
Gran Sasso Science Institute

Doctoral Thesis

Energy Efficiency
in Large Scale

Information Retrieval Systems

Author:
Matteo Catena

Supervisor:
Dr.-Ing. Nicola Tonellotto

2017

iii

Declaration of Authorship
I, Matteo Catena, declare that this thesis has been composed by myself and the

presented work is my own under the guidance of my supervisor Dr.-Ing. Nicola
Tonellotto. Moreover, Chapter 3 is partially based on [25] co-authored with Dr.-Ing.
Nicola Tonellotto. Chapter 4 is based on [24] co-authored with Dr. Craig Macdonald
and Dr.-Ing. Nicola Tonellotto. Chapter 5 is based on [26] co-authored with Dr.-Ing.
Nicola Tonellotto. Finally, Chapter 6 is based on [13] co-authored with Dr. Roi
Blanco and Dr.-Ing. Nicola Tonellotto.

v

Abstract

Web search engines are large scale information retrieval systems, which provide easy
access to information on the Web. High performance query processing is fundamental
for the success of such systems. In fact, web search engines can receive billions
of queries per day. Additionally, the issuing users are often impatient and expect
sub-second response times to their queries (e.g., 500 ms). For such reasons, search
companies adopt distributed query processing strategies to cope with huge volumes
of incoming queries and to provide sub-second response times.

Web search engines perform distributed query processing on computer clusters
composed by thousands of computers and hosted in large data centers. While data
center facilities enable large-scale online services, they also raise economical and en-
vironmental concerns. Therefore, an important problem to address is how to reduce
the energy expenditure of data centers. Moreover, another problem to tackle is how
to reduce carbon dioxide emissions and the negative impact of the data centers on
the environment.

A large part of the energy consumption of a data center could be accounted to
inefficiencies in its cooling and power supply systems. However, search companies al-
ready adopt state-of-the art techniques to reduce the energy wastage of such systems,
leaving little room for more improvements in those areas. Therefore, new approaches
are necessary to mitigate the environmental impact and the energy expenditure of
web search engines.

One option is to reduce the energy consumption of computing resources to miti-
gate the energy expenditure and carbon footprint of a search company. In particular,
reducing the energy consumption of CPUs represents an attractive venue for web
search engines. Currently, CPU cores frequencies are typically managed by oper-
ating system components, called frequency governors. We propose to delegate the
CPU power management from the OS frequency governors to the query processing
application. Such search engine-specific governors can reduce up to 24% a server
power consumption, with only limited (but uncontrollable) drawbacks in the quality
of search results with respect to a system running at maximum CPU frequency.

Since users can hardly notice response times that are faster than their expectations
we advise that web search engine should not process queries faster than user expecta-
tions and, consequently, we propose the Predictive Energy Saving Online Scheduling
(PESOS) algorithm, to select the most appropriate CPU frequency to process a query
by its deadline, on a per-core basis. PESOS can reduce the CPU energy consump-
tion of a query processing server from 24% up to 48% when compared to a high
performance system running at maximum CPU core frequency.

To reduce the carbon footprint of web search engines, another option consists in
using green energy to partially power their data centers. Stemming from these obser-
vations, we propose a new query forwarding algorithm that exploits both the green
energy sources available at different data centers and the differences in market energy
prices. The proposed solution maintains a high query throughput, while reducing by
up to 25% the energy operational costs of multi-center search engines.

vii

Acknowledgements
I would like to thank Dr.-Ing. Nicola Tonellotto for having been a rigorous yet
enthusiastic thesis advisor. I would also like to thank Dr. Craig Macdonald and Dr.
Roi Blanco for the pleasant and fruitful collaborations.

I want to thank all the people from the High Performance Computing Laboratory
of Pisa, and all those who visited our group in these years. Thank you all for the
useful conversations, for the good time spent together, and for making our workplace
relaxing and enjoyable.

I want to thank Cristina for being a great co-worker and, more importantly, a
great friend. Settling in from L’Aquila to Pisa would have been much harder without
you. For the same reason, I thank Alejandro, Daniele, Diego & Laura, Giacomo, and
Paola. Thank you for the fun time spent together and for the countless beers at La
Torre del Luppolo.

Finally, I want to thank all the students of the XXIX cycle at the Gran Sasso
Science Institute. Thank you for sharing all the fun and the stress. It has been quite
an adventure.

ix

All’amato me stesso.

xi

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Energy-related challenges in data centers 3
1.2 Energy management in web search engines 4
1.3 Summary of contributions . 6
1.4 Organization of the thesis . 7

2 Background 9
2.1 Query processing . 9

2.1.1 Query processing on a search server 10
2.1.2 Query processing on a search cluster 12
2.1.3 Query processing on multiple search centers 13

2.2 Energy management in web search engines 14
2.2.1 Intra-server energy management 15
2.2.2 Intra-data center energy management 17
2.2.3 Inter-data centers energy management 19

2.3 Positioning with respect to the state of the art 20

3 Query Energy Consumption in Web Search Engines 23
3.1 Introduction . 23
3.2 Experimental setup and analysis . 23
3.3 Discussion . 25

4 Load-sensitive CPU Power Management for Web Search Engines 27
4.1 Introduction . 27
4.2 Problem statement . 28
4.3 Proposed solution . 28
4.4 Experimental setup . 30
4.5 Results . 31
4.6 Discussion . 32

5 Energy-efficient Query Processing in Web Search Engines 33
5.1 Introduction . 33
5.2 Problem statement . 34

5.2.1 Operative scenario . 34
5.2.2 The minimum-energy scheduling problem 36
5.2.3 Issues with YDS . 38

5.3 Problem solution . 38
5.3.1 On-line scheduling without preemption 38

xii

5.3.2 Predicting processing volumes 39
5.3.3 Translating processing speeds into CPU frequencies 39
5.3.4 Frequency selection algorithm for search engines 40

5.4 Experimental setup . 42
5.4.1 Training processing volume predictors 43
5.4.2 Training processing time predictors 44
5.4.3 Measuring energy consumption and latency 46
5.4.4 Other experimental setup details 48

5.5 Results . 49
5.5.1 Synthetic query workload results 49
5.5.2 Realistic query workload results 52
5.5.3 Additional results on latency 57

Mean and median latencies under the synthetic query workload 57
Mean and median latencies under the realistic query workload 57

5.6 Discussion . 60

6 Exploiting Green Energy to Reduce the Operational Costs
of Web Search Engines 63
6.1 Introduction . 63
6.2 Problem statement . 64
6.3 Problem solution . 68
6.4 Experimental setup . 70
6.5 Results . 74
6.6 Discussion . 80

7 Conclusions and Future Directions 81

A On the CPU Power Consumption 83

B On the Effectiveness of C-states and P-states 85

C On the Reliability of RAPL Measurements 87

Bibliography 89

xiii

List of Figures

1.1 A search engine’s results for the query "divina commedia author",
as shown to the issuing user. 1

1.2 The architecture of a web search engine composed by the crawling,
indexing and query processing subsystems. 2

1.3 A web search engine architecture subdivided into the (a) intra-server,
(b) intra-data center, and (c) inter-data centers levels. 4

1.4 Yahoo! hourly query traffic volume distribution, and New York’s
hourly variation in electricity price (picture from [96]). 5

2.1 The query processing subsystem deployed onto three different layers:
on a single search server, on a search cluster, and on multiple search
sites. 9

2.2 An example of a portion of an inverted index. 10
2.3 A distributed query processing subsystem with three index shards. . . 13

3.1 Query energy consumption and processing times with MaxScore (a)
and WAND (b). 25

5.1 The architecture of a query processing node. 35
5.2 An example of YDS scheduling: (top) input jobs, (bottom) resulting

optimal schedule with CPU speeds s. 37
5.3 Query arrivals for the second day of the MSN2006 query log, aggre-

gated every 5 minutes. 47
5.4 Tail latencies during a day, aggregated every 5 minutes. 54
5.5 CPU energy reductions w.r.t perf, aggregated every 5 minutes. 54
5.6 Number of times power (top), se-cons (middle) and time-conservative

(τ = 500 ms) PESOS (bottom) select frequencies on one of the CPU
cores during the day, sampled every second. 55

5.7 Mean response times during a day, aggregated every 5 minutes. 59
5.8 Median response times during a day, aggregated every 5 minutes. . . . 59

6.1 Example of a web search engine infrastructure model. 65
6.2 The MCFP instance to minimize the operational cost of a geographi-

cally distributed search engine. 69
6.3 Query workload for six different Yahoo frontends during 24-hours. . . 72
6.4 Market electricity prices and green energy price. 73
6.5 Percentage of green energy efficiency improvements w.r.t. NoForward-

ing on a daily scale, over the first day of the test query log, for (a)
α = 0.25, γ = 0.4 and (b) α = 0.5, γ = 0.6. 77

6.6 Percentage of cost savings w.r.t. NoForwarding, for different values of
α and γ. 78

xiv

6.7 Percentage of cost savings w.r.t. NoForwarding on a daily scale, over
the first day of the test query log for (a) α = 0.25, γ = 0.4 and (b)
α = 0.5, γ = 0.6. 79

A.1 CPU power usage of the server as the compute load varies from (active)
idle to full usage. 84

C.1 Comparison of the CPU energy consumption measurements with RAPL
versus the total server energy consumption measured with a power meter. 88

xv

List of Tables

2.1 Electric energy quantities, definitions and units of measurements. . . . 14

3.1 Distribution of queries across the various query lengths (number of
terms). 24

3.2 Minimum, mean, and maximum query processing times (in milliseconds). 24
3.3 Minimum, mean, and maximum query energy consumption (in Joules). 24

4.1 Percentage of unanswered queries (%UQ), mean relative recall (RR)
and mean consumed power (P, in Watt) for different frequency gover-
nors under various settings of α, β. 31

5.1 Mean total number of postings (MTP) and, for both MaxScore and
WAND, mean number of scored postings (MSP), root mean squared
error (ρx) produced by the modified QEPs and coefficient of determi-
nation R2, for each query class (QC). Posting numbers are rounded to
thousands. 45

5.2 Mean processing time (M , in ms), root mean squared error (ρfx) pro-
duced by the σfx regressors and coefficient of determination R2 for each
query class (QC) for the MaxScore and WAND retrieval strategies. . . 46

5.3 Distribution of queries across the various query classes for the synthetic
and the realistic query sets. 47

5.4 MaxScore (top) and WAND (bottom) tail latencies (95th-tile, in ms)
of baselines, time conservative (TC), and energy conservative (EC)
PESOS for different synthetic query workload (QPS). 50

5.5 Energy consumption (KJ) of baselines, time conservative (TC), and
energy conservative (EC) PESOS, with energy savings w.r.t. perf for
different synthetic query workload (QPS). 51

5.6 CPU energy consumption (KJ) of the power management approaches
for processing a day of query log, and the gain w.r.t. perf. 53

5.7 Mean and median latencies (in ms) of baselines, time conservative
(TC), and energy conservative (EC) PESOS for different synthetic
query workload (QPS) . 58

6.1 Time windows size (in seconds) for estimating the incoming query
workloads of different data centers. 74

6.2 Percentage of (a) Approximated queries, (b) green energy efficiency
improvements, and (c) cost savings with respect to NoForwarding. The
best results are reported in bold. 76

1

Chapter 1

Introduction

Information Retrieval (IR) is an area of Computer Science which focuses on the repre-
sentation, storage, and organization of information items such as web pages, images,
videos, etc. Its aim is to provide the users with easy access to information of their
interest [7]. Information Retrieval finds a practical application in the development of
web search engines.

Nowadays, web search engines are a fundamental tool in people’s life, mostly due
to their widespread usage and to the enormous size of the Web. Indeed, people daily
use search engines for many purposes, such as looking for information on the Web,
navigate to websites, or purchasing products and services online. Without search
engines, users would have to personally skim through a myriad of web pages to find
what they need. Surfing the Web would be a far less pleasant activity.

The purpose of web search engines is to make a collection of web pages searchable
by their users. Users express their information needs using queries i.e., lists of key-
words or query terms. For instance, a user interested in knowing “Who is the author
of the Divina Commedia?” would probably issue a query like "divina commedia
author". In response to such query, the search engine retrieves the web pages con-
taining the query terms, and it ranks them according to their estimated relevance,
i.e., the ability to satisfy the information need of the user. As shown in Figure 1.1,
the ranked list of results is then presented to the user by reporting the title of the
web pages, short summaries, and links to the original sources.

Figure 1.1: A search engine’s results for the query "divina
commedia author", as shown to the issuing user.

2 Chapter 1. Introduction

Figure 1.2: The architecture of a web search engine composed by
the crawling, indexing and query processing subsystems.

To provide a list of results for the query "divina commedia author", the search
engine must have firstly gathered a collection of web pages. Within the search engine,
this task is performed by the crawling subsystem. This subsystem is responsible to
discover and fetch web pages that may be relevant to user queries, and to store them
in a repository (i.e., the document collection). While the crawling subsystem gathers
web pages, the search engine must make these searchable by using query terms. To
this end, the indexing subsystem prepares a searchable index of the document collec-
tion. Such index permits to quickly locate the web pages matching query keywords.
Finally, the query processing subsystem answers queries by accessing this index and
providing the issuing user with a ranked list of results. As shown in Figure 1.2, a
functional web search engine is composed by at least the crawling, indexing, and
query processing subsystems, which operate in pipeline [20].

High performance crawling, indexing, and query processing subsystems are funda-
mental for the success of a web search engine. For instance, the number of individual
web pages is estimated to grow by several billions every day [4]. To be effective, a
search service should allow its user to search and find these new contents as soon as
possible. To this end, the crawling subsystem must be able to quickly find and fetch
newly created web pages, and the indexing subsystem must promptly index them.
However, a good coverage of web contents it is not sufficient, alone, to satisfy users
and to guarantee the success of a search engine. High performance query processing is
important as well, since web search engine can receive billions of queries per day [48].
Additionally, their users are often impatient and expect sub-second response times to
their queries (e.g., 500 ms). Indeed, users become less engaged [5] or migrate to other
search services [97] when a search engine fails to provide fast responses to queries.

For the aforementioned reasons, web search engines deploy the architecture de-
scribed in Figure 1.2 over large clusters constituted by tens of thousands of comput-
ers [11]. Such clusters provide the computing and storage capabilities required to
quickly crawl and index billions of web pages [111]. Also, clusters are used to process
queries in a distributed manner to cope with the huge volume of queries received by
web search engines and to provide sub-second response times [33].

Big companies like Google, Microsoft, or Yahoo!, started building data centers to
house their computer clusters. A data center is a facility which hosts large computer
systems together with the infrastructures necessary for their proper functioning [10].
For instance, such associated infrastructures include the telecommunication system,
i.e., the networking components which are necessary to inter-connect the computers of

1.1. Energy-related challenges in data centers 3

a cluster and to connect the clusters to the Internet. Other important infrastructures
are the power supply system, which deliver electricity to the clusters, and the thermal
cooling system, which reduces the heat generated by the data center’s hardware.

A search engine’s data center can host thousands of servers for the indexing and
crawling subsystem to efficiently perform their tasks [54]. However, ten times more
servers can be hosted in the same data center for the query processing subsystem to
quickly answer huge volumes of queries. Nevertheless, a single data center may be
not enough to this end. In fact, the query latencies experienced by a user do not
depend only by the time required to process her queries. Network latencies must be
taken into account as well [5, 97]. These consist in the amount of time required to
send a query from the user to the search engine data center and to send the query
results from the data center back to the issuing user. Since network latencies increase
with the geographical distance between the user and the data center [57], web search
engines distribute their infrastructures and operations across several, geographically
distant data centers. User queries are then processed in the data center which is
closest to the issuing user to yield sufficiently low query latencies [8]. Web search
engines composed by multiple data centers are sometimes referred to as multi-center
web search engines.

1.1 Energy-related challenges in data centers
Similar to web search engines, many other online services are hosted by large-scale
data centers. Some examples are given by social network, map, web mail and cloud
computing services. Thanks to their processing and storage capabilities, data centers
contribute to the success of such services but, at the same time, they also raise energy-
related concerns. Indeed, a large-scale data center – like those used by web search
engines – can draw tens of Megawatts of electricity to operate [51]. Worldwide, data
centers were estimated in 2012 to use the equivalent power output of 30 nuclear power
plants, about 30 Gigawatts1 of electricity [46]. Such energy consumption raise two
different kinds of challenges: environmental and economical.

Depending on the energy source, producing and consuming electricity can involve
the emission of carbon dioxide, which is the main cause of global warming due to
the greenhouse effect. In 2007, the Information and Communication Technology
(ICT) sector has been reported to be responsible for roughly 2% of global carbon
emissions, with general purpose data centers accounting for 14% of the ICT footprint.
These emission levels were projected to more than double by 2020 [102]. Carbon
emissions can be reduced by using green energy i.e., energy that comes from resources
which are renewable and do not emit carbon dioxide, such as sunlight and wind. In
fact, several web companies report to use green energy to partially power their data
centers [38, 50, 81]. However, solar and wind energy are not always available due to
their susceptibility to weather conditions. As a consequence, data centers still have
to rely on brown energy to function, i.e., energy which is produced using polluting
resources like carbon or oil. Therefore, an important problem to tackle is how to
reduce the negative impact of the data centers on the environment.

Additionally, high energy consumption represent not only an environmental issue,
but also an economical one. In fact, the electricity expenditure of a data center can
exceed its original investment cost, accounting for over 10% of its total ownership
cost [63, 106]. While data center operators can purchase electricity at wholesale rates

1This is approximately the same amount of energy required for 25 time travels with the DeLorean
from Back to the Future.

4 Chapter 1. Introduction

Figure 1.3: A web search engine architecture subdivided into the (a)
intra-server, (b) intra-data center, and (c) inter-data centers levels.

to obtain better pricing, running a large-scale data center has been estimated to cost
9 millions US dollars per year in terms of energy expenditure [51]. Therefore, another
problem to address is how to reduce the energy expenditure of data centers.

Obviously, a possible solution to these problems consists in designing more energy-
efficient data centers, which consume less energy and, consequently, pollute and cost
less. In the past, a large part of the energy consumption of a data center could be
accounted to inefficiencies in its cooling and power supply systems. However, modern
data centers have largely reduced the energy wastage of those infrastructures, leaving
little room for more improvements in those areas. Indeed, the energy consumption of
a state-of-the-art data center would be reduced by less than 24% if the overheads in
its cooling and power supply systems were eliminated [10].

1.2 Energy management in web search engines
Being composed by multiple, large-scale data centers, web search engines are affected
by the energy-related problems we have identified in Section 1.1. In their data cen-
ters, several search companies already adopt state-of-the art techniques to reduce the
inefficiencies of cooling and power supply systems [49, 82]. Therefore, new approaches
are necessary to mitigate the environmental impact and the energy expenditure of
web search engines.

In this work, we primarily focus on reducing the energy consumption and expendi-
ture, and the carbon footprint related to the query processing operations carried out
by large-scale search systems. In the architecture of a multi-center search engine, we
identify three levels at which it is possible to intervene: (a) the intra-server, (b) the
intra-data center, and (c) the inter-data centers levels (see Figure 1.3). For each level,
we will briefly illustrate some approaches that can be used to mitigate the energy-
related problems of the query processing system, together with their limitations. A
more detailed discussion will be provided in Chapter 2.

The approaches operating at the intra-server level aim at reducing the energy
expenditure of the hardware components of single servers within a web search engine.

1.2. Energy management in web search engines 5

Figure 1.4: Yahoo! hourly query traffic volume distribution, and
New York’s hourly variation in electricity price (picture from [96]).

For instance, it is possible to reduce the CPU energy consumption of a server thanks to
Dynamic Frequency and Voltage Scaling (DVFS) technologies [99]. These techniques
allow to adjust the frequency and voltage at which the CPU cores operate, trading
off performance for power consumption. In fact, higher core frequencies mean faster
computations but higher power consumption, while lower frequencies lead to slower
computations but reduced power consumption. DVFS technologies can be exploited
to reduce the CPU energy consumption of a query processing server, thus reducing
the energy expenditure of the whole server. However, carefulness is required when
reducing the operating frequency of the CPU cores since low frequencies entail longer
processing times that may be unacceptable for the users of a search engine.

Instead, the intra-data center level is composed by the computing resources within
an individual data center, i.e., by its computer clusters. The operations of these
resources can be coordinated to reduce the energy expenditure of a single data center
within a multi-center web search engine. For example, it is possible to reduce the
electricity consumption of a data center by exploiting the daily variations in its query
workload. In fact, as shown in Figure 1.4, users send more queries between the
morning and the evening than during the night. Therefore, the number of active
query processing servers in a data center can be reduced when workload is scarce,
by placing the idle servers in an inactive, energy saving state. Conversely, servers
can be re-activated when the query workload becomes more intense [42]. However,
queries must still be processed while providing the low latencies expected by the users.
Therefore, it is important to keep an adequate number of servers active to provide
acceptable query processing times.

Finally, the inter-data center level consists in all the data center which compose
the web search engine. At this level, the operations of multiple data centers can be
coordinated to reduce the overall energy expenditure or carbon footprint of the search
engine. For instance, it is possible to reduce the operational cost of a multi-center
search engine by exploiting spatial and temporal variations of electricity prices. In
fact, the cost of electricity varies from country to country [91]. Additionally, as shown
in Figure 1.4, the electricity price fluctuates during the day, due to supply/demand

6 Chapter 1. Introduction

factors. Query forwarding has been proposed as a mean to reduce the energy ex-
penditure of search engines whose data centers are located in different countries [61,
101]. The main idea is to dispatch queries from the data center that firstly received
the requests to a different one. In order to reduce the energy expenditure, query
forwarding aims at shifting the query load towards those data centers which incur in
the lowest energy prince in that moment. However, it is important to not overload
a site with queries coming from other data centers. Indeed, exceeding the processing
capability of a data center entails longer query response times, which may be un-
acceptable for the users of the search engine. Longer response times can also occur
because of network latencies between data centers, which must be taken into account
when forwarding queries.

1.3 Summary of contributions
In this work, we focus on reducing the energy consumption and expenditure, and the
carbon footprint of the query processing operations in multi-center search engines.
To this end, we tackle two main research questions: (a) is it possible to reduce the
energy consumption of search servers? and (b) is it possible to reduce the carbon
footprint and energy expenditure of a multi-center search engine?

Regarding question (a), we intervene at the intra-server level to reduce the energy
consumption of query processing servers, by leveraging DVFS technologies. Currently,
CPU cores frequencies are managed by operating system (OS) components, called
frequency governors [17, 103]. A popular policy in such governors is to throttle a core
frequency according to its utilization, selecting a high frequency when a core is highly
utilized and a lower one when the core is lowly utilized. However, core utilization-
based policies have no mean to impose a required latency on a query processing server,
since they are devised for general-purpose computing. As a result, latency violations
can occur when core utilization-based policies are used in a web search engine [71].

For such reason, in “Load-sensitive CPU Power Management for Web Search En-
gines” we propose to delegate the CPU power management from the OS frequency
governors to search engine-specific ones [24]. In fact, the operating system misses
domain-specific information on the search engine software and its interaction with
the incoming user queries. We advocate that this information can help to improve
the energy efficiency of a search engine. Therefore, we propose search engine-specific
frequency governors that can better adapt to varying query workloads. Our governors
leverage domain-specific information such as the query processing server utilization
and load. By exploiting such additional knowledge, the proposed governors can ap-
propriately throttle the frequency of all the CPU cores thereby reducing the power
consumption of a query processing server. Experiments are conducted upon the
TREC ClueWeb09B corpus [67] and the query stream from the MSN 2006 query
log [83]. Results show that the knowledge of the query processing server utilization
and load facilitates a more refined control of the CPU to achieve power savings. In
fact, our search engine-specific governors can reduce up to 24% a server power con-
sumption, with limited (but uncontrollable) drawbacks in the quality of search results
with respect to a system running at maximum CPU frequency.

Another important aspect that can be exploited to reduce the energy consumption
at the intra-server level is the fact that users can hardly notice response times that
are faster than their expectations (e.g., below 500 ms) [5, 97]. Therefore, we advise
that web search engine should not process queries faster than user expectations, and
we propose the Predictive Energy Saving Online Scheduling (PESOS) algorithm in

1.4. Organization of the thesis 7

“Energy-efficient Query Processing in Web Search Engines” [26]. PESOS selects the
most appropriate CPU frequency to process a query by its deadline, on a per-core
basis. PESOS considers the latency requirement of queries as an explicit parameter,
and it tries to process queries no faster than required. In doing so, the CPU en-
ergy consumption is reduced while respecting the query latency constraints. PESOS
bases its decision on query efficiency predictors, which are techniques to estimate the
processing volume and processing time of a query before its execution [75]. We experi-
mentally evaluate PESOS upon the TREC ClueWeb09B collection and the MSN 2006
query log. Depending on the required latency, results show that PESOS can reduce
the CPU energy consumption of a query processing server from 24% up to 48% when
compared to a high performance system running at maximum CPU core frequency.
Also, PESOS outperforms the best approach presented in [24] with a 20% energy
saving, while the competitor requires a fine parameter tuning and it may incurs in
uncontrollable latency violations. The techniques illustrated in [24, 26] operate at the
intra-server level, but they can also be deployed at the inter-data center level (i.e., on
a search cluster) as they are completely decentralized.

Relatively to question (b), we move our attention at the inter-data center level,
to reduce the energy expenditure and carbon footprint of a multi-center web search
engines. In “Exploiting Green Energy to Reduce the Operational Costs of Multi-
Center Web Search Engines”, we tackle the problem of targeting the usage of green
energy to minimize the expenditure of running a multi-center web search engine [13].
For this purpose, we propose a new query forwarding algorithm that exploits both
the green energy sources available at different sites and the differences in market
energy prices. The problem of exploiting green/brown energy to reduce costs when
forwarding queries is modeled as a Minimum Cost Flow Problem. The model takes
into account the different and limited processing capacities of data centers, query
response time constraints and communication latencies among sites. We evaluate the
proposed algorithm using workloads obtained from the Yahoo search engine together
with realistic electricity price data. Our experimental results show that the proposed
solution maintains a high query throughput, while reducing by up to 25% the energy
operational costs of multi-center search engines. Moreover, our algorithm can reduce
the brown energy consumption by almost 6% when energy efficient servers are used
in the data centers of a search engine, thus reducing its carbon footprint.

1.4 Organization of the thesis
The rest of this thesis is structured as follows. In Chapter 2 we provide some back-
ground regarding query processing, and we illustrate related work on energy manage-
ment techniques for web search engines. In Chapter 3 we propose an experimental
setting to measure the energy consumed to process queries, and we identify opportu-
nities for web search engines to reduce their energy consumption. In Chapter 4 we
introduce and experimentally evaluate our search-engine specific governors to control
CPUs frequencies in search servers, while in Chapter 5 we propose PESOS and ex-
perimentally quantify its provided energy savings. In Chapter 6 we introduce and
evaluate our query forwarding algorithm for reducing the energy expenditure and
carbon footprint of multi-center web search engines. In Chapter 7 we sum up the
contributions of this thesis and draw the final conclusions and future directions.

9

Chapter 2

Background

In this thesis, we will focus on improving the energy efficiency of the query processing
subsystem. Therefore, in this chapter we will briefly discuss background and related
works inherently to the query processing activities. The chapter is organized as
follows. Firstly, we will provide a brief overview of the query processing subsystem
when deployed on a single search server, on a search cluster, and on multiple data
centers. Then, we will discuss which are the available options for improving the
energy efficiency of query processing subsystem within web search engines.

2.1 Query processing
As shown in Figure 2.1, the query processing subsystem can be divided into three
layers, with the higher layers relying on the functionalities of the lower ones. From
bottom to top, these layers represent the query processing activities carried on by
a) a single search server, b) a cluster of search servers within a data center, and c)
multiple data centers. In the following, we will first discuss about single search servers
(Section 2.1.1), then we will examine search clusters (Section 2.1.2), and finally we
will talk about multiple search sites query processing (Section 2.1.3).

Figure 2.1: The query processing subsystem deployed onto three
different layers: on a single search server, on a search cluster, and on

multiple search sites.

10 Chapter 2. Background

2.1.1 Query processing on a search server

The most basic task performed by the query processing subsystem is to retrieve,
from the document collection, all the Web pages containing a query’s terms. To this
end, the subsystem could inspect the textual content of all the web pages in the
collection, perhaps using a string matching algorithm, to check which page contains
at least one of the query terms. However, such naïve approach would be too time
consuming due to the huge size of a typical web collection, which can contain billions
of documents [111].

A more efficient approach to this task is to use an inverted index [7, 110]. The
inverted index is a data structure which associates, to each term appearing in the
document collection, a list of the pages which contain it. For each of such pages, the
list contains a posting which stores, at the very least, the document identifier (docid),
i.e., a natural number which uniquely identify the web page within the document
collection. An example of a portion of an inverted index is reported in Figure 2.2. In
the example, the term “dog” is contained in the documents with id 1 and 2, and the
term “cat” is contained in the documents with id 1, 3, and 8.

For efficiency reasons, the inverted index is typically compressed to fit, as much
as possible, in the main memory of a search server [18, 32]. Since the posting lists
can be seen as lists of integers, integer compression algorithms are used to encode
them [23, 65, 107]. Many of these algorithms are better at compressing small integers
than large ones. Therefore, posting lists can be stored in the inverted index with
their document identifiers sorted in ascending order. This permits to represent the
identifiers by using d-gaps, i.e., the difference between an identifier and its preceding
one in the posting list. Since d-gaps are smaller than the original document identifiers,
they can be compressed more efficiently resulting in smaller index sizes [110].

