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We investigate the singular limit for the solutions to the compressible gas dynamics
equations with damping term, after a parabolic scaling, in the one-dimensional isentropic
case. In particular, we study the convergence in Sobolev norms towards diffusive
prophiles, in case of well-prepared initial data and small perturbations of them. The
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1. Introduction

The aim of this paper is to study the singular convergence of a class of solutions to
the one-dimensional compressible Euler flow through porous media. In particular,
we consider solutions to the system

pr + (PU)I = 07
(1.1)
ur+uux+p(p)z __u
p €

After the time-scaling 7 = t/e, we investigate the behaviour of the rescaled system
pi + (p°uf)y =0,

p(p°)y u’ (1.2)
€2ps = _5_2

uj +uug +

as the parameter ¢ goes to zero, and show that, under some assumption on the
initial data and on the limiting states at infinity, the density in (1.2) converges in
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a suitable norm to a self-similar solution to the Porous Medium equation

Pt :p(ﬁ)yzr (1~3>

This topic was first studied by Marcati and Milani in Ref. 9, in order to contribute
to the understanding of the hyperbolic nature of porous media flows. In the recent
paper by Marcati and Rubino,!! the case of inhomogeneous isentropic gas-dynamics
is studied in the framework of the Hypebolic to Parabolic Relaxation Theory. We
also mention the paper by Lattanzio and Yong,” where the hyperbolic-parabolic
relaxation limits are studied in the framework of H®-solutions, using the approach
of singular limits. This technique is the most natural to analyse the so-called initial
layer, which is one of the main issues of Ref. 7. Since we are not interested in this
kind of problems, we avoid initial layer phenomena by prescribing well-prepared
initial data.

The asymptotic behaviour of the damped compressible Euler flow in Lagrangian
coordinates has been studied by Hsiao and Liu in Refs. 1 and 2 and by Nishihara
in Ref. 12. Moreover, a result concerning the 2-D perturbation of this problem was
proved by Lattanzio and Marcati in Ref. 5. Recently in Ref. 13, Nishihara, Wang
and Yang proved a sharper result on the L,-convergence (2 < p < 00) by means
of a Green function technique. All the previously mentioned results deal with the
asymptotic analysis in Lagrangian coordinates and cannot be used to investigate
the asymptotic behaviour in the Eulerian framework. Our result can be seen as a
description of the large-time behaviour in Eulerian coordinates by carrying out the
parabolic scaling

Y t 1 y t
=72 =% us(y,t):gu (ga€_2
on the system
pr+ (pu)w =0,

uTJruuerM = —u.
P

(1.4)

We remark that although in both the Eulerian and the Lagrangian cases the limiting
prophiles satisfy the Porous Media equation, the two cases cover different physical
situations.

In the next section we provide a detailed explanation of the problem and
state the convergence results. In Sec. 3 we give the proof of the first theorem,
concerning the convergence of the density in L ([0, T], L°(R)) and of the velocity
in L2([0,T], L>°(R)) for any T > 0. In the last section we carry out a small pertur-
bation result for the Porous Medium equation, in order to extend the result in the
first theorem to the case of small perturbated initial datum for the density.
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2. Statement of the Problem and Results

Let us consider the one-dimensional, isentropic, compressible Euler equations
through a porous medium in Eulerian coordinates. In case of smooth solutions,
with p > 0, the system may be written as

Orp + udyp + pOyu =0,

(2.5)
O-u + udyu +

P'(p) u
Tax 7? .

Here, p > 0 is the density, u is the velocity, x € R, 7 > 0, p: R — R is a smooth
function such that p’ > 0, and € > 0 is a small parameter. After the time scaling
=1 p°(z,t) = p(z, L), u(z,t) = Lu(z, L), the system (2.5) becomes

8tp5+u5 IPE+P58;EUE:O,

Py o W (2:6)

Oyuf + ud uf + .
t @ £2p° 22

Thus, as € goes to 0, we expect the solutions to (2.6) to be described by the solutions
to the following system

_ . (2.7)

aﬁvp(ﬁ) = —pu,

which is equivalent to the Porous Medium equation
pt = p(ﬁ)zm , (2~8)

where the relation between the pressure p and the velocity u is given by the well-
known Darcy’s law

