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Abstract

We consider k-envy-free assignments for scheduling problems in which the com-
pletion time of each machine is not k times larger than the one she could achieve
by getting the jobs of another machine, for a given factor k ≥ 1. We introduce
and investigate the notion of price of k-envy-freeness, defined as the ratio be-
tween the makespan of the best k-envy-free assignment and that of an optimal
allocation achievable without envy-freeness constraints. We provide exact or
asymptotically tight bounds on the price of k-envy-freeness for all the basic
scheduling models, that is unrelated, related and identical machines. Moreover,
we show how to efficiently compute such allocations with a worsening multi-
plicative factor being at most the best approximation ratio for the minimum
makespan problem guaranteed by a polynomial time algorithm for each spe-
cific model. Finally, we extend our results to the case of restricted assignments
and to the objective of minimizing the sum of the completion times of all the
machines.
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1. Introduction

The evolution of scheduling closely tracked the development of computers.
Given m machines that have to process n jobs, minimizing the makespan of an
assignment of the jobs to the machines is one of the most well-studied problem
in the Theory of Algorithms [13, 17, 18, 20]. In more details, assuming that
the processing of job i on machine j requires time pij > 0, the completion
time of machine j (under a certain assignment) is given by the sum of the
processing times of all the jobs allocated to j. The makespan of an assignment
is the maximum completion time among all the machines (we stress that an
assignment is not forced to use all the available machines) and the objective of
the scheduling problem is to find an assignment of minimum makespan.

In the literature, three different models of machines have been adopted.
The general setting illustrated above is called scheduling problem with unre-
lated machines [20]. An interesting particular scenario is the case with related
machines [18], where each job i has a load li > 0 and each machine j has a
speed of processing sj > 0, and thus the processing time of job i on machine
j is given by pij = li/sj . Finally, the even more specific setting in which the
speed of each machine is 1 is referred to as the scheduling problem with identical
machines [13, 17]. Even this latter problem is NP-hard [17].

The approximability of the scheduling problem has been well understood for
all the three models described above. However, all the proposed solutions do not
envisage fair allocations in which no machine prefers (or envies) the set of the
tasks assigned to another machine, i.e., for which her completion time would be
strictly smaller. In the literature, such fairness property is referred to as “envy-
freeness” [9, 10]. Specifically, consider a scenario in which a set of tasks (jobs)
has to be allocated among employees (machines) in such a way that the last
task finishes as soon as possible. It is natural to consider fair allocations, that
is allocations where no employee prefers (or envies) the set of tasks assigned to
some other employee, i.e., a set of tasks for which her completion time would
be strictly smaller than her actual one.

It is possible to consider two different variants of this model, depending on
the fact that an employee (i) can envy the set of tasks assigned to any other
employee or (ii) can only envy the set of tasks of other employees getting at
least one job: in the latter case, employees not getting any job do not create
envy. In the following, we provide some scenarios motivating both variants.

For the first variant, consider a company that receives an order of tasks that
must be assigned among its m employees. For equity reasons, in order to make
the workers satisfied with their task assignment so that they are as productive
as they can, the tasks should be assigned in such a way that no envy is induced
among the employees.

For the second variant, consider a scenario in which a company, in order to
fulfill a complex job composed by several tasks, has to engage a set of employees
that, for law or trade union reasons have to be all paid out the same wage. Again,
for making the workers as productive as they can, it is required that no envy is
induced, but in this case we are interested only in the envy among the engaged

2



employees, i.e. the ones receiving at least a task to perform.
We notice that the existence of envy-free schedules is not guaranteed in the

first variant of the model. For instance, consider a scenario where the number
of machines is strictly greater than the number of jobs. Clearly at least one
machine would not get any job and all the machines getting at least one job
would be envious. Therefore, in the following, we shall focus on the second
variant of the model, in which envy-freeness is required only among machines
getting at least one job.

We adopt a more general definition of envy-free allocations, namely the k-
envy-freeness (for any k ≥ 1): Given an assignment and two machines j, j′

(where both j and j′ get jobs), we say that j k-envies j′ if the completion time
of j is at least k times the completion time she would have when getting the set
of jobs assigned to j′. In other words, an assignment is k-envy-free if no machine
would decrease her completion time by a factor at least k by being assigned all
the jobs allocated to another machine. Notice that a k-envy-free assignment
always exists: a trivial one can be obtained by allocating all the jobs to a single
machine, even if it might have a dramatically high makespan.

We are interested in analyzing the loss of performance due to the adoption
of envy-free allocations. Our study has an optimistic nature and, then, aims
at quantifying the efficiency loss in the best k-envy-free assignment. Therefore,
we introduce the price of k-envy-freeness, defined as the ratio between the
makespan of the best k-envy-free assignment and that of an optimal assign-
ment. In the literature, other papers performed similar optimistic studies, see,
for instance, [1, 7]. The price of k-envy-freeness represents an ideal limitation
to the efficiency achievable by any k-envy-free assignment. In our work, we also
show how to efficiently compute k-envy-free assignments which nicely compare
with the performance of the best possible ones. We point out that the computa-
tion of non-trivial k-envy-free assignments is necessary to achieve good quality
solutions, since the ratio between the makespan of the worst k-envy-free assign-
ment and that of an optimal assignment can be very high. In particular, it is
unbounded for unrelated machines, n smaxsmin

for related ones, where smax (resp.
smin) is the maximum (resp. minimum) speed among all the machines, and n
for identical machines.

Related Work. The scheduling problem with unrelated machines has been
studied in [20]. The authors provide a 2-approximation polynomial time algo-
rithm and show that the problem cannot be approximated in polynomial time
within a factor less than 3/2. Polynomial time approximation schemes for re-
lated and identical machines have been presented in [18] and [17], respectively.

The problem of fair allocation is a longstanding issue, thus, the literature
on this topic includes hundreds of references. For a nice review, we refer the
reader to the book [5]. One common notion of fairness, recurring in many
papers and therefore adopted for central problems, is that of envy-freeness. For
instance, the classical Vickrey auctions [24], as well as some optimal Bayesian
auctions [3, 21], generate envy-free outcomes. An interesting paper explicitly
dealing with envy-free auctions is [14]. Studies on envy-free divisions, typically
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referred to as envy-free cake cutting, can be found in [4, 9, 10]. Furthermore,
[11, 15] consider algorithmic issues related to the envy-free pricing problem,
that is a scenario in which a seller has to set (envy-free) prices and allocations
of items to buyers in order to maximize the total revenue.