It is easy to see how the inverted index permits to efficiently find all the pages in
which a query term appears. In fact, the query processing subsystem needs just to
access the posting list associated to that query term within the inverted index. Then,
by traversing the list and decompressing its postings, the query processing subsystem
can get the identifiers of the all the web pages in which that particular query term
occurs. If a query is composed by more than one term, it suffices to intersect their
posting lists to find those pages which contain all the query terms. Similarly, per-
forming the union of the posting lists returns all the web pages containing at least
one of the query terms.

While the inverted index permits to quickly identify the web pages matching a
query, the number of such documents can easily exceed the quantity of documents
that a human can analyze. Therefore, the query processing system usually retrieves
from the inverted index only the top K results according to some simple ranking
function f [77]. Let d be a document and q be a query, the function f associates
to the pair (d, q) a relevance score, i.e., a real number which indicates the relevance
of d with respect to q. The higher is the relevance score, the more a document is

Figure 2.2: An example of a portion of an inverted index.

2.1. Query processing 11

deemed to be relevant for a query. Ranking functions compute the relevance score by
considering several parameters, such as the number of occurrences of a query term
within the web page, the term popularity within the document collection, and the web
page length [95]. The relevance score is often a linear combination of the relevance
scores computed with respect to the single query terms. In other words, if the query
q is composed by n terms {t1, . . . , tn}, then f(d, q) =

∑n
i=1 f(d, ti).

For a given query, the topK results are the matching web pages with theK largest
relevance scores according to the f function1. Clearly, to identify the top K pages
for a query, all the matching documents must be scored by traversing the posting
lists associated to the query terms2. Several strategies exist to traverse the posting
lists [105]. For instance, in a term-at-a-time (TAAT) strategy, the posting lists of the
query terms are processed one at a time accumulating the score of each document in a
separate data structure. On the contrary, the document-at-a-time (DAAT) strategy
simultaneously processes all the query term posting lists, keeping them aligned by
document identifier. In other words, DAAT firstly considers the contributions of all
the query terms to a document’s relevance score and, only when the final score is
calculated, it starts evaluating the next document matching the query. In this way,
DAAT needs to maintain only K (top) scores during query processing, for instance
by relying on a min-heap data structure. On the contrary, TAAT has to maintain an
accumulator for each document matching the query, resulting in an larger memory
footprint than DAAT.

To exhaustively score all the documents which match a query can be very ineffi-
cient with both TAAT and DAAT strategies. However, DAAT is more amenable than
TAAT to dynamic pruning optimizations. These techniques reduce the query pro-
cessing time by skipping the evaluation of documents which are unlikely to belong to
the top K results for a query. The postings of such documents are not decompressed
neither scored, hence reducing the amount of time required for query processing.
Popular dynamic pruning techniques are MaxScore [105], WAND [16], and Block-
Max WAND [35]. All these strategies augment the inverted index by storing for each
term its maximum score contribution, according to the ranking function adopted by
the search engine. This allows skipping large segments of the posting lists if they only
contain documents whose sum of maximum scores is smaller than the “threshold”,
i.e., the score of the least relevant document in the top K up to that point.

In particular, the MaxScore algorithm partition query terms in “essentials” and
“non-essentials”. At the beginning of the query processing, MaxScore considers all the
query terms to be essential. As the query processing proceeds, documents are inserted
into the topK results and the threshold increases. Subsequently, a term becomes non-
essential as soon as the threshold exceeds its maximum score. Documents containing
only the non-essential term are then skipped, as they cannot belong to the top K
results. Additional terms can be demoted to be non-essential as the query processing
continues. This happens if the threshold becomes greater than the sum of a term’s
and the non-essential terms’ maximum scores. As a consequence, more documents
can be skipped while MaxScore evaluates only the documents containing at least one
essential query term.

Differently from MaxScore, the WAND algorithm works by identifying a “pivot”
document at each of its iterations. The pivot is a document which has the potential
to enter the top K results, i.e., the sum of the maximum scores of its terms are
greater than the threshold at that point. At the same time, the pivot document

1In web search engines, top K results are usually re-ranked by machine learning systems [70, 74].
2Postings are processed from the smallest to the largest docid, if the posting lists are sorted by

document identifier (for instance, to enable d-gap compression).

12 Chapter 2. Background

has the smallest document identifier among the postings traversed by WAND at that
iteration. Therefore, WAND can safely prune the evaluation of documents whose
identifier is smaller than the pivot’s, as they cannot enter into the top K results.

Finally, Block-Max WAND is an extension of WAND which identifies and exploits
the pivot document in the same way. However, Block-Max WAND structures the
index into blocks. For each block, Block-Max WAND maintain its maximum score
contribution. This information is used to efficiently access the index blocks, in order
to decide whether their documents should be processed or not, as they will never
enter the list of top scoring results. Since block maximum scores are tighter than
term maximum scores, much more documents will be pruned by Block-Max WAND
with respect to WAND.

2.1.2 Query processing on a search cluster

Billions of queries are typed by users every day [48]. As a consequence, a search
engine can receive thousands of queries per second, especially when users are more
active, e.g., at daytime [98]. The query throughput defines how many query per
second can be processed by the query processing subsystem. It is fundamental for a
search engine to operate at high query throughput, ideally matching the query arrival
rate. Contrarily, the search engine would not be able to process queries as the same
pace of their arrival, resulting in a system overload which will negatively impact its
performance. Clearly, a single search server cannot be sufficient to deal with such huge
amount of queries. Therefore, the query processing subsystem is usually deployed on
a cluster of servers which can adopt a replicated and a distributed architecture.

In the replicated architecture, each cluster’s server holds a replica of the inverted
index [42, 75]. Servers operate in parallel, processing different queries at the same
time hence increasing the search engine throughput. When a user issues a query, it
is first received by a dedicated server, the query broker, which routes the query on
a search server. Once the search server has computed the query results, these are
collected by the broker and sent back to the issuing user.

However, a web search engine must provide not only a high query throughput but
also low query latency. From the user perspective, query latency is the amount of
time elapsing between issuing the query and receiving its result. One way to reduce
latencies is to reduce the query processing times. To this end, the index can be
partitioned into smaller shards. In fact, query processing times increase with the
posting lists’ lengths, since more postings need to be traversed, decompressed, and
scored [85]. Therefore, index partitioning aims at keeping the posting lists short so
that query processing times are reduced. For instance, document-based partitioning
assign different documents to different shards, such that each shard can act as an
independent inverted index [6, 72, 73].

After partitioning, index shards are assigned to different search servers. As shown
in Figure 2.3, incoming queries are first received by the broker which dispatches
them to every search server. Each server computes the query results on its shard
independently from the others. These partial results are sent back to the broker, which
aggregates the results coming from different search servers [11, 33]. The aggregated
results are the same that would be provided by a single inverted index but query
processing times are reduced, since the computation is now distributed across several
servers. Once the query broker has collected and aggregated the partial results coming
from the shards, the final results can be sent back to the issuing user (see Figure 2.3).

By combining these replicated and distributed architectures, it is possible to im-
prove both the query throughput and latency of a search system [11, 33]. In fact,

2.1. Query processing 13

Figure 2.3: A distributed query processing subsystem with three
index shards.

the inverted index can be firstly partitioned into multiple shards, to reduce the query
processing time and latency. Then, each shard can be replicated several times on
different servers, each hosting a different shard. In this way, different queries can be
processed at the same time by different ensembles of shard replicas, improving the
system throughput.

Finally, the query throughput and latency can be further improved by introducing
caching mechanisms [66]. For instance, a result cache can be deployed on the query
broker such that, when it receives a query, it can serve its results directly from the
cache if they have been previously computed and memorized. In this case, the broker
do not forward the query to the search cluster, avoiding expensive query processing
and improving the system efficiency.

2.1.3 Query processing on multiple search centers

Rather than relying on a single data center, search engine can distribute query pro-
cessing over multiple, geographically distant sites [21]. There are several reasons to
adopt this architecture, such as better fault tolerance and business continuity. For
instance, a data center could become unavailable due to a natural catastrophe or to a
network malfunctioning. In such case, a multi-center search engine could still process
user queries by leveraging its remaining data centers.

From an efficiency perspective, multiple centers can be conveniently exploited to
reduce the query response times. This is possible by processing queries in the data
center which is closest to the issuing user [8]. In fact, network latencies contributes
to the query latencies experienced by the users [5, 97] and they increase with the
geographical distance between the user and the data center [57]. By processing queries
in the closest data center, network latencies are reduced thus lowering the search
engine latencies.

Additionally, a multi-site architecture can be leveraged to manage an unexpected
overload of queries [13, 61]. Indeed, the performance of a data center degrades if
its processing capability is exceeded. Its load can be alleviated by query forwarding,
i.e., by shifting the processing of a part of its queries towards other search sites. In
this case, it is important to consider the load of the other sites to avoid the risk to
overload additional data centers. Network latencies between sites must be taken into
consideration as well, to ensure that query response times remain acceptable.

14 Chapter 2. Background

Table 2.1: Electric energy quantities, definitions and units of mea-
surements.

Quantity Symbol Definition Unit

Time T - second (s)
Voltage V - volt (V)

Current Intensity I - ampere (A)
Power P V · I watt (W)
Energy E P · T joule (J) or watt-second (Ws)

2.2 Energy management in web search engines
Thanks to their processing and storage capabilities, data centers are fundamental for
the success of web search engines. However, data centers entails also high energy
consumption which raise economical and environmental concerns, as highlighted in
Chapter 1. Indeed, a data center (and its computing resources) needs electric en-
ergy in order to function. Electricity is provided with a certain voltage and current
intensity. The product of these two quantity determines the power consumption P
of an electronic apparatus, while its energy consumption E is given by P multiplied
by the amount of time the apparatus is functioning [40]. Units of measurements are
summarized in Table 2.1.

In the past, a large part of the energy consumption of a data center was accounted
to inefficiencies in its cooling and power supply systems. However, a careful design
of the data center can drastically reduce the energy wastage of those infrastructures,
and useful design guidelines are given in [10]. For instance, power losses in the
uninterruptible power supplies (UPSes) and power distribution system can be largely
reduced by adopting higher-efficiency gear, such as rotary UPSes. Instead, the energy
efficiency of the cooling system can be improved by carefully handling the air flows
within the data center, for instance by keeping cold air flows separated from the hot
air flows exhausted by the servers. Additionally, almost no hardware equipment need
to operate at 20◦C. Therefore, temperatures within the data can be safely maintained
around 30◦C, reducing the stress on the cooling system and, consequently, its energy
consumption. In fact, in mitigate climates, such temperatures can be obtained by
exploiting the chill air coming from outside the data center.

Since web search engines have largely reduced the energy wastage of the cooling
and power supply infrastructures, little room for more improvements in those areas is
left [49, 82]. Indeed, the energy consumption of a state-of-the-art data center would
be reduced by less than 24% if all the overheads in its cooling and power supply
systems were eliminated [10]. Therefore, future gains in energy efficiency will need to
come from improvements in the computing hardware and software.

Indeed, energy efficient computing is not a new research field and several ap-
proaches have been proposed to solve the energy-related problems of general-purpose
data centers, like those used by data storage or batch processing services such as Drop-
box or Elastic MapReduce [84, 86]. However, many of these techniques are inadequate
for web search engines, as we will illustrate in the rest of this section. Therefore, new
search engine-specific approaches are necessary to mitigate the environmental impact
and the energy expenditure of such systems.

In the following, we will discuss related works regarding the energy efficiency of
large scale Information Retrieval systems. The remaining of this Chapter will reflect
the structure of Section 2.1 and the architectural levels we identified in Section 1.2.

2.2. Energy management in web search engines 15

In other words, we will first illustrate possible approaches to improve the energy
efficiency of single search servers (intra-server energy management). Then, we will
discuss the existing works aiming at improving the energy efficiency of search clus-
ters (intra-data center energy management). Finally, we will talk about techniques
for enhancing the energy efficiency of multi-center search engines (inter-data centers
energy management).

2.2.1 Intra-server energy management

The power consumption P of a (generic) server can be roughly divided into two main
components: 1) Pstatic which is the power required to keep the server idle but active,
i.e., ready to perform computations, and 2) Pdynamic which is the power required
to actually do useful computations. Therefore, the overall power P consumed by a
server is P = Pstatic+Pdynamic. While Pstatic is a constant, Pdynamic linearly increases
with the server utilization3 [10]. Thus, a server reaches its peak power consumption
when it is 100% utilized, i.e., when the server is constantly busy. However, it is not
uncommon for a server to consume 50% of its peak power when it is idle without
performing any demanding computations [12]. For this reason, Barroso and Hölzle
report the data centers’ need for energy-proportional computing, i.e., for hardware
components with power consumption proportional to utilization [10, 12].

Typically, the energy consumption of a search server is dominated by its CPU. In
fact, Barroso, Clidaras, and Hölzle [10, pages 78-79] show that “the CPU is the dom-
inant energy consumer in servers, using two thirds of the energy at peak utilization
and about 40% when (active) idle”4. In particular, the authors refers to the power
usage of Google servers as the compute load varies from idle to full activity levels. For
such reason, improving the energy efficiency of processors is an attractive research
area for reducing the energy consumption of servers. Indeed, modern CPUs expose
two energy saving mechanisms, namely C-states and P-states, to respectively reduce
the CPU’s contributions to the Pidle and Pactive power consumption of a server.

C-states represent CPU cores idle states. They are denoted by an increasing
numbers (e.g., C0, C1,. . .,Cn) and they are typically managed by the operating sys-
tem [88]. C0 is the operative state in which a CPU core can perform computing tasks.
When idle periods occur, i.e., when there are no computing tasks to perform, the core
can enter one of the other C-states and become inoperative. When a core is inop-
erative it cannot perform any computing task and energy can be saved by turning
off some CPU components, like clocks and caches. Deeper C-states correspond to
greater energy savings but also to longer times for the core to return in its operative
state C0. Idle states have been successfully exploited to reduce the energy consump-
tion of servers [45, 79]. However, web search engines process a large and continuous
stream of queries. As a result, search servers are rarely inactive and experience par-
ticularly short idle times. Consequently, there are little opportunities to exploit deep
C-states, reducing the energy savings provided by the C-states in a web search engine
system [71, 80]5.

Differently from C-states, P-states represent the frequencies available to the CPU
cores when they are active. Indeed, when a CPU core is in the active C0 state, it can
operate at different clock frequencies (e.g., 800 MHz, 1.6 GHz, 2.1 GHz,. . .). This is
possible thanks to Dynamic Frequency and Voltage Scaling (DVFS) technologies [99]

3The server utilization is the percentage of time during which the server is busy performing
computations.

4We confirm this finding in Appendix A.
5We confirm this finding in Appendix B.

16 Chapter 2. Background

which permit to adjust the frequency and voltage of a core to vary its performance
and power consumption. In fact, higher core frequencies mean faster computations
but higher power consumption. Vice versa, lower frequencies lead to slower com-
putations and reduced power consumption. The various configurations of voltage
and frequency available to the CPU cores are mapped to different P-states. Like for
the C-states, P-states are denoted by an increasing numbers (e.g., P0, P1,. . .,Pn),
where P0 corresponds to the highest frequency and Pn to the lowest. Similar to the
C-states, also the P-states are managed by the operating system through some pre-
defined policies, sometimes referred to as frequency governors [17, 103]. For instance,
the intel_pstate driver [103] controls the P-states on Linux systems6 and can oper-
ate accordingly to two different governors, namely performance and powersave. The
performance policy simply uses the highest frequency to process computing tasks.
Instead, powersave adaptively selects the frequency for a core according to its utiliza-
tion. When a core is highly utilized, powersave selects a high frequency. Conversely,
it will select a lower frequency when the core is lowly utilized. However, Lo et al. ar-
gue that core utilization is a poor choice for managing the cores frequencies of search
servers [71]. In fact, the authors report an increase of query response times when core
utilization-based policies are used in a web search engine.

Since utilization-based controllers are inefficient in search servers, more specific
approaches are necessary to effectively manage DVFS mechanisms. Du et al. propose
the Dynamic Equal Sharing (DES) algorithm to keep the CPU power consumption
of a search server within a certain power budget [37]. To this end, DES firstly assigns
queries to cores in a round-robin fashion to balance their loads. Then, it dynamically
distributes power among the cores according to their respective load. Finally, DES
selects for each core the most appropriate operative frequency such that the power
budget is respected and most of the queries are processed within their deadlines (e.g.,
150 ms since their arrival). The authors evaluate DES by simulation and they find
that DES can reduce by more than 40% the CPU dynamic power consumption of a
lightly loaded search server, i.e., receiving 100 incoming queries per second. However,
DES assumes that query processing can be terminated before its completion, i.e.,
queries can be partially evaluated and result quality can be degraded. Additionally,
DES unrealistically assumes that the exact processing time of a query is known before
its processing.

Rather then relying on traditional power saving mechanism, such as the DVFS
technologies, several works have explored the possibility of using non-conventional
hardware to implement energy efficient query processing. For instance, Janapa Reddi
et al. investigate the possibility for a search engine to adopt low-power consuming
CPUs, like those used in mobile devices [58]. In terms of processed queries per second
over consumed Watts, the authors find that such CPUs are five times more efficient
than server-class processors. However, they also report that such mobile processors
negatively impact the search engine performance, as the query latencies increase and
become more variable than what happens with server-class CPUs.

Instead of adopting a single class of processors, Ren et al. envision the possibility
of using heterogeneous CPUs in search servers [94]. On the same chip, heterogeneous
processors include few, high power consuming, fast cores and many, low power con-
suming, slow cores. The authors propose a scheduling algorithm that promotes the
execution of long-running queries on the fast cores while most of the short-running
queries complete their execution on the slower ones. The authors evaluate their ap-
proach by simulation, modeling the workload of the Bing search engine. They show

6intel_pstate is currently the default driver on Ubuntu distributions.

2.2. Energy management in web search engines 17

that their scheduling algorithm, along with heterogeneous processors, can improve
the system throughput by up to 50% compared to a system which solely exploits ho-
mogeneous hardware. Noticeably, the proposed system would be more energy efficient
than the baseline, as the two systems would consume the same amount of power.

A different line of research aims at leveraging Graphics Processing Units (GPUs)
in the query processing subsystem. Ding et al. find that, by leveraging both CPU and
GPU on a search server, it is possible to increase by three times the query throughput
with respect to a server which exclusively relies on its CPU [36]. However, the authors
believe that more work is necessary to understand whether GPUs can be cost-effective
for query processing. Indeed, due to the high-power consumption of GPUs [90], the
authors consider server-class CPUs to still provide better value than GPUs for what
concerns search systems.

Finally, several works have explored the possibility of using Field Programmable
Gate Arrays (FPGAs) within a search engine to improve its performance. Yan et
al. implemented a query processing system which uses FPGAs and evaluates queries
by accessing an inverted index hosted on flash memories [113]. In terms of query
throughput, they found their system to be non competitive against a traditional one
based on commodity hardware. The authors justify such negative result because
of the limitations in the memory bandwidth of flash memories. If such limitations
would be removed, the authors claim that the proposed FPGA-based system would
be 2.4 times more efficient than a conventional system in terms of processed queries
per second over consumed Watts. The energy efficiency of FPGAs is confirmed also
by Chalamalasetti et al. They implemented a FPGA-based system for document
filtering which provides a 23 times higher throughput than a conventional system,
while consuming about half of its power [27]. Finally, Putnam et al. used FPGAs to
implement the second stage of the Bing ranking framework [90]. While consuming
just 10% more energy than a commodity-hardware based system, they improved the
throughput of each search server by a factor of almost two. However, Putnam et al.
also claim that it is challenging to program FPGAs, as they still require extensive
hand-coding in register transfer level (RTL) and manual tuning.

Due to the challenges involved with the adoption of mobile processors, GPUs, and
FPGAs, we will focus in this thesis on improving the energy efficiency of commodity
hardware. In fact, commodity hardware has been already used to build successful,
large scale search engines [11]. In particular, we will concentrate our attention on
reducing the energy consumption of server-class CPUs, as they dominate the energy
consumption of search servers.

2.2.2 Intra-data center energy management

In general-purpose data centers, it is possible to improve the energy efficiency of com-
puter clusters by managing the servers as an ensemble. For instance, Ranganathan
et al. studied the problem of managing a rack of servers which must respect a given
power cap [93]. The authors find that a centralized solution is effective in enforcing
the power budget constraint, actually reducing by 20% the system power consump-
tion. In another work, Leverich and Kozyrakis studied how to recast the data layout
and task distribution of a Hadoop cluster such to enable workload consolidation [68].
During periods of low load, workload consolidation permits to aggregate computing
load onto few servers in order to power down the idle ones. Leverich and Kozyrakis
find that running Hadoop clusters in fractional configurations can save up to 50% of
energy consumption, trading off performance for energy efficiency. Raghavendra et al.
propose to unify the benefits of power capping and workload consolidation. To this

18 Chapter 2. Background

end, the authors devise a power management scheme which effectively coordinates
both the mechanisms [92].

However, Barroso, Clidaras, and Hölzle report that power capping is not widely
adopted in data centers which host latency-critical applications such as search en-
gines [10]. In fact, search applications can become unstable if some servers unpre-
dictably slow down due to power capping. This happens because search engines
distribute query processing on several servers. In such distributed systems, the query
processing time depends on the last server to finish its query processing subtask.
Therefore, power capping may undesirably prolong query processing times by slowing
down search servers. Similarly, workload consolidation is impractical for distributed
search engines, since each server hosts a different index shard. As a consequence, it
is not possible to turn off a server as each shard must be available for carrying out
the query processing activities.

However, workload consolidation can be exploited when a search engine adopt a
replicated rather than a distributed architecture. Recently, Freire et al. have proposed
a self-adaptive model to manage the number of active search servers in a replicated
search engine, while guaranteeing acceptable response times [42]. By exploiting the
historical and current query loads, their model autonomously decides whether to
activate a search server or put it in standby. The latter option permits to reduce the
energy consumption of the system during low query loads, while the former permits
to increase the system performance when the system faces a high query volume. The
model is formulated as a decision problem which tries to optimize the power/latency
trade off, by estimating future query arrival and service times. The authors validate
their approach by simulation. Results show that the proposed model reduces by 33%
the search engine energy consumption, with respect to a naïve baseline where search
servers are always active. At the same time, the authors observe only little increments
in query response time and small percentages of unanswered queries, i.e., queries that
are not processed within an acceptable time since their arrival.

Lo et al. introduced PEGASUS, a feedback-based model that dynamically cap the
CPUs power consumption of a distributed search engine [71]. Their approach trades
off power savings for longer latencies that barely meet the query response time re-
quirements under any query workload. Basically, PEGASUS constantly monitors the
search engine latency and passes this value to a centralized rule engine. Depending on
the observed latency, the rule engine decide whether to increase or decrease the CPUs
performance by exploiting DVFS technologies. Experimenting on Google production
cluster, the authors observe a 20% power consumption reduction and they estimate
that a distributed version of PEGASUS could nearly double those savings.

Caching mechanisms can play a role for energy efficiency, too. For instance, Marin,
Gil-Costa, and Gomez-Pantoja propose a caching mechanism for distributed search
engines which can reduce energy consumption [78]. In their approach, the query
broker records which shards have generated the top K results for a query. When the
same query is received again by the system, it is propagated only to the nodes hosting
the shards which produced the topK results, if these are not cached. While their work
does not focus on energy consumption, the authors find that their approach reduces
servers utilization and leads to energy savings. By mean of simulation, Marin, Gil-
Costa, and Gomez-Pantoja find that their approach reduces the search engine power
consumption by more than 30% with respect to classical caching techniques.

Sazoglu et al. observe how energy price and query volume vary during the day.
Taking this aspect into account, they present a financial cost metric to measure the
price of cache misses [96]. They define the monetary cost of processing a query
as the product between the query processing time and the electricity price at the

2.2. Energy management in web search engines 19

query arrival time. The authors use this metric to evaluate many state-of-the-art
caching techniques: Static Dynamic Cache (SDC) [39] proves to have the lowest
financial cost, when adapted to take into account query processing overheads [44].
The authors perform additional evaluations omitting the processing time factor from
their financial cost metric, since search engines can limit the maximum time spent
processing a single query [61]. In such case, the authors find that their financial cost
metric approximate the hit rate one, if energy price exhibits only small variations over
time. Additionally, they observe that the benefits provided by cost-aware strategies
are more evident when there is a high variation in the query costs. Finally, the authors
propose a novel caching whose admission policy takes into explicit account the query
financial costs. This permits expensive queries to remain longer in the result cache, in
order to reduce the search engine operational costs. By experimental evaluation, the
authors show that their caching mechanism performs close to other state-of-the-art
caching techniques, in term of cache hit rates and financial cost.

2.2.3 Inter-data centers energy management

To improve the energy efficiency of multi-center search engines, it has been proposed
to leverage spatial and temporal variations in both the energy prices and query work-
loads. In fact, it has been observed that (a) energy price varies between different
countries and it changes during the day, being more costly during daytime than at
nighttime [91], and (b) query volumes fluctuate over time, with more active users at
day than at night [98]. Due to time zone differences, a search engine’s data center
may experience a high workload and energy price in a certain moment, while other
distant sites are underutilized and can use cheaper electricity. Thus, the first data
center could forward its queries to the other sites to reduce its energy expenditure.
However, network latencies have to be carefully considered, not to exceed acceptable
query response times. Also, data centers have limited processing capacity. Therefore,
it is not possible to forward too many queries towards a site.

Stemming from these considerations, Kayaaslan et al. investigated the possibility
to dynamically shift the query workload among data centers by using query forward-
ing [61]. The authors model the problem as an online optimization one, which mini-
mizes the total energy cost by forwarding queries among data centers while satisfying
the performance constraints. The authors simulate a scenario where five geographi-
cally distributed data centers host the same inverted index and process real queries
from the Yahoo! search engine. Results show that multi-center search engines can
save up to 35% in energy expenditure, when compared to a system which always
locally solves its incoming queries.

Inspired by the same observations on the variability of energy costs and query
volumes, Teymorian, Frieder, and Maloof propose the Rank-Energy Selective Query
forwarding (RESQ) algorithm [101]. The authors consider a scenario where different
data centers hold different inverted indexes. A data center always processes its queries
locally but it can also forward a query to other sites to gather more results. However,
the available monetary budget for query processing is limited and query forwarding
is considered to have a cost. Therefore, a data center forwards a query only towards
those sites which (a) show low energy prices and (b) can contribute to the query top K
results. The RESQ algorithm decide when and where to forward a query by modeling
the problem as a linear program. The authors compared RESQ with two baselines:
one which greedily forwards queries just to reduce energy cost, and one which greedily
forwards queries just to maximize result quality. Simulations show that RESQ beats

20 Chapter 2. Background

both the baseline in term of energy efficiency (46% energy cost saving are reported)
while showing acceptable result quality and response times.

In a different line of research, Hidalgo et al. envision a collaboration between In-
ternet Service Providers (ISPs) and web search engines to reduce network traffic and
energy consumption [56]. The authors observe that many ISPs provide set-top-boxes
(STBs) to their customers. STBs are actual computers that enable Internet connec-
tion and other services (like IPTV) into customer houses. These boxes are typically
kept switched on, even when they are not performing demanding computations, and
they can be remotely controlled by the ISP. Therefore, the authors propose to use
these STBs to implement a distributed result cache for search engines. When an ISP’s
customer issue a query to a search engine, its results are cached into some STBs in
a distributed fashion. Subsequent queries are then checked against this cache. If a
query triggers a cache hit, results are served by the STBs. Otherwise, the query is
processed by the actual search engine. In this way, ISPs could lower their network
traffic towards search engines, then reducing their own operational costs. On the
other hand, search engines can decrease their workloads, keeping fewer servers active
and hence saving energy. Simulation results show that this caching mechanism could
reduce by 40% the energy consumption of search engines.

Finally, it is worthy to mention the work of Hatzi, Cambazoglu, and Koutsopoulos
on green web crawling, even if not related to query processing [55]. In their work,
the authors observe that downloading a web page from a web server increases its
energy consumption, as hardware resources are used to serve the requested page. As
a consequence, the carbon footprint of the web server increases as well. However, the
authors also observe that the carbon footprint of a web server depends on the type of
energy which powers it. For example, a server is more likely to consume green energy
at daytime, when solar power plants are functioning, and a crawler should exploit this
fact to reduce the carbon footprint of its activities. Therefore, the authors introduce
the problem of green web crawling, which aims at reducing the carbon footprint of
a web crawler. The problem takes into account both the required freshness of down-
loaded pages and the carbon emissions of web servers. The authors propose various
heuristics for scheduling the download of web pages. Experimental results show that
the carbon footprint of a crawler can be considerably reduced without compromis-
ing the freshness of its document collection. Hatzi, Cambazoglu, and Koutsopoulos
further extend their research in [54].

2.3 Positioning with respect to the state of the art
In this thesis, we address two main research questions: (a) is it possible to reduce
the energy consumption of search servers?, and (b) is it possible to reduce the carbon
footprint and energy expenditure of a multi-center search engine? In both cases, we
want to improve the energy efficiency of search systems while minimizing any negative
impact on its performance.

Regarding the first research topic, in this thesis we introduce a set of energy
savings techniques which operate at the intra-server level, and which can be adopted
at the inter-data center level as they are completely decentralized. In Chapter 4,
we propose to delegate the control of the DVFS mechanisms from the operating
system to the search application. This permits to exploit search servers’ knowledge
(e.g., utilization, load) to appropriately throttle the CPU frequency. We found that
approaches we propose in Chapter 4 save up to ∼24% power with respect to a system
which operates at maximum CPU frequency. When compared to systems that use

2.3. Positioning with respect to the state of the art 21

more energy efficient configurations [17], we found that our approaches can still save
at least 7% in power consumption. We believe that our techniques can be used in
conjunction with energy efficient caching [78, 96], workload consolidation [42], and
query forwarding mechanisms [13, 61, 101]. Approaches similar to ours are studied
in [37, 71]. However, Lo et al. report several challenges in deploying their centralized
solution on large clusters [71]. On the other hand, our approach is decentralized as
it works at the search server level. In order to work, the technique from [37] requires
to know the exact processing time of a query before its processing. Differently, our
approaches do not rely on this assumption.

