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ABSTRACT

Space plasmas are dominated by the presence of large-amplitude waves, large-scale inhomogeneities, kinetic effects and turbulence.
Beside the homogeneous turbulence, the generation of small scale fluctuations can take place also in other realistic configurations,
namely, when perturbations superpose to an inhomogeneous background magnetic field. When an Alfvén wave propagates in a
medium where the Alfvén speed varies in a direction transverse to the mean field, it undergoes phase-mixing, which progressively
bends wavefronts, generating small scales in the transverse direction. As soon as transverse scales become of the order of the proton
inertial length dp, kinetic Alfvén waves (KAWs) are naturally generated. KAWs belong to the branch of Alfvén waves and propagate
almost perpendicularly to the ambient magnetic field, at scales close to dp. Many numerical, observational and theoretical works
have suggested that these fluctuations may play a determinant role in the development of the solar-wind turbulent cascade. In the
present paper, the generation of large amplitude KAW fluctuations in inhomogeneous background, as well as their effect on the
protons, have been investigated by means of hybrid Vlasov-Maxwell direct numerical simulations. Imposing a pressure balanced
magnetic shear, the kinetic dynamics of protons has been investigated by varying both the magnetic configuration and the amplitude
of the initial perturbations. Of particular interest here is the transition from quasi-linear to turbulent regimes, focusing in particular
on the development of important non-Maxwellian features in the proton distribution function driven by KAW fluctuations. Several
indicators to quantify the deviations of the protons from thermodynamic equilibrium are presented. These numerical results might
help to explain the complex dynamics of inhomogeneous and turbulent astrophysical plasmas, such as the heliospheric current sheet,
the magnetospheric boundary layer, and the solar corona.
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1. Introduction

Alfvénic fluctuations, characterized by high velocity-magnetic
field correlation and by a low level of density and magnetic field
intensity relative variations, are commonly observed in space
plasmas. Starting from the pioneering work by Belcher & Davis
(1971), in-situ measurements in the solar wind have shown that
Alfvénic fluctuations represent the main component of turbu-
lence in high-speed streams, at scales larger than the proton
inertial length dp = VA/Ωcp (see Bruno & Carbone 2013 for
a review); VA and Ωcp being the Alfvén speed and the proton
cyclotron frequency, respectively. Moreover, in recent years the
presence of velocity fluctuations propagating along the magnetic
field at a speed compatible with the local Alfvén velocity has
also been ascertained in the solar corona (Tomczyk et al. 2007;
Tomczyk & McIntosh 2009) and interpreted as Alfvén waves.
Such waves could possibly represent a source for Alfvénic fluc-
tuations detected in the turbulence of solar wind, which emanates
from the corona.

At scales comparable with dp, a variety of observations
in the solar wind have suggested that fluctuations may con-
sist primarily of kinetic Alfvén waves (KAWs; Bale et al. 2005;
Sahraoui et al. 2009). In the linear fluctuation terminology,
KAWs are waves belonging to the Alfvén branch, at wavevec-
tors k almost perpendicular to the ambient magnetic field B0,

with k ∼ d−1
p . A detailed discussion of the properties of KAWs

can be found in Hollweg (1999; see also references therein for
a more complete view of the subject), for example. In the last
decades, KAWs have received considerable attention due to their
possible role in a normal mode description of turbulence. Indeed,
theoretical studies (e.g., Shebalin et al. 1983; Carbone & Veltri
1990; Oughton et al. 1994) have shown that the turbulent cas-
cade in magnetized plasma tends to develop mainly in directions
perpendicular to B0. Anisotropic spectra have been commonly
observed in space plasmas, showing the presence of a significant
population of quasi-perpendicular wavevectors (Matthaeus et al.
1986, 1990). The above considerations suggest that fluctua-
tions with characteristics similar to KAWs are naturally gen-
erated by a turbulent cascade at scales close to dp. Many so-
lar wind observational studies (Bale et al. 2005; Sahraoui et al.
2009; Podesta & TenBarge 2012; Salem et al. 2012; Chen et al.
2013; Kiyani et al. 2013), theoretical works (Howes et al. 2008a;
Schekochihin et al. 2009; Sahraoui et al. 2012) as well as numer-
ical simulations (Gary & Nishimura 2004; Howes et al. 2008b;
TenBarge & Howes 2012) have suggested that fluctuations near
the end of the magnetohydrodynamics inertial cascade range
may consist primarily of KAWs, and that such fluctuations can
play an important role in the dissipation of turbulent energy. Due
to a non-vanishing parallel component of the electric field as-
sociated with KAWs, these waves have also been considered
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in the problem of particle acceleration (Voitenko & Goossens
2004; Décamp & Malara 2006). Particle acceleration in Alfvén
waves in a dispersive regime has been studied both in 2D
(Tsiklauri et al. 2005; Tsiklauri 2011) and 3D (Tsiklauri 2012)
configurations. Recently, Vasconez et al. (2014) have studied
collisionless Landau damping and wave-particle resonant inter-
actions in KAWs.