Concerning scheduling problems, an important stream of research is the one
focusing on envy-free algorithmic mechanism design. Roughly speaking, algo-
rithmic mechanism design is the attempt of motivating the machines, through
payments or incentives, to follow desired behaviors (truthful mechanisms). Up-
per and lower bounds on the approximation ratio achieved by truthful mecha-
nisms have been given in [8, 19, 23]. However, such papers are not concerned
with fair allocations. To the best of our knowledge, envy-free mechanisms for the
scheduling problem with unrelated machines have been first considered in [16]:
the authors prove a lower bound of 2− 1/m and an upper bound of (m+ 1)/2
on the performance guarantee of envy-free truthful mechanisms. Such upper

and lower bounds have been improved in [6] to O(logm) and Ω
(

logm
log logm

)
, re-

spectively. Recently, [12] shows that no truthful mechanism can guarantee an
envy-free allocation with a makespan less than a factor of O(logm) the optimal
one, thus closing the gap. It is worth noticing that, for k = 1, our model can
be seen as a special case of the one considered in [6, 12, 16] when the same pay-
ment is provided to all the machines receiving at least a job, while no payment
is given to the other machines.

The work most closely related to our study is [7]. The authors consider the
envy-free scheduling problem with unrelated machines with some substantial
differences with respect to our setting. Specifically, i) they only consider 1-envy-
free assignments (while we consider k-envy-free assignments, for any k ≥ 1); ii)
the objective in their work is that of minimizing the sum of the completion
times of all jobs (while we mainly consider the makespan); iii) in their setting
all the machines contribute to create envy (while in our setting only machines
getting at least one job are considered for the envy-freeness). Not surprisingly,
the authors prove that, in their setting, the price of envy-freeness is unbounded.

Our Results. We consider the price of k-envy-freeness in the scheduling
problem, that is, the ratio between the makespan of the best k-envy-free assign-
ment and that of an optimal assignment. We investigate the cases of unrelated,
related and identical machines and provide exact or asymptotically tight bounds
on the price of k-envy-freeness. We stress that low values of k implies a greater
attitude to envy, which tremendously reduces the set of k-envy-free assignments.
A natural threshold that arose in our analysis of the cases with related and iden-
tical machines is the value k = 2, as it can be appreciated in the following table
where we summarize our main results. They are fully described in Sections 3,
4 and 5 for identical, related and unrelated machines, respectively.
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Identical Related Unrelated

k = 1 UB and LB min{n,m} min{n,m} 2min{n,m}−1

k ∈ (1, 2)
UB 2k

k−1 2k
√

m
k−1

(
1 + 1

k

)min{n,m}−1

LB Ω
(

2k
k−1

)
Ω
(√

m
k−1

) (
1 + 1

k

)min{n,m}−1

k ≥ 2
UB 1 + 1

k 2 + max
{

1,
√

m
k

} (
1 + 1

k

)min{n,m}−1

LB 1 + 1
k max

{
1,
√

m
k

} (
1 + 1

k

)min{n,m}−1

A further result derives from the fact that our upper bound proofs are con-
structive and, therefore, they de facto provide polynomial time algorithms able
to calculate good k-envy-free assignments. Such an extension is discussed in
Section 6.

Furthermore, in Section 7.1 we also consider the restricted scheduling prob-
lem, where each job can be assigned only to a subset of machines. While the
case with unrelated machines naturally envisages such a setting (in fact for each
job i, it is enough to set to infinite the processing time pij for each machine
j not able to schedule i), for related and identical machines, we again provide
exact or asymptotically tight bounds on the price of k-envy-freeness.

Finally, besides considering the problem of minimizing the makespan, we
consider in Section 7.2 the problem of minimizing the sum of the completion
times of all the machines. Specifically, for such a problem, we show that the
price of k-envy-freeness is 1 (for any k ≥ 1) for the related and identical settings,
while, for the unrelated setting, we extend the upper and lower bounds holding
for the problem of minimizing the makespan.

2. Preliminaries

In the scheduling problem, there are m ≥ 2 machines and n indivisible jobs
to be assigned to the machines. In the unrelated case, the time of running job
i on machine j is given by pij > 0. In the related setting, each job i has a load
li > 0, each machine has a speed of processing sj > 0, and the processing time
of job i on machine j is given by pij = li/sj . We refer to the specific setting in
which the speed of each machine is 1 as identical, where pij = li.
For an integer h > 0, define [h] := {1, . . . , h}. In the related and identical
setting, we denote with L =

∑
i∈[n] li the total load of all the jobs and with

lmax = maxi∈[n] li the maximum load of a job.
An assignment or solution N is specified by a partition of the set of jobs into
m components, i.e., (Nj)j∈[m], where Nj denotes the set of jobs assigned to
machine j. Let Q be a set of jobs, we use the notation Cj(Q) to denote the
completion time of machine j on the set Q, i.e., Cj(Q) =

∑
i∈Q pij . Thus

Cj(Nj) denotes the completion time of machine j under the assignment N. For
the related and identical settings, let Lj(N) be the total load of the jobs assigned
by N to machine j ∈ [m], i.e., Lj(N) =

∑
i∈Nj li and Lmin(N) = min{Lj(N) :

j ∈ [m] ∧ Nj 6= ∅} (resp. Lmax(N) = max{Lj(N) : j ∈ [m] ∧ Nj 6= ∅})
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the minimum (resp. maximum) load of the non-empty machines in N. Notice
that, in the related setting, we have Cj(Nj) = Lj(N)/sj and, for the identical
one, Cj(Nj) = Lj(N). The makespan of assignment N is defined as M(N) =
maxj∈[m] Cj(Nj), that is the maximum processing time among all the machines.
An optimal assignment is one minimizing the makespan. We denote by O an
optimal assignment.

Given an assignment N, a real value k ≥ 1, and two machines j, j′ such that
Nj 6= ∅ and Nj′ 6= ∅, we say that j k-envies j′ if Cj(Nj) > kCj(Nj′). An
assignment N is k-envy-free if Cj(Nj) ≤ kCj(Nj′) for every pair of machines
(j, j′) such that Nj 6= ∅ and Nj′ 6= ∅. Notice that a k-envy-free assignment
can always be obtained by assigning all jobs to a single machine. The price
of k-envy-freeness (PoEFk) is defined as the ratio between the makespan of
the best k-envy-free assignment and the makespan of an optimal assignment.
More formally, let Fk be the set of the k-envy-free assignments, then PoEFk =

minN∈Fk
M(N)
M(O) .

We conclude this section with some preliminary general results.

Proposition 1. For the scheduling problem with related machines, PoEFk ≤
min {n,m} for any k ≥ 1.

Proof: Assume that machine 1 is the fastest one, i.e., s1 ≥ sj for each j ∈ [m].
Clearly, the solution N assigning all jobs to machine 1 is k-envy-free for any
k ≥ 1 and has M(N) = L

s1
≤ nlmax

s1
. By M(O) ≥ lmax

s1
and M(O) ≥ L

ms1
, we

obtain the claim. �
Such a simple upper bound on the price of k-envy-freeness proves to be tight

when k = 1 even for the setting of identical machines.

Proposition 2. For the scheduling problem with identical machines, there ex-
ists an instance for which PoEFk = min{n,m} when k = 1.

