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Introduction

A first glance
In the last few decades, relaxation systems are favored by many mathemati-
cians due to their enormous applications varying from the kinetic theory
of gases [78] to almost all numerical schemes approximating conservation
laws [34]. They are systems of first-order partial differential equations with
zero-order terms. The zero-order terms are called source terms and the remain
parts of the systems are called hyperbolic parts. Particularly, the systems are
also endowed with dissipative mechanisms in the presence of the source terms.

In general, a relaxation system is not totally affected by the source term
due to the fact that the equilibrium set of the system is nonzero and nonempty,
where the set consists of every zero of the source term. This fact may give
rise to some critical situations. Indeed, since the source term has a strong
influence on the system outside the equilibrium set, any smooth solution to the
system will be driven toward an equilibrium as time increases due to dissipative
effects of the source term. However, since the equilibria are merely solutions
to a homogeneous first-order hyperbolic system, they are well known to break
down after a finite time due to the formation of singularities. Therefore,
smooth solutions to the relaxation system may be overcontrolled after a finite
time when they approach the equilibria.

The above observation yields an interesting fact. If a relaxation system
has a sufficiently “good” equilibrium i.e. this equilibrium is defined for all
time, then a global (in time) smooth solution to the system can be completely
exploited. In fact, what we need is only a stability structure in order for
the equilibrium to be stable under the perturbation of the system. If we can
propose such a stability structure, then at least for initial data near the initial
datum of the equilibrium, if a local smooth solution to the system exists,
it will be attracted by the equilibrium as time increases. Hence, since the
equilibrium is defined for all time, the local smooth solution will continue to
exist for all time close to it. To prove the stability, it is sufficient to construct an
appropriate Lyapunov function by the energy estimate method in the energy
space. Moreover, we can also consider the strategy via linearization and the
Duhamel formula.

As a matter of fact, it is obvious that constant equilibria of a relaxation
system are always very good choices for the global existence of a smooth solu-
tion to the system. For their stability, we can consider the stability structures
in [30,77], which are based on the coupling hypotheses: the entropy dissipation
condition and the Shizuta–Kawashima condition. The (strictly) entropy dissi-
pation condition is in general too weak to prevent singularities from developing
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after a finite time. However, together with the Shizuta–Kawashima condition,
it can produce complete smoothing effects on local smooth solutions to the re-
laxation system, provided the initial data are close to the constant equilibria
and the source term is nondegenerate. The smoothing effects yield that the
global existence of smooth solutions to the system is guaranteed. Particularly,
once existed, the global smooth solutions approach the constant equilibria for
large time. In fact, the global existence is already showed in [30, 77] based
on the energy estimate method and the commutator estimates. On the other
hand, the stability is acquired in [5] through linearization and the Duhamel
formula. Especially, large-time approximations of the solutions and explicit
rates of the convergence of the solutions to the constant equilibria are also es-
tablished in [5] by using the Chapman–Enskog expansion. Despite that, they
are still restrictive.

In this thesis, we will also study the stability of constant equilibria of re-
laxation systems in order to improve the results in [5]. However, we focus only
on the linear stability. It is then sufficient to examine linear systems arising
in the linearization of the nonlinear systems about the constant equilibria. By
imposing some reasonable stability structures on the linear systems based on
the ones in [5, 30, 77], we study large-time behaviors of solutions to the sys-
tems as time tends to infinity. On the other hand, large-time approximations
of the solutions are also sharply constructed. Here, we follow the approaches
in [5,78] with some improvements. At this linear level, the results obtained in
this thesis can be seen as generalizations of [5,49,67,78] with optimal rates of
the convergence of the solutions to zero (after changing of variables) and the
relaxation of assumptions about the initial data.

Relaxation systems
In this thesis, relaxation systems are systems fitting in the class

∂tu+

d∑
j=1

∂xjfj(u) + g(u) = 0. (0.1)

In (0.1), d is a positive integer, x = (x1, . . . , xd) ∈ Rd and t ∈ [0,+∞). The
unknown u = u(x, t) belongs to an open subset Ω ⊆ Rn for a certain positive
integer n. The flux fj for j ∈ {1, . . . ,d} and the source term g are sufficiently
smooth functions from Ω to Rn. For simplicity, we briefly call the relaxation
systems by the class (0.1) hereafter.

Based on the natural existence of nonzero equilibria in many physical sys-
tems, we thus assume that the equilibrium set of (0.1) is nonzero, where the
set is defined by M := {u ∈ Ω : g(u) = 0}.

The class (0.1) is entropy dissipative if it admits an entropy E = E(u) ∈ R
satisfying that

(E ′(u) − E ′(u∗)) · g(u) > 0 ∀u ∈ Ω, ∀u∗ ∈M,

where · denotes the scalar product on Rn and E ′ is the Jacobian of E with
respect to u. Moreover, the entropy dissipation condition holds strictly if

(E ′(u) − E ′(u∗)) · g(u) > c|g(u)|2 ∀u ∈ Ω, ∀u∗ ∈M.

8



Here, E is a strictly convex smooth function from Ω to R such that E ′′(u)f ′j(u)
is symmetric for all j ∈ {1, . . . ,d} and u ∈ Ω, where E ′′ is the Hessian of E
and f ′j is the Jacobian of fj with respect to u. Moreover, there are sufficiently
smooth functions Pj for j ∈ {1, . . . ,d} and Q from Ω to R such that

∂tE(u) +

d∑
j=1

∂xjPj(u) + Q(u) = 0

for every smooth solution u to (0.1), where P ′j = (f ′j)
tE ′, t denotes the trans-

pose and Q ′ = E ′ · g.
Assume that g = (0,q), where 0 is the zero vector in Rm and q is a

sufficiently smooth function from Ω ⊆ Rm × Rn−m to Rn−m for a certain
integer m ∈ [1,n). Then, (0.1) is nondegenerate if the Jacobian qw of q =
q(v,w) with respect to w ∈ Rn−m is a nonsingular (n−m)× (n−m) matrix
whenever it is computed at u∗ = (v∗,w∗) ∈M.

Let u∗ ∈M be constant, the linearization of (0.1) about u∗ is given by

∂tũ+

d∑
j=1

Aj∂xjũ+ Bũ = 0, (0.2)

where ũ := u − u∗ ∈ Rn, Aj := f ′j(u∗) for j ∈ {1, . . . ,d} and B := g ′(u∗) are
n× n matrices with real constant entries. Here, g ′ is the Jacobian of g with
respect to u. The class (0.1) satisfies the Shizuta–Kawashima condition if the
following holds
(SK). for ξ = (ξ1, . . . , ξd) ∈ Rd\{0}, if z is an eigenvector of A(ξ) :=∑d
j=1 ξjAj, then z /∈ kerB.
It then follows from [30,77] that if the above assumptions hold, then (0.1)

has a unique global smooth solution for initial data inHs(Rd) close to u∗ where
s > d/2+ 1 is an integer and u∗ ∈M. Although the Shizuta–Kawashima con-
dition, which is firstly introduced in [38,64] for hyperbolic-parabolic systems, is
very crucial to the proofs in [30,77], it is in general not necessary for the global
existence of smooth solutions to (0.1). Some examples of this fact are the case
of gas dynamics in thermal nonequilibrium [78] and the case of the Kerr–Debye
model for electromagnetic waves in nonlinear Kerr medium [12–14]. Indeed,
a relaxation system can be completely decomposed into a pair of a linearly
degenerated subsystem and a totally dissipative subsystem in some cases, a
global smooth solution to the system thus can exist without assuming that
the Shizuta–Kawashima condition holds. More general discussions about this
fact are provided in [51].

Contrarily, we will see in Chapter 1 that (0.2) is globally well-posed for
initial data in Hs(Rd) with s ∈ R if and only if the matrix-valued exponential
operator eiA(ξ) is bounded uniformly for all ξ ∈ Rd.

Striking examples

Discrete-velocity models

In the kinetic theory of gases, the Boltzmann equation is given by

∂tf+ ξ · ∇xf = Q(f), (0.3)
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where · denotes the scalar product on R3, f = f(x, t, ξ) > 0 is the density of
particles at (x, t, ξ) ∈ R3× [0,+∞)×R3 and the nonlocal operator Q describes
the interaction of particles. The equation (0.3) is in fact in the relaxation form
(0.1). In 1989, DiPerna and Lions in [18] showed that the Cauchy problem
for (0.3) is globally well-posed. However, the same result has not been well
answered in the discrete-velocity case where ξ does not vary continuously in
R3 but is restricted to a set of a finite number of speeds. The point is that the
proof in [18] is based on a regularization obtained by an average procedure
which holds only if ξ is continuous. Discrete-velocity models for (0.3) are
thus not only interesting in their own difficulties but also very important for
approximating (0.3) via numerical methods.

The equation (0.3) can be rewritten as

∂tf+ u∂xf+ v∂yf+w∂zf = (∂tf)col = G− L.

The vector (u, v,w) ∈ R3 is the velocity of the density f at the position
(x,y, z) ∈ R3 and at the time t ∈ [0,+∞). The rate of change (∂tf)col is
the difference between the gain G and the loss L of particles of the density f
after each collision. We now assume that the velocity set {(u, v,w)} is finite.
Then, between collisions, there is a finite set of particles fi located at each
velocity (ui, vi,wi) in the velocity space for i = 1, 2, . . . , r and r > 1. With
only six velocities for simplicity i.e. r = 6, Broadwell in [10] derived a system
of 6 equations by computing the differences Gi − Li for i = 1, . . . , 6. In the
one-dimensional space, due to symmetry properties, the system is reduced to
the relaxation 3× 3 system

∂tf+ + v∂xf+ = f20 − f+f−,

∂tf0 = −
1
2(f

2
0 − f+f−),

∂tf− − v∂xf− = f20 − f+f−,

(0.4)

where (x, t) ∈ R× [0,+∞), f−, f0 and f+ are the densities of particles moving
with velocities constrained in the set {−v, 0, v} for v > 0.

The global existence of solutions to (0.4) is studied in [6,17]. Nonetheless,
the proofs require some restrictions on the initial data either to be positive
or to be small. Even though exact solutions to (0.4) are constructed in [17],
they are nonnegative only if t > t∗ for a certain t∗ > 0. Thus, for t ∈
[0, t∗), these solutions are not relevant in the physical sense that the densities
are nonnegative. In parallel to the global existence, large-time behaviors of
solutions to (0.4) are studied in [33]. The solutions are showed to decay to
the absolute Maxwellians (positive equilibria) in H1(R) at the heat-decay rate
t−

1
4 as t→ +∞, provided the initial data are in H1(R)∩ L1(R). On the other

hand, traveling-wave solutions to the Broadwell systems and their stability are
also studied in [11,37].

More general forms of discrete-velocity models for the Boltzmann equation
can be found in [16,26] and large-time behaviors of their solutions can be found
in [2].

Velocity-jump processes

Similarly to the discrete-velocity models, relaxation systems arising in cor-
related random walks can be also derived with a finite number of speeds.
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The first prior formulation of this type of relaxation systems is known as the
Goldstein–Kac model [29,35].

Assume that there are two densities fi > 0 moving with two velocities
vi ∈ R for i = 1, 2; one goes to the left and one goes to the right of the x-axis
where x ∈ R. On the other hand, the transition rates from vi to vj are µii 6 0
and µij > 0 (i 6= j) for i, j ∈ {1, 2}. Moreover, µ11 + µ12 = µ21 + µ22 = 0.
Hence, if |v1| = |v2| and µ12 = µ21, the simplest Goldstein–Kac 2 × 2 system
in the one-dimensional space is given by{

∂tf1 − ν∂xf1 = −µf1 + µf2,
∂tf2 + ν∂xf2 = µf1 − µf2

(0.5)

for some µ > 0 and ν > 0, where (x, t) ∈ R× [0,+∞).
Imitating the above Goldstein–Kac 2 × 2 system, we can consider more

general systems in the d-dimensional space with n densities fi > 0 moving
with n velocities vi := {v1

i , . . . , vdi } ∈ Rd for i ∈ {1, . . . ,n}. Let the transition
rates from vi to vj be µii 6 0 and µij > 0 (i 6= j) for i, j ∈ {1, . . . ,n}.
Furthermore,

∑n
j=1 µij = 0 for all i ∈ {1, . . . ,n}. Then, it follows from [49]

that the i-th component equation of a generalized Goldstein–Kac n×n system
in the d-dimensional space is given by

∂tfi + vi · ∇xfi +
∑
j6=i

µij(fi − fj) = 0, i = 1, 2, . . . ,n, (0.6)

where (x, t) ∈ Rd × [0,+∞) and · denotes the scalar product on Rd.
As a pattern of transport mechanisms, other models which are similar

to the Goldstein–Kac systems have been also derived for variously different
phenomena, for instance, the reaction-hyperbolic equations for the transport
of neurofilaments in axons [15,22,23,74].

Since the Goldstein–Kac systems are in the linear form (0.2) and the asso-
ciated matrix-valued operator eiA(ξ) where A(ξ) =

∑d
j=1 ξjdiag (v

j
1, . . . , v

j
n)

is uniformly bounded for all ξ = (ξ1, . . . , ξd) ∈ Rd, the systems are in general
well-posed for initial data in Hs(Rd) and s ∈ R (see Chapter 1).

Moreover, for the system (0.5), the diffusive decay of the solution to zero
as t → +∞ can be observed easily due to the fact that (0.5) is equivalent to
the telegraph equation

∂ttu+ 2µ∂tu− ν2∂xxu = 0, (0.7)

where (x, t) ∈ R× [0,+∞), u := f1± f2, µ > 0 and ν > 0. If µ > 0 and ν > 0,
it follows from [48] that∥∥∥u−φ− e−µt

u0(·+ νt) + u0(·− νt)
2

∥∥∥
Lp

6 Ct−
1
2 (

1
q−

1
p )−1‖(u0,u1)‖Lq (0.8)

for a constant C > 0, 1 6 q 6 p 6 ∞ and t > 1, where (u0,u1) ∈ Lq(R) ×
Lq(R) is an initial datum of (0.7). Moreover, φ is a solution to

∂tφ−
ν2

2µ∂xxφ = 0

with the initial datum φ|t=0 = u0+u1. Furthermore, φ decays to zero in Lp(R)
at the rate t−

1
2 (

1
q−

1
p ) as t→ +∞ for initial data in Lq(R) and 1 6 q 6 p 6∞

(see [27]).
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The decay estimate (0.8) is optimal in the sense that p and q are general
and the assumption that (u0,u1) ∈ L2(R) × L2(R) can be relaxed. Indeed,
the exponentially decaying singular part of u, which may contain singularities
coming from the initial datum, is already subtracted. Moreover, this part is
obtained by e−µtψ, where ψ is a solution to the linear wave equation

∂ttψ− ν2∂xxψ = 0

with the initial datum (φ,∂tψ)|t=0 = (0,u0).
For more general cases, large-time behaviors of solutions to (0.6) with a

symmetric matrix B := (µij)i,j∈{1,...,n} are accomplished in [49]. The solutions
decay to zero in L2(Rd) at the rate t−d

4 as t→ +∞ for initial data in L2(Rd)∩
L1(Rd). Furthermore, they approach solutions to parabolic systems in L2(Rd)
at the rate t−d

4 −
1
2 as t → +∞. The parabolic systems are obtained by using

the Kirchhoff’s matrix-tree theorem from the graph theory. Despite that,
singular terms as the one in (0.8) are not studied.

Relaxation numerical schemes

The relaxation numerical schemes are originally motivated by Jin and Xin
in [34] in order to approximate the one-dimensional scalar conservation laws

∂tu+ ∂xf(u) = 0, (0.9)

where (x, t) ∈ R× [0,+∞). The approximation systems are given by∂tu+ ∂xv = 0,

∂tv+ α
2∂xu =

1
ε
(f(u) − v),

(0.10)

where (u, v) ∈ R×R, f is a smooth function from R to R, α > 0 and ε ∈ (0, 1].
The idea here is to consider the Chapman–Enskog expansion

v = f(u) + εv1 + O(ε), ε→ 0+. (0.11)

Inserting (0.11) into (0.10), it is easy to see that

v1 = −(α2 − (f ′(u))2)∂xu. (0.12)

Thus, from (0.10) - (0.12), u satisfies the approximation equation

∂tu+ ∂xf(u) − ε(α
2 − (f ′(u))2)∂xxu = 0.

Therefore, if the sub-characteristic stability condition

|f ′(u)| < α

holds (see [47, 72]), then u in fact converges to a solution to (0.9) as ε→ 0+.
This result is especially significant due to the regularity of u.

The systems (0.10) can be generalized to systems of n(d+ 1) equations in
the d-dimensional space, namely

∂tu+

d∑
j=1

∂xjvj = 0,

∂tvj +Aj∂xju =
1
ε
(Fj(u) − vj), j = 1, . . . ,d.

(0.13)
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In (0.13), x = (x1, . . . , xd) ∈ Rd and t ∈ [0,+∞). Moreover, (u, vj) ∈ Rn×Rn,
Aj is a real n × n matrix and Fj is a smooth function from Rn to Rn for
j ∈ {1, . . . ,d}.

The systems (0.13) are well studied in [28, 32, 34, 44–46, 50, 61]. Most of
these works are related to the traveling-wave solutions. For the stability of the
constant equilibria, one can see in [5, 59, 60] but with more general forms. At
least for some specific classes of (0.13) with initial data in L2(Rd)∩L1(Rd), the
solutions converge to the constant equilibria in Lp(Rd) at the rate t−

d
2 (1− 1

p )

as t → +∞ for p > min{d, 2} by applying the results in [5]. Particularly,
they approach solutions to linear parabolic systems in Lp(Rd) at the rate
t−

d
2 (1− 1

p )−µ as t → +∞ for p > 2 and d > 2. Here, µ = 1/2 and the
parabolic systems are obtained by using the Chapman–Enskog expansion. In
the one-dimensional space where d = 1, the parabolic systems include also the
quadratic terms since the convolution of these terms and the Green kernels
gives the decay rate t−

1
2 (1− 1

p ) in Lp(R) for p > 1 as t → +∞ once it was
integrated in time. Moreover, µ ∈ [0, 1/2) and p > 1 in this case, provided
the initial data are small enough.

The isentropic compressible Euler equations with damping

The isentropic compressible Euler equations with damping for perfect fluid
flows have the form{

∂tρ+∇x · (ρu) = 0,
∂t(ρu) +∇x · (ρu⊗ u) +∇xp(ρ) = −αρu.

(0.14)

Here, (x, t) ∈ Rd× [0,+∞), · denotes the scalar product on Rd, ⊗ denotes the
tensor product of two d-dimensional vectors and the damping coefficient α > 0.
The fluid density ρ = ρ(x, t) ∈ R and the fluid velocity u = u(x, t) ∈ Rd. The
pressure p depending on ρ in the sense that p(ρ) = 1

γρ
γ where the adiabatic

exponent γ > 1. The systems (0.14) describe ideal compressible fluids passing
through porous media that generate friction forces.

The systems (0.14) indeed can be put in the class (0.1) as proved in [73].
Without loss of generality, we can assume α = 1. It is then sufficient to
consider the new variable

v = (v1, v2) :=

(
−
|m|2

2ρ2 + h ′(ρ)
m

ρ

)t
,

where t denotes the transpose, m := ρu and h(ρ) :=

∫ρ
1

p ′(s)

s
ds. In the

variable v, the systems (0.14) are written as

∂tv+

d∑
j=1

A−1
0 (v)Aj(v)∂xjv+A

−1
0 (v)B(v) = 0. (0.15)

In (0.15), the positive-definite symmetric matrix

A0(v) :=

(
1 vt

2
v2 v2 ⊗ v2 + p

′(ρ)Id

)
,
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where Id is the identity matrix in Rd×d. The matrix Aj(v) is given by

Aj(v) :=(
v
j
2 vt

2v
j
2 + p

′(ρ)et
j

v2v
j
2 + p

′(ρ)ej v
j
2(v2 ⊗ v2 + p

′(ρ)Id) + p
′(ρ)(v2 ⊗ ej + ej ⊗ v2)

)
,

where vj2 is the j-th component of v2 and ej is the j-th unit vector of the
standard basis of Rd for j ∈ {1, . . . ,d}. On the other hand, the vector B(v)
satisfies

B(v) :=
(
0 −p ′(ρ)v2

)t .

The global existence and uniqueness of smooth solutions to (0.14) is studied
in [55] for d = 1 and in [65, 71] for d > 2, provided the initial data are
sufficiently small. In general, the damping term in (0.14) is not strong enough
to prevent the formation of shocks if the initial data are large although it is
true for small initial data. Moreover, the convergence of the solutions to the
constant equlibria is also obtained in [65] for d = 3 and in [71] for d > 2. The
convergence rate in Lp(Rd) is t−

d
2 (1− 1

p ) as t→ +∞ for p > 1 and initial data
in L2(Rd) ∩ L1(Rd).

Diffusive large-time behaviors
Consider the linear relaxation system

∂tu+

d∑
j=1

Aj∂xju+ Bu = 0, (0.16)

where (x, t) ∈ Rd× [0,+∞), u = u(x, t) ∈ Rn, Aj and B are matrices in Rn×n
for j ∈ {1, . . . ,d}. Let u be a solution to the Cauchy problem for (0.16) with
an initial datum u0. We then discuss about large-time behaviors of u.

For the case where Aj for j ∈ {1, . . . ,d} and B are symmetric matrices,
let B be positive semi-definite and let (0.16) satisfy the Shizuta–Kawashima
condition: there is no eigenvector of A(ξ) =

∑d
j=1 ξjAj in kerB for ξ =

(ξ1, . . . , ξd) ∈ Rd\{0}. Following from [64], we have

‖u‖L2 6 C(1+ t)−
d
2 (

1
q−

1
2 )‖u0‖Lq + Ce−ct‖u0‖L2 (0.17)

for t > 0, u0 ∈ L2(Rd) ∩ Lq(Rd) and q ∈ [1, 2].
The result is later generalized with an unnecessarily symmetric matrix B

in [5]. Assume that (0.16) can be transformed into the conservative-dissipative
form i.e. Aj for j ∈ {1, . . . ,d} is symmetric and B = diag (O,D), where O is
the null matrix in Rm×m and D is not necessarily symmetric but a positive-
definite matrix in R(n−m)×(n−m) for an integer m ∈ [1,n). If the Shizuta–
Kawashima condition holds, then u is decomposed into a conservative part
u(1) and a dissipative part u(2) such that

‖u(1)‖Lp 6 Ct−
d
2 (1− 1

p )‖u0‖L1

and that
‖u(2)‖L2 6 Ce−ct‖u0‖L2 (0.18)
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for all t > 1, p > min{d, 2} and u0 ∈ L1(Rd)∩L2(Rd). Moreover, if we consider
u = (v,w) ∈ Rm × Rn−m based on the form of B, then

‖v−U‖Lp 6 Ct−
d
2 (1− 1

p )−
1
2 ‖u0‖L1 ∀t > 1,

where U ∈ Rm solves the Cauchy problem for

∂tU+

d∑
j=1

Cj∂xjU−

d∑
j=1

d∑
h=1

Djh∂xjxhU = 0 (0.19)

with the initial datum U0 = L+u0. In (0.19), the coefficient m×m matrices

Cj := L+AjR+ and Djh := L+AjR−D
−1L−AhR+

for j, h ∈ {1, . . . ,d}. Moreover, L+ ∈ Rm×n and R+ ∈ Rn×m are obtained
from the eigenprojection P+ ∈ Rn×n onto kerB by rank factorization. Simi-
larly, L− ∈ R(n−m)×n and R− ∈ Rn×(n−m) are obtained from I−P+ by rank
factorization, where I is the identity matrix in Rn×n.

The system (0.19) is indeed obtained by applying the Chapman–Enskog
expansion to (0.16) and taking advantage of the conservative-dissipative form.
For some specific cases such as the Goldstein–Kac systems, a more precise U
can be obtained by using the Kirchhoff’s matrix-tree theorem from the graph
theory (see [49]).

Noting that in a general situation where B is not symmetric, u does not
necessarily have an exponentially decaying part as in (0.17) and (0.18). This
part arises in the Fourier transform û = û(ξ, t) of u for large ξ. In [67],
there exist cases where the decay rate of the high-frequency part is at most
polynomial, provided the initial datum u0 is regular enough, for instance, the
Euler–Maxwell systems.

Let λ(iξ) be a representation of the eigenvalues of E(iξ) := B+i
∑d
j=1 ξjAj

for ξ = (ξ1, . . . , ξd) ∈ Rd, the difference between the two types can be ex-
plained due to estimates for the real part of λ. Indeed, for the exponential
type, there is a constant θ > 0 such that

Re λ(iξ) > θ |ξ|2

1+ |ξ|2
∀ξ 6= 0. (0.20)

On the other hand, for the polynomial type, one has

Re λ(iξ) > θ |ξ|2

(1+ |ξ|2)2 ∀ξ 6= 0. (0.21)

Since e−λ(iξ)t ∼ e−θt in (0.20) and e−λ(iξ)t ∼ e−
θ

|ξ|2 t in (0.21) as |ξ|→ +∞,
the case (0.21) is at most polynomial and requires u0 to be regular enough.

Noting also that as soon as the Shizuta–Kawashima condition does not
hold, counterexamples of the decay of u may exist (see Subsection 2.1.1 of
Chapter 2).

Based on the Goldstein–Kac 2× 2 system (0.5), where the unique solution
has the optimal heat-decay rate t−

1
2 (

1
q−

1
p ) in Lp(R) as t→ +∞ for initial data

in Lq(R) and 1 6 q 6 p 6 ∞, we expect to obtain a similar Lp-Lq estimate
as in (0.8) for the solution u to (0.16) in the case of (0.20). The main aim
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of this thesis is to prove the following results as below. For more general and
detailed discussions, one see Chapter 3 of this thesis.

We primarily consider the eigenprojection P(0)
0 ∈ Rn×n and the reduced re-

solvent coefficient Q(0)
0 ∈ Rn×n associated with the eigenvalue 0 of B, namely

P
(0)
0 := −

1
2πi

∫
Γ0

(B− zI)−1 dz and Q(0)
0 :=

1
2πi

∫
Γ0

z−1(B− zI)−1 dz,

where Γ0, in the resolvent set of B, is an oriented closed curve enclosing 0
except for the other eigenvalues of B. On the other hand, we consider

P
(1)
0j := −P

(0)
0 AjQ

(0)
0 −Q

(0)
0 AjP

(0)
0 , j = 1, . . . ,d. (0.22)

In the one-dimensional space where d = 1, assume that
Condition A (Hyperbolicity). The matrix A := A1 is diagonalizable with
real eigenvalues.
Condition B (Partial dissipation). The spectrum of B is decomposed into
σ(B) = {0} ∪ σ+ where 0 is semi-simple and σ+ ⊆ {λ ∈ C : Re λ > 0}.
Condition C (Reduced hyperbolicity). The matrix C := P

(0)
0 AP

(0)
0 considered

in kerB is diagonalizable with real eigenvalues.
Condition D (Uniform dissipation). There is a positive constant θ such that

Re λ(iξ) > θ|ξ|2

1+ |ξ|2
for all ξ 6= 0,

where λ(iξ) is any eigenvalue of the operator E(iξ) = B+ iξA for ξ ∈ R.
We consider the Cauchy problem{

∂tU+ C∂xU−D∂xxU = 0,
U|t=0 = P

(0)
0 u0

(0.23)

and the Cauchy problem{
∂tV +A∂xV + ΠA(B)V = 0,
V |t=0 = u0,

(0.24)

where (x, t) ∈ R × [0,+∞), U = U(x, t) ∈ Rn and V = V(x, t) ∈ Rn. In
(0.23), the n× n matrix

D := −

s∑
h=1

P
(0)
h (P

(1)
01 BP

(1)
01 + P

(0)
0 AP

(1)
01 + P

(1)
01 AP

(0)
0 )P

(0)
h ,

where P(0)
h ∈ Rn×n is the eigenprojection associated with ch ∈ σ(C, kerB) for

h ∈ {1, . . . , s} and σ(C, kerB) is the spectrum of C considered in kerB with
the cardinality s. In (0.24), the n× n matrix

ΠA(B) :=

r∑
h=1

Π
(0)
h BΠ

(0)
h ,

where Π(0)
h ∈ Rn×n is the eigenprojection associated with αh ∈ σ(A) for

h ∈ {1, . . . , r} and σ(A) is the spectrum of A with the cardinality r.
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Theorem 0.1 (Lp-Lq decay estimates [52]). For u0 ∈ Lq(R), let u, U and V
be respectively solutions to (0.16), (0.23) and (0.24). If the conditions A , B,
C and D hold, then for 1 6 q 6 p 6∞ and t > 1, there are positive constants
c and C such that

‖u−U− V‖Lp 6 Ct−
1
2

(
1
q−

1
p

)
− 1

2 ‖u0‖Lq . (0.25)

Moreover, one has

‖U‖Lp 6 Ct−
1
2

(
1
q−

1
p

)
‖u0‖Lq and ‖V‖Lq 6 Ce−ct‖u0‖Lq . (0.26)

In the multi-dimensional space where d > 1, assume that
Condition A ∗ (Hyperbolicity). For w = (w1, . . . ,wd) ∈ Sd−1, the unit
sphere in Rd, A = A(w) :=

∑d
j=1wjAj is uniformly diagonalizable with real

linear eigenvalues i.e. there are an invertible matrix R = R(w) and a constant
C > 0 such that

sup
w∈Sd−1

|R(w)||R−1(w)| 6 C < +∞
for a matrix norm | · |. Moreover, R−1AR is a diagonal matrix whose nonzero
entries are real linear in w ∈ Sd−1.
Condition R∗ (Diagonalizing matrix). There is a matrix R uniformly diago-
nalizing A such that R−1BR is a constant matrix independent from w ∈ Sd−1.
Condition B∗ (Partial dissipation). The spectrum of B is decomposed into
σ(B) = {0} ∪ σ+ where 0 is simple and σ+ ⊆ {λ ∈ C : Re λ > 0}.
Condition D∗ (Uniform dissipation). There is a positive constant θ such that

Re λ(iξ) > θ|ξ|2

1+ |ξ|2
for all ξ 6= 0,

where λ(iξ) is any eigenvalue of the operator E(iξ) = B + i
∑d
j=1 ξjAj for

ξ = (ξ1, . . . , ξd) ∈ Rd.
We consider the Cauchy problem{

∂tU+ c · ∇xU− div (D∇xU) = 0,
U|t=0 = P

(0)
0 u0,

(0.27)

where (x, t) ∈ Rd × [0,+∞), · denotes the scalar product on Rd and U =
U(x, t) ∈ Rn. On the other hand, the vector c = (ch)h∈{1,...,d} ∈ Rd and the
matrix D = (Dh`)h,`∈{1,...,d} ∈ Rd×d have

ch := tr
(
AhP

(0)
0
)

and Dh` :=
1
2tr
(
AhP

(0)
0 A`Q

(0)
0 +AhQ

(0)
0 A`P

(0)
0
)
.

Here, tr denotes the trace.

Theorem 0.2 (Lp-Lq decay estimates [54]). Let u be a solution to the Cauchy
problem (0.16) with an initial datum u0 ∈ Lq(Rd) ∩ L2(Rd) for 1 6 q 6 ∞.
Under the assumptions A ∗, R∗, B∗ and D∗, u is decomposed into

u(x, t) = u(1)(x, t) + u(2)(x, t),

where
u(1)(x, t) := F−1(e−EtP0χ) ∗ u0(x),
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u(2) is the remainder, P0 is the eigenprojection associated with the eigenvalue
λ0 of E, λ0(iξ) converges to 0 as |ξ|→ 0 and χ is a cut-off function valued in
[0, 1] with support contained in the ball B(0, ε) ⊂ Rd for small ε > 0.

Moreover, for 1 6 q 6 p 6 ∞, there are constants c > 0 and C > 0 such
that

‖u(1) −U‖Lp 6 Ct−
d
2 (

1
q−

1
p )−

1
2 ‖u0‖Lq ∀t > 1 (0.28)

and u(2) satisfies

‖u(2)‖L2 6 Ce−ct‖u0‖L2 ∀t > 0, (0.29)

where U which is a solution to (0.27) satisfies

‖U‖Lp 6 Ct−
d
2

(
1
q−

1
p

)
‖u0‖Lq ∀t > 1. (0.30)

In general, the rate t−
d
2 (

1
q−

1
p )−

1
2 in (0.25) and (0.28) cannot be exceeded

except for some cases where the following conditions hold in addition
Condition E (Equilibrium manifold). The eigenvalue 0 of B is simple.
Condition S (Symmetry). There is an invertible matrix S = S(w) such that

SA = −AS and SB = BS,

where A = A(w) =
∑d
j=1wjAj for w = (w1, . . . ,wd) ∈ Sd−1.

Indeed, we primarily modify the systems (0.23) and (0.27) by{
∂tU− div (D∇xU) = 0,
U|t=0 = P

(0)
0 u0 + P

(1)
0 · ∇xu0,

(0.31)

where (x, t) ∈ Rd × [0,+∞), · denotes the scalar product on Rd, D is similar
to the one in (0.27), P(1)

0 := (P
(1)
0j )j∈{1,...,d} and P(1)

0j is given by (0.22) for
j ∈ {1, . . . ,d}.

Theorem 0.3 (Increasing decay rates [52,54]). Under the same hypotheses in
Theorem 0.1 for d = 1 (resp. in Theorem 0.2 for d > 2), if u0 ∈ W1,q(Rd)
and the conditions E and S hold additionally, then the decay rate in (0.25)
(resp. in (0.28)) is increased to t−

d
2 (

1
q−

1
p )−1 for 1 6 q 6 p 6∞ and t > 1.

The above results in fact generalize [5,49,64,78] at the linear level. More-
over, they can be applied to linear systems arising in the linearization (about
constant equilibria) of, for instance, the Broadwell system (0.4), the Goldstein–
Kac systems (0.6), the Jin–Xin systems (0.13) and the isentropic compressible
Euler equations with damping (0.14). The significant novelties here are

i) the large-time asymptotic profile U of u is sharp;

ii) the decay rate t−
d
2 (

1
q−

1
p )−α for α ∈ {0, 1

2 , 1} with general exponents p, q ∈
[1,∞] and d > 1 is obtained;

iii) the assumption about L2-initial data is relaxed in the one-dimensional
space where d = 1 since the exponentially decaying singular part V of u
is subtracted;
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iv) the strictly optimal case where α = 1 is established for a class of sym-
metry linear relaxation systems including the Goldstein–Kac 2 × 2 sys-
tem (0.5) and the linearized isentropic compressible Euler equations with
damping.

The proofs of these results are based on expansions of solutions to (0.16)
in the Fourier space and an interpolation argument between the L∞-L1 and
Lp-Lp estimates for 1 6 p 6 ∞. However, since the expansions require suffi-
ciently uniform properties, it slightly explains why we need the simplicity of
the eigenvalue 0 of the matrix B and why singular terms as V in (0.25) cannot
be subtracted in the multi-dimensional space where d > 2.

Thesis organization
The thesis is organized as follows.
Chapter 1 (The Cauchy problem for first-order linear systems with
constant coefficients). We study the global well-posedness of the Cauchy
problem for (0.16) with initial data in Hs(Rd) where s ∈ R and the integer
d > 1. Hyperbolic operators with examples and their relevant features are
then considered. The global well-posedness with initial data in Lp(Rd) for
p ∈ [1,∞] is also discussed.
Chapter 2 (Linear stability of constant equilibria). We invoke his-
toric and recent works dealt with stability structures in order for solutions
to (0.16) to decay to zero as time tends to infinity. We discuss the key role
Shizuta–Kawashima condition. Moreover, useful tools for constructing large-
time asymptotic profiles of the solutions are introduced. The tools include
the Chapman–Enskog expansion and the asymptotic expansion in the Fourier
space.
Chapter 3 (Lp-Lq decay estimates). Based on the stability conditions
discussed in Chapter 2, we then study large-time behaviors of solutions to
(0.16). This chapter is divided into three sections. The first section is to
study the case of the one-dimensional space, the second section is to study the
case of the multi-dimensional space and the last one is dealt with a class of
symmetry linear relaxation systems in any space dimension. In each section,
we study the L∞-L1 estimate, the Lp-Lp estimate for p ∈ [1,∞] and we finally
give proofs of the main results of the section by an interpolation argument.
Appendix A (Lebesgue spaces and the Fourier transform). The first
section is to recall the Lebesgue space Lp(Rd) where p ∈ [1,∞] in the sense of
Bochner for matrix-valued or vector-valued functions or distributions on Rd.
The well-known Young inequality and the Riesz–Thorin complex interpolation
inequality are also considered. The second section is to evoke the usual Fourier
transform defined on L1(Rd)∩ L2(Rd) and its distributional generalization on
the Schwartz space S(Rd) and the dual S ′(Rd). Particularly, we recall the
useful Carleson–Beurling multiplier estimate. Such a multiplier estimate is
useful for proofs of the Lp-Lp estimate with p ∈ [1,∞].
Appendix B (Perturbation theory for linear operators). Let

T(z) = T (0) + zT (1) + z2T (2) + . . . , z ∈ C.