Beside the homogeneous turbulence, generation of small
scale fluctuations takes place also in more realistic configura-
tions, namely, when perturbations superpose to an inhomoge-
neous mean field B0(x). For instance, an Alfvén wave propagat-
ing in a medium where the Alfvén velocity varies in a direction
transverse to B0 undergoes phase-mixing (Heyvaerts & Priest
1983), which progressively bends wavefronts, thus generating
small scales in the transverse direction. Linear wave propa-
gation in a transverse-structured background and the result-
ing production of small scales in the magnetohydrodynamic
(MHD) regime has been extensively studied both analyti-
cally and numerically (Mok & Einaudi 1985; Steinolfson 1985;
Lee & Roberts 1986; Davila 1987; Hollweg 1987; Califano et al.
1990, 1992; Malara et al. 1992, 1996; Nakariakov et al. 1997;
Kaghashvili 1999; Tsiklauri & Nakariakov 2002; Tsiklauri et al.
2003; Ofman 2010; Ozak et al. 2015). Alfvén waves prop-
agating on equilibria containing an X-type magnetic null
point (Landi et al. 2005; McLaughlin et al. 2011; Pucci et al.
2014), as well as in 3D configurations in the WKB limit
(Similon & Sudan 1989; Petkaki et al. 1998; Malara et al. 2000,
2003, 2005, 2007), have also been considered, finding a fast for-
mation of small-scale structures transverse to the background
magnetic field. Similar ideas involving dissipative mechanisms
related to interaction of Alfvén waves or KAWs and phase
mixing have been examined in the context of the magneto-
spheric plasma sheet (Lysak & Song 2011) and in coronal loops
(Ofman & Aschwanden 2002). In all those configurations small
scales are formed as a consequence of the coupling between the
wavevector k0 associated with the background inhomogeneity
and the wavevector k associated with the perturbation. This ef-
fect, however, also appears in the context of nonlinear MHD
when imposed parallel propagating waves interact with an in-
homogeneous background consisting either of pressure balanced
structures or velocity shears (Ghosh et al. 1998).

The above considerations indicate that, when Alfvén waves
propagate in a background that is inhomogeneous in the di-
rection transverse to B0, KAWs should naturally form as soon
as transverse wavevectors of the order of d−1

p are generated by
the wave-inhomogeneity coupling. This mechanism has been
investigated in recent works (Vásconez et al. 2015; Pucci et al.
2016) where the evolution of an initial Alfvén wave with differ-
ent polarizations propagating in a pressure-balanced inhomoge-
neous equilibrium has been analyzed numerically. These studies
have been carried out by means of both Hall-MHD and hybrid
Vlasov-Maxwell (HVM) simulations. The former include dis-
persive effects determining the evolution of structures at k ∼ d−1

p ,
with a limited computational effort, whilst the latter allow for a
description of kinetic effects related to the evolution of the pro-
ton velocity distribution function (VDF). Results have shown
that, in all the considered configurations, the time evolution of
initially linearly polarized Alfvén waves leads to the genera-
tion of KAWs in the inhomogeneity regions of the equilibrium
structure. This happens both in cases when phase-mixing is ac-
tive and when it is absent. Moreover, HVM simulations, carried
out for waves with moderate amplitudes, have shown the pres-
ence of kinetic features related to departure from Maxwellian-
ity of the proton VDF with (i) T⊥ , T||; and (ii) the presence

of beams of protons accelerated along the background magnetic
field (Valentini et al. 2011) at a speed comparable with the par-
allel phase velocity of the waves. Both features (i) and (ii) are
spatially localized at KAWs locations and, moreover, the pres-
ence of proton beams is probably related to a parallel electric
field component associated with KAWs. The above quasi-linear
studies suggest that the dynamics of Alfvén waves with shears
can be crucial for the understanding of more complex (and re-
alistic) scenarios, such as the turbulent solar wind, the mag-
netosheet and the inhomogeneous regions of the solar corona.
Hence the keypoint is now to understand the transition from
KAWs to turbulence.

In the present paper we use 2D-3V HVM simulations (two
dimensions in physical space and three dimensions in veloc-
ity space) to investigate the dynamics of Alfvén waves with
inhomogeneous magnetic configurations, at scales comparable
with the proton skin depth, varying both the background equi-
librium and the fluctuation amplitude. Previous HVM simula-
tions (Servidio et al. 2012, 2014, 2015) carried out for more
turbulent configurations have shown the formation of local de-
partures from Maxwellianity in the proton VDF, such as temper-
ature anisotropy, with a significant dependence on the value of
the proton plasma β (ratio between kinetic and magnetic pres-
sure). Here, we consider both moderate and large-amplitude per-
turbations, hence approaching turbulence, giving a quantitative
characterization of the modifications the proton VDF undergoes
in consequence of interactions with the perturbations.

The outline of the paper is as follows. In Sect. 2, we present
the HVM equations and the setup of the numerical runs. In
Sect. 3, we discuss the results of three HVM simulations ob-
tained when varying the parameters of the initial equilibrium and
the amplitude of the initial perturbations, focusing, in particular,
on the quantification of the nonlinear departures of the proton
VDF from local Maxwellian equilibrium. We finally conclude
and summarize in Sect. 4.