Proof: For any ε ∈ (0, 1), consider an instance defined by m machines and
by n = m jobs, such that l1 = 1 − ε and li = 1 for i = 2, . . . ,m. It is easy to
check that the optimal solution O, having makespan 1, assigns job i to machine
i for each i ∈ [m]. Since k = 1, in any envy-free assignment, all the loads of the
non-empty machines must be equal. As it is easy to check, it is not possible to
equally balance the loads of all the jobs on more than 1 machine; therefore, the
only envy-free assignment N is the one in which all the jobs are assigned to a
unique machine. Hence, M(N) = m − ε, and the claim follows by n = m and
the arbitrariness of ε. �

We now show that, for finite values of k, a price of k-envy-freeness equal to
1 cannot be achieved even in the setting of identical machines.

Proposition 3. For the scheduling problem with identical machines, no value
of k (possibly depending on n and m) can guarantee PoEFk = 1.

Proof: For any ε ∈ (0, 1), consider an instance defined by 2 machines and 2
jobs, such that l1 = 1 and l2 = ε. It is easy to check that the optimal solution
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O, having makespan 1, assigns job i to machine i for i = 1, 2. We obtain a price
of k-envy-freeness equal to 1, if and only if assignment O is k-envy-free; in fact,
assigning both jobs to a unique machine would result in a makespan strictly
grater than 1. In order for O to be k-envy-free, it must hold that k ≥ 1

ε . The
claim follows by the arbitrariness of ε. �

In the next lemma, we give an important result which helps to characterize
the performance of k-envy-free solutions in the case of related machines.

Lemma 1. For a value k ≥ 1, an instance of the scheduling problem with related

machines, and an integer 2 ≤ h ≤ min
{
m,
⌊
L(k−1)
klmax

⌋}
, there always exists a k-

envy-free solution N using exactly h machines and such thatM(N) ≤ L/h+lmax
sh

,
where sh is the speed of the h-th fastest machine.

Proof: Fix a value k ≥ 1 and an instance of the scheduling problem with re-

lated machines. First of all, we show that, for each 2 ≤ h ≤ min
{
m,
⌊
L(k−1)
klmax

⌋}
,

Algorithm 1 described below, by exploiting a simple greedy heuristic, returns
an assignment N using exactly h machines and such that

Lmin(N) ≥ Lmax(N)− lmax, (1)

Lmin(N) ≥ L

h
− lmax, (2)

Lmin(N) ≤ L

h
. (3)

Algorithm 1

1: Input: h . h is the number of machines to be used
2: Renumber the machines in non-increasing order of speed
3: for each machine j ∈ [m] do
4: Nj ← ∅
5: end for
6: for each job i ∈ [n] do
7: j′ ← argminj∈[h] {L(Nj)}
8: Nj′ ← Nj′ ∪ {i}
9: end for

10: return N

In order to show the first inequality, assume, by contradiction, that there
exist two machines j, j′ such that Lj(N) < Lj′(N) − lmax. Let i be the in-
dex of the last job assigned to machine j′. Since li ≤ lmax, at the begin-
ning of the ith iteration of the second for cycle of Algorithm 1, it must be
L(Nj) ≤ Lj(N) < Lj′(N) − lmax ≤ Lj′(N) − li = L(Nj′). Thus, because of
line 7 of Algorithm 1, job i cannot be assigned to machine j′. This yields a
contradiction, and so inequality (1) holds. Inequalities (2) and (3), in turn,
come from a simple averaging argument. In fact, if there exists a machine j′
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such that Lj′(N) < L
h − lmax, then by (1), it holds that Lmax(N) < L

h which
implies L =

∑m
j=1 Lj(N) ≤ hLmax(N) < L. Similarly, if for each machine j,

Lj(N) > L
h , then L =

∑m
j=1 Lj(N) > hLh = L. Thus, in both cases, we get a

contradiction.
We now show that N is k-envy-free. To this aim, we just need to prove that

kLmin(N) ≥ Lmax(N). It holds that

kLmin(N) = (k − 1)Lmin(N) + Lmin(N)

≥ (k − 1)

(
L

h
− lmax

)
+ Lmin(N)

= (k − 1)
L

h
− (k − 1)lmax + Lmin(N)

≥ klmax − (k − 1)lmax + Lmin(N)

= Lmin(N) + lmax

≥ Lmax(N),

where the first inequality comes from (2), the second one comes from h ≤ L(k−1)
klmax

and the last one comes from (1).

As a consequence, we have that, for each 2 ≤ h ≤ min
{
m,
⌊
L(k−1)
klmax

⌋}
, there

exists a k-envy-free solution N such that Lmax(N) ≤ L
h + lmax, because of

inequalities (1) and (3). Since N is such that the only machines with positive
load are the h fastest ones, the claim follows. �

3. Identical Machines

In this section, we consider the scheduling problem with identical machines.
For the case of k ≥ 2, we can prove a constant upper bound on the price of
k-envy freeness.

Theorem 1. For the scheduling problem with identical machines, PoEFk ≤
1 + 1/k for any k ≥ 2.

Proof: We argue that applying Algorithm 2 to any initial assignment S, we
get a k-envy free assignment N with makespan at most M(S)(1 + 1/k). The
claim follows by choosing as the starting assignment S an optimal solution O.

Initially Algorithm 2 manipulates the starting assignment in such a way that
it becomes an assignment with makespan 1 with the minimal number of non-
empty machines, and such that the machines are numbered so that to a smaller
index corresponds a larger or equal load. After the first phase we assume that
the jobs are assigned to machines in [m].

Since machine m is the least loaded one, if Lm(S) ≥ 1/k, then S is k-envy-
free and the claim follows. On the other side, if Lm(S) < 1/k, we move all the
jobs in S from machine m to machine m − 1 obtaining a new assignment N
which is k-envy-free. In fact, in the new assignment N, machine m − 1 gets a
load larger than 1, thus becoming the most loaded machine, whereas any other
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Algorithm 2

1: Input: assignment S
2: Rescale the loads in such a way that M(S) = 1
3: while there exists a pair of machines (j, j′) s.t. Lj(S) + Lj′(S) ≤ 1 do
4: Sj ← Sj ∪ Sj′
5: Sj′ ← ∅
6: end while
7: Renumber the machines in non-increasing order of loads

Lj(S) ≥ Lj+1(S) for each j ∈ [m− 1]
8: Let [m] be the set of machines with at least one job assigned
9: Create a new assignment N defined as follows

10: if Lm(S) < 1/k then
11: Nj ← Sj for each j < m− 1
12: Nm−1 ← Sm−1 ∪ Sm
13: Nj ← ∅ for each j > m− 1
14: else
15: Nj ← Sj for each j ∈ [m]
16: end if
17: return N

machine has a load smaller than 1. Machine m − 1 does not envy any other
machine, since Lm−1(N) = Lm−1(S) + Lm(S) ≤ 2Lm−1(S) ≤ kLm−1(S) ≤
kLj(N), for each j ≤ m − 1 and k ≥ 2. Thus, we can conclude that the new
assignment is k-envy-free. Finally we see that the makespan of N is at most
Lm−1(N) = Lm−1(S) + Lm(S) ≤ Lm−1(S) + 1/k ≤ 1 + 1/k =M(S)(1 + 1/k).
The claim follows. �

The next result shows that the above upper bound is tight for any k ≥ 2.