In Chapter 5 we further investigate our first research topic. We introduce the Pre-
dictive Energy Saving Online Scheduling (PESOS) algorithm, which exploits DVFS
mechanisms to reduce the CPU energy consumption in a search node. Differently
from the contributions of Chapter 4, PESOS takes into account also latency require-
ments, i.e., the search server is explicitly required to process queries by their deadlines.
We experimentally show that PESOS outperforms OS frequency governors [103] and
our best technique from Chapter 4. Moreover, PESOS does not interrupt query pro-
cessing before its completion to meet latency requirement, unlike what happens in
DES [37]. Additionally, PESOS estimates the query processing times using query
efficiency predictors [75] while DES unrealistically assumes that the exact processing
time of a query is known before its processing. We believe that PESOS can be used
together with caching, workload consolidation, and query forwarding techniques [13,
42, 61, 78, 96, 101] to deploy more energy-efficient search architectures. On the
contrary, the integration of PESOS with the approach proposed in [71] needs to be
investigated, since both techniques require to control the CPU power management.

Finally, in Chapter 6 we focus on our second research topic. We propose a math-
ematical model to minimize the operational costs of multi-center web search engines
by exploiting renewable energies whenever available at different locations. Using this
model, we design a query forwarding algorithm which target the usage of green energy
sources. Our work differs from [61, 101] as their solutions do not take into account the
presence of renewable energies. Similar to our contribution, the work in [64] focuses
on capping the carbon dioxide emissions of generic Internet services while our work
take into account aspects specific to web search engines. In particular, we explicitly
consider that search engines have strict latency constraints and query result quality
can be degraded when these requirements cannot be met.

23

Chapter 3

Query Energy Consumption
in Web Search Engines

3.1 Introduction
As seen in the Chapter 2, web search engines consume huge amounts of energy to
process user queries, and energy costs have been explicitly considered in the design of
caching [96] and query forwarding mechanisms [13, 61, 101] to reduce the energy ex-
penditure of search engines. To the best of our knowledge, however, there is no study
quantifying query energy consumption, i.e., the energy consumed by a search engine
to process a query. Therefore, in this chapter we experimentally measure energy
consumption on a per query basis. In particular, we focus on measuring the energy
consumed by the CPU as it dominates the consumption of search server [10]. Mea-
surements of the query energy consumption will be useful to motivate the following
chapters of this thesis.

3.2 Experimental setup and analysis
To measure query energy consumption, we experiment using the Terrier IR plat-
form [76] on a dedicated Ubuntu 14.04 server; Linux kernel version is 4.4.0-72-generic.
The machine is equipped with 32GB RAM and an Intel i7-4770K multi-core proces-
sor. This CPU exposes 15 operating clock frequencies, ranging from 800 MHz to
3.5 GHz. The inverted index used in the experiments is obtained by indexing the
ClueWeb09 (Cat. B) corpus [67]. The Porter stemmer is applied to every term and
stopwords are removed. Document identifiers and term frequencies are compressed
with Elias-Fano encoding [107]. Finally, the inverted index is kept in main memory.

We randomly sample 8,578 unique queries from the MSN 2006 query log [83].
These queries are processed sequentially by a single thread. In this way, only a CPU
core is operative, while the operating system can set the remaining cores into an
energy-saving, idle state. Query results are scored using the BM25 ranking func-
tion [95] to retrieve the top 1,000 documents. Results are nor stored neither sent
over the network, to avoid energy demanding I/O interactions. Query statistics are
reported in Table 3.1.

For each query, we measure its processing time and the energy consumed by the
CPU. Energy consumption is measured from within Terrier, leveraging the Intel Run-
ning Average Power Limit (RAPL) interface via the jRAPL library [69]. Hackenberg
et al. show the reliability of the RAPL interface in [52], and we confirm their findings
in Appendix C.

Queries are processed using the MaxScore [105] and WAND [16] algorithms, to
highlight possible differences in energy consumption. Also, we process queries using

24 Chapter 3. Query Energy Consumption in Web Search Engines

Table 3.1: Distribution of queries across the various query lengths
(number of terms).

1 2 3 4 5 6+

2,180 2,999 2,019 880 343 157

Table 3.2: Minimum, mean, and maximum query processing times
(in milliseconds).

Frequency MaxScore WAND

MinMean Max MinMean Max

800 MHz 2 383 4504 2 490 6672
2.1 GHz 1 156 1769 1 195 2532
3.5 GHz 1 98 1039 1 120 1552

different core frequencies to quantify their impact on the query processing times and
energy consumption. We use three frequencies: (1) the maximum (3.5 GHz), (2) the
minimum (800 MHz), and (3) an intermediate one (2.1 GHz) among those available
on our CPU.

As expected, Table 3.2 shows that processing queries with a high CPU frequency
(3.5 GHz) reduces processing times. Indeed, we observe that the maximum query
processing time is above 4 seconds when MaxScore is used and the CPU operates at
800 MHz. Instead, the maximum processing times reduces to about a second when
the CPU frequency is 3.5 GHz.

However, high CPU frequencies entail also higher query energy consumption. As
reported in Table 3.3, CPU energy consumption ranges from 0.004 to 5.842 Joules
when queries are processed with MaxScore at 800 MHz, and from 0.008 to 10.180
Joules when the same queries are processed at 2.1 GHz. A peak of 16.847 Joules is
consumed when the CPU operates at 3.5 GHz.

Moreover, we observe higher energy consumption when processing queries with
WAND with respect to MaxScore. However, we explain this behavior due to the
longer query processing times of WAND, as reported in Table 3.2.

Figure 3.1 shows query energy consumption and processing times. Each point in
the figures represents a query, showing its processing time on the x-axis and its CPU
energy consumption on the y-axis. Interestingly, from Figure 3.1 we can derive that
the energy consumed for solving a query is linear in its processing time. For each
operating frequency, in fact, we observe that the longer a query’s processing takes
to complete, the more energy is consumed by the CPU. Therefore, if the CPU has
just one operating frequency, the most energy efficient way to process queries is to

Table 3.3: Minimum, mean, and maximum query energy consump-
tion (in Joules).

Frequency MaxScore WAND

Min Mean Max Min Mean Max

800 MHz 0.004 0.495 5.842 0.004 0.621 9.330
2.1 GHz 0.008 1.003 10.180 0.007 1.295 16.609
3.5 GHz 0.016 1.631 16.847 0.016 2.058 25.763

3.3. Discussion 25

0 1000 2000 3000 4000 5000
Query processing time (ms)

0

5

10

15

20
E

ne
rg

y
(J

)
3.5 Ghz

2.1 Ghz

800 Mhz

(a)

0 1000 2000 3000 4000 5000
Query processing time (ms)

0

5

10

15

20

E
ne

rg
y

(J
)

3.5 Ghz

2.1 Ghz

800 Mhz

(b)

Figure 3.1: Query energy consumption and processing times with
MaxScore (a) and WAND (b).

complete their processing as soon as possible. However, modern CPUs can operate at
different frequencies with wide differences in query energy consumption. For example,
Figure 3.1 shows that processing a query for 1 second at 3.5 GHz consumes more
energy than processing a query for the same amount of time at 800 MHz.

This finding suggests that there are opportunities to exploit CPU frequency scal-
ing to reduce the energy consumption of web search engines. In particular, search
engine should process queries as fast as required to satisfy their users (e.g., within
500 ms since query arrival) [5]. However, queries should not be processed faster than
necessary, i.e., low CPU frequencies can be used to reduce CPU energy consumption
if they do not prolong query latencies above user expectations.

3.3 Discussion
In this chapter, we presented an experimental setting to measure the CPU energy
consumption incurred by a search server to answer a single query. To be able to
measure the energy consumption of a single query is important, as recent approaches
are taking into direct account the search engine power consumption to achieve energy
and money savings [13, 61, 96, 101].

The experiment results show that query energy consumption is linear in the query
processing time. This indicates that efficient query processing is fundamental to tackle
the economical and environmental challenges posed by web search engines. However,
modern CPUs can operate at several clock frequencies. Higher frequencies produce
short query processing times but they also entail high CPU energy consumption. On
the contrary, low CPU frequencies reduce energy consumption but prolong processing
times. We here advocate that search engine should exploit frequency scaling to process
queries fast enough to keep users satisfied, but no faster than necessary to reduce
energy consumption. We explore such hypothesis in Chapters 4 and 5.

Alternatively, a search engine’s data centers can process queries as fast as possible,
if these queries have been forwarded from other data centers. By using the maximum
CPU frequency, the receiving data center can compensate the network delays incurred
by query forwarding. At the same time, this allows to conveniently exploit query
forwarding to process queries where electricity is cheap or provided by green sources,
without incurring in latency violations. We explore this approach in Chapter 6

27

Chapter 4

Load-sensitive
CPU Power Management
for Web Search Engines

4.1 Introduction
In this chapter, we focus on the energy efficiency optimization of a search server within
a web search engine’s data center. As seen in Chapter 1, the power consumption of
a typical server is dominated by its CPU. This is particularly true at low utiliza-
tion levels, where CPUs consume a fixed amount of power without performing any
demanding computations. For this reason, Barroso, Clidaras, and Hölzle report the
data centers’ need for energy-proportional computing, i.e., for hardware components
with power consumption proportional to utilization [10].

As illustrated in Chapters 2 and 3, Dynamic Voltage and Frequency Scaling
(DVFS) technologies sacrifices CPU performance for lower power consumption, by
throttling processor’s frequency. By doing so, CPUs operating at low frequencies
absorb less power but have lower performance than CPUs working at higher frequen-
cies. Operating system (OS) kernels can exploit DVFS to achieve energy savings,
for instance by throttling the server CPU frequency accordingly to the processor uti-
lization [17]. When the processor is under-utilized, a low CPU frequency is selected.
Conversely, a high CPU frequency is picked when the processor is heavily utilized
by the system. However, the OS misses domain-specific information on the search
engine software and its interactions with the incoming user queries. We advocate that
this information can be exploited to improve the energy proportionality of a search
engine, as identified in [10].

In this chapter we propose search engine-specific frequency governors that can
better adapt to varying query workloads by leveraging domain-specific information.
While DVFS states are typically managed by the OS, their functionality can be
(partially) controlled by application-level code [17]. We build upon this functionality
to develop our proposed solution i.e., search engine-specific frequency governors which
control the CPU frequency from within the search application. Indeed, knowledge of
search server utilization and load facilitate a more refined control of the processor to
achieve power savings.

The contributions introduced in this chapter are as follows: (1) we propose to ex-
ploit search servers’ knowledge (e.g., utilization, load) to throttle the CPU frequency
via search engine-specific frequency governors, and (2) we experimentally demonstrate
that our solutions can achieve significant power savings without markedly damaging
the query processing quality with respect to standard frequency governors.

28 Chapter 4. Load-sensitive CPU Power Management for Web Search Engines

The chapter is structured as follows. Section 4.2 formally describes the prob-
lem under study while Section 4.3 illustrates the proposed framework. Section 4.4
describes the setup of the experiments conducted to answer our research questions.
Results are analyzed in Section 4.5 and conclusions follow in Section 4.6.

4.2 Problem statement
A search server can be modeled as a first-come first-served queue, where incoming
queries wait to be processed upon arrival to the search engine. Queries are processed
by a search application’s thread, and we assume that each core of the server’s CPU
runs one thread. As soon as a processing thread is available, it picks the next query
from the queue and starts processing it1. Queries arrive to the system with an arrival
rate λ and are processed at a processing rate µ (both expressed in QPS, i.e., queries
per second). The query arrival rate can vary over time, due to fluctuations in the
query load [98]. The query processing rate may change as well, because of the DVFS
mechanism: for lower CPU frequencies we expect lower power consumption but also
lower µ values, as the CPU speed is reduced and query processing takes longer.

Since search engines users are impatient [97], we assume that search servers must
process queries within a short time threshold τ since their arrival, e.g., 1 second [5].
However, since a query can spend some time waiting in the queue, processing threads
may actually have less than τ seconds to solve certain queries. Additionally, exe-
cution times are variable and some queries may require more time than others to
be processed [19]. If our system cannot complete a query processing within the
time budget, the retrieval phase is terminated early and results computed so far
are returned [33, 61]. This partial processing will likely have a negative impact on
the effectiveness of the returned results; however, they can benefit from subsequent
effectiveness-improving processing stages, e.g., machine-learned ranking [104]. Con-
versely, when a query exceeds τ seconds waiting in the queue, the server just drops
it. In this case, the system returns no results.

As illustrated in Chapter 2, the power consumed by a server (measured in Watts)
can be divided into two components: a static part which is continuously consumed
to operate the hosting machine, and a dynamic (or operational) part which depends
on the CPU usage to perform query processing activities. In this work, we propose
to exploit DVFS technology to dynamically change the search server CPU frequency
to reduce the operational power consumption. Indeed, the average operational power
consumed by a server increases with the CPU frequency, as shown in Chapter 3. Of
course, the operational power consumed by the server varies for different incoming
workloads, since the machine utilization varies with the number of query arrivals [10].

Clearly, lower CPU frequencies consume less power but also increases the number
of unanswered and partially processed queries, as lower frequencies decrease the query
processing rate µ. Hence, our goal is to reduce the power consumed by a search server
to process queries, while providing an acceptable query processing quality.

4.3 Proposed solution
To achieve our goal, we propose to move CPU power management from the OS di-
rectly to the search server application code. The Linux OS leverages DVFS to reduce
power consumption. A CPU exposes a finite set of available operational frequencies

1We assume that queries are processed in disjunctive mode, i.e., documents must contain at least
one query term to appear among the query results.

4.3. Proposed solution 29

to the OS kernel, which exploits software modules called frequency governors [17] to
dynamically select the current operational frequency. OS governors vary the proces-
sor frequency according to metrics like the CPU utilization, i.e., the fraction of time
a processor is busy performing computations. For instance, the conservative gov-
ernor steps up the processor frequency when the CPU utilization is above a tunable
threshold α (e.g., 0.8). Conversely, the CPU frequency is scaled down if utilization
is below a tunable threshold β (e.g., 0.2). In any case, the OS governors select the
CPU frequency using kernel-level information. They do not use application-specific
information from the search engine, which we argue can help to improve the system
energy efficiency. For this reason, we propose to delegate frequency scaling decisions
to application-level modules, by implementing governors inside the search engine. In
the following, we will refer to conservative as os-cons for brevity and for distinguish
it from our approaches.

We develop two search engine-specific frequency governors, based on search server
knowledge: se-cons and se-load. The se-cons governor is inspired by the os-cons
module, but it exploits the search server utilization instead of the raw CPU utilization.
By using the query arrival and processing rates, the search server utilization ρ is
computed as

ρ = λ

k · µ
(4.1)

where k is the number of threads processing queries [53]. The idea behind this gover-
nor is to maintain an acceptable search server utilization (e.g., 0.7 [53]) so that incom-
ing queries can be easily processed without consuming too much power. Periodically,
se-cons computes the search server utilization and adjusts the CPU frequency. Fre-
quency throttling is performed if ρ is above (respectively below) the tunable threshold
α (respectively β). If an adjustment is required, se-cons changes the processor fre-
quency to obtain the desired utilization. The governor assumes that it will receive
in the immediate future the same number of queries received during the last period.
Using Equation 4.1, it computes the query processing rate necessary to obtain the
target utilization. Finally, this governor selects the lowest frequency capable of pro-
ducing such query processing rate, assuming processing rate directly proportional to
CPU speed.

Our second governor, se-load, bases its frequency scaling decisions upon the
number of queries N populating the search server, i.e., the queries currently queued
or being processed. Given N , we define the search server load ` as:

` = N

k
(4.2)

Here, the principle is to reduce the query population in the server as fast as possible,
when the search server load is too high (e.g. ` > 0.7). Periodically, se-load observes
the search server load and accordingly adjust the CPU frequency. If ` is greater
than α, the processor is set to its maximum frequency. When ` is below β, the CPU
frequency is stepped down from its current frequency to the next smaller one.

In the following section, we experiment in order to evaluate (a) how much power
can be saved by using the search engine-specific frequency governors and (b) the
corresponding impact on query processing quality.

30 Chapter 4. Load-sensitive CPU Power Management for Web Search Engines

4.4 Experimental setup
Experiments are conducted using the Terrier IR platform [76]. The platform is hosted
on a dedicated Ubuntu 14.04 server; Linux kernel version is 3.13.0-45-generic. The
machine is equipped with 32GB RAM and a 4-core Intel i7-4770K processor. The
processor can run 8 threads by using hyperthreading, and it exposes 15 operational
frequencies ranging from 800 MHz to 3.5 GHz. The ClueWeb09 (Cat. B) [67] docu-
ment collection is indexed to represent the first tier of a web search engine. Stopwords
are removed and the Porter stemmer is applied to all terms. The index stores doc-
ument identifiers and term frequencies. The index is compressed with Elias-Fano
encoding [107], and is kept in memory, shared among 8 query processing threads.

Queries are taken from the MSN 2006 query log [83] and are submitted in real
time to our system, while halving their original interarrival time. Since we use the
first day of the dataset, every experiment take 12 hours to run; the average query
load in 11.28 QPS instead of the original 5.14, with a peak of 44 QPS instead of 28.

For each query, we use BM25 [95] to retrieve the top 1000 documents using
WAND [16]. Upon arrival, queries are queued and have 1 second to be processed 2.
In fact, search engine users are very likely to perceive delays higher than 1 second [5].
Therefore, query processing is early terminated and partial results are returned if a
second expires before processing completion. If a query spends all its time in the
queue, the system drops the query. The query is unanswered and an empty result list
is returned.

For each experiment, we measure (a) the % of unanswered queries (%UQ), (b)
the mean recall, relatively to an ideal system which has infinite time to process every
query (RR) and (c) the power consumed by the search server (P). In particular, power
consumption is measured at the server power socket by using an Alciom PowerSpy2
wattmeter [3]. Measurements consider only the dynamic power consumption, i.e., we
remove the power consumed by the server when idle (∼41.8 Watt). Power is measured
every 30 milliseconds and the mean value is reported for each experiment.

Our baselines are given by standard Linux frequency governors. In particular, we
compare our approach to two baselines: performance which processes every query at
the maximum CPU frequency (we will refer to it as perf for brevity); and os-cons
which adjusts the CPU frequency based on the processor utilization.

For os-cons frequency throttling decisions are taken every 0.08 milliseconds (the
default value). Instead, our governors take decisions at every second, since we observe
from the query log that the query arrival rate fluctuates every ∼1.2 seconds in average.

While perf is parameterless, other governors are tested under two different con-
figurations. One has relaxed thresholds (α = 0.8, β = 0.2 – as in the os-cons default
setting), so that the search server is likely to maintain a certain CPU frequency for
longer periods. The other configuration has tighter thresholds (selected as α = 0.8,
β = 0.6), so that the server will promptly react to changes in utilization or load.

We consider our search engine-specific governors successful if they show reduced
power consumption (P) than the baselines, without marked degradation to query pro-
cessing quality in terms of relative recall (RR) and % of unanswered queries (%UQ).

4.5. Results 31

Table 4.1: Percentage of unanswered queries (%UQ), mean relative
recall (RR) and mean consumed power (P, in Watt) for different fre-

quency governors under various settings of α, β.

Governor α β %UQ RR P

perf - - 0.342 0.931 41.765

os-cons
0.8 0.2 0.283 0.929 38.569
0.8 0.6 0.295 0.927 35.381

se-cons
0.8 0.2 0.352 0.911 36.016
0.8 0.6 0.315 0.900 31.727

se-load
0.8 0.2 0.312 0.913 35.455
0.8 0.6 0.292 0.912 32.888

4.5 Results
Experiments results are reported in Table 4.1. We observe that the perf baseline
consumes the highest operational power (∼42 Watt) and causes the search server to
drop more than 0.3% of the incoming queries. However, under this configuration the
system shows the best relative recall (0.931). Relative recall values are statistically
significant according to paired t-tests (p < 0.01).

The search server using the os-cons governor shows reduced power consumption
with respect to a server equipped with the perf governor. Indeed, os-cons can
consume from ∼8% to ∼15% less power than a governor which always maintains the
CPU at the maximum frequency. Also, os-cons drops fewer queries but provides a
slightly worse relative recall.

Our first search engine-specific governor, se-cons, leads to reduced power con-
sumption if compared to os-cons runs. In fact, our governor saves more than 6%
in power consumption when relaxed thresholds are set (α = 0.8, β = 0.2); and more
than 10% using tight thresholds (α = 0.8, β = 0.6). These power savings come at
the price of small degradation in query processing quality: the percentage of unan-
swered queries increases by ∼6% while the relative recall decreases by almost 2%, if
we compare se-cons to os-cons with tight thresholds. Under the relaxed threshold,
se-cons drops ∼24% more queries than os-cons, while its relative recall diminishes
of ∼3% in comparison. When compared to perf, se-cons can help save from ∼14%
to ∼24% in power consumption. Relative recall decreases by slightly more than 2%
when using relaxed thresholds, and by almost 3% with tight ones. The percentage of
unanswered queries increases of ∼3% with respect to perf when se-cons uses relaxed
thresholds. However, dropped queries decrease by ∼8% when tight thresholds are set.

Our second governor, namely se-load, obtains power savings similar to the
se-cons governor, but with a better query processing quality. Indeed, se-cons
saves more than 8% in power consumption when compared to os-cons with relaxed
thresholds. However, the relative recall detriment is less than 2% and the unan-
swered queries increment by just ∼10%. When the governors are configured with
tight thresholds, se-load saves 7% in power consumption w.r.t. os-cons. At the
same time, relative recall is damaged for less than 2% and no additional queries are
dropped. When compared to perf, se-load saves from ∼15% to ∼21% in power con-
sumption. Relative recall is damaged by ∼2% under both threshold configurations.

2Regarding the queries used in our experiments, approximatively 7% of them take at least one
second to be processed at maximum CPU speed.

32 Chapter 4. Load-sensitive CPU Power Management for Web Search Engines

Instead, the percentage of unanswered queries benefits from our governor. Under
relaxed thresholds, se-load drops ∼9% fewer queries than perf and ∼15% fewer
queries remain unanswered by using tight thresholds.

Overall, experiments confirm that our approach is successful, as the search engine-
specific governors show reduced power consumption than the two baselines. In par-
ticular, se-cons provides the highest power saving. Relative recall (RR) and per-
centage of unanswered queries (%UQ) are not markedly damaged, especially when
using se-load.

4.6 Discussion
In this chapter, we advocated that search engines infrastructures can save power
at search server level, by leveraging knowledge on the server querying operations.
We developed two search engine-specific frequency governors, se-cons and se-load,
which perform processor frequency throttling according to the search server utilization
and load. By extensive experimentation, we evaluated the benefits and drawbacks of
our approaches, compared to standard OS-level frequency governors. We found that
se-cons can help save up to ∼24% power with respect to a system which operates
at maximum CPU frequency to promote query processing quality. Indeed, se-cons
damages by just ∼3% both relative recall and percentage of unanswered queries.
When compared to systems that use more energy efficient configurations, we found
that our governors can still save at least 7% in power consumption. This gain costs
only a limited detriment in relative recall (less than 2%) when se-load is used.
Greater power savings can be achieved by accepting more substantial degradation in
query processing quality.

Such power savings are important at data center-level too. Indeed, low CPU fre-
quencies reduce heat output and, as a consequence, thermal cooling expenditure [10].
Moreover, se-cons and se-load are completely decentralized and can deployed in a
replicated search architecture. We plan to study the efficacy of our contributions at
the inter-data center level in a future work.

33

Chapter 5

Energy-efficient
Query Processing
in Web Search Engines

5.1 Introduction
As showed in Chapters 3 and 4, CPU frequency scaling can be leveraged to reduce
the energy consumption of search servers. Indeed, low CPU frequencies entails low
power consumption but they also prolong query processing times. However, users can
hardly notice response times that are faster than their expectations [5]. Therefore, to
reduce energy consumption, web search engines should answer queries no faster than
user expectations. As discussed in Chapter 2, several power management policies
leverage DVFS technologies to scale the frequency of CPU cores accordingly to their
utilization [17, 103]. However, core utilization-based policies have no mean to impose
a required latency on a search server. As a result, the server can consume more energy
than necessary in serving queries faster than required, with no benefit for the users.

In this chapter we propose the Predictive Energy Saving Online Scheduling algo-
rithm (PESOS), which considers latency requirement of queries as an explicit param-
eter. Via the DVFS technology, PESOS selects the most appropriate CPU frequency
to process a query on a per-core basis, so that the CPU energy consumption is re-
duced while respecting a required latency. The algorithm bases its decision on query
efficiency predictors rather than core utilization.

Query efficiency predictors (QEPs) are techniques to estimate the processing time
of a query before its processing. To know in advance the execution time of queries
permits to improve the performance of a search engine. Most QEPs exploit the
characteristics of the query and the inverted index to precompute features to be
exploited to estimate the query processing times. For instance, Macdonald et al. [75]
propose to use term-based features (e.g., the inverse document frequency of the term,
its maximum relevance score among others) to predict the execution time of a query.
They exploit their QEPs to implement online algorithms to schedule queries across
processing node, in order to reduce the average query waiting and completion times.
The work in [59, 62] addresses the problem to whether parallelize or not the processing
of a query. In fact, parallel processing can reduce the execution time of long-running
queries but provides limited benefits when dealing with short-running ones. Both
the works propose QEPs to detect long-running queries. The processing of the query
is parallelized only if their QEPs detect the query as a long-running one. Rather
than combining term-based features, Wu et al. [112] propose to analytically model
the query processing stages and to use such model to predict the execution time of

34 Chapter 5. Energy-efficient Query Processing in Web Search Engines

queries. However, to the best of our knowledge, query efficiency predictor have not
been considered for reducing the energy consumption of search servers.

In this chapter, we build upon the approach described in [75] and propose two
novel query efficiency predictor techniques: one to estimate the number of postings
that must be scored to process a query, and one to estimate the response time of a
query under a particular core frequency given the number of postings to score. PESOS
exploits these two predictors to determine which is the lowest possible core frequency
that can be used to process a query, so that the CPU energy consumption is reduced
while satisfying the required latency. As predictors can be inaccurate, in this chapter
we also propose and investigate a way to compensate prediction errors using the root
mean square error of the predictors.

We experimentally evaluate PESOS upon the TREC ClueWeb09 [67] corpus and
the query stream from the MSN2006 query log [83]. We compare the performance of
our approach with those of three baselines: (1) performance (perf, for brevity) [103],
which always uses the maximum CPU core frequency, (2) powersave (here referred
to as power1) [103], which throttles CPU core frequencies according to the core uti-
lizations, and (3) se-cons, which we introduced in Chapter 4 and which performs
frequency throttling according to the search server utilization. PESOS, with predic-
tors correction, is able to meet the latency requirements while reducing the CPU
energy consumption from ∼24% up to ∼44% with respect to perf and up to ∼20%
with respect to se-cons, which however incurs in uncontrollable latency violations.
Moreover, the experiments show that energy consumption can be further reduced by
PESOS when prediction correction is not used, but with higher latencies.

The rest of the chapter is structured as follows: Section 5.2 formulates the problem
of minimizing the energy consumption of a search server while maximizing the number
of queries which meet their deadlines. Section 5.3 illustrates our proposed solution
to the problem, describes our query efficiency predictors, and the PESOS algorithm.
Section 5.4 illustrates our experimental setup while Section 5.5 analyzes the obtained
results. Finally, the chapter concludes in Section 5.6.

5.2 Problem statement
In the following, we introduce the operative scenario of a query processing node
(Sec. 5.2.1), we formalize the general minimum-energy scheduling problem and we
shortly present the state-of-the-art algorithm to solve it offline (Sec. 5.2.2), and we
discuss the issues of this offline algorithm in our scenario (Sec. 5.2.3).

5.2.1 Operative scenario

A query processing node is a physical server composed by several multi-core proces-
sors/CPUs with a shared memory which holds the inverted index. As discussed in
Chapter 2, the inverted index can be partitioned into shards and distributed across
multiple query processing nodes. In this chapter, we focus on reducing the CPU
energy consumption of single query processing node, independently of the adopted
partition strategy. In the following, we assume that each query processing node holds
an identical replica of the inverted index [43].

A query server process is executed on top of each of the CPU core of the pro-
cessing node (see Figure 5.1). All query servers access a shared inverted index held

1power is a frequency governor developed by Intel which replaced the conservative governor in
the latest Ubuntu distributions.

5.2. Problem statement 35

Figure 5.1: The architecture of a query processing node.

in main memory to process queries. Each query server manages a queue, where the
incoming queries are stored. The first query in the queue is processed as soon as the
corresponding CPU core is idle. The queued queries are processed following the first-
come first-served policy. The number of queries in a query server’s queue represents
the server load. Queries arrive to the processing node as a stream S = {q1, . . . , qn}.
When a query reaches the processing node, it is dispatched to a query server by a
query router. The query router dispatches an incoming query to the least loaded
query server, i.e., to the server with the smallest number of enqueued queries. Al-
ternatively, the query processing node could have a single query queue and dispatch
queries from the queue to idle query servers. In this chapter, we use a queue for each
query servers since a single queue will not permit taking local decisions about the
CPU core frequency to use for the relative query server. A similar queue-per-core ar-
chitecture is assumed in [2], to schedule jobs across CPU cores to minimize the CPU
energy consumption, and in [75] to schedule queries across different query servers.