2. Hybrid Vlasov-Maxwell simulation setup

We numerically solve the HVM equations (Valentini et al. 2007)
in 2D-3V phase space configuration. The equations of the HVM
system in physical units are written as:

∂ f
∂t

+ u · ∇ f +
e

mp

(
E +

1
c
u × B

)
·
∂ f
∂u

= 0, (1)

E = −
1
c

(u × B) +
1
en

(
j × B

c

)
−

1
en
∇Pe, (2)

∂B
∂t

= −c∇ × E; j =
c

4π
∇ × B, (3)

where f is the proton distribution function, E and B the electric
and magnetic fields, respectively, j the total current density (the
displacement current has been neglected in the Ampere equation
and quasi-neutrality is assumed), mp and e are the proton mass
and charge, respectively, and c is the velocity of light. The pro-
ton density n (which is equal to the electron density) and bulk
velocity u are obtained as velocity moments of f . The scalar
electron pressure Pe is assigned through an isothermal equation
of state Pe = κBnTe, where Te = const is the electron tempera-
ture and κB the Boltzmann constant. The above equations can be
re-written in a dimensionless form using the following standard
procedure. We consider a typical value B̃ of the magnetic field
and a typical density ñ. Using these quantities we build up a typ-
ical Alfvén velocity c̃A = B̃/(4πmpñ)1/2, a gyration frequency
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Ω̃p = eB̃/(mpc), a typical proton inertial length d̃p = c̃A/Ω̃p, a
typical current density j̃ = cB̃/(4πd̃p), and a typical temperature
T̃ = B̃2/(4πκBñ). Then, we normalize the electric and magnetic
fields E and B to B̃; the velocities u and u to c̃A; the density n
to ñ; the current density j to j̃; the electron temperature Te to T̃ ;
the space variables to d̃p and time to Ω̃−1

p . Equations (1)–(3) are
written in terms of the dimensionless quantities defined above in
the following form:

∂ f
∂t

+ u · ∇ f + (E + u × B) ·
∂ f
∂u

= 0, (4)

E = −(u × B) +
1
n

( j × B) −
1
n
∇Pe, (5)

∂B
∂t

= −∇ × E; ∇ × B = j, (6)

where, for simplicity, each dimensionless quantity is indicated
using the same notation as the corresponding physical quantity.
In what follows, all the results are expressed in terms of the di-
mensionless quantities defined above.

The normalized HVM Eqs. (4)–(6) have been solved in a
double periodic spatial domain D = L×L = [0, 16π]×[0, 16π]. In
the three-dimensional velocity box, the distribution function f is
set equal to zero for |v| > vmax = 5vthp in each velocity direction.
Physical space is discretized with Nx = 256 grid points in the
x direction and Ny = 1024 gridpoints in the y direction, while
velocity space with NVx = NVy = NVz = 51 grid points.

When dealing with nonuniform situations in kinetic regime,
the definition of an equilibrium state is a delicate point
(Cerri et al. 2013, 2014). Here, we consider a nonuniform equi-
librium configuration, where physical quantities vary only along
the y direction, or are uniform. Quantities relative to the equilib-
rium state are indicated by the upper index “(0)”. The equilib-
rium magnetic field is directed along the x direction:

B(0) = B(0)(y) ex, (7)

where ex is the unit vector in the x direction, while the equilib-
rium proton distribution function is a Maxwellian with the fol-
lowing form:

f (0)(y, u) =
n(0)(y)

(2πT (0)
p )3/2

exp

− v2
x + v2

y + v2
z

2T (0)
p

 , (8)

where the function n(0)(y) represents the nonuniform density:∫
f (0)(y, u) d3u = n(0)(y), (9)

and T (0)
p is the equilibrium proton temperature which we assume

to be uniform. Moreover, the corresponding equilibrium proton
bulk velocity is vanishing:

u(0)(y) =
1

n(0)(y)

∫
u f (0)(y, u) d3u = 0. (10)

From Eq. (5) and using Eqs. (7) and (10), the equilibrium electric
field can be derived:

E(0) = −
1

n(0)(y)


 d
dy

B(0)2

2

 +
dn(0)

dy
Te

 ey, (11)

where ey is the unit vector in the y direction. We note that
∇×E(0) = 0; thus, according to the Faraday law Eq. (6), the mag-
netic field B(0) remains constant in time. Finally, we consider the
Vlasov equation, calculating the single terms in Eq. (4):

u · ∇ f (0) = vy
∂ f (0)

∂y
= vy

dn(0)

dy
f (0)

n(0) , (12)

E(0) ·
∂ f (0)

∂u
=

 d
dy

B(0)2

2

 + Te
dn(0)

dy

 f (0)

n(0)

vy

T (0)
p

, (13)

(
u × B(0)

)
·
∂ f (0)

∂u
=

B(0) f (0)

T (0)
p

(
vzvy − vyvz

)
= 0. (14)

Using Eqs. (12)–(14), then Eq. (4) gives:

∂ f (0)

∂t
+

vy f (0)

n(0)T (0)
p

∂

∂y

n(0)
(
T (0)

p + Te

)
+

B(0)2

2

 = 0. (15)

Then, the proton distribution function f (0) remains stationary if
the total (proton + electron + magnetic) pressure is uniform:

P(0)
T ≡ n(0)

(
T (0)

p + Te

)
+

B(0)2

2
= const. (16)

In conclusion, the considered configuration represents an equi-
librium state, provided that the pressure balance condition (16)
is satisfied. We note that such a state also corresponds to a MHD
equilibrium: in fact, since the magnetic tension associated to B(0)

is vanishing (Eq. (7)), the condition (16) expresses the equilib-
rium among all the forces acting on the magnetofluid.