The aim of this chapter is to study the behavior of the eigenvalues of T near
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exceptional points, where the exceptional points are in C such that the eigen-
values intersect there. The eigenprojections and eigennilpotents associated
with the eigenvalues near the exceptional points are also studied. Most of the
materials in this chapter are in [36]. These results are applied to the previous
chapters.
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Chapter 1

The Cauchy problem for
first-order linear systems with
constant coefficients

For integers n > 1 and d > 1, we study the global (in time) existence and
uniqueness of a solution to the Cauchy problem

∂tu+

d∑
j=1

Aj∂xju+ Bu = 0,

u|t=0 = u0.
(1.1)

Here, x = (x1, . . . , xd) ∈ Rd and t > 0. The unknown u = u(x, t) and given
u0 = u0(x) are vectors in Rn. Moreover, Aj for j ∈ {1, . . . ,d} and B are
constant matrices in Rn×n.

Indeed, we primarily find a solution u to (1.1) in C([0,+∞);X) for u0 ∈ X,
where X is an appropriate function space and C([0,+∞);X) is the space of all
continuous maps from [0,+∞) to X. By defining the differential operator

L :=

d∑
j=1

Aj∂xj + B, (1.2)

we thus expect to be able to construct a strongly continuous semigroup asso-
ciated with the differential operator L on X. Moreover, such a semigroup is
denoted by e−Lt for t > 0. If it exists, it belongs to L(X), the space of all
linear maps from X to X, and the following hold

i) e−Lt|t=0 = Id, where Id is the identity operator;

ii) e−L(t+s) = e−Lt ◦ e−Ls for t > 0 and s > 0, where ◦ can be considered
as the composition;

iii) limt→0 ‖e−Ltu0 − u0‖X = 0 for u0 ∈ X, where ‖ · ‖X is a suitable norm
equipped with X.

Hence, the idea is that we can consider the Fourier transform F, which
is an automorphism of L2(Rd). More generally, we can consider the general-
ized Fourier transform also denoted by F, which is an automorphism of the
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Schwartz space S(Rd) and the dual space S ′(Rd). Then, we define e−Lt as
a pseudo-differential operator associated with a matrix-valued symbol e−Et,
namely

e−Ltu0 := F−1(e−Etû0) ∀t > 0. (1.3)
In (1.3), F−1 denotes the inverse Fourier transform, the operator E from Cd
to Cn×n is defined by

E(iξ) := B+ i

d∑
j=1

ξjAj ∀ξ = (ξ1, . . . , ξd) ∈ Rd

and û0 := F(u0) is the Fourier transform of u0. Noting that

eM :=

+∞∑
h=0

1
h!M

h ∀M ∈ Cn×n.

The global well-posedness problem then holds if e−Etû0 for u0 ∈ X is
bounded in X uniformly for all t > 0, where X is an appropriate function
space of which the Fourier transform F is an automorphism.

1.1 Hyperbolic operators
To study the global well-posedness of the problem (1.1) in C([0,+∞);X) where
X is a complete space, it is then sufficient to assume that B = O where O is
the null matrix in Rn×n.

Indeed, we argue as in [3]. If (1.1) admits a unique solution in C([0,+∞);X)
for initial data in X, then for u0 ∈ X and t > 0, e−Ltu0 := u(·, t) defines a
strongly continuous semigroup on X, where L is given by (1.2) and u is the
unique solution to the Cauchy problem (1.1) with the initial datum u0. In
particular, it follows from [20] that ‖e−Lt‖L(X) 6 ceωt for all t > 0 and some
constants c > 0 and ω > 0.

We now seek a solution to the Cauchy problem{
∂tu+ Lu = B ′u,
u|t=0 = u0

(1.4)

for any B ′ ∈ Rn×n\{O} and u0 ∈ X by the Picard iterative scheme, where
t ∈ [0, T ] and 0 < T < +∞.

Based on the Duhamel formula, we define Hk : C([0, T ];X) → C([0, T ];X)
for k ∈ {0, 1, 2, . . . } by Hk+1 := H0 ◦Hk where

H0(u(·, t)) := e−Ltu0 +

∫t
0
e−L(t−s)B ′u(·, s)ds.

Furthermore, we can check easily by induction that since ‖e−Lt‖L(X) 6
ceωt, the function Hk is a contraction mapping from C([0, T ];X) to C([0, T ];X)
for sufficiently large k. Hence, since X is complete, C([0, T ];X) is also complete,
and thus, there exists a unique u ∈ C([0, T ];X) such that Hk(u) = u for a large
k due to the fixed-point theorem. By applying H0 to this relation, we deduce
that H0(u) = H0 ◦Hk(u) = Hk ◦H0(u). Therefore, by the uniqueness of the
fixed point, u = H0(u), which solves (1.4) in C([0, T ];X). Thus, since T is
arbitrary, we obtain a global unique solution to the Cauchy problem (1.4).
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Definition 1.1 (Hyperbolicity [3, 76]). For t > 0, the operator

P(t) := ∂t +

d∑
j=1

Aj∂xj (1.5)

is hyperbolic if for A(η) :=
∑d
j=1 ηjAj with η = (η1, . . . ,ηd) ∈ Rd, one has

sup
η∈Rd

|eiA(η)| < +∞, (1.6)

where | · | denotes a certain matrix norm.

Example 1.2. The simplest example is the one-dimensional scalar case where
n = d = 1.

Example 1.3. The class of P(t) for t > 0 in which Aj for all j ∈ {1, . . . ,d}
is diagonalizable with real eigenvalues and commutes with each other. In-
deed, there is an invertible matrix R such that the matrices A1, . . . ,Ad are
simultaneously diagonalized by R. Hence, we have

eiA(η) = R diag (eiα1(η), . . . , eiαn(η))R−1 ∀η ∈ Rd,

where
αh(η) = α

1
hη1 + · · ·+ αdhηd ∀η = (η1, . . . ,ηd) ∈ Rd

and αjh is a real eigenvalue of Aj for h ∈ {1, . . . ,n} and j ∈ {1, . . . ,d}.

We have the following characterization of hyperbolic operators from [3],
which is also known as the Kreiss’s matrix criterion.

Theorem 1.1 (Kreiss [39,40], [3]). Let M be a linear map from Rd to Cn×n,
each of the following properties is equivalent to the others.

i) M(η) is uniformly diagonalizable with purely imaginary eigenvalues for
η ∈ Rd, namely

M(η) = iD(η)−1diag (m1(η), . . . ,mn(η))D(η) (1.7)

with mh(η) ∈ R for h ∈ {1, . . . ,n} and

|D(η)−1||D(η)| 6 C (1.8)

for a constant C > 0 and all η ∈ Rd.

ii) There exists a constant C > 0 such that

|etM(η)| 6 C ∀η ∈ Rd, t > 0. (1.9)

iii) There is a constant C > 0 such that

|(zI−M(η))−1| 6
C

Re z ∀η ∈ Rd, Re z > 0. (1.10)

A proof of Theorem 1.1 can be found in [3] and it is based on the work
in [66]. As a consequence, by rewriting eiA(η) = ei|η|A(η/|η|) for η ∈ Rd, P(t)
given by (1.5) for t > 0 is hyperbolic if it has the following property.
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Corollary 1.2. The operator P(t) given by (1.5) for t > 0 is a hyperbolic
operator if and only if A(w) =

∑d
j=1wjAj is uniformly diagonalizable for

w = (w1, . . . ,wd) ∈ Sd−1 i.e. for w ∈ Sd−1, A(w) is diagonalizable with real
eigenvalues and the invertible diagonalizing matrix R(w) satisfies

sup
w∈Sd−1

|R(w)−1||R(w)| < +∞. (1.11)

Remark 1.4. Noting that the bound (1.11) does not necessarily hold if A(w)
is only diagonalizable with real eigenvalues for w ∈ Sd−1. In fact, there are
cases where R(w) for w ∈ Sd−1 is unbounded. For instance, one can consider
the Petrowski’s example for d = 2 and n = 3 where

A1 :=

0 1 1
0 0 0
1 0 0

 and A2 :=

0 0 0
0 0 0
0 0 1

 .

More examples can be found in [41].

There are two important classes of hyperbolic operators.

Definition 1.5 (Symmetric hyperbolicity [24, 25]). The operator P(t) given
by (1.5) for t > 0 is called Friedrichs symmetrizable or symmetrizable or sym-
metric briefly if there exists a positive-definite symmetric matrix A0 such that
A0Aj is symmetric for all j ∈ {1, . . . ,d}. Then, A0 is called a symmetrizer.

Definition 1.6 (Constant hyperbolicity). The operator P(t) given by (1.5)
for t > 0 is called constantly hyperbolic if A(w) =

∑d
j=1wjAj is diagonalizable

with real eigenvalues for w = (w1, . . . ,wd) ∈ Sd−1. Moreover, the algebraic
multiplicities associated with the eigenvalues are constant and independent
fromw. Particularly, if the eigenvalues are simple (with algebraic multiplicities
one), then P(t) is called strictly hyperbolic.

Example 1.7. Every operator P(t) defined by (1.5) for t > 0 with a generic
set {A1, . . . ,Ad} where Aj for all j ∈ {1, . . . ,d} is a symmetric matrix is sym-
metrizable with the symmetrizer A0 = I. Here, I is the identity matrix in
Rn×n.

Example 1.8. For d = 1, n = 4 and real numbers 0 < α < β, one sets

A0 :=
1

β2 − α2


β2 0 −α 0
0 β2 0 −α
−α 0 1 0
0 −α 0 1

 and A1 :=


0 0 1 0
0 0 0 1
β2 0 0 0
0 β2 0 0

 .

It is easy to check that A0 is a positive-definite symmetric matrix and A0A1
is a symmetric matrix.

Example 1.9. For d = 2 and n = 3, we consider the matrices

A1 :=

0 1 0
1 0 0
0 0 0

 and A2 :=

0 0 1
0 0 0
1 0 0

 .

The matrix A(w) = w1A1 + w2A2 for w = (w1,w2) ∈ S1 has the spectrum
{0,±1} independent from w. Hence, P(t) = ∂t +

∑2
j=1Aj∂xj is a constantly

(strictly indeed) hyperbolic operator.
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Proposition 1.3 ( [3]). If P(t) given by (1.5) for t > 0 is symmetric or
constantly hyperbolic, then it is hyperbolic.

Sketch of proof. Recall that A(w) =
∑d
j=1wjAj for w = (w1, . . . ,wd) ∈

Sd−1. For the symmetric case, let A0 be a symmetrizer of P(t) for t > 0,
one has

A(w) = A
− 1

2
0 (A

− 1
2

0 A0A(w)A
− 1

2
0 )A

1
2
0 ∀w ∈ Sd−1.

Hence, since A− 1
2

0 A0A(w)A
− 1

2
0 is symmetric, there exist an orthogonal matrix

R(w) and a diagonal matrix D(w) with real entries such that

A
− 1

2
0 A0A(w)A

− 1
2

0 = R(w)tD(w)R(w) ∀w ∈ Sd−1,

where t denotes the transpose. Thus, since every orthogonal matrix, which is
an isometric linear map from Rn to Rn, preserves every matrix norm | · |, we
have

|A
− 1

2
0 R(w)t||R(w)A

1
2
0 | = |A

− 1
2

0 ||A
1
2
0 | < +∞ ∀w ∈ Sd−1.

We consider the constantly hyperbolic case. Since A is a linear operator
depending only on w ∈ Sd−1 and its eigenvalues do not change their alge-
braic multiplicities, by the perturbation theory for linear operators in [36], the
eigenspaces associated with the eigenvalues of A consist of continuous func-
tions depending only on w ∈ Sd−1. Therefore, on each simple domain of Sd−1,
we can choose continuously a basis of Cn from these eigenspaces to form an
invertible continuous matrix R depending only on w ∈ Sd−1 such that A is di-
agonalized by R. Furthermore, we can choose R on compact domains covering
Sd−1 in order to have a uniform bound of R. The proof is done.

Remark 1.10. The continuous matrix R can be chosen continuously on each
simple domain of Sd−1 rather than continuously on the whole Sd−1. For
instance, with n = d = 2 and from [3], one sets

A1 :=

(
1 0
0 −1

)
and A2 :=

(
0 1
1 0

)
.

Then, the eigenvalues of A(w) = w1A1 + w2A2 for w = (w1,w2) ∈ S1 are
±1 with the associated eigenvectors (cos θ/2, sin θ/2) and (− sin θ/2, cos θ/2)
respectively if we consider w1 = cos θ and w2 = sin θ for θ ∈ [0, 2π). Hence,
since R is induced from these eigenvectors and we have

cos(θ/2+ kπ) = (−1)k cos(θ/2) and sin(θ/2+ kπ) = (−1)k sin(θ/2)

for k ∈ {0, 1, 2, . . . }, it cannot be formed continuously for all w ∈ S1 after each
period of 2π when w varies continuously in S1.

Remark 1.11. In general, strictly hyperbolic operators exist rarely in the
multi-dimensional space as showed in [3, 21, 43]. More precisely, we can meet
them only if n = 0, 1, 7 (mod8) when d > 3. However, analyses of these oper-
ators are very useful for constantly hyperbolic operators appearing frequently
when n > 4. Similarly, for d = 2 and n = 3, there exist non-symmetric
operators as proved by Lax in [42].

Using the above hyperbolic conditions together with Theorem 1.1 and
Corollary 1.2, we obtain the following
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Theorem 1.4 (Hs-global well-posedness). For initial data in Hs(Rd) with
s ∈ R, the Cauchy problem for the first-order system

P(t)u = ∂tu+

d∑
j=1

Aj∂xju = 0 (1.12)

has a unique solution u ∈ C([0,+∞);Hs(Rd)) ∩ C1([0,+∞);Hs−1(Rd)) if
and only if the matrix A(w) =

∑d
j=1wjAj for w = (w1, . . . ,wd) ∈ Sd−1 is

uniformly diagonalizable in the sense of (1.11) with real eigenvalues.
Furthermore, if s > k+ d/2 for an integer k > 1, then u is a Ck-classical

solution to (1.12), namely u ∈ Ck(Rd × [0,+∞)).

Sketch of proof. For u0 ∈ Hs(Rd) and s ∈ R, it is easy to see that u(·, t) :=
F−1(e−iAtû0) is well defined and satisfies (1.12), whereA = A(ξ) =

∑d
j=1 ξjAj

for ξ = (ξ1, . . . , ξd) ∈ Rd, t > 0, F−1 is the inverse map of the Fourier trans-
form F and û0 := F(u0).

On the other hand, by the definition of the Hs-norm for s ∈ R and the
fact that P(t) for t > 0 is hyperbolic due to Corollary 1.2, there is a positive
constant C independent from t such that

‖u(·, t)‖2Hs =
∫
Rd

(1+ |ξ|2)s|e−iA(ξ)tû0(ξ)|
2 dξ

6 C
∫
Rd

(1+ |ξ|2)s|û0(ξ)|
2 dξ ∀t > 0.

Hence, by the dominated convergence theorem, u is a continuous map from
[0,+∞) to Hs(Rd) since u0 ∈ Hs(Rd) and e−iA(ξ)t is continuous at every
t > 0 for all ξ ∈ Rd.

Similarly, since e−iA(ξ)t is a C1-function in t for all ξ ∈ Rd and the
derivative ∂t(e−iA(ξ)t) = −iA(ξ)e−iA(ξ)t = −ie−iA(ξ)tA(ξ), we also have

‖∂tu(·, t)‖2Hs−1 =

∫
Rd

(1+ |ξ|2)s−1|A(ξ)e−iA(ξ)tû0(ξ)|
2 dξ

6 C
∫
Rd

|ξ|2(1+ |ξ|2)s−1|û0(ξ)|
2 dξ ∀t > 0.

Therefore, since |ξ|2(1+ |ξ|2)s−1 6 (1+ |ξ|2)s for all ξ ∈ Rd and s ∈ R, ∂tu is a
continuous map from [0,+∞) to Hs−1(Rd) also by the dominated convergence
theorem.

Proving the necessary condition of the Hs-global well-posedness is more
complicated. It can be done by examining the eigenvalues of A. On the other
hand, the latter conclusion in the theorem is in fact induced from the Sobolev
embedding Hs(Rd) ⊂ Ck(Rd) for s > k+ d/2. A complete proof of Theorem
1.4 can be found in many text books of First-order Hyperbolic Systems, for
instance, in [3]. We omit the details here.

Remark 1.12 (The backward Cauchy problem). The previous results are
stated only for the forward Cauchy problem (t > 0). However, the same
results also hold for the backward problem (t 6 0) since the backward problem
is equivalent to the forward one due to the fact that the hyperbolicity (1.6) is
invariant under the map η 7→ −η for η ∈ Rd. Hence, we also have the global
well-posedness for all t ∈ R.
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Remark 1.13 (Finite speed of propagation). If P(t) in (1.12) for t > 0 is
symmetric, then an even more interesting result will follow from [57, 58]. It
implies the existence of an influence domain of any solution u to (1.12) with
an initial datum u0 ∈ L2(Rd) ≡ H0(Rd). Outside this domain, u is identically
zero. Precisely, one has

suppu(·, t) ⊂ suppu0 + tC ∀t > 0, (1.13)

where
C := {x ∈ Rd : λ+ x · ν > 0, (λ,ν) ∈ V}, (1.14)

V is a closed convex cone of all (λ,ν) ∈ R×Rd satisfying λI+A(ν) is positive
semi-definite, A(ν) =

∑d
j=1 νjAj for ν = (ν1, . . . ,νd) ∈ Rd and I denotes the

identity matrix in Rn×n.
Especially, if G is the fundamental solution associated with u, namely

P(t)G = 0 for t > 0 with the initial datum G|t=0 = δI where δ is the Dirac
distribution, then (1.13) and (1.14) imply immediately that

suppG(·, t) ⊂ {x ∈ Rd : Cmin 6 |x/t| 6 Cmax} ∀t > 0,

where Cmin := minh∈{1,...,n}{|αh|}, Cmax := maxh∈{1,...,n}{|αh|} and the set
{α1, . . . ,αn} is the spectrum of A(w) =

∑d
j=1wjAj for w = (w1, . . . ,wd) ∈

Sd−1.

Remark 1.14 (Nonhomogeneous problems). Theorem 1.4 can be also ex-
tended to the nonhomogeneous Cauchy problem P(t)u + Bu = f where f
depends only on (x, t) ∈ Rd× [0,+∞) and B may be different from O. In fact,
it can be done by using the Duhamel formula similarly to the case where only
B is considered i.e. (1.4).

1.2 Global well-posedness in Lp-spaces
Since L2(Rd) ≡ H0(Rd) and the Hs-global well-posedness holds with s ∈ R,
the L2-global well-posedness is obtained. Nonetheless, it is not always true in
the case of Lp(Rd) with p 6= 2. In fact, if P(t) given by (1.5) for t > 0 is
hyperbolic, then the Lp-global well-posedness of the Cauchy problem for

P(t)u = ∂tu+

d∑
j=1

Aj∂xju = 0 (1.15)

with initial data in Lp(Rd) and p 6= 2 does not necessarily hold due to the
fact that the Fourier transform is not an automorphism of Lp(Rd), which is
indeed required for the proof of the Hs-global well-posedness. It is known
that the Fourier transform can be only extended continuously from Lp(Rd) to
Lp
′
(Rd) where 1/p+ 1/p ′ = 1 and 1 6 p 6 2, and so does the inverse Fourier

transform. Hence, since p ′ > 2, the Fourier transform is an automorphism of
L2(Rd) only.

The scenario may be even worse when Brenner in [7, 8] showed that the
Cauchy problem for (1.15) is ill-posed for every p 6= 2 except for the case where
the matrices A1, . . . ,Ad commute with each other. The ill-posedness is based
on the argument that P ⊂ [1, 2] where P indicates the set of all p ∈ [1,∞]
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satisfying that the problem is Lp-global well-posed. Moreover, we can also
see that P is symmetric via the map p 7→ p ′, P must be identical to the
singleton-point set {2} (see [3]).

In the case where the matrices A1, . . . ,Ad commute with each other, sim-
ilarly to Example 1.3, it is then easy to see that since the matrices A1, . . . ,Ad
are simultaneously diagonalizable, there exists a normalized basis of Cn such
that any solution u to (1.15) with an initial datum u0 is decoupled into n
traveling waves

u(x, t) =
n∑
h=1

`hu0(x− αht)rh,

where `h and rh are respectively the left eigenvector and the right eigenvector
associated with every component of αh := (α1

h, . . . ,αdh) generated by the
eigenvalues αjh of Aj for j ∈ {1, . . . ,d} and h ∈ {1, . . . ,n}. Hence, it follows
directly that u is a continuous map from [0,+∞) to Lp(Rd) if u0 ∈ Lp(Rd)
with p ∈ [1,∞].

Remark 1.15. For P(t) = ∂t +
∑d
j=1Aj∂xj + B with B 6= O and A1, . . . ,Ad

commuting with each other, it does not require that Aj for j ∈ {1, . . . ,d}
commutes with B to have the Lp-well-posedness with p 6= 2.

Remark 1.16 (d = 1). It follows immediately that in the one-dimensional
space, the hyperbolicity of P(t) for t > 0 is a necessary and sufficient condition
for the Lp-well-posedness of the Cauchy problem for P(t)u = 0 with initial
data in Lp(R) for all p ∈ [1,∞].
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Chapter 2

Linear stability of constant
equilibria

We consider the Cauchy problem
∂tu+

d∑
j=1

Aj∂xju+ Bu = 0,

u|t=0 = u0.
(2.1)

In (2.1), (x, t) ∈ Rd × [0,+∞), u = u(x, t) and u0 = u0(x) are vectors in Rn.
On the other hand, Aj for j ∈ {1, . . . ,d} and B are matrices in Rn×n. Let u be
a solution to (2.1) with u0 ∈ L2(Rd), we study a stability structure in order
for u to decay to zero in L2(Rd) as t→ +∞.

2.1 Dissipative structures
As discussed in the previous chapter, we see that B plays no role in the global
well-posedness of (2.1). Nevertheless, let û = F(u), where F is the Fourier
transform. Since û = e−Etû0 and E(iξ) = B + A(iξ) → B as |ξ| → 0 where
A(iξ) = i

∑d
j=1 ξjAj and ξ = (ξ1, . . . , ξd) ∈ Rd, û behaves as e−Btû0 as

|ξ|→ 0. Hence, it is necessary that the spectrum σ(B) of B satisfies

σ(B) = {0} ∪ σ+ and σ+ ⊆ {λ ∈ C : Re λ > 0} (2.2)

unless û(ξ, t) for small ξ grows exponentially in time. Noting that the case
where kerB = {0} is not relevant based on the natural existence of equilibria
in applications. We call this prior constraint on B by partial dissipation.

2.1.1 Lack of dissipation

In what follows, we thus always assume that (2.1) is partially dissipative in
the sense of (2.2). Let us begin with a very simple counterexample where the
decay of the solution u to (2.1) does not hold. Consider the one-dimensional
2× 2 system {

∂tu1 − ∂xu1 = 0,
∂tu2 + ∂xu2 = −u2,

(2.3)
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where (x, t) ∈ R× [0,+∞) and (u1,u2)|t=0 = (u1
0,u2

0) ∈ L2(R)× L2(R). One
can check easily that {

u1(x, t) = u1
0(x+ t),

u2(x, t) = e−tu2
0(x− t)

is a solution to (2.3). Moreover, since

‖(u1,u2)‖L2 = (‖u1‖2L2 + ‖u2‖2L2)
1
2 = (‖u1

0‖2L2 + e
−t‖u2

0‖2L2)
1
2 ,

one deduces that (u1,u2) does not decay as t→ +∞.
There exist also critical cases where the solution u to (2.1) is totally con-

servative. Indeed, we consider the following counterexample in [62]. For
ξ = (ξ1, . . . , ξd) ∈ Rd, one sets

N :=

+∞⋂
k=0

ker(B(A(iξ))k) where A(iξ) = i

d∑
j=1

ξjAj. (2.4)

If N 6= {0}, let v0 ∈ N\{0} and v := e−Etv0 where E(iξ) = B+A(iξ) for ξ ∈ Rd
and t > 0. Thus, we have

v(ξ, t) =
+∞∑
k=0

(−t)k

k! (B+A(iξ))kv0(ξ)

=

+∞∑
k=0

(−t)k

k! (A(iξ))kv0(ξ) = e
−A(iξ)tv0(ξ).

Hence, if v0 ∈ S ′(Rd), u := F−1(v) solves (2.1) with Bu = 0, namely

∂tu+

d∑
j=1

Aj∂xju = 0.

Therefore, u is conservative for all t > 0.

Remark 2.1 ( [62,67]). For ξ ∈ Rd\{0}, N = {0} is equivalent to the following

i) rank [B,BA(iξ), . . . ,B(A(iξ))n−1] = n, where [M1, . . . ,Mn] denotes the
n × n2 matrix obtained by placing Mk+1 at the right-hand side of Mk

for k = 1, . . . ,n− 1;

ii) If z is an eigenvector of A(iξ), then z /∈ kerB.

In fact, for ξ ∈ Rd\{0}, since rank [B,BA(iξ), . . . ,B(A(iξ))n−1] = n is
equivalent to

n−1⋂
k=0

ker(B(A(iξ))k) = {0},

the equivalence of N = {0} and the rank condition (i) obviously holds due to
the Cayley–Hamilton theorem.

We prove the equivalence of N = {0} and (ii). If N = {0} and z is an
eigenvector associated with an eigenvalue denoted by α ∈ C of A(iξ) such
that z ∈ kerB, then

Bz = 0 and B(A(iξ))kz = αkBz = 0 ∀k = 1, 2, 3, . . .

30



Thus, z ∈ N = {0} is a contradiction. Conversely, assume that N 6= {0} and
there is no eigenvector of A(iξ) in kerB. Moreover, one can check easily that
A(iξ)N ⊂ N by the definition of N. Hence, there is an eigenvector of A(iξ) in
N unless A(iξ)z 6= αz for all α ∈ C and all z ∈ N. Thus, it is a contradiction
since N ⊂ kerB.

The rank condition (i) is exactly the Kalman condition in control theory,
which is sufficient and necessary for the controllability of a finite-dimensional
system ẋ(t) =Mx(t)+Nu i.e. rank [N,MN, . . . ,Mn−1N] = n, where (x,u) ∈
Rn × Rm, (M,N) ∈ Rn×n × Rn×m and ẋ denotes the derivative of x with
respect to t. Moreover, the condition (ii) is well known as the Shizuta–
Kawashima condition.

2.1.2 The Shizuta–Kawashima criterion

Due to the previous counterexamples, we can see that the conservative prop-
erty of the solution u to (2.1) is generally caused by the restriction of A(∇x) :=∑d
j=1Aj∂xj to kerB, where A(∇x) is a pseudo-differential operator associ-

ated with the symbol A(iξ) = i
∑d
j=1 ξjAj. Thus, the restriction should

be compensated and the idea of Shizuta and Kawashima is that there is a
pseudo-differential operator K(∇x) associated with a symbol K(iξ) such that
Re 〈K(∇x)u,A(∇x)u〉 > 0 for all nonzero u ∈ kerB, where 〈·, ·〉 denotes the
inner product on Cn. Moreover, the decay of u then follows the Lasalle’s
invariance principle, namely there exists a continuously differentiable map
L := L(u) from Rn to R such that L(u) ∼ ‖u‖2 for a suitable norm ‖ · ‖ and
d
dtL < 0 for all t > 0.

In many applications, the existence of K(∇x) is guaranteed by the following
criterion, which is equivalent to the fact that N = {0} (see (ii) in Remark 2.1)
where N is given by (2.4).

Proposition 2.1 (Shizuta–Kawashima criterion [64]). If A and B are real
symmetric matrices and B is positive semi-definite, then there exists a real
skew-symmetric matrix K such that ut(KA−AK+B)u > 0 for all u ∈ Rn\{0} if
and only if there is no eigenvector of A in kerB, where t denotes the transpose.

The prototypal idea of the construction of such a real skew-symmetric
matrix K arises in the work of Ellis and Pinsky in [19]. For any complex
matrices A and B, if A is unitarily diagonalizable, then there is a complex
matrix denoted by K such that one has the unique decomposition

B = ΠA(B) + [A,K],

where [A,K] := AK− KA and ΠA is the orthogonal projection onto the space
of all complex matrices commuting with A, namely [A,ΠA(B)] = O and O is
the null matrix. Especially, for all u ∈ Cn, we have

ūtΠA(B)u =

r∑
j=1

ūtΠjBΠju =

r∑
j=1

(Πju)
tB(Πju),

where Πj is the eigenprojection associated with αj ∈ σ(A), σ(A) is the spec-
trum of A with the cardinality r ∈ [1,n], ūt and (Πju)

t are respectively the
conjugate transposes of u and Πju for j ∈ {1, . . . , r}. Moreover, if A and B
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are real matrices and B is symmetric and positive semi-definite, then so do
ΠA(B) and [A,K]. Hence, one can check easily that [A,K] = [A,Kskew] and
[A,K] = [A,Kreal] where Kskew := (K − Kt)/2, Kreal := (K + K̄)/2, Kt is the
transpose of K and K̄ is the complex-conjugate matrix of K. Thus, K can be
chosen as a real skew-symmetric matrix. Once the existence of K is proved,
the other properties in Proposition 2.1 can be checked easily.

In general, we can obtain a similar result as in Proposition 2.1 with a non-
symmetric matrix B. Let us assume that there is a linear change of variables
such that B =

(
O O
C D

)
in the new variable where C ∈ R(n−m)×m and invert-

ible D ∈ R(n−m)×(n−m). We also assume that (2.1) has a symmetrizer A0,
i.e. A0 is a symmetric positive-definite matrix and A0Aj is symmetric for all
j ∈ {1, . . . ,d}, such that A0B is positive semi-definite.

Let U := A−1
0 u for u ∈ Cn, one has

Re ūt(BA−1
0 + (BA−1

0 )t)u = 2Re ūtBA−1
0 u = 2Re ŪtA0BU > 0.

Hence, the symmetric matrix BA−1
0 +(BA−1

0 )t is positive semi-definite. More-
over, we have

BA−1
0 =

(
O O

C∗ D∗

)
and BA−1

0 + (BA−1
0 )t =

(
O Ct

∗
C∗ D∗ +D

t
∗

)
,

where C∗ ∈ R(n−m)×m and D∗ ∈ R(n−m)×(n−m). It then follows from [75]
(Lemma 2.1, p. 94) that C∗ = O. Therefore, (2.1) is rewritten as

A−1
0 ∂tU+

d∑
j=1

AjA
−1
0 ∂xjU+

(
O O

O D∗

)
U = 0.

Furthermore, it is easy to see that AjA−1
0 is symmetric for all j ∈ {1, . . . ,d}. In

particular, the assumption that there is no eigenvector of
∑d
j=1wjAj in kerB is

equivalent to the assumption that the intersection of
{(
X
0
)
: X ∈ Cm\{0}

}
and

ker(λA−1
0 +

∑d
j=1wjAjA

−1
0 ) is empty for all λ ∈ C and (w1, . . . ,wd) ∈ Sd−1.

We obtain the following

Corollary 2.2. If D∗ is a positive-definite matrix, then for w = (w1, . . . ,wd) ∈
Sd−1, there is a real skew-symmetric matrix K(w) such that

ut(K(w)A(w)A−1
0 −A(w)A−1

0 K(w) + BA−1
0 +A−1

0 Bt)u > 0 (2.5)

for all u ∈ Rn\{0} if and only if there is no eigenvector of A(w) in kerB,
where A(w) =

∑d
j=1wjAj.

Proof. For w ∈ Sd−1, we apply Proposition 2.1 to the matrices A(w)A−1
0 and

diag (O,D∗ +Dt
∗). The proof is done.

Remark 2.2. The real skew-symmetric matrix K can be chosen such that
K ∈ C∞(Sd−1) and K(−w) = −K(w) for w ∈ Sd−1 [67, 77].

Once the existence of K(∇x) is proved, the decay of the solution u to (2.1)
in L2(Rd) is then guaranteed by the Lyapunov function

L(u) := ‖u‖2L2 + α

∫
Rd
〈K(∇x)u,u〉+ β‖∇xu‖2L2 ,
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where α and β can be chosen later. Here, we consider an other approach which
allows us to obtain an explicit rate of the decay of u. More precisely, we show
the following important bounds of the Fourier transform û of u and the real
parts of the eigenvalues of E(iξ) = B+A(iξ), where A(iξ) = i

∑d
j=1 ξjAj, for

all ξ = (ξ1, . . . , ξd) ∈ Rd\{0}.
Based on the previous discussions, we consider

A0∂tu+

d∑
j=1

Aj∂xju+ Bu = 0, (2.6)

where A0 is symmetric and positive definite, Aj for all j ∈ {1, . . . ,d} is sym-
metric and B (not necessarily symmetric) is positive semi-definite. Moreover,
we assume that for w ∈ Sd−1, there is a real skew-symmetric matrix K(w)
such that

ut(K(w)A(w) −A(w)K(w) + B+ Bt)u > 0 (2.7)

for all u ∈ Rn\{0}, where A(w) =
∑d
j=1wjAj for w = (w1, . . . ,wd) ∈ Sd−1.

Proposition 2.3. If u is a solution to (2.6) with an initial datum u0, then
there are constants c > 0 and C > 0 such that

|û(ξ, t)| 6 Ce−
c|ξ|2

1+|ξ|2 t|û0(ξ)| ∀ξ ∈ Rd\{0}, t > 0. (2.8)

Moreover, if λ = λ(iξ) satisfies (A(iξ) + B)z = λA0z for a z ∈ Cn\{0}, then
there is a constant θ > 0 such that

Re λ(iξ) > θ|ξ|2

1+ |ξ|2
∀ξ ∈ Rd\{0}. (2.9)

Remark 2.3. It follows immediately from Proposition 2.3 that if (2.1) can be
transformed into or is already in the form of (2.6) through u 7→ A0u and the
above properties of (2.6) hold, then the Fourier transform û of the solution u
to (2.1) satisfies (2.8) and for any eigenvalue λ(iξ) of E(iξ) = B + A(iξ), the
real part of λ satisfies (2.9).

Proof of Proposition 2.3. The proof is based on the energy estimate method
in the Fourier space introduced in [70]. For ξ ∈ Rd\{0}, let w = ξ/|ξ| ∈ Sd−1.