A query qi ∈ S is characterized by its arrival time ai, when it “enters” the pro-
cessing node at the query router, and its completion time ci > ai, when it “leaves”
the processing node after being processed by a query server. The query processing
node is required to process queries with a latency of τ ms to meet user expectations
(e.g., 500 ms [5]). Therefore, we impose that each query qi must be processed within
τ time units from its arrival time, i.e., it has an absolute deadline di = ai + τ . If we
assume negligible the time required by the query router to dispatch the query, the
completion time ci of qi is the sum of its arrival time, the time the query spent in the
queue and its processing time. A query misses its deadline, i.e., ci > di, if it spends
more than τ time units in queue and being processed. In fact, a query may have
less than τ time units to be processed. At time t, the time budget bi(t) of query qi
indicates how much time remains before qi misses its deadline. bi(t) is the difference
between its deadline and the time it is spending in the queue, i.e. bi(t) = di− (t−ai).
When a query exceeds its time budget, the query processing node has two possible
choices: 1) to early terminate the query, returning an incomplete list of results, or 2)
to finish processing the query, delaying the processing of other request, but returning
a complete list of results. Differently from Chapter 4, we here focus on the second op-
tion which does not degrade the quality of the search results. We do not consider here
the time necessary to send the results to the users, as it involves network latencies
which do not depend on the search engine.

As seen in Chapter 3, a query server can process queries at different speeds, de-
pending to the CPU core operational frequency. To reduce deadline violations, CPUs
cores can operate at their maximum processing frequency. In fact, high frequencies

36 Chapter 5. Energy-efficient Query Processing in Web Search Engines

lead to faster computations at the price of high power consumption. Conversely, lower
frequencies mean slower computations, with lower power consumption.

Since the number of queries received by a query processing node along a day
varies, we envision the possibility to dynamically change the CPU core frequencies of
query servers to match the number of queries received per time unit. Our goal is to
maximize the number of queries that are processed within their deadline, in order to
obtain a latency close to τ ms. At the same time, we want to minimize the energy
consumption of the processing node. In other words, for each query qi we need to
select the most appropriate frequency f ∈ F for the CPU core associated to the server
processing qi.

5.2.2 The minimum-energy scheduling problem

Consider the following scenario, where a single-core CPU must execute a set J =
{J1, . . . , Jn} of generic computing jobs rather than queries. Jobs must be executed
over a time interval [t0, t1]. Each job Ji has an arrival time ai and an arbitrary
deadline di which are known a priori. Moreover, each job Ji has a processing volume
vi, i.e., how much work it requires from the CPU, and jobs can be preempted. The
CPU can operate at any processing speed s ∈ R+ (in time units per unit of work) and
its power consumption is a convex function of the processing speed, e.g., P (s) = sγ

with γ > 1 [99].
Jobs in J must be scheduled on the CPU. A schedule is a pair of functions S =

(ψ, φ) denoting, respectively, the processing speed and the job in execution, both at
time t. A schedule is feasible if each job in J is completed within its deadline. The
minimum-energy scheduling problem (MESP) aims at finding a feasible schedule such
that the total energy consumption is minimized, i.e.,

arg min
S=(ψ,φ)

E(S) =
∫ t1

t0
P
(
ψ(t)

)
dt (5.1)

The MESP is similar to an offline version of our problem, where jobs, corresponding
to queries, are preemptable, and processor speeds can assume any positive value.

The YDS algorithm [114] solves the MESP in polynomial time. Consider an
interval I = [z, z′] ⊆ [t0, t1] and the set of jobs in that interval JI = {Ji ∈ J :
[ai, di] ⊆ I}. The intensity g(I) of interval I is the ratio between the amount of work
required by the jobs in JI and the length of the interval

g(I) = 1
z − z′

∑
Ji∈JI

vi (5.2)

A feasible schedule must use a processing speed s ≥ g(I) during the interval I, or jobs
will not meet their deadlines if s < g(I). Moreover, P (g(I)) is the lowest possible
power consumption on the interval I, since P is a convex function.

Algorithm 1 illustrates the YDS algorithm, that optimally solves the MESP in
O(n3) [9, 114]. YDS works by analyzing each possible time interval I included in
[t0, t1]. Then, it finds the critical interval I∗ that maximizes g(I). YDS schedules
the jobs in JI∗ using the earliest deadline first (EDF) policy [1] and processing speed
g(I∗). Then, if not preempted, the jobs in JI∗ will terminate in ri = vi · g(I∗) time
units since the beginning of their execution. Jobs in JI∗ are then removed from J .
The interval I∗ as well is removed from [t0, t1], i.e., it cannot be used to schedule jobs
other than those in JI∗ . For this reason, YDS updates the arrival times and deadlines
of the remaining jobs to be outside I∗. Finally, YDS repeatedly finds a new critical

5.2. Problem statement 37

Algorithm 1: The YDS algorithm
Data: A set of jobs J = {j1, . . . , jn} to schedule in [t0, t1]
Result: A feasible schedule S for J minimizing E(S)
OYDS(J):

1 ψ ← {}
2 φ← {}
3 while J 6= {} do
4 Identify I∗ = [z, z′] and compute g(I∗)
5 Set processor speed to g(I∗) for jobs in JI∗ in ψ
6 Schedule jobs in JI∗ according to EDF in φ
7 Remove I∗ from [t0, t1]
8 Remove JI∗ from J
9 foreach Ji ∈ J do

10 if ai ∈ I∗ then
11 ai ← z′ // Update arrival times

12 if di ∈ I∗ then
13 di ← z // Update deadlines

14 return S = (ψ, φ)

interval for the remaining jobs, until all jobs are eventually scheduled. Note that the
MESP always admit a feasible schedule, since arbitrary large amounts of work can
be performed in infinitesimal time when s→∞.

Figure 5.2 shows an example for YDS. Input jobs are illustrated in the upper part
of the picture. The left end of a box indicates the arrival time of the job, while the
right end indicates its deadline. Processing volumes for the jobs are reported inside
the relative boxes. The bottom part of the picture illustrates the optimal solution
provided by YDS. The picture shows the order in which the jobs are scheduled, their
start and end time, and the processing speeds s used for each job. Note that J3 is
executed over two different time intervals, as it is preempted to schedule J4 and J5,
which have a higher joint intensity.

Figure 5.2: An example of YDS scheduling: (top) input jobs, (bot-
tom) resulting optimal schedule with CPU speeds s.

38 Chapter 5. Energy-efficient Query Processing in Web Search Engines

5.2.3 Issues with YDS
YDS finds an optimal solution for the MESP, but poses various issues that make
difficult to use it in a search engine to reduce its energy consumption:

1. YDS is an offline algorithm to schedule generic computing jobs and cannot be
used to schedule online queries. In fact, YDS input is the set of jobs to be
scheduled in a interval, with their arrival times and deadlines, that must be
known a priori. In contrast, query arrival times are not known until query
arrives. Moreover, YDS relies on EDF, which contemplates job preemption.
Context switch and cache flushing cause time overheads with non-negligible
impacts on the query processing time. Therefore, preemption is unacceptable
for search engines.

2. YDS requires to know the processing volumes of jobs in advance. Conversely,
we do not know how much work a query will require before its completion.

3. YDS schedules job using processing speeds (defined as units of work per time
unit). The speed value is continuous and unbounded (i.e., the speed can be in-
definitely large). However, the frequencies available to CPU cores are generally
discrete and bounded.

For such reasons, in the following Section we modify YDS in order to exploit it in
a search engine.

5.3 Problem solution
YDS has several issues that make unfeasible to use it in a search engine. In the
following, we discuss:

1. a heuristic based on YDS which works in online scenarios without job preemp-
tion (Sec. 5.3.1),

2. a methodology to estimate the processing volume of a query (Sec. 5.3.2),

3. an algorithm to translate processing speeds into CPU core frequencies (Sec. 5.3.3).

Eventually, we introduce and discuss our approach to select the most appropriate
CPU core frequency to process a query in a search engine (Sec. 5.3.4).

5.3.1 On-line scheduling without preemption

Online YDS2 (OYDS) is an heuristic for the online version of the MESP, proposed
in [114]. In an online scenario, we are not given a set of jobs over a fixed time interval,
but the set of jobs that must be processed by the CPU changes over time. Every
time t̂ a new job arrives, OYDS considers the newly arrived job and all the jobs still
to be (completely) processed, and computes an optimal solution using YDS for this
set of jobs, assuming that all such jobs have the same arrival time t̂. As YDS, OYDS
guarantees that each job will be terminated by its deadline. In fact, it can schedule
any processing volume by simply using an arbitrarily large processing speed s. On
the other hand, its energy consumption can be sub-optimal.

2In the original paper, OYDS is called Optimal Available (OA). In this chapter, we will use OYDS
for the sake of clarity.

5.3. Problem solution 39

While OYDS is a heuristic for the online version of the MESP, it still schedules jobs
using the EDF policy which contemplates job preemption. However, in our operative
scenario we deal with queries rather than generic computing jobs. Preemption is
unacceptable for search engines and a query cannot be preempted once its processing
has started. Since all queries must be processed within the same relative deadline
τ , for any two queries qh and qk, such that ak > ah, we have dk > dh, i.e., later
queries have later deadlines. As a consequence, EDF will always schedule firstly the
earliest query, without any preemption. This means that, under these conditions,
EDF coincides with the first-in first-out (FIFO) scheduling policy. We will use OYDS
as a base for build our frequency selection algorithm, described in Section 5.3.4. In
the remaining of this work, then, we will stop discussing about generic computing
jobs but we will focus on the processing of search engine queries.

5.3.2 Predicting processing volumes

The OYDS heuristic must know the processing volumes of the queries to schedule.
For this purpose, we propose to use the number of scored posting during the pro-
cessing of query. Indeed, for queries with the same number of terms, the number of
scored postings correlates with their processing times [75]. If exhaustive processing
is performed, it is possible to know a priori the number of scored postings, which
is equal to the sum of the posting lists lengths of the query terms. However, when
dynamic pruning is applied we do not know in advance how many postings will be
scored, since portions of the posting lists could be skipped. Then, we need a way to
predict the number of scored posting for a query.

We use the query efficiency predictors (QEPs) described in [75] but we modify
them to predict the number of scored postings for a query. This means that we learn
a set Π of linear functions πx(q) that, given a query q with x query terms, estimate
the number of scored postings.

We note that OYDS requires exact query processing volumes. If the reported
processing volumes are less than the actual ones, the algorithm does not guarantee
that all the queries deadlines will be meet. QEPs are not precise, but they give
only an estimate on the number of scored postings. For this reason, we add an
offline validation phase after the QEPs training. During the validation, we use the
regressors in Π to predict the number of scored posting for a validation set of pre-
processed queries. Then, we record the root mean squared error (RMSE) for the
predictions. In the online query processing, we use the RMSE ρx of predictor πx to
compensate its errors, by adding ρx to the predicted number of scored postings. In
other words, our modified QEPs π̃x(q) will be

π̃x(q) = πx(q) + ρx. (5.3)

In this way, we will likely over-estimate the processing volume of some queries, re-
quiring higher processing speeds at the cost of higher energy consumption. However,
we will miss less deadlines, as we reduce the number of queries for which we predict
fewer scored postings lower than the actual ones.

5.3.3 Translating processing speeds into CPU frequencies

CPU cores can operate at frequencies f ∈ F , where F is a discrete set of available
frequencies (measured in Hz). Nevertheless, OYDS assigns processing speeds (seconds
per unit of work) to queries. Therefore, we need to map processing speeds to CPU
core frequencies. To do so, for each frequency f we train a single-variable linear

40 Chapter 5. Energy-efficient Query Processing in Web Search Engines

predictor σfx(q), which forecasts the processing time of a query q composed by x
terms at frequency f through the estimated number of its scored postings:

σfx(q) = αfxπ̃x(q) + βfx , (5.4)

where αfx and βfx are the coefficients learned by the regressors. Thus, we learn offline
a new set Σ of single-variable linear regressors σfx , one for each frequency f . Once
again, we add a validation phase after the training to build Σ, similarly to approach
described in Section 5.3.2. We compensate a predictor error adding its RMSE (ρfx)
computed over the validation queries to the actual prediction, i.e.,

σ̃fx(q) = σfx(q) + ρfx. (5.5)

We can use Σ to translate processing speeds to CPU core frequencies, as shown in
Algorithm 2. When a query qi is associated to a processing speed s by OYDS, we
compute its required processing time ri by multiplying the predicted number of scored
postings π̃x(qi) by s. Then, we check each regressor σ̃fx(qi) in Π′ in ascending order
of frequency f . If the expected query processing time at frequency f is less than ri,
we use frequency f to process qi. If we are not able to find a suitable frequency f ,
we use the maximum available frequency.

As shown in Algorithm 2, a suitable frequency f among the frequencies of the
CPU cores for a query qi does not always exist. For example, this happens when
the query server is overloaded with queries to process. However, we can ignore this
scenario by assuming that a query processing node has a computing capacity that,
at maximum frequency, is sufficient to process its peak query volume. Moreover, a
suitable frequency for a query qi cannot be found if, at time t, qi requires a processing
time that is greater than its time budget bi(t). In such cases, we use the maximum
CPU core frequency to minimize that query processing time.

5.3.4 Frequency selection algorithm for search engines

In this section, we describe PESOS (Predictive Energy Saving Online Scheduling).
PESOS is an algorithm to select the most appropriate frequency to process a query
in a search engine. Our algorithm is based on OYDS, but exploits predictors which
can be inaccurate. Due to wrong predictions (see Sec. 5.3.2 and Sec. 5.3.3), some
queries will miss their deadline no matter the selected CPU core frequency. Yet, this
can happen because either queries have low time budgets or they require too much

Algorithm 2: The CPU core frequency selection algorithm
Data: A query qi composed by x terms, and the processing speed s assigned

by OYDS to qi
Result: The core frequency f to use to process qi
SelectFrequency(qi, s):

1 ri ← π̃x(qi) · s
2 foreach regressor σ̃fx in Σ, in ascending order of f do
3 rfi ← σ̃fx(qi)
4 if rfi ≤ ri then
5 return f

6 return max
f∈F
{f}

5.3. Problem solution 41

Algorithm 3: The algorithm to compute the shared tardiness of a query queue
Data: The query queue Q and the current time t
Result: The shared tardiness quantity H(Q)
ComputeSharedTardiness(Q, t):

1 T ← 0 // Total tardiness
2 n← 0 // On time queries
3 f̄ ← max

f∈F
{f} // Maximum frequency

4 foreach query qi in Q do
5 bi ← τ − (t− ai) // Remaining budget

6 rf̄i ← σ̃f̄x(qi) // Max processing speed

7 if rf̄i > bi then
8 T ← T + (rf̄i − bi) // Late query

9 else
10 n← n+ 1 // On time query

11 return T/n

processing time. We call these late queries. Conversely, we call on time queries those
that will be completely processed by their deadline.

Given a query qi with deadline di and completion time ci, we define its tardiness
as Ti = max{0, di − ci}. As such, an on time query will have 0 tardiness, while
a late query will have a tardiness given by the amount of time a query requires
to be completed exceeding its deadline. While missing a query deadline is always
undesirable, low tardiness values are still better than higher ones. Therefore, we
aim at minimizing the tardiness of late queries, by reducing the time budget of on
time queries. Given a queue of queries Q sorted by arrival time, we compute the
total tardiness of the late queries in Q when all queries are processed at maximum
frequency. Then we compute the shared tardiness H(Q) of the on time queries in Q
by dividing the total tardiness by the number of on time queries in Q, and we reduce
the on time queries’ deadlines by H(Q). Hence, on time queries are required to finish
their processing earlier, but this will leave more time to late queries and reduce their
actual tardiness. Algorithm 3 recaps the steps to compute the shared tardiness H(Q).

Algorithm 4 describes how PESOS sets the most appropriate core frequency to
process a query. The algorithm works as follows. Assume q1 is the first query in the
query queue Q of a query server. At time t, query q1 begins being processed. Initially,
we check if q1 is going to meet its own deadline. If the query is late, we set the core
at its maximum frequency. Otherwise, we compute the shared tardiness H(Q) of the
queued queries and we change the deadlines of all the queries in Q accordingly, i.e., for
all qi in Q, we set d̃i = di−H(Q). In doing so, we should just reduce the time budgets
of the on time queries to leave more time to late queries. In fact, reducing the time
budget of late queries has no effect since late queries will be in any case processed at
maximum core frequency. Nevertheless, we reduce all the time budget by H(Q) such
that, for each couple of queries qj , qk ∈ Q, if dj ≥ dk then d̃j ≥ d̃k. This property
ensures that queries will be processed following the FIFO policy, avoiding preemption
(see Sec. 5.3.1). Then, we check if the query q1 is going to miss its modified deadline.
In such case, we set the core at maximum frequency. On the contrary, we eventually
run the OYDS algorithm to select which core frequency to use. Note that we need to
compute just the core frequency for the query q1. Then, we do not need to analyze

42 Chapter 5. Energy-efficient Query Processing in Web Search Engines

Algorithm 4: The PESOS algorithm for setting the most appropriate CPU core
frequency to process a query
Data: The query queue Q and the current time t
Result: The CPU core frequency to use for processing the first query in Q
PESOS(Q, t):

1 f̄ ← max
f∈F
{f} // Maximum frequency

2 q1 ← Q.head() // First query
3 if d1 < t then
4 return f̄

5 H(Q)← ComputeSharedTardiness(Q, t)
6 if d1 −H(Q) < t then
7 return f̄

8 g(I∗)← 0 // Maximum intensity
9 foreach query qi in Q do

10 if di −H(Q) < t then
11 return f̄

12 QI = {qj ∈ Q : dj ≤ di −H(Q)}
13 V ←

∑
q∈QI

π̃x(q) // Volume

14 g(I)← V/(di −H(Q)− t) // Intensity
15 if g(I) > g(I∗) then
16 g(I∗) = g(I)

17 return SelectFrequency(q1, g(I∗))

each time interval in the query queue Q. Instead, we will check only the time intervals
[t, d̃i] = [t, di −H(Q)] for all queries qi ∈ Q. If a query in the queue is likely to miss
its deadline, we use the maximum core frequency to process q1 at maximum speed.
Otherwise, once we have identified the critical interval I∗ (see Section 5.2.2) and its
intensity g(I∗), we select the most appropriate core frequency to process the first
query q1 by using Algorithm 2.

PESOS is executed whenever a query server starts processing a new query. When
the query processing is completed, the query is removed from the query queue Q.
Also, PESOS is executed at each new query arrival, to take into account the increased
workload in the query queue and to adjust the core frequency for the query which
is currently being executed. PESOS runs in linear time. In fact, it computes the
shared tardiness using Algorithm 3, which just need to traverse the query queue.
Then, the algorithm checks each interval [t, d̃i] for all qi ∈ Q, i.e., it analyzes |Q|
intervals. Eventually, it translates a processing speed into a CPU core frequency
using Algorithm 2. Algorithm 2 needs to analyze at most |F | CPU frequencies. In
conclusion, the computational complexity of PESOS is O(|Q|+ |F |).

5.4 Experimental setup
In this section, we firstly describe the experimental setup for the training and vali-
dation of our predictors (Sec. 5.4.1, Sec. 5.4.2). Then, we illustrate the experimental
setup we adopt to measure the CPU energy consumption and the latency of a query
processing node using our approach (Sec. 5.4.3). All the experiments are conducted

5.4. Experimental setup 43

using the Terrier search engine [76]. The platform is hosted on a dedicated server
with 32 GB RAM. The operating system is Ubuntu, with Linux kernel version 3.13.0-
79-generic. The machine is equipped with an Intel i7-4770K CPU, a member of the
Haswell product family. The CPU has 4 physical cores which expose 15 operational
frequencies F = {0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.1, 2.3, 2.5, 2.7, 2.9, 3.1, 3.3, 3.5} GHz.
The inverted index used in the experiments is obtained by indexing the ClueWeb09
(Cat. B) document collection which contains more than 50 millions of web pages [67].
On each document, we remove stopwords and apply the Porter stemmer to all of its
terms. The inverted index stores document identifiers and terms frequencies and it
is kept in main memory, compressed with Elias-Fano encoding [107]. For the queries,
we use the MSN 2006 query log [67].

In our experiments, we process queries using two dynamic pruning retrieval strate-
gies: 1) MaxScore [105], and 2) WAND dynamic pruning [16]. For each query, we
retrieve the top 1,000 documents according to the BM25 ranking function. The node
operates with 4 query servers, i.e., processing threads, which are pinned to different
CPU physical cores and share the same inverted index.

5.4.1 Training processing volume predictors

In this section, we adapt the query efficiency predictors (QEPs) introduced in [75] to
originally predict the response times of a query. Instead, we modify these predictors
to estimate the number of scored postings for a query. We divide queries into six
query classes according to their number of terms, i.e., the first class includes queries
with one term, while the last class includes queries with six or more terms.

To train and validate our predictors, we extract a number of unique queries from
the MSN 2006 query log. We use unique queries to avoid any caching mechanism from
the operating system that could distort our measurements. For each query class, we
extract 10,000 unique queries from the MSN 2006 query log, generating a query set
of 60,000 unique queries.

Before training the modified QEPs, we process each single term in the query set as
detailed in [75]. We treat single terms as queries of length one. During the processing,
we record the ranking scores obtained by all the documents relative to the terms. By
doing this, for each query term we obtain the following set of 13 term-based features:

• Arithmetic, geometric, and harmonic mean score: Means of the ranking
function (e.g., BM25) scores from the postings.

• Max score: The maximum ranking function score in the posting list.

• Score variance: The variance of the ranking function score in the posting list.

• Number of postings: The posting list length.

• Number of maxima: The number of postings for which the ranking function
score is a local maximum w.r.t. adjacent postings in the posting list.

• Number of maxima greater than avg. score: The number of postings for
which the ranking function score is a local maximum greater than the average
score.

• Number of postings with max score: The number of postings for which
the ranking function score is equal to the max score.

• Number of postings within 5% of max score: The number of postings
whose ranking function score is at most 5% less than the max score.

44 Chapter 5. Energy-efficient Query Processing in Web Search Engines

• Number of postings within 5% of threshold: The number of postings
whose ranking function score is at most 5% less than the score of the K-th
document in the top-K, considering the term as a single term query.

• Number of promotions into top-K: The number of times some document
would make it into the top-K, considering the term as single term query.

• IDF: The inverse document frequency of the term.

These term-based features are then aggregated to generate query-based features
using three functions: maximum, variance and sum. This process generates a feature
set containing 39 query-based aggregated features per query.

We then process the original queries in the query set to record the number of
scored postings. This value is independent by the CPU frequency and we can use
any f ∈ F . From the execution of the query set, we collect a processing log which
contains the number of scored posting for each query in the query set. We use this
processing log in the training and validation phase of the predictors.

To train our predictors, we split the feature set and the processing log: 50% of
the queries for training and 50% for validation. We use the training set to learn the
set of linear regressors πx, one for each query class. Each regressors take in input the
39 query-based aggregated features from the feature set, and estimates the number of
postings scored in the processing log3. Note that linear regressors can return negative
values for a set of input features. However, the number of scored postings is always a
positive quantity. If a regressor returns a negative value, we set its prediction to the
minimum between the shortest posting list length for the query terms and 1,000 (the
number of retrieved document). Similarly, a linear regressor may return a value that
exceeds the sum of the posting lists lengths for a query. Since this is not possible in
practice, in such cases we set the prediction to the sum of the posting lists lengths.

Once we have trained the regressors on the training set, we use the validation
set to see how predictors perform. Results are reported in Table 5.1. Note that
single term queries correspond to a smaller number of postings than queries with
more terms. This is expected, as most of the single term queries are associated to a
low number of documents. For instance, 2,276 out of 5,000 queries in the validation
set are associated to less than 1,000 postings. Also, we notice how we can perfectly
predict the number of scored postings for the single term queries. In this case, in
fact, MaxScore and WAND cannot prune the posting list and the number of scored
postings coincides with the posting list length of the query term. For longer queries,
instead, we notice a lower coefficients of determination R2 which indicate that the
predictors are less able to estimate the number of scored postings. For this reason,
we use the RMSE ρx computed in the validation phase to correct the value of the
predictors (as explained in Section 5.3.2).

As explained in Section 5.3.2, we use the RMSE ρx computed in the validation
phase to correct the value of the predictors. This will provide more conservative
predictions to use into OYDS. The result of the training and validation phases is a
set of predictors Π = {π̃1, π̃2,, π̃6+}.

5.4.2 Training processing time predictors

OYDS produces processing speeds that need to be mapped into CPU core frequencies.
For this purpose, we process the 60,000 queries set described in Section 5.4.1 to collect

3Predictions take approximately less than 0.2 ms on average. This includes the time for computing
query features, while term features are computed offline and stored in main memory.

5.4. Experimental setup 45

Table 5.1: Mean total number of postings (MTP) and, for both
MaxScore and WAND, mean number of scored postings (MSP), root
mean squared error (ρx) produced by the modified QEPs and coeffi-
cient of determination R2, for each query class (QC). Posting numbers

are rounded to thousands.

QC MTP
MaxScore WAND

MSP ρx R2 MSP ρx R2

1 31 31 0 1.00 31 0 1.00
2 3,220 1,119 720 0.88 960 746 0.86
3 7,271 1,087 708 0.70 563 569 0.61
4 11,012 1,487 867 0.59 578 397 0.52
5 14,744 1,952 974 0.60 684 307 0.68
6+ 21,012 2,769 1,267 0.70 877 464 0.75

the number of scored postings and the processing times of each query. From these
data, we learn a set of single-variable linear regressors σfx that estimate the processing
time of a query given the number of its scored postings.

The processing time of a query is influenced by the CPU core frequency but also
by the workload faced by the query processing node. In fact, high workloads increase
the contention among the query servers (i.e., processing threads) for the main memory
and the processor caches. This contention increases the time required to process a
query. We want our regressors to predict processing times that match high workload
conditions. This is a worst-case choice that will lead to higher energy consumption
when the query processing node deals with low workloads. However, we expect to
miss less query deadlines when the query processing node faces high query volumes.
We process the 60,000 query set sending it to the processing node at the rate of 100
queries per second since this rate ensure than our node is constantly busy processing
queries, simulating a high query workload. We process the query set 15 times, one
for each frequency f ∈ F . We hence obtain 15 different processing logs reporting the
number of scored postings and the processing time for each query in the query set.

Again, we divide the queries into six classes (see Sec. 5.4.1). For each query class
and each frequency f , we learn a single-variable linear regressor σfx . To learn these
regressors, we split each processing log for training and validation: 50% of the logs are
used for training the regressors, the remaining 50% is used to validate them. We use
the validation set to check how well the predictors perform after the training phase,
measuring their RMSE ρfx and the coefficient of determination R2.

Results are reported in Table 5.2. As expected, the mean processing times decrease
by increasing the CPU frequency. However, the mean processing times for the first
query class are sensibly lower than for the other classes. This is due to the many single
term queries associated to short posting lists, as illustrated in Section 5.4.1. We notice
that the processing times are lower when using MaxScore rather than WAND. This
confirms the findings in [34, 41, 87], where MaxScore outperforms WAND for memory-
resident indexes. Moreover, for the MaxScore strategy we obtain lower RMSE and
higher R2 value than for WAND, meaning that the predictors for MaxScore produce
better estimates of the processing time of a query. Presumably, this is due to the
fact that the WAND strategy prune posting lists more aggressively than MaxScore
(see Table 5.1) and the linear regressors are not able to capture this behavior. For
the sake of brevity, Table 5.2 shows the results for only 6 core frequencies. Similar
observations can be made for the remaining ones.

46 Chapter 5. Energy-efficient Query Processing in Web Search Engines

Table 5.2: Mean processing time (M , in ms), root mean squared error
(ρf

x) produced by the σf
x regressors and coefficient of determination

R2 for each query class (QC) for the MaxScore and WAND retrieval
strategies.

QC
0.8 GHz 1.4 GHz 2.0 GHz 2.5 GHz 2.9 GHz 3.5 GHz

M ρfx R2 M ρfx R2 M ρfx R2 M ρfx R2 M ρfx R2 M ρfx R2

MaxScore

1 9 7 0.99 5 3 1.00 4 2 1.00 3 2 0.99 3 2 0.99 2 2 0.99
2 344 48 0.99 197 21 1.00 141 17 0.99 115 14 0.99 100 13 0.99 83 16 0.99
3 386 52 0.98 224 27 0.99 161 20 0.99 131 16 0.98 114 15 0.98 96 15 0.97
4 549 60 0.98 319 25 0.99 229 20 0.99 186 16 0.99 162 15 0.99 136 16 0.98
5 737 67 0.98 428 29 0.99 307 22 0.99 248 18 0.99 216 16 0.99 181 18 0.98
6+ 1,088 150 0.97 633 95 0.97 451 66 0.97 363 52 0.97 316 46 0.97 262 37 0.97

WAND

1 14 18 0.98 8 17 0.96 6 10 0.96 5 6 0.98 4 5 0.98 4 10 0.91
2 560 249 0.95 314 145 0.94 225 103 0.94 181 80 0.94 159 72 0.94 132 63 0.93
3 499 235 0.84 281 134 0.83 205 99 0.83 164 78 0.83 145 69 0.83 119 57 0.83
4 675 283 0.77 383 157 0.77 276 114 0.76 223 91 0.77 196 81 0.77 162 67 0.77
5 915 294 0.82 522 175 0.81 381 128 0.82 306 107 0.79 266 89 0.81 216 74 0.80
6+ 1,388 620 0.86 780 310 0.88 562 204 0.90 453 179 0.88 393 155 0.88 326 125 0.88

As explained in Section 5.3.3, we use the RMSE Rfx computed in the validation
phase to compensate the predictors’ estimates. The result of the training and valida-
tion phases is a set of predictors Σ = {σ̃f1 , σ̃

f
2 ,, σ̃

f
6+}.

