε − c±,ε
1

�





[L2(Ωε)]d + 1
�

+ Cε
�




Φ̃ε − Φ̃0







L2(Ωε) +




∇
�

Φ̃ε − Φ̃ε1
�





[L2(Ωε)]d

�

+ C




c±ε − c±0






L2(Ωε)

�




Φ̃ε − Φ̃0







L2(Ωε) + 1
�

+ Cε
�




∇
�

Φ̃ε − Φ̃ε1
�





[L2(Ωε)]d + ε
��




∇
�

c±ε − c±,ε
1

�





[L2(Ωε)]d + 1
�

+ Cε




c±ε − c±0






L2(Ωε)

�




∇
�

c±ε − c±,ε
1

�





[L2(Ωε)]d + 1
�

. (5.4.31)

It now remains to estimate the second term on the right-hand side of (5.4.25). In fact, integ-
rating the right-hand side of (5.4.25) by parts gives

∫ t

0

∫

Ωε

mε∂t

�

c±ε − c±0
�

ϕ̄ · ∇x c±0 d xds =

∫

Ωε

mε
�

c±ε − c±0
�

ϕ̄ · ∇x c±0 d x
�

�

s=t

s=0

−
∫ t

0

∫

Ωε

mε
�

c±ε − c±0
�

ϕ̄ · ∇x∂t c
±
0 d xds,

and we also have

ε

�

�

�

�

∫

Ωε

mε
��

c±ε − c±0
�

−
�

c±ε (0)− c±0 (0)
��

ϕ̄ · ∇x c±0 d x
�

�

≤ Cε
�




c±ε − c±0






L2(Ωε) +




c±,0
ε − c±,0

0







L2(Ωε)

�

. (5.4.32)
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At this moment, if we set

w1 (t) :=




Φ̃ε (t)− Φ̃0 (t)






2
L2(Ωε) +





c±ε (t)− c±0 (t)






2
L2(Ωε) ,

w2 (t) :=




∇
�

Φ̃ε − Φ̃ε1
�

(t)






2

[L2(Ωε)]d + ε




∇
�

c±ε − c±,ε
1

�

(t)






2

[L2(Ωε)]d ,

w0 :=




c±,0
ε − c±,0

0







2

L2(Ωε) ,

then after integrating (5.4.31) and (5.4.25) from 0 to t, we are led to the following Gronwall-
like estimate:

w1 (t) +

∫ t

0

w2 (s) ds ≤ C

�

ε + (1+ ε)w0 +

∫ t

0

w1 (s) ds

�

,

which provides that

w1 (t) +

∫ t

0

w2 (s) ds ≤ C (ε + (1+ ε)w0) for t ∈ [0, T] .

Assuming




c±,0
ε − c±,0

0







2

L2(Ωε) ≤ Cεµ for some µ ∈ R+, (5.4.33)

we thus obtain





Φ̃ε − Φ̃0







2
L2((0,T )×Ωε) +





c±ε − c±0






2
L2((0,T )×Ωε) +





∇
�

Φ̃ε − Φ̃ε1
�





2

[L2((0,T )×Ωε)]d

+ ε




∇
�

c±ε − c±,ε
1

�





2

[L2((0,T )×Ωε)]d ≤ C max {ε,εµ} . (5.4.34)

Since the obtained estimate for




∇
�

Φ̃ε − Φ̃ε1
�





[L2((0,T )×Ωε)]d is of the order of O (max {ε,εµ}),
we can also increase the rate of





∇
�

c±ε − c±,ε
1

�





[L2((0,T )×Ωε)]d . Indeed, let us consider the es-

timate (5.4.28) and (5.4.30) for




c±ε − c±0






L2((0,T )×Ωε) and




∇
�

Φ̃ε − Φ̃ε1
�





[L2((0,T )×Ωε)]d , respect-
ively. Then, we combine again (5.4.21), (5.4.26), (5.4.28), (5.4.29), (5.4.30) and (5.4.32)
to get another Gronwall-like estimate:





∇
�

c±ε − c±,ε
1

�

(t)






2

[L2(Ωε)]d ≤ C

�

ε
1
2 +max {ε,εµ}+ ε

∫ t

0





∇
�

c±ε − c±,ε
1

�

(s)






2

[L2(Ωε)]d ds

�

.

As a result, we have





∇
�

c±ε − c±,ε
1

�





2

[L2((0,T )×Ωε)]d ≤ C max
¦

ε
1
2 ,εµ

©

. (5.4.35)

Note that with γ > α, the drift term in the macroscopic Nernst-Planck system is not present.
Thus, this term does not appear in (5.4.28) and (5.4.30). Due to the a priori estimate that




Φ̃ε






L2(0,T ;H1(Ωε)) ≤ C (cf. Theorem 5.3.13) in combination with the boundedness of c±ε (cf.
Theorem 5.3.5), it is straightforward to get the same corrector estimate as (5.4.34). Moreover,
if α < 0, the corrector becomes of the order O (max {ε,ε−α,εµ}). This explicitly illustrates the
effect of the scaling parameter α on the rate of the convergence.
For the time being, it only remains to come up with the corrector estimates for the Stokes
equation. At this point, we must pay a regularity price1 concerning the smoothness of the

1Compare to the two-scale convergence method when deriving the structure of the macroscopic system in
[99].
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boundaries to make use of Lemma 5.3.19. With ∂Ω ∈ C4, we adapt the ideas of [80] to
define the following velocity corrector:

V ε,δ (t, x) := −
d
∑

j=1

w j

� x
ε

�
�

�

c+0 − c−0
�

∂x j
Φ̃0 (t, x) + ∂x j

p0 (t, x) +
�

K−1ηδ
�

j

�

− ε
d
∑

i, j=1

ri j

� x
ε

�

(1−mε)∂x i

�

�

c+0 − c−0
�

∂x j
Φ̃0 (t, x) + ∂x j

p0 (t, x) +
�

K−1ηδ
�

j

�

,

(5.4.36)

and the pressure corrector:

P ε,δ (t, x) := p0 (t, x)− ε
d
∑

j=1

π j

� x
ε

�
�

�

c+0 − c−0
�

∂x j
Φ̃0 (t, x) + ∂x j

p0 (t, x) +
�

K−1ηδ
�

j

�

,

(5.4.37)
where w j , π j and ri j are solutions of the problems (5.3.1) and (5.3.8), respectively, for 1 ≤
i, j ≤ d; and ηδ is a function defined in Lemma 5.3.19.
From (5.4.36), one can structure the divergence of the corrector V ε,δ. In fact, by definition
of the function ηδ and the structure of the macroscopic system for the velocity in Theorem
5.3.8, the divergence of the first term of vanishes (5.4.36) itself. Therefore, one computes
that

∇ · V ε,δ = −
d
∑

i, j=1

�

wi
j

� x
ε

�

− |Yl |
−1 Ki j

�

(1−mε)∂x i

�

�

c+0 − c−0
�

∂x j
Φ̃0 + ∂x j

p0 +
�

K−1ηδ
�

j

�

− ε
d
∑

i, j=1

ri j

� x
ε

�

(1−mε)∇ ·
�

∂x i

�

�

c+0 − c−0
�

∂x j
Φ̃0 + ∂x j

p0 +
�

K−1ηδ
�

j

��

+ ε
d
∑

i, j=1

ri j

� x
ε

�

∇mε∂x i

�

�

c+0 − c−0
�

∂x j
Φ̃0 + ∂x j

p0 +
�

K−1ηδ
�

j

�

,

where we also use the structure of the cell problem (5.3.8).
Taking into account that

−
d
∑

i, j=1

Ki j∂x i

�

�

c±0 − c−0
�

∂x j
Φ̃0 + ∂x j

p0

�

= 0,

d
∑

i, j=1

Ki j∂x i

�

K−1ηδ
�

j = 0,

hold (see again the macroscopic system for the velocity in Theorem 5.3.8 as well as the prop-
erties of ηδ in Lemma 5.3.19), the estimate for the divergence of V ε,δ in L2-norm





∇ · V ε,δ






L2(Ωε) ≤ C
�

ε
1
2δ−1 + εδ−

3
2 + ε

1
q δ−

1
2−

1
q

�

for q ∈ [2,∞] ,

is directly obtained from Lemma 5.3.19 and the inequalities in (5.3.12).
At this stage, if we choose q = 2 and δ� ε, we get





∇ · V ε,δ






L2(Ωε) ≤ C
�

εδ−
3
2 + ε

1
2δ−1

�

, (5.4.38)

and hence,




∇ · V ε,δ






L2((0,T )×Ωε) ≤ C
�

εδ−
3
2 + ε

1
2δ−1

�

.
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Next, we introduce the following function:

Ψε (t, x) :=∆V ε,δ (t, x)− ε−2∇P ε,δ −
�

c+0 (t, x)− c−0 (t, x)
�

∇Φ̃0 (t, x) .

Thus, for any ϕ1 ∈
�

H1
0 (Ω

ε)
�d

we have, after direct computations, that

〈Ψε,ϕ1〉([H1]d)′,[H1]d

= −
d
∑

j=1

∫

Ωε

�

∆w j

� x
ε

�

− ε−1∇π j

� x
ε

��
�

�

c+0 − c−0
�

∂x j
Φ̃0 + ∂x j

p0 +
�

K−1ηδ
�

j

�

ϕ1d x

− ε−2

∫

Ωε

�

∇p0 +
�

c+0 − c−0
�

∇Φ̃0

�

ϕ1d x

−
d
∑

j=1

∫

Ωε

�

2∇w j

� x
ε

�

− ε−1π
� x
ε

�

I
�

∇
�

�

c+0 − c−0
�

∂x j
Φ̃0 + ∂x j

p0 +
�

K−1ηδ
�

j

�

ϕ1d x

−
d
∑

j=1

∫

Ωε

w j

� x
ε

�

∆
�

�

c+0 − c−0
�

∂x j
Φ̃0 + ∂x j

p0 +
�

K−1ηδ
�

j

�

ϕ1d x

− ε
d
∑

j=1

∫

Ωε

∇
h

ri j

� x
ε

�

(1−mε)∂x j

�

�

c+0 − c−0
�

∂x j
Φ̃0 + ∂x j

p0 +
�

K−1ηδ
�

j

�
i

· ∇ϕ1d x

:= I1 +I2 +I3 +I4 +I5. (5.4.39)

Note that I here stands for the identity matrix. From now on, to get the estimate for Ψε in
�

H1
�′

-norm, we need bounds of Ii for 1 ≤ i ≤ 5. Indeed, with the help of Lemma 5.3.20
applied to the test function ϕ1, and the estimates of the involved functions, one immediately
obtains from Hölder’s inequality that

|I3|+
�

�I4

�

�≤ C
�

δ−
1
2 + εδ−

3
2

�

‖∇ϕ1‖[L2(Ωε)]d , (5.4.40)

where we also apply again the estimate of ηδ in Lemma 5.3.19.
To estimate I5, we notice

|I5| ≤ C
�

δ−
1
2 + εδ−

3
2

�

‖∇ϕ1‖[L2(Ωε)]d , (5.4.41)

where we also employ the estimates for mε in (5.3.12).
In addition, we have

|I1 +I2|

≤

�

�

�

�

�

�

∫

Ωε

ε−2



−
d
∑

j=1

�

�

c+0 − c−0
�

∂x j
Φ̃0 + ∂x j

p0 +
�

K−1ηδ
�

j

�

+∇p0 +
�

c+0 − c−0
�

∇Φ̃0



ϕ1d x

�

�

�

�

�

�

≤ Cε−1δ
1
2 ‖∇ϕ1‖[L2(Ωε)]d . (5.4.42)