PP (2.9)

p
For the system (2.6), we prescribe the following limiting conditions at infinity

p°(£o00,t) = p= for any t > 0

U= —

uf(£00,0) = ut,
with p™, p~ > 0. Since we expect the inertial terms of the second equation in (2.6)
to decay faster than the others, in addition we require

u®(Loo,t) = ey for any t > 0.
Therefore, we assume the following behaviour at z — +oo for the system (2.7)
p(Eoo,t) = p*,
U(to0,t) =0,

for any ¢ > 0. The initial datum on the density of the hyperbolic problem (2.6) is
assumed to be the same of (2.8), namely

pg(.’L‘,O) = :5('7570) = :50(37) ,
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where jg is a bounded smooth function (e.g. pgp € H?(R)) such that
0 < po < poe) < pur-

Moreover, we require the initial datum on the velocity u® to be given by the initial
value of @ in the system (2.7) (which is determined by the Darcy’s law) plus a small
corrector, needed to match the limiting conditions, namely

P'(po(x)) - e
ug(x) = ————p5(x) + w(x,0). 2.10
o(7) P0(@) o(z) (z,0) (2.10)
The expression for the corrector we is
w () = e u” + (uF —u)i(a)], (2.11)
where
[f. o(y)dy
YP(z) = oo .,
_ o P(w)dy
for some ¢ € C°(R), ¢ > 0. We observe that w® satisfies the equation
1
Ow® = —5—211)5 .

This corrector does not affect the asymptotic analysis since it decays exponentially
fast. The well-prepared initial data condition (2.10) is prescribed in order to avoid
the problem of the initial layer.

As a consequence of the boundedness of gy and of the comparison principle for
the parabolic Eq. (2.8), we have

po < p(z,t) < pa (2.12)
We will consider solutions (g, @) to (2.8) satisfying the time-asymptotic estimates
9°+Pp(t) 1
8_’1;0‘81;5 ‘OO *0(6)(t+1)%+ﬂ 9 O[,,B>O
+oo | ga+B 2
pz,t) 2 1
——| dr = T o at2_1 )
/;OO ‘ Oz*OtP ’ z =00 )(t+1)°‘+25’§ ®B>0
, (2.13)
0P a(t) )
a8 ~a:8 = T aig. 1 ) Z ’
dzoath | 00 gy @820
too | gatBy(z, t) 2 ) )
Y — >
[m ’ Oz oth ’ dw =0 )(t+1)“+25+% » %820,
where
5= 5t = p7 |+l — w7 (2.14)

In particular, these estimates are satisfied both by the caloric self-similar solutions
of (2.8) described in Refs. 1 and 12 and by a small perturbation of these solutions
w.r.t. initial datum (as we will show in Theorem 2).
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Our first result concerns the asymptotic behaviour as € \, 0 of the scaled hy-
perbolic system (2.6) with Sobolev norms. The time interval where the asymptotic
analysis is valid, is given by the condition e7T* <« 1, for some constant a > 0, which
allows, for small ¢, to include the solutions at large time.

Theorem 1. Let 0 < v < 1/2 be arbitrary. Suppose T < ekl and éd < 1;
then, there exists a fized constant A > 0 such that

Py { ﬁ ng 10 (8) — ()| Zm0 + Ul (£) — () — w® ()] 200
+ 5%/0 lu®(s) — u(s) — w5(8)|?g3ods:| } <A, (2.15)

for any 6 € (0,1).

Corollary 1. Lett > 0 be arbitrary. Let B > 0 be arbitrarily small. Then, for small
values of §, we have

1p°(t) = BO)IZ + 195(t) = Pu(B) |7 < O(*7). (2.16)

The proof of Theorem 1 will be given in Sec. 3.

The convergence result in Theorem 1 holds whenever p is a caloric self-similar
solution. Our next goal is to show that (2.15) is true also when p is replaced by a
small perturbation.