Consider (2.6) in the Fourier space, namely

A0∂tû+ (i|ξ|A(w) + B)û = 0. (2.10)

Taking the Cn-inner product 〈·, ·〉 between (2.10) and û, we have

1
2∂t〈A0û, û〉+ Re 〈Bû, û〉 = 0. (2.11)

Similarly, multiplying (2.10) by −iα|ξ|K(w) where α > 0 is small enough
and will be chosen later. Taking the Cn-inner product 〈·, ·〉 between the new
equation and û, we obtain

−
1
2α|ξ|∂t〈iK(w)A0û, û〉+ α|ξ|2Re 〈K(w)A(w)û, û〉

− α|ξ|Re 〈iK(w)Bû, û〉 = 0. (2.12)
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Dividing (2.12) by 1+ |ξ|2 and then adding the new equation to (2.12), we
have

∂tL(û) + D1(û) = D2(û), (2.13)

where

L(û) :=
1
2

(
〈A0û, û〉−

α|ξ|

1+ |ξ|2
〈iK(w)A0û, û〉

)
, (2.14)

D1(û) :=
α|ξ|2

1+ |ξ|2
Re 〈(K(w)A(w) + B)û, û〉

+
(
1− α|ξ|2

1+ |ξ|2

)
Re 〈Bû, û〉 (2.15)

and
D2(û) :=

α|ξ|

1+ |ξ|2
Re 〈iK(w)Bû, û〉. (2.16)

On the other hand, let P0 be the orthogonal projection onto kerB and I
be the identity matrix. By the Cauchy–Schwarz inequality, for any ε > 0, one
has

|Re 〈iε−
1
2α

1
2K(w)Bû, ε

1
2α

1
2 |ξ|û〉| 6 εα|ξ|2|û|2 + αε−1|(I− P0)û|

2. (2.17)

Moreover, since B is positive semi-definite, there is a constant β > 0 such that

Re 〈Bû, û〉 > β|(I− P0)û|
2. (2.18)

Since (2.7) holds, there is a constant γ > 0 such that

Re 〈(K(w)A(w) + B)û, û〉 > γ|û|2. (2.19)

Hence, by choosing ε < γ/2 and α < βε/(2+ εβ), it follows from (2.13) -
(2.19) that |D2| 6 D1/2. Thus, we obtain

∂tL(û) 6 −
1
2D1(û) 6 −

αγ

2
|ξ|2

1+ |ξ|2
|û|2. (2.20)

Furthermore, since α is small and A0 is positive definite, one deduces from
(2.14) that C−1|û|2 6 L(û) 6 C|û|2 for a constant C > 0. We then obtain
(2.8) with c = αγ/4.

The proof of (2.9) is similar to before with the same computations. More
precisely, ∂tû is substituted by (−λ)û, where λ satisfies (A(iξ)+B)û = λA0û
for a certain û ∈ Cn\{0}, A(iξ) = i|ξ|A(w) and ξ ∈ Rd. Hence, we have
∂tL(û) = −(Re λ)L(û) and{

(Re λ)L(û) 6 C−1(Re λ)|û|2 if Re λ < 0,
(Re λ)L(û) 6 C(Re λ)|û|2 if Re λ > 0.

It then follows from (2.20) that there is θ > 0 such that

(Re λ)|û|2 >
θ|ξ|2

1+ |ξ|2
|û|2. (2.21)

Thus, since û ∈ Cn\{0}, dividing (2.21) by |û|2, we have Re λ is positive and
satisfies (2.9) for all ξ 6= 0. The proof is done.

34



By the Plancherel formula, it follows from (2.8) immediately that
Corollary 2.4 (Decay in L2(Rd)). Let u0 ∈ L2(Rd)∩L1(Rd), if u is a solution
to (2.1) and (2.8) satisfies, there are constants c > 0 and C > 0 such that

‖u‖L2 6 C(1+ t)−
d
4 ‖u0‖L1 + Ce−ct‖u0‖L2 ∀t > 0. (2.22)

Remark 2.4. Noting that the property (2.9) of the real parts of the eigen-
values of E(iξ) = B+A(iξ) sometimes can be calculated directly.
Remark 2.5. The properties (2.8) and (2.9) depend strongly on (2.7), which
is satisfied by many systems including the Goldstein–Kac systems and the
linearized isentropic compressible Euler equations with damping.

Nevertheless, there are cases where (2.7) holds in a weaker sense. i.e.
there is a real matrix L satisfying LA0 is symmetric, the symmetric part of
LB + L is positive semi-definite and shares the same kernel with B and there
is sufficiently small α > 0 such that for w ∈ Sd−1, we have

ut(α(K(w)A(w) −A(w)K(w))

+ LB+ (LB)t + B+ Bt)u > 0

for all u ∈ Rn\{0}.
Then, (2.8) and (2.9) hold if Re 〈iLA(w)u,u〉 > 0 for all u ∈ Cn and

w ∈ Sd−1. On the other hand, if Re 〈iLA(w)u,u〉 > 0 for all u ∈ ker(B+ Bt)
and w ∈ Sd−1, the following holds

|û(ξ, t)| 6 Ce−
c|ξ|2

(1+|ξ|2)2 t|û0(ξ)| ∀ξ ∈ Rd\{0}, ∀t > 0. (2.23)

Moreover, if λ = λ(iξ) satisfies (A(iξ) + B)z = λA0z for a z ∈ Cn\{0}, then

Re λ(iξ) > θ|ξ|2

(1+ |ξ|2)2 ∀ξ ∈ Rd\{0}. (2.24)

The properties (2.23) and (2.24) are also induced from the energy estimate
method in the Fourier space similarly to the proof of Proposition 2.3. Such
kind of weaker properties implies the decay (in L2(Rd)) of the high-frequency
part of the solution u to (2.1) is at most polynomial, provided the initial
datum u0 is regular enough. For references, one sees [67–69] and the examples
therein.

2.2 Asymptotic-profile construction methods
In the spirit of (2.22), the solution u to (2.1) is divided into two parts with
two different behaviors as t→ +∞. One part decays diffusively and the other
one decays exponentially.

The slower part arises in the low-frequency part of u (|ξ| < 1) and the
faster part arises in the high-frequency part (|ξ| > 1). In fact, for small
ξ, from (2.8), the Fourier transform û of u behaves similarly to a heat kernel
associated with the symbol e−c|ξ|2t. For large ξ, û is bounded by Ce− c

2t|û0(ξ)|
for some constants c > 0 and C > 0. As t→ +∞, the exponentially decaying
part can be negligible and it allows us to investigate parabolic approximations
of u only.

Here, we introduce two useful tools that one can construct large-time
asymptotic profiles of u: the Chapman–Enskog expansion and the asymptotic
expansion in the Fourier space.
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2.2.1 Chapman–Enskog expansion

The Chapman–Enskog expansion method was proposed firstly and indepen-
dently by Chapman and Enskog between 1910 and 1920 in order to derive the
Navier–Stokes equation from the Boltzmann equation as the Knudsen number
vanishes. The main idea is to justify the expansion

fε(x, t) := f0(x, t) + εf1(x, t) + ε2f2(x, t) + . . .

approximating a solution f to the Boltzmann equation around an unperturbed
Maxwellian state f0, where 0 < ε � 1 is the Knudsen number. Hence, each
finite sum

∑k
h=0 ε

kfh is then a k-order approximation of f for k ∈ N.
We now consider the singular limit of (2.1) (as ε→ 0+) under the hyper-

bolic scaling (x, t) 7→ (x/ε, t/ε) with 0 < ε � 1. Under the scaling, (2.1) is
reformulated by the system

∂tu+

d∑
j=1

Aj∂xju+
1
ε
Bu = 0. (2.25)

Assume that the eigenvalue 0 of B is semi-simple with the algebraic mul-
tiplicity m ∈ [1,n). Let L+ ∈ Rm×n and R+ ∈ Rn×m be obtained from
the eigenprojection P+ ∈ Rn×n onto kerB by rank factorization. Similarly,
L− ∈ R(n−m)×n and R− ∈ Rn×(n−m) are obtained from I − P+ by rank
factorization.

Let v := L+u and w := L−u, (2.25) is decomposed into
∂tv+

d∑
j=1

L+AjR+∂xjv+

d∑
j=1

L+AjR−∂xjw = 0, (2.26)

∂tw+

d∑
j=1

L−AjR+∂xjv+

d∑
j=1

L−AjR−∂xjw+
1
ε
L−BR−w = 0. (2.27)

Substituting the approximation

wε(x, t) := εw1 + ε
2w2 + . . . (2.28)

for w in (2.27), one has

w1 = −

d∑
j=1

(L−BR−)
−1L−AjR+∂xjv. (2.29)

Finally, substituting (2.28) and (2.29) for w in (2.26), we obtain

∂tv+

d∑
j=1

Cj∂xjv− ε

d∑
j=1

d∑
h=1

Djh∂xjxhv = 0. (2.30)

In (2.30), Cj and Djh for j, h ∈ {1, . . . ,d} are matrices in Rn×n such that

Cj := L+AjR+ and Djh := L+AjR−(L−BR−)
−1L−AhR+.

Since the singular-limit problem can be seen as a complementary problem
of the large-time asymptotic behavior problem at a small fixed parameter, it
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gives rise to the idea that a large-time approximation of (2.1) can be con-
structed by this manner. From (2.27) with ε = 1, one has

w = −(L−BR−)
−1
(
∂tw+

d∑
j=1

L−AjR+∂xjv+

d∑
j=1

L−AjR−∂xjw
)
. (2.31)

Substituting (2.31) for w in (2.26), we obtain

∂tv+

d∑
j=1

Cj∂xjv−

d∑
j=1

d∑
h=1

Djh∂xjxhv = 0,

which coincides (2.30) with ε = 1.

2.2.2 Asymptotic expansion in the Fourier space

Consider the Cauchy problem{
∂tĜ+ EĜ = 0,
Ĝ|t=0 = I,

(2.32)

where (ξ, t) ∈ Rd×[0,+∞), E(iξ) = B+i
∑d
j=1 ξjAj for ξ = (ξ1, . . . , ξd) ∈ Rd

and I is the identity matrix in Rn×n.
A solution Ĝ to (2.32) is given by

Ĝ(ξ, t) = e−E(iξ)t ∀(ξ, t) ∈ Rd × [0,+∞). (2.33)

We consider asymptotic expansions of Ĝ based on the perturbation theory for
linear operators in [36]. Since Ĝ is the Fourier transform of the fundamental
solution G to (2.1), the expansions of Ĝ allow us to obtain more exact large-
time asymptotic profiles of the solution u to (2.1) than the Chapman–Enskog
expansion. Nevertheless, the expansions require more uniform properties.

To this end, for ξ = (ξ1, . . . , ξd) ∈ Rd, we consider

E = E(z) = B+ zA(w),

where

z = i|ξ|, wj =
ξj

|ξ|
∀j = 1, . . . ,d and A(w) =

d∑
j=1

wjAj.

The operator E can be expanded as z tends to a specific point z0 ∈ C including
the point z0 = ∞. Specifically, since we know that large-time asymptotic
profiles of u arise in its low-frequency part as |ξ| → 0, we thus consider the
expansion of E as |z|→ 0.

As mentioned before, since the method requires uniform properties, we
primarily begin with the one-dimensional space where d = 1. We also as-
sume that the eigenvalue 0 of B is semi-simple similarly to before and the
restriction of A := A1 to kerB is diagonalizable i.e. C := P

(0)
0 AP

(0)
0 consid-

ered in ranP(0)
0 = {z ∈ Cn : z = P

(0)
0 z} is diagonalizable, where P(0)

0 is the
eigenprojection associated with the eigenvalue 0 of B.
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The above conditions are very technical. Nonetheless, we can see that
the singular limit (2.30) of the solution u to (2.1) via the Chapman–Enskog
expansion is indeed governed by the reduced system

∂tv+ C∂xv ≈ 0, (2.34)

where v := P
(0)
0 u ∈ kerB and C = P

(0)
0 AP

(0)
0 . It amounts to saying that the

hyperbolicity condition is necessary for (2.34) to be global well-posedness i.e.
the diagonalizability with real eigenvalues of the matrix C.

Recall from (B.3) in Appendix B that

P
(0)
0 = −

1
2πi

∫
Γ0

(B− zI)−1 dz and Q(0)
0 =

1
2πi

∫
Γ0

z−1(B− zI)−1 dz (2.35)

are respectively the eigenprojection and the reduced resolvent coefficient as-
sociated with the eigenvalue 0 of B, where Γ0, in the resolvent set of B, is an
oriented closed curve enclosing 0 except for the other eigenvalues of B.

One also recall the formula (B.4) in Appendix B that the coefficient

P
(1)
0 := −P

(0)
0 AQ

(0)
0 −Q

(0)
0 AP

(0)
0 . (2.36)

One sets

D := −

s∑
h=1

P
(0)
h (P

(1)
0 BP

(1)
0 + P

(0)
0 AP

(1)
0 + P

(1)
0 AP

(0)
0 )P

(0)
h , (2.37)

where P(0)
h is the eigenprojection associated with ch ∈ σ(C, kerB) for h ∈

{1, . . . , s}, σ(C, kerB) is the spectrum of C considered in kerB with the cardi-
nality s.

Noting that
P
(0)
h = −

1
2πi

∫
Γh

(Cα − zI)−1 dz,

where Cα := C+αP
(0)
0 for α > max{|λ| : λ ∈ σ(C)}, σ(C) is the spectrum of C

and Γh, in the resolvent set of Cα, is an oriented closed curve enclosing ch+α
except for the other eigenvalues of Cα.

Let σ(T ,D) be the spectrum of a certain matrix T considered in a domain
D with σ(T) ≡ σ(T ,Cn), we have the following

Proposition 2.5 (Low frequency - one-dimensional space). Assume that 0 ∈
σ(B) is semi-simple and C = P

(0)
0 AP

(0)
0 considered in kerB is diagonalizable.

For small ξ, E(iξ) = B+ iξA is approximated by E = E1 + E2 where

E1(iξ) =
s∑
h=1

sh∑
`=1

(
(ichξ+ dh`ξ

2)I+ ξ2N
(0)
h` + O(|ξ|3)

)(
P
(0)
h` + O(|ξ|)

)
(2.38)

and

E2(iξ) =
s ′∑
k=1

(
bkI+M

(0)
k + O(|ξ|)

)
(F

(0)
k + O(|ξ|)

)
. (2.39)

In (2.38), ch ∈ σ(C, ranP(0)
0 ) with the associated eigenprojection P(0)

h , dh` ∈
σ(P

(0)
h DP

(0)
h , ranP(0)

h ) with the associated eigenprojection P(0)
h` and eigennilpo-

tent N(0)
h` , s and sh are respectively the cardinalities of σ(C, ranP(0)

0 ) and
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σ(P
(0)
h DP

(0)
h , ranP(0)

h ). In (2.39), bk ∈ σ(B)\{0} with the associated eigen-
projection F(0)

k and eigennilpotent M(0)
k and s ′ is the cardinality of σ(B)\{0}.

Proof. Assume that σ(B) = {0} ∪ σ0 where σ0 = {b1, . . . ,bs ′} ⊆ C\{0}. It
follows from Appendix B that the eigenvalues of B gives rise to the total
projections P0 = P0(iξ) and Fk = Fk(iξ) for k ∈ {1, . . . , s ′} satisfying

P0(iξ) = P
(0)
0 + O(|ξ|) and Fk(iξ) = F

(0)
k + O(|ξ|)

for small ξ, where P(0)
0 and F(0)

k are respectively the eigenprojections associated
with the eigenvalues 0 and bk of B for k ∈ {1, . . . , s ′}. Each of the total
projections associates with a group of eigenvalues of E(iξ), where the elements
of each group converge to the same eigenvalue of B as |ξ|→ 0.

One sets E1 := EP0 and E2 :=
∑s ′
k=1 EFk. Due to the semi-simplicity

of the eigenvalue 0 of B and the eigenvalues of C = P
(0)
0 AP

(0)
0 considered

in kerB, one obtains (2.38) by applying two times of the reduction process
introduced in Lemma B.3. On the other hand, (2.39) is obtained directly
from the multiplication EFk for k ∈ {1, . . . , s ′}. The proof is done.

Noting that since E1 and E2 commute with the total projections and their
subprojections as showed in Appendix B (Lemma B.3), it follows from (2.33)
that for small ξ, the solution Ĝ to (2.32) is decomposed into Ĝ = Ĝ1 + Ĝ2
where

Ĝ1(ξ, t) :=
s∑
h=1

sh∑
`=1

e−(ichξ+dh`ξ
2)te−

(
ξ2N

(0)
h` +O(|ξ|3)

)
t
(
P
(0)
h` + O(|ξ|)

)
(2.40)

and

Ĝ2(ξ, t) :=
s ′∑
k=1

e−bkte−
(
M

(0)
k +O(|ξ|)

)
t(F

(0)
k + O(|ξ|)

)
. (2.41)

If Rebk > 0 for all k ∈ {1, . . . , s ′}, from (2.40) and (2.41), Ĝ2 decays exponen-
tially as t → +∞. Hence, large-time asymptotic profiles of Ĝ can be chosen
as

K̂(ξ, t) :=
s∑
h=1

sh∑
`=1

e−(ichξ+dh`ξ
2)te−ξ

2N
(0)
h` tP

(0)
h` (2.42)

if Redh` > 0 for all h ∈ {1, . . . , s} and ` ∈ {1, . . . , sh}.
The case of the multi-dimensional space with d > 2 is more complicated

due to lack of uniform properties. Hence, we consider here only that 0 ∈ σ(B)
is simple.

Recall P(0)
0 and Q(0)

0 in (2.35). For h, ` ∈ {1, . . . ,d}, one sets

ch := tr
(
AhP

(0)
0
)
and Dh` :=

1
2tr
(
AhP

(0)
0 A`Q

(0)
0 +AhQ

(0)
0 A`P

(0)
0
)
, (2.43)

where tr denotes the trace. We also set for h ∈ {1, . . . ,d}, the matrix

P
(1)
0h := −P

(0)
0 AhQ

(0)
0 −Q

(0)
0 AhP

(0)
0 . (2.44)
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Proposition 2.6 (Low frequency - multi-dimensional space). If 0 ∈ σ(B) is
simple, then E(iξ) = B + i

∑d
j=1 ξjAj for small ξ = (ξ1, . . . , ξd) ∈ Rd is

approximated by

E(iξ) = λ0(iξ)P0(iξ) +
s ′∑
k=1

Ek(iξ)Fk(iξ). (2.45)

In (2.45), one has

λ0(iξ) = i
d∑
h=1

chξh +

d∑
h=1

d∑
`=1

Dh`ξhξ` + O(|ξ|3), (2.46)

and

P0(iξ) = P
(0)
0 + i

d∑
h=1

ξhP
(1)
0h + O(|ξ|2). (2.47)

Moreover, one has
Ek(iξ) = bkI+M

(0)
k + O(|ξ|) (2.48)

and
Fk(iξ) = F

(0)
k + O(|ξ|), (2.49)

where bk ∈ σ(B)\{0} with the associated eigenprojection F(0)
k and eigennilpotent

M
(0)
k and s ′ is the cardinality of σ(B)\{0}.

Proof. For ξ = (ξ1, . . . , ξd) ∈ Rd, one lets ζ = |ξ| ∈ [0,+∞) and w =
(w1, . . . ,wd) = (ξ1, . . . , ξd)/|ξ| = ξ/|ξ| ∈ Sd−1. One has E(iξ) = E(iζ,w) =
B+ iζA(w) where A(w) :=

∑d
j=1wjAj.

We primarily consider the 0-group of E(iζ,w) for small ζ > 0, where the
0-group contains the eigenvalues of E(iζ,w) which converge to 0 as ζ → 0.
Since 0 ∈ σ(B) is simple, the eigennilpotent N(0)

0 associated with 0 is the null
matrix and one obtains from (B.2) and (B.4) - (B.6) that the total projection
P0(iζ,w) associated with the 0-group of E(iζ,w) is approximated by

P0(iζ,w) = P(0)
0 + iζP

(1)
0 (w) + O(ζ2), (2.50)

where P(0)
0 is the eigenprojection associated with 0 and

P
(1)
0 (w) = −P

(0)
0 A(w)Q

(0)
0 −Q

(0)
0 A(w)P

(0)
0

= −

d∑
h=1

wh(P
(0)
0 AhQ

(0)
0 +Q

(0)
0 AhP

(0)
0 ). (2.51)

On the other hand, by (B.8) and (B.9) in Lemma B.1, the 0-group of E(iζ,w)
consists of one single eigenvalue λ0(iζ,w) approximated by

λ0(iζ,w) = iζλ(1)
0 (w) − ζ2λ

(2)
0 (w) + O(ζ3), (2.52)

where

λ
(1)
0 (w) = tr (A(w)P(0)

0 ) =

d∑
h=1

tr (AhP(0)
0 )wh (2.53)
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and

λ
(2)
0 (w) =

1
2tr (A(w)P

(1)
0 (w))

= −
1
2

d∑
h=1

d∑
`=1

tr (AhP(0)
0 A`Q

(0)
0 +AhQ

(0)
0 A`P

(0)
0 )whw`. (2.54)

We consider the other groups of E(iζ,w) for small ζ > 0. Recall bk ∈
σ(B)\{0} is the k-th nonzero eigenvalue of B for k ∈ {1, . . . , s ′} where s ′ is the
cardinality of σ(B)\{0}.

One deduces directly from (B.2) that the approximation of the total pro-
jection Fk(iζ,w) associated with the bk-group of E(iζ,w), which contains the
eigenvalues of E(iζ,w) converging to bk as ζ→ 0, is given by the following

Fk(iζ,w) = F(0)
k + O(ζ), (2.55)

where F(0)
k is the eigenprojection associated with bk. Moreover, due to the dis-

cussions above (B.7), the bk-group of E(iζ,w) is equivalent to the eigenvalues
of Ek(iζ,w) = E(iζ,w)Fk(iζ,w) in ran Fk(iζ,w). Furthermore, one has

Ek(iζ,w) = (B+ iζA(w))(F
(0)
k + O(ζ))

= BF
(0)
k + O(ζ) = bkI+M

(0)
k + O(ζ), (2.56)

where M(0)
k = (B− bkI)F

(0)
k is the eigennilpotent associated with bk.

Finally, since P0 +
∑s ′
k=1 Fk(iζ,w) = I the identity matrix, one has

E(iζ,w) = E(iζ,w)P0(iζ,w) +
s ′∑
k=1

E(iζ,w)Fk(iζ,w)

= λ0(iζ,w)P0(iζ,w) +
s ′∑
k=1

Ek(iζ,w)Fk(iζ,w). (2.57)

We thus obtain (2.45) - (2.49) by considering (2.50) - (2.57) in ξ ∈ Rd. The
proof is done.

One sets

c := (ch)h∈{1,...,d} ∈ Rd and D := (Dh`)h,`∈{1,...,d} ∈ Rd×d, (2.58)

where ch and Dh` are given by (2.43) for h, ` ∈ {1, . . . ,d}. We also set

P
(1)
0 :=

(
P
(1)
0h
)
h∈{1,...,d} ∈ (Rn×n)d, (2.59)

where P(1)
0h is given by (2.44) for h ∈ {1, . . . ,d}. Similarly to the one-dimensional

space, for small ξ, the solution Ĝ to (2.32) is decomposed into Ĝ = Ĝ1 + Ĝ2
where

Ĝ1(ξ, t) := e−(ic·ξ+ξ·Dξ+O(|ξ|3))t
(
P
(0)
0 + iξ · P(1)

0 + O(|ξ|2)
)

(2.60)

and

Ĝ2(ξ, t) :=
s ′∑
k=1

e−bkte−
(
M

(0)
k +O(|ξ|)

)
t(F

(0)
k + O(|ξ|)

)
. (2.61)
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Therefore, if Rebk > 0 for all k ∈ {1, . . . , s ′}, Ĝ2 decays exponentially as
t→ +∞. Hence, large-time asymptotic profiles of Ĝ can be chosen as

K̂(ξ, t) := e−(ic·ξ+ξ·Dξ)tP
(0)
0 (2.62)

if the matrix D is positive definite.

Remark 2.6 (High frequency - one-dimensional space). We can also obtain
the high-frequency expansion of E(iξ) = B + iξA by reformulating E(iξ) =
iη−1T(iη) where T(iη) := A − iηB and η := ξ−1 ∈ R. In fact, |η| → 0 as
|ξ|→ +∞, and thus, one can apply the previous computations for T(iη).

Proposition 2.7 (High-frequency approximation). If A is diagonalizable,
then for large ξ, E(iξ) is approximated by

E(iξ) =

r∑
h=1

rh∑
`=1

(
(iαhξ+ βh`)I+Θ

(0)
h` + O(|ξ|−1)

)(
Π
(0)
h` + O(|ξ|−1)

)
, (2.63)

where αh ∈ σ(A) with the associated eigenprojection Π
(0)
h , the coefficient

βh` ∈ σ(Π
(0)
h BΠ

(0)
h , ranΠ(0)

h ) with the associated eigenprojection Π
(0)
h` and

eigennilpotent Θ(0)
h` , r and rh are respectively the cardinalities of σ(A) and

σ(Π
(0)
h BΠ

(0)
h , ranΠ(0)

h ).

Proof. The expansion of T(iη) as |η| → 0 follows directly from Lemma B.3
for each semi-simple eigenvalue αh of A since A is diagonalizable, where h ∈
{1, . . . , r} and r is the cardinality of σ(A) . Then, we deduce the expansion
of E(iξ) as |ξ| → +∞ by using the formula E(iξ) = iξT(iξ−1). The proof is
done.

Remark 2.7 (High frequency - multi-dimensional space). Similarly to the
case of small ξ, E(iξ) for large ξ cannot be expanded uniformly in the multi-
dimensional space. Moreover, since the case of strict hyperbolicity rarely
appear in the multi-dimensional space, we will not assume that. Hence,
we consider here only the case where the matrix A(w) =

∑d
j=1wjAj for

w = (w1, . . . ,wd) ∈ Sd−1 is uniformly diagonalizable with linear eigenvalues,
namely the matrix R(w) diagonalizing A(w) satisfies

sup
w∈Sd−1

|R(w)||R−1(w)| < C

for a constant C > 0 and the eigenvalues of A(w) are linear functions in w.
Thus, we consider the `-th diagonal element of R−1AR for ` ∈ {1, . . . ,n} as

the linear function

ν`(w) := ν
(0)
` +

d∑
h=1

ν
(h)
` wh, (2.64)

where the coefficient ν(h)` ∈ C for all h ∈ {0, 1, . . . ,d}. One sets

ν` := (ν
(0)
` , . . . ,ν(d)` ) ∈ Cd+1

be the coefficient vector associated with ν` for ` ∈ {1, . . . ,n}. One also sets

S1 := {` ∈ {1, . . . ,n} : ν` = ν1}.
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For ij := min{{1, . . . ,n}\ ∪j−1
h=1 Sh}, one defines

Sj := {` ∈ {1, . . . ,n} : ν` = νij}, j = 2, 3, . . .

This procedure will stop at a finite step r 6 n and S := {S1, . . . , Sr} is a
partition of {1, . . . ,n}. One denotes by [j] the representation of the elements
of Sj for j ∈ {1, . . . , r}.

Lemma 2.8 (Measure zero set). There is a Lebesgue measure zero set in Sd−1

such that except for this set, the number of the distinct eigenvalues of A(w)
for w ∈ Sd−1 is r.

Proof. Assume that there are i, j ∈ {1, . . . , r} such that i 6= j and ν[i](w0) =

ν[j](w0) for a w0 ∈ Sd−1. By (2.64), w0 belongs to the intersection of the
affine hyperplane

(ν
(0)
[i] − ν

(0)
[j] ) +

d∑
h=1

(ν
(h)
[i] − ν

(h)
[j] )xh = 0, (x1, . . . , xd) ∈ Rd,

and the unit sphere Sd−1. Moreover, the dimension of the hyperplane is at
most d− 1 since the coefficient vectors ν[i] and ν[j] satisfy ν[i] 6= ν[j] for any
i 6= j. Thus, the dimension of the intersection is at most d− 2. Therefore, w0
belongs to a Lebesgue measure zero set in Rd−1.

Thus, ν[i](w) 6= ν[j](w) for any i 6= j and for w ∈ Sd−1 except for a
Lebesgue measure zero set. Finally, since the repeated eigenvalues of A(w)
are ν`(w) in (2.64) for ` ∈ {1, . . . ,n}, it follows immediately that the number
of the distinct eigenvalues of A(w) for w ∈ Sd−1 is r excluding a Lebesgue
measure zero set. We finish the proof.

One sets, for j ∈ {1, . . . , r}, the projection

(Π
(0)
j )h` :=

{
1 if h = ` ∈ Sj,
0 otherwise.

(2.65)

Proposition 2.9 (High-frequency approximation). Assume that A(w) is uni-
formly diagonalizable with linear eigenvalues by an invertible matrix R(w) for
w ∈ Sd−1. If R−1(w)BR(w) does not depend on w, then for large ξ ∈ Rd,
E(iξ) is almost everywhere approximated by

E(iξ) = R(ξ/|ξ|)

r∑
h=1

rh∑
`=1

Υh`(iξ)Πh`(iξ)R
−1(ξ/|ξ|), (2.66)

where
Υh`(iξ) = (αh(iξ) + βh`)I+Θ

(0)
h` + O(|ξ|−1) (2.67)

and
Πh`(iξ) = Π

(0)
h` + O(|ξ|−1). (2.68)

Here, αh(iξ) = i|ξ|ν[h](ξ/|ξ|) for ν[h] given by the formula (2.64), the co-
efficient βh` ∈ σ(Π(0)

h R−1(ξ/|ξ|)BR(ξ/|ξ|)Π
(0)
h , ranΠ(0)

h ) with the associated
eigenprojection Π(0)

h` and eigennilpotent Θ(0)
h` , r and rh are the cardinalities of

σ(A) and σ(Π(0)
h R−1(ξ/|ξ|)BR(ξ/|ξ|)Π

(0)
h , ranΠ(0)

h ) respectively.
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Proof. By Lemma 2.8, for almost everywhere, the spectrum of the matrix
R−1(w)A(w)R(w) for w ∈ Sd−1 is the set {α1(w), . . . ,αr(w)} where αh(w) =
ν[h](w) given by (2.64) for h ∈ {1, . . . , r}.

For h ∈ {1, . . . , r}, we study the αh(w)-group of T(iη,w) for small η > 0,
where

T(iη,w) := R−1(w)A(w)R(w) − iηR−1(w)BR(w)

for (η,w) ∈ [0,+∞)× Sd−1.
One obtains from (B.2), (B.4), (B.5) and (B.6) that the total projection

Πh(iη,w) associated with the αh(w)-group is approximated by

Πh(iη,w) = Π(0)
h (w) + O(η),

where Π(0)
h (w) is the eigenprojection associated with αh(w). Moreover, by the

definition of the eigenprojection, if Γh is an oriented closed curve in the resol-
vent set of R−1(w)A(w)R(w) enclosing αh(w) except for the other eigenvalues
of R−1(w)A(w)R(w), then

Π
(0)
h (w) = −

1
2πi

∫
Γh

diag
(
ν1(w) − µ)

−1, . . . , (νn(w) − µ)−1) dµ

= diag
(
−

1
2πi

∫
Γh

(ν1(w) − µ)
−1 dµ, . . . ,− 1

2πi

∫
Γh

(νn(w) − µ)
−1 dµ

)
and it coincides (2.65) for almost everywhere since by Lemma 2.8, for almost
everywhere, one has

−
1
2πi

∫
Γh

(ν`(w) − µ)
−1 dµ =

{
1 if ` ∈ Sh,
0 if ` /∈ Sh.

Therefore, one can expand T(iη,w) as η → 0 by Lemma B.3 for almost
everywhere. Thus, we deduce the expansion of E(iξ) as |ξ|→ +∞ for almost
everywhere by using the formula

E(iξ) = iηR(w)T(iη,w)R−1(w),

where η := |ξ|−1 and w = ξ/|ξ| since η → 0 as |ξ| → +∞. The proof is
done.

Remark 2.8 (Intermediate frequency). In this framework, no expansion of
E(iξ) for ε 6 |ξ| 6 ρ with ε > 0 and ρ < +∞ is used. However, there
are a finite number of exceptional curves of E(iξ) for ε 6 |ξ| 6 ρ. At the
exceptional curves, the eigenvalues of E(iξ) intersect. In the domain excluding
these curves, the number of the distinct eigenvalues of E(iξ) and their algebraic
multiplicities are constant (see [5, 36]).
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Chapter 3

Lp-Lq decay estimates

Consider the Goldstein–Kac 2× 2 system in the one-dimensional space∂tu1 − ∂xu1 = −
1
2u1 +

1
2u2,

∂tu2 + ∂xu2 =
1
2u1 −

1
2u2,

which can be written in the relaxation form of (2.1) with

A =

(
−1 0
0 1

)
and B =

1
2

(
1 −1
−1 1

)
.

One can check easily that v± := u1 ± u2 satisfy the Cauchy problem for
the linear damped wave equation{

∂ttv− ∂xxv+ ∂tv = 0,
(v,∂tv)|t=0 = (v0, v1),

(3.1)

where (v0, v1) can be computed by initial data of (u1,u2).
On the other hand, it follows from [48] that the solution v to (3.1) satisfies

the following Lp-Lq decay estimate∥∥∥v− φ− e−
t
2
v0(·+ t) + v0(·− t)

2

∥∥∥
Lp

6 Ct−
1
2 (

1
q−

1
p )−1‖(v0, v1)‖Lq (3.2)

for all 1 6 q 6 p 6∞ and t > 1, where φ is a solution to the Cauchy problem{
∂tφ− ∂xxφ = 0,
φ|t=0 = v0 + v1

(3.3)

and the term (v0(·+ t) + v0(·− t))/2 is a solution to the Cauchy problem{
∂ttψ− ∂xxψ = 0,
(ψ,∂tψ)|t=0 = (0, v0).

Moreover, it is also well known that φ satisfies the Lp-Lq decay estimate

‖φ‖Lp 6 Ct−
1
2 (

1
q−

1
p )‖φ0‖Lq

for all 1 6 q 6 p 6 ∞ and t > 0 (see [27]). It amounts to saying that if the
initial datum (v0, v1) is regular enough, then the error term e−

t
2 (v0(· + t) +

v0(· − t))/2, which may contain singularities, decays exponentially in time to
zero and can be neglected. Thus, the solution v behaves like the diffusion wave
φ for large time. Therefore, since (u1,u2) = (v++v−, v+−v−)/2, it allows us
to expect such Lp-Lq decay estimates hold for (u1,u2) and for general systems.
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3.1 One-dimensional space
We consider the Cauchy problem{

∂tu+A∂xu+ Bu = 0,
u|t=0 = u0,

(3.4)

where (x, t) ∈ R × [0,+∞), u = u(x, t) and u0 = u0(x) are vectors in Rn, A
and B are matrices in Rn×n.

Moreover, based on the discussions in Chapter 2, we consider the following
dissipative structure.
Condition A (Hyperbolicity). The matrix A is diagonalizable with real eigen-
values.
Condition B (Partial dissipation). The spectrum of B is decomposed into
σ(B) = {0} ∪ σ+ where 0 is semi-simple and σ+ ⊆ {λ ∈ C : Re λ > 0}.
Condition C (Reduced hyperbolicity). The matrix C = P

(0)
0 AP

(0)
0 considered

in kerB is diagonalizable with real eigenvalues, where P(0)
0 is the eigenprojec-

tion associated with the eigenvalue 0 of B.
On the other hand, a requisite condition for the decay of solutions to (3.4)

is that for any eigenvalue λ(iξ) of E(iξ) = B+ iξA for ξ ∈ R, the real part of
λ satisfies
Condition D (Uniform dissipation). There is a positive constant θ such that

Re λ(iξ) > θ|ξ|2

1+ |ξ|2
for all ξ 6= 0.

Moreover, we introduce large-time asymptotic profiles of solutions to (3.4).
Recall that the eigenprojection P(0)

0 and the reduced resolvent coefficient Q(0)
0

associated with the eigenvalue 0 of B are given by

P
(0)
0 = −

1
2πi

∫
Γ0

(B− zI)−1 dz and Q(0)
0 =

1
2πi

∫
Γ0

z−1(B− zI)−1 dz,

where Γ0, in the resolvent set of B, is an oriented closed curve enclosing 0
except for the other eigenvalues of B. One sets

P
(1)
0 = −P

(0)
0 AQ

(0)
0 −Q

(0)
0 AP

(0)
0 . (3.5)

We also set

D = −

s∑
h=1

P
(0)
h (P

(1)
0 BP

(1)
0 + P

(0)
0 AP

(1)
0 + P

(1)
0 AP

(0)
0 )P

(0)
h , (3.6)

where P(0)
h is the eigenprojection associated with ch ∈ σ(C, kerB) for h ∈

{1, . . . , s} and σ(C, kerB) is the spectrum of C considered in kerB with the
cardinality s.