Consequently, collecting (5.4.39)-(5.4.42) and according to the definition of the
�

H1
�′

-norm,
we arrive at

‖Ψε‖([H1(Ωε)]d)′ = sup
ϕ1∈[H1(Ωε)]d ,‖ϕ1‖[H1(Ωε )]d≤1

〈Ψε,ϕ1〉([H1]d)′,[H1]d

≤ C
�

ε−1δ
1
2 +δ−

1
2 + εδ−

3
2

�

‖∇ϕ1‖[L2(Ωε)]d . (5.4.43)
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Now, we have available a couple of estimates related to the correctors V ε,δ and P ε,δ. To go
on, we consider the differences

Dε1 := vε − |Yl |
−1DV ε,δ, Dε2 := pε − |Yl |

−1DP ε,δ,

and observe that the equation

− ε2∆Dε1 +∇D
ε
2 = ε

2
�

|Yl |
−1DΨε − ε−2

��

c+ε − c−ε
�

∇Φ̃ε −
�

c+0 − c−0
�

|Yl |
−1D∇Φ̃0

��

(5.4.44)

holds a.e. in Ωε.
It now remains to estimate the second term on the right-hand side of the equation (5.4.47) in
�

H1
�′

-norm. This estimate fully relies on the corrector estimate for the electrostatic potentials
in (5.4.34), the boundedness of concentration fields in Theorem 5.3.5 with the assumption
that c±0 ∈W 1,∞ (Ωε)∩H2 (Ωε). In fact, the estimate resembles very much the one in (5.4.30),
viz.


�

c+ε − c−ε
�

∇Φ̃ε −
�

c+0 − c−0
�

|Yl |
−1D∇Φ̃0,ϕ1

�

([H1]d)′,[H1]d

≤ C




∇Φ̃ε − |Yl |
−1D∇Φ̃0







[L2(Ωε)]d ‖ϕ1‖L2(Ωε)

≤ C max
¦

ε
3
2 ,ε

µ
2+1
©

‖∇ϕ1‖[L2(Ωε)]d , (5.4.45)

for all ϕ1 ∈
�

H1
0 (Ω

ε)
�d

and where we also use Lemma 5.3.20.
For ease of presentation, we put

L ε = ε−2
��

c+ε − c−ε
�

∇Φ̃ε −
�

c+0 − c−0
�

|Yl |
−1D∇Φ̃0

�

.

The corrector for the pressure can be obtained by the use of the following results which are
deduced from [111] and [80]:

• there exists an extension E
�

Dε2
�

∈ L2 (Ω)/R of Dε2 such that





E
�

Dε2
�





L2(Ω)/R ≤ Cε
�

‖Ψε −L ε‖([H1(Ωε)]d)′ +




∇Dε1






[L2(Ωε)]d
2

�

, (5.4.46)

• the following estimates hold:





∇Dε1






[L2(Ωε)]d
2 ≤ C

�

‖Ψε −L ε‖([H1(Ωε)]d)′ + ε
−1




∇ · V ε,δ






L2(Ωε)

�

, (5.4.47)




Dε1






[L2(Ωε)]d ≤ C
�

ε ‖Ψε −L ε‖([H1(Ωε)]d)′ +




∇ · V ε,δ






L2(Ωε)

�

. (5.4.48)

Collecting (5.4.43) and (5.4.45), we get

‖Ψε −L ε‖([H1(Ωε)]d)′ ≤ C
�

ε−1δ
1
2 +δ−

1
2 + εδ−

3
2 +max

¦

ε−
1
2 ,ε

µ
2−1
©�

‖∇ϕ1‖[L2(Ωε)]d .
(5.4.49)

We thus observe from (5.4.48), (5.4.38) and (5.4.49) that




Dε1






[L2(Ωε)]d ≤ C
�

δ
1
2 + εδ−

1
2 + ε2δ−

3
2 +max

¦

ε
1
2 ,ε

µ
2

©

+ εδ−
3
2 + ε

1
2δ−1

�

.

Since δ� ε, we can take δ = ελ for λ ∈ (0,1) to obtain




Dε1






[L2(Ωε)]d ≤ C
�

ε
λ
2 + ε1− λ2 + ε2− 3λ

2 + ε1− 3λ
2 + ε

1
2−λ +max

¦

ε
1
2 ,ε

µ
2

©�

≤ C
�

max
¦

ε
1
2 ,ε

µ
2

©

+ ε
λ
2 + ε1− 3λ

2 + ε
1
2−λ
�

.
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On the other hand, the optimal value for λ is 1/3 which leads to the following estimate:




Dε1






[L2(Ωε)]d ≤ C max
¦

ε
1
6 ,ε

µ
2

©

. (5.4.50)

Hereafter, it follows from (5.4.50), (5.4.46), (5.4.47) and (5.4.49) that




E
�

Dε2
�





L2(Ω)/R ≤ C
�

ε ‖Ψε −L ε‖([H1(Ωε)]d)′ +




∇ · V ε,δ






[L2(Ωε)]d
2

�

≤ C
�

max
¦

ε
1
2 ,ε

µ
2

©

+ ε
λ
2 + ε1− 3λ

2 + ε
1
2−λ
�

.

This indicates the following estimate:

‖pε − p0‖L2(Ω)/R ≤ C
�

max
¦

ε
1
2 ,ε

µ
2

©

+ ε
λ
2 + ε1− 3λ

2 + ε
1
2−λ
�

. (5.4.51)

Finally, we gather (5.4.11), (5.4.34), (5.4.35), (5.4.50) and (5.4.51) to conclude the proof of
Theorem 5.4.2.