5.4.3 Measuring energy consumption and latency

We now describe the experimental setup for measuring the CPU energy consumption
and the latency for processing a stream of queries on a query processing node. We
here focus on the tail latency since it is assumed to be a better performance indicator
than the mean/median latency for web search engines [33]. In fact, measuring the
tail latency, we can affirm that most of the requests are served within the measured
time interval. We require that queries are processed with a certain tail latency. We
experiment with a required tail latency of 500 ms and 1,000 ms. The first value rep-
resents a scenario where we want to promptly answer the queries, while the second
represents the case where we are willing to wait more time to obtain query results.
In fact, search engine users are likely to not notice response delays up to 500 ms,
while they are very likely to perceive delays higher than 1,000 ms [5]. In PESOS we
can impose the tail latency constrain setting τ = {500, 1, 000} ms, i.e., requiring that
queries are processed within τ ms since their arrival. We test different latency require-
ments to observe if PESOS can produce energy savings while meeting the required
tail latency. The query processing is performed using the MaxScore and the WAND
retrieval strategies, to understand how PESOS behaves when different retrieval strate-
gies are deployed. Also, we test PESOS with predictors corrected using their RMSE
(as discussed in Sec. 5.3.2 and 5.3.3), and without any correction. We will refer to
the first configuration as time conservative (TC) and to the second as energy conser-
vative (EC). In the TC configuration, we are likely to over-estimate the processing
volume and time of some queries, requiring higher core frequencies. However, we also
expect to miss less query deadlines hence producing lower tail latencies. In the EC
configuration, instead, we use predictors without any correction which should lead
to lower core frequencies and produce higher energy savings. Comparing the two

5.4. Experimental setup 47

Table 5.3: Distribution of queries across the various query classes
for the synthetic and the realistic query sets.

1 2 3 4 5 6+

Synthetic 5,644 17,871 18,913 10,828 4,331 2,413
Realistic 51,553 161,973 171,016 98,001 39,998 22,177

configurations, we want to understand if acceptable tail latencies are achievable even
without predictors correction.

To perform our measurements, we carry out two different kinds of experiment.
Firstly, we observe the behavior of PESOS under a synthetic query workload. For
this purpose, we send a stream of 60,000 unique queries from the MSN2006 log to the
processing node. Table 5.3 shows the number of queries for each query class, with an
average of ∼3 terms per query. This value reflects the average query length observable
on the original MSN2006 log. To test the robustness of PESOS, we experiment with
different query arrival rates, i.e., {5, 10, 15, 20, 25, 30, 35} query per second (QPS)
sent to the processing node4. The second kind of experiment aims to observe the
behavior of PESOS under a realistic query workload. For this, we process 544,718
unique queries from the MSN2006 query log following the actual query arrivals of the
second day of the query log. Table 5.3 reports the number of queries for each query
class, while Figure 5.3 show the number of query arrivals during the day. For both
query workloads, we process unique queries to avoid caching mechanism that could
compromise the evaluation of the experiment results. Nevertheless, for the realistic
query workload we are still processing the same number of queries reported in the
second day of the MSN2006 query log to reflect a realistic query traffic.

Finally, we compare the energy consumption and the tail latency of PESOS against
three baselines, namely perf, power, and se-cons. perf and power are provided by

00 02 04 06 08 10 12 14 16 18 20 22
Hour of day (hh)

0

500

1000

1500

2000

2500

3000

3500

4000

#
qu

er
y

ar
ri
va

ls

Figure 5.3: Query arrivals for the second day of the MSN2006 query
log, aggregated every 5 minutes.

4Note that the τ and QPS values can be rescaled by considering smaller inverted indexes, for
instance when the index is partitioned across multiple query processing nodes.

48 Chapter 5. Energy-efficient Query Processing in Web Search Engines

the intel_pstate driver [103]. The perf policy simply uses the highest core fre-
quency to process queries and then race to an idle state. The power policy, instead,
selects the frequency for a core according to its utilization. High frequencies are se-
lected when a core is highly utilized. Conversely, lower frequencies are selected when
a core is lowly utilized. Differently, the se-cons policy bases its decisions upon the
utilization of a query server rather than on the utilization of a CPU core. The uti-
lization of a query server is computed as the ratio between the query arrival rate and
service rate. The frequency of a core is then throttled if the server utilization is above
80% or below 20%, to produce a utilization of 70%. The se-cons policy executes
every 2 seconds. We select these parameter settings to achieve the best energy savings
while maintaining acceptable latencies, reflecting those used in Chapter 4.

With these experiments we want to address the following research questions:

• RQ1: Does PESOS meet the required tail latencies?

• RQ2: Does PESOS help reduce the CPU energy consumption of a query pro-
cessing node?

• RQ3: Is prediction correction necessary to achieve acceptable tail latencies?

• RQ4: How does PESOS behave using different retrieval strategies, with different
prediction accuracies?

We measure the 95-th percentile tail latency of the processing node to answer our
first research question. The 95-th percentile tail latency is used to measure the effects
of power management mechanism on the responsiveness of search systems in [71, 80].
To answer the second research question we measure the energy consumption of the
CPU using the Mammut library which relies on the Intel Running Average Power
Limit (RAPL) interface [30]. The RAPL component performs actual measurements of
the energy consumption in Haswell processors. Hackenberg et al. show the reliability
of such measurements [52], and the RAPL interface is used in other works to measure
the energy consumption of CPUs [29, 31]. We experimentally confirm the reliability of
RAPL in Appendix C. Finally, to address the third research question we compare the
performance of our approach with and without prediction corrections. We compare
the performance of PESOS with MaxScore and WAND to answer the last research
question. All experiments are conducted using the query processing node described
at the beginning of this section.

5.4.4 Other experimental setup details

All the experiments introduced in this section are conducted using the Terrier IR
platform [76], a Java search engine. The platform is hosted on a dedicated server
equipped with an Intel i7-4770K CPU, a member of the Haswell product family.
This CPU has eight logical cores that are mapped into four physical cores, thanks
to hyperthreading. Recall that PESOS selects the most appropriate frequency to
process a query on a per-core basis. Therefore, logical cores can be instructed to
operate at different logical frequencies. This can result in conflicts when mapping
multiple logical frequencies into a single physical operational frequency. To avoid
such conflicts, we decide to not exploit hyperthreading in our experiments. Anyway,
PESOS can be easily adapted to exploit hyperthreading as follows: each logical core
selects a frequency according to PESOS; the physical core frequency is then set to the
maximum one among those required by its logical cores.

5.5. Results 49

Since PESOS selects which frequency to use to process a certain query on a core, it
is also necessary that the corresponding processing threads do not migrate from that
core to another. For this reason, query processing threads are pinned to different CPU
physical cores. This is achievable in Java by using the Thread Affinity library [28].
Thread Affinity is a Java library which permits binding threads to core from the Java
code. It relies on Java Native Access (JNA), a library which provides Java programs
easy access to native shared libraries without using the Java Native Interface (JNI).

Finally, since Terrier is a Java-based platform, we developed a library5 which
permits to select which frequency to use on a CPU core from the Java code. Our
library is build on top of the acpi_cpufreq Linux driver [17]. The driver exposes
a set of files in the sysfs which can be used to control the P-state of each core by
simply reading/writing them, if permission are granted. On average, our library takes
less than 10 microseconds to modify the operating frequency of a core. This value is
below the acceptable query processing time.

5.5 Results
In this section we discuss the results of our experiments. We firstly describe the results
relatively to the experiments conducted with synthetic query workloads. Then, we
illustrate the results obtained using the realistic query workload.

5.5.1 Synthetic query workload results

We begin by analyzing the behavior of perf and power. We recall that perf always
uses the maximum available CPU core frequency, while power is a utilization-based
policy which throttles a CPU core frequency accordingly to its utilization. Both perf
and power, however, do not permit to impose the required tail latency of a query
processing node. From Table 5.4 we can observe that, when MaxScore is deployed,
perf meets the 500 ms tail latency requirement up to 30 QPS, while the 1,000 ms
tail latency requirement is always satisfied. When WAND is used, instead, perf
satisfies the 500 ms tail latency up to 20 QPS, and the 1,000 ms tail latency up to
30 QPS. We explain this difference by recalling that WAND provides longer response
times than MaxScore (see Table 5.2). With respect to tail latencies, we observe
a similar behavior between perf and power. This is expected since, as the query
arrival rate increases, the CPU cores utilization increases as well, leading power to
select high core frequencies and hence behaving like perf. In terms of energy savings6,
Table 5.5 shows little differences between the two baselines. Some energy savings are
provided by power at low QPS, from ∼2% in the case of WAND up to ∼5% for
MaxScore, at the cost of higher tail latency. For high query arrival rates, power can
be even detrimental, increasing the energy consumption of the system. We explain
this behavior with the longer query processing times and the overhead introduced
by the policy, i.e., the CPU cores spend more time busy doing computations, hence
consuming more energy.

Regarding the other baseline, we observe in Table 5.4 that se-cons satisfies the
500 ms tail latency only for moderate QPS (from 15 to 25) when MaxScore is deployed,
and only for 20-25 QPS with WAND. Again, this is due to the better performance of
MaxScore over WAND. When considering a tail latency of 1000 ms, we observe that
se-cons meets the latency requirement from 10 to 35 QPS with MaxScore and from

5https://github.com/catenamatteo/dvfs4j.
6Energy consumption decreases as the query arrival rate increases, since experiments take less

time to complete.

https://github.com/catenamatteo/dvfs4j

50 Chapter 5. Energy-efficient Query Processing in Web Search Engines

Table 5.4: MaxScore (top) and WAND (bottom) tail latencies (95th-
tile, in ms) of baselines, time conservative (TC), and energy conserva-

tive (EC) PESOS for different synthetic query workload (QPS).

QPS
Baselines

PESOS
τ = 500 ms τ = 1, 000 ms

perf power se-cons TC EC TC EC

MaxScore

5 342 360 1,019 446 573 809 980
10 344 344 667 431 536 759 894
15 341 346 442 428 509 703 833
20 362 364 393 415 489 685 832
25 402 400 411 446 500 701 842
30 479 498 515 522 563 835 948
35 657 715 687 725 731 1,174 1,287

QPS
Baselines

PESOS
τ = 500 ms τ = 1, 000 ms

perf power se-cons TC EC TC EC

WAND

5 378 399 1,060 399 538 649 896
10 380 382 714 389 510 615 813
15 391 396 519 401 490 586 757
20 437 436 457 439 502 585 765
25 527 537 546 534 569 627 793
30 821 835 787 821 867 884 1,035
35 2,696 3,091 2,831 3,211 3,585 2,667 3,318

10 to 30 QPS with WAND. In general, we can conclude that se-cons produces latency
violations when the query arrival rate is particularly low or high. We explain this
behavior by recalling that se-cons requires to tune several parameters which drive
its decisions about frequency scaling. In our experiments we use a setting aimed
to produce the best energy savings and acceptable latencies. However, our results
suggests that a single parameter setting is not sufficient for se-cons to perform well
under a wide range of query arrival rates. With respect to energy consumption,
Table 5.5 shows that se-cons provides substantial energy savings with respect to
perf at low QPS (up ∼ 45% with Maxscore and ∼ 40% with WAND). However,
when the query arrival rate increases, se-cons can consume more energy. Again,
we explain this behavior with the longer query processing times and the overhead
introduced by the policy.

We now discuss the results for PESOS when using τ = 500 ms and τ = 1, 000
ms. For the time conservative configuration, Table 5.4 shows that PESOS satisfies
the 500 ms tail latency requirement from 5 to 20 QPS when using WAND and up to
25 QPS when using MaxScore. For the 1,000 ms tail latency requirement, in the time
conservative configuration PESOS meets the required latency up to 30 QPS for both
retrieval strategies. These results are similar to what reported for the perf policy.
Relatively to our first research question (RQ1), we can state that PESOS is able to

5.5. Results 51

T
ab

le
5.

5:
En

er
gy

co
ns
um

pt
io
n
(K

J)
of

ba
se
lin

es
,t

im
e
co
ns
er
va
tiv

e
(T

C
),

an
d
en
er
gy

co
ns
er
va
tiv

e
(E

C
)

PE
SO

S,
w
ith

en
er
gy

sa
vi
ng

s
w
.r.
t.

pe
rf

fo
r
di
ffe

re
nt

sy
nt
he
tic

qu
er
y
w
or
kl
oa
d
(Q

PS
).

Q
PS

B
as
el
in
es

PE
SO

S
τ

=
50

0
m
s

τ
=

1,
00

0
m
s

pe
rf

po
we

r
se

-c
on

s
T
C

EC
T
C

EC

M
ax

Sc
or
e

5
92

.7
9

87
.7
8

(-
5.

40
%

)
51

.0
6

(-
44

.9
7%

)
69

.9
5

(-
24

.6
2%

)
61

.3
4

(-
33

.8
9%

)
47

.4
3

(-
48

.8
9%

)
42

.5
6

(-
54

.1
3%

)

10
83

.5
1

81
.3
5

(-
2.

58
%

)
58

.3
2

(-
30

.1
6%

)
65

.3
8

(-
21

.7
1%

)
57

.3
0

(-
31

.3
9%

)
47

.3
6

(-
43

.2
9%

)
44

.8
1

(-
46

.3
4%

)

15
77

.7
8

77
.5
4

(-
0.

31
%

)
74

.3
3

(-
4.

44
%

)
64

.3
5

(-
17

.2
6%

)
57

.2
6

(-
26

.3
7%

)
50

.2
2

(-
35

.4
3%

)
48

.7
4

(-
37

.3
4%

)

20
75

.3
7

75
.3
4

(-
0.

05
%

)
75

.0
1

(-
0.

48
%

)
62

.2
1

(-
17

.4
6%

)
59

.4
2

(-
21

.1
7%

)
52

.3
5

(-
30

.5
5%

)
52

.6
5

(-
30

.1
5%

)

25
72

.7
5

73
.0
9

(0
.4

7%
)

74
.2
3

(2
.0

3%
)

65
.7
7

(-
9.

59
%

)
62

.5
7

(-
13

.9
9%

)
56

.4
6

(-
22

.3
9%

)
56

.7
4

(-
22

.0
1%

)

30
70

.7
4

71
.4
3

(0
.9

8%
)

72
.6
1

(2
.6

4%
)

66
.5
0

(-
6.

00
%

)
65

.0
6

(-
8.

04
%

)
62

.4
2

(-
11

.7
6%

)
65

.0
1

(-
8.

10
%

)

35
69

.7
8

71
.5
1

(2
.4

8%
)

71
.5
3

(2
.5

1%
)

68
.4
6

(-
1.

89
%

)
66

.8
9

(-
4.

14
%

)
70

.0
2

(0
.3

5%
)

68
.7
0

(-
1.

55
%

)

W
A
N
D

5
10

6.
49

10
4.
28

(-
2.

07
%

)
64

.1
1

(-
39

.8
0%

)
93

.8
3

(-
11

.8
9%

)
76

.0
3

(-
28

.6
0%

)
67

.3
8

(-
36

.7
2%

)
56

.4
8

(-
46

.9
6%

)

10
96

.6
2

95
.2
5

(-
1.

42
%

)
74

.1
3

(-
23

.2
8%

)
88

.0
1

(-
8.

91
%

)
74

.6
6

(-
22

.7
3%

)
67

.1
1

(-
30

.5
4%

)
60

.1
9

(-
37

.7
0%

)

15
91

.5
5

91
.9
8

(0
.4

6%
)

87
.2
7

(-
4.

66
%

)
84

.5
6

(-
7.

64
%

)
75

.8
0

(-
17

.2
1%

)
68

.3
9

(-
25

.3
0%

)
64

.2
7

(-
29

.8
1%

)

20
89

.3
4

89
.3
1

(-
0.

04
%

)
89

.2
7

(-
0.

08
%

)
83

.4
9

(-
6.

55
%

)
78

.4
4

(-
12

.2
0%

)
72

.1
1

(-
19

.2
9%

)
70

.7
2

(-
20

.8
4%

)

25
85

.8
1

86
.5
9

(0
.9

1%
)

87
.1
7

(1
.5

8%
)

83
.6
9

(-
2.

47
%

)
79

.3
2

(-
7.

56
%

)
75

.9
6

(-
11

.4
8%

)
73

.9
2

(-
13

.8
6%

)

30
85

.2
7

86
.3
8

(1
.3

1%
)

85
.8
5

(0
.6

8%
)

84
.3
7

(-
1.

05
%

)
82

.0
3

(-
3.

80
%

)
80

.8
2

(-
5.

22
%

)
80

.0
3

(-
6.

14
%

)

35
84

.5
8

84
.8
6

(0
.3

4%
)

85
.7
2

(1
.3

5%
)

84
.7
0

(0
.1

5%
)

84
.8
8

(0
.3

6%
)

82
.7
2

(-
2.

20
%

)
84

.1
5

(-
0.

50
%

)

52 Chapter 5. Energy-efficient Query Processing in Web Search Engines

meet the required tail latencies for the same query workloads sustainable by a system
which operates at maximum CPU core frequency.

In terms of energy savings, Table 5.5 shows that PESOS markedly reduce the
energy consumption of the query processing node’s CPUs. In the time conservative
configuration, PESOS can reduce the energy consumption up to ∼25% when using
MaxScore and up to ∼12% when using WAND. We explain the better results achieved
with MaxScore with the higher accuracy of its processing time predictors compared
to the ones for WAND (see Table 5.2). We also notice that energy savings diminish
as the query arrival rate increases, as there are fewer opportunities for PESOS to
use low core frequencies without violating query deadlines. Relatively to our second
research question (RQ2), the results in Table 5.5 show that PESOS actually permits
to reduce the CPU energy consumption of a query processing node. In most cases,
these energy savings are higher than those provided by the state-of-the-art power and
se-cons policies. This indicates that application-dependent information leveraged by
PESOS, such as the state of the query queues and the query efficiency predictors, are
a better input for managing the CPU cores frequencies than the cores or query servers
utilizations. Also, an important role is played by the τ parameter, which permits to
set the required tail latencies rather than processing the queries at maximum speed
as in perf, which does not take into account latency requirements.

We now analyze the performance of PESOS in the energy conservative configura-
tion, i.e., when we do not correct the query efficiency predictors using their RMSE.
Table 5.4 shows that, for both retrieval strategies, PESOS misses the 500 ms tail
latency requirement. This answer our third research question (RQ3): predictors cor-
rection is necessary to meet the latency requirements. However, we highlight that
the reported latency violations are limited: for the same QPS values for which the
time conservative configuration meets the 500 ms tail latency requirement, the energy
conservative configurations violates the requirement by up to ∼8% with WAND and
up to ∼15% with MaxScore. Additionally, we notice higher energy savings compared
to the time conservative configuration (see Table 5.5). When τ = 500 ms, the en-
ergy conservative configuration reduces the energy consumption of the CPU node by
∼29% in the case of WAND and by ∼34% in the case of MaxScore for low QPS. In
Table 5.4 we can observe that the 1,000 ms tail latency requirement is met up to
30 QPS when MaxScore is applied, and up to 25 QPS when WAND is used. This
suggests that predictors’ correction becomes less relevant as the latency requirement
increases. Remarkably, the energy conservative configuration basically halves the
energy consumption of the CPU node for 5 QPS when τ = 1, 000 ms (see Table 5.5).

Finally, to answer our last research question (RQ4), we compare the behavior
of PESOS while deploying MaxScore and WAND. In general, PESOS shows better
results with MaxScore. In fact, the tail latency requirements are met for slightly
higher QPS values compared to WAND. Also, PESOS shows higher energy savings
when the MaxScore retrieval strategy is applied. We explain this behavior with
the faster response time provided by MaxScore and by the higher precision of its
processing time predictors.

5.5.2 Realistic query workload results

Now we describe the results of the experiments conducted processing the realistic
query workload. In this subsection we will not investigate research question RQ4 as
for these experiments we use only the MaxScore retrieval strategy, which provided
the best results in Section 5.5.1. Firstly, we will analyze the performance of the
three baselines. Then, we will discuss the results obtained by PESOS in the time

5.5. Results 53

Table 5.6: CPU energy consumption (KJ) of the power management
approaches for processing a day of query log, and the gain w.r.t. perf.

Energy (KJ) Gain (%)

perf 790.40 –
power 759.42 -3.92%
se-cons 575.49 -27.19%
PESOS (TC, τ = 500 ms) 601.67 -23.88%
PESOS (EC, τ = 500 ms) 531.10 -32.81%
PESOS (TC, τ = 1, 000 ms) 443.73 -43.86%
PESOS (EC, τ = 1, 000 ms) 412.06 -47.87%

conservative configuration. Finally, we will study the performance of PESOS in the
energy conservative configuration.

Figure 5.4 reports the tail latencies of the tested approaches during the day. As
expected, perf provides lower latencies than the other approaches. Unsurprisingly,
perf exhibits also the higher CPU energy consumption as it always uses the maximum
core frequency (see Tab. 5.6). In terms of tail latency, power behaves similarly to perf
during midday but exhibits higher latencies at the beginning and at the end of the
day. This behavior is explained in Figure 5.6 (top). During midday, the CPU cores
are highly utilized due to the higher number of query arrivals. In response to high core
utilization, power selects the maximum core frequency as in perf. During the rest
of the day, instead, the query arrivals decrease and the CPU cores are less utilized.
Therefore, power selects lower core frequencies which explain longer latencies. For
the same reasons, power provides limited energy savings compared to perf, reducing
the CPU energy consumption by less than 4% as reported in Table 5.6. Figure 5.5
illustrate the energy reductions of power with respect to perf during the day. When
power is applied, we can observe energy savings only at the beginning and at the end
of the day, when power selects lower core frequencies as shown in Figure 5.6 (top). In
these periods, the CPU consumes ∼20% less energy with respect to perf. However,
during midday power does not provide any energy saving. Again, this is due to the
high utilizations showed by the CPU cores during midday In this situation, power
selects the maximum core frequency, behaving like perf and consuming the same
amount of energy.

Table 5.6 shows that se-cons can reduce by ∼27% the CPU energy consumption
with respect to perf. As shown in Figure 5.5, energy consumption can be reduced
by ∼45% during periods of low query workloads. However, such energy savings come
at the price of high latencies (see Fig. 5.4). Indeed, se-cons exhibits tail latencies
that are above 500 ms during midday, and above 1,000 ms during the rest of the
day. In fact, se-cons relies on low core frequencies most of the time (see Fig. 5.6
(middle)), hence producing long query response times. It starts selecting higher core
frequency only during midday, when the query servers utilizations increases due to
the higher query workload. In fact, we can notice in Figure 5.4 how tail latencies
reduces during midday. The results reported in this section confirm those presented
in Section 5.5.1, where se-cons poorly behaves in presence of low query arrival rates.
Indeed, se-cons requires a careful parameter tuning, and a static parameter setting
cannot efficiently cope with query arrivals rate that widely varies throughout the day.

Regarding time conservative PESOS, we can observe in Figure 5.4 that the 500
ms tail latency requirement is successfully met, with very few violations. Similarly,

54 Chapter 5. Energy-efficient Query Processing in Web Search Engines

00 02 04 06 08 10 12 14 16 18 20 22
Hour of day (hh)

200

400

600

800

1000

1200

1400

95
th

-t
ile

re
sp

on
se

ti
m

e
(m

s)

perf

power

se-cons

PESOS TC (τ = 500 ms)

PESOS EC (τ = 500 ms)

PESOS TC (τ = 1000 ms)

PESOS EC (τ = 1000 ms)

Figure 5.4: Tail latencies during a day, aggregated every 5 minutes.

00 02 04 06 08 10 12 14 16 18 20 22
Hour of day (hh)

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

power

se-cons

PESOS TC (τ = 500 ms)

PESOS EC (τ = 500 ms)

PESOS TC (τ = 1000 ms)

PESOS EC (τ = 1000 ms)

Figure 5.5: CPU energy reductions w.r.t perf, aggregated every 5
minutes.

5.5. Results 55

power

se-cons

PESOS
Figure 5.6: Number of times power (top), se-cons (middle) and
time-conservative (τ = 500 ms) PESOS (bottom) select frequencies on

one of the CPU cores during the day, sampled every second.

56 Chapter 5. Energy-efficient Query Processing in Web Search Engines

the time conservative configuration is able to meet the 1,000 ms tail latency require-
ment, remaining well below the required threshold. Relatively to our first research
question (RQ1), we conclude that PESOS can successfully meet the required tail la-
tency when the time conservative configuration is applied, even for a realistic query
workload. At the same time, PESOS shows significant energy savings with respect
to perf, as reported in Table 5.6. In fact, with a 500 ms tail latency requirement,
time conservative PESOS reduces the CPU energy consumption by ∼24%, and by
∼44% when we impose a 1,000 ms tail latency requirement. As shown in Figure 5.5,
such energy savings are present during the whole day, up to ∼30% under the 500 ms
tail latency requirement, and ∼50% for the 1,000 ms tail latency requirement. These
energy savings are possible thanks to the application-level information exploited by
the PESOS algorithm, such as the states of the query queues and the query efficiency
predictions. Also, an important role is played by the τ parameter, which permits to
set the required tail latency. As we can see from Figure 5.6 (bottom), this informa-
tion permits PESOS to select lower core frequencies more often than power, which
takes its frequency scaling decision relying only on the CPU cores utilizations. High
core frequencies are selected by time conservative PESOS only in limited cases during
midday, when the query load is more intense. Relatively to our second research ques-
tion (RQ2), we can then conclude that PESOS successfully reduces the CPU energy
consumption of a query processing nodes, providing much higher energy savings than
the power. At the same time, PESOS provides energy savings comparable to those
produce by se-cons, while incurring in many less latency violations.

We now analyze the results for PESOS in its energy conservative configuration.
As shown in Figure 5.4, energy conservative PESOS does not satisfy the tail latency
requirements. However, we notice that the tail latency of energy conservative PESOS
approaches the 500 ms requirement during midday, when the query load is more
intense and the query queues are populated with a higher number of queries than in
other periods of the day. In the PESOS algorithm, this results in critical intervals of
high intensity (see Alg. 4) which lead PESOS to select higher core frequencies, hence
reducing the tail latency of the system. We can observe the same effects when we
impose a 1,000 ms tail latency requirement. In this case, the energy conservative
configuration violates the requirement at the beginning and at the end of the day,
when the query workload is not intense. On the contrary, the 1,000 ms tail latency
requirement is met during midday in correspondence of a high query arrival rate.
While violating the tail latency requirements, the energy conservative configurations
provides the highest energy savings as reported in Table 5.6. When we impose a tail
latency requirement of 500 ms, energy conservative PESOS reduces the CPU energy
consumption by almost 33% compared to perf. The energy savings reach ∼48%
when the tail latency requirement is set to 1,000 ms. Such savings are present during
the whole day, as illustrated in Figure 5.5, up to ∼40% under the 500 ms tail latency
requirement, and ∼60% for the 1,000 ms tail latency requirement. Interestingly, we
notice a larger energy saving gap between time conservative and energy conservative
PESOS when τ = 500 ms than when τ = 1, 000 ms. This is particular evident in
Figure 5.5, where the curves relative to the two configurations almost coincides. This
is surprising, as time conservative PESOS is likely to over estimate the processing
volumes and times for some queries, selecting higher core frequencies and consuming
more energy. However, this behavior can be due to the longer time budgets available
to process queries under the 1,000 ms latency constraint, which still permits time
conservative PESOS to select lower core frequencies to process queries. Regarding
our third research question (RQ3), we can then conclude that predictors correction

5.5. Results 57

is necessary to meet the required tail latencies and overall time conservative PESOS
is a better choice when processing a realistic query workload.

5.5.3 Additional results on latency

Tail latency is assumed to be a better performance indicator for web search engines
than median and mean latency [33]. Nevertheless, the reader can be interested also
in these metrics. Therefore, we report in the following the median and mean response
time measured in our experiments.

Mean and median latencies under the synthetic query workload

We here focus on the mean latency obtained processing the queries using the MaxS-
core matching algorithm. From Table 5.7, we observe that the lowest mean latency
is obtained by perf, which processes all queries using the maximum core frequency.
power exhibits mean latencies similar to perf. However, for 5 and 35 QPS, we ob-
serve that power mean latency is slightly higher than perf’s. We recall that power
bases its frequency throttling decisions depending on the cores’ utilization. Since
low QPS implies low resource utilization, power tends to select low core frequency
when experiencing scarce workloads. This behavior explains the higher mean laten-
cies w.r.t. perf at 5 QPS. Instead, the higher mean latency reported at 35 QPS can
be explained by the overhead introduced by the power algorithm.

For se-cons, we observe that the mean latencies are higher than perf, especially
for low and high QPS. In fact, se-cons is a utilization-based policy, which base its
frequency throttling decisions upon the utilization of the query servers. Therefore,
se-cons incurs in the same shortcomings of power. Additionally, se-cons requires
some parameter tuning, which definitively plays a role here. In our experiments, we
used the same parameter settings adopted in Chapter 4 to produce the best energy
savings and latencies. However, results suggest that a single, static, parameter setup
is insufficient for se-cons to cope with a wide range of query arrival rates.