More specifically, for the equilibrium magnetic field we used
the following form:

B(0)(y) = bm +
bM − bm

1 +

(
y − 8π
16πh

)r + α
(
y

8π
− 1

)2
, (17)

which defines a magnetic field which is maximum at the cen-
ter y = 8π of the domain and minimum at the borders y = 0
and y = 16π. We used the values r = 10 and h = 0.2, which
give an almost homogenous field both in the central part and in
the two lateral regions of the domain; these homogeneity regions
are separated by two sharp shear layers which are located at ap-
proximately y = 4π and y = 12π, respectively. The last term in
Eq. (17) is a small correction which has been introduced in order
to acquire the null first derivative of B(0)(y) at y = 0 and y = 16π.
This is obtained using the following value for the parameter α:

α =
(bM − bm)r

2(2h)r

[
1 +

(
1

2h

)r]2 ' 2.62 × 10−4. (18)

In this case, both B(0)(y) and dB(0)/dy are periodic functions in
the interval [0, 16π]. However, higher order derivatives of B(0)(y)
are not exactly periodic. For this reason, the expression of B(0)

in Eq. (17) has been corrected by filtering out harmonics with
wavenumbers larger than 70 in its spectrum. This filtering pro-
cedure does not alter the profile B(0)(y). The maximum value of
B(0)(y) is given by the parameter bM = B(0)(y = 8π), while the
minimum is B(0)(y = 0) = B(0)(y = 16π) ' bm. We performed
three runs (RUN I, RUN II and RUN III) with different values of
the parameters bM and bm, which are given in Table 1. In the
three runs, the jump in the magnetic field magnitude through the
shear regions is the same, while in RUN I values of both bM and
bm larger than in RUN II and RUN III have been used.

The proton equilibrium temperature is assumed to be equal
to the electron temperature T (0)

p = Te = T (0). The equilibrium
density n(0)(y) has been determined by imposing the total pres-
sure equilibrium (16):

n(0)(y) =
1

2T (0)

P(0)
T −

B(0)(y)2

2

 · (19)
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Fig. 1. Profiles of c(0)
A (y) (left panel)

and βp(y) (right panel) for RUN I (black
curve) and RUN II and RUN III (red
curve).

Table 1. Simulations setup.

RUN bM bm T (0) P(0)
T a

I 1.5 1 0.5 1.748 0.2
II 0.8 0.3 0.125 0.4 0.2
III 0.8 0.3 0.125 0.4 0.3

The values of the total pressure P(0)
T and of the temperature T (0),

which have been used for the three runs, are given in Table 1.
The condition (19) ensures that the considered equilibrium is a
stationary state of the system. This has been explicitly verified
by performing a run (not shown) in which the above equilibrium
state is used as the initial condition.

We define a non uniform Alfvén velocity associated with the
equilibrium structure as c(0)

A (y) = B(0)(y)/[n(0)(y)]1/2 and a non
uniform proton plasma beta at equilibrium as β(0)

p (y) = 2T (0)/c2
A.

In Fig. 1 the profiles of c(0)
A (y) (left panel) and β(0)

p (y) (right panel)
are shown for RUN I (black curve) and for RUN II and RUN III
(red curve): the shear layers and the homogeneity regions are
clearly visible, where β(0)

p have values either larger or smaller
than the unity.

At the initial time t = 0 a linearly polarized Alfvénic per-
turbation is superposed on the above-defined equilibrium. The
initial value of the magnetic field (equilibrium + perturbation) is

B(x, y, t = 0) = B(0)(y) + B(1)(x) = B(0)(y) + a cos(x/8)ez, (20)

with ez the unit vector in the z direction, and a the amplitude of
the initial perturbation. The initial proton distribution function is
a shifted Maxwellian of the following form

f (x, y, u, t = 0) =
n(0)(y)

(2πT (0))3/2 exp

− v
2
x + v2

y +
[
vz − u(1)(x, y)

]2

2T (0)

 ,
(21)

where

u(1)(x, y) = −
a[

n(0)(y)
]−1/2 cos(x/8). (22)

It can be verified that the density and temperature associated with
the initial proton distribution function (21) are, respectively:

n(x, y, t = 0) = n(0)(y), T (x, y, t = 0) = T (0), (23)

indicating that the initial density and temperature perturbations
are both vanishing. Moreover, the initial proton bulk velocity is

u(x, y, t = 0) ≡
1

n(x, y, t = 0)

∫
u f (x, y, u, t = 0) d3u

= u(1)(x, y) ez, (24)

so that u(x, y, t = 0) = −(c(0)
A /B(0))B(1). The values of the pertur-

bation amplitude a are given in Table 1.
In the three runs, both the equilibrium structure and the per-

turbation amplitude are modified, so as to increase the level
of nonlinearity when going from RUN I to RUN III. In fact, in
RUN II the perturbation amplitude does not change with respect
to RUN I, but the average equilibrium magnetic field intensity
is smaller than in RUN I, implying a larger ratio a/B(0)(y). Then,
we expect that nonlinear effects are more relevant in RUN II than
in RUN I. In particular, nonlinearities are more relevant in the
lateral regions of D, where B(0) has lower values. Nonlinear ef-
fects further increase in RUN III, where the perturbation ampli-
tude is increased by a factor 1.5, while the same equilibrium as
in RUN II is considered. Finally, we note that the profiles of β(0)

p
are different for the three runs, the configuration of RUN II and
RUN III corresponding to a mean β(0)

p larger than in RUN I.