Proposition 4. For the scheduling problem with identical machines, given any
k ≥ 2, there exists an instance for which PoEFk ≥ 1 + 1/k − ε, for any ε > 0.

Proof: Let us consider the instance with m machines and m jobs, m − 1 of
which have load 1 and the remaining one has load 1/k − ε, with ε > 0. It is
obvious that O assigns a single job to each machine and M(O) = 1. However,
O is not k-envy-free since each machine of load 1 k-envies the machine of load
1/k−ε. Thus, any k-envy-free assignment is forced to schedule at least two jobs
on a same machine for a makespan of at least 1 + 1/k − ε. �

For the remaining case of k ∈ (1, 2), the following bounds hold.

Theorem 2. For the scheduling problem with identical machines, PoEFk ≤
min

{
2k
k−1 , n,m

}
for any k ∈ (1, 2).

Proof: Fix a value k ∈ (1, 2). Because of Proposition 1, we already have
PoEFk ≤ min {n,m}. Hence, we only need to show PoEFk ≤ 2k

k−1 .
Consider the assignment N computed by Algorithm 3 described below. We

show M(N)
M(O) ≤

2k
k−1 .
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Algorithm 3

1: t← min
{
m,
⌊
L(k−1)
klmax

⌋}
2: if L < 2klmax

k−1 then
3: N← Algorithm 1(1)
4: else
5: N← Algorithm 1(t)
6: end if
7: return N

If L < 2klmax
k−1 , then N is such that only one machine is loaded and so

M(N) = L < 2klmax
k−1 . Since M(O) ≥ lmax, it follows M(N)

M(O) <
2k
k−1 .

If L ≥ 2klmax
k−1 , then, by Lemma 1, N is a k-envy-free solution such that

M(N) ≤ L
t + lmax. We distinguish between two cases:

• If t = m, since M(O) ≥ lmax and M(O) ≥ L
m (otherwise the sum of

the loads over all machines would be less than L), we obtain M(N) ≤
L
t + lmax ≤ 2M(O). Thus, PoEFk ≤ 2 ≤ 2k

k−1 .

• If t < m, by the definition of t, it holds that

L =

L(k−1)
klmax

klmax

k − 1
≤

(⌊
L(k−1)
klmax

⌋
+ 1
)
klmax

k − 1
=

(t+ 1)klmax
k − 1

.

Hence, M(O) ≥ lmax implies M(N)
M(O) ≤

(t+1)k
t(k−1) + 1, with t ≥ 2 because

L ≥ 2klmax
k−1 and m ≥ 2. The value (t+1)k

t(k−1) is decreasing in t, so it is

maximized for t = 2, for which we have M(N)
M(O) ≤

5k−2
2(k−1) . Thus, we can

conclude that PoEFk ≤ 5k−2
2(k−1) ≤

2k
k−1 , because 2k ≥ 5k−2

2 for each k ≤ 2.

�

The following lemma helps us to construct a family of lower bounding in-
stances for values of k falling into certain subintervals of (1, 2).

Lemma 2. For any k ∈ (1, 2), δ ∈
(

0, 2+k−k
2

2k

)
and integer p such that p+ 1 is

prime and p < 2
k−1

(
1
k − δ

)
, there exists an instance Ik,p,δ for which PoEFk =

min
{
p+ 1

k − δ, n,m
}
.

Proof: For fixed k ∈ (1, 2), δ ∈
(

0, 2+k−k
2

2k

)
and integer p such that p + 1 is

prime and p < 2
k−1

(
1
k − δ

)
, the instance Ik,p,δ is defined by p+ 1 machines and

p + 1 jobs, such that one job has load 1
k − δ and all the remaining ones have

load 1. Note that k < 2 and δ < 2+k−k2
2k implies 2

k−1
(
1
k − δ

)
> 1, so that, for

any k ∈ (1, 2) and δ ∈
(

0, 2+k−k
2

2k

)
, at least one instance Ik,p,δ always exists.
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We show that scheduling all jobs to the same machine is the only k-envy-free
assignment for Ik,p,δ. This is trivially true for the case in which p = 1, so, in
the sequel of the proof, we assume p ≥ 2. We claim that each assignment N
using exactly h ≥ 2 machines satisfies

M(N) ≥ Lmin(N) +
1

k
− δ (4)

and

Lmin(N) ≤
⌊ p
h

⌋
. (5)

The first inequality comes from the fact that, being p + 1 ≥ 3 a prime
number, there must be two machines receiving a different number of jobs. For
the second one, assume Lj′(N) := Lmin(N) >

⌊
p
h

⌋
. If Nj′ contains only jobs

of load 1, then Lmin(N) > p
h which implies M(N) > p

h + 1
k − δ because of (4)

and we get L =
∑m
j=1 Lj(N) > h ph + 1

k − δ = L, yielding a contradiction. If

Nj′ contains x > 0 jobs including the one of load 1
k − δ, we can only claim that

Lmin(N) > p
h −1+ 1

k − δ. Anyway, in this case, the machine of completion time
M(N) is assigned at least x+1 jobs of load 1, which impliesM(N) ≥ Lmin(N)−
1
k +δ+2 > p

h +1, and each of the remaining h−2 machines is assigned at least x
jobs of load 1 for a total load equal to (h−2)

(
Lmin(N)− 1

k + δ + 1
)
> (h−2) ph .

We get L =
∑m
j=1 Lj(N) > (h − 2) ph + p

h + 1 + p
h − 1 + 1

k − δ = L, yielding a
contradiction.

Observe now that, for each h ≥ 2,
⌊
p
h

⌋
≤ p

h ≤
p
2 . Thus, for each h ≥ 2, it

holds that

kLmin(N) = (k − 1)Lmin(N) + Lmin(N)

≤ (k − 1)
⌊ p
h

⌋
+ Lmin(N)

≤ (k − 1)
p

2
+ Lmin(N)

< Lmin(N) +
1

k
− δ

≤ M(N),

where the first inequality comes from (5), the second one comes from
⌊
p
h

⌋
≤ p

2

for each h ≥ 2, the third one comes from p < 2
k(k−1)−

2δ
k−1 and the last one comes

from (4). This shows that scheduling all jobs to the same machine is the only k-
envy-free assignment for Ik,p,δ and, sinceM(O) = 1, we get PoEFk = p+ 1

k −δ.
The claim then follows as n = m = p+ 1 > p+ 1

k − δ. �
We can exploit the above lemma to construct lower bounds as follows. For

each prime number p + 1, we determine the values of k such that 2
k(k−1) >

p. This tells us for which values of k there exists an instance Ik,p,δ yielding
PoEFk = p + 1

k − δ, for a sufficiently small δ > 0. The results obtained for
some of the first prime numbers, taking the limit for δ going to zero, are listed
in Figure 1.
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Lower Bound Holds For With Prime Number

k+1
k k ∈

[
1+
√
5

2 , 2
)

2

2k+1
k k ∈

[
1+
√
3

2 , 1+
√
5

2

)
3

4k+1
k k ∈

[
3+
√
21

6 , 1+
√
3

2

)
5

6k+1
k k ∈

[
5+3
√
5

10 , 3+
√
21

6

)
7

10k+1
k k ∈

[
3+
√
15

6 , 5+3
√
5

10

)
11

12k+1
k k ∈

[
2+
√
6

4 , 3+
√
15

6

)
13

16k+1
k k ∈

[
11+
√
165

22 , 2+
√
6

4

)
17

22k+1
k k ∈

[
7+3
√
7

14 , 11+
√
165

22

)
23

28k+1
k k ∈

[
15+
√
285

30 , 7+3
√
7

14

)
29

30k+1
k k ∈

[
3+
√
11

6 , 15+
√
285

30

)
31

4+7k−k2
6k(k−1) k ∈

(
1, 3+

√
11

6

)
≥ 37

Figure 1: Lower bounds on PoEFk for values of k ∈ (1, 2).