5.4.3 Proof of Theorem 5.4.3

We turn the attention to the Dirichlet boundary condition for the electrostatic potential on the
micro-surface. Based on Theorem 5.3.15, we observe that the structure of the macroscopic
systems for the Stokes and Nernst-Planck equations are the same as the corresponding sys-
tems in the Neumann case (see Theorem 5.3.8). Therefore, the corrector estimates for these
systems remain unchanged in Theorem 5.4.2. Also, some regularity properties are not needed
in this case. We derive first the corrector estimates for the velocity and pressure and then the
corrector estimates of the concentration fields. Thereby, the corrector for the electrostatic
potential can also be obtained. Here, the macroscopic reconstructions are defined as follows:

vε0 (t, x) := v0

�

t, x ,
x
ε

�

, (5.4.52)

vε1 (t, x) := v1

�

t, x ,
x
ε

�

, (5.4.53)

c±,ε
0 (t, x) := c±0 (t, x) , (5.4.54)

c±,ε
1 (t, x) := c±,ε

0 (t, x) + ε
d
∑

j=1

ϕ j

� x
ε

�

∂x j
c±,ε

0 (t, x) . (5.4.55)

Recall Φ̃ε := εα−2Φhom
ε . By Theorem 5.3.14, Φ̃ε obeys the weak formulation

∫

Ωε

ε2∇Φ̃ε · ∇ϕ2d x =

∫

Ωε

�

c+ε − c−ε
�

ϕ2d x for all ϕ2 ∈ H1
0 (Ω

ε) .

Therefore, we define the following macroscopic reconstructions:

Φ̃ε0 (t, x) := Φ̃0

�

t, x ,
x
ε

�

, (5.4.56)

Φ̃
ε

0 (t, x) := |Yl |
−1 Φ̃0 (t, x) , (5.4.57)

and recall that the strong formulation for Φ̃0 (see [99, Theorem 4.12]) is given by

−∆y Φ̃0 (t, x , y) = c±0 (t, x)− c−0 (t, x) in (0, T )×Ω× Yl ,

Φ̃0 = 0 in (0, T )×Ω× Γ .
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Consequently, the difference equation for the Poisson equation can be written as

−ε2∆Φ̃ε +
�

∆y Φ̃0

�ε
=
�

c+ε − c+0
�

+
�

c−0 − c−ε
�

.

Choosing the test function ϕ2 = Φ̃ε − Φ̃ε0, let us now estimate the following integral:

T =
∫

Ωε

�

∆y Φ̃0

�ε
ϕ2d x .

Using the simple relation ∇y = ε (∇−∇x) and the decomposition
�

∆y Φ̃0

�ε
= (1−mε)

�

∆y Φ̃0

�ε
+ εmε∇ ·

�

∇y

�

Φ̃0

�ε�− εmε
�

∇x ·
�

∇y Φ̃0

��ε
,

and we obtain, after integrating by parts of the term ∇ ·
�

∇y

�

Φ̃0

�ε�

, that

∫

Ωε

�

∆y Φ̃0

�ε
ϕ2d x =

∫

Ωε

�

(1−mε)
�

∆y Φ̃0

�ε

−εmε
�

∇x ·
�

∇y Φ̃0

��ε − ε∇mε · ∇y

�

Φ̃0

�ε�

ϕ2d x

+ ε

∫

Ωε

(1−mε)∇y

�

Φ̃0

�ε · ∇ϕ2d x − ε
∫

Ωε

∇y

�

Φ̃0

�ε · ∇ϕ2d x

:=F1 +F2 +F3. (5.4.58)

The first and second integrals on the right-hand side of (5.4.58) can be estimated by

|F1|+ |F2| ≤ C ‖1−mε‖L2(Ωε)





∆y Φ̃0







L∞(Ωε ;C(Yl ))
‖ϕ2‖L2(Ωε)

+ Cε




∇x ·
�

∇y Φ̃0

�





L2(Ωε ;C(Yl ))
‖ϕ2‖L2(Ωε)

+ Cε ‖∇mε‖L2(Ωε)





∇y Φ̃0







L∞(Ωε ;C(Yl ))
‖ϕ2‖L2(Ωε)

+ Cε ‖1−mε‖L2(Ωε)





∇y Φ̃0







L∞(Ωε ;C(Yl ))
‖∇ϕ2‖L2(Ωε) ,

where we assume here that Φ̃0 ∈ L∞
�

Ωε; W 2+s,2 (Yl)
�

∩H1
�

Ωε; W 1+s,2 (Yl)
�

and make use of
the compact embeddings W 2+s,2 (Yl) ⊂ C2 (Yl), W 1+s,2 (Yl) ⊂ C1 (Yl) for s > d/2. Applying the
inequalities (5.3.12), we thus have

|F1|+ |F2| ≤ C
�

ε + ε
1
2

�

‖ϕ2‖L2(Ωε) + Cε
3
2 ‖∇ϕ2‖L2(Ωε) . (5.4.59)

It now remains to estimate the following integral:
∫

Ωε

ε2∇Φ̃ε · ∇ϕ2d x =

∫

Ωε

ε∇Φ̃ε · ε∇
�

Φ̃ε − Φ̃ε0
�

d x .

