
Distributed Edge Coloring in Time Polylogarithmic in Δ

Alkida Balliu

alkida.balliu@gssi.it

Gran Sasso Science Institute

L’Aquila, Italy

Sebastian Brandt

brandt@cispa.de

CISPA Helmholtz Center for Information Security

Saarbrücken, Germany

Fabian Kuhn

kuhn@cs.uni-freiburg.de

University of Freiburg

Freiburg, Germany

Dennis Olivetti

dennis.olivetti@gssi.it

Gran Sasso Science Institute

L’Aquila, Italy

ABSTRACT
We provide new deterministic algorithms for the edge coloring

problem, which is one of the classic and highly studied distributed

local symmetry breaking problems. As our main result, we show

that a (2Δ − 1)-edge coloring can be computed in time poly logΔ +
𝑂 (log

∗ 𝑛) in the LOCAL model. This improves a result of Balliu,

Kuhn, and Olivetti [PODC ’20], who gave an algorithm with a

quasi-polylogarithmic dependency on Δ. We further show that in

the CONGEST model, an (8 + 𝜀)Δ-edge coloring can be computed

in poly logΔ +𝑂 (log
∗ 𝑛) rounds. The best previous 𝑂 (Δ)-edge col-

oring algorithm that can be implemented in the CONGEST model

is by Barenboim and Elkin [PODC ’11] and it computes a 2
𝑂 (1/𝜀)Δ-

edge coloring in time 𝑂 (Δ𝜀 + log
∗ 𝑛) for any 𝜀 ∈ (0, 1].

CCS CONCEPTS
• Theory of computation → Distributed algorithms.

KEYWORDS
edge coloring, LOCAL model, CONGEST model, token dropping

ACM Reference Format:
Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. 2022.

Distributed Edge Coloring in Time Polylogarithmic in Δ. In Proceedings of
the 2022 ACM Symposium on Principles of Distributed Computing (PODC
’22), July 25–29, 2022, Salerno, Italy. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3519270.3538440

1 INTRODUCTION
In the most standard setting of distributed graph algorithms, we are

given a network that is modeled as an undirected graph𝐺 = (𝑉 , 𝐸).
The nodes 𝑉 are the active entities of the network and commu-

nication happens by exchanging messages over the edges 𝐸 in

synchronous rounds. The goal is to solve some graph problem on

𝐺 . This distributed computation model is known as the LOCAL
model if the communication between neighbors in each round is

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODC ’22, July 25–29, 2022, Salerno, Italy
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9262-4/22/07. . . $15.00

https://doi.org/10.1145/3519270.3538440

not restricted and it is known as the CONGEST model if the mes-

sages exchanged neighbors have to consist of at most 𝑂 (log𝑛) bits
(where 𝑛 = |𝑉 |) [41, 47]. Four graph problems that have received

particular attention in this context are the problems of computing

a maximal independent set (MIS) of 𝐺 , a (Δ + 1)-vertex coloring

of 𝐺 (where Δ is the maximum degree of 𝐺), a maximal matching

of 𝐺 , and a (2Δ − 1)-edge coloring of 𝐺 . All four problems have in

common that they can be solved by a trivial sequential greedy algo-

rithm. The four problems can be seen as prototypical examples of

distributed symmetry breaking problems and understanding the dis-

tributed complexities of them has been at the very core of the area

of distributed graph algorithms, e.g. [9, 29, 41]. All four problems

can be solved by quite simple and straightforward 𝑂 (log𝑛)-round
randomized distributed algorithms, which have been known for

more than thirty years [1, 37, 41, 42]. In light of those efficient ran-

domized algorithms, a lot of the work concentrated on developing

deterministic distributed algorithms for the four problems. As the

contributions of the present paper are on deterministic algorithms,

we also focus on deterministic algorithms when discussing the prior

work in the following.

Deterministic Complexity as a Function of the Network Size. In
[2, 45], a tool called network decomposition was introduced as

a generic technique to solve distributed graph problems. This re-

sulted in deterministic 2
𝑂 (

√
log𝑛)

-round algorithms in particular

for the four problems discussed above and it left open the question

of whether the problems can also be solved deterministically in

polylogarithmic time and thus similarly fast as with the simple

randomized algorithms of the 1980s. This was first shown for the

maximal matching problem in [33, 34], where the authors gave a

deterministic 𝑂 (log
4 𝑛)-time algorithm. The result was later im-

proved to the current running time of 𝑂 (log
2 Δ · log𝑛) in [22].

Much more recently, it was shown that also the (2Δ − 1)-edge
coloring problem can also be solved in polylogarithmic time deter-

ministically [23, 27, 35] by reducing the problem to the problem

of computing a maximal matching in 3-uniform hypergraphs and

by giving a polylogarithmic-time deterministic distributed algo-

rithm for maximal matching in hypergraphs of bounded rank. The

algorithm of [35] achieves a round complexity of 𝑂̃ (log
2 Δ · log𝑛)

and is thus almost as fast as the maximal matching algorithm of

[22]. Subsequently, in a breakthrough result, Rozhoň and Ghaf-

fari [48] gave a polylogarithmic-time algorithm for the network

decomposition problem. The current best version of this algorithm

in [26] implies 𝑂 (log
5 𝑛)-time deterministic distributed algorithms

Session 1 PODC ’22, July 25–29, 2022, Salerno, Italy

15

https://doi.org/10.1145/3519270.3538440
https://doi.org/10.1145/3519270.3538440
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3519270.3538440&domain=pdf&date_stamp=2022-07-21

PODC ’22, July 25–29, 2022, Salerno, Italy Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti

for all four problems discussed above. Finally, in a recent paper [28],

a direct 𝑂 (log
2 Δ · log𝑛)-round algorithm for the (Δ + 1)-vertex

coloring (and thus also for the (2Δ − 1)-edge color problem) was

presented.

Deterministic Complexity as a Function of the Maximum Degree.
The optimal time complexity of a graph problem in the LOCAL
model can be interpreted as the locality of the problem in the fol-

lowing sense. If there is an 𝑅-round deterministic LOCAL algorithm
for solving a problem in a graph 𝐺 , then every node of 𝐺 can com-

pute its output as a function of its 𝑅-hop neighborhood in 𝐺 and

if more than 𝑅 rounds are needed to solve a problem, then some

node must learn something about the graph that is outside the

node’s 𝑅-hop neighborhood [41, 47]. The local neighborhood of a

node is in principle independent of the size of the network. It is

therefore natural to ask for the locality of graph problems not just

as a function of the network size, but also as a function of more

local properties. Further, local graph algorithms are particularly

interesting in large networks where the node degrees might be

independent or almost independent of the network size. As a result,

there is an extended body or prior work that tries to understand

the distributed complexity of graph problems as a function of the

maximum degree Δ rather than as a function of 𝑛.

Note however that the distributed complexity of many problems

cannot be completely independent of 𝑛. Linial [41] showed that

even in networks of maximum degree Δ = 2, computing a coloring

with𝑂 (1) colors (and by simple reductions computing solutions for

all four classic problems discussed above) requires at least Ω(log
∗ 𝑛)

rounds.
1
However, in [41], it is also shown that in𝑂 (log

∗ 𝑛) rounds,
one can compute a vertex coloring with𝑂 (Δ2) colors for any graph
𝐺 . Given such a coloring, one can then iterate through the color

classes and obtain simple distributed𝑂 (Δ2)-round implementations

of the natural sequential greedy algorithms for computing an MIS,

a maximal matching, a (Δ + 1)-vertex coloring, or a (2Δ − 1)-edge
coloring. All four problems can therefore be solved in𝑂 (Δ2+log

∗ 𝑛)
rounds in the LOCAL model (and also in the CONGEST model).

That is, we can solve the problems in time 𝑂 (𝑓 (Δ) + log
∗ 𝑛) for

some function 𝑓 . This keeps the dependency on 𝑛 as small as it can

be. When establishing the local complexity of a distributed graph

problem, we are interested in optimizing the function 𝑓 and thus

the Δ-dependency of this bound.

Starting from the early work on distributed graph algorithms,

there is a long line of research that tries to optimize the Δ de-

pendency of the four discussed problems [5–8, 10, 11, 24, 31, 39–

41, 43, 44, 51]. As given a 𝐶-vertex or a 𝐶-edge coloring, all four

problems can be solved in 𝐶 rounds, the primary focus was on de-

veloping efficient coloring algorithms. In a first phase, the time for

computing a (2Δ−1)-edge coloring [44] and for computing a (Δ+1)-
vertex coloring was improved to𝑂 (Δ + log

∗ 𝑛) [11, 38]. As a result,
we therefore also obtain 𝑂 (Δ + log

∗ 𝑛)-round algorithms for MIS

and maximal matching. In [3, 4, 15], it was shown that for MIS and

maximal matching, this bound is tight, even on tree networks. More

1
Note that even in bounded-degree graphs, the local neighborhoods are not completely

independent of the network size. In order to equip the network with unique identifiers,

the space from which the identifiers are chosen has to grow as a function of the

network size 𝑛.

specifically, it was shown that there is no randomized MIS or maxi-

mal matching algorithm with round complexity 𝑜
(
Δ + log log𝑛

log log log𝑛

)
and there is no deterministic such algorithm with round complexity

𝑜
(
Δ + log𝑛

log log𝑛

)
. While for MIS and matching, there is a linear-in-Δ

lower bound, for (Δ+1)-vertex coloring and (2Δ−1)-edge coloring,
there are in fact algorithms with a sublinear-in-Δ complexity. This

was first shown by Barenboim in [6]. The best known algorithm

that works for both vertex and edge coloring has a time complexity

of 𝑂 (
√︁
Δ logΔ + log

∗ 𝑛) [10, 24, 43]. For (2Δ − 1)-edge coloring, it
has recently been shown that we can even obtain a dependency

on Δ that is subpolynomial in Δ. First, Kuhn [39] showed that the

problem can be solved in 2
𝑂 (

√
logΔ) +𝑂 (log

∗ 𝑛) rounds and sub-

sequently, Balliu, Kuhn, and Olivetti [5] showed that the number

of rounds can even be reduced to log
𝑂 (log logΔ) Δ +𝑂 (log

∗ 𝑛) and
thus to a quasi-polylogarithmic dependency on Δ. This leaves a
natural open question.

Is it possible to solve (2Δ − 1)-edge coloring in time polylogarith-
mic in Δ?
Our Contribution. As our main result, we resolve the above open

question and prove the following theorem.

Theorem 1.1. There is a deterministic poly logΔ+𝑂 (log
∗ 𝑛)-

round LOCAL algorithm to solve the (2Δ − 1)-edge coloring
problem.

In fact, as we will prove Theorem 1.1 also for the more general

(degree+1)-list edge coloring problem, as long as all the colors come

from a domain of size at most poly(Δ). In this problem, initially,

every edge 𝑒 is given a list consisting of at least deg𝐺 (𝑒)+1 different

colors, where the degree deg𝐺 (𝑒) of 𝑒 is defined as the number of

edges that are adjacent to 𝑒 . The output must be a proper edge

coloring such that every edge 𝑒 is colored with some color from

its list. In addition, we also provide a more efficient edge coloring

algorithm for the CONGEST model. The best known CONGEST
algorithm for computing a (2Δ − 1)-edge coloring (as a function

of Δ) has a round complexity of 𝑂 (Δ + log
∗ 𝑛) [10]. In [8], it was

further shown that for any 𝜀 ∈ (0, 1], a 2
𝑂 (1/𝜀) ·Δ-edge coloring can

be computed in 𝑂 (Δ𝜀 + log
∗ 𝑛) rounds in the CONGEST model.