Noting that
P
(0)
h = −

1
2πi

∫
Γh

(Cα − zI)−1 dz,

where Cα = C+ αP
(0)
0 for α > max{|λ| : λ ∈ σ(C)}, σ(C) is the spectrum of C

and Γh, in the resolvent set of Cα, is an oriented closed curve enclosing ch+α
except for the other eigenvalues of Cα.
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Furthermore, one sets

ΠA(B) =

r∑
h=1

Π
(0)
h BΠ

(0)
h ,

where Π(0)
h is the eigenprojection associated with αh ∈ σ(A) for h ∈ {1, . . . , r}

and σ(A) is the spectrum of A with the cardinality r. Noting that following
from [19], if A is unitarily equivalent to a diagonal matrix, then ΠA(B) is
exactly the projection of B onto the space of all matrices commuting with A,
namely there is a unique matrix K such that

B = ΠA(B) + [A,K],

where [A,K] = AK− KA 6= O and [A,ΠA(B)] = AΠA(B) − ΠA(B)A = O.
We consider the Cauchy problem{

∂tU+ C∂xU−D∂xxU = 0,
U|t=0 = P

(0)
0 u0

(3.7)

and the Cauchy problem{
∂tV +A∂xV + ΠA(B)V = 0,
V |t=0 = u0,

(3.8)

where (x, t) ∈ R× [0,+∞), U = U(x, t) ∈ Rn and V = V(x, t) ∈ Rn.

Theorem 3.1 (Lp-Lq decay estimates [52]). For u0 ∈ Lq(R), let u, U and V
be respectively solutions to (3.4), (3.7) and (3.8). If the conditions A , B, C
and D hold, then for 1 6 q 6 p 6 ∞ and t > 1, there are positive constants
c and C such that

‖u−U− V‖Lp 6 Ct−
1
2

(
1
q−

1
p

)
− 1

2 ‖u0‖Lq . (3.9)

Moreover, one has

‖U‖Lp 6 Ct−
1
2

(
1
q−

1
p

)
‖u0‖Lq and ‖V‖Lq 6 Ce−ct‖u0‖Lq . (3.10)

The proof of Theorem 3.1 is based on three steps: the L∞-L1 estimate, the
Lp-Lp estimate for 1 6 p 6 ∞ and a complex interpolation argument given
by Lemma A.2. Furthermore, we also divide each step into the low frequency,
the intermediate frequency and the high frequency in order to use asymptotic
expansions of the Fourier transform Ĝ of the fundamental solution denoted by
G to (3.4). Noting that Ĝ satisfies (2.32) and is given by (2.33).

Example 3.1 (The one-dimensional linearized Broadwell 3× 3 system). We
consider the linearized one-dimensional Broadwell 3 × 3 system fitting in the
class (3.4) with

A =

v 0 0
0 0 0
0 0 −v

 and B =

 a −2b c

−
a

2 b −
c

2
a −2b c

 (3.11)
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for positive real numbers a, b, c and v such that b2 = ac.
One observes that the condition A holds obviously. On the other hand,

we have
det(B− λI) = −λ2(λ− (a+ b+ c)).

Particularly, kerB = span {(2b,a, 0), (−c, 0,a)} with dimension 2. Hence, the
condition B holds.

We check the condition C . The eigenprojection P(0)
0 and the reduced re-

solvent coefficient Q(0)
0 associated with the eigenvalue 0 of B are given by

P
(0)
0 =

1
a+ b+ c

b+ c 2b −c
a

2 a+ c
c

2
−a 2b a+ b

 (3.12)

and

Q
(0)
0 =

1
(a+ b+ c)2

 a −2b c

−
a

2 b −
c

2
a −2b c

 . (3.13)

Hence, C=P(0)
0 AP

(0)
0 is given by

C =
v

(a+ b+ c)2

(b+ c)2 − ac 2b(b+ 2c) c(a− c)
a(b+ 2c)

2 b(a− c) −
c(2a+ b)

2
a(a− c) −2b(b+ 2a) ac− (a+ b)2

 .

By easy calculations and the fact that b2 = ac, the eigenvalues of C are roots
of the polynomial

λ
(
(a+ b+ c)λ2 + v(c− a)λ− v2b(a+ b+ c)

)
= 0.

Therefore, the eigenvalues are respectively given by

c0 = 0 and c± =
−v(c− a)± v

√
(c− a)2 + 4b(a+ b+ c)

2(a+ b+ c)
.

Since dim ran (I− P(0)
0 ) = 1 and C(I− P(0)

0 ) = 0 due to the fact that P(0)
0 (I−

P
(0)
0 ) = O, there is only one single eigenvalue c0 = 0 of C considered in

ran (I − P(0)
0 ). Thus, c±, which are simple eigenvalues, are the eigenvalues of

C considered in ranP(0)
0 = kerB (since 0 is a semi-simple eigenvalue of B).

The condition C is proved.
We check the condition D by the results in [33]. By scaling (x, t) 7→

(x/c, t/c), we can assume that (a,b, c) = (α2,α, 1) with α = (a/c)
1
2 > 0. Let

ξ 7→ ξ/v, we also assume v = 1. It then follows from Lemma 1 in [33] that
there are three distinct analytic eigenvalues of E(iξ) = B+ iξA denoted by λj
for j = 1, 2, 3 except for a finite number of points in the complex plane.

Moreover, there are β1 > 0 and β2 > 0 such that for |ξ| < β1, one has the
convergent expansions

λ1(iξ) = c1iξ+ d1(iξ)
2 + O(|ξ|3),

λ2(iξ) = c2iξ+ d2(iξ)
2 + O(|ξ|3),

λ3(iξ) = µ0 + O(|ξ|),
(3.14)
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where c1 > 0, c2 < 0, d1 < 0, d2 < 0 and µ0 > 0 with explicit formulas.
Noting that µ0 = a+b+c, c1 = c+ and c2 = c− indeed. In particular, d1 and
d2 are respectively the only nonzero eigenvalues of P(0)

1 DP
(0)
1 and P(0)

2 DP
(0)
2 ,

where D is computed by (3.6) by using A and B in (3.11), P(0)
0 and Q(0)

0 in
(3.12) and (3.13), P(1)

0 in (3.5) and P(0)
h for h = 1, 2 given by

P
(0)
h =

adj (C− chI)

tr (adj (C− chI))
, h = 1, 2. (3.15)

Here, adj denotes the adjunct matrix and tr denotes the trace.
On the other hand, for |ξ|−1 < β2, from [33], we also have

λ1(iξ) = iξ+ α
2 + O(|ξ|−1),

λ2(iξ) = α+ O(|ξ|−1),
λ3(iξ) = −iξ+ 1+ O(|ξ|−1).

(3.16)

In particular, from (3.14) and (3.16), we have
Re λj(iξ) > −min{d1,d2}|ξ|

2 ∀|ξ| < β1, j = 1, 2,
Re λ3(iξ) > µ0 ∀|ξ| < β1,
Re λj(iξ) > max{1,α,α2} ∀|ξ|−1 < β2, j = 1, 2, 3.

Hence, by the continuity of λj(iξ) and the fact that Re λj(iξ) = 0 if and only
if ξ = 0 and λ1(0) = λ2(0) = 0, we deduce that Re λj(iξ) > 0 for any ξ 6= 0.
Thus, there is a constant θ > 0 such that

Re λj(iξ) >



−min{d1,d2}
|ξ|2

1+ |ξ|2
(1+ |ξ|2) ∀|ξ| < β1, j = 1, 2,

µ0
|ξ|2

1+ |ξ|2
(1+ |ξ|−2) ∀|ξ| < β1, j = 3,

θ
|ξ|2

1+ |ξ|2
(1+ |ξ|−2) ∀|ξ| > β1, j = 1, 2, 3,

which implies the condition D since 1+ |ξ|2 > 1 and 1+ |ξ|−2 > 1 for all ξ ∈ R.

Example 3.2 (The one-dimensional linearized Jin–Xin systems). We consider
the 2n× 2n system (3.4) with

A =

(
O I

α2I O

)
and B =

1
ε

(
O O

−Λ I

)
, (3.17)

where α, ε > 0, Λ ∈ Rn×n, O and I are respectively the null matrix and the
identity matrix in Rn×n.

By considering u = (v,w) ∈ Rn × Rn and by applying the Chapman–
Enskog expansion

w = Λv+ εw1 + . . .

to (3.4), we obtain the approximation parabolic system

∂tv+Λ∂xv− ε(α
2In −Λ2)∂xxv = 0.

Hence, we can assume that Λ is diagonalizable with real eigenvalues and the
stability condition

sup{|λ| : λ ∈ σ(Λ)} < α (3.18)
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holds, where σ(Λ) is the spectrum of Λ.
Particularly, let Q ∈ Rn×n be the invertible matrix diagonalizing Λ i.e.

QΛQ−1 = D with a diagonal matrix D ∈ Rn×n. Let P := diag (Q,Q), we
have PAP−1 = A and PBP−1 =

(
O O

−D/ε I

)
. Therefore, from (3.17), we can

assume that Λ is a symmetric matrix as well.
We check the conditions A , B, C and D . Without loss of generality, we

assume that ε = 1. Let I be the identity matrix in R2n×2n, one has

det(A− λI) = (λ2 − α2)n.

Thus, A has two distinct eigenvalues ±α with the same algebraic multiplic-
ities n. Moreover, the associated eigenspaces are {

(
X
±αX

)
: X ∈ Cn} with

dimensions n. It implies that the condition A holds.
On the other hand, we have

det(B− λI) = (−λ)n(λ− 1)n.

Hence, B has two distinct eigenvalues 0 and 1 with the same algebraic multi-
plicities n. Furthermore, the eigenspaces are {

(
X
ΛX

)
: X ∈ Cn} and {

( 0
X

)
: X ∈

Cn} with dimensions n. Hence, the condition B follows directly.
We check the condition C . The eigenprojection P(0)

0 and the reduced re-
solvent coefficient Q(0)

0 associated with the eigenvalue 0 of B are

P
(0)
0 =

(
I O

Λ O

)
and Q

(0)
0 =

(
O O

−Λ I

)
,

where O and I are respectively the null matrix and the identity matrix in
Rn×n. It implies that

C = P
(0)
0 AP

(0)
0 =

(
Λ O

Λ2 O

)
.

Hence, we have
det(C− λI2n) = (−λ)n det(Λ− λIn).

Since dim ran (I2n − P
(0)
0 ) = n and C(I2n − P

(0)
0 ) = O2n due to the fact

that P(0)
0 (I2n − P

(0)
0 ) = O2n, C has n eigenvalues 0 considered in ran (I2n −

P
(0)
0 ). Therefore, the eigenvalues of C considered in ranP(0)

0 = kerB are the
eigenvalues of Λ. Thus, by the assumption that Λ is symmetric, we obtain
the condition C .

Finally, we examine the condition D . By Remark 2.3, it is then sufficient
to prove that (3.4) can be transformed into the form (2.6) such that (2.7) holds
via u 7→ A0u with a symmetric positive-definite matrix A0.

One sets
A0 :=

(
I Λ

Λ α2I

)
.

Then, A0 is symmetric since Λ is symmetric. Moreover, for every
(
X
Y

)
∈

R2n\{0} where X, Y ∈ Rn, we have

(Xt Yt )A0
(
X
Y

)
= XtX+ XtΛY + YtΛX+ α2YtY

= (X+ΛY)t(X+ΛY) + Yt(α2I−Λ2)Y > 0
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due to the subcharacteristic condition (3.18): α2I − Λ2 is positive definite.
Hence, A0 is also positive definite.

Furthermore, under u 7→ A0u, (3.4) becomes

A0∂tu+AA0∂xu+ BA0u = 0,

where

AA0 =

(
Λ α2I
α2I α2Λ

)
and BA0 =

(
O O

O α2I−Λ2

)
.

Therefore, since there is no eigenvector of AA0 in kerB, (2.7) holds and Propo-
sition 2.3 implies the condition D .

3.1.1 Preliminaries

Before going to further details, we have the following

Lemma 3.2. If X is a constant nilpotent matrix in Cn×n, then for all ε > 0,
there exists C > 0 such that∣∣ecX+Y − ecX

∣∣ 6 Ceε|c|+C|Y||Y| (3.19)

and ∣∣ecX+Y − ecX − decXY
∣∣ 6 Ceε|c|+C|Y||Y|2, (3.20)

where c ∈ C, Y ∈ Cn×n and de is the first derivative of X 7→ eX.

Proof. For any matrix X ∈ Cn×n, there is an induced norm | · |∗ such that
|X|∗ 6 ρ(X) + ε for any ε > 0, where ρ(X) is the spectral radius of X [63].
Moreover, since every norms in Cn×n are equivalent, C−1|X|∗ 6 |X| 6 C|X|∗
for any matrix norm | · | and a constant C > 0. Thus, we can consider | · |∗,
which implies that |X|∗ 6 ε for any ε > 0 if X is a nilpotent matrix. Then,
(3.19) and (3.20) follow from the Taylor expansion of the application X 7→ eX.
In fact, we have

|ecX+Y − ecX|∗ 6 C
∣∣ sup
t∈[0,1]

decX+tYY
∣∣
∗ 6 Ce

ε|c|+|Y|∗ |Y|∗

and

|ecX+Y − ecX − decXY|∗ 6 C
∣∣ sup
t∈[0,1]

d2ecX+tYY2∣∣
∗ 6 Ce

ε|c|+|Y|∗ |Y|2∗.

The proof is done.

Remark 3.3. If X ∈ Cn×n is a nilpotent matrix, then we can always assume
that |X| 6 ε for any ε > 0 to bound eX.

Lemma 3.3. Under the conditions B, C and D , the real part of dh` in
(2.38) is bounded from below by a θ > 0 for h ∈ {1, . . . , s} and ` ∈ {1, . . . , sh}.
Similarly, if the conditions A and D hold, the real part of βh` in (2.63) is
bounded from below by a θ > 0 for h ∈ {1, . . . , r} and ` ∈ {1, . . . , rh}.
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Proof. Recall that σ(T ,D) denotes the spectrum of a matrix T considered in a
domain D with σ(T) ≡ σ(T ,Cn). Recall the matrix C = P

(0)
0 AP

(0)
0 where P(0)

0
is the eigenprojection associated with the eigenvalue 0 of B. We also recall the
matrix D in (3.6).

For small ξ, since the conditions B and C hold, the expansion (2.38) of
E(iξ) = B+ iξA is validated. Thus, the eigenvalues of E(iξ) that converge to
0 as |ξ|→ 0 are approximated by

λh`(iξ) = ichξ+ dh`ξ
2 + O(|ξ|2)

for h ∈ {1, . . . , s} and ` ∈ {1, . . . , sh}, where ch ∈ σ(C, ranP(0)
0 ), dh` ∈

σ(P
(0)
h DP

(0)
h , ranP(0)

h ), the integers s and sh are respectively the cardinalities
of σ(C, kerB) and σ(P(0)

h DP
(0)
h , ranP(0)

h ).
Hence, it follows from the conditions C and D that ch is real for all

h ∈ {1, . . . , s} and there is a positive constant θ such that

θ

1+ |ξ|2
6 Re (dh`) + ε

for small 0 < |ξ| < ε, h ∈ {1, . . . , s} and ` ∈ {1, . . . , sh}. Let ε→ 0, one obtains
Re (dh`) > θ > 0 for all h ∈ {1, . . . , s} and ` ∈ {1, . . . , sh}.

Similarly, for large ξ, since the condition A holds, the expansion (2.63)
of E(iξ) is validated. Then, the eigenvalues of E(iξ) that converge to αh ∈
σ(A) as |ξ| → +∞ for h ∈ {1, . . . , r}, where r is the cardinality of σ(A), are
approximated by

λh`(iξ) = iαhξ+ βh` + O(1)

for h ∈ {1, . . . , r} and ` ∈ {1, . . . , rh}, where βh` ∈ σ(Π(0)
h BΠ

(0)
h , ranΠ(0)

h ) and
the integer rh is the cardinality of σ(Π(0)

h BΠ
(0)
h , ranΠ(0)

h ).
Therefore, it follows from the conditions A and D that αh is real for all

h ∈ {1, . . . , r} and there is a positive constant θ such that

θ

1+ |ξ|−2 6 Re (βh`) + ε

for small 0 < |ξ|−1 < ε, h ∈ {1, . . . , r} and ` ∈ {1, . . . , rh}. Let ε → 0, one
obtains Re (βh`) > θ > 0 for all h ∈ {1, . . . , r} and ` ∈ {1, . . . , rh}. The proof
is thus done.

Let χi for i = 1, 2, 3 be smooth cut-off functions valued in [0, 1] with
supports contained in {ξ ∈ R : |ξ| < ε}, {ξ ∈ R : ε 6 |ξ| 6 ρ} and {ξ ∈ R : |ξ| >
ρ} respectively for small ε and large ρ such that χ1 + χ2 + χ3 = 1.

The solution Ĝ to (2.32) then satisfies the following

Ĝ(ξ, t)χ1(ξ) = Ĝ1(ξ, t)χ1(ξ) + Ĝ2(ξ, t)χ1(ξ), (3.21)

where

Ĝ1(ξ, t) :=
s∑
h=1

sh∑
`=1

e−(ichξ+dh`ξ
2)te−

(
ξ2N

(0)
h` +O(|ξ|3)

)
t
(
P
(0)
h` + O(|ξ|)

)
(3.22)
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and

Ĝ2(ξ, t) :=
s ′∑
k=1

e−bkte−
(
M

(0)
k +O(|ξ|)

)
t(F

(0)
k + O(|ξ|)

)
. (3.23)

In (3.22), ch ∈ σ(C, ranP(0)
0 ) with the associated eigenprojection P(0)

h , dh` ∈
σ(P

(0)
h DP

(0)
h , ranP(0)

h ) with the associated eigenprojection P(0)
h` and eigennilpo-

tent N(0)
h` , s and sh are respectively the cardinalities of σ(C, ranP(0)

0 ) and
σ(P

(0)
h DP

(0)
h , ranP(0)

h ). In (3.23), bk ∈ σ(B)\{0} with the associated eigenpro-
jection F(0)

k and eigennilpotent M(0)
k and s ′ is the cardinality of σ(B)\{0}.

On the other hand, we also have

Ĝ(ξ, t)χ3(ξ)

=

r∑
h=1

rh∑
`=1

e−(iαhξ+βh`)te−
(
Θ

(0)
h` +O(|ξ|−1)

)
t
(
Π
(0)
h` + O(|ξ|−1)

)
, (3.24)

where αh ∈ σ(A) with the associated eigenprojection Π(0)
h , the coefficient

βh` ∈ σ(Π
(0)
h BΠ

(0)
h , ranΠ(0)

h ) with the associated eigenprojection Π(0)
h` and

eigennilpotent Θ(0)
h` , the integers r and rh are respectively the cardinalities of

σ(A) and σ(Π(0)
h BΠ

(0)
h , ranΠ(0)

h ).
One also sets

K̂(ξ, t) :=
s∑
h=1

sh∑
`=1

e−(ichξ+dh`ξ
2)te−ξ

2N
(0)
h` tP

(0)
h` (3.25)

and one sets

Ŵ(ξ, t) :=
r∑
h=1

rh∑
`=1

e−(iαhξ+βh`)te−Θ
(0)
h` tΠ

(0)
h` , (3.26)

where the coefficients are introduced as before.

3.1.2 L∞-L1 estimate

Proposition 3.4 (Low frequency). For g ∈ L1(R), if the conditions A , B,
C and D hold, there is a constant C > 0 such that for t > 1, one has

‖F−1((Ĝ− K̂− Ŵ)χ1) ∗ g‖L∞ 6 Ct−1‖g‖L1 . (3.27)

Proof. By the Young inequality in Lemma A.1 and the fact that F−1 : L1 →
L∞, it is sufficient to estimate the L1-norm of (Ĝ − K̂ − Ŵ)χ1 under the con-
ditions A , B, C and D .

We primarily estimate (Ĝ− K̂)χ1 = I+ J where I := (Ĝ1 − K̂)χ1, J := Ĝ2χ1,
Ĝ1 is given by (3.22) and Ĝ2 is given by (3.23). Moreover, we have I = I1 + I2
where

I1(ξ, t)

:=

s∑
h=1

sh∑
`=1

e−(ichξ+dh`ξ
2)t
(
e−(ξ2N

(0)
h` +O(|ξ|3))t − e−ξ

2N
(0)
h` t
)
P
(0)
h` (3.28)
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and

I2(ξ, t) :=
s∑
h=1

sh∑
`=1

e−(ichξ+dh`ξ
2)te−(ξ2N

(0)
h` +O(|ξ|3))tO(|ξ|). (3.29)

By the condition C , Lemma 3.3, (3.19), (3.22) and (3.25), there are con-
stants c > 0 and C > 0 such that for t > 0, we have

|I1(ξ, t)| 6 C
s∑
h=1

sh∑
`=1

e−Re (dh`)|ξ|2t
∣∣∣e−(ξ2N

(0)
h` +O(|ξ|3))t − e−ξ

2N
(0)
h` t
∣∣∣|χ1(ξ)|

6 Ce−c|ξ|
2t|ξ|3t|χ1(ξ)|.

Similarly, we estimate I2. Indeed, by Remark 3.3, we also have

|I2(ξ, t)| 6 C
s∑
h=1

sh∑
`=1

e−Re (dh`)|ξ|2te|ξ|
2|N

(0)
h` |t+C|ξ|3t|ξ||χ1(ξ)|

6 Ce−c|ξ|
2t|ξ||χ1(ξ)|.

On the other hand, by the condition B, Remark 3.3 and from (3.23), there
are constants c > 0 and C > 0 such that for t > 0, we have

|J(ξ, t)| 6 C
s ′∑
k=1

e−Re (bk)te(|M
(0)
k |+C|ξ|)t|χ1(ξ)| 6 Ce

−ct|χ1(ξ)|.

Hence, it implies that

‖(Ĝ− K̂)χ1‖L1 6 C
∫
R
e−c|ξ|

2t(|ξ|3t+ |ξ|)|χ1(ξ)|dξ

+ Ce−ct
∫
R
|χ1(ξ)|dξ

6 C(1+ t)−1 + Ce−ct ∀t > 0. (3.30)

We estimate Ŵχ1. By the condition A , Remark 3.3, Lemma 3.3 and from
(3.26), there are constants c > 0 and C > 0 such that for t > 0, one has

|Ŵ(ξ, t)χ1(ξ)| 6 C
r∑
h=1

rh∑
`=1

e−Re (βh`)te|Θ
(0)
h` |t|χ1(ξ)| 6 Ce

−ct|χ1(ξ)|.

Hence, we deduce

‖Ŵχ1‖L1 6 Ce−ct
∫
R
|χ1(ξ)|dξ 6 Ce−ct ∀t > 0. (3.31)

It therefore follows from (3.30) and (3.31) that

‖(Ĝ− K̂− Ŵ)χ1‖L1 6 ‖(Ĝ− K̂)χ1‖L1 + ‖Ŵχ1‖L1

6 C(1+ t)−1 + Ce−ct 6 Ct−1 ∀t > 1.

We finish the proof.
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Proposition 3.5 (Intermediate frequency). For g ∈ L1(R), if the conditions
A , B, C and D hold, there are constants c > 0 and C > 0 such that for t > 0,
one has

‖F−1((Ĝ− K̂− Ŵ)χ2) ∗ g‖L∞ 6 Ce−ct‖g‖L1 . (3.32)

Proof. Similarly, by the Young inequality in Lemma A.1 and the fact that
F−1 : L1 → L∞, it is sufficient to estimate the L1-norm of (Ĝ− K̂−Ŵ)χ2 under
the conditions A , B, C and D .

We estimate Ĝχ2 firstly where Ĝ(ξ, t) = e−E(iξ)t. Since the condition D
holds, Re λ(iξ) > 0 for any eigenvalue λ(iξ) of E(iξ) and ξ 6= 0. Thus, the
operator e−E(iξ) has the spectral radius ρ(e−E(iξ)) < 1 for any ξ 6= 0. It
follows from [63] that there is an induced norm | · | such that

0 < ϕ := ess sup
ξ∈R

|e−E(iξ)| < 1.

Hence, for any t > 0 with the integer part denoted by m, since logϕ < 0,
there are constants c > 0 and C > 0 such that one has

|Ĝ(ξ, t)χ2(ξ)| 6 |e−E(iξ)|m|e−E(iξ)(t−m)||χ2(ξ)|

6 ϕme|E(iξ)||χ2(ξ)|

6 ϕ−1e(m+1) logϕe|E(iξ)||χ2(ξ)|

6 Ce−cte|E(iξ)||χ2(ξ)|.

Thus, since every norms in finite-dimensional spaces are equivalent, we obtain

‖Ĝχ2‖L1 6 Ce−ct
∫
R
e|E(iξ)||χ2(ξ)|dξ 6 Ce−ct ∀t > 0. (3.33)

We estimate K̂χ2. By the condition C , Remark 3.3, Lemma 3.3 and from
(3.25), there are constants c > 0 and C > 0 such that

|K̂(ξ, t)χ2(ξ)|

6 C
s∑
h=1

sh∑
`=1

e−Re (dh`)|ξ|2te|ξ|
2|N

(0)
h` |t|χ2(ξ)| 6 Ce

−c|ξ|2t|χ2(ξ)|.

Therefore, we have

‖K̂χ2‖L1 6 C
∫
R
e−c|ξ|

2t|χ2(ξ)|dξ 6 Ce−ct ∀t > 0. (3.34)

We estimate Ŵχ2. By the condition A , Remark 3.3, Lemma 3.3 and from
(3.26), there are constants c > 0 and C > 0 such that

|Ŵ(ξ, t)χ2(ξ)| 6 C
r∑
h=1

rh∑
`=1

e−Re (βh`)te|Θ
(0)
h` |t|χ2(ξ)| 6 Ce

−ct|χ2(ξ)|.

It follows that

‖Ŵχ2‖L1 6 Ce−ct
∫
R
|χ2(ξ)|dξ 6 Ce−ct ∀t > 0. (3.35)

From (3.33) - (3.35), for t > 0, we obtain

‖(Ĝ− K̂− Ŵ)χ2‖L1 6 ‖Ĝχ2‖L1 + ‖K̂χ2‖L1 + ‖Ŵχ2‖L1 6 Ce−ct.

The proof is done.
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Proposition 3.6 (High frequency). For g ∈ L1(R), if the conditions A , B,
C and D hold, there are constants c > 0 and C > 0 such that for t > 1, one
has

‖F−1((Ĝ− K̂− Ŵ)χ3) ∗ g‖L∞ 6 Ce−ct‖g‖L1 . (3.36)

Proof. We start with the estimate for F−1(K̂χ3). By the condition C , Remark
3.3, Lemma 3.3 and from 3.25, there are constants c > 0 and C > 0 such that

|K̂(ξ, t)χ3(ξ)| 6 C
s∑
h=1

sh∑
`=1

e−Re (dh`)|ξ|2te|ξ|
2|N

(0)
h` |t|χ3(ξ)| 6 Ce

−c|ξ|2t|χ3(ξ)|.

Thus, we deduce that

‖K̂χ3‖L1 6 C
∫
R
e−c|ξ|

2t|χ3(ξ)|dξ 6 Ce−ct ∀t > 1.

By the Young inequality in Lemma A.1 and the fact that F−1 : L1 → L∞, we
then obtain for all t > 1 that

‖F−1(K̂χ3) ∗ g‖L∞ 6 C‖F−1(K̂χ3)‖L∞‖g‖L1

6 C‖K̂χ3‖L1‖g‖L1 6 Ce−ct‖g‖L1 . (3.37)

To estimate F−1((Ĝ − Ŵ)χ3), we divide this one into two cases where
|x| 6 Ct and |x| > Ct for C > 0 and for all t > 0. Moreover, it follows from
(3.24) and (3.26) that (Ĝ− Ŵ)χ3 = I+ J where

I(ξ, t)

:=

r∑
h=1

rh∑
`=1

e−(iαhξ+βh`)t
(
e−(Θ

(0)
h` +O(|ξ|−1))t − e−Θ

(0)
h` t
)
Π
(0)
h` χ3(ξ) (3.38)

and

J(ξ, t) :=
r∑
h=1

rh∑
`=1

e−(iαhξ+βh`)te−(Θ
(0)
h` +O(|ξ|−1))tO(|ξ|−1)χ3(ξ). (3.39)

Furthermore, from (3.38) and by applying the Taylor expansion to the appli-
cation X→ eX, one can decompose I = I1 + I2 + I3 with

I1(ξ, t) := t
r∑
h=1

rh∑
`=1

e−iαhξt

iξ
e−βh`tde−Θ

(0)
h` tMΠ

(0)
h` χ3(ξ), (3.40)

where M is the coefficient in O(|ξ|−1) associated with (iξ)−1, and

I2(ξ, t) := t
r∑
h=1

rh∑
`=1

e−(iαhξ+βh`)tde−Θ
(0)
h` tO(|ξ|−2)Π

(0)
h` χ3(ξ) (3.41)

and

I3(ξ, t) :=
r∑
h=1

rh∑
`=1

e−(iαhξ+βh`)t
(
e−(Θ

(0)
h` +O(|ξ|−1))t

− e−Θ
(0)
h` t − de−Θ

(0)
h` tO(|ξ|−1)t

)
Π
(0)
h` χ3(ξ). (3.42)
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On the other hand, from (3.39), one also has J = J1 + J2 where

J1(ξ, t) :=
r∑
h=1

rh∑
`=1

e−iαhξt

iξ
e−βh`te−(Θ

(0)
h` +O(|ξ|−1))tMχ3(ξ) (3.43)

and

J2(ξ, t) :=
r∑
h=1

rh∑
`=1

e−(iαhξ+βh`)te−(Θ
(0)
h` +O(|ξ|−1))tO(|ξ|−2)χ3(ξ). (3.44)

We primarily estimate F−1(I1) =
∑r
h=1 F

−1
h (I1) where

F−1
h (I1) := t

rh∑
`=1

F−1
(e−iαhξt

iξ
χ3(ξ)

)
e−βh`tde−Θ

(0)
h` tMΠ

(0)
h` . (3.45)

For h ∈ {1, . . . , r}, by the condition A , Remark 3.3 and Lemma 3.3, we have

|F−1
h (I1)(x, t)| 6 Ct

rh∑
`=1

e−Re (βh`)te|Θ
(0)
h` |t
∣∣∣∫−ρ

−∞+

∫+∞
ρ

ei(x−αht)ξ

iξ
dξ
∣∣∣

6 Ct
rh∑
`=1

e−Re (βh`)te|Θ
(0)
h` |t
∣∣∣2 ∫+∞

ρ

sin((x− αht)ξ)
ξ

dξ
∣∣∣

6 Cte−ct|x− αht|. (3.46)

Hence, if |x| 6 Ct for a constant C > 0, then we have

‖F−1
h (I1)‖L∞ 6 Ct2e−ct 6 Ce−ct for h ∈ {1, . . . , r}, ∀t > 0. (3.47)

We now estimate F−1(I1) in the case where |x| > Ct. Noting that we can
assume that C is large enough and in this case, we have

exαh 6 e|x||αh| 6 e
|x|2
t |αh||x|

−1t 6 eε
|x|2
t

for h ∈ {1, . . . , r} and small ε > 0. Moreover, for h ∈ {1, . . . , r}, we also have

|F−1
h (I1)(x, t)|

6 Ct
rh∑
`=1

e−Re (βh`)te|Θ
(0)
h` |t
∣∣∣∫−ρ

−∞+

∫+∞
ρ

ei(x−αht)ξ

iξ
dξ
∣∣∣. (3.48)

We estimate the integral

H :=

∫−ρ
−∞+

∫+∞
ρ

ei(x−αht)ξ

iξ
dξ

= lim
δ→+∞

∫−ρ
−δ

+

∫δ
ρ

ei(x−αht)ξ

iξ
dξ = H1 +H2. (3.49)

Due to the fact that the integrand is holomorphic, we can estimate H2 by
considering ξ = ζ + iη ∈ C and by changing the path {(ζ, 0) : ζ from ρ to δ}
to the path γ := γ1 ∪ γ2 ∪ γ3 in the complex plane where

γ1 := {(ζ,η) : ζ = ρ,η from 0 to x/t} ,

57



γ2 := {(ζ,η) : ζ from ρ to δ,η = x/t}

and
γ3 := {(ζ,η) : ζ = δ,η from x/t to 0} .

Then, by parameterizing γ1(s) = ρ + i
x
t s for s ∈ [0, 1], since |x| > Ct and

t > 1, we have

∣∣∣ lim
δ→+∞

∫
γ1

ei(x−αht)ξ

iξ
dξ
∣∣∣ = ∣∣∣∫1

0

ei(x−αht)ρ+xαhs−
|x|2
t s

ρ+ ixt s

x

t
ds
∣∣∣

6
C

ρ

∫1

0

( |x|
t

+
|x|2

t2

)
eε

|x|2
t se−

|x|2
t s ds

6
C

ρ

( 1
|x|

+
1
t

)(
1− e−

|x|2
2t

)
6
C

ρ
. (3.50)

On the other hand, noting that for all (η, ζ) ∈ R2, we have

1
−η+ iζ

=
1
iζ

− η

(
1

ζ2 + η2 +
1
iζ

η

ζ2 + η2

)
.

Thus, for |x| > Ct and t > 1, there is c > 0 such that we also have

∣∣∣ lim
δ→+∞

∫
γ2

ei(x−αht)ξ

iξ
dξ
∣∣∣ = ∣∣∣∫+∞

ρ

eixζ−iαhζt−
|x|2
t +xαh

−xt + iζ
dζ
∣∣∣

6 e−
|x|2
2t

∣∣∣∫+∞
ρ

eixζ
( 1
iζ

−
x

t

( 1
ζ2 + |x|2

t2

+
1
iζ

x
t

ζ2 + |x|2

t2

))
dζ
∣∣∣

6 Ce−
|x|2
2t

(∣∣∣∫+∞
ρ

eixζ

iζ
dζ
∣∣∣+ ( |x|

t
+

|x|2

t2

) ∫+∞
ρ

1
ζ2 dζ

)
6 Ce−

|x|2
2t

|x|2

2t

( t
|x|

+
1
|x|

+
1
t

)
6 Ce−

|x|2
ct . (3.51)

Similarly, we consider γ3(s) = δ+ i
x
t (1− s) for s ∈ [0, 1], we have

∣∣∣ lim
δ→+∞

∫
γ3

ei(x−αht)ξ

iξ
dξ
∣∣∣ = ∣∣∣ lim

δ→+∞
∫1

0

ei(x−αht)δ+xαh(1−s)− |x|2
t (1−s)

δ+ ixt (1− s)
x

t
ds
∣∣∣.

On the other hand, for δ > 0 and t > 1, we have

∣∣∣∫1

0

ei(x−αht)δ+xαh(1−s)− |x|2
t (1−s)

δ+ ixt (1− s)
x

t
ds
∣∣∣ 6 C

δ

∫1

0

( |x|
t

+
|x|2

t2

)
e−

|x|2
2t (1−s) ds

=
C

δ

( 1
|x|

+
1
t

)
e−

|x|2
2t

(
e

|x|2
2t − 1

)
6
C

δ
.

One deduces that

lim
δ→+∞

∫1

0

ei(x−αht)δ+xαh(1−s)− |x|2
t (1−s)

δ+ ixt (1− s)
x

t
ds = 0.

Hence, it implies ∣∣∣ lim
δ→+∞

∫
γ3

ei(x−αht)ξ

iξ
dξ
∣∣∣ = 0. (3.52)
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Moreover, one can estimate H1 similarly by substituting ρ and δ by −ρ
and −δ respectively. Therefore, from (3.48), (3.49), (3.50), (3.51) and (3.52),
one obtains ∥∥F−1

h (I1)
∥∥
L∞ 6 Ce−ct ∀t > 1

for |x| > Ct and for h ∈ {1, . . . , r}, where C is large enough.
It then implies that

‖F−1(I1)‖L∞ 6 C
r∑
h=1
‖F−1
h (I1)‖L∞ 6 Ce−ct ∀t > 1.