Its right-hand side can be estimated by
∫

Ωε

ε∇Φ̃ε · ε∇
�

Φ̃ε − Φ̃ε0
�

d x ≤ Cε




∇
�

Φ̃ε − Φ̃ε0
�





[L2(Ωε)]d , (5.4.60)

where we use the fact that ε




∇Φ̃ε






L2(Ωε) ≤ C in Theorem 5.3.13.
Based on the corrector estimates for the concentration fields c±ε , we see that

∫

Ωε

��

c+ε − c+0
�

+
�

c−0 − c−ε
��

ϕ2d x ≤ C




c±ε − c±0






L2(Ωε)





Φ̃ε − Φ̃ε0






L2(Ωε) . (5.4.61)
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Setting

w1 (t) =




Φ̃ε (t)− Φ̃ε0 (t)






2
L2(Ωε) +





c±ε (t)− c±0 (t)






2
L2(Ωε) ,

w2 (t) =




∇
�

Φ̃ε − Φ̃ε0
�

(t)






2

[L2(Ωε)]d +




∇
�

c±ε − c±,ε
1

�

(t)






2

[L2(Ωε)]d ,

w0 =




c±,0
ε − c±,0

0







2

L2(Ωε) ,

the combination of the estimates (5.4.59)-(5.4.61) with the respective estimates for the con-
centration fields (which are similar to the Neumann case) and the application of suitable
Hölder’s inequalities give

w1 (t) +

∫ t

0

w2 (s) ds ≤ C

�

ε + (1+ ε)w0 +

∫ t

0

w1 (s) ds

�

.

Using Gronwall’s inequality yields

w1 (t) +

∫ t

0

w2 (s) ds ≤ C (ε + (1+ ε)w0) .

As a consequence, we obtain





Φ̃ε − Φ̃ε0






L2((0,T )×Ωε) +




∇
�

Φ̃ε − Φ̃ε0
�





[L2((0,T )×Ωε)]d +




c±ε − c±,ε
0







L2((0,T )×Ωε)

+




∇
�

c±ε − c±,ε
1

�





[L2((0,T )×Ωε)]d ≤ C max
¦

ε
1
2 ,ε

µ
2

©

for µ ∈ R+,

where we have used (5.4.33).
Finally, we apply Lemma 5.3.18 to get








Φ̃ε − Φ̃
ε

0










L2((0,T )×Ωε)
≤




Φ̃ε − Φ̃ε0






L2((0,T )×Ωε) +







Φ̃ε0 − Φ̃
ε

0










L2((0,T )×Ωε)

≤ C max
¦

ε
1
2 ,ε

µ
2

©

.

This completes the proof of Theorem 5.4.3.

5.5 Concluding remarks

In [99], the two-scale convergence method has discovered possible macroscopic structures
of a non-stationary SNPP model coupled with various scaling factors and different boundary
conditions. In this chapter, we have justified such homogenization limits by deriving several
corrector estimates (cf. Theorem 5.4.2 and Theorem 5.4.3). The techniques we have presen-
ted here are mainly based on the construction of suitable macroscopic reconstructions and on
a number of energy-like estimates. The employed methodology is applicable to more complex
scenarios, where coupled systems of partial differential equations posed in perforated media
are involved.
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CHAPTER 6

Concluding remarks. Outlook

This is the moment to review briefly what we have done in this thesis and point out to what
remains to be done. This chapter has two parts. The first part is devoted to summarizing the
main results of this thesis, while the second part provides some ideas to be explored in the
near future.

6.1 Summary

The main results of this work are reported in Chapter 2, Chapter 3, Chapter 4 and Chapter 5
where our investigations concentrate on derivation of convergence rates for the homogeniz-
ation limit applied to certain systems of partial differential equations with coupled fluxes.

In Chapter 2, Chapter 3 and Chapter 4, we focused on Smoluchowski-Soret-Dufour models
posed in a perforated domain. This type of model describes the interplay between heat and
diffusion in transporting and interacting hot colloidal particles. Recent studies by [74, 75]
have derived the structure of the macroscopic model as well as the weak solvability of these
systems. Also, [75] has validated the upscaled equations for realistic soils.

As first step, we studied in Chapter 2 and in Chapter 3 as a simplified model of Smoluchowski-
Soret-Dufour-type, a stationary semi-linear reaction-diffusion system. We ensured the L∞-
bounds for the active concentrations and then proved the existence and uniqueness of positive
and bounded weak solutions to the microscopic system. In the proofs, we applied an energy
minimization method as in [22] and further extended in [55]. The contributions in these
two chapters rely on the explicit use of the high-order two-scale asymptotic expansions. To
do so, we collected the high-order auxiliary and cell problems, from which the macroscopic
system as well as the corrector estimates can be ultimately derived. It turns out that there
exist cases where the cell problems are semi-linear elliptic problems due to the structure of
the production term. An iterations-based technique was used to treat this nonlinear scenario.
Essentially, our proofs in this part are based on the accumulation of the energy estimates for
each species.

In Chapter 4, we tackled the original Smoluchowski-Soret-Dufour model expressed as a coupled
thermo-diffusion system. This system consists of a set of nonlinear reaction-diffusion equa-
tions for hot colloidal concentrations coupled with a family of linear ordinary differential
equations for the immobile species. Due to the coupled-flux structure of the system, it is
difficult to apply the formal asymptotic expansion to gain the corrector estimates. Instead,
we employed the concept of macroscopic reconstruction (of [40]) which allowed us to con-
struct a bridge between the microscopic and macroscopic systems. Energy estimates for the
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reconstructed system were used to derive the structure of the correctors.
Most of our results yield that the difference in L2-norm between the microscopic and mac-
roscopic solutions is of the order O

�

ε
1
2

�

, agreeing with the classical corrector estimates in
e.g. the monograph [31]. This is due to the influence of the elliptic part of the oscillating
systems. For reaction-drift-convection problems or for some general problems with coupled
fluxes, the situation is more complicated (see Chapter 5) and derivations for the standard
estimates appear.
In Chapter 5, we turn our attention to a non-stationary Stokes-Nernst-Planck-Poisson model
with various scaling choices. The challenging part in deriving the correctors for this model lies
in handling the Stokes equation. In fact, the energy-type estimates for correctors of the Stokes
equation could not be obtained as in the previous chapters. Fortunately, the a priori estimates
(derived in [99]) enable us to choose a suitable structure of the correctors, partly inspired from
the so-called boundary layer asymptotics. When doing so, the corrector estimates we gained
highlighted a corrector of the pressure of order O

�

ε
1
6

�

. Note also that to obtain such order

of convergence we needed the internal micro-surfaces to be C2 and the exterior boundary to
be C4 (compared to the Lipschitz boundary regularity as requested in Chapter 4).