2

We improve this by showing that an 𝑂 (Δ)-edge coloring can be

computed in polylogarithmic (in Δ) time.

Theorem 1.2. For any constant 𝜀 > 0, there is a deterministic
poly logΔ+𝑂 (log

∗ 𝑛)-roundCONGEST algorithm to compute
an (8 + 𝜀)-edge coloring.

Further Related Work. There is also substantial work on random-

ized algorithms for computing graph colorings [12, 17, 21, 32, 36,

46, 49], MIS [12, 25], and maximal matchings [12]. The best known

randomized complexities are𝑂 (log
3

log𝑛) for (Δ + 1)-vertex color-
ing and (2Δ−1)-edge coloring [17, 21, 28],𝑂 (logΔ+ log

5
log𝑛) for

MIS [25, 26], and𝑂 (logΔ+log
3

log𝑛) formaximalmatching [12, 22].

For the edge coloring problem, which is the main focus of the

present paper, there have also been various results on finding edge

colorings with less than 2Δ−1 colors. Note first that it is not possible

2
The authors of [8] do not explicitly show that their algorithmworks in theCONGEST
model. It is however not hard to see that it can be adapted to work in the CONGEST
model.

Session 1 PODC ’22, July 25–29, 2022, Salerno, Italy

16

Distributed Edge Coloring in Time Polylogarithmic in Δ PODC ’22, July 25–29, 2022, Salerno, Italy

to compute such a coloring in time𝑂 (𝑓 (Δ) + log
∗ 𝑛). In [18] (based

on techniques developed in [13, 16]), it was shown that for every

Δ > 1, every deterministic algorithm for computing a (2Δ−2)-edge
coloring of Δ-regular trees requires at least Ω(logΔ 𝑛) rounds and
every randomized such algorithm requires at least Ω(logΔ log𝑛)
rounds. When computing an edge coloring with less than 2Δ − 1

colors, the objective therefore is on the one hand to obtain a color-

ing that uses not many more than Δ colors and on the other hand

to achieve a time complexity that gets as close as possible to the

lower bounds of [18]. In recent years, different distributed algo-

rithms that compute edge colorings with (1 + 𝜀)Δ colors (and even

with Δ +𝑂 (1) colors) have been developed [18, 20, 21, 30, 50]. For

example, by using the randomized algorithm of [18] together with

derandomization techniques of [27, 48], one obtains deterministic

poly log𝑛-time and randomized poly log log𝑛-time algorithms for

computing edge colorings with Δ + 𝑂̃ (
√
Δ) colors.

2 MODEL AND DEFINITIONS
Basic notions. Leg 𝐺 = (𝑉 , 𝐸) be a graph. We denote with Δ the

maximum degree of𝐺 , and with Δ̄ the maximum degree of the line

graph of 𝐺 , that is, the maximum number of neighboring edges of

an edge. Clearly, Δ̄ ≤ 2Δ − 2. We denote with deg𝐺 (𝑣) the degree
of a node 𝑣 ∈ 𝑉 , and for an edge 𝑒 ∈ 𝐸 we denote with deg𝐺 (𝑒)
the degree of edge 𝑒 in the line graph of 𝐺 , that is, for 𝑒 = {𝑢, 𝑣},
deg𝐺 (𝑒) = deg𝐺 (𝑢) + deg𝐺 (𝑣) − 2. If 𝐺 is a directed graph, we

use deg𝐺 (𝑣) and deg𝐺 (𝑒) to denote the degrees of 𝑣 and 𝑒 in the

undirected version of 𝐺 . If the graph is clear from the context, we

may omit it and write deg(𝑣) and deg(𝑒). We assume that log𝑛

denotes log
2
𝑛.

List Edge Coloring. Assume that for a graph 𝐺 = (𝑉 , 𝐸), we are
given a set𝐶 = {1, . . . , |𝐶 |} of colors, called the color space, and for
each edge 𝑒 = {𝑢, 𝑣}, we are given a list of colors 𝐿𝑒 ⊆ 𝐶 . The list
edge coloring asks to assign a color 𝑐𝑒 ∈ 𝐿𝑒 to each edge 𝑒 such that

edges incident to the same node are assigned different colors. In the

distributed version of the problem, we assume that all nodes know

𝐶 , both nodes of an edge know the list 𝐿𝑒 and at the end, both nodes

need to output the color of 𝑒 . The (degree + 1)-list edge coloring
problem is a special case where |𝐿𝑒 | ≥ deg𝐺 (𝑒) + 1 for all 𝑒 ∈ 𝐸.
The standard 𝐾-edge coloring is a special of the list edge coloring

problem in which every edge 𝑒 is given the set 𝐿𝑒 = {1, . . . , 𝐾} as
its list.

Relaxed List Edge Coloring. In this work, we will make use of a

technique that allows us to decompose a hard list coloring instance

into many easier ones. This technique has been already used in

[5, 6, 24, 39]. A list edge coloring instance can be characterized by a

parameter 𝑆 , specifying how much larger the lists are as compared

to the degree of the edges. A list edge coloring instance is said

to have slack at least 𝑆 if |𝐿𝑒 | > 𝑆 · deg(𝑒), for all 𝑒 . We define

𝑃 (Δ̄, 𝑆,𝐶) to be the family of list edge coloring instances where the

graph has maximum edge degree Δ̄, the slack is at least 𝑆 , and the

color space has size 𝐶 . We define 𝑇 (Δ̄, 𝑆,𝐶) to be the time required

to solve 𝑃 (Δ̄, 𝑆,𝐶).

Defective Coloring. A 𝑑-defective 𝑐-coloring is an assignment of

colors from {1, . . . , 𝑐} to the nodes, such that the maximum degree

of each graph induced by nodes of the same colors is bounded by 𝑑 .

The 𝑑-defective 𝑐-edge coloring of 𝐺 is a 𝑑-defective 𝑐-coloring of

the line graph of 𝐺 .

LOCAL and CONGEST Model. We consider two standard mod-

els of distributed computing, the LOCAL and the CONGESTmodel

[41, 47]. In the LOCAL model, the network is modeled as a graph

𝐺 = (𝑉 , 𝐸), where the nodes 𝑉 represent computational entities

and the edges 𝐸 represent pairwise communication links. Commu-

nication proceeds in synchronous rounds, where in each round,

each node can send (possibly different) messages to its neighbors,

receive messages from the neighbors, and perform some internal

computation. We do not restrict the message size or the interal

computational power of the nodes.

At the beginning of the computation, each node knows a unique

identifier from {1, . . . , poly𝑛}, where 𝑛 = |𝑉 | is known to all nodes.

Further, each node knows Δ, the maximum degree of 𝐺 . At the

end of a computation, each node must produce its own part of the

solution (e.g., in the case of the edge coloring problem, each node 𝑣

must output the colors of all incident edges). The time complexity

of an algorithm is the worst-case of number of rounds required

to produce the solution. We may express this running time as a

function of 𝑛 and Δ. The CONGESTmodel is similar to the LOCAL
model, with the only difference that each message must have size

bounded by 𝑂 (log𝑛) bits.

3 ROAD MAP AND HIGH LEVEL IDEAS
In this section, we provide an overview of the main ingredients that

we use to solve the edge coloring problem. While our algorithms

do not work exactly as stated here, we still try to highlight the core

ideas that we use. For this overview, we first sketch how to obtain

an edge coloring with 𝑂 (Δ) colors.
At a very high level, our algorithm uses a divide-and-conquer

approach that has been used in various previous deterministic

distributed coloring algorithms [5, 7, 8, 11, 38, 39]. The algorithm

uses a defective coloring to divide the graph into subgraphs of

smaller degree and at the same time the global space of colors is

divided into the same number of parts so that the different low-

degree subgraphs can use disjoint color spaces. The colorings or

the different subgraphs are then colored recursively in parallel.

There are different challenges that we face with this high-level

approach. First, when computing a defective coloring with defect

𝑑 , all previous algorithms use a number of colors that is at best

𝑐 · Δ/𝑑 for some constant 𝑐 > 1. Because of this, the ratio between

the necessary number of colors and the maximum degree grows

by a factor 𝑐 for every recursion level. To keep the total number of

colors needed in the end moderately small, this requires to keep

the number of recursion levels small, which in return makes the

defective coloring steps more expensive. As the main technical

contribution of this paper, we obtain a new algorithm for defective

edge coloring, where we can keep the number of colors and the

reduction of the degree arbitrarily close to 1.

Concretely, for the special case of 2-colored bipartite graphs, we

obtain a defective 2-coloring algorithm with the guarantee that the

defect of every edge 𝑒 is only (1/2 + 𝜀) · deg(𝑒) for an arbitrary

parameter 𝜀 > 0 (as long as the defect of the edge does not fall

below some threshold). We can compute this defective 2-coloring

in time poly(log(Δ)/𝜀). By choosing 𝜀 ≤ 𝜀 ′/logΔ and recursively

Session 1 PODC ’22, July 25–29, 2022, Salerno, Italy

17

PODC ’22, July 25–29, 2022, Salerno, Italy Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti

applying the defective 2-coloring, we show that we can partition

the graph into 2
𝑘 = Δ/poly logΔ parts such that the defect of each

node 𝑣 is at most (1 +𝑂 (𝜀 ′)) · deg𝐺 (𝑒)/2
𝑘
. We can thus compute

a (2 + 𝜀 ′)Δ-edge coloring of a given 2-colored bipartite graph in

time poly(log(Δ)/𝜀 ′). We further give a reduction that allows to

use this algorithm to color general graphs with (8 + 𝜀)Δ colors in

time poly logΔ +𝑂 (log
∗ 𝑛).

We next describe the high-level idea of our defective 2-coloring

algorithm. Assume that we are given a bipartite graph 𝐺 = (𝑈 ∪
𝑉 , 𝐸), where the nodes know if they are in𝑈 or in𝑉 . For simplicity,

assume further that 𝐺 is Δ-regular. Our goal is to color each edge

either red or blue such that every red edge has at most (1 + 𝜀)Δ
adjacent red edges and every blue edge has at most (1+𝜀)Δ adjacent

blue edges. To achieve this, we generalize an idea that was presented

in [14]. There, the authors show how to efficiently solve a problem

known as locally optimal semi-matching [19] and in particular a

special case of this problem, a so-called stable edge orientation of

a graph. Given an edge orientation of a graph 𝐺 , for every node

𝑣 , let 𝑥𝑣 denote the number of incident edges that are oriented

towards 𝑣 . An edge orientation is called stable if for every edge

𝑒 = {𝑢, 𝑣}, if 𝑒 is oriented from 𝑢 to 𝑣 , then 𝑥𝑣 − 𝑥𝑢 ≤ 1 (and

otherwise 𝑥𝑢 − 𝑥𝑣 ≤ 1). Note that such a stable orientation of a

Δ-regular bipartite graph 𝐺 = (𝑈 ∪𝑉 , 𝐸) directly gives a perfect

defective 2-coloring. Assume that every edge that is oriented from

𝑈 to 𝑉 is colored red and every edge that is oriented from 𝑉 to𝑈

is colored blue. If an edge {𝑢, 𝑣} for 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 is oriented

from 𝑢 to 𝑣 and thus colored red, then the number of adjacent red

edges is exactly (𝑥𝑣 − 1) + (Δ − 𝑥𝑢 − 1) = Δ + (𝑥𝑣 − 𝑥𝑢) − 2 ≤ Δ − 1

(by using that 𝑥𝑣 − 𝑥𝑢 ≤ 1). Note that the degree of every edge in a

Δ-regular graph is exactly 2(Δ − 1). An analogous argument works

for blue edges.