In order to obtain a general lower bound, holding for k ∈
(

1, 3+
√
11

6

)
, we

exploit the following theorem on prime numbers.

Theorem 3 (Nagura [22]). For any integer n ≥ 25, there exists at least one
prime number p such that n < p < 6n

5 .

Theorem 4. For any k ∈
(

1, 3+
√
11

6

)
and δ ∈

(
0, (k − 1)2

]
, there exists an

instance Ik,δ such that PoEFk ≥ min
{

4+7k−k2
6k(k−1) −

(3k+2)δ
3(k−1) , n,m

}
.

Proof: First of all, observe that the function f(k) = 10+k−k2
6k(k−1) −

5(k−1)
3 is

decreasing in the interval
(

1, 3+
√
11

6

)
, so that its minimum in this interval is

f
(

3+
√
11

6

)
= 92

3 −
5
√
11

18 > 29. For fixed k ∈
(

1, 3+
√
11

6

)
and δ ∈

(
0, (k − 1)2

]
,

let x be the highest integer such that x < 5(2−k+k2)
6k(k−1) −

5δ
3(k−1) . Note that x ≥

5(2−k+k2)
6k(k−1) −

5δ
3(k−1)−1 = 10+k−k2

6k(k−1) −
5δ

3(k−1) . Let p+1 be a prime number such that

x < p+ 1 < 6x
5 . One such a number always exists since x ≥ 10+k−k2

6k(k−1) −
5δ

3(k−1) ≥
10+k−k2
6k(k−1) −

5(k−1)
3 ≥ 25 assures the application of Nagura’s Theorem. Note also

that p+1 < 6x
5 < 2−k+k2

k(k−1) −
2δ
k−1 implies p < 2

k(k−1)−
2δ
k−1 , so that Lemma 2 can be

applied since (k−1)2 < 2+k−k2
2k for each k ∈

(
1, 3+

√
11

6

)
. By Lemma 2, we obtain

that PoEFk = min
{
p+ 1

k − δ, n,m
}

, where p ≥ x. Since x ≥ 10+k−k2
6k(k−1) −

5δ
3(k−1) ,

12



we get p+ 1
k − δ ≥

10+k−k2
6k(k−1) −

5δ
3(k−1) + 1

k − δ = 4+7k−k2
6k(k−1) −

(3k+2)δ
3(k−1) , which yields

PoEFk = min
{

4+7k−k2
6k(k−1) −

(3k+2)δ
3(k−1) , n,m

}
. �

Theorem 5. For the scheduling problem with identical machines, given any

k ∈ (1, 2), there exists an instance for which PoEFk = Ω
(

min
{

2k
k−1 , n,m

})
.

Proof: By theorem 4, for any k ∈
(

1, 3+
√
11

6

)
, there exists an instance Ik,δ

such that PoEFk = Ω
(

min
{

2k
k−1 , n,m

})
. For any k ∈

[
3+
√
11

6 , 2
)

, the claim

trivially follows because in this case 2k
k−1 = Θ(1). �

4. Related Machines

In this section, we consider the scheduling problem with related machines.

Theorem 6. For the scheduling problem with related machines, PoEFk ≤ 2 +

max
{

1,
√

m
k

}
for any k ≥ 2.

Proof: Given an instance of the scheduling problem with related machines,
consider any assignment S. Let us normalize the machine speeds and the loads of
the jobs so that the fastest machine has speed 1 and the makespan of solution S
is 1, i.e., M(S) = 1. Let us rename the machines in such a way that sj ≥ sj+1

for any j = 1, . . . ,m − 1; notice that L1(S) ≤ 1 and we can assume that
Lj(S) ≥ Lj+1(S) for any j = 1, . . . ,m− 1 (otherwise by swapping Sj and Sj+1

a solution having equal or better makespan could be obtained).
Denote by M1 = {1, . . . , |M1|} the set of machines having load at least 1/k

in S, i.e., Lj(S) ≥ 1/k for any j ∈ M1, and by M2 the set of the remaining
machines. Note that it also holds that sj ≥ 1/k for any j ∈M1. Moreover, it is
easy to check that no pair (j, j′) of machines in M1 is such that j k-envies j′.
In the following we build a new allocation N starting from allocation S.

Let Lij be the load of each machine j at the moment in which the job i is
considered for allocation by Algorithm 4. The new assignment N is obtained as
described in Algorithm 4.

Assignment N is initially set equal to assignment S. When lines 18–20
are executed, it means that k ≤ m and

∑
p≥j Lp(S) >

√
m
k . It follows that

Lj(S) > 1√
mk

(and therefore also sj >
1√
mk

). In this case, the only machine

receiving some new jobs is machine j. Since the load of any machine in M2 is
less than 1/k, we can gather all the jobs of machines j + 1, j + 2, . . . , j′ of total
load between 1

k −Lj(S) and 2
k −Lj(S), and add in N all such jobs to machine j.

We obtain Cj(Nj) =
Lj(N)
sj
≤

2
k
1√
m
√
k

= 2
√

m
k . Notice that machine j cannot be

k-envied by any other machine, and (since k ≥ 2) cannot k-envy other machines
with load at least 1/k (all the machines in M1 ∪M ′ have load at least 1/k in
assignment N).
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Algorithm 4

1: Input: assignment S
2: N← S
3: M ′ ← ∅
4: j′ ← |M1|
5: while j′ < m do
6: j ← j′ + 1
7: if k > m or

∑
p≥j Lp(S) ≤

√
m
k then

8: for each job in i ∈
⋃
p≥j Sp do

9: Let j′′ ∈M1 ∪M ′ be the machine with the current smallest load
10: if Li1 + li ≤ kLij′′ then
11: N1 ← N1 ∪ {i} . Assign job i to machine 1
12: else
13: Nj′′ ← Nj′′ ∪ {i} . Assign job i to machine j′′

14: end if
15: end for
16: j′ ← m
17: else
18: M ′ ←M ′ ∪ {j}
19: Let j′ such that 1

k − Lj(S) ≤
∑j′

p=j+1 Lp(S) ≤ 2
k − Lj(S)

20: Nj ←
⋃j′
p=j Sp

21: end if
22: end while
23: return N

Note that lines 8–16 can be executed only once. When they are executed,
it means that k > m or

∑
p≥j Lp(S) ≤

√
m
k . When k > m, the load in S of

each machine in M2 is at most 1/m and the total load of all machines in M2

is at most 1. Therefore, in any case, the total load of all machines p ≥ j is at

most max
{

1,
√
m√
k

}
. Notice that, since (i) k ≥ 2, (ii) the load of each machine

in M1 is at least 1/k already in allocation S and (iii) the load of each job to
be assigned is at most 1/k, it is always possible to maintain k-envy-free an
allocation by assigning each job either to machine 1 or (in case the assignment
to machine 1 would result in a state non being k-envy-free) to the machine of
M1 ∪M ′ having the smallest load at that moment. In fact, consider any job i
belonging in S to some machine p ≥ j, and, for any j ∈M1 ∪M ′, let Lij be the
load of machine j at the moment in which the job i is considered for assignation
by Algorithm 4. Assigning job i to machine j′′ results in a k-envy-free state
because Lij′′ + li ≤ kLij′′ as conditions (i), (ii) and (iii) hold.