We estimate F−1(I2) and F−1(I3) where I2 and I3 are given by (3.41) and
(3.42) respectively. Since F−1 : L1 → L∞, one has∥∥F−1(Ij)

∥∥
L∞ 6 C

∥∥Ij∥∥L1 , j = 2, 3. (3.53)

Hence, we only need to estimate I2 and I3 in L1.
From (3.41), we have

|I2(ξ, t)| 6 C
r∑
h=1

rh∑
`=1

e−Re (βh`)te|Θ
(0)
h` |t|ξ|−2t|χ3(ξ)|.

Thus, by Remark 3.3 and Lemma 3.3, we obtain

‖I2‖L1 6 Cte−ct
∫
R
|ξ|−2|χ3(ξ)|dξ 6 Ce−ct ∀t > 0.

From (3.42) and by Lemma 3.2 and Lemma 3.3, we have

|I3(ξ, t)| 6
r∑
h=1

rh∑
`=1

e−Re (βh`)t
∣∣∣e−(Θ

(0)
h` +O(|ξ|−1))t

− e−Θ
(0)
h` t − de−Θ

(0)
h` tO(|ξ|−1)t

∣∣∣|χ3(ξ)|

6 Ct2e−ct|ξ|−2|χ3(ξ)|.

Thus, one obtains

‖I3‖L1 6 Ct2e−ct
∫
R
|ξ|−2|χ3(ξ)|dξ 6 Ce−ct ∀t > 0.

Therefore, for t > 1, we have

‖F−1(I)‖L∞ 6 ‖F−1(I1)‖L∞ + ‖F−1(I2)‖L∞ + ‖F−1(I3)‖L∞ 6 Ce−ct.

We now estimate F−1(J) where J is given by (3.39). Then, we can estimate
F−1(J1) similarly to F−1(I1) and F−1(J2) similarly to F−1(I2) and F−1(I3),
where J1 and J2 are respectively given by (3.43) and (3.44). Thus, we obtain

‖F−1(J)‖L∞ 6 ‖F−1(J1)‖L∞ + ‖F−1(J2)‖L∞ 6 Ce−ct ∀t > 1.

By the Young inequality in Lemma A.1, it follows that

‖F−1((Ĝ− Ŵ)χ3) ∗ g‖L∞ 6
(
‖F−1(I)

∥∥
L∞ +

∥∥F−1(J)‖L∞)‖g‖L1
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6 Ce−ct‖g‖L1 ∀t > 1. (3.54)

Finally, from (3.37) and (3.54), we have

‖F−1((Ĝ− K̂− Ŵ)χ3) ∗ g‖L∞ 6 ‖F−1(K̂χ3) ∗ g‖L∞
+ ‖F−1((Ĝ− Ŵ)χ3) ∗ g‖L∞

6 Ce−ct‖g‖L1 ∀t > 1.

The proof is done.

3.1.3 Lp-Lp estimates

We establish the Lp-Lp estimate for 1 6 p 6∞. By the Young inequality, for
any g ∈ Lp(R), we have

‖F−1(Ĝ− K̂− Ŵ) ∗ g‖Lp 6 ‖F−1(Ĝ− K̂− Ŵ)‖L1‖g‖Lp . (3.55)

In this case, we cannot use the estimates for Ĝ − K̂ − Ŵ in the proofs of the
L∞-L1 estimate since the very sharp estimate

|(Ĝ1(ξ, t) − K̂(ξ, t))χ1(ξ)| 6 Ce
−c|ξ|2t|ξ|3t|χ1(ξ)|

is not L1-integrable in x ∈ R, where Ĝ1 is given by (3.22). Based on [5, 78],
we can change paths of integrals such that the inverse Fourier transform of
Ĝ − K̂ − Ŵ is bounded from above by an L1-integrable function in x ∈ R. It
can be done since Ĝ− K̂− Ŵ are holomorphic functions in z = iξ ∈ C.

Case |x| 6 Ct

Proposition 3.7 (Low frequency). For g ∈ Lp(R), if the conditions A , B,
C and D hold, then there is a constant C > 0 such that

‖F−1((Ĝ− K̂− Ŵ)χ1) ∗ g‖Lp 6 Ct−
1
2 ‖g‖Lp ∀t > 1. (3.56)

Proof. Recall that (Ĝ − K̂)χ1 = I + J where I = (Ĝ1 − K̂)χ1, J = Ĝ2χ1, Ĝ1 is
given by (3.22) and Ĝ2 is given by (3.23). Moreover, we consider I = I1 + I2
where I1 and I2 are respectively given by (3.28) and (3.29).

We estimate F−1(I1). One primarily has

F−1(I1)(x, t) =
s∑
h=1

sh∑
`=1

∫ε
−ε
ei(x−cht)ξ−dh`ξ

2t

·
(
e−(ξ2N

(0)
h` +O(|ξ|3))t − e−ξ

2N
(0)
h` t
)
P
(0)
h` χ1(ξ)dξ.

On the other hand, for h ∈ {1, . . . , s} and ` ∈ {1, . . . , sh}, let z := eiφ/2ξ
where φ := arg (dh`) ∈ (−π/2,π/2) since Re (dh`) > 0 due to Lemma 3.3, one
obtains

F−1(I1)(x, t) =
s∑
h=1

sh∑
`=1

∫
γ

χ1(e
−iφ/2z)ei(x−cht)e

−iφ/2z−|dh`|z
2t

·
(
e−(e−iφz2N

(0)
h` +O(|e−iφ/2z|3))t − e−e

−iφz2N
(0)
h` t
)
P
(0)
h` e

−iφ/2 dz,
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where γ := {z ∈ C : z = eiφ/2ξ for ξ ∈ [−ε, ε]}. Then, we will estimate each
summand by letting η := min

{ |x−cht|
2|dh`|t ,

ε
2
}
. Furthermore, since the integrand

is holomorphic, we can change γ by γ := γ1 ∪ γ2 ∪ γ3 in the complex plane
with respect to z where

γ1 :=
{
−εeiφ/2 + isgn(x− cht)ηe−iφ/2s : s ∈ [0, 1]

}
,

γ2 :=
{
ζeiφ/2 + isgn(x− cht)ηe−iφ/2 : ζ ∈ [−ε, ε]

}
and

γ3 :=
{
εeiφ/2 + isgn(x− cht)ηe−iφ/2(1− s) : s ∈ [0, 1]

}
.

On the other hand, we have∣∣ei(x−cht)e−iφ/2z−|dh`|z
2t
∣∣

= e−(x−cht)(cos(φ/2)Imz−sin(φ/2)Rez)e−|dh`|((Rez)2−(Imz)2)t.

Moreover, by Lemma 3.2, we also have∣∣∣e−(e−iφz2N
(0)
h` +O(|e−iφ/2z|3))t − e−e

−iφz2N
(0)
h` t
∣∣∣ 6 C|z|3teε ′|z|2t+C|z|3t

for any ε ′ > 0.
We estimate on γ1. For z ∈ γ1 and s ∈ [0, 1], we have

Re z(s) = −ε cos(φ/2) + sgn(x− cht)η sin(φ/2)s,
Im z(s) = −ε sin(φ/2) + sgn(x− cht)η cos(φ/2)s.

Hence, since cos(φ) > 0, η 6 ε/2, η2s2 6 ε2/4 for s ∈ [0, 1] and small |z| 6 3ε,
we obtain that |z|3 6 ε ′|z|2/C and by choosing ε ′ = |dh`| cos(φ)/8, there is
c > 0 such that for t > 0, we have∣∣∣∫

γ1

∣∣∣ 6 C ∫1

0
e−|x−cht|η cos(φ)s

· e−|dh`| cos(φ)(ε2−η2s2)te2ε ′ε2tε4t ds 6 Ce−ct. (3.57)

We estimate on γ2. For z ∈ γ2 and ζ ∈ [−ε, ε], we have

Re z(ζ) = ζ cos(φ/2) + sgn(x− cht)η sin(φ/2),
Im z(ζ) = ζ sin(φ/2) + sgn(x− cht)η cos(φ/2).

Hence, since |z| 6 2(|ζ|+ |η|) 6 3ε small enough, |z|3 6 ε ′|z|2/C and one has∣∣∣∫
γ2

∣∣∣ 6 C ∫ε
−ε
e−|x−cht|η cos(φ)e−|dh`| cos(φ)(ζ2−η2)te2ε ′(|ζ|+|η|)2t(|ζ|+ |η|)3t dζ.

If η =
|x−cht|
2|dh`|t , then since (|ζ| + |η|)2 6 2(|ζ|2 + |η|2) and by choosing ε ′ =

|dh`| cos(φ)/8, there is c > 0 such that∣∣∣∫
γ2

∣∣∣ 6 C ∫ε
−ε
e
−

|x−cht|
2

4|dh`|t
cos(φ)

e−|dh`| cos(φ)ζ2te
4ε ′ζ2t+ε ′

|x−cht|
2

|dh`|
2t

·
(
|ζ|3t+ 3|ζ|2 |x− cht|2|dh`|

+ 3|ζ| |x− cht|
2

4|dh`|2t
+

|x− cht|
3

8|dh`|3t2
)
dζ
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6 C
3∑
k=0

e
−

|x−cht|
2

8|dh`|t
cos(φ)

(t−
1
2 |x− cht|)

k

·
∫ε
−ε
e−

1
2 |dh`| cos(φ)ζ2t|ζ|3−kt1−

k
2 dζ

6 Ct−1e
−

|x−cht|
2

c|dh`|t ∀t > 1. (3.58)

If η = ε/2, then since |x−cht| > ε|dh`|t by the definition of η and since |z| < ε,
by choosing ε ′ = |dh`| cos(φ)/16, we have∣∣∣∫

γ2

∣∣∣ 6 C ∫ε
−ε
e−|x−cht|η cos(φ)e−|dh`| cos(φ)(ζ2−η2)te2ε ′ε2tε3t dζ

6 Ce−
1
8ε

2|dh`| cos(φ)t

∫ε
−ε
e−|dh`| cos(φ)ζ2tt dζ

6 Ct
1
2 e−

1
8ε

2|dh`| cos(φ)t 6 Ce−ct ∀t > 0. (3.59)

We estimate on γ3. For z ∈ γ3 and s ∈ [0, 1], we have

Re z(s) = ε cos(φ/2) + sgn(x− cht)η sin(φ/2)(1− s),
Im z(s) = ε sin(φ/2) + sgn(x− cht)η cos(φ/2)(1− s).

Thus, similarly to γ1, by choosing ε ′ = |dh`| cos(φ)/8, there is c > 0 such
that, for t > 1, we have∣∣∣∫

γ3

∣∣∣ 6 C ∫1

0
e−|x−cht|η cos(φ)(1−s)

· e−|dh`| cos(φ)(ε2−η2(1−s)2)te2ε ′ε2tε4t ds 6 Ce−ct. (3.60)

On the other hand, for large δ > 0 and t > 0, since |x| 6 Ct, one has

e−ct = e−cte
|x−cht|

2
δ|dh`|t e

−
|x−cht|

2
δ|dh`|t 6 e−cte

(C2+2chC+c2
h
)

δ|dh`|
t
e
−

|x−cht|
2

δ|dh`|t

6 e−
c
2te

−
|x−cht|

2
δ|dh`|t . (3.61)

Thus, from (3.57) - (3.61), there is c > 0 such that

|F−1(I1)(x, t)| 6 Ct−1
s∑
h=1

sh∑
`=1

e
−

|x−cht|
2

c|dh`|t ∀t > 1.

By the same way, for F−1(I2) and F−1(J), there is c > 0 such that

|F−1(I2)(x, t)|, |F−1(J)(x, t)| 6 Ct−1
s∑
h=1

sh∑
`=1

e
−

|x−cht|
2

c|dh`|t ∀t > 1.

Hence, by the Young inequality in Lemma A.1, it is sufficient to estimate
the L1-norm of F−1((Ĝ− K̂− Ŵ)χ1). We thus obtain for t > 1 that

‖F−1((Ĝ− K̂− Ŵ)χ1)‖L1 6 ‖F−1(I1)‖L1 + ‖F−1(I2)‖L1 + ‖F−1(J)‖L1

6 Ct−
1
2

s∑
h=1

sh∑
`=1

∫
|x|6Ct

t−
1
2 e

−
|x−cht|

2
c|dh`|t dx 6 Ct−

1
2 .

The proof is done.
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Proposition 3.8 (Intermediate frequency). For g ∈ Lp(R), if the conditions
A , B, C and D hold, then there are constants c > 0 and C > 0 such that

‖F−1((Ĝ− K̂− Ŵ)χ2) ∗ g‖Lp 6 Ce−ct‖g‖Lp ∀t > 0. (3.62)

Proof. Due to the proof of Proposition 3.5, there are constants c > 0 and
C > 0 such that we have

|F−1((Ĝ− K̂− Ŵ)χ2)(x, t)|

6
∫
R
(|Ĝ(ξ, t)|+ |K̂(ξ, t)|+ |Ŵ(ξ, t)|)|χ2(ξ)|dξ 6 Ce−ct.

It follows that

‖F−1((Ĝ− K̂− Ŵ)χ2)‖L1 6 Ce−ct
∫
|x|6Ct

dx 6 Cte−ct 6 Ce−ct ∀t > 0.

We finish the proof.

Proposition 3.9 (High frequency). For g ∈ Lp(R), if the conditions A , B,
C and D hold, then there are constants c > 0 and C > 0 such that

‖F−1((Ĝ− K̂− Ŵ)χ3) ∗ g‖Lp 6 Ce−ct‖g‖Lp ∀t > 1. (3.63)

Proof. Recall the decomposition (Ĝ− Ŵ)χ3 = I+ J where I is defined by I1 in
(3.40) and J is the remainder. Hence, by (3.46), there is c > 0 such that for
|x| 6 Ct and t > 0, we have

|F−1((Ĝ− Ŵ)χ3)(x, t)| 6 C
r∑
h=1

te−ct|x− αht|+ Ce
−ct 6 Ce−ct.

Moreover, we also have

|F−1(K̂χ3)(x, t)| 6 C
∫
R
e−c|ξ|

2t|χ3(ξ)|dξ 6 Ce−ct ∀t > 1.

It follows that

‖F−1((Ĝ− K̂− Ŵ)χ3)‖L1 6 Ce−ct
∫
|x|6Ct

dx 6 Cte−ct 6 Ce−ct ∀t > 1.

The proof is done.

Case |x| > Ct

Proposition 3.10. For g ∈ Lp(R), if the conditions A , B, C and D hold,
then there are constants c > 0 and C > 0 such that

‖F−1(Ĝ− K̂− Ŵ) ∗ g‖Lp 6 Ce−ct‖g‖Lp ∀t > 1. (3.64)

Proof. Since |x| > Ct, we can assume that C is large enough. We estimate

F−1(Ĝ− Ŵ)(x, t) = lim
ρ→+∞

∫ρ
−ρ

(Ĝ(ξ, t) − Ŵ(ξ, t))eixξ dξ. (3.65)
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Since Ĝ(ξ, t) = e−E(iξ)t where E(iξ) = B + iξA for ξ ∈ R and from (3.26),
Ĝ−Ŵ is holomorphic on the complex plane. Thus, by considering ξ = ζ+iη ∈
C, one can change the path of the integral from γ := {(ζ, 0) : ζ from − ρ to ρ}
to the path γ := γ1 ∪ γ2 ∪ γ3 in the complex plane where

γ1 := {(ζ,η) : ζ = −ρ,η from 0 to x/t},

γ2 := {(ζ,η) : ζ from − ρ to ρ,η = x/t}

and
γ3 := {(ζ,η) : ζ = ρ,η from x/t to 0}.

Furthermore, since ρ and |x|/t are large, Ĝ− Ŵ has the representation of the
high-frequency part (Ĝ− Ŵ)χ3 along γ. Therefore, by the same computation
as in (3.50) - (3.52) and letting ρ→ +∞, for some c > 0 and C > 0, we have

|F−1(Ĝ− Ŵ)(x, t)| 6 Ce−cte−
|x|2
ct ∀t > 1. (3.66)

We estimate F−1(K̂). From (3.25), it can be checked easily that

F−1(K̂)(x, t) =
s∑
h=1

sh∑
`=1

1
2
√
πdh`t

e
−

|x−cht|
2

4dh`t

mh`−1∑
k=0

Mkh`
|x− cht|

2k

(dh`t)k
,

where mh` > 1 is the algebraic multiplicity associated with dh` and Mkh` is
some suitable matrix. Hence, since |x| > Ct for sufficiently large C, we obtain

|F−1(K̂)(x, t)| 6 Ct−
1
2

s∑
h=1

sh∑
`=1

e
−

|x−cht|
2

c|dh`|t

6 Ct−
1
2

s∑
h=1

sh∑
`=1

e
−

|x−cht|
2

2c|dh`|t e
−
(

|x−cht|
2

2c|dh`|t
−

|Ct−cht|
2

2c|dh`|t

)
e
−

|C−ch|
2t

2c|dh`|

6 Ce−ct
s∑
h=1

sh∑
`=1

e
−

|x−cht|
2

c|dh`|t (3.67)

for some constants c > 0, C > 0 and for all t > 1.
Therefore, it follows from (3.66) and (3.67) that

‖F−1(Ĝ− K̂− Ŵ)‖L1 6 Ce−ct ∀t > 1.

The proof is done.

3.1.4 Proof of Theorem 3.1

We are now going to give a detailed proof for Theorem 3.1.

Proof of Theorem 3.1. For u0 ∈ Lq(R), let u, U and V be solutions to (3.4),
(3.7) and (3.8) respectively. Recall the cut-off function χj for j ∈ {1, 2, 3}, it
can be checked easily that

u−U− V =

3∑
j=1

F−1((Ĝ− K̂− Ŵ)χj) ∗ u0, (3.68)
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where Ĝ is a solution to (2.32), K̂ is given by (3.25) and Ŵ is given by (3.26).
Hence, by Proposition 3.4, Proposition 3.5 and Proposition 3.6, there is a

constant C > 0 such that for all t > 1, from (3.68), one has

‖u−U− V‖L∞ 6
3∑
j=1
‖F−1((Ĝ− K̂− Ŵ)χj) ∗ u0‖L∞ 6 Ct−1‖u0‖L1 . (3.69)

On the other hand, by Proposition 3.7, Proposition 3.8, Proposition 3.9 and
Proposition 3.10, there is a constant C > 0 such that for 1 6 p 6 ∞ and
t > 1, from (3.68), we also have

‖u−U− V‖Lp 6
3∑
j=1
‖F−1((Ĝ− K̂− Ŵ)χj) ∗ u0‖Lp 6 Ct−

1
2 ‖u0‖Lp . (3.70)

Thus, by Lemma A.2 in Appendix A, it follows from (3.69) and (3.70) that

‖u−U− V‖Lp 6 Ct−
1
2 (

1
q−

1
p )−

1
2 ‖u0‖Lq

for 1 6 q 6 p 6∞ and for all t > 1.
The Lp-Lq decay estimate for U is accomplished similarly by applying the

complex interpolation lemma A.2 in Appendix A once the L∞-L1 estimate and
the Lp-Lp estimate for 1 6 p 6 ∞ were constructed. Moreover, the Lq-Lq
estimate for V follows directly from Remark 3.3, Lemma 3.3 and the formula
(3.26). The proof is thus done.

3.2 Multi-dimensional space
Consider the Cauchy problem{

∂tu+A · ∇xu+ Bu = 0,
u|t=0 = u0,

(3.71)

where (x, t) ∈ Rd × [0,+∞), · denotes the scalar product on Rd, u = u(x, t)
and u0 = u0(x) are vectors in Rn, A := (A1, . . . ,Ad) ∈ (Rn×n)d and B ∈
Rn×n.

Let u be a solution to (3.71). We study the Lp-Lq decay estimates for u.
Nevertheless, as mentioned in [5], one cannot expect that the estimate

‖u‖L1 6 C‖u0‖L1 (3.72)

holds in general. Indeed, for large time, L+u behaves like a solution to the
reduced system

∂tv+ L+AR+ · ∇xv = 0. (3.73)

In (3.73), v = v(x, t) ∈ Rm, L+ ∈ Rm×n and R+ ∈ Rn×m are respectively a
left and a right eigenprojection associated with the eigenvalue 0 of B and the
integer m ∈ [1,n) is the algebraic multiplicity of 0. Thus, it follows from [9]
that (3.72) is not true in general for d > 2. Hence, we satisfy ourselves with
the case where 0 is a simple eigenvalue of B in this section. In this case, (3.73)
is a scalar equation since m = 1.
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Noting that in the one-dimensional space, the singular term V in (3.9)
is obtained based on the subtraction of Ŵ given by (3.26) from the high-
frequency expansion of Ĝ given by (3.24) such that the remainder Ĝ − Ŵ is
L1-integrable for large ξ ∈ R. Such construction in the multi-dimensional space
with d > 2 cannot be always achieved due to the fact that we cannot perform a
uniform expansion of Ĝ for large ξ ∈ Rd (see Remark 2.7 in Chapter 2) which
indeed can be established in the cases of the linear damped wave equations in
any spatial dimension (see [31,53,56]).

Therefore, the aim of this section is only to study the decomposition u =
u(1) + u(2) of the solution u to (3.71) with d > 2, where u(1) satisfies the
Lp-Lq decay of a parabolic kernel and u(2) decays in L2(Rd) exponentially as
t→ +∞. Moreover, we also construct a large-time asymptotic profile of u(1).

For z = (z1, . . . , zd) ∈ Cd, we recall the operators

E(z) = B+A(z) and A(z) = A · z :=
d∑
j=1

zjAj, (3.74)

where A = (A1, . . . ,Ad) ∈ (Rn×n)d and B ∈ Rn×n. We start with the
following reasonable assumptions.
Condition A ∗ (Hyperbolicity). For w ∈ Sd−1, A = A(w) is uniformly
diagonalizable with real linear eigenvalues i.e. there are an invertible matrix
R = R(w) and a constant C > 0 such that

sup
w∈Sd−1

|R(w)||R−1(w)| < C

for a matrix norm | · | and R−1AR is a diagonal matrix whose nonzero entries
are real linear in w ∈ Sd−1.
Condition R∗ (Diagonalizing matrix). There is a matrix R uniformly diago-
nalizing A such that R−1BR is a constant matrix independent from w ∈ Sd−1.
Condition B∗ (Partial dissipation). The spectrum of B is decomposed into
σ(B) = {0} ∪ σ+ where 0 is simple and σ+ ⊆ {λ ∈ C : Re λ > 0}.
Condition D∗ (Uniform dissipation). There is a constant θ > 0 such that
for any eigenvalue λ(iξ) of E(iξ) with ξ ∈ Rd, one has

Re λ(iξ) > θ|ξ|2

1+ |ξ|2
∀ξ 6= 0.

Let Γ0 be an oriented closed curve in the resolvent set of B such that it
encloses zero except for the other eigenvalues of B. One recalls

P
(0)
0 = −

1
2πi

∫
Γ0

(B− zI)−1 dz and Q(0)
0 =

1
2πi

∫
Γ0

z−1(B− zI)−1 dz, (3.75)

which are the eigenprojection and the reduced resolvent coefficient associated
with the eigenvalue zero of B. We consider the Cauchy problem{

∂tU+ c · ∇xU− div (D∇xU) = 0,
U|t=0 = P

(0)
0 u0,

(3.76)

where U = U(x, t) ∈ Rn, c = (ch)h∈{1,...,d} ∈ Rd and D = (Dh`)h,`∈{1,...,d} ∈
Rd×d with entries

ch = tr
(
AhP

(0)
0
)
and Dh` =

1
2tr
(
AhP

(0)
0 A`Q

(0)
0 +AhQ

(0)
0 A`P

(0)
0
)
. (3.77)
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Theorem 3.11 (Lp-Lq decay estimates [54]). Let u be a solution to the
Cauchy problem (3.71) with an initial datum u0 ∈ Lq(Rd) ∩ L2(Rd) for 1 6
q 6 ∞. Under the assumptions A ∗, R∗, B∗ and D∗, the solution u is
decomposed into

u(x, t) = u(1)(x, t) + u(2)(x, t),

where
u(1)(x, t) := F−1(e−EtP0χ) ∗ u0(x)

and u(2) is the remainder, P0(iξ) is the eigenprojection associated with the
eigenvalue λ0(iξ) of E(iξ), λ0(iξ) converges to 0 as |ξ|→ 0 and χ is a cut-off
function valued in [0, 1] with support contained in the ball B(0, ε) ⊂ Rd for
small ε > 0.

Moreover, for any 1 6 q 6 p 6 ∞, there are constants c > 0 and C > 0
such that one has

‖u(1) −U‖Lp 6 Ct−
d
2 (

1
q−

1
p )−

1
2 ‖u0‖Lq ∀t > 1 (3.78)

and u(2) satisfies

‖u(2)‖L2 6 Ce−ct‖u0‖L2 ∀t > 0, (3.79)

where U which is a solution to (3.76) satisfies

‖U‖Lp 6 Ct−
d
2

(
1
q−

1
p

)
‖u0‖Lq ∀t > 1. (3.80)

Similarly to the one-dimensional space with d = 1, the proof of Theorem
3.11 is based on the L∞-L1 estimate, the Lp-Lp estimate for 1 6 p 6 ∞
and a complex interpolation argument given by Lemma A.2. Hence, we also
divide each step of the proof into the low frequency, the intermediate frequency
and the high frequency in order to use asymptotic expansions of the Fourier
transform Ĝ of the fundamental solution denoted by G to (3.71). Noting that
Ĝ satisfies (2.32) and is given by (2.33).

Remark 3.4 (Finite speed of propagation). In the case where the solution
u to (3.71) has finite speed of propagation, since the fundamental solution G
has compact support contained in the wave cone {x ∈ Rd : |x/t| 6 C} for a
constant C > 0, we can decompose u into u = u(1) + u(2) where

u(1)(x, t) := F−1(e−Etχ) ∗ u0(x)

and u(2) is the remainder. Here, χ is a cut-off function valued in [0, 1] with
support contained in the ball B(0, ρ) ⊂ Rd for any ρ > 0. Then, the estimates
(3.78) and (3.79) still hold. This fact will be proved in the subsequent sub-
sections. For instance, it is the case where (3.71) is Friedrichs symmetrizable.
However, in the one-dimensional space with d = 1, the case where |x/t| > C

can be treated since the Cauchy integral theorem holds for the whole complex
plane. Thus, one can use the estimates for the high-frequency expansion of Ĝ
after changing paths of integrals of holomorphic functions.

Remark 3.5 (The simplicity of the eigenvalue 0 of B). Based on the discus-
sions from the beginning of this section, if the simplicity of the eigenvalue 0 of
B is relaxed by the semi-simplicity with the algebraic multiplicity m > 2, the
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Lp-Lq decay estimate given by (3.78) does not hold for general p, q ∈ [1,∞].
This case is very restrictive indeed. Following from [5], we have the following

‖u−U‖Lp∩L2 6 Ct−
d
2 (1− 1

p )−
1
2 ‖u0‖L1∩L2 ∀p > min{d, 2}, (3.81)

where the initial datum u0 ∈ L1(Rd)∩L2(Rd) and U is a solution to a parabolic
system induced from the Chapman–Enskog expansion.

Remark 3.6 (Relaxing the conditions A ∗ and R∗). The requirements of the
linearity of the eigenvalues of the matrix A satisfying the condition A ∗ and
the existence of the matrix R satisfying the condition R∗ can be omitted by
considering the dissipative structures proposed in Proposition 2.3 and in [5,67].
Indeed, from (2.8), the Fourier transform û of the solution u to (3.71) satisfies

|û(ξ, t)| 6 Ce−
c|ξ|2

1+|ξ|2 t|û0(ξ)| (3.82)

for all ξ 6= 0 and t > 0. It implies immediately that one can choose u(2) :=
F−1(û(1 − χ)) decaying exponentially in L2(Rd) as t → +∞, where χ is
a cut-off function with support compact contained in {ξ ∈ Rd : |ξ| < ε} for
sufficiently small ε. In general, we cannot obtain (3.82) without any additional
assumptions. Here, the advantage of the linearity of the eigenvalues of A and
the existence of R satisfying the condition R∗ is that we can construct the
high-frequency expansion of Ĝ, provided a suitable Lebesgue measure zero set
is subtracted. Then, the exponential decay of u(2) in L2(Rd) as t→ +∞ can
be proved under the condition D∗.

Moreover, in order to have the Lp-Lq decay estimate for the remainder
u(1) := F−1(ûχ), we also need that u has finite speed of propagation (see Re-
mark 3.4). This condition still holds for the structures proposed in Proposition
2.3 and in [5, 67] since the matrix A is Friedrichs symmetrizable.

Example 3.7 (The generalized Goldstein–Kac systems). Consider (3.71) with

Aj := diag (vj1, . . . , v
j
n) and B := (−µh`)h,`∈{1,...,n},

where vjh and µh` > 0 are respectively real numbers indicating the speed of
the density uh in the direction xj and the transition rate from the speed set
{v1
h, . . . , vdh} to the speed set {v1

`, . . . , vd` } such that µhh = −
∑
` 6=h µh` for

h, ` ∈ {1, . . . ,n} and j ∈ {1, . . . ,d}. Here, B is not necessarily symmetric as
in [49].

We will prove that the above system satisfies the conditions A ∗, R∗, B∗

and D∗ if there are h, ` ∈ {1, . . . ,n} satisfying vjh 6= v
j
` and B is an irreducible

matrix. Noting that by the Gershgorin circle theorem, every eigenvalue of B
has a nonnegative real part.

The conditions A ∗ and R∗ are obvious. We prove the condition B∗.
Let ν > maxh∈{1,...,n}{−µhh} > 0, one deduces that B + νI is a nonnegative
irreducible matrix with eigenvalues having positive real parts. Hence, by the
Perron–Frobenius theorem, ρ(B+ νI) which is the spectral radius of B+ νI is
a simple eigenvalue of B+ νI.

Moreover, due to the Gershgorin circle theorem and the definition of the
spectral radius ρ, one has ρ(B + νI) = ν unless there is a fixed h ∈ {1, . . . ,n}
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such that
∑
` 6=h µh` < |ν+ µhh| < |ν ′ + µhh| 6

∑
` 6=h µh` which is a contra-

diction if ν ′ := ρ(B+ νI) > ν.
On the other hand, since one has

det(B− λI) = det(B+ νI− τI),

where λ = τ− ν and I is the identity matrix in Rn×n, it follows from the fact
that τ = ν is a simple eigenvalue of B + νI that λ = 0 is a simple eigenvalue
of B. Thus, the condition B∗ is satisfied.

We check the condition D∗. We observe that B + Bt inherits all of the
properties of B, namely

(B+ Bt)h` > 0 ∀h 6= `, (B+ Bt)hh = −
∑
` 6=h

(B+ Bt)h`

and B+ Bt is an irreducible matrix. Hence, by the same arguments as before
where ν is substituted by ν > maxh∈{1,...,n}{−(B+Bt)hh} and B is substituted
by B+Bt, we deduce that B+Bt is a positive semi-definite matrix. Moreover,
ker(B+ Bt) = span {(1, . . . , 1)}.

Thus, by Proposition 2.1, there is a real skew-symmetric matrix K = K(w)
such that

ut(K(w)A(w) −A(w)K(w) + B+ Bt)u > 0 ∀u ∈ Rn\{0},

where A(w) =
∑d
j=1wjAj and w = (w1, . . . ,wd) ∈ Sd−1. Indeed, any eigen-

vector of A(w) does not belong to ker(B + Bt) for w ∈ Sd−1 since there are
h, ` ∈ {1, . . . ,n} such that vjh 6= v

j
`.

Furthermore, 2Re ūtBu = Re ūt(B + Bt)u > 0 for any u ∈ Cn i.e. B is
also a positive semi-definite matrix (not necessarily symmetric). Therefore,
the condition D∗ follows Proposition 2.3 with A0 = I.
Example 3.8 (The two-dimensional linearized isentropic compressible Euler
equations with damping). For α > 0 and x ∈ R2, we consider (3.71) with

A1 :=

0 1 0
1 0 0
0 0 0

 , A2 :=

0 0 1
0 0 0
1 0 0

 and B :=

0 0 0
0 α 0
0 0 α

 .

The conditions A ∗, B∗ and R∗ hold obviously due to the fact that a
diagonalizing matrix R(w) of A(w) is given by

R(w) =
1
2

 1 0 1
−w1 2w2 w1
−w2 −2w1 w2

 .

The condition D∗ also holds. Indeed, it can be checked easily that there is
no eigenvector of A(w) = w1A1 +w2A2 in kerB for w = (w1,w2) ∈ S1. Thus,
by Proposition 2.1, the conditions in Proposition 2.3 hold with A0 = I, where
I is the identity matrix in R3×3. Hence, the condition D∗ follows.

Noting that in this case, we can compute directly the eigenvalues of E(iξ) =
B + A(iξ) where A(iξ) = iξ1A1 + iξ2A2 for ξ = (ξ1, ξ2) ∈ R2. In fact, E(iξ)
has three eigenvalues

λ0(iξ) = α and λ±(iξ) =


α±

√
α2 − 4|ξ|2
2 if α− 4|ξ|2 > 0,

α± i
√
4|ξ|2 − α2

2 if α− 4|ξ|2 < 0,
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where λ± = α/2 for |ξ| = α/2.
Hence, by applying the Taylor expansion of

√
1− z for |z| < 1, we have

λ+(iξ) = α−
|ξ|2

α
+ O(|ξ|4)

λ−(iξ) =
|ξ|2

α
+ O(|ξ|4)

∀|ξ| < α/2.

On the other hand, we also haveλ+(iξ) = i|ξ|+
α

2 + O(|ξ|−1)

λ−(iξ) = −i|ξ|+
α

2 + O(|ξ|−1)
∀|ξ| > α/2.

For the cases where the space-dimension d > 3, computations are similar
(see [65] as an example with d = 3).

3.2.1 Preliminaries

Let I be an index set given by I := {i1, . . . , is} with possibly repeated i` ∈
{1, . . . ,d} i.e. we allow ih = i` for h 6= `. For a partition {Ij : j = 1, . . . , r} of I
with r ∈ {1, . . . , s} and Ij := {i

j
1, . . . , i

j
sj}, we define the partial derivative ∂Ij of

a smooth scalar function q = q(x, t) on Rd × [0,+∞) with respect to x ∈ Rd
by the partial derivative of order sj

∂Ijq(x, t) := ∂
sj
x
i
j
1

...x
i
j
sj

q(x, t).

Noting that we do not consider any Ij = ∅ i.e. sj > 1 for all j ∈ {1, . . . , r}.
On the other hand, for a fixed α ∈ Nd, if |α| = 0 i.e. α = 0, we set Iα := ∅

with the cardinality |Iα| := 0. If |α| = s ∈ Z+, α determines an index set Iα =
{i1, . . . , is} 6= ∅ with possibly repeated indices. In fact, if α = (α1, . . . ,αd), we
define uniquely the index set Iα having α` indices ` ∈ {1, . . . ,d}. We also set
the cardinalities |Iα| := s > 1 and |Ij| := sj > 1 for j ∈ {1, . . . , r} if Iα 6= ∅.

Lemma 3.12 (Partial derivatives). Let α ∈ Nd with |α| > 0, for any smooth
scalar function q = q(x, t) on Rd × [0,+∞), we have

∂αeq(x,t) =
∑

{Ij:j=1,...,r},r6|α|

∂I1q(x, t) . . .∂Irq(x, t)eq(x,t), (3.83)

where {Ij : j = 1, . . . , r} is any possible partition of the set Iα determined by α.

Proof. We prove by induction. Let α ∈ Nd with |α| = 0. Since Iα = ∅, there
is no partition of Iα to be considered. Thus, ∂0eq(x,t) = eq(x,t).

Let α ∈ Nd with |α| = 1. By the definition of ∂α, we have

∂αeq(x,t) = ∂1
xi
eq(x,t) = ∂1

xi
q(x, t)eq(x,t) (3.84)

if αi = 1 and α` = 0 for all ` 6= i. On the other hand, the index set Iα
determined by α in this case is Iα = {i} since αi = 1. Thus, Iα has only one
possible partition which is itself. Hence, (3.84) coincides (3.83).