In [14], the authors introduce a tool that they call the token
dropping game and which is used in particular to compute stable

edge orientations. The token dropping game works as follows. We

are given a directed graph where each node holds either 0 or 1

tokens. The goal is to move tokens around and reach a “stable”

solution, that is a solution in which tokens cannot move. A token

can move from node 𝑢 to node 𝑣 if 𝑢 has a token, 𝑣 has no tokens,

and the edge (𝑢, 𝑣) exists. Every time a token passes through an

edge, the edge is deleted. In [14], it is shown that the token dropping

game can be solved in time 𝑂 (𝐿 · Δ2) if the directed graph of the

game has no cycles and the longest directed path is of length 𝐿. It

is shown that this algorithm can be used to compute a stable edge

orientation and thus a perfect defective 2-coloring in Δ-regular
2-colored bipartite graphs in 𝑂 (Δ4) rounds.

We cannot directly apply the algorithm of [14] for several reasons.

First, a time complexity of 𝑂 (Δ4) is way too slow for us as we aim

for algorithms that run in time polylogarithmic in Δ. Second, we
need to deal with non-regular graphs. Even if at the beginning the

graph is regular, after a single application of defective 2-coloring, we

might end up with two very non-regular graphs.
3
In non-regular

graphs, a stable orientation does not lead to a good defective 2-

coloring. The second problem can be solved relatively easily. For

each edge 𝑒 = {𝑢, 𝑣}, one can just define a different threshold 𝜂𝑒

3
Note that even if the new edge degrees are at most Δ − 1, the node degrees can still

take arbitrary values between 0 and Δ.

such that if 𝑒 is oriented from𝑢 to 𝑣 , it must hold that 𝑥𝑣−𝑥𝑢 ≤ 𝜂𝑒+1

and if 𝑒 is oriented from 𝑢 to 𝑣 , it must hold that 𝑥𝑢 − 𝑥𝑣 ≤ −𝜂𝑒 + 1.

If the thresholds 𝜂𝑒 are chosen in the right way, we can still get a

perfect defective 2-coloring from such an edge orientation and one

can also still use the reduction in [14] to the token dropping game

to compute such an edge orientation. Reducing the time complexity

is more challenging. For this, we relax the requirement on the

orientation. For Δ-regular graphs, we now want to require that

if an edge {𝑢, 𝑣} is oriented from 𝑢 to 𝑣 , then 𝑥𝑣 − 𝑥𝑢 ≤ 𝜀Δ and

otherwise 𝑥𝑢 − 𝑥𝑣 ≤ 𝜀Δ. Such an orientation can be computed fast

if we have a fast algorithm to a generalized token dropping game,

where each node can have up to 𝑂 (𝜀Δ) tokens. For more details of

how to define the generalized token dropping game, we refer to

Section 4.

As long as the directed graph of the token dropping game has

no cycles and only short directed paths, it is in fact possible to

adapt the token dropping algorithm and the analysis of [14] (in

a non-trivial way) to obtain a poly(log(Δ)/𝜀)-round algorithm to

compute a defective 2-coloring in a 2-colored bipartite graph𝐺 such

that the defect of any edge 𝑒 of 𝐺 is at most (1 + 𝜀) deg𝐺 (𝑒) and
this is sufficient to obtain an (8 + 𝜀)Δ-edge coloring algorithm with

a time complexity of poly logΔ + 𝑂 (log
∗ 𝑛). In order to obtain a

(2Δ−1)-coloring, there is however still one major challenge remain-

ing. When recursively using defective colorings, we always have

to slightly relax the coloring problem along the way and end up

with more that 2Δ − 1 colors. We can use such a more relaxed edge

coloring to compute a (2Δ− 1)-edge coloring or even a (degree+ 1)-
edge coloring if we solve the more general list edge coloring [6, 24].

In this case, one however also has to use a generalized version of

defective coloring [5, 39] (for a definition of what we need, see Sec-

tion 5). Even for this generalized defective 2-coloring variant, one

can define appropriate conditions for the required edge orientation

and one can use our generalized token dropping game to compute

such an edge orientation. However, in this case, the resulting token

dropping graph can have cycles and therefore, even the adapted

variant of the token dropping algorithm of [14] does not work. In

Section 4, we therefore design a completely new token dropping

algorithm, which also works in general directed graphs (for the

relaxed token dropping game that we are using).

The remainder of the paper is organized as follows. In Section 4,

we introduce and solve the generalized token dropping game. In

Section 5, we then introduce our generalized defective 2-coloring

problem and we show how to solve it by using our token drop-

ping algorithm of Section 4. Finally, in Section 6 and Section 7, we

prove our main results. We start in Section 6 with the 𝑂 (Δ)-edge
coloring algorithm for the CONGESTmodel, which is conceptually

simpler. Then, in Section 7, we present our algorithm for solving

the (deg(𝑒) + 1)-list edge coloring problem in the LOCAL model.

4 THE GENERALIZED TOKEN DROPPING
GAME

A key technical tool that we use is a generalization of the token

dropping game of [14]. This game is defined on a directed graph

𝐺 = (𝑉 , 𝐸), and it has an integer parameter 𝑘 ≥ 1. Initially, each

node 𝑣 ∈ 𝑉 receives at most 𝑘 tokens as input. Each edge 𝑒 ∈ 𝐸
can be either active or passive. Initially, all edges are active, and

Session 1 PODC ’22, July 25–29, 2022, Salerno, Italy

18

Distributed Edge Coloring in Time Polylogarithmic in Δ PODC ’22, July 25–29, 2022, Salerno, Italy

as the game progresses, edges can become passive. In a sequential

execution, the game proceeds in steps, where in each step, on some

active edge (𝑢, 𝑣) ∈ 𝐸 on which 𝑢 has at least 1 token and 𝑣 has less

than 𝑘 tokens, one token can be moved from 𝑢 to 𝑣 . After moving

the token, the edge (𝑢, 𝑣) becomes passive. Passive edges cannot

become active again. That is, over each edge of𝐺 , at most one token

can be moved, and an edge is passive if and only if a token was

moved over the edge. Let 𝜏 (𝑣) be the number of tokens at a node 𝑣

at a given time. When the game ends, it must hold that 𝜏 (𝑣) ≤ 𝑘

for every 𝑣 ∈ 𝑉 and

∀𝑒 = (𝑢, 𝑣) ∈ 𝐸 : 𝑒 active =⇒ 𝜏 (𝑢) ≤ 𝜏 (𝑣) + 𝜎 (𝑒), (1)

where 𝜎 (𝑒) ≥ 0 is a value that specifies how much slack we tolerate

on a given edge 𝑒 . In the original token dropping game introduced in

[14], 𝑘 = 1 and 𝜎 (𝑒) = 0 for all edges. In [14], it was further assumed

that the graph𝐺 is organized in layers and that all edges are oriented

from higher to lower layers (therefore the name token dropping).

We here generalize the game by allowing general diriected graphs,

larger values of 𝑘 , and by tolerating some slack on the active edges.

4.1 Distributed Token Dropping Algorithms
In the distributed version of the (generalized) token dropping game

the goal is to run an execution of the game, where tokens are moved

in parallel, but which is still equivalent to the sequential definition

of the game. That is, over each edge, at most one token can bemoved

and at all times, and every node has a set of at most 𝑘 tokens.

We next describe a distributed algorithm to solve the generalized

token dropping game with 𝜎 (𝑒) = 𝜀 · deg𝐺 (𝑒) for some given

parameter 𝜀 ∈ (0, 1/2], that is, by allowing a slack proportional to

the edge degree. The algorithm has an integer parameter 𝛿 > 0,

and we will see that 𝛿 can be used to control the trade-off between

the round complexity and the slack of the algorithm. The smaller

𝛿 is chosen, the smaller 𝜀 can be chosen, however the time of the

algorithm depends linearly on 1/𝛿 .
Throughout the algorithm, some tokens are active and some

tokens are passive. Initially, all tokens are active, and once a token

becomes passive, it remains passive and cannot be moved anymore.

The algorithm operates in synchronous phases. We use 𝑥𝑣 (𝑡) and
𝑦𝑣 (𝑡) to denote the number of active and passive tokens of node 𝑣 at

time 𝑡 , i.e., at the end of phase 𝑡 . The value 𝑥𝑣 (0) and 𝑦𝑣 (0) denote
the number of tokens of 𝑣 at the beginning. At all times 𝑡 ≥ 0, the

algorithm always guarantees that 𝑥𝑣 (𝑡) + 𝑦𝑣 (𝑡) ≤ 𝑘 for every node

𝑣 ∈ 𝑉 . We further have 𝑦𝑣 (0) = 0 for all 𝑣 ∈ 𝑉 . For each node, we

further define an integer parameter 𝛼𝑣 ≥ 1 that controls how much

slack node 𝑣 is willing to tolerate on its edges. We will see that if

we want to tolerate slack 𝜎𝑒 on an edge {𝑢, 𝑣}, then we in particular

have to choose 𝛼𝑢 , 𝛼𝑣 ≤ 𝑐𝜎𝑒 for a sufficiently small constant 𝑐 . The

value of 𝛼𝑣 controls how much slack node 𝑣 is willing to tolerate on

its edges. In the end, the slack on each edge (𝑢, 𝑣) that is still active
has to be 𝑂 (𝛼𝑢 + 𝛼𝑣). The algorithm is run for ⌊ 𝑘

𝛿
⌋ − 1 phases. In

each phase 𝑡 ≥ 1, the algorithm does the following steps.

(1) Define 𝐴(𝑡) ⊆ 𝑉 as the set of nodes 𝑣 ∈ 𝑉 with 𝑥𝑣 (𝑡 − 1) ≥
𝛼𝑣 + 𝛿 . We call 𝐴(𝑡) the active nodes in phase 𝑡 and only

nodes in 𝐴(𝑡) will be able to move tokens to other nodes in

phase 𝑡 .

(2) Each node 𝑣 ∈ 𝐴(𝑡) sets 𝑥 ′𝑣 (𝑡) := 𝑥𝑣 (𝑡 − 1) − 𝛿 and 𝑦′𝑣 (𝑡) :=

𝑦𝑣 (𝑡−1)+𝛿 . All other nodes 𝑣 ∈ 𝑉 \𝐴(𝑡) set 𝑥 ′𝑣 (𝑡) := 𝑥𝑣 (𝑡−1)
and 𝑦′𝑣 (𝑡) := 𝑦𝑣 (𝑡 − 1).

(3) For a node 𝑣 ∈ 𝑉 , let 𝑆 (𝑣) ⊂ 𝐴(𝑡) be the set of nodes𝑢 ∈ 𝐴(𝑡)
such that there is an active edge (𝑢, 𝑣) from 𝑢 to 𝑣 (𝑆 (𝑣) are
the nodes that can potentially send a token to 𝑣 in phase 𝑡).