3. Results

As recently discussed in Vásconez et al. (2015), Pucci et al.
(2016), when initializing the HVM simulations with the con-
figuration described above, the mechanism of phase-mixing of
large-scale parallel propagating Alfvén waves in the shear re-
gions produces KAW fluctuations at wavelengths close to dp and
at large propagation angles with respect to the magnetic field.
These perturbations, while propagating in the x direction, drift
along y towards the boundaries of the simulation box, due to a
non-vanishing transverse component of the group velocity. Here,
we present a detailed study of the role of kinetic effects on pro-
tons associated with the propagation of KAWs produced by the
above mechanism, as dependent on the characteristic of the ini-
tial equilibrium and/or on the amplitude of the initial Alfvénic
perturbation. In particular, we focus on the deviations of the
proton VDF from thermodynamic equilibrium and report on the
transition to a turbulent state observed when increasing the am-
plitude of the initial disturbance as compared to the background
values.
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Fig. 2. Time evolution of the parameter εmax (detailed in the text) com-
puted from the VDFs of RUN I (black triangles), RUN II (green dia-
monds) and RUN III (red stars). The vertical blue-dashed line corre-
sponds to the theoretical estimation of the time at which phase-mixing
produces transverse scales comparable to dp.

In order to characterize and compare the three runs, we have
computed the quantity ε(x, y, t) (Greco et al. 2012), which is a
measure of the deviation of the proton VDF from the Maxwellian
configuration shape:

ε(x, y, t) =
1

n(x, t)

√∫ [
f (x, u, t) − M(x, u, t)

]2 d3v. (25)

Here, M is the corresponding Maxwellian distribution with the
same density, bulk velocity and isotropic temperature as f ; ε is a
positive definite quantity and may be viewed as a distance or sep-
aration between the computed f and an equivalent Maxwellian.
Figure 2 shows the time evolution of εmax(t) = maxD{ε(x, y, t)}
(the maximum value of ε over the two-dimensional domain D),
from the simulations as in Table 1. From this figure it can be
seen that εmax grows in time for all simulations reaching an al-
most constant saturation value after the time td ' 60, that gives
an estimation of the typical time at which phase mixing pro-
duces transverse scales of the order of dp (Vásconez et al. 2015).
It is clear from this picture that the saturation level of εmax in-
creases as the initial perturbation amplitude to the mean equilib-
rium magnetic field intensity ratio increases. In fact, going from
RUN I, through RUN II, to RUN III, nonlinear effects become
more and more relevant, and kinetic processes work more and
more efficiently to drive the protons away from thermodynamic
equilibrium.

The subsequent analysis of the system has been performed
at a given time (t = t∗ = 105), at which εmax has reached its
saturation level for all the runs and kinetic processes have sig-
nificantly influenced the proton dynamics. In Fig. 3, the con-
tour plots of | j| (upper row), ε (middle row) and δT = T − T (0)

(lower row) are reported for RUN I (left column), RUN II (cen-
tral column) and RUN III (right column). Going from RUN I
to RUN III, the current density, originally concentrated near the
shear regions (panel a), becomes more intense and tends to fil-
ament when kinetic physics becomes dominant (panel c). Non-
Maxwellian features in RUN I are essentially located within the
shear regions near the peaks of | j| (panel d). In RUN II, such
features are still peaked in the shear regions where dispersive
effects responsible for the KAW formation are active (panel e).
However, significant departures from Maxwellianity are visible

also in the lateral homogeneous regions, starting from the early
stage of the simulation (not shown). This becomes more evi-
dent in RUN III (panel f). These latter features can be ascribed
to nonlinear effects, which are particularly strong in the lateral
regions, where the ratio a/B(0) is of the order of unity. Finally,
temperature variations also exhibit a behavior similar to that of
ε, being more intense in the shear regions for RUN I (panel g)
as compared to RUN II (panel h) and RUN III (panel i), in
which significant values of δT are recovered in the whole spatial
domain.

We also noticed that, when increasing the nonlinearity of
the initial perturbation, a clear transition to turbulence is re-
covered. This can be appreciated in Fig. 4 where the power
spectra of magnetic |δBk |

2 (top) and electric |δEk |
2 (middle) en-

ergy, summed over the parallel wavenumbers kx (reduced spec-
tra), are plotted as a function of the transverse wavenumber
ky. Here, for each field g(x, y), we have computed δg(x, y) =
g(x, y) − 〈g(x, y)〉x, where 〈·〉x represents the mean value in the
x direction. It is clear from these plots that the magnetic and
electric energy content at wavenumbers larger than kydp ' 2 is
negligible for the case of RUN I (black curve), while it increases
significantly for RUN II and RUN III (green and red curve, re-
spectively). Moreover, at the bottom of same figure, we dis-
play the power spectrum of the parallel electric energy |δE‖k |2.
Here, the clear peak visible at kydp ' 2 in the case of RUN I
(black curve) corresponds to the KAW fluctuations produced
through phase mixing, as discussed in detail in (Vásconez et al.
2015). It is worth noticing that this peak disappears with in-
creasing spectrum extension (green and red curves), meaning
that the energy stored in KAW fluctuations cascades towards
short spatial scales when kinetic processes come into play. We
point out that the final state reached in RUN III is not a state
of fully developed turbulence in the classical Kolmogorov view,
but that it can be thought of as a state of increased nonlinearity,
with respect to RUN I and RUN II; in fact, going from RUN I
to RUN III the signature of wave-like activity (the well-defined
bump visible in the spectra for RUN I) is gradually lost and a
significant amount of energy reaches the spectral range of high
wavenumbers.