We now discuss the results regarding PESOS with MaxScore. From Table 5.7,
we can observe higher mean latencies than perf while using PESOS. However, we
recall that PESOS aims to reduce the CPU energy consumption while respecting
query deadlines. Deadlines are imposed via the τ parameter, i.e., queries have to
be processed within τ ms since their arrival to the query processing node. Indeed,
we observe that the mean latency for PESOS is always below the τ value. In fact,
PESOS does not try to process queries as fast as possible. Instead, it just aims to
process queries by their deadlines. This permits our policy to better exploit low core
frequency, providing the superior energy savings reported in Section 5.5.1.

The considerations drawn for the mean latencies and MaxScore are valid also
for the median latencies. Similar considerations can be derived for the results with
WAND, for which we observe higher latencies.

Mean and median latencies under the realistic query workload

We here report the mean latencies measured for the experiments conducted processing
the realistic query workload (see Figure 5.7). For these experiments we use just
MaxScore, which provided the best results in Section 5.5.3. The considerations drawn
for the mean latencies are valid also for the median ones (see Figure 5.8).

Figure 5.7 shows that perf provides lower mean latencies than the other ap-
proaches. power behaves similarly to perf during midday but exhibits higher mean
latencies at the beginning and at the end of the day. In fact, CPU cores are highly

58 Chapter 5. Energy-efficient Query Processing in Web Search Engines

T
able

5.7:
M
ean

and
m
edian

latencies
(in

m
s)

ofbaselines,tim
e
conservative

(T
C
),and

energy
conservative

(EC
)

PESO
S
for

different
synthetic

query
w
orkload

(Q
PS)

Q
PS

B
aselines

PESO
S

τ
=

500m
s

τ
=

1000m
s

perf
power

se-cons
T
C

EC
T
C

EC

m
edian

m
ean

m
edian

m
ean

m
edian

m
ean

m
edian

m
ean

m
edian

m
ean

m
edian

m
ean

m
edian

m
ean

M
axScore

5
65

104
72

112
150

282
111

156
138

199
169

257
192

303
10

65
104

66
105

102
186

95
142

117
177

154
237

183
281

15
65

103
66

104
74

128
91

139
111

167
156

228
196

279
20

68
109

68
109

70
115

90
135

113
164

166
232

229
301

25
76

121
76

121
77

124
101

147
123

172
196

254
270

330
30

94
146

99
153

102
158

123
175

149
201

256
346

371
422

35
141

209
162

235
153

224
178

247
204

266
430

503
533

595

W
A
N
D

5
66

113
74

122
157

295
90

136
133

191
143

213
185

285
10

66
113

67
114

99
192

80
127

109
168

122
191

164
255

15
67

116
69

117
77

144
77

126
102

159
118

184
163

244
20

72
128

73
127

73
131

81
134

105
164

123
186

183
260

25
85

150
87

152
87

154
96

156
119

183
138

205
207

280
30

148
245

153
253

140
234

155
248

176
270

206
295

310
393

35
744

969
823

1,078
800

1,024
893

1,137
1,032

1,303
730

962
1,040

1,288

5.5. Results 59

00 02 04 06 08 10 12 14 16 18 20 22
Hour of day (hh)

50

100

150

200

250

300

350

400

m
ea

n
re

sp
on

se
ti
m

e
(m

s)

perf

power

se-cons

PESOS TC (τ = 500 ms)

PESOS EC (τ = 500 ms)

PESOS TC (τ = 1000 ms)

PESOS EC (τ = 1000 ms)

Figure 5.7: Mean response times during a day, aggregated every 5
minutes.

00 02 04 06 08 10 12 14 16 18 20 22
Hour of day (hh)

50

100

150

200

250

300

m
ed

ia
n

re
sp

on
se

ti
m

e
(m

s)

perf

power

se-cons

PESOS TC (τ = 500 ms)

PESOS EC (τ = 500 ms)

PESOS TC (τ = 1000 ms)

PESOS EC (τ = 1000 ms)

Figure 5.8: Median response times during a day, aggregated every 5
minutes.

60 Chapter 5. Energy-efficient Query Processing in Web Search Engines

utilized during midday due to the high number of query arrivals. In response to high
core utilization, power tends to select high core frequency, producing lower mean la-
tencies. Instead, power selects lower core frequency during the rest of the day, since
query arrivals are scarcer and the CPU core are less utilized. This explains why power
mean latencies are higher than perf at the beginning and at the end of the day.

From Figure 5.7, we observe that se-cons mean response time is higher than
power’s. However, we notice that the two policies have a similar behavior: they
produce higher mean latencies at the beginning and at the end of the day, and lower
mean latencies during midday. Indeed, se-cons is a utilization-based policy like
power. Therefore, it tends to use high core frequencies in response to intense query
workloads. This explains why se-cons mean response time is lower during midday
and higher during the rest of the day, when query workload is scarce.

On the other hand, PESOS bases its frequency throttling decision such that each
query is served within τ ms since its arrival. Therefore, we observe the lowest mean
latencies when we impose τ = 500 ms. In particular, the time conservative con-
figuration produces mean latencies that are generally lower than those produced by
se-cons. On the other hand, we observe that PESOS shows higher mean latencies
than se-cons when we impose τ = 1000 ms and we use the energy conservative con-
figuration. However, it is worth to note that, under this setting, the query processing
node’s CPU consumes just 412.06 KJ, as opposed to the 575.49 KJ consumed by
se-cons, the 759.42 KJ consumed by power, and the 790.40 KJ consumed by perf.

5.6 Discussion
In this chapter we proposed the Predictive Energy Saving Online Scheduling (PESOS)
algorithm. In the context of web search engines, PESOS aims to reduce the CPU
energy consumption of a search server while imposing a required latency on the query
response times. PESOS can also be deployed at the inter-data center level (i.e., on a
distributed search architecture) since it is completely decentralized. We plan to study
its efficacy in such context in a future work.

For each query, PESOS selects the lowest possible CPU core frequency such that
the energy consumption is reduced and the deadlines are respected. PESOS selects the
right CPU core frequency exploiting two different kinds of query efficiency predictors
(QEPs). The first QEP estimates the processing volume of queries. The second QEP
estimates their processing times under different core frequencies, given the number of
postings to score. Since QEPs can be inaccurate, during their training we recorded
the root mean square error (RMSE) of the predictions. In this chapter, we proposed
to sum the RMSE to the actual predictions to compensate prediction errors. We then
defined two possible configurations for PESOS: time conservative, where prediction
correction is enforced, and energy conservative, where QEPs are left unmodified.

We experimentally evaluated the performance of PESOS using the ClueWeb09B
corpus and processing queries from the MSN2006 log applying two different dynamic
pruning retrieval strategies: MaxScore and WAND. We compared the performance
of PESOS with those of three baselines: perf, which always uses the maximum CPU
core frequency, power, which throttles frequencies according to the core utilizations,
and se-cons, which throttles frequencies according to the utilization of the search
servers. We found that time conservative PESOS was able to meet a required tail
latency of 500 and 1,000 ms for the same workload sustainable by perf. At the
same time, time conservative PESOS was able to reduce the CPU energy consump-
tion of the CPU by ∼12% with WAND up to ∼25% with MaxScore, for which we

5.6. Discussion 61

could train more accurate query efficiency predictors than for WAND. Greater energy
savings were observable with energy conservative PESOS, but at the cost of higher
latencies. Predictors correction is hence necessary to obtain the required tail latency,
still providing significant energy savings. Moreover, we processed a realistic query
workload which reflects the query arrivals of one day of the MSN2006 log. We found
that time conservative PESOS was able to meet a 500 ms (with very few violations)
and a 1,000 ms tail latency requirements, while reducing the CPU energy consump-
tion, respectively, by ∼24% and by ∼44% when compared to perf. From the same set
of experiments, we reported that power can reduce the CPU energy consumption by
just ∼4% with respect to perf. On the other hand, se-cons was able to reduce the
CPU energy consumption by ∼27% but incurring in considerable latency violations.
We justified the superior perf provided by PESOS thanks to the application-level
information exploited by our algorithm, such as the knowledge about the state of the
query queues and the query efficiency predictions.

63

Chapter 6

Exploiting Green Energy
to Reduce the Operational Costs
of Web Search Engines

6.1 Introduction
Commercial web search engines distribute their infrastructures and operations across
several, geographically distant, data centers [8, 21, 22, 60]. Each site maintains an
index replica of the most recent crawling of the Web [14] and user queries are subse-
quently processed in the closest available data center to minimize network latencies.

Energy prices play a role in deciding where to build a data center, favoring coun-
tries where energy is cheaper. In fact, energy shows both spatial and temporal price
variations, with its cost changing during the day due to supply/demand factors [91].
Query forwarding has been proposed as a factor to reduce the operational costs of
search engines [61, 101]. The main idea is to dispatch queries from the data center
that firstly received the request to a different one. In order to reduce the energy ex-
penditure, query forwarding aims to shift the query load towards those data centers
which incur in the lowest energy price at every time step.

Moreover, web companies have adopted eco-friendly policies to reduce data centers
energy consumption and the relative carbon footprint. These range from designing
more energy efficient data centers to increasing the usage of green energy – auto-
produced or bought from local providers [38, 50, 81].

Green energy comes from resources which are renewable and do not emit carbon
dioxide, such as sunlight and wind. On the contrary, brown energy is produced using
polluting resources like carbon or oil. Since green energy sources are freely available,
and thanks to governments incentives, green energy is often cheaper than brown
alternatives [47, 100]. However, green energy availability can fluctuate over the day:
for example, solar and wind energy production is susceptible to weather conditions.
Given that data center energy consumption depends on its usage [10], additional –
possibly brown – energy needs to be bought from the energy market, when there is
not enough available green energy to sustain the data center workload.

In this chapter we target the energy-related operational costs of large-scale, multi-
center web search engines with replicated indexes. Our research is mainly motivated
by the following observations:
• green energy is available at different sites in limited quantities;
• green energy usage is assumed to be more convenient than brown energy;
• query workloads of search data centers show spatial-temporal variations, i.e.,
the workload of a data center varies during the day and some data centers may
be under high traffic while others are mostly idle [98].

64 Chapter 6. Exploiting Green Energy to Reduce the Operational Costs
of Web Search Engines

We propose a new query forwarding algorithm that aims to reduce the overall
energy operational costs of a multi-center web search engine. Our approach exploits
both the green energy sources available at different sites and the differences in market
energy prices. The problem of exploiting green/brown energy to reduce costs when
forwarding queries is modeled as a Minimum Cost Flow Problem, taking into ac-
count the different and limited processing capacities of data centers, query response
time constrains and communication latencies among sites. We evaluate the proposed
algorithms using workloads obtained from the Yahoo search engine together with
realistic electric price data, and we compare it with a state-of-the-art baseline for
query forwarding in distributed search engines. Our results show that, in general,
query forwarding plays only a little role in reducing the carbon footprint of current
data centers. In other words, we provide an additional evidence of the need for more
energy-proportional hardware, i.e., for hardware which consume little or no energy
when not being in use [10, 12]. More importantly, we show that our solution ob-
tains energy expenditure reductions that range from ∼15% to ∼25% with respect to
standard multi-center web search engines, outperforming the state-of-the-art.

The rest of the chapter is structured as follows: Section 6.2 proposes a model for
a distributed search engine, its energy consumption and its operational costs, while
Section 6.3 exploits such models to design a query forwarding algorithm leveraging the
green energy available to the search engine. Section 6.4 illustrate our experimental
setup and Section 6.5 reports on the results of our comprehensive evaluation. Finally,
the chapter concludes in Section 6.6.

6.2 Problem statement
We model the infrastructure of a search engine as a geographically distributed sys-
tem. We assume that the underlying systems are able to communicate and exchange
workload using query forwarding, which we aim to leverage in conjunction with dif-
ferent pricing of electricity and availability of green energy around the world. The
main goal is to use optimally the amount of green energy available at different sites
to minimize the operational costs and, as a side effect, the carbon footprint of the
whole infrastructure. The model analytically captures the global state of a search
engine infrastructure through a set of state variables. We will implicitly assume that
our model is statically valid during a fixed time length or time slot ∆t.

Search engine model We model a geographically distributed search engine as a
set of data centers D = {D1, . . . , DN}. These data centers are placed in different and
distant locations across the planet. Each data center Di is a pair (Fi, Bi), composed
by a frontend Fi and a backend Bi (Figure 6.1).1 A frontend acts as a requests router:
it receives user queries and decides to whether forward them to its corresponding local
backend or to some remote backend. In practice, this implies that every frontend is
connected through the network to every backend. A backend is composed by several
server clusters, which perform the computation required to process an incoming query.
Once the results are computed, these are sent back to the frontend that received the
original request, which will deliver the results back to the user who issued the query.

Each frontend Fi collects queries from users geographically close to data center
Di. These users act like a query source Si sending to Fi a certain number of search
request ai over the time slot ∆t. The number of queries submitted varies throughout

1Free indexes are assumed to run from 1 to N if not specified otherwise.

6.2. Problem statement 65

D1

D2

D4
D5

D3

Figure 6.1: Example of a web search engine infrastructure model.

the day, being higher at daytime than at nighttime [98]. Due to timezone differences,
in the same instant, data centers will experience different query workloads.

After receiving a query, Fi may decide to forward this request to any other backend
Bj or to process it locally. Our goal is to determine xij , i.e., how many search requests
from frontend Fi are routed to backend Bj .

In this formulation, we enforce that the following three balance constraints hold.

1. Forwarded search requests can not be negative nor fractional, i.e., for all i and
j we must have xij ∈ N.

2. The sum of search requests dispatched by frontend Fi must correspond to the
search requests received from the source Si, i.e., for all i we must have:

N∑
j=1

xij = ai . (6.1)

3. At each time slot, the backend Bj processes yj queries, which come from the
different frontends. Therefore, for all j the following holds:

yj =
N∑
i=1

xij . (6.2)

Any backend Bj is composed bymj machines dedicated to process queries. Whenever
a query arrives, it is processed as soon as possible by a server in first-in first-out order.
If every server is busy processing other requests, the query will wait in a queue. Since
users expect results to be delivered in a short amount of time and queries can not
wait indefinitely to be processed [97], each request must be processed within a certain
time budget τ since its arrival on a frontend. Consequently, a query can be classified
according to the time spent in processing it, and the quality of the produced results:
• successful query – a server processes the query and successfully terminates
within τ milliseconds, generating a complete list of results;

66 Chapter 6. Exploiting Green Energy to Reduce the Operational Costs
of Web Search Engines

• approximated query – a server starts processing the query, but the time budget
τ expired before full evaluation. The query processing is early terminated and
a partial list of results is generated [33, 61];
• failed query – the query spends all its time budget waiting in queue. No server
is able to process the query resulting in an empty result list or an error page
returned to the user.

In our approach we wish to limit the number of approximated and failed queries as
they can negatively impact the user satisfaction. Arguably, the configuration of the
system should keep the amount of failed queries close to zero as they might severely
hurt the user perception of performance.

Once the result list is generated, the backend Bj sends it back to the frontend
Fi which has forwarded the relative query. The underlying communication network
introduces latencies which implies that round trip times from Di to Dj needs to be
accounted for. RTT (i, j) is the overall time required by the network to send a request
from Fi to Bj , and the response from Bj to Fi. Round trip times negatively impact
query processing, as they consume a part of the time budget of forwarded queries2.

Finally, the numbermj of identical machines hosted by the backend Bj determines
Vj , the maximum query volume the backend can sustain, this is, Vj is the maximum
number of queries per second that Bj can successfully process before their time budget
allowance expires:

Vj = mj

µ
, (6.3)

where µ is the average query processing time.
The amount of queries yj received by backend Bj should not exceed its capacity

Vj . Whenever this happens the backend becomes overloaded with requests and starts
to produce approximated and failed queries. Therefore, for every j, we impose that:

yj ≤ Vj . (6.4)

Moreover, we want any data center to be able to process its locally assigned queries
without being overloaded with those forwarded by other frontends. Given so, a remote
frontend Fi should limit the number xij of queries forwarded to Bj by a quantity
bounded by Bj ’s residual capacity, i.e., the difference between the backend capacity
and the locally incoming queries, divided by the number of remote sites. In line
with [61], for any i 6= j we impose that:

xij ≤
⌈max(0, Vj − aj)

N − 1

⌉
(6.5)

Energy model In this work we consider the energy consumed by a data center
to be accounted exclusively to its correspondent backend. Even if this assumption
does not hold in practice (for example, a considerable amount of energy is spent in
thermal cooling or inefficient power supplies causing electrical losses), these issues
are present regardless of queries being forwarded and do not affect the performance
numbers comparisons.

The power P absorbed by a server is a function of its utilization level u [10, 12],
which depends on its busy time (time spent performing computations). Since Bj ’s
servers are dedicated to process queries, in our scenario a server’s busy time accounts
for the amount of time needed to process all the queries assigned to the machine. If

2RTT (i, i) is assumed to be zero.

6.2. Problem statement 67

Q is the set of queries assigned to a server then the utilization level u(Q) equals:

u(Q) =
∑
q∈Q sq

∆t , (6.6)

where sq is the time required to solve a query q in Q, with 0 ≤ sq ≤ τ .
Power consumption increases linearly with its utilization and it reaches its peak

P̂ when u(Q) = 1. If a server is idle, i.e. u(Q) = 0, it consumes only a small fraction
of its peak power αP̂ , with 0 < α ≤ 1/2 [10]. Therefore, the power consumption of a
server as a function of its utilization level u(Q) can be written as:

P (Q) = αP̂ + (1− α)P̂ u(Q) . (6.7)

At each time slot ∆t we consider the energy Ej consumed by the backend Bj to
be the sum of the electricity required by its mj servers. Assuming Bj being composed
by homogeneous machines, for all j we have:

Ej =
mj∑
k=1

P (Qjk)∆t , (6.8)

where Qjk is the set of queries processed by the k-th server in Bj . By combining
Equations 6.6 and 6.7, we have that:

Ej = αmjP̂∆t+ (1− α)P̂
mj∑
k=1

u(Qjk)∆t

= αmjP̂∆t+ (1− α)P̂
mj∑
k=1

∑
q∈Qjk

sq . (6.9)

We define Qj as the full set of queries processed by the j-th backend’s machines, i.e.,
|Qj | = yj . Finally, the average energy Ej consumed by backend Bj during a time slot
∆t can be expressed as a function of the mean processing time µ as:

Ej = αmjP̂∆t+ (1− α)P̂ µyj = Ij +Hjyj (6.10)

The quantity Ij represents the energy consumed by Bj over ∆t seconds when
all its servers are idle. Instead, the quantity Hj represents the energy consumed to
process queries.

Cost model We assume that every data center receives a limited amount of green
energy per time slot, denoted as Gj . This green energy is available to the data center
because it has its own green power plant, or because of special agreements between
the search engine company and the energy provider. If Gj is not sufficient to satisfy
the energy consumption Ej the data center needs to buy additional, possibly brown,
energy from the market, denoted as Mj .

The number of queries that, on average, can by processed by backend Bj by only
exploiting green energy is:

gj = max
(

0, Gj − Ij
Hj

)
= max

(
0, Gj − αmjP̂∆t

(1− α)P̂ µ

)
. (6.11)

We consider that each data centerDj can consume energy available in two different
prices per energy units. We denote as pMj the unitary cost of market energy at site Dj .

68 Chapter 6. Exploiting Green Energy to Reduce the Operational Costs
of Web Search Engines

This price varies throughout the day, typically being higher at daytime than during
night [91]. Similarly, we define pGj to be the price of green energy at data center
Dj . We assume the green energy to be more convenient than the market energy [47,
100]. Therefore, we would like to use only green energy to operate the backends and
to process search requests, to reduce the search engine operational cost and carbon
footprint. However, when Gj units of energy have been used in a given time period,
we must resort to buy Mj units of market energy, to power the data center Dj for
the remaining of the time slot. Finally, the operational costs Cj of a data center Dj

can be expressed as:

Cj =
{
pGj Ej if Ej ≤ Gj
pMj Ej − (pMj − pGj)Gj otherwise

(6.12)

Our goal is to minimize the overall operative cost in running a geographically
distributed search engine, that is:

min
N∑
j=1

Cj . (6.13)

6.3 Problem solution
In this section we propose and discuss a new query forwarding algorithm, called Min
Cost Flow (MCF). This algorithm is executed periodically at the frontends of the
data centers to decide if an incoming query must be processed locally or forwarded to
another data center’s backend in order to minimize the overall operational cost of a
geographically distributed search engine. During every time interval ∆t, we need to
know how many queries each data center Di must process locally or forward to data
centers Dj , i.e., we need to compute values for the xij variables introduced in Section
6.2. In the following, we will show how these can be obtained by solving an instance
of the Minimum Cost Flow Problem [15].

Algorithm 5 illustrates the MCF query forwarding algorithm. Firstly, each data
center Di must be able to locally compute the xij ’s values for building a forwarding
table Xi, such that Xi[Dj] = xij . This table is build every ∆t seconds (lines 1–6). In
order to generate this table, the algorithm needs an estimate of the query volumes ai
arriving to each data center in the next time slot ∆t. The algorithm also requires per-
site information related to its maximum sustainable query volume Vi, the available
green energy Gi and the energy prices (pMi , pGi) at that time interval. We assume that
data centers exchange messages every ∆t seconds containing all those values [61].

At this point, whenever a query q arrives to the frontend Fi, the data center
estimates its required processing time sq (line 8). Next, Fi uses its forwarding table
Xi to decide to which sites it could forward a query to (line 9) and the frontend selects
in a round-robin fashion a backend Bj from Xi, such that Xi[Dj] > 0 (line 13). This
decision takes into account the expected round trip time from Fi to Bj . If the sum of
the expected query processing time and the expected round trip time is smaller than
the time budget τ , then q is forwarded to Bj (line 17). The value Xi[Dj] is decreased
by one and j is removed from Xi as soon as Xi[Dj] = 0 (lines 14–16). It is possible
that no remote backend can process the query within the time budget; in such case
the query is processed locally by default (lines 10–11).

6.3. Problem solution 69

Algorithm 5: The MCF query forwarding algorithm.
1 every ∆t seconds do
2 A = {a1, . . . , aN}
3 V = {V1, . . . , VN}
4 Γ = {G1, . . . , GN}
5 Π = {pM1 , . . . , pMN , p

G
1 , . . . , p

G
N}

6 Xi = GenerateForwardingTable(A,V ,Γ,Π)

7 forall incoming queries q ∈ Q do
8 sq = EstimateProcessingTime(q)
9 J = {Dj : Xi[Dj] > 0 ∧ sq +RTT (i, j) ≤ τ}

10 if J is empty then
11 process q locally
12 else
13 Dj = select Dj ∈ J in a round robin fashion
14 Xi[Dj]← Xi[Dj]− 1
15 if Xi[Dj] = 0 then
16 remove Dj from Xi

17 forward q to Dj

Generating a forwarding table The forwarding table Xi used in Algorithm 5 is
obtained by solving an instance of the Minimum Cost Flow Problem (MCFP) [15]
derived from the model of the distributed search engine discussed in Section 6.2.

The flow starts from some source nodes and every unit of flow needs to reach one
or many sink nodes. In our case, queries represent the flow circulating in the network.
Nodes are used to represent flow balance equations, i.e., the sum of incoming flow
must be equal to the sum of outgoing flow. Every edge is labeled with three values
representing the amount of flow passing through the link, its total capacity and cost
per unit of flow.

Figure 6.2 illustrates how the operational cost minimization problem with two
data centers can be represented as a MCFP instance. Source nodes are the query
sources S1, . . . , SN described in Section 6.2. These nodes are connected to their
correspondent frontends F1, . . . , FN , using edges with infinite capacity and zero cost.
Each source node Si originates ai units of flow (i.e., queries). It is not known, a priori,
how many queries will arrive on frontend Fi during a particular time slot ∆t. For this
reason, ai is estimated based on previous query arrivals as detailed in Section 6.4.

Each frontend Fi is connected to every backend Bj . The arcs among frontends

S1

S2

F1

F2

B1

B2

a1,�, 0

a2,�, 0

x11, V1, 0

x22, V2, 0

x12, V2 � a2, 0

x21, V1 � a1, 0

K1

K2

G

M

T

y1, V1, 0

y2, V2, 0

zG
1 , g1, p

G
1

zG
2 , g2, p

G
2

zM
1 ,�, pM

1

zM
2 ,�, pM

2

wG,�, 0

wM ,�, 0

Figure 6.2: The MCFP instance to minimize the operational cost of
a geographically distributed search engine.

70 Chapter 6. Exploiting Green Energy to Reduce the Operational Costs
of Web Search Engines

and backends have no cost. However they have different capacities. Edges (Fi, Bi)
have capacity Vi, i.e., the maximum volume of queries per second sustainable by
backend Bi (see Equation 6.4). Instead, edges (Fi, Bj) with i 6= j have capacity
dmax(0, Vj − aj)/(N − 1)e, as per Equation 6.5. The flows on the (Fi, Bi) edges
represent the values for the xij variables defined in our model.

An artificial node Kj is introduced for every backend Bj , connected through an
edge with zero cost and capacity Vj . These nodes enforce the constraint yj ≤ Vj for
every backend Bj (see Equation 6.4). The nodes Kj are connected to two more nodes,
namely Green (G) and Market (M). The first node models the query processing by
using green energy, while the second node by using market energy. Each Kj node
is connected to the Market node through edges with cost pMj and infinite capacity.
Moreover, each Kj node is connected to the Green nodes by edges with cost pGi but
limited capacity gi, i.e., the number of queries that Bi can process by using just green
energy (see Equation. 6.11). The flows zGj and zMj are just an artifact included to
satisfy the flow balance equations yj = zGj + zMj .

Finally, the G and M nodes are connected to the sink node T . The edges ending
in T have zero cost and infinite capacity and the flows wG and wM are an artificial
mean to guarantee that the flow entering in T is equal to the flow leaving the sources
Si, i.e.,

∑N
i=1 ai = wG + wM .

Note that every edge but (Ci, G) and (Ci,M) has zero cost. Therefore, to minimize
the flow cost indirectly minimizes the cost function defined by Equation 6.13.

MCFP instances can be solved in polynomial time by using linear programming
tools. More importantly, while MCF runs at every query arrival, the GenerateFor-
wardingTable function needs to be executed less frequently (every ∆t seconds).

Estimating the query processing time There are several approaches to esti-
mate the processing time of a query before executing it in the search engine backend.
Documents relevant to a query are retrieved from the inverted index, by exhaus-
tively traversing the posting lists relative to the query terms. In this case, processing
time relates to the posting list lengths of the query terms [85]. Dynamic pruning
techniques, such as MaxScore [105], can be deployed to speed up query processing.
These techniques skip over portions of the posting lists by avoiding the evaluation of
non relevant documents. When dynamic pruning is applied, queries with the same
number of terms and similar posting list lengths can have widely different processing
times and query efficiency predictors can be used [75].

Algorithm 5 is agnostic to the particular EstimateProcessingTime() imple-
mentation. In the experimental section, we assume that this function uses an oracle
which is employed in both the baseline and new algorithm.

6.4 Experimental setup
In this section, we determine empirically the potential of the proposed model and
algorithm for reducing the operational cost of a distributed search engine without
negatively impacting on its efficiency. In particular, we address three research ques-
tions, as follows:

• RQ1: What is the impact of the proposed approach and the baselines on the
quality of service of the search engine?

• RQ2: Does our approach diminish the data centers’ carbon footprint?

6.4. Experimental setup 71

• RQ3: Do our MCFP-based model and the query forwarding MCF algorithm
achieve energy cost savings comparable with reasonable baselines?

To answer questions 1, we measure the number of approximated and failed queries
produced by the search engine. To answer question 2, instead, we need to evaluate
the goodness of system in exploiting green energy. In fact, when the search engine
misses the opportunity to consume green energy, it turns to the energy market –
buying possibly brown energy and increasing its carbon footprint. For this reason we
measure the system green energy efficiency, defined as the ratio between the amount
of used green energy and the amount of green energy globally available to the search
engine. Finally, to answer research question 3, during our simulations we measure
the overall electricity expenditure of the search engine.

In the remainder of this section we define the experimental setup to address our
research questions covering the baselines, the data centers, the data, the energy prices
and the workload estimates.

Baselines We will compare these results against two baselines. The first baseline,
called NoForwarding, represents a standard multi-center web search engine. It does
not perform any query forwarding: the queries received by a frontend are processed
in the local backend.

The second baseline forwards the queries following the approach in [61]. Accord-
ing to this technique, the probability of forwarding a query towards a particular data
center is proportional to the amount of queries processable by the remote site and
evenly shared among sites with a higher energy prices. Since queries are forwarded us-
ing a probability distribution, we here refer to this approach as PROB. The technique
works as follows. At each query arrival, the data center Di estimates the workloads
(i.e., incoming queries) of each data center. Then, Di looks at which data center
is underloaded, i.e., which site has the opportunity to process forwarded queries. If
these other data centers have a lower energy price, Di simulates to redistribute its
own workload towards these sites. However, Di conservatively assumes that other
data centers will try to do the same. Therefore, Di equally divides such forwarding
opportunity with its “competitors”. The remaining queries are simulated to be pro-
cessed locally. At the end of the simulation, the data center Di has computed how
many queries xij it would forward to data center Dj . A probability distribution is
generated accordingly to these values and the incoming query is forwarded to a data
center following such distribution.

We do not consider here the approach proposed in [101], as it does not perform
any query forwarding in the case of fully replicated indices, therefore providing no
benefits in our scenario.

Search data centers Our experiments simulate a real distributed web search en-
gine with six data centers: DC-A, DC-B, DC-C, DC-D, DC-E and DC-F. We assume
that these data centers are located in the capital cities of six different countries. In
order to not disclose sensitive information, the countries are not revealed. We approx-
imate network latencies between frontends and backends by considering the speed of
light on copper wire (200,000 km/s) and the bird-fly distances between the relative
cities [22, 61].