(4) If 𝑥 ′𝑣 (𝑡) ≤ 𝑘 − 𝑡𝛿 − 𝛼𝑣 , 𝑣 sends a token proposal to the

min

{
|𝑆 (𝑣) |, 𝑘 − 𝑡𝛿 − 𝑥 ′𝑣 (𝑡)

}
nodes𝑤 ∈ 𝑆 (𝑣), where priority

is given to nodes𝑤 ∈ 𝑆 (𝑣) of smaller deg𝐺 (𝑤)/𝛼𝑤 value.

(5) For each node 𝑣 ∈ 𝑉 , let 𝑝𝑣 (𝑡) be the number of token

proposals that node 𝑣 receives in phase 𝑡 and let 𝑞𝑣 (𝑡) :=

min

{
𝑝𝑣 (𝑡), 𝑥 ′𝑣 (𝑡)

}
. Node 𝑣 accepts𝑞𝑣 (𝑡) of the proposals and

sends a token to the respective outneighbors. The edges over

which a token is sent become passive.

(6) For each node 𝑣 ∈ 𝑉 , let 𝑟𝑣 (𝑡) be the number of tokens that 𝑣

receives in phase 𝑡 . The number of active tokens at the end of

phase 𝑡 of each node 𝑣 is set to 𝑥𝑣 (𝑡) := 𝑥 ′𝑣 (𝑡) + 𝑟𝑣 (𝑡) −𝑞𝑣 (𝑡),
i.e., 𝑥𝑣 (𝑡) is 𝑥 ′𝑣 (𝑡) plus the number of received tokens and

minus the number of sent tokens.

We start by proving that the maximum number of active tokens

decreases after each phase, and that the total number of tokens at

each node never exceeds 𝑘 .

Lemma 4.1. For all 𝑣 ∈ 𝑉 and for all 𝑡 ≥ 0, if 𝛿 ≤ 𝛼𝑣 , it holds that
𝑥𝑣 (𝑡) ≤ max {2𝛼𝑣, 𝑘 − 𝑡 · 𝛿} and 𝑦𝑣 (𝑡) ≤ 𝑘 − 𝑥𝑣 (𝑡).

Proof. We prove the upper bound on 𝑥𝑣 (𝑡) by induction on

𝑡 . For 𝑡 = 0, we have 𝑥𝑣 (0) ≤ 𝑘 and therefore clearly 𝑥𝑣 (0) ≤
max {𝛼𝑣, 𝑘 − 0 · 𝛿}. For the induction step, let us assume that 𝑡 ≥ 1

and let us therefore focus on what happens in phase 𝑡 . Note that

in step 4 of phase 𝑡 the above algorithm, each node 𝑣 sends at

most 𝑘 − 𝑡𝛿 − 𝑥 ′𝑣 (𝑡) proposals and it therefore receives at most

that many new tokens. If 𝑥 ′𝑣 (𝑡) ≤ 𝑘 − 𝑡𝛿 , we therefore also have

𝑥𝑣 (𝑡) ≤ 𝑥 ′𝑣 (𝑡) + (𝑘 − 𝑡𝛿 − 𝑥 ′𝑣 (𝑡)) = 𝑘 − 𝑡𝛿 . In this case, we have

proven the required upper bound on 𝑥𝑣 (𝑡). Let us therefore assume

that 𝑥 ′𝑣 (𝑡) > 𝑘 − 𝑡𝛿 . In this case, 𝑣 does not send any proposals and

we therefore know that 𝑥𝑣 (𝑡) ≤ 𝑥 ′𝑣 (𝑡). By the induction hypothesis,

we also know that 𝑥𝑣 (𝑡 − 1) ≤ max {2𝛼𝑣, 𝑘 − (𝑡 − 1) · 𝛿}. Since we
know that 𝑥 ′𝑣 (𝑡) ≤ 𝑥𝑣 (𝑡 − 1), then, whenever 𝑥𝑣 (𝑡 − 1) ≤ 2𝛼𝑣 , we

now also have 𝑥𝑣 (𝑡) ≤ 𝑥 ′𝑣 (𝑡) ≤ 2𝛼𝑣 . Let us therefore further assume

that 2𝛼𝑣 < 𝑥𝑣 (𝑡 − 1) ≤ 𝑘 − (𝑡 − 1)𝛿 . Because 𝛿 ≤ 𝛼𝑣 , in this case,

we have 𝑥𝑣 (𝑡 − 1) > 2𝛼𝑣 ≥ 𝛼𝑣 + 𝛿 and therefore 𝑣 ∈ 𝐴(𝑡). However,
we then set 𝑥 ′𝑣 (𝑡) := 𝑥𝑣 (𝑡 − 1) − 𝛿 ≤ 𝑘 − 𝑡𝛿 , and we therefore also

have 𝑥𝑣 (𝑡) ≤ 𝑘 − 𝑡𝛿 . The proves the upper bound on 𝑥𝑣 (𝑡).
It remains to show that 𝑦𝑣 (𝑡) ≤ 𝑘 −𝑥𝑣 (𝑡). We again apply induc-

tion on 𝑡 . Note that we have 𝑦𝑣 (0) = 0 and 𝑥𝑣 (0) ≤ 𝑘 and therefore

the bound certainly holds for 𝑡 = 0. For every 𝑡 ≥ 1, we either have

𝑦𝑣 (𝑡) = 𝑦𝑣 (𝑡 − 1) and 𝑣 ∉ 𝐴(𝑡) or 𝑦𝑣 (𝑡) = 𝑦𝑣 (𝑡 − 1) +𝛿 and 𝑣 ∈ 𝐴(𝑡).
We therefore in particular always have 𝑦𝑣 (𝑡) ≤ 𝑦𝑣 (𝑡 − 1) + 𝛿 and
thus 𝑦𝑣 (𝑡) ≤ 𝑡𝛿 . If 𝑥𝑣 (𝑡) ≤ 𝑘 − 𝑡𝛿 , we thus have 𝑥𝑣 (𝑡) + 𝑦𝑣 (𝑡) ≤ 𝑘
as required. Let us therefore assume that 𝑥𝑣 (𝑡) > 𝑘 − 𝑡𝛿 . Above,
we showed that if 𝑥 ′𝑣 (𝑡) ≤ 𝑘 − 𝑡𝛿 , it follows that 𝑥𝑣 (𝑡) ≤ 𝑘 − 𝑡𝛿 .
By the contrapositive, if 𝑥𝑣 (𝑡) > 𝑘 − 𝑡𝛿 , we therefore know that

also 𝑥 ′𝑣 (𝑡) > 𝑘 − 𝑡𝛿 and thus that 𝑣 does not sent any propos-

als in step 4 of the algorithm. In this case, we therefore know

that 𝑥𝑣 (𝑡) ≤ 𝑥 ′𝑣 (𝑡). If 𝑣 ∉ 𝐴(𝑡), we have 𝑦𝑣 (𝑡) = 𝑦𝑣 (𝑡 − 1) and
𝑥 ′𝑣 (𝑡) = 𝑥𝑣 (𝑡 − 1) and if 𝑣 ∈ 𝐴(𝑡), we have 𝑦𝑣 (𝑡) = 𝑦𝑣 (𝑡 − 1) + 𝛿

Session 1 PODC ’22, July 25–29, 2022, Salerno, Italy

19

PODC ’22, July 25–29, 2022, Salerno, Italy Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti

and 𝑥 ′𝑣 (𝑡) = 𝑥𝑣 (𝑡 − 1) − 𝛿 . In both cases, 𝑥𝑣 (𝑡) ≤ 𝑥 ′𝑣 (𝑡) and the

induction hypothesis 𝑥𝑣 (𝑡 − 1) + 𝑦𝑣 (𝑡 − 1) ≤ 𝑘 directly imply that

𝑥𝑣 (𝑡) + 𝑦𝑣 (𝑡) ≤ 𝑘 . □

We now prove that, for each active edge, the number of passive

tokens of each endpoint cannot differ by much.

Lemma 4.2. For every edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, at the end of each phase
𝑡 ≤ 𝑘/𝛿 − 1 in the above algorithm, 𝑒 is passive or we have

𝑦𝑢 (𝑡)−𝑦𝑣 (𝑡) ≤ 2𝛼𝑣+
(

deg𝐺 (𝑢) deg𝐺 (𝑣)
𝛼𝑢 · 𝛼𝑣

+
deg𝐺 (𝑢)
𝛼𝑢

+
deg𝐺 (𝑣)
𝛼𝑣

)
·𝛿.

Proof. In each phase 𝑡 , for every node𝑤 ∈ 𝑉 , we have 𝑦𝑤 (𝑡) =
𝑦𝑤 (𝑡 −1) +𝛿 if𝑤 ∈ 𝐴(𝑡) and𝑦𝑤 (𝑡) = 𝑦𝑤 (𝑡 −1) otherwise. To upper
bound𝑦𝑢 (𝑡)−𝑦𝑣 (𝑡) while 𝑒 = (𝑢, 𝑣) is active, we can therefore count
the number of phases in which 𝑢 ∈ 𝐴(𝑡) and 𝑣 ∉ 𝐴(𝑡) and where

no token is passed over the edge. For 𝑢 to be in 𝐴(𝑡), we must

have 𝑥𝑢 (𝑡 − 1) ≥ 𝛼𝑢 + 𝛿 and for 𝑣 to not be in 𝐴(𝑡), we must have

𝑥𝑣 (𝑡 − 1) < 𝛼𝑣 + 𝛿 .
As long as 𝑡 is not too large, 𝑥𝑣 (𝑡 − 1) < 𝛼𝑣 +𝛿 implies that 𝑣 has

the capacity to receive tokens in phase 𝑡 and it can therefore send

proposals to active in-neighbors. To count the number of phases in

which 𝑢 ∈ 𝐴(𝑡) and 𝑣 ∉ 𝐴(𝑡), we therefore make a case distinction

depending on the value of 𝑡 . We first assume that 𝑡 ≤ (𝑘−2𝛼𝑣)/𝛿−1.

We can rewrite this as 𝛼𝑣 + 𝛿 ≤ 𝑘 − 𝑡𝛿 − 𝛼𝑣 and because we know

that 𝑥𝑣 (𝑡 − 1) ≤ 𝛼𝑣 + 𝛿 , this implies that 𝑥𝑣 (𝑡 − 1) ≤ 𝑘 − 𝑡𝛿 − 𝛼𝑣 .
Because 𝑣 ∉ 𝐴(𝑡), we also know that 𝑥 ′𝑣 (𝑡) = 𝑥𝑣 (𝑡−1) and therefore
𝑥 ′𝑣 (𝑡) ≤ 𝑘 − 𝑡𝛿 − 𝛼𝑣 . This is the condition that is needed in step

4 of the above algorithm for 𝑣 to send token proposals over its

incoming active edges. Whenever 𝑣 sends a token proposal to an

in-neighbor𝑤 , either𝑤 sends a token to 𝑣 and afterwards the edge

(𝑤, 𝑣) becomes passive, or𝑤 sends at least 𝛼𝑤 tokens to other out-

neighbors and therefore at least 𝛼𝑤 out-edges of𝑤 become passive.