Given an integer s > 1, assume that (3.83) holds for any α ∈ Nd with
|α| = s. For any β ∈ Nd with |β| = s + 1, β = (α1, . . . ,αi + 1, . . . ,αd) for
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some α = (α1, . . . ,αd) ∈ Nd and i ∈ {1, . . . ,d}. Hence, since ∂βeq(x,t) =
∂1
xi
∂αeq(x,t), we have

∂βeq(x,t) =
∑

{Ij:j=1,...,r},r6s

r∑
`=1

∂I1q(x, t) . . .∂1
xi
∂I`q(x, t) . . .∂Irq(x, t)e

q(x,t)

+
∑

{Ij:j=1,...,r},r6s
∂I1q(x, t) . . .∂Irq(x, t)∂1

xi
q(x, t)eq(x,t), (3.85)

where {Ij : j = 1, . . . , r} is any possible partition of Iα determined by α.
We then consider all of possible partitions of Iβ. The first possibilities are

the partitions {{Ij : j = 1, . . . , r}, {i}} since Iβ has αi + 1 indices i. The last
choices are that for each partition {Ij : j = 1, . . . , r} of Iα, we generate the
partition {I ′j : j = 1, . . . , r} of Iβ by putting i into I` and let I ′j = Ij for all
j 6= ` and ` ∈ {1, . . . , r}. Thus, since r varies such that r 6 s, there is no other
possible partition of Iβ to take part in. Therefore, we obtain from (3.85) that

∂βeq(x,t) =
∑

{I ′j:j=1,...,r ′},r ′6s+1

∂I ′1q(x, t) . . .∂I ′rq(x, t)e
q(x,t),

where the sum is made on all possible partitions {I ′j : j = 1, . . . , r ′} of Iβ
determined by β. We thus proved (3.83).

Remark 3.9. Lemma 3.12 is applied only to the case where q = q(x, t) is
scalar on (x, t) ∈ Rd × [0,+∞), the matrix case is a challenge due to the lack
of commutativity of q and its partial derivatives.

Lemma 3.13 (Derivative estimates). Let p = p(x) be a scalar polynomial on
Rd such that the lowest order of p is h > 1 and let α ∈ Nd with |α| > 0. There
is a constant C > 0 such that for small x ∈ Rd and t > 0, we have

|∂αep(x)t| 6 C
∑

{Ij:j=1,...,r}, r6|α|

|x|
∑h−1
k=1 kmkt`+

∑h−1
k=0 mk |ep(x)t|, (3.86)

where the integer mk > 0 is the cardinality of {j ∈ {1, . . . , r} : |Ij| = h − k} for
each k ∈ {0, . . . ,h− 1}, the integer ` > 0 satisfies

h` < |α|−

h−1∑
k=0

(h− k)mk (3.87)

and {Ij : j = 1, . . . , r} is any possible partition of the set Iα determined by α.

Proof. Let α ∈ Nd with |α| > 0 and p = p(x) be a polynomial on Rd such
that the lowest order of p is h > 1. For any partition {Ij : j = 1, . . . , r} of Iα
determined by α, by the definition of ∂Ij , there is a constant C > 0 such that

|∂Ijp(x)| 6 C ·

{
1 if |Ij| > h,
|x|k if |Ij| = h− k

for k ∈ {0, . . . ,h − 1} and small x ∈ Rd, where |Ij| is the cardinality of the
index set Ij with possibly repeated indices. Noting that

∑r
j=1 |Ij| = |Iα| = |α|
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by definition. It implies that there is a constant C > 0 such that for small
x ∈ Rd and t > 0, we have

|∂I1(p(x)t)| . . . |∂Ir(p(x)t)| 6 C|x|
∑h−1
k=1 kmkt`+

∑h−1
k=0 mk , (3.88)

where mk > 0 is the cardinality of {j ∈ {1, . . . , r} : |Ij| = h − k} for k ∈
{0, . . . ,h − 1} and ` > 0 is the cardinality of J := {j ∈ {1, . . . , r} : |Ij| > h}.
Moreover, we have

h` <
∑
j∈J

|Ij| = |α|−

h−1∑
k=0

(h− k)mk. (3.89)

We thus obtain (3.86) and (3.87) from (3.83), (3.88) and (3.89). The proof is
done.

Lemma 3.14. If the conditions B∗ and D∗ hold, D ∈ Rd×d with the entries
Dh` given by (3.77) for h, ` ∈ {1, . . . ,d} is positive definite. On the other hand,
if the conditions A ∗, R∗ and D∗ hold, the coefficient βh` for h ∈ {1, . . . , r}
and ` ∈ {1, . . . , rh} in the expansion (2.67) is bounded from below by θ > 0.

Proof. Recall the operator E in (3.74). For small ξ, since the condition B∗

holds, the expansion (2.46) holds, namely E(iξ) has one single eigenvalue
λ0(iξ) that converges to 0 as |ξ|→ 0 and is approximated by

λ0(iξ) = i
d∑
h=1

chξ+

d∑
h=1

d∑
`=1

Dh`ξhξ` + O(|ξ|2),

where ch and Dh` are given by (3.77).
Hence, if the assumption D∗ holds, then since ch ∈ R for all h ∈ {1, . . . ,d},

there is a constant θ > 0 such that for small ξ 6= 0, one has

θ|ξ|2

1+ |ξ|2
6 Re λ0(iξ) 6 Re (ξ ·Dξ) + C|ξ|3.

As |ξ|→ 0, one has Re (w ·Dw) > θ > 0 for all w ∈ Sd−1. Therefore, for any
z 6= 0, one has Re (z ·Dz) = |z|2Re ((z/|z|) ·D(z/|z|)) > 0.

Similarly, for large ξ, since the conditions A ∗ and R∗ hold, the expansions
(2.66) - (2.68) of E is validated. Thus, the eigenvalues of E that converge to
αh ∈ σ(A) as |ξ|→ +∞ for h ∈ {1, . . . , r}, where r is the cardinality of σ(A),
are approximated by

λh`(iξ) = αh(iξ) + βh` + O(1)

for h ∈ {1, . . . , r} and ` ∈ {1, . . . , rh}. Here, βh` ∈ σ(Π(0)
h R−1BRΠ

(0)
h , ranΠ(0)

h )

and the integer rh is the cardinality of σ(Π(0)
h R−1BRΠ

(0)
h , ranΠ(0)

h ), where
R = R(ξ/|ξ|) is an invertible matrix satisfying the condition R∗ and Π(0)

h is
given by (2.65).

Therefore, it follows from the conditions A ∗ and D∗ that αh is real for all
h ∈ {1, . . . , r} and there is a positive constant θ such that

θ

1+ |ξ|−2 6 Re (βh`) + ε
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for small 0 < |ξ|−1 < ε, h ∈ {1, . . . , r} and ` ∈ {1, . . . , rh}. Let ε → 0, one
obtains Re (βh`) > θ > 0 for all h ∈ {1, . . . , r} and ` ∈ {1, . . . , rh}. The proof
is thus done.

Recall χi for i = 1, 2, 3 which are smooth cut-off functions valued in [0, 1]
with supports contained in {ξ ∈ R : |ξ| < ε}, {ξ ∈ R : ε 6 |ξ| 6 ρ} and
{ξ ∈ R : |ξ| > ρ} respectively for small ε and large ρ such that χ1+χ2+χ3 = 1.

The solution Ĝ to (2.32) then satisfies Ĝχ1 = Ĝ1χ1 + Ĝ2χ2 where

Ĝ1(ξ, t) = e−ic·ξt−ξ·Dξt+O(|ξ|3)t(P
(0)
0 + O(|ξ|)) (3.90)

and

Ĝ2(ξ, t) =
s ′∑
k=1

e−bkte−M
(0)
k t+O(|ξ|)t(F

(0)
k + O(|ξ|)), (3.91)

where c = (ch)h∈{1,...,d} ∈ Rd and D = (Dh`)h,`∈{1,...,d} ∈ Rd×d with the
entries given by (3.77), P(0)

0 is the eigenprojection associated with 0 ∈ σ(B),
bk ∈ σ(B)\{0} with the associated eigenprojection F(0)

k and eigennilpotent
M

(0)
k and s ′ is the cardinality of σ(B)\{0}.
Moreover, for almost everywhere, we also have

Ĝ(ξ, t)χ3(ξ)

= R

r∑
h=1

rh∑
`=1

e−(αh(iξ)+βh`)te−
(
Θ

(0)
h` +O(|ξ|−1)

)
t
(
Π
(0)
h` + O(|ξ|−1)

)
R−1. (3.92)

In (3.92), αh(iξ) = i|ξ|ν[h](ξ/|ξ|) for ν[h] given by (2.64), the coefficient
βh` ∈ σ(Π

(0)
h R−1BRΠ

(0)
h , ranΠ(0)

h ) with the associated eigenprojection Π(0)
h`

and eigennilpotent Θ(0)
h` , the integers r and rh are respectively the cardinali-

ties of σ(A) and σ(Π(0)
h R−1BRΠ

(0)
h , ranΠ(0)

h ) where R = R(ξ/|ξ|) satisfies the
condition R∗ and Π(0)

h is given by (2.65).
One sets

K̂(ξ, t) := e−c·iξt−ξ·DξtP
(0)
0 , (3.93)

where the coefficients are introduced as before.

3.2.2 L∞-L1 estimate

Due to the discussions from the beginning of this section, since we cannot
subtract any suitable error term Ŵ from the high-frequency part of Ĝ in order
to obtain the L∞-L1 estimate as the space-dimension d increases, we consider
here only the low-frequency part and the intermediate-frequency part of Ĝ.

Proposition 3.15 (Low frequency). For g ∈ L1(Rd), if the assumptions B∗

and D∗ hold, then there is a constant C > 0 such that for t > 1, we have

‖F−1((ĜP0 − K̂)χ1) ∗ g‖L∞ 6 Ct−
d
2 −

1
2 ‖g‖L1 , (3.94)

where P0(iξ) is the eigenprojection associated with the eigenvalue λ0(iξ) of
E(iξ) and λ0(iξ) converges to 0 as |ξ|→ 0.

On the other hand, we also have

‖F−1(Ĝ(I− P0)χ1) ∗ g‖L∞ 6 Ce−ct‖g‖L1 . (3.95)
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Proof. By the Young inequality in Lemma A.1 and the fact that F−1 : L1 →
L∞, it is sufficient to estimate the L1-norm of (ĜP0 − K̂)χ1 and Ĝ(I − P0)χ1
under the conditions B∗ and D∗. Moreover, by changing the coordinates
(x, t) 7→ (x−ct, t), one can always assume that c = 0 without loss of generality.

Since (P0)
2 = P0 and P0(I − P0) = (I − P0)P0 = O the null matrix, one

has (ĜP0 − K̂)χ1 = (Ĝ1 − K̂)χ1 and Ĝ(I− P0)χ1 = Ĝ2χ1, where Ĝ1 is given by
(3.90) and Ĝ2 is given by (3.91).

Moreover, (Ĝ1 − K̂)χ1 = I+ J where

I(ξ, t) := e−ξ·Dξt(eO(|ξ|3)t − 1)P(0)
0 χ1(ξ) (3.96)

and
J(ξ, t) := e−ξ·Dξt+O(|ξ|3)tO(|ξ|)χ1(ξ). (3.97)

Then, there are constants c > 0 and C > 0 such that

|(Ĝ(ξ, t)P0(ξ)−K̂(ξ, t))χ1(ξ)| 6 |I(ξ, t)|+ |J(ξ, t)| 6 Ce−c|ξ|2t(|ξ|3t+ |ξ|)|χ1(ξ)|.

Hence, it implies for all t > 0 that

‖(ĜP0 − K̂)χ1‖L1 6 C
∫
Rd
e−c|ξ|

2t(|ξ|3t+ |ξ|)|χ1(ξ)|dξ 6 C(1+ t)−
d
2 −

1
2 .

On the other hand, by the condition B∗ and Remark 3.3, from (3.91),
there are constants c > 0 and C > 0 such that we have

|Ĝ(ξ, t)(I−P0(ξ))χ1(ξ)| 6 C
s ′∑
k=1

e−Re (bk)te|M
(0)
k |t+C|ξ|t|χ1(ξ)| 6 Ce

−ct|χ1(ξ)|.

Hence, we have

‖Ĝ(I− P0)χ1‖L1 6 Ce−ct
∫
Rd

|χ1(ξ)|dξ 6 Ce−ct ∀t > 0.

The proof is done.

Proposition 3.16 (Intermediate frequency). For g ∈ L1(Rd), if the assump-
tions B∗ and D∗ hold, then there are constants c > 0 and C > 0 such that for
t > 0, we have

‖F−1(Ĝχ2) ∗ g‖L∞ + ‖F−1(K̂χ2) ∗ g‖L∞ 6 Ce−ct‖g‖L1 . (3.98)

Proof. Similarly, by the Young inequality in Lemma A.1 and the fact that
F−1 : L1 → L∞, it is sufficient to estimate the L1-norm of Ĝχ2 and K̂χ2 under
the conditions B∗ and D∗.

We estimate Ĝχ2 firstly where Ĝ(ξ, t) = e−E(iξ)t. Since the condition D∗

holds, Re λ(iξ) > 0 for any eigenvalue λ(iξ) of E(iξ) and ξ 6= 0. Thus, the
operator e−E(iξ) has the spectral radius ρ(e−E(iξ)) < 1 for any ξ 6= 0. It
follows from [63] that there is an induced norm | · | such that

0 < ϕ := ess sup
ξ∈Rd

|e−E(iξ)| < 1.
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Hence, for any t > 0 with the integer part denoted by m, since logϕ < 0,
there are constants c > 0 and C > 0 such that one has

|Ĝ(ξ, t)χ2(ξ)| 6 |e−E(iξ)|m|e−E(iξ)(t−m)||χ2(ξ)|

6 ϕme|E(iξ)||χ2(ξ)|

6 ϕ−1e(m+1) logϕe|E(iξ)||χ2(ξ)|

6 Ce−cte|E(iξ)||χ2(ξ)|.

Thus, since every norms in finite-dimensional spaces are equivalent, we obtain

‖Ĝχ2‖L1 6 Ce−ct
∫
Rd
e|E(iξ)||χ2(ξ)|dξ 6 Ce−ct ∀t > 0. (3.99)

We estimate K̂χ2. By Lemma 3.14 and from (3.93), there are constants
c > 0 and C > 0 such that

|K̂(ξ, t)χ2(ξ)| 6 Ce
−c|ξ|2t|χ2(ξ)|.

Therefore, we have

‖K̂χ2‖L1 6 C
∫
Rd
e−c|ξ|

2t|χ2(ξ)|dξ 6 Ce−ct ∀t > 0. (3.100)

From (3.99) and (3.100), for t > 0, we obtain

‖Ĝχ2‖L1 + ‖K̂χ2‖L1 6 Ce−ct.

The proof is done.

Proposition 3.17 (High frequency). For g ∈ L1(Rd), if the assumptions B∗

and D∗ hold, then there are constants c > 0 and C > 0 such that for t > 1,
we have

‖F−1(K̂χ3) ∗ g‖L∞ 6 Ce−ct‖g‖L1 . (3.101)

Proof. By Lemma 3.14 and from (3.93), there are constants c > 0 and C > 0
such that

|K̂(ξ, t)χ3(ξ)| 6 Ce
−c|ξ|2t|χ3(ξ)|.

Therefore, we have

‖K̂χ3‖L1 6 C
∫
Rd
e−c|ξ|

2t|χ3(ξ)|dξ 6 Ce−ct ∀t > 1.

The proof is thus done by applying the Young inequality in Lemma A.1.

3.2.3 Lp-Lp estimates

The aim of this subsection is to introduce the Lp-Lp estimate for 1 6 p 6∞
and the L2-L2 estimate. Similarly to the one-dimensional space with d =
1, we need to estimate the L1-norm of F−1((ĜP0 − K̂)χ1), where P0(iξ) is
the eigenprojection associated with the eigenvalue λ0(iξ) of E(iξ) and λ0(iξ)
converges to 0 as |ξ| → 0. However, since for d > 2, the Cauchy integral
theorem does not hold in the whole complex plane in general, we cannot
treat the case where |x| > Ct similarly to the one in the one-dimensional
space. Hence, the estimates should be retained in the variable ξ ∈ Rd and be
obtained via Fourier multiplier estimates.
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Proposition 3.18 (Low frequency). For g ∈ Lp(Rd) where 1 6 p 6 ∞, if
the assumptions B∗ and D∗ hold, then there is a constant C > 0 such that for
t > 1, we have

‖F−1((ĜP0 − K̂)χ1) ∗ g‖Lp 6 Ct−
1
2 ‖g‖Lp , (3.102)

where P0(iξ) is the eigenprojection associated with the eigenvalue λ0(iξ) of
E(iξ) and λ0(iξ) converges to 0 as |ξ|→ 0.

On the other hand, we also have

‖F−1(Ĝ(I− P0)χ1) ∗ g‖L2 6 Ce−ct‖g‖L2 . (3.103)

Furthermore, if the kernel G = F−1(Ĝ) has compact support contained in the
cone {x ∈ Rd : |x/t| 6 C} for a constant C > 0, then

‖F−1(Ĝ(I− P0)χ1) ∗ g‖Lp 6 Ce−ct‖g‖Lp . (3.104)

Proof. Recall that (ĜP0 − K̂)χ1 = (Ĝ1 − K̂)χ1 where Ĝ1 and K̂ are respectively
given by (3.90) and (3.93). Moreover, since we can assume that c = 0, we can
recall the decomposition (Ĝ1 − K̂)χ1 = I + J where I and J are respectively
given by (3.96) and (3.97).

In the spirit of Lemma A.7, we then need to estimate the L2-norm of ∂αI
and ∂αJ for α ∈ Nd. We consider I firstly. By the Leibniz rule, one has

∂αI(ξ, t) =
∑
ν6α

∑
τ6ν

(
α

ν

)(
ν

τ

)
∂τe−ξ·Dξt∂ν−τ(eO(|ξ|3)t − 1)∂α−νχ1(ξ)

= I(1)(ξ, t) + I(2)(ξ, t), (3.105)

where

I(1)(ξ, t) :=
∑
ν6α

(
α

ν

)
∂νe−ξ·Dξt(eO(|ξ|3)t − 1)∂α−νχ1(ξ) (3.106)

and

I(2)(ξ, t) :=
∑
ν6α

∑
τ<ν

(
α

ν

)(
ν

τ

)
∂τe−ξ·Dξt∂ν−τeO(|ξ|3)t∂α−νχ1(ξ). (3.107)

By the estimate (3.86) in Lemma 3.13 and Lemma 3.14, since χ1 ∈ C∞(Rd)
and D ∈ Rd×d is positive definite, there are constants c > 0 and C > 0 such
that one has

|I(1)(ξ, t)| 6 C
∑
ν6α

|∂νe−ξ·Dξt||eO(|ξ|3)t − 1||∂α−νχ1(ξ)|

6 C
∑
ν6α

∑
{Ij:j=1,...,r},r6|ν|

|ξ|m1+3t`+m0+m1+1e−c|ξ|
2t|∂α−νχ1(ξ)|,

where mk > 0 is the cardinality of the set {j ∈ {1, . . . , r} : |Ij| = |ν| − k} for
k = 0, 1 and ` > 0 satisfies

2` < |ν|− 2m0 −m1
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and {Ij : j = 1, . . . , r} is any possible partition of the index set Iν determined
by ν. Thus, we have

‖I(1)‖2L2

6 C
∑
ν6α

∑
{Ij:j=1,...,r},r6|ν|

∫
Rd

|ξ|2(m1+3)t2(`+m0+m1+1)e−2c|ξ|2t|∂α−νχ1(ξ)|dξ

6 C
∑
ν6α

∑
{Ij:j=1,...,r},r6|ν|

(1+ t)−
d
2 −1+2m0+m1+2`

6 C
∑
ν6α

(1+ t)|ν|−
d
2 −1 6 C(1+ t)|α|−

d
2 −1 (3.108)

since |ν| 6 |α| for all ν 6 α.
Similarly, we then consider I(2) in (3.107). Since χ1 ∈ C∞(Rd) and D ∈

Rd×d is positive definite, from (3.107) and the estimate (3.86) in Lemma 3.13,
there are constants c, c ′ > 0 and C > 0 such that

|I(2)(ξ, t)|

6 C
∑
ν6α

∑
τ<ν

|∂τe−ξ·Dξt||∂ν−τeO(|ξ|3)t||∂α−νχ1(ξ)|

6 C
∑
ν6α
τ<ν

∑
{Ij:j=1,...,r}
{I ′j:j=1,...,r ′}
r6|τ|,r ′6|ν−τ|

|∂α−νχ1(ξ)||ξ|
m1+m ′1+2m ′2

·t`+` ′+m0+m1+m ′0+m
′
1+m

′
2e−c|ξ|

2t+c ′|ξ|3t,

where mk > 0 is the cardinality of the set {j ∈ {1, . . . , r} : |Ij| = |τ| − k} for
k = 0, 1 andm ′k > 0 is the cardinality of the set {j ∈ {1, . . . , r ′} : |I ′j| = |ν−τ|−k}
for k = 0, 1, 2 and `, ` ′ > 0 satisfies

2` < |τ|− 2m0 −m1, 3` ′ < |ν− τ|− 3m ′0 − 2m ′1 −m ′2

and {Ij : j = 1, . . . , r} is any possible partition of the index set Iτ determined
by τ and {I ′j : j = 1, . . . , r ′} is any possible partition of the index set Iν−τ
determined by ν− τ. Hence, we have

‖I(2)‖2L2

6 C
∑
ν6α
τ<ν

∑
{Ij:j=1,...,r}
{I ′j:j=1,...,r ′}
r6|τ|,r ′6|ν−τ|

∫
Rd

|∂α−νχ1(ξ)||ξ|
2(m1+m ′1+2m ′2)

·t2(`+` ′+m0+m1+m ′0+m
′
1+m

′
2)e−2c|ξ|2t dξ

6 C
∑
ν6α
τ<ν

∑
{Ij:j=1,...,r},r6|τ|

{I ′j:j=1,...,r ′},r ′6|ν−τ|

(1+ t)−
d
2 +2m0+2m ′0+m1+m ′1+2`+2` ′

6 C
∑
ν6α
τ<ν

∑
{Ij:j=1,...,r},r6|τ|

{I ′j:j=1,...,r ′},r ′6|ν−τ|

(1+ t)−
d
2 +|τ|+|ν−τ|−(` ′+m ′0+m

′
1+m

′
2)

6 C
∑
ν6α
τ<ν

∑
{Ij:j=1,...,r},r6|τ|

{I ′j:j=1,...,r ′},r ′6|ν−τ|

(1+ t)|ν|−
d
2 −r

′
6 C(1+ t)|α|−

d
2 −1 (3.109)
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since |τ|+ |ν−τ| = |ν| 6 |α| for any τ 6 ν 6 α and ` ′+m ′0 +m ′1 +m ′2 = r ′ > 1
by definition and τ < ν.

We continue to estimate J in (3.97). By the Leibniz rule, one has

∂αJ(ξ, t) =
∑
ν6α

∑
τ6ν

(
α

ν

)(
ν

τ

)
∂τe−ξ·Dξt+O(|ξ|3)t∂ν−τO(|ξ|)∂α−νχ1(ξ)

= J(1)(ξ, t) + J(2)(ξ, t), (3.110)

where

J(1)(ξ, t) :=
∑
ν6α

(
α

ν

)
∂νe−ξ·Dξt+O(|ξ|3)tO(|ξ|)∂α−νχ1(ξ) (3.111)

and

J(2)(ξ, t)

:=
∑
ν6α

∑
τ<ν

(
α

ν

)(
ν

τ

)
∂τe−ξ·Dξt+O(|ξ|3)t∂ν−τO(|ξ|)∂α−νχ1(ξ). (3.112)

We then begin with J(1). Since χ1 ∈ C∞(Rd) and D ∈ Rd×d is positive defi-
nite, from (3.111) and the estimate (3.86) in Lemma 3.13, there are constants
c, c ′ > 0 and C > 0 such that

|J(1)(ξ, t)| 6 C
∑
ν6α

|∂νe−ξ·Dξt+O(|ξ|3)t||O(|ξ|)||∂α−νχ1(ξ)|

6 C
∑
ν6α

∑
{Ij:j=1,...,r}

|ξ|m1+1t`+m0+m1e−c|ξ|
2t+c ′|ξ|3t|∂α−νχ1(ξ)|,

where mk > 0 is the cardinality of the set {j ∈ {1, . . . , r} : |Ij| = |ν| − k} for
k = 0, 1 and ` > 0 satisfies

2` < |ν|− 2m0 −m1

and {Ij : j = 1, . . . , r} is any possible partition of the index set Iν determined
by ν. It then implies that

‖J(1)‖2L2 6 C
∑
ν6α

∑
{Ij:j=1,...,r}

∫
Rd

|ξ|2(m1+1)t2(`+m0+m1)e−2c|ξ|2t|∂α−νχ1(ξ)|dξ

6 C
∑
ν6α

∑
{Ij:j=1,...,r}

(1+ t)−
d
2 −1+2`+2m0+m1

6 C
∑
ν6α

(1+ t)|ν|−
d
2 −1 6 C(1+ t)|α|−

d
2 −1 (3.113)

since |ν| 6 |α| for all ν 6 α.
We estimate J(2) in (3.112). Since χ1 ∈ C∞(Rd) and D ∈ Rd×d is posi-

tive definite, from (3.112) and the estimate (3.86) in Lemma 3.13, there are
constants c, c ′ > 0 and C > 0 such that

|J(2)(ξ, t)|

6 C
∑
ν6α

∑
τ<ν

|∂τe−ξ·Dξt+O(|ξ|3)t||∂ν−τO(|ξ|)||∂α−νχ1(ξ)|

6 C
∑
ν6α

∑
τ<ν

∑
{Ij:j=1,...,r},r6|τ|

|ξ|m1t`+m0+m1e−c|ξ|
2t+c ′|ξ|3t|∂α−νχ1(ξ)|,
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where mk > 0 is the cardinality of the set {j ∈ {1, . . . , r} : |Ij| = |τ| − k} for
k = 0, 1 and ` > 0 satisfies

2` < |τ|− 2m0 −m1

and {Ij : j = 1, . . . , r} is any possible partition of the index set Iτ determined
by τ. Thus, we have

‖J(2)‖2L2

6 C
∑
ν6α

∑
τ<ν

∑
{Ij:j=1,...,r},r6|τ|

∫
Rd

|ξ|2m1t2(`+m0+m1)

·e−2c|ξ|2t+2c ′|ξ|3t|∂α−νχ1(ξ)|dξ

6 C
∑
ν6α

∑
τ<ν

∑
{Ij:j=1,...,r},r6|τ|

(1+ t)−
d
2 +2`+2m0+m1

6 C
∑
ν6α

∑
τ<ν

(1+ t)|τ|−
d
2

6 C
∑
ν6α

(1+ t)|ν|−
d
2 −1 6 C(1+ t)|α|−

d
2 −1 (3.114)

since |τ| 6 |ν|− 1 for all τ < ν and |ν| 6 |α| for all ν 6 α.
Therefore, from (3.108), (3.109), (3.113) and (3.114), one has

‖∂α((ĜP0 − K̂)χ1)‖L2 6 C(1+ t)
|α|
2 −d

4 −
1
2 ∀t > 0,α ∈ Nd. (3.115)

Let s ∈ Z+ satisfying s > d/2, then by the Carlson–Beurling inequality (A.1)
in Lemma A.7 and (3.115), we obtain for t > 0 and 1 6 p 6∞ that

‖(ĜP0 − K̂)χ1‖Mp

6 ‖(ĜP0 − K̂)χ1‖
1− d

2s
L2 (

∑
|α|=s

‖∂α((ĜP0 − K̂)χ1)‖L2)
d
2s

6 C(1+ t)−(d4 +
1
2 )(1− d

2s )+( s2−
d
4 −

1
2 )

d
2s 6 C(1+ t)−

1
2 . (3.116)

It follows from (3.116) and the definition of the Mp-norm that for any
g ∈ Lp(Rd), one has

‖F−1((ĜP0 − K̂)χ1) ∗ g‖Lp 6 ‖(ĜP0 − K̂)χ1‖Mp
‖g‖Lp 6 C(1+ t)−

1
2 ‖g‖Lp

for all 1 6 p 6∞ and t > 0.
We estimate the remain parts. By the condition B∗ and Remark 3.3, from

(3.91), there are constants c > 0 and C > 0 such that we have

|Ĝ(ξ, t)(I−P0(ξ))χ1(ξ)| 6 C
s ′∑
k=1

e−Re (bk)te|M
(0)
k |t+C|ξ|t|χ1(ξ)| 6 Ce

−ct|χ1(ξ)|.

Thus, by the Plancherel theorem, one has

‖F−1(Ĝ(I− P0)χ1) ∗ g‖L2 = ‖Ĝ2χ1ĝ‖L2 6 Ce−ct‖g‖L2 ∀t > 0.

Moreover, if G = F−1(Ĝ) has compact support contained in {x ∈ Rd :
|x/t| 6 C} for a constant C > 0. By the Young inequality in Lemma A.1 that
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there are constants c ′ > 0, c > 0 and C > 0 such that for 1 6 p 6 ∞ and
t > 0, one has

‖F−1(Ĝ(I− P0)χ1) ∗ g‖Lp 6 C‖F−1(Ĝ(I− P0)χ1)‖L1‖g‖Lp

6 C
(∫

|x|6Ct

∣∣∣∫
Rd
eix·ξĜ2(ξ, t)χ1(ξ)dξ

∣∣∣dx)‖g‖Lp
6 Ce−c

′ttd‖g‖Lp 6 Ce−ct‖g‖Lp .

The proof is done.

Proposition 3.19 (Intermediate frequency). For g ∈ Lp(Rd) where 1 6 p 6∞, if the assumptions B∗ and D∗ hold, then there are constants c > 0 and
C > 0 such that for t > 0, we have

‖F−1(K̂χ2) ∗ g‖Lp 6 Ce−ct‖g‖Lp . (3.117)

On the other hand, for g ∈ L2(Rd), we also have

‖F−1(Ĝχ2) ∗ g‖L2 6 Ce−ct‖g‖L2 . (3.118)

Furthermore, if the kernel G = F−1(Ĝ) has compact support contained in the
cone {x ∈ Rd : |x/t| 6 C} for a constant C > 0, then

‖F−1(Ĝχ2) ∗ g‖Lp 6 Ce−ct‖g‖Lp . (3.119)

Proof. We primarily consider K̂χ2. Let α ∈ Nd with |α| > 0 and letD ∈ Rd×d
be positive definite, by the formula (3.83) in Lemma 3.12, we have

∂α(e−ξ·Dξt) =
∑

{Ij:j=1,...,r},r6|α|

∂I1(−ξ ·Dξt) . . .∂Ir(−ξ ·Dξt)e−ξ·Dξt,

where {Ij : j = 1, . . . , r} is any possible partition of the index set Iα determined
by α.

On the other hand, by the definition of ∂Ij , there is a constant C > 0 such
that

|∂Ij(−ξ ·Dξt)| 6 C ·


0 if |Ij| > 2,
t if |Ij| = 2,
|ξ|t if |Ij| = 1,

where |Ij| is the number of elements of Ij with possibly repeated indices for
j ∈ {1, . . . , r}. We are then not interested in the cases where |Ij| > 2 for
j ∈ {1, . . . , r}. Thus, we can consider only the partitions {Ij : j = 1, . . . , r} of Iα
where 1 6 |Ij| 6 2. Hence, we have

|∂I1(−ξ ·Dξt)| . . . |∂Ir(−ξ ·Dξt)| 6 C|ξ|mtm+`,

where m > 0 is the cardinality of the set {j ∈ {1, . . . , r} : |Ij| = 1} and ` > 0 is
the cardinality of the set {j ∈ {1, . . . , r} : |Ij| = 2}. Moreover, by definition, one
has m + 2` = |Iα| = |α|, where |Iα| =

∑r
j=1 |Ij| is the number of elements of

the index set Iα determined by α with possibly repeated indices.

80



Thus, since D is positive definite, there are constants c > 0 and C > 0
such that

|∂αe−ξ·Dξt| 6 C
∑

{Ij:j=1,...,r},r6|α|
16|Ij|62

|ξ|mtm+`e−c|ξ|
2t, (3.120)

where m+ 2` = |α| for all m and `.
Therefore, from (3.93), (3.120), Lemma 3.14 and the fact that we can

assume c = 0, by the Leibniz formula, one has

|∂α(K̂χ2)| 6 C
∑
ν6α

|∂νe−ξ·Dξt||∂α−νχ2(ξ)|

6 C
∑
ν6α

∑
{Ij:j=1,...,r},r6|ν|

16|Ij|62

|ξ|mtm+`e−c
′|ξ|2t|∂α−νχ2(ξ)|,

where {Ij : j = 1, . . . , r} is any possible partition of the index set Iν determined
by ν and m+ 2` = |ν|.

Hence, we have

‖∂α(K̂χ2)‖2L2 6 C
∑
ν6α

∑
{Ij:j=1,...,r},r6|ν|

16|Ij|62

∫
Rd

|ξ|2mt2m+2`e−2c|ξ|2t|∂α−νχ2(ξ)|dξ

6 Ce−ct ∀t > 0. (3.121)

By the Carlson–Beurling inequality (A.1) in Lemma A.7, one has

‖K̂χ2‖Mp
6 C‖K̂χ2‖

1− d
2s

L2

(∑
|α|=s

‖∂α(K̂χ2)‖L2

) d
2s

6 Ce−ct

for any integer s > d/2, 1 6 p 6∞ and t > 0. Therefore, by the definition of
the Mp-norm, we have the Lp-Lp estimate

‖F−1(K̂χ2) ∗ g‖Lp 6 Ce−ct‖g‖Lp

for any 1 6 p 6∞ and t > 0.
We now consider Ĝχ2. By a similar argument as in the proof of Proposition

3.16, we have
|Ĝ(ξ, t)χ2(ξ)| 6 Ce

−cte|E(iξ)||χ2(ξ)|. (3.122)
It then follows from the Plancherel theorem that for t > 0, one has

‖F−1(Ĝχ2) ∗ g‖L2 6 C‖Ĝχ2‖L∞‖ĝ‖L2 6 Ce−ct‖g‖L2

for some constants c > 0 and C > 0.
Moreover, if G = F−1(Ĝ) has compact support contained in {x ∈ Rd :

|x/t| 6 C} for a constant C > 0. From (3.122) and the Young inequality, there
are c ′ > 0, c > 0 and C > 0 such that for 1 6 p 6∞, one has

‖F−1(Ĝχ2) ∗ g‖Lp 6 C‖F−1(Ĝχ2)‖L1‖g‖Lp

6 C
(∫

|x|6Ct

∣∣∣∫
Rd
eix·ξĜ(ξ, t)χ2(ξ)dξ

∣∣∣dx)‖u0‖Lp

6 Ce−c
′ttd‖g‖Lp 6 Ce−ct‖g‖Lp ∀t > 0.

We finish the proof.
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Proposition 3.20 (High frequency). For g ∈ Lp(Rd) where 1 6 p 6 ∞, if
the assumptions B∗ and D∗ hold, then there are constants c > 0 and C > 0
such that for t > 1, we have

‖F−1(K̂χ3) ∗ g‖Lp 6 Ce−ct‖g‖Lp . (3.123)

Moreover, for g ∈ L2(Rd), we have

‖F−1(Ĝχ3) ∗ g‖L2 6 Ce−ct‖g‖L2 (3.124)

if the conditions A ∗, R∗ and D∗ hold.

Proof. The estimate for K̂χ3 is similarly to the estimate for K̂χ2 in the proof
of the previous proposition where t > 1. We only need to estimate Ĝχ3.