6.2 Outlook

Once corrector estimates are available for systems of partial differential equations, with coupled
fluxes, three potential research directions open:

1. For the systems (2.1.1), (4.2.2)-(4.2.12) and (5.1.1)-(5.1.8), we can now design con-
vergent MsFEM schemes with explicit convergence rates;

2. We can now start handling multiscale inverse problems where ε plays a double role – a
regularization parameter in an inverse question as well as a small geometry parameter
characteristic to a vanishing microstructure length scale;

3. We were able to justify the homogenization asymptotics only for the case of two inter-
playing separated scales. It would be interesting to handle situations where scales are
not separated (or are weakly separated like in the case of the very weak homogenization
asymptotics [48]).

It is worth mentioning that inverse problems are omnipresent in both physics (e.g. [115]) and
biology (e.g. [113]). As a starting point, one can think of the inverse heat transfer problem
with multiple space scales. This problem would fit the very first perspectives including the
heat source identification problem e.g. [67] and the backward problem e.g. [114]. In this
direction, it would be interesting to design also a certain regularization coupled with the
homogenization method, for particular microscopic problems. Working on problems with
coupled fluxes can perhaps be made, but one flux must be identified. Observe, on the other
hand, that the two-scale convergence can be helpful in establishing a multiscale theory of
filter regularization operators following up [36].
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[80] E. Marusić-Paloka and A. Mikelíc. An error estimate for correctors in the homogenization of the
Stokes and the Navier-Stokes equations in a porous medium. Bollettino dell’Unione Matematica
Italiana, 10(3):661–671, 1996.

[81] A. Mielke, S. Reichelt, and M. Thomas. Two-scale homogenization of nonlinear reaction-diffusion
systems with slow diffusion. Networks Heterogeneous Media, 9:353–382, 2014.

[82] S. Mitragotri and J. Lahann. Physical approaches to biomaterial design. Nature Materials, 8:15–
23, 2009.

[83] J. Moser. A new proof of de Giorgi’s theorem concerning the regularity problem for elliptic
differential equations. Communications on Pure and Applied Mathematics, 13:457–468, 1960.

[84] J. Moser. A Harnack inequality for parabolic differential equations. Communications on Pure and
Applied Mathematics, 17:101–134, 1964.

[85] A. Muntean and S. Reichelt. Corrector estimates for a thermo-diffusion model with weak thermal
coupling. WIAS, Preprint No. 2310, 2016.

110



[86] A. Muntean and T.L. van Noorden. Corrector estimates for the homogenization of a locally-
periodic medium with areas of low and high diffusivity. European Journal of Applied Mathematics,
24(5):657–677, 2012.

[87] M. Neuss-Radu. Some extensions of two-scale convergence. Comptes Rendus de l Académie des
Sciences-Series I-Mathematics, 352:899–904, 1996.

[88] J. Newman and K.E. Thomas-Alyea. Electrochemical Systems. Wiley, 3rd edition, 2004.

[89] G. Nguetseng. A general convergence result for a functional related to the theory of homogeniz-
ation. SIAM Journal on Mathematical Analysis, 20:608–623, 1989.

[90] O.A. Oleinik, A.S. Shamev, and G.A. Yosifian. Mathematical Problems in Elasticity and Homogen-
ization. North Holland, 1992.

[91] D. Onofrei and B. Vernescu. Error estimate and unfolding for periodic homogenization with
non-smooth coefficients. Asymptotic Analysis, 54:103–123, 2007.

[92] C.V. Pao. Nonlinear Parabolic and Elliptic Equations. Springer, 1993.

[93] L.E. Persson, L. Persson, N. Svanstedt, and J. Wyller. The Homogenization Method: An Introduc-
tion. Chartwell Bratt, Sweden, 1993.

[94] I.S. Pop, F. Radu, and P. Knabner. Mixed finite elements for the Richards equation: linearization
procedure. Journal of Computational and Applied Mathematics, 168:365–373, 2004.

[95] A.V. Pozhidaev and V.V. Yurinskii. On the error of averaging symmetric elliptic systems. Mathem-
atics of the USSR-Izvestiya, 35:183–201, 1990.

[96] F.A. Radu, J.M. Nordbotten, I.S. Pop, and K. Kumar. A robust linearization scheme for finite
volume based discretizations for simulations of two-phase flow in porous media. Journal of
Computational and Applied Mathematics, 289:134–141, 2015.

[97] N. Ray. Colloidal Transport in Porous Media Modeling and Analysis. PhD thesis, University of
Erlangen-Nuremberg, 2013.

[98] N. Ray, T. Elbinger, and P. Knabner. Upscaling the flow and transport in an evolving porous
medium with general interaction potentials. SIAM Journal on Applied Mathematics, 75(5):2170–
2192, 2015.

[99] N. Ray, A. Muntean, and P. Knabner. Rigorous homogenization of a Stokes-Nernst-Planck-Poisson
system. Journal of Mathematical Analysis and Applications, 390(1):374–393, 2012.

[100] S. Reichelt. Error estimates for nonlinear reaction-diffusion systems involving different diffusion
length scales. Advances in Mathematical Sciences and Applications, 25:117–131, 2016.

[101] E. Samson, J. Marchand, J.-L. Robert, and J.-P. Bournazel. Modelling ion diffusion mechanisms in
porous media. International Journal for Numerical Methods in Engineering, 46(12):2043–2060,
1999.