To each in-neighbor 𝑤 ≠ 𝑢, 𝑣 can therefore send proposals at

most ⌈deg𝐺 (𝑤)/𝛼𝑤⌉ times. Note that in each phase 𝑡 , 𝑣 only sends

proposals (in step 4) if 𝑥 ′𝑣 (𝑡) ≤ 𝑘 − 𝑡𝛿 − 𝛼𝑣 and it sends proposals

either to all nodes in 𝑆 (𝑣) (i.e., to all active neighbors with an active

edge to 𝑣) or it sends proposals to 𝑘 − 𝑡𝛿 − 𝑥 ′𝑣 (𝑡) ≥ 𝛼𝑣 nodes in

𝑆 (𝑣). Hence, in each phase 𝑡 in which 𝑣 sends proposals and in

which 𝑣 does not send a proposal to 𝑢 although 𝑢 ∈ 𝐴(𝑡) and (𝑢, 𝑣)
is still active, there must be at least 𝛼𝑣 neighbors 𝑤 ∈ 𝑆 (𝑣) \ {𝑢}
to which 𝑣 sends a proposal. Note that for each such neighbor𝑤 ,

we have deg𝐺 (𝑤)/𝛼𝑤 ≤ deg𝐺 (𝑢)/𝛼𝑢 (because in step 4, proposals

are sent to active in-neighbors of smallest deg𝐺 (𝑤)/𝛼𝑤 ratio first).

The number of such phases 𝑡 for 𝑡 ≤ (𝑘 − 2𝛼𝑣)/𝛿 − 1 in which

𝑢 ∈ 𝐴(𝑡) and 𝑣 ∉ 𝐴(𝑡), in which (𝑢, 𝑣) is active and 𝑣 does not send
a proposal to 𝑢 can therefore be upper bounded by

(deg𝐺 (𝑣) − 1) ·
⌈

deg𝐺 (𝑢)
𝛼𝑢

⌉
𝛼𝑣

 ≤
(

deg𝐺 (𝑣) − 1

𝛼𝑣

)
·
(

deg𝐺 (𝑢)
𝛼𝑢

+ 1

)
≤

deg𝐺 (𝑢) · deg𝐺 (𝑣)
𝛼𝑢 · 𝛼𝑣

+
deg𝐺 (𝑣)
𝛼𝑣

.

(2)

Further, 𝑣 can send at most ⌊deg𝐺 (𝑢)/𝛼𝑢⌋ proposals to 𝑢 without

receiving a token from 𝑢 (and thus such that (𝑢, 𝑣) remains active).

The total number of phases 𝑡 for 𝑡 ≤ 𝑘/𝛿 − 1 in which 𝑢 ∈ 𝐴(𝑡) and

𝑣 ∉ 𝐴(𝑡) and in which (𝑢, 𝑣) remains active can consequently be

upper bounded by

2𝛼𝑣

𝛿
+

deg𝐺 (𝑢) · deg𝐺 (𝑣)
𝛼𝑢 · 𝛼𝑣

+
deg𝐺 (𝑣)
𝛼𝑣

+
deg𝐺 (𝑢)
𝛼𝑢

.

In each of those phases, 𝑦𝑢 (𝑡) −𝑦𝑣 (𝑡) increases by 𝛿 , which directly

implies the claim of the lemma. □

We are now ready to prove that our algorithm solves the gener-

alized token dropping game. The following theorem follows almost

directly from Lemma 4.1, for space reasons, the proof appears in

the full version of this paper.

Theorem 4.3. At the end of the above algorithm, for every 𝑣 ∈ 𝑉 ,
let 𝜏 (𝑣) be the number of tokens at node 𝑣 . If for all 𝑣 ∈ 𝑉 , 𝛼𝑣 ≥ 𝛿 ,
the above algorithm has a time complexity of 𝑂 (𝑘/𝛿) and at the end
of the algorithm, for every node 𝑣 ∈ 𝑉 , we have 𝜏 (𝑣) ≤ 𝑘 and for
every edge (𝑢, 𝑣), either (𝑢, 𝑣) is passive or

𝜏 (𝑢) − 𝜏 (𝑣) ≤

2(𝛼𝑢 + 𝛼𝑣)+
(

deg𝐺 (𝑢) · deg𝐺 (𝑣)
𝛼𝑢 · 𝛼𝑣

+
deg𝐺 (𝑢)
𝛼𝑢

+
deg𝐺 (𝑣)
𝛼𝑣

)
· 𝛿.

5 GENERALIZED DEFECTIVE 2-EDGE
COLORING

At the core, our edge coloring algorithms are based on the following

simple idea. We partition the space of possible colors into two parts

and each edge commits to choosing a color from one of the two

parts. The two parts can then be solved recursively. Because edges

that pick colors from disjoint color spaces cannot conflict with each

other, the two parts can be colored recursively in parallel. The task

of splitting the set of edges into two parts can be formulated as a

defective edge coloring problem as follows.

Definition 5.1 (Generalized Defective 2-Edge Coloring). Given 𝜀 ≥
0 and 𝛽 ≥ 0, a graph 𝐺 = (𝑉 , 𝐸), and parameters 𝜆𝑒 ∈ [0, 1] for
all edges 𝑒 ∈ 𝐸, a generalized (1 + 𝜀, 𝛽)-relaxed defective 2-edge

coloring of 𝐺 is an assignment of colors red and blue to the edges

𝑒 ∈ 𝐸 such that for every edge 𝑒 ∈ 𝐸:
• If 𝑒 is colored red, the number of neighboring red edges is

≤ (1 + 𝜀) · 𝜆𝑒 · deg𝐺 (𝑒) + 𝜆𝑒𝛽 .
• If 𝑒 is colored blue, the number of neighboring blue edges is

≤ (1 + 𝜀) · (1 − 𝜆𝑒) · deg𝐺 (𝑒) + (1 − 𝜆𝑒)𝛽 .

We will next show how we can solve a given generalized defec-

tive 2-edge coloring instance in two-colored bipartite graphs by

using the token dropping game of Section 4. We next show how to

transform the generalized defective 2-coloring problem to make it

more directly amenable to applying the token dropping game. We

first define the notion of generalized balanced edge orientations.

For convenience, we only give a definition for bipartite graphs.

Definition 5.2 (Generalized Balanced Edge Orientation). Assume

that we are given values 𝜀 ≥ 0 and 𝛽 ≥ 0, a bipartite graph 𝐺 =

(𝑈 ¤∪𝑉 , 𝐸), parameters 𝜂𝑒 ∈ R for all edges 𝑒 = (𝑢, 𝑣) ∈ 𝐸,𝑢 ∈ 𝑈 , 𝑣 ∈
𝑉 , and an orientation on the edges of 𝐺 . For each node𝑤 ∈ 𝑈 ∪𝑉 ,
let 𝑥𝑤 be the number of edges of𝑤 that are oriented towards𝑤 . The

orientation is called a generalized (𝜀, 𝛽)-balanced edge orientation
of 𝐺 if the following holds. For every edge (𝑢, 𝑣) ∈ 𝐸,

Session 1 PODC ’22, July 25–29, 2022, Salerno, Italy

20

Distributed Edge Coloring in Time Polylogarithmic in Δ PODC ’22, July 25–29, 2022, Salerno, Italy

(I) If 𝑒 is oriented from 𝑢 to 𝑣 , then 𝑥𝑣 − 𝑥𝑢 ≤ 𝜂𝑒 + 1 + 𝜀
2
·

deg𝐺 (𝑒) + 𝛽 .
(II) If 𝑒 is oriented from 𝑣 to 𝑢, then 𝑥𝑢 − 𝑥𝑣 ≤ −𝜂𝑒 + 1 + 𝜀

2
·

deg𝐺 (𝑒) + 𝛽 .

The following lemma follows almost directly from the above

definitions. The proof appears in the full version of this paper.

Lemma 5.3. Assume that we are given a bipartite graph 𝐺 =

(𝑈 ¤∪𝑉 , 𝐸), a parameter 𝜀 ≥ 0, and parameters 𝜆𝑒 ∈ [0, 1] for all
𝑒 ∈ 𝐸. For every edge 𝑒 = (𝑢, 𝑣), 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 , we define

𝜂𝑒 := 1 − 2𝜆𝑒 − (1 − 𝜆𝑒) · deg𝐺 (𝑢) + 𝜆𝑒 · deg𝐺 (𝑣)

+ 𝜀 ·
(
𝜆𝑒 −

1

2

)
· deg𝐺 (𝑒) + (2𝜆𝑒 − 1)𝛽 (3)

A generalized (𝜀, 𝛽)-balanced edge orientation of 𝐺 w.r.t. the edge
parameters 𝜂𝑒 can be turned into a solution to the given generalized
(1 + 𝜀, 2𝛽)-relaxed defective 2-edge coloring w.r.t. the original edge
parameters 𝜆𝑒 by coloring edges red that are oriented from 𝑈 to 𝑉
and by coloring edges blue that are oriented from 𝑉 to𝑈 .

We next show how to compute a generalized balanced edge

orientation (as given by Definition 5.2) and thus in combination

with Lemma 5.3 a generalized defective 2-edge coloring. Assume

that we have a bipartite 2-colored graph 𝐺 = (𝑈 ∪ 𝑉 , 𝐸) with
edge parameters 𝜂𝑒 ∈ R. We will compute a generalized balanced

edge orientation with parameter 𝜂𝑒 by reducing it to a sequence

of instances of the token dropping game. More concreteley, the

algorithm has a parameter 𝜈 > 0 and it runs in a sequence of phases

𝜙 = 1, 2, 3, . . . ,𝑂
(

logΔ
𝜈

)
. At the start, all edges of 𝐺 are unoriented

and in each phase, a subset of the unoriented edges become oriented.

We define 𝐹𝜙 as the set of edges that get oriented in phase 𝜙 , and

𝐹<𝜙 as the set of edges that get oriented before phase 𝜙 . By writing

deg𝐹<𝜙
(𝑣) we refer to the degree of node 𝑣 in the graph induced

by the edges 𝐹<𝜙 . In each phase, we use one instance of the token

dropping game to make sure that the set of all oriented edges

satisfies inequalities (I) and (II) of Definition 5.2 (for an appropriate

value of 𝜀). For an edge 𝑒 ∈ 𝐸 and a phase 𝜙 ≥ 0, we use 𝑑 (𝑒, 𝜙)
to denote the number of unoriented neighboring edges of 𝑒 at the

end of phase 𝜙 . For convenience, we also use 𝑑 (𝑒, 0) = deg𝐺 (𝑒) to
denote the number of unoriented neighboring edges of 𝑒 at the start.

We further define Δ̄ := 2Δ − 2 as an upper bound on the maximum

edge degree in 𝐺 . We further set the parameter 𝜈 such that

0 < 𝜈 ≤ 1

8

. (4)

For every node 𝑣 and every phase 𝜙 ≥ 1, let 𝑥𝑣 (𝜙) denote the

number of edges that are oriented towards 𝑣 at the end of phase 𝜙 .

For convenience, we also define 𝑥𝑣 (0) = 0 as at the beginning all

edges are unoriented and therefore no edges are oriented towards

𝑣 . For each node 𝑣 , we further define

𝑑−
𝜙
(𝑣) := min

𝑒∈𝐹<𝜙 :𝑣∈𝑒
deg𝐺 (𝑒) and

𝛼𝑣 (𝜙) :=max

{
1,

1

4

· 𝜈2

ln Δ̄
· (𝑑−

𝜙
(𝑣) + 1)

}
. (5)

We assume that the nodes of 𝐺 know if they are in 𝑈 or in 𝑉 (i.e.,

we assume that the bipartite graph 𝐺 is equipped with a 2-vertex

coloring). The algorithm in phase 𝜙 ≥ 1 works as follows:

(1) Let 𝐸𝜙 ⊆ 𝐸 be the edges 𝑒 ∈ 𝐸 that are still unoriented at the

beginning of phase 𝜙 and for which 𝑑 (𝑒, 𝜙 − 1) > (1 − 𝜈)𝜙 Δ̄.
(2) For every edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸𝜙 with 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 , 𝑒

sends a proposal to 𝑣 if 𝑥𝑣 − 𝑥𝑢 ≤ 𝜂𝑒 and it sends a proposal

to 𝑢 otherwise.