Let us now compute the makespan of assignment N, by considering only the
machines receiving some new jobs in lines 8–16 of Algorithm 4:

The total load added to machine 1 is at most max
{

1,
√
m√
k

}
and therefore

the total load C1(N1) of machine 1 at the end of the process is at most

14



1 + max
{

1,
√
m√
k

}
.

For any machine j ∈ M1 \ {1}, let last(j) be the last job assigned to machine
j and `j = llast(j) its load. Since last(j) has not been assigned to machine 1,

it must hold that L
last(j)
1 + `j > kL

last(j)
j′ for some j′ ∈ M1 \ {1}. In particu-

lar, L
last(j)
1 + `j > kL

last(j)
j because last(j) has been assigned to the machine

with minimum load at that moment. Since the total load that can be given to

machine 1 is at most 1 + max
{

1,
√

m
k

}
, it follows that L

last(j)
j <

L
last(j)
1 +`j

k ≤

1+max

{
1,
√

m
k

}
k . Finally, since last(j) is the last job assigned to machine j,

Lj(N) = L
last(j)
j + `j ≤ L

last(j)
j + 1/k and the completion time of machine j is

Cj(Nj) =
Lj(N)
sj
≤ L

last(j)
j +1/k

1/k ≤ k

 1+max

{
1,
√

m
k

}
k + 1

k

 = 2+max
{

1,
√

m
k

}
.

The claim follows by choosing O = S. �
For the case of k ∈ (1, 2), the following upper bound holds.

Theorem 7. For the scheduling problem with related machines, PoEFk ≤
min

{
n,m, 2k

√
m
k−1

}
for any k ∈ (1, 2).

Proof: Fix a value k ∈ (1, 2) and an assignment S. Because of Proposition

1, PoEFk ≤ min{n,m}; hence, we only need to show PoEFk ≤ 2k
√

m
k−1 for all

the cases in which 2k
√

m
k−1 < min{n,m}. In particular, 2k

√
m
k−1 < m implies

that m > 4k2

k−1 .
Consider the assignment N computed by Algorithm 5 described below.

Algorithm 5

1: Input: assignment S
2: scale the machine speeds so that the fastest machine has speed 1
3: scale the loads of the jobs so that M(S) = 1

4: t← min
{
m,
⌊
L(k−1)

k

⌋}
5: let st be the speed of the t-th fastest machine

6: if L < 2k
k−1 or L <

√
m or

(
t <

√
m
k−1 and st <

1√
m(k−1)

)
then

7: N← Algorithm 1(1)
8: else
9: N← Algorithm 1(t)

10: end if
11: return N

Let us order the machines in non-increasing speed so that s1 = 1 is the speed
of the fastest one. Note that, after the scalings performed at lines 1 and 2, it
holds that Lj(S) ≤ sj for each j ∈ [m] and lmax ≤ 1.
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Let us first consider the cases in which N = Algorithm 1(1), that is, only
the fastest machine is loaded in N for a completion time equal to L

s1
= L.

If L < 2k
k−1 ≤

2k
k−1 , since M(S) = 1, it follows M(N)

M(S) < 2k
k−1 . Note that

2k
k−1 ≤ 2k

√
m
k−1 when m > 4k2

k−1 . Similarly, if L <
√
m, it follows M(N)

M(S) <
√
m.

Finally, if t <
√

m
k−1 and st <

1√
m(k−1)

, since Lj(S) ≤ sj for each j ∈ [m], it

holds that

L =
∑
j∈[m]

Lj(S) ≤
∑
j∈[m]

sj

≤
∑
j∈[t]

sj +mst < ts1 +

√
m

k − 1

= t+

√
m

k − 1
< 2

√
m

k − 1
.

Hence, it follows M(N)
M(S) < 2

√
m
k−1 .

For the cases in which N = Algorithm 1(t), note that t ≥ 2 since L ≥ 2k
k−1

and m ≥ 2; moreover, it holds that L ≥
√
m.

Let us first consider the case in which st ≥ 1√
m(k−1)

. By Lemma 1,

N is a k-envy-free solution such that M(N) ≤ L/t+lmax
st

≤ L/t+1
st

. Note
that, as already shown in the proof of Theorem 2, by the definition of t,

it holds that L < (t+1)klmax
k−1 . Hence, it follows M(N)

M(S) ≤
1
st

(
(t+1)k
t(k−1) + 1

)
≤√

m(k − 1)
(

(t+1)k
t(k−1) + 1

)
. Again, the value (t+1)k

t(k−1) is decreasing in t, so it is

maximized for t = 2, for which we have M(N)
M(S) ≤

5k−2
2

√
m
k−1 < 2k

√
m
k−1 for

each k ≤ 2.

It remains to consider the case in which t ≥
√

m
k−1 . It holds that∑

j∈[t] Lj(S) ≤ s1t = t ≤
⌊
L(k−1)

k

⌋
≤ L(k−1)

k . This implies that

m∑
j=t+1

Lj(S) = L−
∑
j∈[t]

Lj(S) ≥ L− L(k − 1)

k
=
L

k
. (6)

Since the machines are ordered in non-increasing speed, it also holds that

m∑
j=t+1

Lj(S) ≤ mst. (7)

Inequalities 6 and 7 together imply st ≥ L
mk . Hence, M(N)

M(S) ≤
(L/t+1)(mk)

L =
mk
t + mk

L ≤ k
√
m(k − 1) + k

√
m ≤ 2k

√
m(k − 1). Note that 2k

√
m(k − 1) ≤

2k
√

m
k−1 for each k ∈ (1, 2). The claim follows by choosing an optimal solution

O as the input assignment S. �
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We now show that the two upper bounds proved in Theorems 6 and 7 are
asymptotically tight.

Proposition 5. For the scheduling problem with related machines, given any
k ≥ 1, there exists an instance for which PoEFk ≥ max

{
1,
√

m
k

}
. Moreover,

for any k ∈
(

1, 3+
√
11

6

)
, there exists an instance for which PoEFk = Ω

(√
m
k−1

)
.