The Eulerian HVM code allows for an almost noise-free de-
scription of the proton distribution function in phase space, mak-
ing it, for this reason, an indispensable tool for analyzing the
effects of kinetic processes on plasma dynamics. In Fig. 5, we
report the three-dimensional surface plots of the proton VDF at
t = 105, computed at the spatial point where ε = εmax for each
run (these spatial points are located inside the shear regions, as
can be seen in the middle panels of Fig. 3). The unit vector of the
local magnetic field is displayed in these plots as a magenta tube.
In the upper plot, corresponding to RUN I, one notices smooth
deviations of the particle VDF from the spherical Maxwellian
shape, with the appearance of a barely visible bulge along the
local field and a ring-like modulation in the perpendicular plane.
Here, the direction of the local field appears to still be a pre-
ferred direction of symmetry for the particle VDF. In RUN II
(middle plot) where nonlinearities are stronger, the particle VDF
appears more distorted than in RUN I. Finally, in RUN III (lower
plot) where the transition to a turbulent state has been observed
through the power spectra discussed above, any symmetry of the
VDF is lost, as sharp gradients and small-scale velocity struc-
tures have been produced through the nonlinear interaction of
protons with the fluctuating fields.

In order to provide a more quantitative description of
the deviation of the VDFs from thermodynamic equilibrium,
we computed the preferred directions of f in velocity space
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Fig. 3. 2D contour plots, at t = 105, of the modulus of the current density | j| (upper row), the non-Maxwellianity measure ε (middle row), and
temperature variations δT (lower row), for RUN I (left column), RUN II (middle column), and RUN III (right column).

(Servidio et al. 2012), for each spatial position, from the stress
tensor:

Πij = n−1
∫

(vi − ui)(v j − u j) f d3v. (26)

This tensor can be diagonalized by computing its eigenvalues
{λ1, λ2, λ3} (ordered in such way that λ1 > λ2 > λ3) and the cor-
responding normalized eigenvectors {ê1, ê2, ê3} which define the
minimum variance frame (MVF). We point out that λi are the
temperatures and êi the anisotropy directions of the VDF. The
information given by the ratios λi/λ j is in some sense included
in ε; nevertheless, the ratios of the eigenvalues evidently provide
additional relevant insights into the symmetry of VDF, which is
important to investigate. Therefore, for RUN III at t = t∗ = 105,
we computed the probability distribution function (PDF) of the
ratios λi/λ j (i, j = 1, 2, 3 and j , i), conditioned to the values
of ε(t = t∗). Note that each of these ratios is equal to unity for
a Maxwellian VDF. In Fig. 6, we show the PDF of λ1/λ2 (left
panel), λ1/λ3 (middle panel) and λ2/λ3 (right panel); these PDFs

have been computed for three different ranges of values of ε,
0 ≤ ε(t∗) ≤ εmax(t∗)/3 (black curve), εmax(t∗)/3 < ε(t∗) ≤
2εmax(t∗)/3 (red curve) and 2εmax(t∗)/3 ≤ ε(t∗) ≤ εmax(t∗) (blue
curve). It can be noticed from this figure that in the range of small
ε the three PDFs have a peak close to unity (they are not exactly
centered around 1, since the minimum value of ε is not zero),
suggesting that, when the level of nonlinearity is low, the distri-
bution function can be slightly far from the Maxwellian shape,
still keeping one (or more) axis of symmetry. On the other hand,
as ε increases, high tails appear in the PDF signals, meaning that
in the case of significant deviations from Maxwellian, is not pos-
sible to make assumptions on the shape of the VDF. As a conse-
quence, the use of reduced models, based on restrictive approxi-
mations on the symmetry of the VDF, is not appropriate and one
must adopt more complete models able to describe the evolution
of the VDF in a full 3D velocity space. Note, in particular, that
because of the multiple anisotropies observed, and because of the
misalignment with the ambient field, any gyrotropic approxima-
tion loses its validity, as we further demonstrate below. We point
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Fig. 4. Power spectra of the total magnetic field (top panel), total electric
field (middle panel) and electric field component parallel to the local
magnetic field (bottom panel), for RUN I (black line), RUN II (green
line) and RUN III (red line).

out that our hybrid model is limited by the fluid approximation
used for the electrons. Recent high-resolution measurements in
the magnetosheath plasma (Burch et al. 2016) show that the ve-
locity distributions of electrons display marked non fluid behav-
ior. For these reasons, we expect that a full treatment including
kinetic electrons would reveal a dynamics analogous to that of
the protons, with even more pronounced non-thermal effects, es-
pecially close to reconnecting current sheets.

With the aim of characterizing the nature of the deforma-
tion of the particle VDFs and to identify the spatial regions that
are the sites of kinetic activity, we computed two indexes of de-
parture from Maxwellian, that is, the temperature anisotropy in-
dex and the gyrotropy index, in two different reference frames;
namely the MVF and the local magnetic field frame (LMF).

Fig. 5. Iso-surface plot of the proton VDF in velocity space, at the spa-
tial location where ε is maximum for RUN I (top), RUN II (middle), and
RUN III (bottom); the magenta tube in each plot indicates the direction
of the local magnetic field.