(3) We set 𝑘𝜙 :=
⌈
𝜈 (1 − 𝜈)𝜙−1Δ̄

⌉
. Every node 𝑢 ∈ 𝑈 ∪ 𝑉 that

receives at most 𝑘𝜙 proposals from its edges in 𝐸𝜙 accepts all

those proposals and every node𝑢 ∈ 𝑈 ∪𝑉 that receives more

that 𝑘𝜙 proposals from its edges in 𝐸𝜙 accepts an arbitrary

subset of 𝑘𝜙 of them.

(4) Let 𝐹𝜙 ⊆ 𝐸𝜙 be the set of edges for which the proposal gets

accepted. The edges 𝑒 ∈ 𝐹𝜙 will be the ones that get newly

oriented in phase 𝜙 . For each edge (𝑢, 𝑣) ∈ 𝐹𝜙 , the edge

is oriented from 𝑢 to 𝑣 if (𝑢, 𝑣)’s proposal was sent to and

accepted by 𝑣 and the edge is oriented from 𝑣 to 𝑢 otherwise.

(5) Let 𝐹<𝜙 :=
⋃𝜙−1

𝑖=1
𝐹𝜙 be the set of edges that get oriented

before phase 𝜙 . We define a subset 𝐹 ′
<𝜙

⊆ 𝐹<𝜙 of those

edges as follows. An edge 𝑒 = (𝑢, 𝑣) ∈ 𝐹<𝜙 (𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉)
is included in 𝐹 ′

<𝜙
if either 𝑒 is oriented from 𝑢 to 𝑣 and

𝑥𝑣 (𝜙 − 1) −𝑥𝑢 (𝜙 − 1) > 𝜂𝑒 or if 𝑒 is oriented from 𝑣 to 𝑢 and

𝑥𝑢 (𝜙 − 1) − 𝑥𝑣 (𝜙 − 1) > −𝜂𝑒 .
(6) We now run an instance of the token dropping game on the

graph𝐺𝜙 = (𝑈 ∪𝑉 , 𝐹 ′
<𝜙

) (i.e., on the subgraph of𝐺 induced

by the edges in 𝐹 ′
<𝜙

), where each edge in 𝐹 ′
<𝜙

is directed in

the opposite direction of its current orientation. Each node

𝑢 ∈ 𝑈 ∪𝑉 uses the parameter 𝛼𝑢 (𝜙) as fixed in Equation (5).

Further, the initial number of tokens of each node 𝑢 ∈ 𝑈 ∪𝑉
is equal to the number of proposals from its edges in 𝐸𝜙 , 𝑢

has accepted in the above step 3. Finally, the parameter 𝛿𝜙
is set to

𝛿𝜙 := max

{
1,

⌊
1

16

· 𝜈6

ln
3 Δ̄

· (1 − 𝜈)𝜙−1Δ̄

⌋}
. (6)

(7) To conclude phase 𝜙 , we now update the orientation of the

edges in 𝐹<𝜙 as follows. We switch the orientation of each

edge over which a token is moved in the above token drop-

ping game instance of step 6. All other edges in 𝐹<𝜙 keep

their orientations.

We first show that the maximum edge degree of the unoriented

part of 𝐺 decreases exponentially as a function of the number of

phases. The proof of Lemma 5.4 is simple and appears in the full

version of this paper.

Lemma 5.4. At the end of phase 𝜙 ≥ 1 of the above algorithm, we
have 𝑑 (𝑒, 𝜙) ≤ (1 − 𝜈)𝜙 Δ̄ for every edge 𝑒 ∈ 𝐸 \ 𝐹≤𝜙 , that is, for
every edge that is still unoriented after phase 𝜙 .

To analyze the quality of the produced edge orientation, we

define the following quantities for every edge 𝑒 ∈ 𝐸.

𝑘𝑒 :=

⌈ 𝜈

1 − 𝜈 · deg𝐺 (𝑒)
⌉

and 𝜉𝑒 :=
5

2

· 𝜈

ln Δ̄
·𝑘𝑒 +28 · ln

2 Δ̄

𝜈4
.

(7)

Lemma 5.5. After 𝜙 phases of the above algorithm, for every edge
𝑒 = (𝑢, 𝑣) ∈ 𝐸 (𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉), it holds that either:

• 𝑒 is unoriented, or

Session 1 PODC ’22, July 25–29, 2022, Salerno, Italy

21

PODC ’22, July 25–29, 2022, Salerno, Italy Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti

• 𝑒 is oriented from 𝑢 to 𝑣 and 𝑥𝑣 (𝜙) − 𝑥𝑢 (𝜙) ≤ 𝜂𝑒 + 𝑘𝑒 +𝜙 · 𝜉𝑒 ,
or

• 𝑒 is oriented from 𝑣 to𝑢 and 𝑥𝑢 (𝜙) −𝑥𝑣 (𝜙) ≤ −𝜂𝑒 +𝑘𝑒 +𝜙 · 𝜉𝑒 .

Proof. We prove the lemma by induction on the number of

phase 𝜙 . At the beginning, all edges are unoriented and therefore

clearly for 𝜙 = 0, the claim of the lemma holds. For the induction

step, assume that 𝜙 ≥ 1. Consider some edge (𝑢, 𝑣) ∈ 𝐸 with 𝑢 ∈ 𝑈
and 𝑣 ∈ 𝑉 and assume that 𝑒 is oriented at the end of phase 𝜙 (as

otherwise, the claim of the lemma clearly holds for 𝑒). We first show

that for every node 𝑣 ∈ 𝑈 ∪𝑉 , we have

𝑥𝑣 (𝜙 − 1) ≤ 𝑥𝑣 (𝜙) ≤ 𝑥𝑣 (𝜙 − 1) + 𝑘𝜙 . (8)

To see why Equation (8) holds, first consider the number of incom-

ing edges at node 𝑣 in the middle of phase 𝜙 , right before the we run

the token dropping instance of phase 𝜙 in step 6 of the above algo-

rithm. As the orientation of the edges that have been oriented prior

to phase 𝜙 can only be changed during token dropping game, the

number of incoming edges of 𝑣 at this point is equal to 𝑥𝑣 (𝜙−1) plus
the number of newly oriented edges of 𝑣 that are oriented towards 𝑣 .

Let us use 𝑦𝑣 to denote this number of those newly oriented edges

towards 𝑣 . Note that 𝑦𝑣 is exactly equal to the number of proposals

𝑣 accepts in step 3 of the above algorithm. Note also that the initial

number of tokens of node 𝑣 in the token dropping game of phase 𝜙

is equal to 𝑦𝑣 . When running token dropping, whenever moving

a token from a node 𝑢 to a node 𝑢 ′, an edge that was previously

oriented from 𝑢 ′ to 𝑢 is reoriented from 𝑢 to 𝑢 ′. Hence, for every
token that node 𝑣 receives in the token dropping game, the total

number of edges oriented to 𝑣 increases by 1 and for every token

that 𝑣 moves to a neighbor, the total number of edges oriented to

𝑣 decreases by 1. By induction on the steps of the token dropping

game, the total number of incoming edges at node 𝑣 at the end of

phase 𝜙 is therefore exactly 𝑥𝑣 (𝜙 − 1) plus the number of tokens at

node 𝑣 at the end of the token dropping game instance of phase 𝜙 .

Because by definition of the token dropping game, the number of

tokens at each node is always in

{
0, . . . , 𝑘𝜙

}
, Equation (8) follows.

Recall that if an edge 𝑒 gets oriented in a phase 𝜙 ′, we have

deg𝐺 (𝑒) ≥ 𝑑 (𝑒, 𝜙 ′ − 1) ≥ (1− 𝜈)𝜙′
Δ̄. For every 𝑒 that gets oriented

in or before phase 𝜙 , we therefore have deg𝐺 (𝑒) ≥ (1 − 𝜈)𝜙 Δ̄. This
means that for every edge 𝑒 that is oriented by the end of phase 𝜙 ,

we in particular have

𝑘𝑒 =

⌈ 𝜈

1 − 𝜈 · deg𝐺 (𝑒)
⌉
≥

⌈
𝜈 (1 − 𝜈)𝜙−1Δ̄

⌉
. (9)

For the induction step of our main induction (on 𝜙), we distinguish

4 cases:

Edge 𝑒 gets newly oriented in phase 𝜙 : Edge 𝑒 gets oriented from

𝑢 to 𝑣 in phase 𝜙 if 𝑥𝑣 (𝜙 − 1) − 𝑥𝑢 (𝜙 − 1) ≤ 𝜂𝑒 and it gets oriented

from 𝑣 to𝑢 otherwise (i.e., if 𝑥𝑢 (𝜙 −1) −𝑥𝑣 (𝜙 −1) < −𝜂𝑒). Hence, if
𝑒 is oriented from 𝑢 to 𝑣 , Equation (8) implies that 𝑥𝑣 (𝜙) − 𝑥𝑢 (𝜙) ≤
𝜂𝑒 + 𝑘𝜙 and if 𝑒 is oriented from 𝑣 to 𝑒 , Equation (8) implies that

𝑥𝑢 (𝜙) − 𝑥𝑣 (𝜙) ≤ −𝜂𝑒 + 𝑘𝜙 . In both cases, the claim of the lemma

follows together with

𝑘𝜙 =
⌈
𝜈 · (1 − 𝜈)𝜙−1Δ̄

⌉ (9)

≤ 𝑘𝑒 .

Edge 𝑒 does not participate in the token dropping game of phase 𝜙 :
For the remaining cases, we assume that 𝑒 was first oriented prior

to phase 𝜙 . Since 𝑒 does not to participate in the token dropping in

phase𝜙 , the orientation of 𝑒 does not change in phase𝜙 . For 𝑒 not to

participate in the token dropping in phase𝜙 , we then also must have

that either 𝑒 is oriented from 𝑢 to 𝑣 and 𝑥𝑣 (𝜙 − 1) − 𝑥𝑢 (𝜙 − 1) ≤ 𝜂𝑒
or 𝑒 is oriented from 𝑣 to 𝑢 and 𝑥𝑢 (𝜙 − 1) − 𝑥𝑣 (𝜙 − 1) ≤ −𝜂𝑒 . In
both cases, the claim of the lemma follows directly by combining

this with Equations (8) and (9).