Let § be the caloric self-similar solution of the Porous Medium equation (namely,
p(z,t) is a function of (x/+/t + 1)) with limiting conditions p(£o0,t) = p*. Let us
denote by p the solution to the same equation with the same limiting conditions
and with the initial datum given by a small perturbation of j(x,0). Let us denote

T(.Z‘,t) = ﬁ(x,t) - :5(-75 + :L'o,t) y

where zy will be determined later on. By integrating w.r.t.  the equation satisfied

by r, we get

d [t oo

7 r(z,t)dx = [p(p(x,1)) — p(p(z + z0,t))l|  =0.
Thus, if one has

—+o0
/ [po(x) — po(x + o)|dz =0,
it follows both
1 Foo
Ty = ﬂ/ [fo(x) — po(x)]dz (2.17)

and
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Let us define the primitive variable
R(z,t) = / r(&, t)de (2.18)

which solves the following problem

Rt = P(ﬁ + Rm)x - p(p)z ;

R(@,0) = [ () = (e + o)l (219)
R(+o00,t) =0.
Then, the small perturbation analysis with respect to the caloric self-similar solution

is given by the following result:

Theorem 2. Suppose that ||R(0)||2 is sufficiently small. Then, for any t > 0, we

have
5

t
S+ DR RO @) + / (r + DF|RED () |2dr < CIRO)Z. (2.20)
k=0 0
The proof of Theorem 2 will be given in Sec. 4. As a consequence of (2.20), the
result in Theorem 1 is also true when p is replaced by p. Moreover, as a consequence
of both Theorems 1 and 2, we have the following asymptotic result.

Theorem 3. Let p(xz,t) be the caloric self-similar solution to
pt = p(P)ac »
plz,0) = po(x),
P00, t) = p*.
Let (p°(x,t),u®(x,t)) be the solution to
p; + (p°u’)e =0,

p(p)e
e2pe -

uj + utul, +

u®(z,0) = p(zzgi;)w + w*(z,0),
pf(Fo0,t) = p*,

u®(to0,t) = eyt

with w® (z,t) given by (2.11), xo given by (2.17). Suppose that | R(0)||2, § and € are
sufficiently small (R(0) defined by (2.18)). Then, there exists a fired ' > 0 such that

sup  |lp*(t) = p(t)[[ L) < O(e™H7), (2.21)
YT (e)<t<I'T(e)
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where
T(g) = 57142r7u ,
v > 0 is arbitrary small and v is an arbitrary constant such that 0 < vy <T.

The proof of Theorem 3 is straightforward.

3. The Proof of the Main Theorem

We prove Theorem 1 by means of an iteration scheme. Let us define an approxi-
mating sequence (pfn),ufn)) by setting,

e __ £ _ =~ €
pO* ) UO—’U,+U),

T ™

and let, for any n > 1, (pfn)7 ufn)) e the solution to the system

0Py + Pln-1)02U(n) T U(n—1)0P(n) =0,

P (Pln-1) Uln)
ol +uf \0pul )+ 2Py = — ,
(n) (n—=1)7(n) 52/)?”_1) (n) c2
p((ﬁ:n) (.’L',O) = ﬁO(-’IJ),
(3.22)
P'(Po()) -,
ug,(z,0) = —— oo(x) + ws(x,0),
(@:0) = ~ELE @) w2, 0)
+

UG,y (00, 1) = et/

We will prove the convergence of the approximating sequence (pfn),ufn)) to the
solution of the system (2.6) via the uniform boundedness of this sequence in some
weighted high Sobolev norm (namely H3(RR)) and the contraction in some weighted
L?-norm. Thus, we obtain the desired estimate via interpolation. This strategy is
used in Refs. 3, 4 and 8.
Denote, for any T > 0,
1

1
E?T: su - | — = — )(t 23+ us _'EL—U]E ¢ 23
@)= s { g |56 - P01 + YOI

I .
3 [ Ny~ a- e es]}- 529
Hence, we have the following result

Proposition 1. Let us assume that § + ¢ + eT 5" < A\, where A < 1. Then, there
exists a positive constant A > 0 such that, for any n € N,

EMT)<A. (3.24)
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Proof. From now on, we denote

P= Py U= Uy P = Pln-1) U= ufy_)
p=p—p, U=u—w —1u, ﬁzpfnﬁ), ﬁ:ufnd)
p=p—p, u=10—w*—1a, i=0-0—w, ()71)’22), for any z € R .
The system (3.22) becomes
Pt + Upy + Py = — (U + W) Py — Pliy — pWy , (3.25)