Therefore, we define the anisotropy indicators ζ = |1 − λ1/λ3|

(MVF) and ζ∗ = |1 − T⊥/T‖| (LMF), where T⊥ and T‖ are the
temperatures with respect to the local magnetic field, and the
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Fig. 6. PDF of λ1/λ2 (left), λ1/λ3 (middle) and λ2/λ3 (right) from RUN III at t = 105, computed for three different ranges of values of ε, namely
0 ≤ ε(t∗) ≤ εmax(t∗)/3 (black curve), εmax(t∗)/3 < ε(t∗) ≤ 2εmax(t∗)/3 (red curve) and 2εmax(t∗)/3 ≤ ε(t∗) ≤ εmax(t∗) (blue curve).

gyrotropy indicator in the MVF η = |1−λ2/λ3|. The gyrotropy in-
dicator in the LMF η∗ can be computed by using the normalized
Frobenius norm of the non-gyrotropic part N of the full pressure
tensor Π, introduced by Aunai et al. (2013):

η∗ =

√∑
i,j N2

ij

Tr(Π)
, (27)

where Nij are the components of the tensor N, and Tr(N) = 0.
It is worth pointing out that all indexes defined above are iden-
tically null if the particle VDF is Maxwellian. The contour plots
of ε in the middle column of Fig. 3 show that the main depar-
tures from Maxwellian occur, for both runs, in the shear regions
where current density achieves its maximum value (though high
values of ε are spread on a larger portion of the spatial domain
around the shear regions for RUN II and even more for RUN III).
In Fig. 7 we report the y profile of the non-Maxwellianity in-
dexes ζ (anisotropy in the MVF), ζ∗ (anisotropy in the LMF), η
(non-gyrotropy in the MVF) and η∗ (non-gyrotropy in the LMF),
averaged over x for the three runs. We focus on the shear region
on the upper half of the spatial simulation domain (delimited by
vertical black-dashed lines).

In the more turbulent situation of RUN III, nonlinear in-
teraction of protons with large amplitude fluctuations of the
KAW type generates larger deviation of the particle VDF from
Maxwellian in the shear region. Moreover, this effect is also vis-
ible in the regions outside the shear; this could be due to both
the transverse drift of KAWs from the shear regions towards the
boundaries of the numerical domain (Vásconez et al. 2015), and
to nonlinear effects intrinsic to the initial perturbations which
are stronger in such lateral regions. On the other hand, for the
quasi-linear RUN I, the particle VDF becomes anisotropic and
non-gyrotropic as viewed from both MVF and LMF, only in the
shear regions. An intermediate situation is observed for RUN II.

In order to quantitatively study the generation of structures
in velocity space due to kinetic processes, we implemented the
following procedure. We again focused on the most turbulent
run (RUN III) at time t = t∗ = 105. We selected the spatial lo-
cations where the maximum and the minimum values of ε are
achieved at this time and considered the corresponding proton
VDFs fmax(u) and fmin(u) at these spatial locations. It is worth
noting that fmax(u) is the VDF shown in Fig. 5 (bottom). There-
fore, we performed a rotation of fmax(u) and fmin(u), moving
them into the system u′ in which the local magnetic field is
along the êv′z direction. At this point, we computed the quantities
δmax(u′) = fmax(u′) − f B

max(u′) and δmin(u′) = fmin(u′) − f B
min(u′),

f B
max/min being the bi-Maxwellian VDF evaluated through the ve-

locity moments of fmax/min. We remark that δmax and δmin store
information about the kinetic effects at work in the system evo-
lution, since, by subtracting their corresponding bi-Maxwellian
from the VDFs, the main fluid-like effects have been ruled out.
Note that there are several recent works where attention has been
concentrated on the dynamics of the velocity space, very often
invoked as entropy cascade (Tatsuno et al. 2009; Howes et al.
2011; Schekochihin et al. 2016). This new concept is very in-
teresting since it connects the cascade in physical space with a
similar cascade in velocity space, where finer and finer scales are
formed and finally dissipated through Landau damping or colli-
sional mechanisms (Pezzi et al. 2016).

In order to analyze the velocity space structures, one can pro-
ceed in several ways. One possibility is given by the decompo-
sition of the VDF through Hermite polynomials (Tatsuno et al.
2009; Howes et al. 2011; Schekochihin et al. 2016; Pezzi et al.
2016). The advantage of this complete decomposition is that one
can capture all the features in velocity space (especially in our
case, where high resolution VDFs are available). On the other
hand the interpretation of the eigenmodes in terms of classi-
cal scaling arguments (in analogy with the cascade in physical
space) may be quite complicated in a case where the VDF is
fully three-dimensional and cannot be reduced to a simplified
system by assuming, for example, gyrotropy. The second pos-
sibility is to decompose the fluctuations using classical Fourier
decomposition in order to measure the intensity of the velocity
space fluctuations and understanding typical scales in velocity
space. Even though δmax and δmin are not formally periodic func-
tions in velocity space, they go rapidly to zero at the boundary
of the simulation velocity box, allowing, therefore, the use of
Fast Fourier transforms. For this reason, in order to characterize
the velocity space structures generated by the kinetic dynamics
of protons, we performed a velocity space Fourier transforma-
tion of δmax and δmin. In Fig. 8, we show the Fourier spectra
S x(kv′x ) (averaged over kv′y and kv′z , left), S y(kv′y ) (averaged over
kv′x and kv′z , middle) and S z(kv′z ) (averaged over kv′x and kv′y , right),
respectively, for δmax (black line) and δmin (red line). Here, kv′i
represents the velocity space wave number associated with the
velocity scale v′i .