A token is moved over 𝑒 in the token dropping game of phase
𝜙 : If prior to running the token dropping game of phase 𝜙 , 𝑒 is

oriented from 𝑢 to 𝑣 , then 𝑥𝑣 (𝜙 −1) −𝑥𝑢 (𝜙 −1) > 𝜂𝑒 and otherwise
𝑥𝑢 (𝜙 − 1) − 𝑥𝑣 (𝜙 − 1) > −𝜂𝑒 . Since a token is moved over 𝑒 in the

token dropping game of phase 𝜙 , the orientation of 𝑒 is switched in

phase 𝜙 . Hence, if before running token dropping in phase 𝜙 , the

edge 𝑒 is oriented from 𝑢 to 𝑣 , at the end of the phase, 𝑒 is oriented

from 𝑣 to 𝑢 and

𝑥𝑢 (𝜙) − 𝑥𝑣 (𝜙)
(8),(9)
≤ 𝑥𝑢 (𝜙 − 1) − 𝑥𝑣 (𝜙 − 1)︸ ︷︷ ︸

𝑥𝑣 (𝜙−1)−𝑥𝑢 (𝜙−1)>𝜂𝑒

+𝑘𝑒 < −𝜂𝑒 + 𝑘𝑒 .

If before the token dropping instance of phase 𝜙 , 𝑒 is oriented from

𝑣 to 𝑢, at the end of the phase, the edge is oriented from 𝑢 to 𝑣 and

𝑥𝑣 (𝜙) − 𝑥𝑢 (𝜙)
(8),(9)
≤ 𝑥𝑣 (𝜙 − 1) − 𝑥𝑢 (𝜙 − 1)︸ ︷︷ ︸

𝑥𝑢 (𝜙−1)−𝑥𝑣 (𝜙−1)>−𝜂𝑒

+𝑘𝑒 < 𝜂𝑒 + 𝑘𝑒 .

The claim of the lemma therefore also follows in this case.

No token is moved over 𝑒 in the token dropping game of phase 𝜙 :
The last case to consider is the case where 𝑒 participates in the token

dropping game, but where no token is moved over the edge. First

assume that 𝑒 is oriented from 𝑢 to 𝑣 , that is, the edge is directed

from 𝑣 to 𝑢 in the token dropping game. Let 𝜏𝑢 and 𝜏𝑣 denote the

number of tokens at node 𝑢 and 𝑣 at the end of the token dropping

game instance of phase 𝜙 . Observe that

𝛼𝑣 (𝜙) = max

{
1,

1

4

· 𝜈2

ln Δ̄
· (𝑑−

𝜙
(𝑣) + 1)

}
≥ max

{
1,

1

4

· 𝜈2

ln Δ̄
· (1 − 𝜈)𝜙−1Δ̄

}
≥ max

{
1,

⌊
1

16

· 𝜈6

ln
3 Δ̄

· (1 − 𝜈)𝜙−1Δ̄

⌋}
= 𝛿𝜙 ,

where the first inequality holds because, for every 𝑒 that gets ori-

ented before phase 𝜙 , we have deg𝐺 (𝑒) ≥ (1 − 𝜈)𝜙−1Δ̄. Hence,
𝛼𝑣 (𝜙) ≥ 𝛿𝜙 , and since no token is moved from 𝑣 to 𝑢 in the token

Session 1 PODC ’22, July 25–29, 2022, Salerno, Italy

22

Distributed Edge Coloring in Time Polylogarithmic in Δ PODC ’22, July 25–29, 2022, Salerno, Italy

dropping game, Theorem 4.3 implies that

𝜏𝑣 − 𝜏𝑢 ≤ 2(𝛼𝑢 (𝜙) + 𝛼𝑣 (𝜙))

+
(

deg𝐹<𝜙
(𝑢) deg𝐹<𝜙

(𝑣)
𝛼𝑢 (𝜙) · 𝛼𝑣 (𝜙)

+
deg𝐹<𝜙

(𝑢)
𝛼𝑢 (𝜙)

+
deg𝐹<𝜙

(𝑣)
𝛼𝑣 (𝜙)

)
𝛿𝜙

≤ max

{
4,

𝜈2

2 ln Δ̄
· (𝑑−

𝜙
(𝑢) + 𝑑−

𝜙
(𝑣) + 2)

}
+

(
16 ln

2 Δ̄

𝜈4
+ 8 ln Δ̄

𝜈2

)
𝛿𝜙

≤ 𝜈2

ln Δ̄
· deg𝐺 (𝑒) + 4 +

(
𝜈2

ln Δ̄
+ 𝜈4

2 ln
2 Δ̄

)
· (1 − 𝜈)𝜙−1Δ̄

+ 16 ln
2 Δ̄

𝜈4
+ 8 ln Δ̄

𝜈2

≤ 5𝜈2

2 ln Δ̄
· deg𝐺 (𝑒) + 28 · ln

2 Δ̄

𝜈4

The second inequality follows from plugging in the definition of

𝛼𝑢 (𝜙) and 𝛼𝑣 (𝜙) (Equation (5)) and the fact that for all nodes 𝑣 ∈ 𝑉 ,
deg𝐹<𝜙

(𝑣) ≤ 𝑑−
𝜙
(𝑣) + 1. The third inequality follows from using

that 𝜈2/ln Δ̄ ≤ 1 and from the definition of 𝛿𝜙 (Equation (6)). In the

fourth inequality, we use that since edge 𝑒 was first oriented in a

phase before 𝜙 , we must have deg𝐺 (𝑒) ≥ (1 − 𝜈)𝜙−1Δ̄ and again

by using that 𝜈2/ln Δ̄ ≤ 1.

The induction step in the induction over the number of phases

and thus the claim of the lemma now follows directly from the

definitions of 𝑘𝑒 and of 𝜉𝑒 (Equation (7)). If the edge 𝑒 is oriented

from 𝑣 to 𝑢, then the statement holds for the same reasons. □

The following theorem can now be proven by Lemma 5.4 and by

plugging together Lemma 5.5, Equation (7), and Theorem 4.3. The

proof appears in the full version of this paper.

Theorem 5.6. Assume that we are given a bipartite graph 𝐺 =

(𝑈 ¤∪𝑉 , 𝐸), a value 𝜀 > 0, and edge parameters 𝜂𝑒 ∈ R for all edges
𝑒 ∈ 𝐸. There exists a constant 𝐶 > 0 such that if 𝜀 ≤ 1, there is

an 𝑂
(

log
4 Δ
𝜀6

)
-round distributed algorithm to compute a generalized

(𝜀, 𝛽)-balanced orientation of 𝐺 w.r.t. the edge parameters 𝜂𝑒 , where
𝛽 = 𝐶 · ln

3 Δ̄
𝜀5

.

By combining Theorem 5.6 and Lemma 5.3, we obtain the fol-

lowing.

Corollary 5.7. Let 𝜀 ≤ 1. The generalized (1 + 𝜀, 𝛽)-relaxed
defective 2-edge coloring can be solved deterministically in 𝑂

(
log

4 Δ
𝜀6

)
rounds in the CONGEST model, for 𝛽 = 𝑂

(
log

3 Δ
𝜀5

)
.

6 𝑶 (𝚫)-EDGE COLORING IN THE CONGEST
MODEL

In this section, we present an algorithm for solving the 𝑂 (Δ)-edge
coloring problem in the CONGEST model. We start by showing

how to solve the problem on bipartite 2-colored graphs. We will

later show how to remove this restriction.

Lemma 6.1. The (2 + 𝜀)Δ-edge coloring problem can be solved in

𝑂
(

log
11 Δ
𝜀6

)
deterministic rounds in the CONGEST model in bipartite

2-colored graphs, for any 1 ≥ 𝜀 > 0.

Proof Sketch. The high-level idea of the proof is the following.

In Corollary 5.7, we show that a (1 + 𝜀 ′, 𝛽)-relaxed defective 2-edge

coloring can be solved in poly(log(Δ)/𝜀 ′) time in the CONGEST

model (for 𝛽 = 𝑂
(

log
3 Δ

𝜀′5
)
). As long as the maximum edge degree

Δ̄ is sufficiently larger than 𝛽/𝜀 ′, we can therefore compute a 2-

defective edge coloring for which the maximum defect is only

by a (1 + 𝜀 ′) factor larger than Δ̄/2. Choosing 𝜀 ′ ≤ 𝑐 · 𝜀/logΔ
for a sufficiently small constant 𝑐 and an integer 𝑘 ≥ 1, as long

as 𝑘 ≫ 𝛽/𝜀 ′, we can therefore recursively compute a defective

2
𝑘
-edge coloring such that the maximum edge defect is at most

(1+ 𝜀/2)Δ̄/2
𝑘
. The required (2+ 𝜀)Δ-coloring of the given bipartite

graph is then obtained by using 2
𝑘
disjoint color ranges for each of

the 2
𝑘
graphs of maximum degree (1 + 𝜀/2)Δ̄/2

𝑘
that we get from

the recursive defective coloring. A full proof of the claim appears

on the full version of this paper. □

In order to solve the problem in general graphs, we make use of

the following lemma, that follows directly from results presented

in [11] (a proof is also shown in the full version of this paper).

Lemma 6.2. The (𝜀Δ + ⌊Δ/2⌋)-defective vertex 4-coloring problem,
given an 𝑂 (Δ2)-vertex coloring, can be solved in 𝑂 (1/𝜀2) rounds in
the CONGEST model.

We are now ready to present our CONGEST algorithm for𝑂 (Δ)-
edge coloring on general graphs. Theorem 1.2 follows directly from

the following theorem.

Theorem 6.3. The (8 + 𝜀)Δ-edge coloring problem can be solved

in 𝑂
(

log
12 Δ
𝜀6

+ log
∗ 𝑛

)
deterministic rounds in the CONGEST model,

for any small enough constant 𝜀 > 0.

Proof Sketch. We start by computing an initial 𝑂 (Δ2)-vertex
coloring, which can be done in 𝑂 (log

∗ 𝑛) rounds. Let 𝜀1 be a pa-

rameter that we choose appropriately We apply Lemma 6.2 with

parameter 𝜀1 for 4-coloring the nodes of the graph with colors in

{1, 2, 3, 4}. Then, let𝐺1 be the graph induced by edges {𝑢, 𝑣} satisfy-
ing that the color of𝑢 is either 1 or 2, and the color of 𝑣 is either 3 or

4. This graph is clearly bipartite, and nodes know their side of the

bipartition. Hence, we can apply Lemma 6.1 to color the edges of

this graph by using at most (2 + 𝜀2)Δ colors, for some appropriate

parameter 𝜀2. We then do the same in the bipartite graph induced

by the edges that go from colors {1, 3} to colors {2, 4}. For the edges
that are colored so far, we have now used (4 + 2𝜀2)Δ colors. All the

remaining uncolored edges are now between nodes of the same

color and hence the degree of them is at most (1/2 + 𝜀1)Δ and thus

close to Δ/2. To color the rest of the graph, we now recurse. As

the maximum degree (almost) halves in each step, the total number

of colors will be (essentially) twice the number of colors we have

used so far and thus (8 +𝑂 (𝜀1))Δ. A full proof appears in the full

version of this paper. □

7 (2𝚫 − 1)-EDGE COLORING IN THE LOCAL
MODEL

In this section, we give an overview of our algorithm that computes

a (degree+1)-list edge coloring and thus as a special case a (2Δ−1)-
edge coloring. For the detailed formal arguments, we refer to the

full version of this paper.