[102] E. Sanchez-Palencia. Non-Homogeneous Media and Vibration Theory, volume 127. Springer, 1980.
Lecture Notes in Physics.

[103] G. Savaré. Regularity results for elliptic equations in Lipschitz domains. Journal of Functional
Analysis, 152:176–201, 1998.

[104] M. Schmuck. Modeling and deriving porous media Stokes-Poisson-Nernst-Planck equations by a
multiple-scale approach. Communications in Mathematical Sciences, 3(9):685–710, 2011.

[105] M. Schmuck. First error bounds for the porous media approximation of the Poisson-Nernst-Planck
equations. ZAMM Journal of Applied Mathematics and Mechanics: Zeitschrift für Angewandte Math-
ematik und Mechanik, 92(4):304–319, 2012.

[106] M. Schmuck and M.Z. Bazant. Homogenization of the Poisson-Nernst-Planck equations for ion
transport in charged porous media. SIAM Journal on Applied Mathematics, 75(3):1369–1401,
2015.

[107] M. Schmuck, G.A. Pavliotis, and S. Kalliadasis. Effective macroscopic interfacial transport equa-
tions in strongly heterogeneous environments for general homogeneous free energies. Applied
Mathematics Letters, 35:12–17, 2014.

111



[108] B. Schweizer and M. Veneroni. On non-periodic homogenization of time-dependent equations.
Nonlinear Analysis: Real World Applications, 15:381–391, 2014.

[109] M. Smoluchowski. Versuch einer mathematischen theorie der koagulationskinetik kolloider
Lösungen. Zeitschrift für Physikalische Chemie, 92:129–168, 1917.

[110] G.-Q. Tang and N.R. Morrow. Influence of brine composition and fines migration on crude
oil/brine/rock interactions and oil recovery. Journal of Petroleum Science & Engineering, 24(2–
4):99–111, 1999.

[111] L. Tartar. Convergence of The Homogenization Process, volume 127. Springer, 1980. In: Appendix
of [102].

[112] R. Temam. Navier–Stokes Equations, volume 2 of Studies in Mathematics and Its Applications.
North Holland, revised edition, 1979.

[113] N.H. Tuan, V.V. Au, V.A. Khoa, and D. Lesnic. Identifcation of the population density of a species
model with nonlocal diffusion and nonlinear reaction. Inverse Problems, 33, 2017. 055019.

[114] N.H. Tuan, B.T. Duy, N.D. Minh, and V.A. Khoa. Hölder stability for a class of initial inverse non-
linear heat problem in multiple dimension. Communications in Nonlinear Science and Numerical
Simulation, 23:89–114, 2015.

[115] N.H. Tuan, V.A. Khoa, M.N. Minh, and T. Tran. Reconstruction of the electric field of the Helmholtz
equation in three dimensions. Journal of Computational and Applied Mathematics, 309:56–78,
2017.

[116] V.K. Vanag and I.R. Epstein. Cross-diffusion and pattern formation in reaction-diffusion systems.
Physical Chemistry Chemical Physics, 11(6):897–912, 2009.

[117] H.M. Versieux and M. Sarkis. Numerical boundary corrector for elliptic equations with rapidly
oscillating periodic coefficients. International Journal for Numerical Methods in Biomedical En-
gineering, 22:577–589, 2006.

[118] C. Zhang, Y. Bai, S. Xu, and X. Yue. Homogenization for chemical vapor infiltration process.
Communications in Mathematical Sciences, 15(4):1021–1040, 2017.

[119] N. Zhang. Homogenization Theory for Partial Differential Equations with Large, Random Potential.
PhD thesis, Columbia University, 2013.

112



APPENDIX A

Miscellaneous results

We collect in this appendix the definition and main properties of the two-scale convergence
as well as related compactness results. We refer the reader to the original works by [5] and
[89].
The notation used here is introduced in Chapter 2.

Definition A.0.1. Two-scale convergence
Let (uε)ε>0 be a sequence of functions in L2

�

0, T ; L2 (Ω)
�

, then it two-scale converges to a
unique function u0 ∈ L2 ((0, T )×Ω× Y ) if for any ϕ ∈ C∞0

�

(0, T )×Ω; C∞# (Y )
�

we have

lim
ε→0

∫ T

0

∫

Ω

uε (t, x)ϕ
�

t, x ,
x
ε

�

d xd t =
1
|Y |

∫ T

0

∫

Ω

∫

Y

u0 (t, x , y)ϕ (t, x , y) d yd xd t.

We denoted this convergence by uε
2
* u0 as ε→ 0. If in addition (uε)ε>0 satisfies

lim
ε→0
‖uε‖L2((0,T )×Ω) =





u0






L2((0,T )×Ω×Y ) ,

then the sequence is said to be strongly two-scale convergent to u0 in L2 ((0, T )×Ω× Y ) and

we write uε
2
→ u0.

Theorem A.0.2. Two-scale compactness

• Let (uε)ε>0 be a bounded sequence in L2 ((0, T )×Ω). Then there exists a function
u0 ∈ L2 ((0, T )×Ω× Y ) such that, up to a subsequence, uε two-scale converges to u0.

• Let (uε)ε>0 be a bounded sequence in L2
�

0, T ; H1 (Ω)
�

, then up to a subsequence, we

have the two-scale convergence ∇uε
2
*∇xu0+∇yu1, where u0 ∈ L2

�

0, T ; H1(Ω)
�

and
u1 ∈ L2

�

(0, T )×Ω; H1
# (Y )/R

�

.

Next, we recall the concepts of two-scale convergence and compactness for ε-periodic hyper-
surfaces. They were originally introduced in [87, 6] and have been used in many applications;
see, for instance, [45, 74].