Under the assumptions A ∗, R∗ and D∗, for almost everywhere, from
(3.92), Remark 3.3 and Lemma 3.14, we have

|Ĝ(ξ, t)χ3(ξ)| 6 C
r∑
h=1

rh∑
`=1

e−Re (βh`)te|Θ
(0)
h` |t+C|ξ|−1t(1+ |ξ|−1)|χ3(ξ)|

6 Ce−ct(1+ |ξ|−1)|χ3(ξ)|.

Therefore, by the Plancherel theorem, we have

‖F−1(Ĝχ3) ∗ g‖L2 = ‖Ĝχ3ĝ‖L2 6 C‖Ĝχ3‖L∞‖ĝ‖L2 6 Ce−ct‖g‖L2

for some constants c > 0 and C > 0 and for all t > 0. The proof is done.

3.2.4 Proof of Theorem 3.11

Proof of Theorem 3.11. For u0 ∈ Lq(Rd) ∩ L2(Rd), let u and U be solutions
to (3.71) and (3.76) respectively. Recall the cut-off function χj for j ∈ {1, 2, 3}
and the eigenprojection P0(iξ) associated with the eigenvalue λ0(iξ) of E(iξ),
where λ0(iξ)→ 0 as |ξ|→ 0. One sets

u(1) := F−1(ĜP0χ1) ∗ u0 (3.125)

and

u(2) := F−1(Ĝ(I− P0)χ1) ∗ u0 +
3∑
j=2

F−1(Ĝχj) ∗ u0, (3.126)

where Ĝ is a solution to (2.32). It is then easily to check that u = u(1)+u(2).
On the other hand, from (3.125), one has

u(1) −U = F−1((ĜP0 − K̂)χ1) ∗ u0 +
3∑
j=2

F−1(K̂χj) ∗ u0, (3.127)

where K̂ is given by (3.93). Hence, by Proposition 3.15, Proposition 3.16 and
Proposition 3.17, we obtain

‖u(1) −U‖L∞ 6 Ct−
d
2 −

1
2 ‖u0‖L1 ∀t > 1. (3.128)
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By Proposition 3.18, Proposition 3.19 and Proposition 3.20, for 1 6 p 6 ∞,
we also have

‖u(1) −U‖Lp 6 Ct−
1
2 ‖u0‖Lp ∀t > 1. (3.129)

Therefore, by Lemma A.2 in Appendix A, it follows from (3.128) and
(3.129) that

‖u(1) −U‖Lp 6 Ct−
d
2 (

1
q−

1
p )−

1
2 ‖u0‖Lq

for 1 6 q 6 p 6∞ and for all t > 1.
Also by Proposition 3.18, Proposition 3.19 and Proposition 3.20, from

(3.126), we have

‖u(2)‖L2 6 Ce−ct‖u0‖L2 ∀t > 0.

The proof is done since the estimate for U = F−1(K̂) ∗ u0 is similar.

Remark 3.10 (Proof of the case of finite speed of propagation). In the case
where G = F−1(Ĝ) has compact support contained in the wave cone {x ∈ Rd :
|x/t| 6 C} for a constant C > 0, also by Proposition 3.15 - Proposition 3.20,
u(1) can be refined by the following

u(1) = F−1(e−Etχ) ∗ u0,

where χ is a cut-off function valued in [0, 1] with support contained in the ball
B(0, ρ) ⊂ Rd for any ρ > 0. The proof is then similar to the above proof.

3.3 Symmetry systems

3.3.1 Motivative examples

Recall the Goldstein–Kac 2× 2 system in the one-dimensional space∂tu1 − ∂xu1 = −
1
2u1 +

1
2u2,

∂tu2 + ∂xu2 =
1
2u1 −

1
2u2,

(3.130)

which can be written in the relaxation form with

A =

(
−1 0
0 1

)
and B =

1
2

(
1 −1
−1 1

)
.

Moreover, the initial datum (u1,u2)|t=0 = (u1
0,u2

0) is considered.
We can check easily that (3.130) satisfies the conditions A , B, C and D

in Section 3.1. Thus, it follows from Theorem 3.1 that u = (u1,u2) satisfies

‖u−U− V‖Lp 6 Ct−
1
2 (

1
q−

1
p )−

1
2 ‖(u1

0,u2
0)‖Lq (3.131)

for 1 6 q 6 p 6∞, t > 1 and (u1
0,u2

0) ∈ Lq(R)× Lq(R).
In (3.131), U = (U1,U2) is a solution to the heat equation

∂tU− ∂xxU = 0 (3.132)

with the initial datum

U|t=0 =
1
2(u

1
0 + u

2
0,u1

0 + u
2
0). (3.133)
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Furthermore, V = (V1,V2) is a solution to the system∂tV1 − ∂xV1 = −
1
2V1,

∂tV2 + ∂xV2 = −
1
2V2

(3.134)

with the initial datum (V1,V2)|t=0 = (u1
0,u2

0).
Recall that v± = u1 ± u2 satisfy to the linear damped wave equation

∂ttv− ∂xxv+ ∂tv = 0 (3.135)

with the initial data (v,∂tv)|t=0 = (v0, v1) given by{
v+|t=0 = u1

0 + u
2
0,

∂tv+|t=0 = ∂x(u
1
0 − u

2
0)

and
{
v−|t=0 = u1

0 − u
2
0,

∂tv−|t=0 = ∂x(u
1
0 + u

2
0) − (u1

0 − u
2
0).

Recall also from [48] that the solution v to (3.135) satisfies the Lp-Lq decay
estimate∥∥∥v− φ− e−

t
2
v0(·+ t) + v0(·− t)

2

∥∥∥
Lp

6 Ct−
1
2 (

1
q−

1
p )−1‖(v0, v1)‖Lq (3.136)

for all 1 6 q 6 p 6 ∞, t > 1 and (v0, v1) ∈ Lq(R) × Lq(R), where φ is a
solution to the Cauchy problem{

∂tφ− ∂xxφ = 0,
φ|t=0 = v0 + v1

(3.137)

and the term (v0(·+ t) + v0(·− t))/2 is a solution to the Cauchy problem{
∂ttψ− ∂xxψ = 0,
(ψ,∂tψ)|t=0 = (0, v0).

Noting that (3.134) can be solved explicitly by a vector V of the two signals

V1(x, t) = e−
t
2u1

0(x+ t) and V2(x, t) = e−
t
2u2

0(x− t),

which may contain singularities coming from the initial datum (u1
0,u2

0), has
exactly the same decay rate e− t

2 as the one obtained from (3.136).
However, there are differences between the Lp-Lq decay estimates for v±

and for the solution (u1,u2) to (3.130).

i) Due to the difference between one-way hyperbolic equations and two-
way hyperbolic equations, the singular term of v+ (respectively v−) is
the average of the two signals e− t

2 (u1
0 + u

2
0) (respectively e−

t
2 (u1

0 − u
2
0))

propagating in the two contrary directions along the characteristic curves
x = ±t;

ii) From (3.136) and (3.131), we also recognize that there is a difference
(about 1/2) between the decay rates of v± and (u1,u2);
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iii) Furthermore, from (3.132) and (3.133), the large-time asymptotic profiles
of u1 ± u2 are φ± := U1 ±U2 satisfying

∂tφ− ∂xxφ = 0

with the initial data

φ+|t=0 = (u1
0 + u

2
0) and φ−|t=0 = 0,

while from (3.137), the large-time asymptotic profiles of v± = u1±u2 as
t→ +∞ are solutions to the heat equations with the initial data

φ+|t=0 = (u1
0+u

2
0)+∂x(u

1
0−u

2
0) and φ−|t=0 = ∂x(u

1
0+u

2
0). (3.138)

We can explain (ii) and (iii) by the fact that when we subtract U in (3.131),
we do not subtract the convolutions of the heat kernel and the first-order
derivatives of the initial data with respect to the variable x ∈ R. These con-
volutions are equivalent to the first-order derivatives of the heat solution with
respect to the variable x ∈ R. Thus, they have decay rates never exceeding
t−

1
2 (

1
q−

1
p )−

1
2 for all t > 0 (see [27]).

On the other hand, from Section 3.1, the decay rate t−
1
2 (

1
q−

1
p )−

1
2 is also

caused by the term O(|ξ|3t) in the expansion Ĝ(ξ, t)P0(ξ) ∼ e
−cξ2t+O(|ξ|3)t for

small ξ ∈ R and a c ∈ {λ ∈ C : Re λ > 0}. Here, Ĝ is the Fourier transform of
the fundamental solution G to (3.130), P0(iξ) is the total projection associated
with the 0-group of E(iξ) = B + iξA and the elements of the 0-group are the
eigenvalues of E(iξ) that converge to 0 as |ξ|→ 0.

Nevertheless, in the case of (3.130), we can check easily that Ĝ(ξ, t)P0(ξ) ∼
e−cξ

2t+O(|ξ|4)t instead. Thus, we only need to subtract from u = (u1,u2) the
first-order derivatives of the heat solution with respect to the variable x ∈ R
in this case.

Similarly, consider the two-dimensional linearized isentropic Euler equa-
tions with damping {

∂tρ+ div v = 0,
∂tv+∇xρ = −v,

(3.139)

which can be written in the relaxation form where

A1 =

0 1 0
1 0 0
0 0 0

 , A2 =

0 0 1
0 0 0
1 0 0

 , B =

0 0 0
0 1 0
0 0 1


and u = (ρ, v1, v2) with the initial datum u0 = (ρ0, v1

0, v2
0).

Moreover, the system (3.139) satisfies the conditions A ∗, R∗, B∗ and D∗

in Section 3.2, where the matrix R = R(w) satisfying the condition R∗ is

R(w1,w2) =
1
2

 1 0 1
−w1 2w2 w1
−w2 −2w1 w2

 ∀w = (w1,w2) ∈ S1.

Theorem 3.11 then implies that the solution U = (U1,U2,U3) to the heat
equation {

∂tU− ∆xU = 0,
U|t=0 = (ρ0, 0, 0),

85



is a large-time asymptotic profile of u. Moreover, u = u(1) + u(2) where
u(1) − U decays in Lp(R2) at the rate t−( 1

q−
1
p )−

1
2 and u(2) decays in L2(R2)

exponentially as t→ +∞ for any 1 6 q 6 p 6∞ and u0 ∈ Lq(R2).
On the other hand, ρ ∈ R satisfying (3.139) also satisfies the linear damped

wave equation 
∂ttρ− ∆xρ+ ∂tρ = 0,
ρ|t=0 = ρ0,
∂tρ|t=0 = −∂x1v

1
0 − ∂x2v

2
0.

(3.140)

The proofs of Theorem 2.1 in [31] implies that without regarding any error
term V decaying exponentially in L2(R2), ρ − φ decays in Lp(R2) at the rate
t−( 1

q−
1
p )−1 as t → +∞ for any 1 6 q 6 p 6 ∞ and (ρ0,∂tρ0) ∈ Lq(R2) ×

Lq(R2), where φ is a solution to the heat equation{
∂tφ− ∆xφ = 0,
φ|t=0 = ρ0 − ∂x1v

1
0 − ∂x2v

2
0.

Thus, there is a difference (about 1/2) between the decay rates of ρ in
(3.139) and ρ in (3.140). Therefore, to have the decay rate t−( 1

q−
1
p )−1 for

u(1) −U, we need to modify U by subtracting from the solution u to (3.139)
the first-order derivatives of the heat solution with respect to the variable
x ∈ R2. Particularly, in this case, we also have Ĝ(ξ, t)P0(ξ) ∼ e

−cξ2t+O(|ξ|4)t

for small ξ.
Noting that a general relaxation system has Ĝ(ξ, t)P0(ξ) ∼ e

−cξ2t+O(|ξ|4)t

for small ξ if it satisfies the following conditions
Condition E (Equilibrium manifold). The eigenvalue 0 of B is simple.
Condition S (Symmetry). There is an invertible matrix S = S(w) such that

SA = −AS and SB = BS,

where A = A(w) =
∑d
j=1wjAj for w = (w1, . . . ,wd) ∈ Sd−1.

If the symmetry condition S holds, the solution u to the general relaxation
systems under the map x 7→ −x is also a solution to the same systems up to
a linear change of variables.

3.3.2 Increasing decay rate

In this section, we study the optimal decay rate t−
d
2 (

1
q−

1
p )−1 for 1 6 q 6 p 6∞ as t → +∞ for the general system (3.71) satisfying the symmetry prop-

erties similarly to the Goldstein–Kac 2 × 2 system (3.130) and the linearized
isentropic Euler equations with damping (3.139), namely the conditions E and
S . Hence, we recall the Cauchy problem{

∂tu+A · ∇xu+ Bu = 0,
u|t=0 = u0,

(3.141)

where (x, t) ∈ Rd × [0,+∞), u = u(x, t) and u0 = u0(x) are vectors in Rn,
A = (A1, . . . ,Ad) ∈ (Rn×n)d and B ∈ Rn×n.
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Let Γ0 be an oriented closed curve in the resolvent set of B such that it
encloses zero except for the other eigenvalues of B. We recall

P
(0)
0 = −

1
2πi

∫
Γ0

(B− zI)−1 dz and Q(0)
0 =

1
2πi

∫
Γ0

z−1(B− zI)−1 dz, (3.142)

which are the eigenprojection and the reduced resolvent coefficient associated
with the eigenvalue zero of B. We consider the Cauchy problem{

∂tU− div (D∇xU) = 0,
U|t=0 = P

(0)
0 u0 + P

(1)
0 · ∇xu0,

(3.143)

where D = (Dh`)h,`∈{1,...,d} ∈ Rd×d with scalar entries

Dh` =
1
2tr
(
AhP

(0)
0 A`Q

(0)
0 +AhQ

(0)
0 A`P

(0)
0
)

(3.144)

and P(1)
0 = (P

(1)
0h ) ∈ (Rn×n)d with matrix entries

P
(1)
0h := −P

(0)
0 AhQ

(0)
0 −Q

(0)
0 AhP

(0)
0 . (3.145)

We thus obtain the following results.
Recall the Cauchy problem{

∂tV +A∂xV + ΠA(B)V = 0,
V |t=0 = u0.

(3.146)

In (3.146), (x, t) ∈ R× [0,+∞), V = V(x, t) ∈ Rn and the n× n matrix

ΠA(B) =

r∑
h=1

Π
(0)
h BΠ

(0)
h ,

where Π(0)
h ∈ Rn×n is the eigenprojection associated with αh ∈ σ(A) for

h ∈ {1, . . . , r} and σ(A) is the spectrum of A with the cardinality r.

Theorem 3.21 (One-dimensional space [52]). For u0 ∈ W1,q(R), let u, U
and V be respectively solutions to (3.141), (3.143) and (3.146) where d = 1. If
the conditions A , B, D , E and S hold, then for 1 6 q 6 p 6∞ and t > 1,
there are positive constants c and C such that

‖u−U− V‖Lp 6 Ct−
1
2

(
1
q−

1
p

)
−1‖u0‖Lq . (3.147)

Moreover, one has

‖U‖Lp 6 Ct−
1
2

(
1
q−

1
p

)
‖u0‖Lq and ‖V‖Lq 6 Ce−ct‖u0‖Lq . (3.148)

Theorem 3.22 (Multi-dimensional space [54]). Let u be a solution to the
Cauchy problem (3.141) with the initial datum u0 ∈ W1,q(Rd) ∩ L2(Rd) for
1 6 q 6∞. Under the assumptions A ∗, R∗, B∗, D∗ and S , the solution u
is decomposed into

u(x, t) = u(1)(x, t) + u(2)(x, t),
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where
u(1)(x, t) := F−1(e−EtP0χ) ∗ u0(x)

and u(2) is the remainder, P0(iξ) is the eigenprojection associated with the
eigenvalue λ0(iξ) of E(iξ), λ0(iξ) converges to 0 as |ξ|→ 0 and χ is a cut-off
function valued in [0, 1] with support contained in the ball B(0, ε) ⊂ Rd for
small ε > 0.

Moreover, for any 1 6 q 6 p 6 ∞, there are constants c > 0 and C > 0
such that one has

‖u(1) −U‖Lp 6 Ct−
d
2 (

1
q−

1
p )−1‖u0‖Lq ∀t > 1 (3.149)

and u(2) satisfies

‖u(2)‖L2 6 Ce−ct‖u0‖L2 ∀t > 0, (3.150)

where U which is a solution to (3.143) satisfies

‖U‖Lp 6 Ct−
d
2

(
1
q−

1
p

)
‖u0‖Lq ∀t > 1. (3.151)

Remark 3.11 (Finite speed of propagation). If the solution u to (3.141) has
finite speed of propagation, one can decompose u into u = u(1) + u(2) where

u(1)(x, t) := F−1(e−Etχ) ∗ u0(x)

and u(2) is the remainder. Here, χ is a cut-off function valued in [0, 1] with
support contained in the ball B(0, ρ) ⊂ Rd for any ρ > 0. Moreover, the
estimates (3.149) and (3.150) also hold.

Example 3.12 (The one-dimensional Goldstein–Kac 2 × 2 system). Recall
(3.141) satisfied by u = (u1,u2) with the initial datum u0 = (u1

0,u2
0) and the

coefficient matrices given by

A1 =

(
−1 0
0 1

)
and B =

1
2

(
1 −1
−1 1

)
.

It is easy to see that S :=

(
0 1
1 0

)
satisfies the condition S . Hence, since

0 is a simple eigenvalue of B, the large-time asymptotic limit system satisfied
by U = (U1,U2) is refined to be{

∂tU− ∂xxU = 0,
U|t=0 = U0,

where
U0 :=

1
2(u

1
0 + u

2
0,u1

0 + u
2
0) + (∂xu

1
0,−∂xu2

0).

In particular, U1
0+U

2
0 = (u1

0+u
2
0)+∂x(u

1
0−u

2
0) and U1

0−U
2
0 = ∂x(u

1
0+u

2
0)

coincide the ones in (3.138). Moreover, the decay rate of u−U is also increased
up to t−

1
2 (

1
q−

1
p )−1 as t→ +∞ for 1 6 q 6 p 6∞ and u0 ∈W1,q(R).
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Example 3.13 (The two-dimensional linearized isentropic Euler equations
with damping). Recall (3.141) satisfied by u = (ρ, v1, v2) with the initial da-
tum u0 = (ρ0, v1

0, v2
0) and the coefficient matrices given by

A1 =

0 1 0
1 0 0
0 0 0

 , A2 =

0 0 1
0 0 0
1 0 0

 and B =

0 0 0
0 1 0
0 0 1

 .

Moreover, the matrix R satisfying the condition R∗ and the matrix S
satisfying the condition S are given by

R(w1,w2) =
1
2

 1 0 1
−w1 2w2 w1
−w2 −2w1 w2

 and S =

−1 0 0
0 1 0
0 0 1

 .

Hence, Theorem 3.22 implies that the asymptotic limit of u as t → +∞ is a
solution denoted by U to the heat equations{

∂tU− ∆xU = 0,
U|t=0 = U0,

where
U0 = (ρ0 − ∂x1v

1
0 − ∂x2v

2
0,−∂x1ρ0,−∂x2ρ0).

Furthermore, u − U decays in Lp(R2) at the optimal rate t−( 1
q−

1
p )−1 as

t → +∞ for any 1 6 q 6 p 6 ∞ and u0 ∈ W1,q(R2) ∩ L2(R2). This result
can be comparable with [31] since as mentioned before, ρ ∈ R satisfies the
two-dimensional linear damped wave equation

∂ttρ− ∆xρ+ ∂tρ = 0,
ρ|t=0 = ρ0,
∂tρ|t=0 = −∂x1v

1
0 − ∂x2v

2
0.

Moreover, from [31], ρ−φ decays in Lp(R2) at the rate t−( 1
q−

1
p )−1 as t→ +∞

for any 1 6 q 6 p 6∞ and (ρ0,∂tρ0) ∈ Lq(R2)×Lq(R2), where φ is a solution
to the heat equation {

∂tφ− ∆xφ = 0,
φ|t=0 = ρ0 − ∂x1v

1
0 − ∂x2v

2
0.

3.3.3 Proofs of Theorem 3.21 and Theorem 3.22

The proofs are based on the following proposition for the eigenvalues of E(iξ) =
B+ i

∑d
j=1 ξjAj that converge to 0 as |ξ|→ 0 for ξ = (ξ1, . . . , ξd) ∈ Rd.

Proposition 3.23. Under the condition B∗, D∗ and S , for small ξ ∈ Rd,
there is only one eigenvalue

λ0(iξ) = ξ ·Dξ+ O(|ξ|4) (3.152)

of E(iξ) that converges to 0 as |ξ|→ 0, where D is given by (3.144). Further-
more, the eigenprojection P0 associated with λ0 is approximated by

P0(iξ) = P
(0)
0 + iξ · P(1)

0 + O(|ξ|2), (3.153)

where P(0)
0 and P(1)

0 are respectively given by (3.142) and (3.145).
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Proof. The proof follows directly from Proposition 2.6 in Chapter 2 and Corol-
lary B.2 in Appendix B. We finish the proof.

As a consequence, for small ξ, the Fourier transform Ĝ of the Green kernel
G associated with (3.141) satisfies

Ĝ1(ξ, t) = Ĝ(ξ, t)P0(iξ) = e
−(ξ·Dξ+O(|ξ|4))t(P

(0)
0 +iξ ·P(1)

0 +O(|ξ|2)) (3.154)

for ξ ∈ Rd, where the related coefficients are introduced in (3.142) - (3.145).
One sets

K̂(ξ, t) := e−ξ·Dξt(P(0)
0 + iξ · P(1)

0 ), (3.155)

where the related coefficients are as before. We thus obtain

Proposition 3.24 (L∞-L1 estimate). For g ∈ L1(Rd), if the assumptions B∗,
D∗ and S hold, then there is a constant C > 0 such that for t > 1, we have

‖F−1((ĜP0 − K̂)χ1) ∗ g‖L∞ 6 Ct−
d
2 −1‖g‖L1 , (3.156)

where χ1 is a cut-off function valued in [0, 1] with support contained in the ball
B(0, ε) ⊂ Rd for small ε > 0, P0(iξ) is the eigenprojection associated with the
eigenvalue λ0(iξ) of E(iξ) and λ0(iξ) converges to 0 as |ξ|→ 0.

Proof. One has (Ĝ1 − K̂)χ1 = I+ J where

I(ξ, t) := e−ξ·Dξt(eO(|ξ|4)t − 1)(P(0)
0 + iξ · P(1)

0 )χ1(ξ) (3.157)

and
J(ξ, t) := e−ξ·Dξt+O(|ξ|4)tO(|ξ|2)χ1(ξ). (3.158)

Then, by Lemma 3.14, there are constants c > 0 and C > 0 such that

|(Ĝ(ξ, t)P0(ξ)−K̂(ξ, t))χ1(ξ)| 6 |I(ξ, t)|+|J(ξ, t)| 6 Ce−c|ξ|2t(|ξ|4t+|ξ|2)|χ1(ξ)|.

Hence, it implies for all t > 0 that

‖(ĜP0 − K̂)χ1‖L1 6 C
∫
Rd
e−c|ξ|

2t(|ξ|4t+ |ξ|2)|χ1(ξ)|dξ 6 C(1+ t)−
d
2 −1.

The proof is done.

Proposition 3.25 (Lp-Lp estimates). For g ∈ Lp(Rd), if the assumptions
B∗, D∗ and S hold, then there is a constant C > 0 such that for t > 1 and
1 6 p 6∞, we have

‖F−1((ĜP0 − K̂)χ1) ∗ g‖Lp 6 Ct−1‖g‖Lp , (3.159)

where χ1 is a cut-off function valued in [0, 1] with support contained in the ball
B(0, ε) ⊂ Rd for small ε > 0, P0(iξ) is the eigenprojection associated with the
eigenvalue λ0(iξ) of E(iξ) and λ0(iξ) converges to 0 as |ξ|→ 0.

Proof. In the spirit of Lemma A.7 and the decomposition (ĜP0 − K̂)χ1 = I+ J
where I and J are respectively given by (3.157) and (3.158), we then need to
estimate the L2-norm of ∂αI and ∂αJ for α ∈ Nd.
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We consider I firstly. By the Leibniz rule, one has

∂αI(ξ, t) =
∑
ν6α

∑
τ6ν

(
α

ν

)(
ν

τ

)
∂τe−ξ·Dξt∂ν−τ(eO(|ξ|4)t − 1)∂α−νχ1(ξ)

= I(1)(ξ, t) + I(2)(ξ, t), (3.160)

where

I(1)(ξ, t) :=
∑
ν6α

(
α

ν

)
∂νe−ξ·Dξt(eO(|ξ|4)t − 1)∂α−νχ1(ξ) (3.161)

and

I(2)(ξ, t) :=
∑
ν6α

∑
τ<ν

(
α

ν

)(
ν

τ

)
∂τe−ξ·Dξt∂ν−τeO(|ξ|4)t∂α−νχ1(ξ). (3.162)

By the estimate (3.86) in Lemma 3.13 and Lemma 3.14, since χ1 ∈ C∞(Rd)
and D ∈ Rd×d is positive definite, there are constants c > 0 and C > 0 such
that one has

|I(1)(ξ, t)| 6 C
∑
ν6α

|∂νe−ξ·Dξt||eO(|ξ|4)t − 1||∂α−νχ1(ξ)|

6 C
∑
ν6α

∑
{Ij:j=1,...,r},r6|ν|

|ξ|m1+4t`+m0+m1+1e−c|ξ|
2t|∂α−νχ1(ξ)|,

where mk > 0 is the cardinality of the set {j ∈ {1, . . . , r} : |Ij| = |ν| − k} for
k = 0, 1 and ` > 0 satisfies

2` < |ν|− 2m0 −m1

and {Ij : j = 1, . . . , r} is any possible partition of the index set Iν determined
by ν. Thus, we have

‖I(1)‖2L2

6 C
∑
ν6α

∑
{Ij:j=1,...,r},r6|ν|

∫
Rd

|ξ|2(m1+4)t2(`+m0+m1+1)e−2c|ξ|2t|∂α−νχ1(ξ)|dξ

6 C
∑
ν6α

∑
{Ij:j=1,...,r},r6|ν|

(1+ t)−
d
2 −2+2m0+m1+2`

6 C
∑
ν6α

(1+ t)|ν|−
d
2 −2 6 C(1+ t)|α|−

d
2 −2 (3.163)

since |ν| 6 |α| for all ν 6 α.
Similarly, we then consider I(2) in (3.162). Since χ1 ∈ C∞(Rd) and D ∈

Rd×d is positive definite, from (3.162) and the estimate (3.86) in Lemma 3.13,
there are constants c, c ′ > 0 and C > 0 such that

|I(2)(ξ, t)|

6 C
∑
ν6α

∑
τ<ν

|∂τe−ξ·Dξt||∂ν−τeO(|ξ|4)t||∂α−νχ1(ξ)|

6 C
∑
ν6α
τ<ν

∑
{Ij:j=1,...,r}
{I ′j:j=1,...,r ′}
r6|τ|,r ′6|ν−τ|

|∂α−νχ1(ξ)||ξ|
m1+m ′1+2m ′2+3m ′3

·t`+` ′+m0+m1+m ′0+m
′
1+m

′
2+m

′
3e−c|ξ|

2t+c ′|ξ|4t,
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where mk > 0 is the cardinality of the set {j ∈ {1, . . . , r} : |Ij| = |τ| − k} for
k = 0, 1 andm ′k > 0 is the cardinality of the set {j ∈ {1, . . . , r ′} : |I ′j| = |ν−τ|−k}
for k = 0, 1, 2, 3 and `, ` ′ > 0 satisfies

2` < |τ|− 2m0 −m1, 4` ′ < |ν− τ|− 4m ′0 − 3m ′1 − 2m ′2 −m ′3

and {Ij : j = 1, . . . , r} is any possible partition of the index set Iτ determined
by τ and {I ′j : j = 1, . . . , r ′} is any possible partition of the index set Iν−τ
determined by ν− τ. Hence, we have

‖I(2)‖2L2

6 C
∑
ν6α
τ<ν

∑
{Ij:j=1,...,r}
{I ′j:j=1,...,r ′}
r6|τ|,r ′6|ν−τ|

∫
Rd

|∂α−νχ1(ξ)||ξ|
2(m1+m ′1+2m ′2+3m ′3)

·t2(`+` ′+m0+m1+m ′0+m
′
1+m

′
2+m

′
3)e−2c|ξ|2t dξ

6 C
∑
ν6α
τ<ν

∑
{Ij:j=1,...,r},r6|τ|

{I ′j:j=1,...,r ′},r ′6|ν−τ|

(1+ t)−
d
2 +2m0+2m ′0+m1+m ′1−m

′
3+2`+2` ′

6 C
∑
ν6α
τ<ν

∑
{Ij:j=1,...,r},r6|τ|

{I ′j:j=1,...,r ′},r ′6|ν−τ|

(1+ t)−
d
2 +|τ|+|ν−τ|−2(` ′+m ′0+m ′1+m ′2+m ′3)

6 C
∑
ν6α
τ<ν

∑
{Ij:j=1,...,r},r6|τ|

{I ′j:j=1,...,r ′},r ′6|ν−τ|

(1+ t)|ν|−
d
2 −2r ′ 6 C(1+ t)|α|−

d
2 −2 (3.164)

since |τ|+ |ν− τ| = |ν| 6 |α| for any τ 6 ν 6 α and ` ′+m ′0 +m ′1 +m ′2 +m ′3 =
r ′ > 1 by definition and τ < ν.

We continue to estimate J in (3.158). By the Leibniz rule, one has

∂αJ(ξ, t) =
∑
ν6α

∑
τ6ν

(
α

ν

)(
ν

τ

)
∂τe−ξ·Dξt+O(|ξ|4)t∂ν−τO(|ξ|2)∂α−νχ1(ξ)

= J(1)(ξ, t) + J(2)(ξ, t) + J(3)(ξ, t), (3.165)

where

J(1)(ξ, t) :=
∑
ν6α

(
α

ν

)
∂νe−ξ·Dξt+O(|ξ|4)tO(|ξ|2)∂α−νχ1(ξ), (3.166)

J(2)(ξ, t) :=
∑
ν6α

∑
τ<ν

|ν−τ|=1

(
α

ν

)(
ν

τ

)
∂τe−ξ·Dξt+O(|ξ|4)t

·∂ν−τO(|ξ|2)∂α−νχ1(ξ).
(3.167)

and

J(3)(ξ, t) :=
∑
ν6α

∑
τ<ν

|ν−τ|>2

(
α

ν

)(
ν

τ

)
∂τe−ξ·Dξt+O(|ξ|4)t

·∂ν−τO(|ξ|2)∂α−νχ1(ξ).
(3.168)

We then begin with J(1). Since χ1 ∈ C∞(Rd) and D ∈ Rd×d is posi-
tive definite, from (3.166) and the estimate (3.86) in Lemma 3.13, there are
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constants c, c ′ > 0 and C > 0 such that

|J(1)(ξ, t)| 6 C
∑
ν6α

|∂νe−ξ·Dξt+O(|ξ|4)t||O(|ξ|2)||∂α−νχ1(ξ)|

6 C
∑
ν6α

∑
{Ij:j=1,...,r}

|ξ|m1+2t`+m0+m1e−c|ξ|
2t+c ′|ξ|4t|∂α−νχ1(ξ)|,

where mk > 0 is the cardinality of the set {j ∈ {1, . . . , r} : |Ij| = |ν| − k} for
k = 0, 1 and ` > 0 satisfies

2` < |ν|− 2m0 −m1

and {Ij : j = 1, . . . , r} is any possible partition of the index set Iν determined
by ν. It then implies that

‖J(1)‖2L2 6 C
∑
ν6α

∑
{Ij:j=1,...,r}

∫
Rd

|ξ|2(m1+2)t2(`+m0+m1)

·e−2c|ξ|2t|∂α−νχ1(ξ)|dξ

6 C
∑
ν6α

∑
{Ij:j=1,...,r}

(1+ t)−
d
2 −2+2`+2m0+m1

6 C
∑
ν6α

(1+ t)|ν|−
d
2 −2 6 C(1+ t)|α|−

d
2 −2 (3.169)

since |ν| 6 |α| for all ν 6 α.
We estimate J(2) in (3.167). Since χ1 ∈ C∞(Rd) and D ∈ Rd×d is posi-

tive definite, from (3.167) and the estimate (3.86) in Lemma 3.13, there are
constants c, c ′ > 0 and C > 0 such that

|J(2)(ξ, t)|

6 C
∑
ν6α

∑
τ<ν

|ν−τ|=1

|∂τe−ξ·Dξt+O(|ξ|4)t||∂ν−τO(|ξ|2)||∂α−νχ1(ξ)|

6 C
∑
ν6α

∑
τ<ν

|ν−τ|=1

∑
{Ij:j=1,...,r},r6|τ|

|ξ|m1+1t`+m0+m1e−c|ξ|
2t+c ′|ξ|4t|∂α−νχ1(ξ)|,

where mk > 0 is the cardinality of the set {j ∈ {1, . . . , r} : |Ij| = |τ| − k} for
k = 0, 1 and ` > 0 satisfies

2` < |τ|− 2m0 −m1

and {Ij : j = 1, . . . , r} is any possible partition of the index set Iτ determined
by τ. Thus, we have

‖J(2)‖2L2

6 C
∑
ν6α

∑
τ<ν

|ν−τ|=1

∑
{Ij:j=1,...,r},r6|τ|

∫
Rd

|ξ|2(m1+1)t2(`+m0+m1)

·e−2c|ξ|2t+2c ′|ξ|4t|∂α−νχ1(ξ)|dξ

6 C
∑
ν6α

∑
τ<ν

|ν−τ|=1

∑
{Ij:j=1,...,r},r6|τ|

(1+ t)−
d
2 −1+2`+2m0+m1
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6 C
∑
ν6α

∑
τ<ν

|ν−τ|=1

(1+ t)|τ|−
d
2 −1

6 C
∑
ν6α

(1+ t)|ν|−
d
2 −2 6 C(1+ t)|α|−

d
2 −2 (3.170)

since |τ| = |ν|− |ν− τ| = |ν|− 1 and |ν| 6 |α| for all ν 6 α
We estimate J(3) in (3.168). Since χ1 ∈ C∞(Rd) and D ∈ Rd×d is posi-

tive definite, from (3.168) and the estimate (3.86) in Lemma 3.13, there are
constants c, c ′ > 0 and C > 0 such that

|J(3)(ξ, t)|

6 C
∑
ν6α

∑
τ<ν

|ν−τ|>2

|∂τe−ξ·Dξt+O(|ξ|4)t||∂ν−τO(|ξ|2)||∂α−νχ1(ξ)|

6 C
∑
ν6α

∑
τ<ν

|ν−τ|>2

∑
{Ij:j=1,...,r},r6|τ|

|ξ|m1t`+m0+m1e−c|ξ|
2t+c ′|ξ|4t|∂α−νχ1(ξ)|,

where mk > 0 is the cardinality of the set {j ∈ {1, . . . , r} : |Ij| = |τ| − k} for
k = 0, 1 and ` > 0 satisfies

2` < |τ|− 2m0 −m1

and {Ij : j = 1, . . . , r} is any possible partition of the index set Iτ determined
by τ. Thus, we have

‖J(3)‖2L2

6 C
∑
ν6α

∑
τ<ν

|ν−τ|>2

∑
{Ij:j=1,...,r},r6|τ|

∫
Rd

|ξ|2m1t2(`+m0+m1)

·e−2c|ξ|2t+2c ′|ξ|4t|∂α−νχ1(ξ)|dξ

6 C
∑
ν6α

∑
τ<ν

|ν−τ|>2

∑
{Ij:j=1,...,r},r6|τ|

(1+ t)−
d
2 +2`+2m0+m1

6 C
∑
ν6α

∑
τ<ν

|ν−τ|>2

(1+ t)|τ|−
d
2

6 C
∑
ν6α

(1+ t)|ν|−
d
2 −2 6 C(1+ t)|α|−

d
2 −2 (3.171)

since |τ| = |ν|− |ν− τ| 6 |ν|− 2 and |ν| 6 |α| for all ν 6 α.
Therefore, from (3.163), (3.164), (3.169) and (3.170), one has

‖∂α((ĜP0 − K̂)χ1)‖L2 6 C(1+ t)
|α|
2 −d

4 −1 ∀t > 0,α ∈ Nd. (3.172)

Let s ∈ Z+ satisfying s > d/2, then by the Carlson–Beurling inequality (A.1)
in Lemma A.7 and (3.172), we obtain for t > 0 and 1 6 p 6∞ that

‖(ĜP0 − K̂)χ1‖Mp

6 ‖(ĜP0 − K̂)χ1‖
1− d

2s
L2 (

∑
|α|=s

‖∂α((ĜP0 − K̂)χ1)‖L2)
d
2s

6 C(1+ t)−(d4 +1)(1− d
2s )+( s2−

d
4 −1) d2s 6 C(1+ t)−1. (3.173)
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It follows from (3.173) and the definition of the Mp-norm that for any
g ∈ Lp(Rd), one has

‖F−1((ĜP0 − K̂)χ1) ∗ g‖Lp 6 ‖(ĜP0 − K̂)χ1‖Mp
‖g‖Lp

6 C(1+ t)−1‖g‖Lp

for all 1 6 p 6∞ and t > 0. The proof is done.