L 1 . . 1 ) . U
Ut + Uty + E_QW(P)/OI = —t¢ — U(lq + ws) — 6_2(77(/0) - W(P))ng_g (3.26)

We now assume that the estimate (3.24) holds for (p, %) and show that it is true

for (p,u). In particular, we assume

1 1 _ 9 _ 9 1 t _ )
- = . L 3 - |
OgggT{(tH)y Lgllp(t)llH +[la(t)| 3 +€2/0 | a(s)||3sds| p <A,  (3.27)

forany T'> 0, > 0 and 6 > 0 (¢ defined by (2.14)) such that
S+e+eT 2 <X, A<1. (3.28)

As usual in this framework, we determine the conditions on the constant A in the
estimate at the nth step. As we will see, this constant depends only on the constant
A in (3.28). Let us multiply (3.25) by (1/e?)m(p)p and (3.26) by pu. Then, via
standard energy identity (as a consequence of symmetrization), we get

d [T[1 . p> a4

dat | o, |e 2
+00 152 +o0 i
— [ @@t o)+ @i e+ [t i i) o
+oo 1 e —+o00 1 N _ —+o00 N
+ =L (p)papudz — . =2 7(P)p(@ + padz — N 27 (P)ppusdz
—+o0 1 —+o0 “+o0
—/ —Zﬂ(ﬁ)ﬁﬁwzdm—/ [)ﬁtﬂdm—/ Pul(ty + wy)dx
— 00 6 — 00 — 00
+o00o 1 A . o +oo Aﬁ2
[ Zhule) ~ w@ida - [ prda
3. . 6 oo n2
=) k(t)—i—ZIk(t)—/ pzde. (3.29)
k=1 k=1 -

Remark 1. We remark that the function 7(z) satisfies

0<co<m(z)<eci, as z€ (co,c3),
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for some positive constants cg, ¢1, c2, c3. Now, from the assumption (3.27) and from
(2.12), it follows that p satisfies
0<%§ﬁ(m,t)§m+%, forany z€R, 0<t<T. (3.30)
(where po, p1 are defined in (2.12)) provided that
e R N

(with A as in (3.27)). Thus, from the condition (3.28) and by requiring A < 1 and
AT eTv < B (ie. e + A < 1), there exist C1, Co fixed positive constants such
that

Cr <7(p) <Cs. (3.31)
Moreover, from (3.30) it follows that
™ (p) +1p"(p) < Cs, (3.32)

for some positive fixed Cj.

Now, from (3.30)—(3.32), and after time integration of (3.29) in [0,¢], for 0 <
t <T, T satisfying (3.28), it follows that

1, - 1t
g—zllp(t)ll2 + [la()]* + 5—2/ [a(s)||*ds
0

Ol

<o) / o+ sl + islo] [P0 4 s >||2] ds

3o locll(3) (s |ds+/ sz

2

6 t
=Y Ju(t)+ Z/ I, (s)ds . (3.33)
h=1 k=170
We devote ourselves to the estimate of the terms fg I(t)ds, k =1,...,6. In what

follows, we exploit (3.27), (3.28), the time asymptotic estimates (2.13) and the
estimates (2.12), (3 31), (3.32).

t
/0 Ilds < / H_ HH |( )1/2d8

*OS : / T 5(3) 17 (5) s

06 t _ (s 2
(2)/0 Hu||2ds—|— / H ”

+ 2 [ 1) + 10
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< 0(6) (A(t +1)Y + /Ot %ds + 1> + E™(t)(t +1)"e?

< O((S)(A( +1)Y + 1)+ E™(t)(t + 1)*(0(8) + O(¢?)) .

s)|[11A( II—d

J

< Og(f ! / () + H5<s>ll2lsi1ds

k E"() 1

<O@E™t)(t+ 1)+ O00)A(t+ 1) .

+OO A +oo A
/IgdS—// 2 ppwzdxder// pwmd:cds
0O(9) _ - s
< 20 [ ipsyias)te

< O()E"(1)(t + 1) + O(B)A(t + / Ploce ™ ds

<O@)+E"t)00)1+ (t+1)") + O(0)A(t + 1)

pe~ 2 dads

supp(¢)

where in the second inequality we have used the estimate for fg Is.