Proof: For k ≥ 1, consider an instance defined by m > k machines and
n = m jobs, such that l1 = s1 = 1 and li = si = 1√

mk
for i = 2, . . . ,m. It is

easy to check that the optimal solution O, having makespan 1, assigns job i to
machine i for each i ∈ [m]. First, notice that, by assigning job 1 to a machine
different from machine 1, the makespan of the obtained solution would be at
least 1/s2 =

√
mk ≥

√
m
k . It remains to show that any k-envy-free solution N

assigning job 1 to machine 1 is such that M(N) ≥
√

m
k .

Two possible cases may occur: (i) all the jobs are assigned to machine 1, or
(ii) there exists a machine other than machine 1 which receives at least one of
the jobs of load 1√

mk
.

In case (i), the total load of machine 1 in assignment N would be L1(N) =
1 + m−1√

mk
>
√

m
k and, since C1(N1) = L1(N), the claim follows. In case (ii), the

load of any machine j > 1 has to be at least 1/k (otherwise machine 1 would

k-envy machine j) and therefore Cj(Nj) =
Lj(N)
sj
≥ 1/k

1/
√
mk

=
√

m
k .

For the case of k ∈
(

1, 3+
√
11

6

)
, the instance with identical machines defined

in the proof of Theorem 4 has Θ
(

1
k−1

)
machines and yields PoEFk = Ω

(
1

k−1

)
.

Thus, since
√

m
k−1 = Θ

(
1

k−1

)
, the claim follows. �

Note that, for each k ∈
[
3+
√
11

6 , 2
)

, it holds that PoEFk ≤ 2k
√

m
k−1 =

O(
√
m) by Theorem 7, while, by Proposition 5, we have PoEFk ≥

max
{

1,
√

m
k

}
= Ω(

√
m). This shows that all the bounds on the PoEFk pre-

sented in this section are asymptotically tight.

5. Unrelated Machines

In this section, we consider the scheduling problem with unrelated machines.
In this case we are able to give an exact characterization of the price of k-envy-
freeness as witnessed by the upper and lower bounds given in the following.

Theorem 8. For the scheduling problem with unrelated machines, PoEFk ≤(
1 + 1

k

)min{n,m}−1
for any k ≥ 1.

Proof: Let S be the any assignment. We can construct a k-envy free assign-
ment by applying Algorithm 6. Starting from any assignment S, it iteratively
moves the jobs from a machine j′ to j whenever j k-envies j′. It is obvious
that, since the number of non-empty machines in S is at most min{n,m}, the
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Algorithm 6

1: Input: assignment S
2: N← S
3: while there exists a pair of machines (j, j′) s.t. j k-envies j′ do
4: Nj ← Nj ∪Nj′
5: Nj′ ← ∅
6: end while
7: return N

number of iterations is at most min{n,m} − 1. Moreover, it is easy to see that
at each iteration, the current processing time of machine j, as a consequence of
the movement of the jobs from j′ to j, increases by a factor of at most (1+1/k).
It results that the makespan M(N) of the final assignment obtained from this

procedure is at most M(S)
(
1 + 1

k

)min{n,m}−1
. The claim follows by choosing

an optimal solution O as the starting assignment S. �

Proposition 6. For the scheduling problem with unrelated machines, given
any k ≥ 1 and ε > 0, there exists an instance for which PoEFk =(

1 + 1
k+ε

)min{n,m}−1
.

Proof: Let us consider the instance with m machines and n = m jobs whose
processing times are defined as follows: pii = 1 for each i ∈ [n], pi1 = 1

k+ε (1 +
1
k+ε )

i−2 for every i ∈ {2, . . . , n}. All the remaining processing times are set

to infinity. Alternatively, we can express pi1 as 1
k+ε

∑i−1
q=1 pq1 for every i ∈

{2, . . . , n}. In fact,
∑i−1
q=1 pq1 = 1 + 1

k+ε

∑i−1
q=2(1 + 1

k+ε )
q−2 = 1 + 1

k+ε

∑i−3
r=0(1 +

1
k+ε )

r = 1 + ( 1
k+ε )

1−(1+ 1
k+ε )

i−2

1−(1+ 1
k+ε )

= (1 + 1
k+ε )

i−2.

The optimal assignment O is the one in which each job i is assigned to
machine i; thus M(O) = 1. It is easy to see that the assignment N in which
all jobs are scheduled on machine 1 is a k-envy-free assignment with M(N) =∑n
q=1 pq1 = (1 + 1

k+ε )
n−1, which is equal to

(
1 + 1

k+ε

)min{n,m}−1
, given that

n = m. It remains to show that N is the best k-envy-free assignment. First
notice that every solution in which a job i is assigned to a machine j different
from 1 and i has infinite makespan. Thus, let us consider all the solutions in
which each job i is assigned either to machine 1 or i. Let Q be the proper
subset of jobs allocated to machine 1 and q be the job with he smallest index
not allocated to machine 1 but to machine q. The completion time of machine
1 is at least

∑q−1
r=1 pr1 = (1 + 1

k+ε )
q−2. Since pq1 = 1

k+ε (1 + 1
k+ε )

q−2, it turns
out that machine 1 k-envies machine q and the claim follows. �

6. Complexity

An important feature of the proofs we used to upper bound the PoEFk in
the various cases is that they rely on polynomial time algorithms constructing
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k-envy-free assignments of reasonable low makespan. In particular, for identical
machines with k ∈ (1, 2), the algorithm used in the proof of Theorem 2 does not
require any information to be executed; hence, it indeed constructs a k-envy-
free assignment whose performance guarantee coincides with the upper bound
on the PoEFk.

For all the other cases, given an input solution S, all the designed algorithms
rearrange the allocations defined by S so as to obtain in polynomial time a
k-envy-free assignment N such that M(N) ≤ PoEFk · M(S). This means
that, when given as input a solution S such that M(S) ≤ α · M(O), each
algorithm computes in polynomial time a k-envy-free assignment N such that
M(N) ≤ α · PoEFk · M(O). By recalling that there exists a PTAS for the
scheduling problem with related and identical machines and a 2-approximation
algorithm for the case of unrelated ones and by the fact that our upper bounds of
PoEFk are tight or asymptotically tight, it follows that we are able to compute in
polynomial time k-envy-free assignments of best possible quality, when dealing
with related and identical machines, and of at least half the best possible quality,
when dealing with unrelated ones.

7. Extensions

In this section, we focus on two possible extensions of the original model,
namely the restricted scheduling case and the scenario in which the goal is that
of minimizing the sum of completion times of all machines.

It is worth noticing that the remarks of Section 6 about the complexity of
computing envy-free solutions also hold for these extensions.

7.1. Restricted Scheduling

In this subsection, we focus on the case in which a job cannot be assigned
to every machine: for any job i there is a set Mi ⊆ {1, . . . ,m} containing the
machines being admissible for job i. We have to clarify the definition of k-envy-
freeness in this setting: an assignment N is k-envy-free if no machine k-envies
any other one, where machine j k-envies machine j′ if Cj(Nj) > kCj(Nj′) and
for each job i ∈ Nj′ , j ∈ Mi. It can be easily verified that also in the case of
restricted scheduling an envy–free solution always exists. In fact, starting from
any feasible assignment, an envy–free solution can be obtained as follows: while
there exist two machines j and j′ such that j k-envies j′, assign to machine j
also all the jobs of machine j′.