Remark 3.14 (Estimates for the remain parts). Due to the proofs of the
propositions in the previous subsections, the estimates for the remain parts
of F−1(Ĝ − K̂ − Ŵ) in the one-dimensional space and F−1(Ĝ) in the multi-
dimensional space are similar to before.

In the one-dimensional space, we estimate F−1(Ĝ(I − P0)χ1), F−1(Ĝχ2),
F−1(Ŵ(χ1+χ2)), F−1(K̂(χ2+χ3)) and F−1((Ĝ−Ŵ)χ3) separately for |x| 6 Ct.
Moreover, we estimate F−1(Ĝ− Ŵ) and F−1(K̂) separately for |x| > Ct where
C > 0 is large enough.

In the multi-dimensional space, we estimate F−1(Ĝ(I−P0)χ1), F−1(Ĝ(χ2+
χ3)) and F−1(K̂(χ2 + χ3)) independently.

Noting that in the one-dimensional space, the above terms are bounded by
Ce−cte−

|x|2
ct for all t > 1 and some constants c > 0 and C > 0 due to the fact

that they are bounded by Ce−ct for t > 1 (see the proofs of Proposition 3.4,
Proposition 3.5 and Proposition 3.6). Indeed, if |x| 6 Ct, one has |x|2/t 6 C2t
and

e−ct = e−
c
2te−

c
2C2C

2t 6 e−
c
2te−

c
2C2

|x|2
t ∀t > 0.

Furthermore, the case |x| > Ct is argued exactly by the same way as in the
proof of Proposition 3.10.

In the multi-dimensional space, except F−1(K̂(χ2 + χ3)) is bounded by
Ce−cte−

|x|2
ct for x ∈ Rd with d > 2, the others cannot be bounded by an

L1-integrable function in x ∈ Rd since we cannot treat the case |x| > Ct for
large C as in the one-dimensional space.

Proof of Theorem 3.22. Recall the operators K̂ and Ŵ given by (3.155) and
(3.26) respectively. For d = 1 and u0 ∈W1,q(R), let u, U and V be solutions
to (3.141), (3.143) and (3.146). Recall the cut-off function χj for j ∈ {1, 2, 3},
due to Proposition 3.23 under the conditions A , B, D , E and S , we have

u−U− V =

3∑
j=1

F−1((Ĝ− K̂− Ŵ)χj) ∗ u0, (3.174)

where Ĝ which is the Fourier transform of the Green kernel G associated with
(3.141) is a solution to (2.32).

We consider the L∞-L1 estimate. One has

F−1((Ĝ− K̂− Ŵ)χ1) = F−1((ĜP0 − K̂)χ1) + F−1(Ĝ(I− P0)χ1)

− F−1(Ŵχ1). (3.175)

Due to the estimate (3.31), the Young inequality in Lemma A.1 and the fact
that F−1 : L1 → L∞, one primarily has

‖F−1(Ŵχ1)∗u0‖L∞ 6 C‖Ŵχ1‖L1‖u0‖L1 6 Ce−ct‖u0‖L1 ∀t > 0. (3.176)
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Hence, since the condition E implies the condition C , from (3.95), (3.156) and
(3.176), we obtain

‖F−1((Ĝ− K̂− Ŵ)χ1) ∗ u0‖L∞ 6 Ct−
3
2 ‖u0‖L1 ∀t > 1. (3.177)

On the other hand, by Remark 3.14 and the Young inequality in Lemma A.1,
we thus obtain

‖F−1((Ĝ− K̂− Ŵ)χj) ∗ u0‖L∞ 6 Ce−ct‖u0‖L1 ∀t > 1, j = 2, 3. (3.178)

Therefore, it implies that

‖u−U− V‖L∞ 6 Ct−
3
2 ‖u0‖L1 ∀t > 1. (3.179)

We construct the Lp-Lp estimate for 1 6 p 6∞. We primarily introduce
the indicator function

χ̃(x) :=

{
1 |x| 6 Ct

0 |x| > Ct
∀x ∈ R, t > 0.

We have

‖u−U− V‖Lp = ‖F−1(Ĝ− K̂− Ŵ)χ̃ ∗ u0‖Lp

+ ‖F−1(Ĝ− K̂− Ŵ)(1− χ̃) ∗ u0‖Lp . (3.180)

On the other hand, from (3.175), we have

‖F−1((Ĝ− K̂− Ŵ)χ1)χ̃ ∗ u0‖Lp

= ‖F−1((ĜP0 − K̂)χ1)χ̃ ∗ u0‖Lp + ‖F−1(Ĝ(I− P0)χ1)χ̃ ∗ u0‖Lp

+ ‖F−1(Ŵχ1)χ̃ ∗ u0‖Lp . (3.181)

Moreover, by Remark 3.14, for all t > 1, we have

‖F−1(Ĝ(I− P0)χ1)χ̃‖L1 + ‖F−1(Ŵχ1)χ̃‖L1 6 Ce−ct. (3.182)

Thus, it follows from Proposition 3.25, the Young inequality in Lemma A.1
and (3.182) that

‖F−1((Ĝ− K̂− Ŵ)χ1)χ̃ ∗ u0‖Lp 6 Ct−1‖u0‖Lp . (3.183)

Furthermore, by Remark 3.14, the Young inequality in Lemma A.1 and Propo-
sition 3.10, for 1 6 p 6∞, we have the estimates

‖F−1((Ĝ− K̂− Ŵ)χj)χ̃ ∗ u0‖Lp 6 Ce−ct‖u0‖Lp ∀t > 1, j = 2, 3, (3.184)

and the estimate

‖F−1(Ĝ− K̂− Ŵ)(1− χ̃) ∗ u0‖Lp 6 Ce−ct‖u0‖Lp ∀t > 1. (3.185)

It then follows from (3.180), (3.183), (3.184) and (3.185) that

‖u−U− V‖Lp 6 Ct−1‖u0‖Lp ∀t > 1, 1 6 p 6∞. (3.186)

The proof is thus done by applying the interpolation inequality in Lemma
A.2 between (3.179) and (3.186).
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Proof of Theorem 3.22. For u0 ∈W1,q(Rd)∩L2(Rd), let u and U be solutions
to (3.141) and (3.143) respectively. Recall the cut-off function χj for j ∈ {1, 2, 3}
and the eigenprojection P0(iξ) associated with the eigenvalue λ0(iξ) of E(iξ),
where λ0(iξ)→ 0 as |ξ|→ 0. One sets

u(1) := F−1(ĜP0χ1) ∗ u0 (3.187)

and

u(2) := F−1(Ĝ(I− P0)χ1) ∗ u0 +
3∑
j=2

F−1(Ĝχj) ∗ u0, (3.188)

where Ĝ is a solution to (2.32). It is then easily to check that u = u(1)+u(2).
On the other hand, from (3.187), one has

u(1) −U = F−1((ĜP0 − K̂)χ1) ∗ u0 +
3∑
j=2

F−1(K̂χj) ∗ u0, (3.189)

where K̂ is given by (3.155). Hence, by Proposition 3.24, Remark 3.14 and the
Young inequality in Lemma A.1, we obtain

‖u(1) −U‖L∞ 6 Ct−
d
2 −1‖u0‖L1 ∀t > 1. (3.190)

By Proposition 3.25 and the Young inequality in Lemma A.1, for 1 6 p 6∞,
we also have

‖u(1) −U‖Lp 6 Ct−1‖u0‖Lp ∀t > 1. (3.191)

Therefore, by Lemma A.2 in Appendix A, it follows from (3.190) and
(3.191) that

‖u(1) −U‖Lp 6 Ct−
d
2 (

1
q−

1
p )−1‖u0‖Lq

for 1 6 q 6 p 6∞ and for all t > 1.
Also by Proposition 3.18, Proposition 3.19 and Proposition 3.20, from

(3.188), we have

‖u(2)‖L2 6 Ce−ct‖u0‖L2 ∀t > 0.

The proof is done since the estimate for U = F−1(K̂) ∗ u0 is similar.
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Appendix A

Lebesgue spaces and the
Fourier transform

This chapter is to briefly recall some elementary aspects of the Lebesgue spaces
Lp(Rd) and the Fourier transform of functions in these spaces. Moreover,
the Fourier transform considered here is an extension of the classical Fourier
transform which is defined for L1 ∩ L2-functions and can be applied to any
Lp-functions for p > 1.

A.1 Lebesgue spaces
The aim of this section is not only to give the definition of Lp-spaces but also
to introduce the two well-known inequalities which are the Young inequality
and the complex interpolation inequality.

Definition A.1 (Lp-space). Let u be a function from Rd to a Banach space
equipped with a norm |·|, we define the Lebesgue spaces Lp(Rd) for 1 6 p 6∞
consisting of functions u which satisfy

‖u‖Lp :=
(∫

Rd
|u(x)|p dx

) 1
p
< +∞, 1 6 p <∞,

and satisfy
‖u‖L∞ := ess sup

x∈Rd
|u(x)| < +∞.

Then, the following hold.

Lemma A.1 (Young’s inequality). For 1 6 p,q, r 6∞ satisfying 1/p+1/q =
1+ 1/r and any f ∈ Lp(Rd) and g ∈ Lq(Rd), one has f ∗ g ∈ Lr(Rd) and the
inequality

‖f ∗ g‖Lr 6 ‖f‖Lp‖g‖Lq .

Proof. See the proof of Lemma 1.4 p. 5 in [1].

Lemma A.2 (Complex interpolation inequality). Consider a linear operator
T which continuously maps Lpj(Rd) into Lqj(Rd) for 1 6 pj,qj 6 ∞ with
j ∈ {0, 1}. Let θ ∈ [0, 1] be such that( 1

pθ
, 1
qθ

)
:= (1− θ)

( 1
p0

, 1
q0

)
+ θ
( 1
p1

, 1
q1

)
,
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then T continuously maps Lpθ(Rd) into Lqθ(Rd) and one has

‖T‖L(Lpθ ;Lqθ) 6 ‖T‖1−θL(Lp0 ;Lq0)‖T‖
θ
L(Lp1 ;Lq1).

Proof. See the proof of Corollary 1.12 p. 12 in [1].

A.2 The Fourier transform
Let α ∈ Nd be the multi-index α := (α1, . . . ,αd) with αj ∈ N. Let

∂αu :=
∂|α|f

∂xα1
1 . . .∂xαdd

,

where |α| := α1 + · · · + αd, be a higher-order partial derivative of a smooth
function u on Rd.

Definition A.2 (Schwartz space). The Schwartz space S(Rd) is the set of
smooth functions u on Rd such that for any k ∈ N, we have

‖u‖k,S := sup
|α|6k,x∈Rd

(1+ |x|)k|∂αu(x)| < +∞.

Definition A.3 (Tempered distribution). One denotes by S ′(Rd) the dual
space of S(Rd) and u ∈ S ′(Rd) is called a tempered distribution.

For u ∈ S(Rd), the Fourier transform û = F(u) is defined by the integral

F(u)(ξ) :=

∫
Rd
e−ix·ξu(x)dx,

where · is the usual scalar product on Rd. One has

Proposition A.3. F is a linear continuous map from S(Rd) into S(Rd).
Moreover, it is an automorphism of S(Rd) and the inverse map which is de-
noted by F−1 satisfies that for u ∈ S(Rd)

F−1(u)(x) =
1

(2π)d

∫
Rd
eix·ξu(ξ)dξ.

Proof. See the proof of Theorem 1.19 p. 17 in [1].

On the other hand, we can define the Fourier transform of tempered dis-
tributions u ∈ S ′(Rd) by the product 〈·, ·〉, namely

〈û,φ〉 = 〈u, φ̂〉 =
∫
Rd
u(ξ)φ̂(ξ)dξ, ∀φ ∈ S(Rd).

It is well defined due to the following

Proposition A.4. For any linear continuous map A from S(Rd) into S(Rd),
the product 〈u,Aφ〉 for u ∈ S ′(Rd) and φ ∈ S(Rd) defines a tempered distri-
bution denoted by Atu such that 〈Atu,φ〉 = 〈u,Aφ〉 for all φ ∈ S(Rd) and
At is a linear continuous map from S ′(Rd) into S ′(Rd) in the sense that if
〈un,φ〉 → 〈u,φ〉 as n → +∞ for all φ ∈ S(Rd), then 〈Atun,φ〉 → 〈Atu,φ〉
as n→ +∞ for all φ ∈ S(Rd).
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Proof. See the proof of Proposition 1.23 p. 19 in [1].

Proposition A.5 (Plancherel formula). F is an automorphism of S ′(Rd) and
the inverse map which is denoted by F−1 satisfies that for u ∈ S ′(Rd)

〈F−1(u),φ〉 = 〈v,F−1(φ)〉, ∀φ ∈ S(Rd).

Moreover, F is an automorphism of L2(Rd) and one has ‖û‖L2 = (2π)d2 ‖u‖L2

for all u ∈ L2(Rd).

Proof. See the proof of Theorem 1.25 p. 22 in [1].

On the other hand, we have the following important properties of the
Fourier transform.

Proposition A.6. For any (u,φ) ∈ S ′(Rd) × S(Rd), λ ∈ R 6= {0}, (a,ω) ∈
Rd × Rd and α ∈ Nd, we have

(i∂)αû = F(xαu), (iξ)αû = F(∂αu), e−ia·ωû = F(τau),
τωû = F(eix·ωu), λ−dû(λ−1ξ) = F(u(λx)), F(u ∗ φ) = ûφ̂,

where τa denotes the translation operator τau = u(· − a) and u ∗ φ is the
convolution of u and φ.

Proof. See the proof of Proposition 1.24 p. 21 in [1].

We finally introduce a powerful Fourier multiplier estimate which is the
estimate (A.1) given by Lemma A.7. The multiplier estimates are very helpful
to study the Lp-Lp estimate for 1 6 p 6∞.

Definition A.4. Let s ∈ R, the Sobolev space Hs(Rd) consists of tempered
distributions u such that û ∈ L2

loc(Rd) and

‖u‖Hs :=
(∫

Rd
(1+ |ξ|2)s|û(ξ)|2 dξ

)1/2
< +∞.

Definition A.5. Let ρ ∈ S ′(Rd), ρ is called a Fourier multiplier on Lp(Rd)
for 1 6 p 6 ∞ if the convolution F−1(ρ(ξ)) ∗ φ ∈ Lp(Rd) for all φ ∈ S(Rd)
and if

‖ρ‖Mp
:= sup
‖φ‖Lp=1

‖F−1(ρ(ξ)) ∗ φ‖Lp < +∞.

The linear space of all Fourier multipliers ρ is denoted by Mp(Rd) and is
equipped with the norm ‖ · ‖Mp

.

Lemma A.7 (Carlson–Beurling). If ρ ∈ Hs(Rd) for s > d/2, ρ ∈ Mp(Rd)
and for some constant C > 0, one has the estimate

‖ρ‖Mp
6 C‖ρ‖1−

d
2s

L2

(∑
|α|=s

‖∂αρ‖L2

) d
2s , 1 6 p 6∞. (A.1)

Proof. See the proof of Lemma 6.1.5 p. 135 in [4].
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Appendix B

Perturbation theory for linear
operators

Consider the operator T(z) for z ∈ C having the form

T(z) = T (0) + zT (1) + z2T (2) + . . . , T (j) ∈ Rn×n. (B.1)

Exceptional points of the analytic operator T(z) for z ∈ C in (B.1) are defined
to be points where the eigenvalues of T(z) intersect. Nonetheless, they are
of finite number in the plane. In the domain excluding these points, the
operator T(z) has p holomorphic distinct eigenvalues with constant algebraic
multiplicities. Moreover, the p eigenprojections and the p eigennilpotents
associated with them are also holomorphic. In fact, the eigenvalues of T(z)
are solutions to the dispersion polynomial

det(T(z) − µI) = 0

with holomorphic coefficients. The eigenvalues of T(z) are then branches of
one or more than one analytic functions with algebraic singularities of at most
order n. As a consequence, the number of eigenvalues of T(z) is a constant
except for a number of points which is finite in each compact set of the plane.
The exceptional points can be either regular points of the analytic functions
or branch-points of some eigenvalues of T(z). In the former case, the eigenpro-
jections and the eigennilpotents associated with the eigenvalues are bounded
while in the latter case, they have poles at the exceptional points even if the
eigenvalues are continuous there (see [36]).

We study the behavior of the eigenvalues of T(z) and the associated eigen-
projections and eigennilpotents near an exceptional point. Without loss of
generality, we assume that the exceptional point is the point 0 ∈ C. Let λ(0)

be an eigenvalue of T (0) with algebraic multiplicity m > 1 and let P(0) and
N(0) be the associated eigenprojection and eigennilpotent. One has

T (0)P(0) = P(0)T (0) = P(0)T (0)P(0) = λ(0)P(0) +N(0),
dim P(0) = m, (N(0))m = O, P(0)N(0) = N(0)P(0).

The eigenvalue λ(0) is in general split into several eigenvalues of T(z) for small
z 6= 0. The set of these eigenvalues is called the λ(0)-group. The total projec-
tion P(z) of this group is holomorphic at z = 0 and is approximated by

P(z) = P(0) + zP(1) + z2P(2) + O(|z|3), (B.2)
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where P(j) can be computed in terms of the coefficients T (j) in (B.1) and the
coefficients N(0), P(0) and Q(0) given respectively by N(0) = (T (0)−λ(0)I)P(0)

and

P(0) = −
1
2πi

∫
Γ

(T (0) −µI)−1 dµ, Q(0) =
1
2πi

∫
Γ

µ−1(T (0) −µI)−1 dµ, (B.3)

where Γ , in the resolvent set of T (0), is an oriented closed curve enclosing λ(0)

except for the other eigenvalues of T (0). In fact, from [36] (eq. (2.13) p. 76),
one has

P(1) =
∑
i+j=1

X(i)T (1)X(j), (B.4)

P(2) =
∑
i+j=1

X(i)T (2)X(j) −
∑

i+j+h=2
X(i)T (1)X(j)T (1)X(h), (B.5)

where

X(0) = −P(0), X(i) = (Q(0))i, X(−i) = −(N(0))i, ∀i > 1. (B.6)

Moreover, the subspace ranP(z) := P(z)Cn is m-dimensional and invariant
under T(z). The λ(0)-group eigenvalues of T(z) are identical with all the eigen-
values of T(z) in ranP(z). In order to determine the λ(0)-group eigenvalues,
therefore, we only have to solve an eigenvalue problem in the subspace ranP(z),
which is in general smaller than the whole space Cn.

The eigenvalue problem for T(z) in ranP(z) is equivalent to the eigenvalue
problem for

Tr(z) = T(z)P(z) = P(z)T(z) = P(z)T(z)P(z). (B.7)

Thus, the λ(0)-group eigenvalues of T(z) are exactly those eigenvalues of Tr(z)
which are different from 0, provided |λ(0)| is large enough to ensure that these
eigenvalues do not vanish for the small z under consideration. The last con-
dition does not restrict the generality, for T (0) could be replaced by T (0) + α
with a suitable scalar α without changing the nature of the problem (see [36]).

We also have the following result in [36].

Lemma B.1 (A simple case). If T(z) = T (0) + zT (1) and λ(0) is a simple
eigenvalue of T (0), the eigenvalue λ(z) of T(z) converging to λ(0) as |z| → 0
and its associated eigenprojection P(z) are holomorphic at z = 0. Moreover,
for small z 6= 0, P(z) is approximated by (B.2) with the coefficients P(j) for
j = 0, 1, 2, . . . and λ(z) is approximated by

λ(z) = λ(0) + zλ(1) + z2λ(2) + O(|z|3), (B.8)

where
λ(j) =

1
j
tr (T (1)P(j−1)), j = 1, 2, 3, . . . (B.9)

On the other hand, the eigennilpotent associated with λ(z) which is N(z) =(
T(z) − λ(z)I

)
P(z) vanishes identically.

Proof. For any eigenvalue λ(0) of T (0) with algebraic multiplicity m > 1, one
primarily considers the weighted mean of the λ(0)-group defined by

λ̂(z) :=
1
m

tr
(
T(z)P(z)

)
= λ(0) +

1
m

tr
(
(T(z) − λ(0)I)P(z)

)
,

102



where P(z) is the total projection associated with the λ(0)-group.
We study the asymptotic expansions of λ̂(z) and P(z) for small z 6= 0. The

expansion of P(z) is in fact given by (B.2), and also following [36] (eq. (2.8)
p. 76), the coefficient P(j) in (B.2) is computed by

P(j) = −
1
2πi

∑
ν1+···+νp=j
νi>1, i=1,...,p

(−1)p
∫
Γ

R(0)(ζ)T (ν1)R(0)(ζ)T (ν2)

. . . T (νp)R(0)(ζ)dζ, (B.10)

where T (νi) for i ∈ {1, . . . ,p} are the coefficients in (B.1), R(0)(ζ) := (T (0) −
ζI)−1 is the resolvent of T (0) and Γ is a small positively-oriented circle around
λ(0). On the other hand, following [36] (eq. (2.21) p.78 and eq. (2.30) p.79),
the weighted mean λ̂(z) of the λ(0)-group is approximated by

λ̂(z) = λ(0) + zλ̂(1) + z2λ̂(2) + O(|z|3), (B.11)

where the coefficient λ̂(j) is given by

λ̂(j)

=
1

2πimtr
( ∑
ν1+···+νp=j
νi>1, i=1,...,p

(−1)p

p

∫
Γ

T (ν1)R(0)(ζ)

. . .R(0)(ζ)T (νp)R(0)(ζ)dζ
)
, (B.12)

where the relative coefficients are introduced before.
In the case where T(z) = T (0) + zT (1), one has T (j) = O, the null matrix,

for j > 2. Furthermore, since νi in (B.10) and (B.12) satisfy νi > 1, it implies
that the relevances are νi = 1 for all i. Hence, we obtain from (B.10) and
(B.12) that p = j and

λ̂(j) =
1
mj

tr
(
T (1)

((−1)j

2πi

∫
Γ

R(0)(ζ)T (1) . . . T (1)R(0)(ζ)dζ
))

=
1
mj

tr
(
T (1)P(j−1)) (B.13)

since there are j− 1 matrices T (1) in the integrand in (B.13).
If λ(0) is a simple eigenvalue, one has m = 1 and λ(0) is not split into

many eigenvalues of T(z). Thus, the λ(0)-group contains only one single eigen-
value λ(z) of T(z) converging to λ(0) as |z| → 0. Hence, λ(z) = λ̂(z) and
the eigenprojection associated with λ(z) is exactly the total projection P(z) of
the λ(0)-group. Therefore, one obtains the expansion (B.8) from (B.11) and
one obtains the formula (B.9) from (B.13) where m = 1. The eigenilpotent
N(z) associated with λ(z) is obviously null since λ(z) is simple. The proof is
done.

Moreover, one obtains the following result from Lemma B.1.

Corollary B.2 (Symmetry). Under the same assumptions in Lemma B.1,
if in addition, there is an invertible matrix S such that ST (1) = −T (1)S and
ST (0) = T (0)S, then λ(j) = 0 for all j odd, where λ(j) is the j-th coefficient in
the formulas (B.8) and (B.9) for j = 1, 2, . . .
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Proof. Recall T(z) = T (0) + zT (1), one can study the eigenvalue problem for
T(z) by considering the operator

TS(z) := ST(z)S
−1 = ST (0)S−1 + zST (1)S−1

= T (0) − zT (1) = T
(0)
S + zT

(1)
S , (B.14)

where T (0)
S := T (0) and T (1)

S := −T (1). Thus, Lemma B.1 is applied to TS(z)
since λ(0) is also a simple eigenvalue of T (0)

S . It implies that the eigenvalue
λS(z) of TS(z) converging to λ(0) as |z|→ 0 and the associated eigenprojection
PS(z) are holomorphic at z = 0. Moreover, for small z 6= 0, the expansion
of PS(z) is given by the expansion (B.2) with coefficients denoted by P(j)S for
j = 0, 1, 2, . . . and λS(z) is approximated by

λS(z) = λ
(0) + zλ

(1)
S + z2λ

(2)
S + O(|z|3),

where
λ
(j)
S =

1
j
tr (T (1)

S P
(j−1)
S ), j = 1, 2, 3, . . . (B.15)

On the other hand, the eigennilpotent NS(z) associated with λS(z) vanishes
identically.

Consider the total projection PS(z) associated with the λ(0)-group of TS(z)
in (B.2) with the coefficients P(j)S . We also consider the formula (B.10) of P(j)S ,
namely

P
(j)
S = −

1
2πi

∑
ν1+···+νp=j
νi>1, i=1,...,p

(−1)p
∫
Γ

R
(0)
S (ζ)T

(ν1)
S R

(0)
S (ζ)T

(ν2)
S . . . T (νp)S R

(0)
S (ζ)dζ,

where T (νi)S for i ∈ {1, . . . ,p} are the coefficients in the expansion (B.1) of
TS(z), R(0)

S (ζ) := (T
(0)
S −ζI)−1 is the resolvent of T (0)

S and Γ is a small positively-
oriented circle around λ(0). Then, since T (νi)S = O for all νi > 2 and since
νi > 1 for all i, one has p = j and

P
(j)
S = −

1
2πi(−1)j

∫
Γ

R
(0)
S (ζ)T

(1)
S R

(0)
S (ζ)T

(1)
S . . . T (1)

S R
(0)
S (ζ)dζ,

where there are j matrices T (1)
S in the integrand.

Since T (0)
S = T (0) and T (1)

S = −T (1), it follows that for all j, one has

P
(j)
S =

{
P(j) if j is even,
−P(j) if j is odd,

(B.16)

where P(j) is the j-th coefficient in the expansion of the total projection P(z)
associated with the λ(0)-group of T(z) = T (0) + zT (1).

Hence, from (B.9), (B.15) and (B.16), we have

λ
(j)
S =

{
λ(j) if j is even,
−λ(j) if j is odd,

(B.17)

where λj is the j-th coefficient in the expansion of the eigenvalue λ(z) of T(z) =
T (0) + zT (1) converging to λ(0) as |z|→ 0.
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Finally, since λS(z) ≡ λ(z) due to (B.14) and the fact that they are single
eigenvalues, we deduce from (B.17) that λ(j) = −λ(j) = 0 for all j odd. We
finish the proof.

Let σ(T ,D) be the spectrum of T considered in a domain D, we finish this
chapter by introducing the reduction method in [36] which can be applied to
the semi-simple-eigenvalue case.

Lemma B.3 (Reduction process). Let T(z) be in (B.1) with the coefficients
T (i) for i = 0, 1, 2, . . . and let λ(0) be a semi-simple eigenvalue of T (0). Let
P(z) in (B.2) with the coefficients P(i) for i = 0, 1, 2, . . . be the total projection
of the λ(0)-group. The following holds for small z 6= 0

T(z)P(z) =

p∑
j=1

(λ(0)I+ zTj(z))Pj(z), (B.18)

where Tj(z) commutes with Pj(z) and Pj(z) satisfies

Pj(z)Pj ′(z) = δjj ′Pj(z),
p∑
j=1

Pj(z) = P(z). (B.19)

The expansions of Tj(z) and Pj(z) are

Tj(z) = λ
(0)
j I+N

(0)
j + O(|z|) (B.20)

and
Pj(z) = P

(0)
j + O(|z|), (B.21)

where λ(0)
j ∈ σ(P

(0)T (1)P(0), ker (T (0)−λ(0)I)) with the associated eigenprojec-
tion P(0)

j and eigennilpotent N(0)
j for j ∈ {1, . . . ,p} and p is the cardinality of

σ(P(0)T (1)P(0), ker (T (0) − λ(0)I)).

Proof. Recall T(z) and the coefficients T (j) in (B.1). Recall the expansion of
the total projection P(z) of the λ(0)-group of T(z) and the coefficients P(j) in
(B.2), where the λ(0)-group is generated by the eigenvalue λ(0) of T (0). If λ(0)

is semi-simple, one obtains from (B.7) that (T(z) − λ(0)I)P(z) = zT̃(z), where

T̃(z) = T̃ (0) + zT̃ (1) + O(|z|2), (B.22)

where

T̃ (0) := P(0)T (1)P(0), (B.23)
T̃ (1) := P(1)T (0)P(1) + P(1)T (1)P(0) + P(0)T (1)P(1). (B.24)

Thus, the eigenvalues of T̃(z) in ranP(z) are considered and in general, they
converge to the eigenvalues of T̃ (0) in ranP(0) = ker (T (0) − λ(0)I) as |z| → 0
(see Theorem 2.3 p. 82 in [36]). One denotes the distinct eigenvalues of T̃ (0)

considered in ker(T (0) − λ(0)I) by λ(0)
j for j ∈ {1, . . . ,p}. Then, λ(0)

j generates
the λ(0)

j -group of T̃(z) similarly to the λ(0)-group of T(z) generated by the
eigenvalue λ(0) of T (0). Moreover, the total projection Pj(z) of the λ(0)

j -group
commutes with T̃(z), satisfies (B.19) and is approximated by (B.21).
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Applying (B.7) where T(z) is substituted by T̃(z) and P(z) is substituted
by Pj(z), it follows from (B.21) and (B.22) that

T̃(z)Pj(z) = λ
(0)
j I+N

(0)
j + O(|z|), (B.25)

where N(0)
j is the eigennilpotent associated with λ(0)

j . Let Tj(z) := T̃(z)Pj(z)

and using (B.19), (B.25) and the fact that T(z)P(z) = zT̃(z), one obtains
(B.18) and (B.20). We finish the proof.

Remark B.1. The reduction process can be continued as soon as the coeffi-
cient λ(0)

j in (B.20) is semi-simple by applying the process to Tj(z) and Pj(z)
given by (B.20) and (B.21) respectively.

Remark B.2. In general, if the simplicity of the eigenvalue λ(0) of T (0) is
relaxed by the semi-simplicity, then even in the special case of Remark B.1
where λ(0)

j is simple, the symmetry criterion in Corollary B.2 that there is an
invertible matrix S satisfying ST (1) = −T (1)S and ST (0) = T (0)S is not suffi-
cient for the vanishing of the coefficients associated with z3 in the expansions
of the eigenvalues of T(z) = T (0) + zT (1) converging to λ(0) as |z| → 0 unless
additional conditions are imposed.
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List of notations

Numbers
F: the field of real (F = R) or complex (F = C) numbers
|c|: the absolute value if c ∈ R and the modulus if c ∈ C
Z+: the set of all positive integers
N: the set of natural numbers including zero
Re z: the real part of z ∈ C
Im z: the imaginary part of z ∈ C

Indices
Nd: the set of indices α = (α1, . . . ,αd) with α` ∈ N
|α|: the sum α1 + · · ·+ αd
α 6 β: if αi 6 βi for all i ∈ {1, . . . ,d}
α < β: if αi < βi for all i ∈ {1, . . . ,d}
β− α: the index (β1 − α1, . . . ,βd − αd) where α 6 β
α!: the factorial α1! . . .αd!(α
β

)
: the binomial coefficient β!

α!(β−α)!
xα: xα1

1 . . . xαdd where x = (x1, . . . , xd) with x` ∈ F for ` ∈ {1, . . . ,d}
Vectors

Fn: the n-dimensional vector space over a field F
|u|: a vector norm of u
Sn−1: the unit sphere in Rn
ūt: the conjugate transpose of u ∈ Cn
ut: the transpose of u ∈ Rn
u · v: the scalar product on Rn of u and v in Rn
〈u, v〉: the inner product on Cn of u and v in Cn

Matrices
Fm×n: the space of m× n matrices over a field F
|A|: an induced matrix norm of A
Āt: the conjugate transpose of A ∈ Cm×n
At: the transpose of A ∈ Rm×n
Asym: the symmetric part of A
Askew: the skew-symmetric part of A
σ(A): the spectrum of A
σ(A,D): the set of the eigenvalues of a matrix A with eigenvectors in a

domain D where σ(A,Cn) ≡ σ(A)
ρ(A): the spectral radius of A
(A− zI)−1: the resolvent of A
ranA: the range space of A
kerA: the kernel of A
rankA: the rank of A

113



detA: the determinant of A
tr (A): the trace of A
adj (A): the adjunct of A
[A,B]: the matrix defined by AB− BA
Ak: the k-th power of A with k ∈ N and A0 = I the identity matrix
A(k): a matrix A with an index k ∈ N
eA: the sum

∑+∞
k=0

Ak

k!
diag (a1, . . . ,an): the diagonal matrix with diagonal entries given by num-

bers a1, . . . ,an
diag (A1, . . . ,An): the block diagonal matrix with diagonal entries given

by matrices A1, . . . ,An
I: the identity matrix
O: the zero (or null) matrix
z ·A: the sum

∑d
j=1 zjAj of z = (z1, . . . , zd) ∈ Fd and A = (A1, . . . ,Ad)

with Aj ∈ Fn×n for j ∈ {1, . . . ,d}
Derivatives

∂x: the first derivative with respect to x ∈ R
∂xx: the second derivative with respect to x ∈ R
∂xi: the first-order partial derivative along the direction xi ∈ R
∂kxi: the k-order partial derivative along the direction xi ∈ R with k ∈ N
∇x: the gradient with respect to x ∈ Rd
div : the divergence with respect to x ∈ Rd
∆x: the Laplacian with respect to x ∈ Rd
∂α: the higher-order partial derivative ∂α1

x1 . . .∂αdxd with α ∈ Nd
∂I: the higher-order partial derivative ∂xi1 . . .∂xis where I = {i1, . . . , is}

with i` ∈ {1, . . . ,d} for ` ∈ {1, . . . ,d}
f ′: the Jacobian of f
f ′′: the Hessian of f

Transforms
F: the Fourier transform
F−1: the inverse Fourier transform
f̂: the Fourier transform of f

Function spaces
Ck(Rd): the space of continuously differentiable functions on Rd up to

order k where C0 ≡ C
C∞c (Rd): the space of smooth functions on Rd with compact support
S(Rd): the space of smooth functions on Rd rapidly decreasing at infinity
S ′(Rd): the dual space of the Schwartz space S(Rd)
Lp(Rd): the space of functions u on Rd such that |u|p is integrable if

1 6 p <∞ and |u| is bounded almost everywhere if p =∞
W1,p(Rd): the space of functions u ∈ Lp(Rd) with (weak) ∇xu ∈ Lp(Rd)
Hs(Rd): the space of u ∈ S ′(Rd) such that (1 + | · |2)s|û|2 is integrable

with s ∈ R
Ck([0,+∞);X): the space of continuously differentiable functions from

[0,+∞) to a function space X up to order k ∈ N where C0 ≡ C
L(X, Y): the space of all linear map from X to Y where X and Y are two

function spaces and L(X,X) ≡ L(X)
‖f‖X: the norm of f ∈ X where X is a function space

Other notations
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sgn : the sign function on R
δij: the Kronecker delta
∅: the empty set
supp : support of a function
min: the minimum
max: the maximum
sup: the supremum
ess sup : the essential supremum
dim: dimension of a space
O(|x|α): f(x) = O(|x|α) if |f(x)|

|x|α → 0 as |x|→ 0 for α > 0
O(|x|α): f(x) = O(|x|α) if there is a constant C > 0 such that |f(x)| 6 C|x|α

for small x and α > 0
f ∗ g: the convolution of two functions f and g on Rd
〈f,g〉: the integral of the product of two functions f and g on Rd
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