/0 Lyds < 0(1)/0 (@ ()" + lluls)[["]ds

2 ! 1 2 n v
< O(0%) + O(EHE™ () (t + 1)V,
t t +oo i +oo
/0 Isds < /0 /_OO upt(ty, + wy)dzds +/0 /_Oo (T + w)(ty + wy)pudzds

0(1)/0 [la(s)I* + [la(s)|*]ds + 0(1)/0 (I ()] + [[a(s)[|*)ds

+0(1)/0 [llwa (s)[I* + [|a(s)]|*)ds

< OE)(A(t+ 1) + B (1)t + 1) +0(5)) + 0“2)/0 ﬁd

<O +0EH (A +1) + E™(t)(t +1)” +0(6%)),



Math. Models Methods Appl. Sci. 2002.12:1317-1336. Downloaded from www.worldscientific.com
by NEW YORK UNIVERSITY on 02/21/15. For personal use only.

Singular Convergence to Nonlinear Diffusion Waves

[ 1o < %) /n )l g7 e

p(s)|” u(s)||*ds

s+1
<O+ 1)"(A+ E™%)).

Thus, by requiring A < 1 and A < 1, the estimates of these terms yield
6 t
Z/ Le(t) < OO)(A + B (1))t + 1) + OO)(t + 1)
k=170
Hence, we compute the integrals denoted by Ji, h =1, 2.
t
Ji(t) < 0(1)/0 [1£(8) ool iz (8) oo + | 0(8)]oo| Pz (8)]oo

T 10(8) o [0(5) oo + i1 ()] [ 12 4 ()Hd

g2

1327

< 0) [ 2(6) e + 192(6) e (06) | + 15 [””( M jase] @

g2

< 0(1)15"(t)/0 [[d0(5) o0 + 152(8) oo ([8(8) oo + G(8) o0 )](s + 1)"ds

< 0(1)19"(t)/0 [ 82 (8)loo + |t (8)]oo + [wa(8)loo + (|72 (8)loc + [Pz (5)]oo)

< (1(8)] oo + [ 5(5)] oo + 8(5) oo + [0(5)]o0)](s + 1)¥ds.

We now estimate separately the following terms.

/ot | (8)]oo (s + 1)"ds < /Ot (A%?E” + %52(5 i l)zu) -

<AA(t+1)Y + %52(15 + 1) <o (t+ 1),

where A is the fixed constant in (3.28).
t
/0 (192 (8) o0 + 172 ()00 ) (1(8) oo + [1(s)[c0) (5 +1)"ds

/O(AW(SH) +00)(s + 1)) (Ja(5) oo + |U(s)|0)

< (0 + 0(5))/0 (1a(s)lo0 + |(8)loc) < (O(N) +O(O))(t+1)",

(3.34)

(3.35)

(3.36)
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where the last inequality is justified by the preceding estimate (3.35), and where
we used v < 1/2 and A < 1.

/0 (172(8)loo + [ (8)]o0 ) ([8(5)]o0 + |w(s)]oo) (s + 1)"ds

S/t(gAl/Z(erl)B; +O(5)(S+1)71/2+u)0(6)(5+1)71/2d8
0

+0()AY2(t+1)"2 + 0(8)0(?) < (O(N) + 0(0))(t +1)”. (3.37)
Now we can complete the estimate of the integral J; in (3.34), and obtain
J1(t) < (0(0) + O(\) + O(e?))(t + 1)"E™(t).