Definition A.0.3. Two-scale convergence on hypersurfaces
Let (uε)ε>0 be a sequence of functions in L2(0, T ; L2(Γ ε))

�

≡ L2 ((0, T )× Γ ε)
�

. We say uε two-
scale converges to a limit u0 in L2((0, T )×Ω× Γ ) if for any ϕ ∈ C∞0 ((0, T )×Ω; C∞# (Γ )) we
have

lim
ε→0

∫ T

0

∫

Γ ε

εuε (t, x)ϕ
�

t, x ,
x
ε

�

d xd t =
1
|Y |

∫ T

0

∫

Ω

∫

Γ

u0 (t, x , y)ϕ (t, x , y) dσ(y)d xd t.
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Theorem A.0.4. Two-scale compactness on surfaces
For each bounded sequence (uε) in L2

�

0, T ; L2 (Γ ε)
�

, one can extract a subsequence which two-
scale converges to u0 ∈ L2((0, T )×Ω×Γ ). Furthermore, if (uε) is bounded in L∞ (0, T ; L∞ (Γ ε)),
it then two-scale converges to a limit function u0 ∈ L∞((0, T )×Ω× Γ ).

The relation between the (weak) two-scale convergence and the ordinary weak convergence
is collected in the following result (cf. e.g. [78, Theorems 9, 10, 17]).

Proposition A.0.5. Let (uε)ε>0 be a sequence in L2 ((0, T )×Ω) and given a function u0 ∈
L2 ((0, T )×Ω× Y ). Then, one has

1. If uε
2
→ u0 in L2 ((0, T )×Ω× Y ), then it implies uε

2
* u0 in L2 ((0, T )×Ω× Y );

If uε
2
* u0 in L2 ((0, T )×Ω× Y ), then it holds that

uε *
1
|Y |

∫

Y

u0 (·, y) d y in L2 ((0, T )×Ω) .

In particular, sequences that weakly two-scale converge in L2 ((0, T )×Ω× Y ) are bounded
in L2 ((0, T )×Ω).

2. If u0 is independent of the third argument y, i.e. u0 ∈ L2 (Ω), then the strong convergence
in L2 ((0, T )×Ω) is equivalent to the strongly two-scale convergence in L2 ((0, T )×Ω× Y ).

Theorem A.0.6. (cf. [5, Theorem 1.8]) If (uε)ε>0 and (vε)ε>0 are sequences in L2 ((0, T )×Ω)
such that

uε
2
* u0 in L2 ((0, T )×Ω× Y ) ,

vε
2
→ v0 in L2 ((0, T )×Ω× Y ) ,

then for every ϕ ∈ C∞c (Ω) one has

lim
ε→0

∫ T

0

∫

Ω

uε (x) vε (x)ϕ (x) d xd t =
1
|Y |

∫ T

0

∫

Ω

�∫

Y

u0 (x , y) v0 (x , y) d y

�

ϕ (x) d xd t.

Lemma A.0.7. (A Young-type inequality) Let δ > 0 and a, b ≥ 0 be arbitrarily real numbers
and take q, q′> 1 real constants that are the Hölder conjugates of each other. Then the following
inequality holds

ab ≤
1
q
δqaq +

1
q′
δ−q′bq′. (A.0.1)

Lemma A.0.8. (Trace inequality for ε-dependent hypersurfaces Γ ε) Let Γ ε be as defined in Sub-
section 4.2.1. For uε ∈ H1(Ωε), there exists a constant C > 0 (independent of ε) such that

ε ‖uε‖2
L2(Γ ε) ≤ C

�

‖uε‖2
L2(Ωε) + ε

2 ‖∇uε‖2
[L2(Ωε)]d

�

. (A.0.2)

The proof of (A.0.2) can be found in [65, Lemma 3]. In the case of the homogeneous
(bounded) domain Ω with smooth boundary, one has the usual trace inequality (cf. [64]):

‖u‖2
L2(Γ ) ≤ C

�

‖u‖2
L2(Ω) + ‖∇u‖2

L2(Ω)

�

for all u ∈ H1 (Ω) .

Lemma A.0.9. (Poincaré’s inequality) For uε ∈ H1(Ωε), there exists a constant C > 0 independ-
ent of ε such that

‖uε‖L2(Ωε) ≤ C ‖∇uε‖[L2(Ωε)]d .
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The proof is straightforward in [31, Lemma 2.1] and based on the Poincaré inequality for the
homogeneous case, the result is similar up to the homogeneous domain Ω.

Lemma A.0.10. (Hölder’s inequality) Let q, q′> 1 be real constants that are Hölder conjugates
of each other. Then, for uε ∈ Lq (Ωε) and vε ∈ Lq′ (Ωε), the following inequality holds

‖uεvε‖L1(Ωε) ≤ ‖uε‖Lq(Ωε) ‖vε‖Lq′(Ωε) .

Furthermore, this inequality also holds in the hypersurfaces Γ ε.

The proof of the Hölder inequality is trivial by virtue of the Young inequality as presented in
Lemma A.0.7.

Lemma A.0.11. (Minkowski’s inequality) Let 1 ≤ p ≤ ∞ and let uε, vε ∈ Lp (Ωε). Then
uε + vε ∈ Lp (Ωε) and the following inequality holds

‖uε + vε‖Lp(Ωε) ≤ ‖uε‖Lp(Ωε) + ‖vε‖Lp(Ωε) .
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Neumann boundary condition, 48
non-triviality, 20
nonlinear auxiliary problems, 37

oscillating coefficients, 50
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perforated domain, 4
permeability tensor, 78
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principal eigenvalue, 15
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Robin boundary condition, 48
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solid phase, 48
solvability condition, 25
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surface reaction, 11, 40

tensor, 50
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trace inequality, 17, 39, 44, 69, 116
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unit cell, 48, 74
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