As already remarked in the introduction, the setting of unrelated machines
studied in Section 5 includes the case of restricted (unrelated) machines, as it
is possible to assign a very large value to pij whenever machine j 6∈Mi, so that
neither an optimal solution, nor a k-envy-free one minimizing the makespan
can assign a job to a machine not being admissible for it. Therefore, for the
restricted case, it remains to analyze the related and identical settings. In the
related case, for which the upper bound provided in Theorem 8 clearly holds, it
is possible to modify the instance exploited in Proposition 6 so that it becomes
a restricted instance of the related setting, and the following theorem holds.
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Proposition 7. For the restricted scheduling problem with related machines,
given any k ≥ 1 and ε > 0, there exists an instance for which PoEFk =(

1 + 1
k+ε

)min{n,m}−1
.

Proof: Let us consider the instance with n jobs and m = n machines defined as

follows: for l1 = s1 = 1 and li = si = 1
k+ε

(
1 + 1

k+ε

)i−2
for each i ∈ {2, . . . , n}.

Moreover, M1 = {1} and Mi = {1, i} for each i ∈ {2, . . . , n}.
As in the proof of Proposition 6, we can express li as 1

k+ε

∑i−1
q=1 lq for every

i ∈ {2, . . . , n}. The optimal assignment O is the one in which each job i is
assigned to machine i; thusM(O) = 1. It is easy to see that the assignment N
in which all jobs are scheduled on machine 1 is a k-envy-free assignment with

M(N) =
∑n
q=1 lq = (1+ 1

k+ε )
n−1, which is equal to

(
1 + 1

k+ε

)min{n,m}−1
, given

that n = m. It remains to show that N is the best k-envy-free assignment. Let
Q be the proper subset of jobs allocated to machine 1 and q be the job with he
smallest index not allocated to machine 1 but to machine q. The total load of
jobs on machine 1 is at least

∑q−1
r=1 lr = (1+ 1

k+ε )
q−2. Since lq = 1

k+ε (1+ 1
k+ε )

q−2,
it turns out that machine 1 k-envies machine q and the claim follows. �

Finally, for the case of identical machines, a trivial upper bound equal to
min{n,m} holds as any solution (k-envy–free or not) approximates an optimal
one by at most min{n,m}, and the following lower bound holds.

Proposition 8. For the restricted scheduling problem with identical machines,
given any k ≥ 1, there exists an instance for which PoEFk = Ω(min{n,m}).

Proof: Fix an ε > 0. Let α be the smallest integer such that

1
k+ε

(
1 + 1

k+ε

)α−2
> 1. Let us consider the instance with n = 2α jobs and m =

n machines defined as follows: for l1 = 1 and li = min

{
1, 1

k+ε

(
1 + 1

k+ε

)i−2}
for each i ∈ {2, . . . , n}. Notice that, by the choice of n, at least n/2 jobs have
load 1. Moreover, M1 = {1} and Mi = {1, i} for each i ∈ {2, . . . , n}.

The optimal assignment O is the one in which each job i is assigned to
machine i; thusM(O) = 1. It is easy to see that the assignment N in which all
jobs are scheduled on machine 1 is a k-envy-free assignment withM(N) ≥ n/2.
It remains to show that N is the best k-envy-free assignment. Let Q be the
proper subset of jobs allocated to machine 1 and q be the job with he smallest
index not allocated to machine 1 but to machine q.

If q < α, the total load of jobs on machine 1 is at least
∑q−1
r=1 lr = (1 +

1
k+ε )

q−2. Since lq = 1
k+ε (1 + 1

k+ε )
q−2, it turns out that machine 1 k-envies

machine q and the claim follows.
If q ≥ α, the total load of jobs on machine 1 is at least

∑q−1
r=1 lr = (1 +

1
k+ε )

q−2 ≥ k + ε. Since lq = 1, again it turns out that machine 1 k-envies
machine q and the claim follows. �
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7.2. Sum of Machines Completion Times

In this subsection, we extend our study to the case where the objective is
that of minimizing the sum of the completion times of all the machines. We refer
to such a case as scheduling SUM problem. Formally, given an assignment N
where Cj(Nj) denotes the completion time of machine j under the assignment
N, an optimal assignment minimizes the sum

∑m
j=1 Cj(Nj). We notice that

an optimal solution can be trivially determined by assigning each job to the
machine providing it the minimum possible processing time.

We show tight upper and lower bounds on the price of k-envy-freeness for
such a problem for all the studied settings, i.e. unrelated, related and identical
machines, by exploiting ideas used for the minimum makespan case.

We start by observing that for the scheduling SUM problem with related
(and then identical) machines, PoEFk = 1 for any k ≥ 1. In fact, it is easy to
see that an optimal solution assigns all the jobs to the fastest machine and we
notice that such assignment is k-envy-free for any k ≥ 1.

We now turn to unrelated machines. First of all we observe that for the
scheduling SUM problem, PoEFk ≤

(
1 + 1

k

)min{n,m}−1
for any k ≥ 1. We

use the same arguments exploited in Theorem 8. Specifically, we start from
an optimal solution and while there is a machine j which envies a machine j′,
then we move all the job from j′ to j and continue until we reach a k-envy-free
assignment. The result follows by the facts that the sum of the completion
times of all the machines increases by a factor of at most (1 + 1/k) at each
iteration and that there are at most min{n,m} − 1 iterations. Moreover we
show that there exists an instance of the scheduling SUM problem for which

PoEFk =
(

1 + 1
k+ε

)min{n,m}−1
. Specifically, we consider the same instance used

in Proposition 6 with the difference of setting pi,i = ε, for every i ∈ {2, . . . , n}.
In this way we have that the optimum, in which each job i is assigned to machine
i, has cost 1 + (n− 1)ε. Moreover the best k-envy-free allocation assigns all the

jobs to machine 1 resulting in a cost equal to
(

1 + 1
k+ε

)min{n,m}−1
.

8. Conclusions

We have introduced and analyzed the notion of price of k-envy-freeness in
scheduling problems and determined exact or asymptotically tight bounds for
unrelated, related and identical machines. We have also showed how to effi-
ciently compute nicely performing k-envy-free allocations and we have extended
our results to the case of restricted assignments and to the objective of mini-
mizing the sum of the machines completion times.

Considering the minimization of the sum of the jobs completion times is an
issue that deserves future research attention.

Our framework is very general and can be considered as a forwarding step to-
ward the investigation of envy-free solutions for other objectives not considered
in this paper, like the dual ones of maximizing the number of jobs completed
within a given time deadline (the so-called Max Throughput problem), or of
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minimizing the number of machines needed to complete all the jobs within a
certain time.

In general, an interesting worth investigating issue is the extension of our
results to other scheduling problems and settings, as for instance the online
case.
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