Let us estimate Ja(t);
Jo(t) < O(1) / 172060 + 172 (3)oc 5 1) (5) s
<o) / [eAY2(s +1)"72 4 0()(s + 1)) 5 Ia(s) ) ds

< O(1)eA? / [%ﬁ”%um A|a<s>|2} .

e3

0
+0(9) /t w(s +1)"tds 4+ 0(9) /t wds
0 € o c
< O(l)?(t + DIFE () + (O(N) + O(0)E™(t)(t +1)”. (3.38)

By combining all these estimates, dividing both sides of (3.33) by (¢t + 1)¥, taking
the supy<;<r and by suitably choosing A and A such that

0<A<1, A>CA\,
for a fixed constant C, we obtain the following:

Lemma 1. Suppose § + ¢ + eT 5" < A K 1. Then, there exists a positive fized
constant A such that

s { i [ St + w5 [aeraf <3 o)

o<t<r (1 +1)¥

In a similar fashion, we can derive Lo estimates for the derivatives of p and .
By differentiatiting (3.25) and (3.26) w.r.t. x, we obtain

ﬁzt + ﬁﬁxz + ﬁﬁxx = *ﬂxﬁz - ﬁxﬁx - (ﬁz + wz)ﬁz - (ﬁ + w)pzm

= Pyliy — Plgz — PrWz — PWzs (3.40)
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_ . | . 1, .- . .
Ugt + Uy + E_ZW(P)PW = —UgUgp — 6'_27r (P)Pw[)z — Ugt — uw(uaz + w;z:)

e+ wer) — 5 ((3) — (7))

1 A ey 1 _
= (@ (P)pz =7 (P)Px) Pz — 5Tla - (3.41)
It is clear that the system (3.40)—(3.41) has the same stucture as system (3.25)—
(3.26). Thus, by multiplying the first equation by E%W(ﬁ) p. and the second equation
by pu,, we obtain an energy identity similar to (3.29). Then, by integrating

w.r.t. time, and from the same considerations as those in Remark 1, we obtain

S0 + 1O + 5 [ () Pds
< 00) [ Ul + st + sk | 25 4 02 s

de@WMMW+AG®@+AF®@,

where we denoted all the integrals involving p, 4 and w by fot F(s)ds, and where

/0 "Gl

+oo
Palizprdrds

400
A =2
Uz Py

t 400
1) / / G u2drds . (3.42)
0 —00

The terms (3.42) are to be treated as the terms 3 2_, Jj, of the previous lemma.
The integrals denoted by fo s)ds are made up by bilinear terms (in the variables
marked by ~and 7), where the terms estimated in L*° depends only on the corrector
w and on the derivatives of asymptotic prophile p, as in the estimates of the integrals
fg It (s) of the previous lemma (we also have a faster decay for these terms, which
involve second order derivatives). Hence, we easily obtain the following:

Lemma 2. Suppose § + € + eT 5" < XA < 1. Then, there exists a positive fixed
constant A such that

s Lt Lo laor+ % [ uers] <3 o
Remark 2. To complete the proof of Theorem 1, we differentiate w.r.t. £ in order
to get estimates for second and third derivatives of (p,@). The analogous of terms
(3.42) behave the same as above (there is always a coefficient with order of deriva-
tion less than or equal to 2, to be estimated in L*°(R)). Since these computations
are very similar to those concerning the preceding L estimates, we skip the details
about them. Hence, the proof of the proposition is complete. O
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We now prove the contraction of the sequence (pfn), ufn)) in the following:

Proposition 2. Let us denote, for anye >0, n € N, 0 < v < 1/2,

. 1 1
P = s i | 1060 = sy O, + Iy © - (12,

o<t<t | (t+1)

ot .
+ 5—2/0 lug (s) - u(nl)(s)|i2ds] } |

Then, under the condition 6 + € + eT 5" < A, for A K 1, there exists a positive

constant p < 1 such that
F!NT) < pFr~(T).

Proof. We denote

Pln—a) = P> Pln—1) = P> Plny = P>
Uz = & Uy = O Uy = ¥
p=p—p, p=p—p, u=u—14, u=i-1u

With this notation, we can write system (3.22) as
P+ Py + Upy = —Ply — Upy ,
1

. 1 -
U + Uy + a—gw(p)px = —Ul, — <5_2

A 1 .0\ . U
") - Z76)) e~
As in the preceding proposition, we symmetrize the system (3.45) by

1.
6—27T(P) 0

0 p
and obtain the standard energy identity

d +"O[zv(ﬁ)ﬁ2 ﬂZ]dx

dt e2p 2 +

(=33
S~—"

“+o0 ﬁ2

= [ @O+ o) + 7100 L | o
+oo R L % 17/2 1 O

+/ (Pt+,0wu+,0uw)7+€_2p (p)pwpu dz

+oo
/ p)pupdr — / 7(p)pplgdx

+oo +oo . +o0 a2
/ putl dr — / pu(m(p) — w(p))prdx — / p—dzx.