We assume that the data centers’ backends contain identical servers. In this work,
we experiment with two different kinds of server, i.e., we variate the α parameter
defined in Section 6.2. The first server type represents normal servers which consume

72 Chapter 6. Exploiting Green Energy to Reduce the Operational Costs
of Web Search Engines

00 02 04 06 08 10 12 14 16 18 20 22

Hour of day (hh)

In
co

m
in

g
qu

er
y

vo
lu

m
e

DC-A

DC-B

DC-C

DC-D

DC-E

DC-F

Figure 6.3: Query workload for six different Yahoo frontends during
24-hours.

half of their peak power when idle (i.e., α = 0.5). The other type represents next-
generation servers, which are more energy-proportional, with α = 0.25 [10].

The number of machines in a backend is determined by taking the reciprocal of
the backend capacity in Equation 6.3. The maximum sustainable query volume, Vi,
is set to be the 99.95th-percentile of the observed query loads, taken every second
over the logs.

Data We use real-world queries and arrival times sampled – in the order of tens
of millions of points – from six different frontends of the Yahoo web search engine,
spanning one week. The first day of the log (see Figure 6.3) is used to tune our
approach and the baselines. The remaining days are used in the simulation, i.e.,
queries are sent to the simulated data centers following the same load and arrival
times reported in the log.

The processing times, on the other hand, are randomly sampled from an empir-
ical distribution. This distribution is obtained by processing one million of unique
queries using Terrier [76]. The platform is hosted on a dedicated Ubuntu 14.04 server,
equipped with 32GB RAM and an Intel i7-4770K processor. Queries are taken from
the MSN 2006 log [83], while documents relevant to such queries are retrieved from
the TREC ClueWeb09 collection (cat. B) [67]. The corpus is indexed removing stop-
words and stemming terms. The Elias-Fano schema is used for compression [107],
and the resulting inverted index is kept in main memory. At retrieval time, dynamic
pruning is applied by using the MaxScore algorithm [105]. The experimental mean
processing time is 100 ms and its 99th-percentile is 589 ms. During our simulations,
the query time budget τ is fixed to the reasonable value of 500 ms. This threshold
has been chosen to avoid a drop ratio greater than 0.5%. We note that this value
can be re-scaled if we consider shards with different sizes, for instance, when each
machine index stores a lower amount of web pages.

6.4. Experimental setup 73

00 02 04 06 08 10 12 14 16 18 20 22

Hour of day (hh)

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.036

P
ow

er
pr

ic
e

(e
/K

W
h)

DC-A

DC-B

DC-C

DC-D

DC-E

DC-F

GREEN

Figure 6.4: Market electricity prices and green energy price.

Electricity prices We need to set the price of green and market energy available
in each data center, along with the amount of green energy available at each location.

Market electricity price varies by country and by hour of the day. To simulate
this behavior, we generate a market electricity cost configuration in each data center.
This configuration follows the price fluctuations observed over one week on the United
Kingdom day-ahead market [89]. Prices are modified to reflect the cost of energy
in the countries where the data centers are placed [109]. Also, prices are shifted
accordingly to the timezone of the corresponding data center country. One day of
the resulting electricity costs is shown in Figure 6.4. All times are normalized to the
Greenwich Mean Time, i.e., GMT+0.

We assume that data centers have their own green power plants. Considering
construction and maintenance costs, these produce energy for 0.036 e/KWh, which
is cheaper than market energy [100]. As stated in Section 6.2, we assume that each
data center Di receives a fixed amount Gi of green energy at every time slot ∆t. This
quantity covers a fraction of the maximum amount of energy that Di can possibly
consume in ∆t seconds. The maximum energy consumption of a data center is given
by the product of the number mi of its servers times their peak power consumption P̂
times the time slot length ∆t. Therefore, at each time slot, a datacenter Di receives
Gi = γmiP̂∆t KWh of green energy. We denote by γ the green energy availability
ratio and range this value from 0 to 1 in the experiments. Green energy availability can
fluctuate over the day. For instance, solar and wind energy production is susceptible
to weather conditions. While our experiments do not consider this aspect, MCF can
deal with variable green energy availability.

Workload estimate Both PROB and MCF algorithms need to accurately estimate
the workloads of data centers a1, . . . , an in every time slot, to decide where to forward
queries. Following [61] we assume that data centers exchange messages about their
current workload every second (i.e., ∆t = 1s). This also corresponds to the execution
frequency of the GenerateForwardingTable function (see Algorithm 5). In the
succeeding time slot, each data center estimates the workloads of remote sites by

74 Chapter 6. Exploiting Green Energy to Reduce the Operational Costs
of Web Search Engines

Table 6.1: Time windows size (in seconds) for estimating the incom-
ing query workloads of different data centers.

α = 0.25 α = 0.5

γ PROB MCF PROB MCF
0.0 200 40 200 40
0.1 200 40 190 40
0.2 200 40 200 40
0.3 200 40 200 40
0.4 200 40 190 40
0.5 200 1 210 40
0.6 200 1 190 40
0.7 190 10 200 1
0.8 200 1 200 10
0.9 200 1 200 1
1.0 200 10 200 10

using their recent history. Conservatively, a future workload is approximated to the
maximum query volume observed over a time window for that remote data center [61].
In practice this implies that we need to select a time window size such that the
workload estimates are as accurate as possible. As a working example consider a
data center DC-A that is highly loaded. If the window size is too small and the
query load briefly drops, we incur in the risk of forwarding too many queries to DC-A
erroneously assuming that it is now lightly loaded. This situation will result in a high
number of failed queries. On the other hand, if the time window is too large and
DC-A is actually becoming lightly loaded, we will mistakenly produce low forwarding
rates assuming that DC-A is still highly loaded. This implies that the algorithm will
effectively miss the opportunity to save costs. Therefore, we use the first day of query
log to determine a reasonable time window size. We set this size to the minimum
possible value such that the failed query rate remains below the 0.5% threshold, as
in [61]. The ideal time windows are reported in Table 6.1 and consistently used for
the experiments. Note that MCF needs smaller time windows than PROB to estimate
the incoming workloads.

6.5 Results
In this section, we report on a comprehensive evaluation of MCF and PROB. The
reported results are presented as percentage improvements over the NoForwarding
baseline. We compare consistently the NoForwarding, PROB and MCF algorithms with
varying configurations, namely the idle server power consumption fraction α and the
data center green energy availability γ. We assume α = 0.5 for current servers and
α = 0.25 for next-generation servers, while we vary γ from 0 (data centers completely
powered by market energy) to 1 (data centers completely powered by green energy).

We aim to determine if our proposed MCF algorithm allows to markedly reduce
market power consumption and operational costs with latency comparable to that
achieved by the baselines. In particular, we firstly discuss the impact of the MCF
approach on the quality of service of the system, measured in terms of the amount
of approximated and failed queries. Then we evaluate the eco-friendliness of our
algorithm with respect to the baselines, measured in terms of their green energy

6.5. Results 75

efficiency. Finally, we address our key research question concerning the cost savings
MCF can obtain. The outcome of the experiments is summarized in Table 6.2.

Quality of service The two first main columns of Table 6.2 report the values
concerning the degradation in effectiveness of the different approaches, when queries
are being processed in a distributed fashion across different data centers.

Results state that our proposed approach does not negatively impact the over-
all service quality of the multi-site web search engine. Across all the tested green
availability ratios γ, the MCF algorithm reduces the number of approximated queries.
Moreover, thanks to query forwarding, approximated queries can be reduced from 1%
to 11% percent with respect to NoForwarding, when currently existing servers (i.e.,
α = 0.5) are utilized. Similar values are observable when the data center is equipped
with more energy-proportional servers (α = 0.25).

Table 6.2 also shows that MCF achieves the best absolute result in reducing the
approximated queries with respect to the PROB baseline when a large fraction of the
data centers is powered by green energy. However, while the PROB baseline maintains
an almost constant decrease of ∼11% of approximated queries across all green energy
availability configurations, MCF does not forward many queries for high green energy
availability values, since a large quantity of cheap green energy is available locally at
each data center. Consequently, data centers may incur in local overload situations
that force them to early terminate some queries.

We do not report here the number of failed queries since in all configurations this
value is always below the 0.5% threshold imposed in Section 6.4. Similarly, we do not
report here the query response times, as the query time budget τ is fixed to 500 ms.

Green energy efficiency As seen in Section 6.4, green energy efficiency gives us a
measure of the search engine eco-friendliness. Table 6.2 shows that query forwarding
plays a limited role in improving the green energy efficiency of a multi-site search
engine built of current technology servers when the amount of green energy is limited
(γ ≤ 0.5). This effect happens because half of the energy consumed by the data
centers is used just to keep the servers operative and idle, without processing any
query. Therefore, there is no opportunity for processing requests using green energy
when γ ≤ 0.5. Similarly, MCF and PROB behave like NoForwarding also when green
energy is abundant, i.e. γ ≥ 0.8; in this case, in fact, a query is processed using
green energy whether it is forwarded or not. With current servers, MCF shows eco-
friendliness when 0.5 < γ < 0.8, up to 1.66% when γ = 0.6. On the other hand,
PROB proves to be less green energy efficient than NoForwarding. In fact, PROB is
unaware of green energy availability and forwards queries where market energy is less
expensive. While doing this, PROB misses the opportunity to exploit locally available
green energy. Furthermore, it will not forward queries to data centers where market
energy is costly but green energy is available.

Green energy efficiency improves when employing more energy-proportional servers.
If α = 0.25, MCF becomes more effective in exploiting green energy, improving over
a larger range of green energy availability 0.3 < γ < 0.8, up to 5.37% when γ = 0.5.
Larger effects can be noticed on a smaller timescale, as highlighted in Figure 6.5.
Instead, the PROB baseline proves to be inadequate in reducing the carbon footprint
of a search engine, even when energy-proportional servers are employed.

76 Chapter 6. Exploiting Green Energy to Reduce the Operational Costs
of Web Search Engines

T
able

6.2:
Percentage

of
(a)

A
pproxim

ated
queries,

(b)
green

energy
effi

ciency
im

provem
ents,

and
(c)

cost
savings

w
ith

respect
to

N
oForwarding.

T
he

best
results

are
reported

in
bold.

(a)
A
pproxim

ated
queries

(b)
G
reen

energy
effi

ciency
(c)

C
ost

α
=

0.25
α

=
0.5

α
=

0.25
α

=
0.5

α
=

0.25
α

=
0.5

γ
PRO

B
M

CF
PRO

B
M

CF
PRO

B
M

CF
PRO

B
M

CF
PRO

B
M

CF
PRO

B
M

CF

0.0
-11.15

-10.70
-11.16

-10.84
0.00

0.00
0.00

0.00
-9.86

-9.45
-4.71

-4.50
0.1

-10.95
-10.77

-11.08
-10.85

0.00
0.00

0.00
0.00

-11.96
-11.55

-5.39
-5.17

0.2
-11.20

-10.89
-11.03

-10.80
0.00

0.00
0.00

0.00
-15.44

-14.82
-6.30

-6.07
0.3

-11.03
-10.85

-10.82
-10.60

-2.58
0.26

0.00
0.00

-16.84
-19.52

-7.64
-7.34

0.4
-11.23

-11.46
-11.35

-10.95
-4.07

3.93
0.00

0.00
-9.02

-25.51
-9.75

-9.30
0.5

-11.16
-10.08

-11.11
-10.84

-2.19
5.37

0.00
0.00

-1.35
-21.73

-13.21
-12.67

0.6
-10.98

-7.77
-11.03

-11.21
0.02

1.14
-1.76

1.66
-1.23

-5.75
-5.52

-15.79
0.7

-11.19
-11.73

-10.98
-8.48

0.06
0.10

-0.35
1.22

-0.49
-0.66

-0.37
-6.16

0.8
-11.07

-3.21
-10.88

-11.37
0.00

0.00
0.03

0.04
-0.04

-0.17
-0.21

-0.28
0.9

-10.99
0.85

-11.16
-1.25

0.00
0.00

0.00
0.00

-0.04
-0.20

-0.01
-0.08

1.0
-11.07

-6.83
-11.20

-7.01
0.00

0.00
0.00

0.00
-0.03

-0.09
-0.00

-0.04

6.5. Results 77

00 02 04 06 08 10 12 14 16 18 20 22
Hour of day (hh)

−15

−10

−5

0

5

10

15

20

%
G

re
en

E
ne

rg
y

E
ffi

ci
en

cy

α = 0.25, γ = 0.4

MCF

PROB

(a)

00 02 04 06 08 10 12 14 16 18 20 22
Hour of day (hh)

−6

−4

−2

0

2

4

6

8

%
G

re
en

E
ne

rg
y

E
ffi

ci
en

cy

α = 0.5, γ = 0.6

MCF

PROB

(b)

Figure 6.5: Percentage of green energy efficiency improvements w.r.t.
NoForwarding on a daily scale, over the first day of the test query log,

for (a) α = 0.25, γ = 0.4 and (b) α = 0.5, γ = 0.6.

78 Chapter 6. Exploiting Green Energy to Reduce the Operational Costs
of Web Search Engines

Cost savings Both MCF and PROB algorithms can help reduce the energy op-
erational cost of a multi-site search engine, as shown in Table 6.2. When current
servers are used, MCF and PROB similarly behave until the green energy availability
γ ≤ 0.5. Indeed, half of the energy available has to be consumed just to keep them
operative. However, in order to be able to process queries, data centers need to buy
additional energy from the energy market leaving no opportunity for MCF to exploit
green energy for query processing. In any case, even when γ ≤ 0.5, both PROB
and MCF forward queries to sites with cheaper market energy, successfully reducing
the operational costs of the whole search engine. As highlighted in Figure 6.6, when
green energy availability is 0.5 < γ < 0.8, MCF reduces the energy operational cost
up to almost 16% w.r.t NoForwarding. Such savings are even higher if we look at daily
variations, as shown in Figure 6.7.

Conversely, PROB reduces the operational cost by only less than 6% when 0.5 <
γ < 0.8. This effect happens again because PROB is not able to use the information
about the green energy availability, while MCF is able to exploit this knowledge. When
γ ≥ 0.8, little differences can be see with NoForwarding as green energy becomes highly
available at every sites, and query forwarding does not make any difference. If we use
more energy-proportional servers, larger benefits are observable over a wider range
of green energy availability. MCF reduces the energy expenditure of NoForwarding by
more than 25% when just 40% of green energy is available. Again, these benefits are
even larger when considering smaller time scales, as per Figure 6.7. Under the same
configuration, PROB can only save less than 10%.

Finally, it is important to highlight that MCF obtains the best results when
0.3 < γ < 0.8. This reinforces the importance of our results, as data centers would
probably work with limited amounts of green energy due to its susceptibility to ex-
ternal variables such as the weather conditions.

0.0 0.2 0.4 0.6 0.8 1.0

Green Availability Ratio γ

−30

−25

−20

−15

−10

−5

0

%
C

os
ts

w
.r

.t
.

N
oF

or
w

ar
di

ng

MCF (α = 0.25)

PROB (α = 0.25)

MCF (α = 0.5)

PROB (α = 0.5)

Figure 6.6: Percentage of cost savings w.r.t. NoForwarding, for dif-
ferent values of α and γ.

6.5. Results 79

00 02 04 06 08 10 12 14 16 18 20 22
Hour of day (hh)

−60

−50

−40

−30

−20

−10

0

10

20

%
C

os
ts

α = 0.25, γ = 0.4

MCF

PROB

(a)

00 02 04 06 08 10 12 14 16 18 20 22
Hour of day (hh)

−40

−30

−20

−10

0

10

20

%
C

os
ts

α = 0.5, γ = 0.6

MCF

PROB

(b)

Figure 6.7: Percentage of cost savings w.r.t. NoForwarding on a daily
scale, over the first day of the test query log for (a) α = 0.25, γ = 0.4

and (b) α = 0.5, γ = 0.6.

80 Chapter 6. Exploiting Green Energy to Reduce the Operational Costs
of Web Search Engines

6.6 Discussion
In this chapter we proposed a novel model of a multi-center web search engine that
characterizes the frontend and backend components of the system, together with their
processing capacity, to represent the energy operational cost of the search engine in
presence of green energy resources. Using this model, we proposed MCF, a novel
query forwarding algorithm based on a Minimum Cost Flow Problem formulation.
MCF is able to leverage the different pricing and availability of brown and green
energy to reduce the energy expenditure of search systems. At the same time, MCF
effectively takes into account the various backend processing capacities to maintain
an acceptable service quality of the system.

We simulated the proposed algorithm using real query workloads obtained from six
frontends of a live search engine and realistic electric price data. We compared our re-
sults with two baselines: NoForwarding, which represents a standard multi-site search
engine; and the state-of-the-art PROB algorithm, which greedily forwards queries to
the cheapest site following a estimated probabilistic distribution. We showed that
with current technology servers, query forwarding plays a limited role in reducing the
carbon footprint of search engines, although when a data center is equipped with next
generation hardware query forwarding is a promising and effective technique to exploit
green energy usage. This further reinforces the need for energy-proportional hardware
in web search engine data centers. Finally, we illustrated how MCF performs better
than PROB in achieving cost savings, obtaining energy expenditure reductions that
range from ∼15% to ∼25% with respect to the NoForwarding configuration. These
savings are possible when limited quantity of green energy are available at the differ-
ent remote sites, stating the importance of the MCF algorithm since green energy is
typically attainable only in limited quantities due to external variables like weather
conditions among others.

For future work, we will consider more complex scenarios where different green
power sources like solar and wind are available, and they vary dynamically during a
day at the different sites as well as the development of more complex query work-
load forecast predictors. Also, it will be interesting to study the interactions among
query forwarding techniques and energy saving approaches based on DVFS technolo-
gies [24, 26, 37, 71]. For instance, PESOS tries to process queries no faster than
user expectation to save energy by exploiting low CPU frequencies. On the contrary,
query forwarding techniques may require that query are always processed at maxi-
mum CPU frequency, to compensate the network delays introduced by the workload
offload. Whether these two aspects are reconcilable is left for future investigations.

81

Chapter 7

Conclusions
and Future Directions

In this thesis, we illustrated the energy-related challenges incurred by Web search
engines. In fact, these systems consume an huge amount of electricity to operate
their data centers. Such consumption are very expensive, and negatively impact on
the environment due to the carbon dioxide emitted to produce electricity.

In Chapter 1 and 2 we identified and discussed three levels of a search engine
architecture on which it is possible to intervene for reducing its energy expenditure
and carbon footprint. At the intra-server level, energy management approaches aim at
reducing the energy expenditure of the hardware components of single servers within
a Web search engine. Instead, energy management approaches operating at the intra-
data center level coordinate the operations of computational resources within a single
data center to reduce its energy expenditure. Finally, at the inter-data center level the
operations of multiple data centers can be orchestrated to reduce the overall energy
expenditure or carbon footprint of a multi-center search engine.

In this thesis, we mainly focused on improving the energy efficiency of the query
processing subsystem of a Web search engine. In particular, we studied the prob-
lem at the intra-server and inter-data center level. Regarding the intra-server level,
in Chapter 3 we showed that opportunities exist for a search engine to reduce the
energy consumption of its search servers by exploiting CPU frequency scaling mech-
anisms. Therefore, in Chapter 4 we proposed to delegate the control of the CPU
frequencies from the operating system to the query processing application. In this
way, the operating frequency of the CPU cores can be managed by the search engine
which can exploit information such as the search application utilization and load.
This knowledge permits to better control frequency scaling with respect to the op-
erating system. Indeed, experimental results show that the approaches we presented
in Chapter 4 allow reducing up to 24% a server power consumption, with only lim-
ited (but uncontrollable) drawbacks in the quality of search results with respect to a
system running at maximum CPU frequency.

In Chapter 5, we kept investigating in how to reduce energy consumption at
the intra-server level. Stemming from the observations of Chapter 3, in this chap-
ter we advised that Web search engine should not process queries faster than user
expectations, to reduce CPU energy consumption. In fact, users can hardly notice
response times that are faster than their expectations. Consequently, we proposed the
Predictive Energy Saving Online Scheduling (PESOS) algorithm, to select the most
appropriate CPU frequency to process a query by its deadline, on a per-core basis.
PESOS can reduce the CPU energy consumption of a query processing server from
24% up to 48% when compared to a high performance system running at maximum
CPU core frequency. Additionally, PESOS outperforms the best approach presented

82 Chapter 7. Conclusions and Future Directions

in Chapter 4 with a 20% energy saving, while the competitor requires a fine parameter
tuning and it may incur in uncontrollable latency violations.

Finally, in Chapter 6 we moved our attention on the inter-data center level and we
focused on reducing the carbon footprint and energy expenditure of multi-site search
engines. To this end, we tackled the problem of targeting the usage of green energy
available at different, geographically distant data centers. Therefore, we proposed a
new query forwarding algorithm that exploits both the green energy sources available
at different data centers and the differences in market energy prices. The proposed
solution maintains a high query throughput, while reducing by up to 25% the energy
operational costs of multi-center search engines.

In a future work, we will study how to further mitigate the energy-related prob-
lems at the intra-data center level. Indeed, se-cons, se-load, and PESOS can be
deployed in replicated and distributed search architecture since they are completely
decentralized. Nevertheless, it would still be interesting to evaluate the performance
of our approaches in a distributed context, where each search server holds a differ-
ent index shard and query processing times depend on the last server to complete a
query’s processing. Since a server energy consumption is linear in its utilization, it
may also worth investigating the role of index partitioning strategies on the energy ef-
ficiency of search clusters. In fact, different partitioning strategies cause different load
distributions on the servers, possibly influencing their energy consumption. Further-
more, it is worth studying the interactions among energy saving approaches based on
DVFS technologies (e.g., [24, 26, 37, 71]) and query forwarding techniques (e.g., [13,
61]). Indeed, approaches such as PESOS aim at satisfying user expectations while
processing queries as slow as possible, exploiting low CPU frequencies to save energy.
Conversely, query forwarding techniques may require that query are always processed
at maximum CPU frequency, to compensate the network delays introduced by the
workload offload.

Finally, we envision that prediction models will play an important role in improv-
ing the energy efficiency of Web search engines. For instance, in PESOS we leveraged
the query efficiency predictors originally proposed in [75] to predict query processing
times. Subsequent works have proposed more accurate query efficiency predictors [59,
62, 112], and we plan to investigate whether better prediction models can improve
the energy savings provided by PESOS. Instead, in Chapter 6 we used query work-
load predictions to guide our query forwarding algorithm. Our simplistic yet effective
approach estimates that the number of queries received by a data center at a given
instant is similar to the volume of queries received in precedent instants. However,
more complex models could take into account other aspects, such as the seasonality
of query workloads [98]. Therefore, a future work will study whether taking into
account such features can improve our results. Similarly, weather forecast predictors
can play a role in devising more effective query forwarding algorithms. Indeed, in this
thesis we assumed that green energy is always available. However, the availability
of solar and wind energy, for instance, vary dynamically during a day and across
the planet. Therefore, weather forecast predictions can help to decide where to shift
query processing to further reduce the energy expenditure and carbon footprint of
multi-site search engines.

83

Appendix A

On the CPU Power Consumption

Barroso, Clidaras, and Hölzle reports that “the CPU is the dominant energy consumer
in servers, using two thirds of the energy at peak utilization and about 40% when
(active) idle.” [10, pages 78-79]. In particular, the authors referred to the power usage
of Google servers as the compute load varies from idle to full activity levels. To confirm
this finding, we conducted the following experiments to measure the CPU power
consumption with respect to the overall power consumption of a server, measured
through the wall outlet. In particular, we were interested in studying the power
consumption of the server used for experiments in Chapter 4 and 5. This server is
equipped with 32 GB RAM and an Intel i7-4770K CPU, a member of the Haswell
product family. This CPU has eight logical cores that are mapped into four physical
cores, thanks to hyperthreading.

To study the power consumption of our server, we implemented a Java program
computing the square root of random integers, stored in main memory, to stress the
CPU (a similar approach is used in the stress utility [108]). Then, we used this
benchmark to keep all the server’s cores utilized at given level for 10 minutes. At
the same time, we measured the energy consumption of the server from the wall
outlet, using an Alciom PowerSpy2 power meter [3]. Meanwhile, we measured the
energy consumption on the CPU using the Mammut library [30]. We repeated this
experiment varying the CPU utilization from 0% to 100%.

Regarding the server used in our experiments, we found that the CPU is respon-
sible for more than 34% of the whole server power consumption, when active idle
(see Figure A.1). When the system is at peak utilization, instead, more than 50% of
the server energy consumption can be accounted to the CPU. This investigation em-
pirically confirms what reported in [10], although the exact percentage differs, since
our server is probably different from the one used in [10]. The experiment code is
available at https://goo.gl/6lkT8K.

https://goo.gl/6lkT8K

84 Appendix A. On the CPU Power Consumption

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Utilization

34%

38%

42%

46%

50%

54%

C
P

U
P

ow
er

(n
or

m
al

iz
ed

to
se

rv
er

p
ow

er
)

Figure A.1: CPU power usage of the server as the compute load
varies from (active) idle to full usage.

85

Appendix B

On the Effectiveness
of C-states and P-states

In Chapter 4 and 5 we proposed several approaches to reduce the CPU energy con-
sumption of a search servers by managing its CPU’s P-states, i.e., by varying its CPU
cores’ operating frequencies. In both chapters, we exercise all the CPU cores of the
search server to process queries, regardless the incoming query workload. However, a
reader may argue that a more sensible strategy would exploit periods of low load to
leverage core C-states, i.e., inactive, power saving states.

For instance, a search server could start with just one active core, in low frequency,
while the other cores are kept inactive. As the query load increases, the query process-
ing system would ramp up the active core frequency. If a single core cannot handle
the load, the system would activate a second core at low operating frequency. This
would ramp up as the query load increases, until a third core is needed, and so on.
In fact, it would be expected that to keep few cores active (at high frequencies) and
the rest of them inactive should save more energy than keeping all of them active at
low frequencies.

However, Meisner et al. report that CPU idle states provide little energy savings
in web search engines [80]. Moreover, Lo et al. evaluate a solution similar to the
one proposed in the previous example [71]. The authors find that keeping few cores
active at high frequency consumes more power than keeping all the cores active at
lower frequency.

Nevertheless, we decided to experimentally investigate the effectiveness of C-states
with respect to P-states. To this end, we used the Java benchmark introduced in
Appendix A to investigate the impact of workload balancing, P-states and C-states
across cores on the energy consumption of the CPU. We use our application to exercise
two of the available CPU’s cores available on our server, which is equipped with 32
GB RAM and an Intel i7-4770K CPU. The active cores were allowed to independently
select their best operational frequency depending on the respective loads, by using the
powersave governor. Instead, the other cores were kept pinned to inactive C-states.

Firstly, we executed an instance of our program on a single core for 10 minutes,
keeping its utilization at 100%, while the other core was in idle, power saving, C-state,
and then we simulated a scenario where the workload is evenly split across the two
cores, i.e., we run two instances of the program for 10 minutes keeping the cores’
utilization at 50%. Using the Mammut library [30], in the first case we measured a
CPU energy consumption of 13.4 KJ versus 10.9 KJ in the second case.

Secondly, we simulated the arrival of an additional workload (e.g., starting a new
test process), for a total utilization of 120%, and we compared again the two solutions:
keeping a core fully utilized and another one lowly utilized, versus evenly balancing
the new total workload onto the two cores. To this end, we first ran two instances of
the program for 10 minutes on two cores, keeping one core at 100% utilization and

86 Appendix B. On the Effectiveness of C-states and P-states

the other one at 20% utilization. Then, we re-ran the instances on the two cores for
10 minutes, while keeping the utilization at 60% on both cores. In the first case, we
measured a consumption of 15.5 KJ, while in the second case it was just 13.1 KJ.

These experimental results provide additional evidence that keeping cores active
and lowly utilized is better than keeping few cores active but highly utilized and the
remaining cores idle. Consequently, in this thesis we mostly focused on managing
P-states to improve the energy efficiency of a query processing system.

The source code of these experiment is available at https://goo.gl/zLHhw5.

https://goo.gl/zLHhw5

87

Appendix C

On the Reliability
of RAPL Measurements

The ability to accurately measure the CPU energy consumption is fundamental to
evaluate the effectiveness of CPU energy saving approaches. To this end, it is possible
to measure the overall energy consumption of a server from the wall outlet. However,
such measurements are inherently noisy, and they are highly dependent on external
factors such as the power grid status. Moreover, they report the overall energy
consumption of the server rather than the energy consumed by its CPU.

Recently, Intel introduced the Running Average Power Limit (RAPL) technology.
Via the RAPL interface, it is possible to measure the energy consumed by an Intel
CPU. These measurements are not synthetic: indeed, since the introduction of the
Haswell processor architecture1, the RAPL component performs actual measurements
of the CPU energy consumption. The RAPL interface has been used in other works
to measure the energy consumption of CPUs [29, 31], and Hackenberg et al. showed
the reliability of such measurements [52]. In particular, they find that the AC power
PAC absorbed by a server can be approximated with R2 > 0.9998 with an almost
linear fit of the RAPL power.

To confirm the findings in [52], we performed the following experiment using the
server and benchmark introduced in Appendix A. We run our benchmark to keep
all the server’s cores utilized at given level for 10 minutes. At the same time, we
measured the energy consumption of the server from the wall outlet, using an Alciom
PowerSpy2 power meter [3]. Meanwhile, we measured the energy consumption on
the CPU using the Mammut library [30]. We repeated this experiment varying the
utilization from 0% to 100%. The results in Figure C.1 confirm an almost linear
correlation of the energy consumption reported by the RAPL interface for the CPU
(on the x axis) with that reported by the power meter for the whole server (on the y
axis). The experiment code is available at https://goo.gl/6lkT8K.