One can easily see that, in each direction, velocity space
spectra of δmin (VDF close to the Maxwellian shape) display a
significantly lower power amplitude than those of δmax. More-
over, since the spectra of δmax (black curves) have comparable
energetic content in each direction, one may argue that there
is no preferential direction for the VDF, when this is efficiently
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shaped by kinetic processes. In particular, the high kv bumps may
indicate the presence of structures (beams and rings) in veloc-
ity space. An interesting analogy arises here with the cascade
in physical space, in the presence of strongly anisotropic turbu-
lence. As can be observed from Fig. 8, for a low level of ki-
netic activity (red curves), some isolated high-kv peaks can be
observed, possibly related to local Cherenkov and/or cyclotron
resonances (Kennel & Englelmann 1966). These are similar to
the peaks observed due to wave activity in the Eulerian spec-
tra (Dmitruk & Matthaeus 2009). On the other hand, when the
level of kinetic activity increases (black curves), these peaks
disappear, and a more continuum cascade-like spectrum is ob-
served in velocity space, similarly to that recovered in physical
space (cf. with Fig. 4). This is a preliminary study, which surely
deserves a future investigation. This phenomenology could be
related to the idea of the “double cascade” (physical-velocity
space), as suggested in several recent works (Tatsuno et al. 2009;
Schekochihin et al. 2016).

4. Summary and conclusions

As recently shown by Vásconez et al. (2015), Pucci et al. (2016),
kinetic Alfvén waves are naturally generated through the phase
mixing mechanism, when Alfvén waves propagate in an inho-
mogeneous medium. In the present paper, we numerically repro-
duced the generation of KAWs through 2D-3V Hybrid Vlasov-
Maxwell simulations by imposing Alfvénic perturbations on an
initial pressure balanced magnetic shear equilibrium. Both the
characteristics of the initial equilibrium and the amplitude of the
perturbations have been varied in order to explore the system dy-
namics in different regimes, focusing, in particular, on the tran-
sition from a quasi-linear to a turbulent regime. Moreover, as the
HVM code provides an almost noise-free description of the pro-
ton distribution function, we have shown how the interaction of
large amplitude KAW fluctuations with protons shapes the VDF
and makes it depart from local thermodynamic equilibrium.

When comparing the quasi-linear RUN I with the more non-
linear RUN II and the turbulent RUN III, one realizes that many
interesting effects arise as the amplitude of the perturbations in-
creases and the gradients of the initial magnetic shear become
sharper. First of all, any wave-like activity, recognized in RUN I
as well-defined bumps in the turbulent electric and magnetic
spectra, disappears in RUN II and RUN III, in which a signifi-
cant amount of energy is recovered at short spatial scales. As
a consequence of this small-scale activity, the proton VDF ap-
pears much more distorted in RUN III as compared to RUN I,
losing any property of symmetry with respect to the direction
of the local magnetic field. Indeed, as discussed in detail in the
previous section, in RUN III, in the spatial regions where strong
departures from Maxwellian are observed, the proton VDF de-
velops temperature anisotropy, non-gyrotropy features and many
other complicated deformations.

We proposed to provide quantitative information on these
kinetic distortions of the proton VDF by employing different
non-Maxwellianity indexes such as the anisotropy index and the
non-gyrotropy index, which have been computed both in the
minimum variance frame and in the local magnetic field frame.
Interestingly, all these indexes behave in a similar way, achiev-
ing higher values in the shear regions, where the initial magnetic
configuration produced strong current sheets, while decreasing
in the homogeneous regions far from the shears. These results
support the idea (Servidio et al. 2012; Valentini et al. 2014) that
proton kinetic effects are not uniformly distributed in space, but
are rather intermittent and localized in certain space regions

Fig. 7. Anisotropy indexes ζ (orange line) and ζ∗ (green line) and non-
gyrotropy indexes η (red line), and η∗ (black line), averaged over x and
plotted as a function of y in the interval y = [L/2, L], for RUN I (top
panel), RUN II (middle panel) and RUN III (bottom panel).

determined by the topology of the magnetic field. In future
works, we plan to extend our numerical studies to include the
kinetic physics of electrons, which are expected to reveal a
stronger non-Maxwellian character.

Finally, through a Fourier analysis performed on the devi-
ations of the proton VDF from a bi-Maxwellian, we pointed
out that, when kinetic effects are retained in the description
of the plasma dynamics, beside a turbulent cascade in physi-
cal space, an analogous cascade is produced in velocity space
(Tatsuno et al. 2009; Howes et al. 2011; Schekochihin et al.
2016), thus emphasizing the physical link between the small spa-
tial scale structures driven by the turbulent cascade and the fine
velocity gradients naturally arising through kinetic effects.
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Fig. 8. One-dimensional velocity space Fourier spectra S x(kv′x ) (left panel), S y(kv′y ) (middle panel) and S z(kv′z ) (right panel) for δ fmax (black lines)
and δ fmin (red lines), for RUN III at t = 105.
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