3

— 00 — 00

(3.44)

(3.45)

(3.46)
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As a consequence of Proposition 1, after some considerations about the symmetriz-
ing coefficients (same as those in Remark 1), we obtain the same estimates as

(3.30)—(3.32), under the condition (3.28). After time integration in the interval
[0,¢] for 0 < t < T, we obtain

SO + a0l + 5 [ lats)Pas
< 000) [ 101k + sl + fiolo] [P 4 (o] s

O(1 b B B o(1 t ptoo
e A O e

g2 oo

1 t 400 B t 400 B
+ 05(2) / / pupy + O(1) / / ut, udrds
0 —o00 0 —o00

O(l) t +oo:_A 6
+ =2 /0 /700 pupzdrds =: ;Lk(t).

We now consider each term separately, using the result of Proposition 1.

Li(t) < 0(1)F”(t)/0 [162(8)]o0 (14(8) oo + [(8)l0o) + [ (8)loo] (s + 1)"ds

< 0(1)F"(t)/0 (@ = @ = w)z(8)]oo + |tz (8)]oo + |wa(s)]oo

+ (6 = P (8)loo + [P2(8)]00) (|(& — & — w)(8)oo
(@ =@ —w)(8)|oo + ()0 + [w(8)]o0)](s +1)"ds.
We estimate this term as in (3.35)—(3.37) of Proposition 1 and obtain
Li(t) < (0(8) + O(\) + O(?))(t + 1)" F"(¢).

Then, in a similar fashion, we estimate the term Ly(t) as in (3.38). Let us compute
the remaining terms:

0(21)/0 [2(5)]oo | A(s) ][] £(s) | ds

3

oW [l 13)IP] . .
< g2 /0 [(SJFI)” + (S+1)u:| |t ()]0 (s +1)"ds

Ls(t) <

U—a—w)|% e (s+1)

gO(l)[F”(t)+F"_1(t)]/0 [M( 2 T

+0(6)(s+ 1)”_1] ds < [O(\) + O()](t + 1) (F"(t) + F" (1)),
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where we have used the condition (3.28).

XL [ el s

Ly(t) < 6

FIALa)? | 18a(s) B ll(s)]1? v
= O(l)/o [ 2 Ae2(s+ 1) (s+1) ]ds

<OWF™ (Ot +1)" +OWFF() [ 1= 7al)es +1)"

+0(8)(s +1)"Y)ds
< [ON) +O0(0)](t+ 1) (F™(t) + F*1(t)).

The integrals Ls(t) and Lg(t) can be treated as above. Thus, by suitably choosing
¢ and A small, the proof is complete. O

We now devote ourseqlves to the convergence of the approximating sequence.
Let v, € and T be fixed in the usual way. Since (pZ,u”) is a Cauchy sequence in

the norm expressed by F", by interpolation we have

1 1 € (=4 2 2
PR R — t £ = t
o?tlgT { t+r1)” Lg ||(P(n) P(m))( M ggze + ||(U(n) “(m))( Mggso
1 ! € € 2
+ 2, [ (wny = ulmy) @) zreds| p =0 asn,m — o0 (3.47)

for any 6 € (0, 1). Thus, the approximating sequence (p2,u?) converges in the norm
expressed by (3.47) to (p*,u*). By choosing 6 € (0,1) large enough, we obtain

(o2 uf) = (p*,u”) in L([0,T]; H*(R)). (3.48)

Hence, we can identify the limit as the solution (pe,u.) to the system (2.6) and
carry out the limit as n — oo in the estimate (3.24), with H3? in place of H>, and
the proof of Theorem 1 is complete.