1Experiments in Chapter 4 and 5 were conducted on a server equipped with an Intel i7-4770K
CPU, a member of the Haswell product family.

https://goo.gl/6lkT8K

88 Appendix C. On the Reliability of RAPL Measurements

15 20 25 30 35
CPU Energy (KJ)

40

45

50

55

60

65

70

S
er

ve
r

E
ne

rg
y

(K
J)

Figure C.1: Comparison of the CPU energy consumption measure-
ments with RAPL versus the total server energy consumption mea-

sured with a power meter.

89

Bibliography

[1] Susanne Albers. “Online Scheduling”. In: Introduction to Scheduling 3 (2009),
pp. 51–73.

[2] Susanne Albers, Fabian Müller, and Swen Schmelzer. “Speed Scaling on Par-
allel Processors”. In: Proc. SPAA. San Diego, USA: ACM, 2007, pp. 289–298.

[3] Alciom. PowerSpy2: User Manual. https://goo.gl/a3nIwR. Last visited:
2017-05-04. 2013.

[4] Jesse Alpert and Nissan Hajaj. We knew the Web was big. . . https : / /
googleblog.blogspot.it/2008/07/we- knew- web- was- big.html. Last
visited: 2016-11-04. 2008.

[5] Ioannis Arapakis, Xiao Bai, and B. Barla Cambazoglu. “Impact of Response
Latency on User Behavior in Web Search”. In: Proc. SIGIR. Gold Coast, Aus-
tralia: ACM, 2014, pp. 103–112.

[6] Claudine Santos Badue, Ricardo Baeza-Yates, Berthier Ribeiro-Neto, Arthur
Ziviani, and Nivio Ziviani. “Analyzing Imbalance among Homogeneous Index
Servers in a Web Search System”. In: Information Processing & Management
43.3 (2007). Special Issue on Heterogeneous and Distributed Information Re-
trieval, pp. 592–608.

[7] Ricardo Baeza-Yates and Berthier Ribeiro-Neto.Modern Information Retrieval:
The Concepts and Technology behind Search. 2nd ed. Addison-Wesley, 2011.

[8] Ricardo Baeza-Yates, Aristides Gionis, Flavio Junqueira, Vassilis Plachouras,
and Luca Telloli. “On the Feasibility of Multi-site Web Search Engines”. In:
Proc. CIKM. Hong Kong, China: ACM, 2009, pp. 425–434.

[9] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. “Speed Scaling to Manage
Energy and Temperature”. In: Journal of the ACM 54.1 (2007), pp. 1–39.

[10] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. “The Datacenter as a
Computer: an Introduction to the Design of Warehouse-scale Machines”. In:
Synthesis lectures on computer architecture 8.3 (2013), pp. 1–154.

[11] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. “Web Search for a Planet:
The Google Cluster Architecture”. In: IEEE Micro 23.2 (2003), pp. 22–28.

[12] Luiz André Barroso and Urs Hölzle. “The Case for Energy-Proportional Com-
puting”. In: Computer 40.12 (2007), pp. 33–37.

[13] Roi Blanco, Matteo Catena, and Nicola Tonellotto. “Exploiting Green Energy
to Reduce the Operational Costs of Multi-Center Web Search Engines”. In:
Proc. WWW. Montreal, Canada: IW3C2, 2016, pp. 1237–1247.

[14] Roi Blanco, B. Barla Cambazoglu, Flavio P. Junqueira, Ivan Kelly, and Vin-
cent Leroy. “Assigning Documents to Master Sites in Distributed Search”. In:
Proc. CIKM. Glasgow, United Kingdom: ACM, 2011, pp. 67–76.

[15] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

https://goo.gl/a3nIwR
https://googleblog.blogspot.it/2008/07/we-knew-web-was-big.html
https://googleblog.blogspot.it/2008/07/we-knew-web-was-big.html

90 BIBLIOGRAPHY

[16] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason
Zien. “Efficient Query Evaluation Using a Two-level Retrieval Process”. In:
Proc. CIKM. New Orleans, USA: ACM, 2003, pp. 426–434.

[17] Dominik Brodowski. CPU frequency and voltage scaling code in the Linux
kernel. https://www.kernel.org/doc/Documentation/cpu-freq/index.
txt. Last visited: 2016-11-08. 2015.

[18] Stefan Büttcher and Charles L.A. Clarke. “Index Compression is Good, Espe-
cially for Random Access”. In: Proc. CIKM. Lisbon, Portugal: ACM, 2007.

[19] Stefan Büttcher, Charles L.A. Clarke, and Gordon V. Cormack. Information
Retrieval: Implementing and Evaluating Search Engines. MIT Press, 2010.

[20] B. Barla Cambazoglu and Ricardo Baeza-Yates. “Scalability Challenges in Web
Search Engines”. In: Synthesis Lectures on Information Concept, Retrieval,
and Services 7.6 (2015), pp. 1–138.

[21] B. Barla Cambazoglu, Vassilis Plachouras, and Ricardo Baeza-Yates. “Quan-
tifying Performance and Quality Gains in Distributed Web Search Engines”.
In: Proc. SIGIR. Boston, USA: ACM, 2009, pp. 411–418.

[22] B. Barla Cambazoglu, Emre Varol, Enver Kayaaslan, Cevdet Aykanat, and Ri-
cardo Baeza-Yates. “Query Forwarding in Geographically Distributed Search
Engines”. In: Proc. SIGIR. Geneva, Switzerland: ACM, 2010, pp. 90–97.

[23] Matteo Catena, Craig Macdonald, and Iadh Ounis. “On Inverted Index Com-
pression for Search Engine Efficiency”. In: Proc. ECIR. Amsterdam, Nether-
lands: Springer, 2014, pp. 359–371.

[24] Matteo Catena, Craig Macdonald, and Nicola Tonellotto. “Load-sensitive CPU
Power Management for Web Search Engines”. In: Proc. SIGIR. Santiago,
Chile: ACM, 2015, pp. 751–754.

[25] Matteo Catena and Nicola Tonellotto. “A Study on Query Energy Consump-
tion in Web Search Engines.” In: Proc. IIR. Cagliari, Italy: CEUR-WS, 2015,
pp. 1–4.

[26] Matteo Catena and Nicola Tonellotto. “Energy-efficient Query Processing in
Web Search Engines”. In: Transactions on Knowledge and Data Engineering
(2017).

[27] Sai Rahul Chalamalasetti, Martin Margala, Wim Vanderbauwhede, Mitch
Wright, and Parthasarathy Ranganathan. “Evaluating FPGA-acceleration for
real-time unstructured search”. In: Proc. ISPASS. New Brunswick, USA: IEEE,
2012, pp. 200–209.

[28] Chronicle. Thread Affinity: Minimise Jitter for Critical Threads. http : / /
chronicle.software/products/thread-affinity/. Last visited: 2017-05-
04. 2016.

[29] Marco Danelutto, Daniele De Sensi, and Massimo Torquati. “Energy Driven
Adaptivity in Stream Parallel Computations”. In: Proc. PDP. Turku, Finland:
IEEE, 2015, pp. 103–110.

[30] Daniele De Sensi. Mammut: MAchine Micro Management UTilities. http:
//danieledesensi.github.io/mammut/. Last visited: 2017-05-04. 2016.

[31] Daniele De Sensi. “Predicting Performance and Power Consumption of Parallel
Applications”. In: Proc. PDP. Heraklion, Greece: IEEE, 2016, pp. 200–207.

https://www.kernel.org/doc/Documentation/cpu-freq/index.txt
https://www.kernel.org/doc/Documentation/cpu-freq/index.txt
http://chronicle.software/products/thread-affinity/
http://chronicle.software/products/thread-affinity/
http://danieledesensi.github.io/mammut/
http://danieledesensi.github.io/mammut/

BIBLIOGRAPHY 91

[32] Jeffrey Dean. “Challenges in Building Large-scale Information Retrieval Sys-
tems: Invited Talk”. In: Proc. WSDM. Barcelona, Spain: ACM, 2009, pp. 1–
1.

[33] Jeffrey Dean and Luiz André Barroso. “The Tail at Scale”. In: Communications
of the ACM 56.2 (2013), pp. 74–80.

[34] Constantinos Dimopoulos, Sergey Nepomnyachiy, and Torsten Suel. “Optimiz-
ing Top-k Document Retrieval Strategies for Block-max Indexes”. In: Proc.
WSDM. Rome, Italy: ACM, 2013, pp. 113–122.

[35] Shuai Ding and Torsten Suel. “Faster Top-k Document Retrieval Using Block-
max Indexes”. In: Proc. SIGIR. Beijing, China: ACM, 2011, pp. 993–1002.

[36] Shuai Ding, Jinru He, Hao Yan, and Torsten Suel. “Using Graphics Processors
for High Performance IR Query Processing”. In: Proc. WWW. Madrid, Spain:
ACM, 2009, pp. 421–430.

[37] Zhihui Du, Hongyang Sun, Yuxiong He, Yu He, David A. Bader, and Huazhe
Zhang. “Energy-Efficient Scheduling for Best-Effort Interactive Services to
Achieve High Response Quality”. In: Proc. IPDPS. Boston, USA: IEEE, 2013,
pp. 637–648.

[38] Facebook. Sustainability. https://sustainability.fb.com. Last visited:
2017-03-17. 2017.

[39] Tiziano Fagni, Raffaele Perego, Fabrizio Silvestri, and Salvatore Orlando. “Boost-
ing the Performance of Web Search Engines: Caching and Prefetching Query
Results by Exploiting Historical Usage Data”. In: Transactions on Information
Systems 24.1 (2006), pp. 51–78.

[40] Donald G. Fink and H. Wayne Beaty. Standard Handbook for Electrical En-
gineers. McGraw-Hill Engineering & Technology Management. McGraw-Hill,
1999.

[41] Marcus Fontoura, Vanja Josifovski, Jinhui Liu, Srihari Venkatesan, Xiangfei
Zhu, and Jason Y. Zien. “Evaluation Strategies for Top-k Queries over Memory-
Resident Inverted Indexes”. In: PVLDB 4.12 (2011), pp. 1213–1224.

[42] Ana Freire, Craig Macdonald, Nicola Tonellotto, Iadh Ounis, and Fidel Cacheda.
“A Self-adapting Latency/Power Tradeoff Model for Replicated Search En-
gines”. In: Proc. WSDM. New York, USA: ACM, 2014, pp. 13–22.

[43] Ana Freire, Craig Macdonald, Nicola Tonellotto, Iadh Ounis, and Fidel Cacheda.
“Hybrid Query Scheduling for a Replicated Search Engine”. In: Proc. ECIR.
Moscow, Russia: Springer, 2013, pp. 435–446.

[44] Qingqing Gan and Torsten Suel. “Improved Techniques for Result Caching in
Web Search Engines”. In: Proc. WWW. Madrid, Spain: ACM, 2009, pp. 431–
440.

[45] Anshul Gandhi, Mor Harchol-Balter, Rajarshi Das, Jeffrey O. Kephart, and
Charles Lefurgy. “Power Capping via Forced Idleness”. In: Proc. WEED at
ISCA. Austin, USA: ACM, 2009, pp. 1–7.

[46] James Glanz. “Power, pollution and the internet”. In: The New York Times
22 (2012).

[47] Íñigo Goiri, Kien Le, Md. E. Haque, Ryan Beauchea, Thu D. Nguyen, Jordi
Guitart, Jordi Torres, and Ricardo Bianchini. “GreenSlot: Scheduling Energy
Consumption in Green Datacenters”. In: Proc. SC. Seattle, USA: ACM, 2011,
20:1–20:11.

https://sustainability.fb.com

92 BIBLIOGRAPHY

[48] Ben Gomes.Google Instant, behind the scenes. https://googleblog.blogspot.
it/2010/09/google-instant-behind-scenes.html. Last visited: 2017-03-
16. 2010.

[49] Google. Efficiency: How we do it. https://www.google.com/about/datacenters/
efficiency/internal/. Last visited: 2017-03-20. 2016.

[50] Google. Environment. https://environment.google/. Last visited: 2017-03-
17. 2017.

[51] Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel. “The
Cost of a Cloud: Research Problems in Data Center Networks”. In: SIGCOMM
Computer Commununication Review 39.1 (2008), pp. 68–73.

[52] Daniel Hackenberg, Robert Schöne, Thomas Ilsche, Daniel Molka, Joseph
Schuchart, and Robin Geyer. “An Energy Efficiency Feature Survey of the
Intel Haswell Processor”. In: Proc. IPDPSW. Hyderabad, India: IEEE, 2015,
pp. 896–904.

[53] Mor Harchol-Balter. Performance Modeling and Design of Computer Systems:
Queueing Theory in Action. Cambridge University Press, 2013.

[54] Vassiliki Hatzi, B. Barla Cambazoglu, and Iordanis Koutsopoulos. “Optimal
Web Page Download Scheduling Policies for Green Web Crawling”. In: IEEE
Journal on Selected Areas in Communications 34.5 (2016), pp. 1378–1388.

[55] Vassiliki Hatzi, B. Barla Cambazoglu, and Iordanis Koutsopoulos. “Web Page
Download Scheduling Policies for Green Web Crawling”. In: Proc. SoftCOM.
Split, Croatia: IEEE, 2014, pp. 56–60.

[56] Nicolas Hidalgo, Erika Rosas, Veronica Gil-Costa, and Mauricio Marin. “As-
sessing Energy Efficiency in ISP and Web Search Engine Collaboration”. In:
Proc. WAINA. Victoria, Canada: IEEE, 2014, pp. 299–304.

[57] Bradley Huffaker, Marina Fomenkov, Daniel J. Plummer, David Moore, and
Kimberly Claffy. “Distance Metrics in the Internet”. In: Proc. ITS. Natal,
Brazil: IEEE, 2002, pp. 200–202.

[58] Vijay Janapa Reddi, Benjamin C. Lee, Trishul Chilimbi, and Kushagra Vaid.
“Web Search Using Mobile Cores: Quantifying and Mitigating the Price of
Efficiency”. In: Proc. ISCA. Saint-Malo, France: ACM, 2010, pp. 314–325.

[59] Myeongjae Jeon, Saehoon Kim, Seung-won Hwang, Yuxiong He, Sameh El-
nikety, Alan L. Cox, and Scott Rixner. “Predictive Parallelization: Taming
Tail Latencies in Web Search”. In: Proc. SIGIR. Gold Coast, Australia: ACM,
2014, pp. 253–262.

[60] Flavio P. Junqueira, Vincent Leroy, and Matthieu Morel. “Reactive Index
Replication for Distributed Search Engines”. In: Proc. SIGIR. Portland, USA:
ACM, 2012, pp. 831–840.

[61] Enver Kayaaslan, B. Barla Cambazoglu, Roi Blanco, Flavio P. Junqueira, and
Cevdet Aykanat. “Energy-price-driven Query Processing in Multi-center Web
Search Engines”. In: Proc. SIGIR. Beijing, China: ACM, 2011, pp. 983–992.

[62] Saehoon Kim, Yuxiong He, Seung-won Hwang, Sameh Elnikety, and Seungjin
Choi. “Delayed-Dynamic-Selective (DDS) Prediction for Reducing Extreme
Tail Latency in Web Search”. In: Proc. WSDM. Shanghai, China: ACM, 2015,
pp. 7–16.

https://googleblog.blogspot.it/2010/09/google-instant-behind-scenes.html
https://googleblog.blogspot.it/2010/09/google-instant-behind-scenes.html
https://www.google.com/about/datacenters/efficiency/internal/
https://www.google.com/about/datacenters/efficiency/internal/
https://environment.google/

BIBLIOGRAPHY 93

[63] Jonathan G. Koomey, Christian Belady, Christian Patterson, and Christian
Santos. Assessing Trends over Time in Performance, Costs, and Energy Use
for Servers. http://www.intel.com/assets/pdf/general/servertrendsreleasecomplete-
v25.pdf. Last visited: 2016-11-04. 2009.

[64] Kien Le, Ricardo Bianchini, Thu D. Nguyen, Ozlem Bilgir, and Margaret
Martonosi. “Capping the Brown Energy Consumption of Internet Services at
Low Cost”. In: Proc. GREENCOMP. Chicago, USA: IEEE, 2010, pp. 3–14.

[65] Daniel Lemire and Leonid Boytsov. “Decoding Billions of Integers per Second
Through Vectorization”. In: Software: Practice and Experience 45.1 (2015),
pp. 1–29.

[66] Ronny Lempel and Fabrizio Silvestri. “Web Search Result Caching and Prefetch-
ing”. In: Encyclopedia of Database Systems. Springer, 2009, pp. 3501–3506.

[67] Lemur Project. The ClueWeb09 Dataset. http://lemurproject.org/clueweb09.
Last visited: 2016-11-08. 2009.

[68] Jacob Leverich and Christos Kozyrakis. “On the Energy (in)Efficiency of Hadoop
Clusters”. In: SIGOPS Operating Systems Review 44.1 (2010), pp. 61–65. issn:
0163-5980.

[69] Kenan Liu, Gustavo Pinto, and Yu David Liu. “Data-Oriented Characteriza-
tion of Application-Level Energy Optimization”. In: Proc. FASE at ETAPS.
London, United Kingdom: Springer, 2015, pp. 316–331.

[70] Tie-Yan Liu. “Learning to Rank for Information Retrieval”. In: Foundations
and Trends in Information Retrieval 3.3 (2009), pp. 225–331.

[71] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and Christos
Kozyrakis. “Towards Energy Proportionality for Large-scale Latency-critical
Workloads”. In: Proc. ISCA. Minneapolis, USA: ACM, 2014, pp. 301–312.

[72] Yung-Cheng Ma, Tien-Fu Chen, and Chung-Ping Chung. “Posting File Parti-
tioning and Parallel Information Retrieval”. In: Journal of Systems and Soft-
ware 63.2 (2002), pp. 113–127.

[73] Yung-Cheng Ma, Chung-Ping Chung, and Tien-Fu Chen. “Load and Stor-
age Balanced Posting File Partitioning for Parallel Information Retrieval”. In:
Journal of Systems and Software 84.5 (2011), pp. 864–884.

[74] Craig Macdonald, Rodrygo L.T. Santos, and Iadh Ounis. “The Whens and
Hows of Learning to Rank for Web Search”. In: Information Retrieval 16.5
(2013), pp. 584–628.

[75] Craig Macdonald, Nicola Tonellotto, and Iadh Ounis. “Learning to Predict
Response Times for Online Query Scheduling”. In: Proc. SIGIR. Portland,
USA: ACM, 2012, pp. 621–630.

[76] Craig Macdonald, Richard McCreadie, Rodrygo L.T. Santos, and Iadh Ounis.
“From Puppy to Maturity: Experiences in Developing Terrier”. In: Proc. OSIR
at SIGIR (2012), pp. 60–63.

[77] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to Information Retrieval. Cambridge University Press, 2008.

[78] Mauricio Marin, Veronica Gil-Costa, and Carlos Gomez-Pantoja. “New Caching
Techniques for Web Search Engines”. In: Proc. HPDC. Chicago, USA: ACM,
2010, pp. 215–226.

http://www.intel.com/assets/pdf/general/servertrendsreleasecomplete-v25.pdf
http://www.intel.com/assets/pdf/general/servertrendsreleasecomplete-v25.pdf
http://lemurproject.org/clueweb09

94 BIBLIOGRAPHY

[79] David Meisner, Brian T. Gold, and Thomas F. Wenisch. “PowerNap: Elimi-
nating Server Idle Power”. In: Proc. ASPLOS. Washington, USA: ACM, 2009,
pp. 205–216.

[80] David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-Dietrich We-
ber, and Thomas F. Wenisch. “Power Management of Online Data-intensive
Services”. In: Proc. ISCA. San Jose, USA: ACM, 2011, pp. 319–330.

[81] Microsoft. Environmental Sustainability at Microsoft. https://www.microsoft.
com/about/csr/environment/. Last visited: 2017-03-17. 2017.

[82] Microsoft. Microsoft 2015 Citizenship Report. http://bit.ly/1TCFkGP. Last
visited: 2017-03-20. 2015.

[83] Microsoft. MSN 2006 Query Log. http://research.microsoft.com/en-
us/um/people/nickcr/wscd09. Last visited: 2016-11-08. 2009.

[84] Sparsh Mittal. “Power Management Techniques for Data Centers: A Survey”.
In: CoRR abs/1404.6681 (2014).

[85] Alistair Moffat, William Webber, Justin Zobel, and Ricardo Baeza-Yates. “A
Pipelined Architecture for Distributed Text Query Evaluation”. In: Informa-
tion Retrieval 10.3 (2007), pp. 205–231.

[86] Anne-Cecile Orgerie, Marcos Dias de Assuncao, and Laurent Lefevre. “A Sur-
vey on Techniques for Improving the Energy Efficiency of Large-scale Dis-
tributed Systems”. In: ACM Computing Surveys 46.4 (2014), pp. 1–31.

[87] Giuseppe Ottaviano, Nicola Tonellotto, and Rossano Venturini. “Optimal Space-
time Tradeoffs for Inverted Indexes”. In: Proc. WSDM. Shanghai, China, 2015,
pp. 47–56.

[88] Venkatesh Pallipadi, Shaohua Li, and Adam Belay. “cpuidle: Do nothing, effi-
ciently”. In: Proc. Linux Symposium. Ottawa, Canada, 2007, pp. 119–125.

[89] Nord Pool. Market Data. http://www.nordpoolspot.com. Last visited: 2015-
06-01. 2015.

[90] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros
Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hor-
mati, Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon
Pope, Aaron Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. “A Re-
configurable Fabric for Accelerating Large-scale Datacenter Services”. In: Proc.
ISCA. Minneapolis, USA: ACM, 2014, pp. 13–24.

[91] Asfandyar Qureshi, Rick Weber, Hari Balakrishnan, John Guttag, and Bruce
Maggs. “Cutting the Electric Bill for Internet-scale Systems”. In: Proc. SIG-
COMM. Barcelona, Spain: ACM, 2009, pp. 123–134.

[92] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui Wang,
and Xiaoyun Zhu. “No "Power" Struggles: Coordinated Multi-level Power Man-
agement for the Data Center”. In: Proc. ASPLOS. Seattle, USA: ACM, 2008,
pp. 48–59.

[93] Parthasarathy Ranganathan, Phil Leech, David Irwin, and Jeffrey Chase.
“Ensemble-level Power Management for Dense Blade Servers”. In: Proc. ISCA.
Boston, USA: ACM, 2006, pp. 66–77.

[94] Shaolei Ren, Yuxiong He, Sameh Elnikety, and Kathryn S. McKinley. “Ex-
ploiting Processor Heterogeneity in Interactive Services”. In: Proc. ICAC. San
Jose, USA: USENIX, 2013, pp. 45–58.

https://www.microsoft.com/about/csr/environment/
https://www.microsoft.com/about/csr/environment/
http://bit.ly/1TCFkGP
http://research.microsoft.com/en-us/um/people/nickcr/wscd09
http://research.microsoft.com/en-us/um/people/nickcr/wscd09
http://www.nordpoolspot.com

BIBLIOGRAPHY 95

[95] Stephen Robertson and Hugo Zaragoza. “The Probabilistic Relevance Frame-
work: BM25 and Beyond”. In: Foundations and Trends in Information Re-
trieval 3.4 (2009), pp. 333–389.

[96] Fethi Burak Sazoglu, B. Barla Cambazoglu, Rifat Ozcan, Ismail Sengor Altin-
govde, and Özgür Ulusoy. “A Financial Cost Metric for Result Caching”. In:
Proc. SIGIR. Dublin, Ireland: ACM, 2013, pp. 873–876.

[97] Eric Schurman and Jake Brutlag. “Performance Related Changes and their
User Impact”. In: Proc. Velocity. San Jose, USA: O’Reilly, 2009.

[98] Fabrizio Silvestri. “Mining Query Logs: Turning Search Usage Data into Knowl-
edge”. In: Foundations and Trends in Information Retrieval 4.1–2 (2010),
pp. 1–174.

[99] David C. Snowdon, Sergio Ruocco, and Gernot Heiser. “Power Management
and Dynamic Voltage Scaling: Myths and Facts”. In: Proc. PARC workshop
at EMSoft. IEEE, 2005.

[100] Christopher Stewart and Kai Shen. “Some Joules are More Precious Than
Others: Managing Renewable Energy in the Datacenter”. In: Proc. HotPower
workshop at SOSP. Big Sky, USA: ACM, 2009.

[101] Amin Teymorian, Ophir Frieder, and Marcus A. Maloof. “Rank-energy Selec-
tive Query Forwarding for Distributed Search Systems”. In: Proc. CIKM. San
Francisco, USA: ACM, 2013, pp. 389–398.

[102] The Climate Group for the Global e-Sustainability Initiative. Smart 2020:
Enabling the low carbon economy in the information age. http://gesi.org/
files/Reports/Smart%202020%20report%20in%20English.pdf. Last vis-
ited: 2016-11-04. 2008.

[103] The Linux Kernel Archives. Intel P-State driver. https://www.kernel.org/
doc/Documentation/cpu-freq/intel-pstate.txt. Last visited: 2016-11-08.
2016.

[104] Nicola Tonellotto, Craig Macdonald, and Iadh Ounis. “Efficient and Effective
Retrieval Using Selective Pruning”. In: Proc. WSDM. Rome, Italy: ACM, 2013,
pp. 63–72.

[105] Howard Turtle and James Flood. “Query Evaluation: Strategies and Opti-
mizations”. In: Information Processing & Management 31.6 (1995), pp. 831–
850.

[106] U.S. Department of Energy. Quick Start Guide to Increase Data Center Energy
Efficiency. http://www.gsa.gov/graphics/pbs/data_center_quick_
start_03_09_508_compliant.pdf. Last visited: 2016-11-04. 2009.

[107] Sebastiano Vigna. “Quasi-succinct Indices”. In: Proc. WSDM. Rome, Italy:
ACM, 2013, pp. 83–92.

[108] Amos Waterland. stress: a Tool to Impose Load on and Stress Test Systems.
http://people.seas.harvard.edu/~apw/stress/. Last visited: 2017-05-04.
2014.

[109] Wikipedia. Electricity pricing. https://en.wikipedia.org/wiki/Electricity_
pricing. Last visited: 2015-06-01. 2015.

[110] Ian H. Witten, Timothy C. Bell, and Alistair Moffat. Managing Gigabytes:
Compressing and Indexing Documents and Images. 1st. New York, NY, USA:
Wiley, 1994.

http://gesi.org/files/Reports/Smart%202020%20report%20in%20English.pdf
http://gesi.org/files/Reports/Smart%202020%20report%20in%20English.pdf
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
http://www.gsa.gov/graphics/pbs/data_center_quick_start_03_09_508_compliant.pdf
http://www.gsa.gov/graphics/pbs/data_center_quick_start_03_09_508_compliant.pdf
http://people.seas.harvard.edu/~apw/stress/
https://en.wikipedia.org/wiki/Electricity_pricing
https://en.wikipedia.org/wiki/Electricity_pricing

96 BIBLIOGRAPHY

[111] WorldWideWebSize.com. The size of the World Wide Web (The Internet).
http://www.worldwidewebsize.com. Last visited: 2016-11-04. 2016.

[112] Hao Wu and Hui Fang. “Analytical Performance Modeling for Top-K Query
Processing”. In: Proc. CIKM. Shanghai, China: ACM, 2014, pp. 1619–1628.

[113] Jing Yan, Zhan-Xiang Zhao, Ning-Yi Xu, Xi Jin, Lin-Tao Zhang, and Feng-
Hsiung Hsu. “Efficient Query Processing for Web Search Engine with FPGAs”.
In: Proc. FCCM. Toronto, Canada: IEEE, 2012, pp. 97–100.

[114] Frances Yao, Alan Demers, and Scott Shenker. “A Scheduling Model for Re-
duced CPU Energy”. In: Proc. FOCS. Washington, USA: IEEE, 1995, pp. 374–
382.

http://www.worldwidewebsize.com

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Energy-related challenges in data centers
	Energy management in web search engines
	Summary of contributions
	Organization of the thesis

	Background
	Query processing
	Query processing on a search server
	Query processing on a search cluster
	Query processing on multiple search centers

	Energy management in web search engines
	Intra-server energy management
	Intra-data center energy management
	Inter-data centers energy management

	Positioning with respect to the state of the art

	Query Energy Consumption in Web Search Engines
	Introduction
	Experimental setup and analysis
	Discussion

	Load-sensitive CPU Power Management for Web Search Engines
	Introduction
	Problem statement
	Proposed solution
	Experimental setup
	Results
	Discussion

	Energy-efficient Query Processing in Web Search Engines
	Introduction
	Problem statement
	Operative scenario
	The minimum-energy scheduling problem
	Issues with YDS

	Problem solution
	On-line scheduling without preemption
	Predicting processing volumes
	Translating processing speeds into CPU frequencies
	Frequency selection algorithm for search engines

	Experimental setup
	Training processing volume predictors
	Training processing time predictors
	Measuring energy consumption and latency
	Other experimental setup details

	Results
	Synthetic query workload results
	Realistic query workload results
	Additional results on latency
	Mean and median latencies under the synthetic query workload
	Mean and median latencies under the realistic query workload

	Discussion

	Exploiting Green Energy to Reduce the Operational Costs of Web Search Engines
	Introduction
	Problem statement
	Problem solution
	Experimental setup
	Results
	Discussion

	Conclusions and Future Directions
	On the CPU Power Consumption
	On the Effectiveness of C-states and P-states
	On the Reliability of RAPL Measurements
	Bibliography