4. The Proof of Theorem 2

In this section we prove the asymptotic stability result (2.20) by means of a
continuation principle. We start with the a prior: condition

5
sup > (1+ )| RP@)|* <o. (4.49)
0<t<T 1=

Lemma 3. Suppose 0 < 1. Then

IR ()] +/0 IRz (s)[[%es < O(1)|| Rol* (4.50)
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Proof. By multiplying the first equation in (2.19) by R and after integration over
R, we obtain

d1

+oo
GFIROE = [+ o) = p(p). R

T b+ R — ()| Rode

— 00

—+o0
[0’ (p)R2 + Ri(p, p, Ry)Ry)dz

—~O()[|Rx(t)II* + O(o) | R (B)]|* -

We denoted by Ri(p, p, R.) the remainder in the first order Taylor expansion of p’
around p. The last inequality is due to the uniform boundedness of the coefficient
p"(¢) when ¢ € (p, p+ R.) (as a consequence of the maximum principle). Then, we
integrate over [0,t] and get the desired estimate (4.50). m|

IN

Lemma 4. Suppose 0 < 1. Then we have
t
@ +t)[r@)]* +/0 (1 +s)llra(s)]|*ds < O(1)|| Roll3 - (4.51)

Proof. By differentiating Eq. (2.19) w.r.t. z, we get
7t = P(P)ea = P(P)aw = (1'(P)Pz — P'(P)hz)a
= [p'(P)ra + (0'(p) — P'(P))zla - (4.52)

We multiply (4.52) by (1 4 t)r and integrate over R to obtain

& a0l — e

+o0 too
—(1+1) / @ (Pra)orde + (1+0) / (0(5) — P ())a)ord

— 00 — 00

—~a+ [ T Y (e - (140) / T 0 5) = P (3)arada.

— 00 — 00

¢

Finally, by integrating w.r.t. time, we get

(1 + 05l + / (1 + 8)Ir(s)]2ds < OQ)[r(0)]?
1) / Ir(s)|%ds + O() / (1+ )2 r(3) [ [Ira(s) s
OW)|RO)| +0(1) / ()12 + O)(1 + 8)]|ra(s)[21ds

OM)[RO)IIF + 0(5)/0 (L +s)[lra(s)*ds ,
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where we have used (2.13) and Lemma 3. Thus, for § < 1, we have the desired

estimate (4.51).

Let us write the equation satisfied by 7,:

rot = (0'(8)Pe — P'(P)Pa)ac -
Hence, we obtain the following lemma.

Lemma 5. Let 0 < 1. Then

L+ 6)*r=(1)]* +/0 (1+5)?|Iraa(s)|ds < O(1)||R(O)]13 -

Proof. From (4.53) we have

et — (0'(P)re)ee = [(0'(P) — P'(P)) Pa)car -

We multiply by (1 +t)?r, and integrate over R to get

& [a+ 2310 - a+ ol
+o0 +oo
F 02 [ i =140 [ Dparares

+ (p/(:b) - p/(ﬁ))ﬁmxrww + (p/(:b) - p/(ﬁ))wﬁwrww}dm

Then, by integrating w.r.t. time, we obtain

(1 + 1) [lra ()1 + /0 (1+)?[lraa(s) ] ds
<O)|r=(0)[I* + 0(1)/0 (L+s)llra(s)]|*ds

t “+ o0
+ O(l) / (1 + 5)2 / [rirzm + PzTaTra + "oz Pax
0 —o0

+Tafolan + TP3Tealdzds < O(1)[|R(0)]3

|

(4.53)

(4.54)

+ 0(1)/0 (1+8)2|ra(8)|oo[(1 + 8)lIra ()17 + (1 + 5)*[I700(5)]|%)ds

+0(5)/0 [(1+ )lra(s)I* + (1 + 5)*[[70a ()]

)1 + 1+ ) [raa(s)]|* + O@) (1 + 8)|r2a(s)]*)ds ,
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where we have used Young inequality. Thus, using (4.49)—(4.51), together with
0 < 1, we get

(L +8)?[lr= ()] +/0 (1+ )% llraa(s)[*ds < O(1) [ R(0)]I3

+0(0)/0 [(1+ 8)*[I7aa(s)]* + (1 + 5)llra(s) | *]ds -

Finally, by means of (4.51) and since 0 < 1, we get the desired result (4.54). O

In order to complete the energy estimate (2.20) we have to carry out the time

dacay estimates for the higher order derivatives 7.z, rzzz, Tzzze Which can be
done by following the same technique as above. We omit the details about these
calculations.
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