Session 1 PODC ’22, July 25–29, 2022, Salerno, Italy

23

PODC ’22, July 25–29, 2022, Salerno, Italy Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti

Coloring 2-Colored Bipartite Graphs. We first again consider the

case of computing a somewhat relaxed coloring of a 2-colored

bipartite graph 𝐺 = (𝑈 ∪ 𝑉 , 𝐸). For the high level description

here, assume that 𝐺 has maximum degree Δ and that every edge

𝑒 ∈ 𝐸 has a list 𝐿𝑒 of size |𝐿𝑒 | ≥ 2 deg𝐺 (𝑒). Assume further that

𝐿𝑒 ⊆ {1, . . . ,𝐶}, i.e., all colors come from a global space of𝐶 colors.

If all nodes have access to the same colors (as in the algorithm

of Section 6), we can use defective 2-colorings to split the graph

into two parts such that the maximum edge degree in each part is

approximately halved compared to the original maximum degree.

However, in the case of list coloring, we cannot do this because in a

local distributed way, we cannot split the colors into two parts such

that each node can keep half of its colors. We instead have to adapt

a method that was introduced in [39] and also used in [5]. First,

the global space of colors {1, . . . ,𝐶} is split into two approximately

equal parts. For this, let us call the colors {1, . . . , ⌊𝐶/2⌋} red and the
remaining colors blue. We want to color the edges red and blue such

that afterwards, the red edges 𝑒 only keep the red colors in their

list 𝐿𝑒 and the blue edges only keep their blue colors. In this way,

the two parts are independent of each other and can be colored in

parallel. Note however that because the lists 𝐿𝑒 are arbitrary subsets

of {1, . . . ,𝐶}, the list 𝐿𝑒 of an edge 𝑒 can consist of an arbitrary

division into red and blue colors. For an edge 𝑒 ∈ 𝐸, let 𝜆𝑒 be the
fraction of red colors in its list, i.e., |𝐿𝑒 ∩ {1, . . . , ⌊𝐶/2⌋} | = 𝜆𝑒 |𝐿𝑒 |.
If 𝑒 chooses to be red, its list shrinks by a factor 𝜆𝑒 and we therefore

also want to shrink 𝑒’s degree by at least (approximately) a factor

𝜆𝑒 and if 𝑒 chooses to be blue, the 𝑒’s degree has to shrink by at least

(approximately) a factor 1−𝜆𝑒 . If the degree of 𝑒 is sufficiently large,

we can achieve this by computing a generalized defective 2-edge

coloring as defined in Definition 5.1 and we can use Corollary 5.7

to compute such a 2-coloring efficiently. The goal therefore is to

recursively split the global color space into two parts and always

use Corollary 5.7 to split the edges such that the degree-to-list size

ratio grows by at most a factor 1 + 𝑜 (1). This essentially works as

in Section 6. There is only one additional small issue that we have

to take care of. Since the ratio 𝜆𝑒 can be an arbitrary value between

0 and 1, we have no control over the minimum and maximum edge

degree or list size in the graph. Corollary 5.7 however only gives

good guarantees for edges that have a sufficiently large degree. As

soon as an edge 𝑒 has degree at most some poly logΔ, we therefore
do not further split the color space of 𝑒 recursively. Edge 𝑒 then

waits until all neighboring edges that are split further have been

colored and afterwards, 𝑒 only has a small uncolored degree and can

therefore be colored greedily by a standard edge coloring algorithm.

Degree+1 List Edge Coloring on General Graphs. Given a (degree+
1)-list coloring instance of an arbitrary graph 𝐺 , we start by com-

puting a poly(Δ)-vertex coloring, which can be done in 𝑂 (log
∗ 𝑛)

rounds.

Then, we compute a defective 𝑂 (1)-vertex coloring of 𝐺 , where

each node has defect at most Δ/𝑐 for a sufficiently large constant

𝑐 . By using an algorithm from [11], this can be done in 𝑂 (log
∗ Δ)

time by exploiting the precomputed poly(Δ)-vertex coloring.
We then sequentially iterate through all possible pairs of col-

ors (𝑎, 𝑏), and we consider the graph induced by edges with one

endpoint of color 𝑎 and the other endpoint of color 𝑏. This graph

is clearly bipartite, but we cannot directly apply the previously

described algorithm, because the lists of the edges may be too small,

compared to their degree. In order to apply the algorithm anyways,

we use a method that has already been used in [5, 24, 39] and that

allows us to use the previously described algorithm to partially
color the graph.

Like this, we can reduce the uncolored degree of each edge by

a constant factor even in a (degree + 1)-list coloring instance, and
repeating 𝑂 (logΔ) times allows to color all the edges and to fully

solve the given (degree + 1)-list coloring problem.

REFERENCES
[1] Noga Alon, László Babai, and Alon Itai. 1986. A fast and simple randomized

parallel algorithm for themaximal independent set problem. Journal of Algorithms
7, 4 (1986), 567–583. https://doi.org/10.1016/0196-6774(86)90019-2

[2] Baruch Awerbuch, Andrew V. Goldberg, Michael Luby, and Serge A. Plotkin.

1989. Network Decomposition and Locality in Distributed Computation. In

Proc. 30th Symp. on Foundations of Computer Science (FOCS). 364–369. https:

//doi.org/10.1109/SFCS.1989.63504

[3] Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie,

and Jukka Suomela. 2019. Lower Bounds for Maximal Matchings and Maximal

Independent Sets. In Proc. 60th IEEE Symp. on Foundations of Computer Science
(FOCS). 481–497.

[4] Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. 2021. Dis-

tributed Δ-Coloring Plays Hide-and-Seek. arXiv preprint arXiv:2110.00643 (2021).
[5] Alkida Balliu, Fabian Kuhn, and Dennis Olivetti. 2020. Distributed Edge Coloring

in Time Quasi-Polylogarithmic in Delta. In Proc. 39th ACM Symp. on Principles of
Distributed Computing (PODC). 289–298.

[6] Leonid Barenboim. 2016. Deterministic (Δ+1)-Coloring in Sublinear (in Δ) Time

in Static, Dynamic, and Faulty Networks. Journal of ACM 63, 5 (2016), 1–22.

https://doi.org/10.1145/2979675

[7] Leonid Barenboim and Michael Elkin. 2010. Sublogarithmic distributed MIS

algorithm for sparse graphs using Nash-Williams decomposition. Distributed
Comput. 22 (2010), 363–379. https://doi.org/10.1007/s00446-009-0088-2

[8] Leonid Barenboim and Michael Elkin. 2011. Deterministic Distributed Vertex

Coloring in Polylogarithmic Time. Journal of ACM 58 (2011), 23:1–23:25. https:

//doi.org/10.1145/2027216.2027221

[9] Leonid Barenboim and Michael Elkin. 2013. Distributed Graph Coloring: Fun-
damentals and Recent Developments. Morgan & Claypool Publishers. https:

//doi.org/10.2200/S00520ED1V01Y201307DCT011

[10] Leonid Barenboim, Michael Elkin, and Uri Goldenberg. 2018. Locally-Iterative

Distributed (Δ + 1)-Coloring below Szegedy-Vishwanathan Barrier, and Appli-

cations to Self-Stabilization and to Restricted-Bandwidth Models. In Proc. 37th
ACM Symp. on Principles of Distributed Computing (PODC). 437–446.

[11] Leonid Barenboim, Michael Elkin, and Fabian Kuhn. 2014. Distributed (Δ+1)-
Coloring in Linear (in Δ) Time. SIAM J. Comput. 43, 1 (2014), 72–95. https:

//doi.org/10.1137/12088848X

[12] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. 2016.

The Locality of Distributed Symmetry Breaking. J. ACM 63, 3 (2016), 1–45.

https://doi.org/10.1145/2903137

[13] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäi-

nen, Joel Rybicki, Jukka Suomela, and Jara Uitto. 2016. A lower bound for the

distributed Lovász local lemma. In Proc. 48th ACM Symp. on Theory of Computing
(STOC). 479–488. https://doi.org/10.1145/2897518.2897570

[14] Sebastian Brandt, Barbara Keller, Joel Rybicki, Jukka Suomela, and Jara Uitto.

2021. Efficient Load-Balancing through Distributed Token Dropping. In Proc.
33rd ACM Symp. on Parallelism in Algorithms and Architectures (SPAA). 129–139.

[15] Sebastian Brandt and Dennis Olivetti. 2020. Truly Tight-in-Δ Bounds for Bipar-

tite Maximal Matching and Variants. In Proc. 39th ACM Symp. on Principles of
Distributed Computing (PODC). 69–78.

[16] Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. 2019. An Exponential Separation

between Randomized and Deterministic Complexity in the LOCAL Model. SIAM
J. Comput. 48, 1 (2019), 122–143. https://doi.org/10.1137/17M1117537

[17] Yi-Jun Chang, Wenzheng Li, and Seth Pettie. 2018. An optimal distributed (Δ+1)-
coloring algorithm?. In Proc. 50th ACM Symp. on Theory of Computing, (STOC).
445–456. https://doi.org/10.1145/3188745.3188964

[18] Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. 2020.

Distributed Edge Coloring and a Special Case of the Constructive Lovász Lo-

cal Lemma. ACM Transactions on Algorithms 16, 1 (2020), 8:1–8:51. https:

//doi.org/10.1145/3365004

[19] Andrzej Czygrinow, Michal Hanckowiak, Edyta Szymanska, and Wojciech

Wawrzyniak. 2016. On the distributed complexity of the semi-matching problem.

J. Comput. Syst. Sci. 82, 8 (2016), 1251–1267.
[20] Devdatt P. Dubhashi, David A. Grable, and Alessandro Panconesi. 1998. Near-

Optimal, Distributed Edge Colouring via the Nibble Method. Theor. Comput. Sci.

Session 1 PODC ’22, July 25–29, 2022, Salerno, Italy

24

https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1109/SFCS.1989.63504
https://doi.org/10.1109/SFCS.1989.63504
https://doi.org/10.1145/2979675
https://doi.org/10.1007/s00446-009-0088-2
https://doi.org/10.1145/2027216.2027221
https://doi.org/10.1145/2027216.2027221
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://doi.org/10.1137/12088848X
https://doi.org/10.1137/12088848X
https://doi.org/10.1145/2903137
https://doi.org/10.1145/2897518.2897570
https://doi.org/10.1137/17M1117537
https://doi.org/10.1145/3188745.3188964
https://doi.org/10.1145/3365004
https://doi.org/10.1145/3365004

Distributed Edge Coloring in Time Polylogarithmic in Δ PODC ’22, July 25–29, 2022, Salerno, Italy

203, 2 (1998), 225–251.

[21] Michael Elkin, Seth Pettie, and Hsin-Hao Su. 2015. (2Δ - l)-Edge-Coloring is

Much Easier thanMaximal Matching in the Distributed Setting. In Proc. 26thACM-
SIAM Symp. on Discrete Algorithms (SODA). 355–370. https://doi.org/10.1137/1.

9781611973730.26

[22] Manuela Fischer. 2017. Improved Deterministic Distributed Matching via Round-

ing. In Proc. 31st Symp. on Distributed Computing (DISC). 17:1–17:15.
[23] Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. 2017. Deterministic Dis-

tributed Edge-Coloring via Hypergraph Maximal Matching. In Proc. 58th IEEE
Symp. on Foundations of Computer Science (FOCS). 180–191. https://doi.org/10.

1109/FOCS.2017.25

[24] Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. 2016. Local Conflict

Coloring. In Proc. 57th IEEE Symp. on Foundations of Computer Science (FOCS).
625–634.

[25] Mohsen Ghaffari. 2016. An Improved Distributed Algorithm for Maximal In-

dependent Set. In Proc. 27th ACM-SIAM Symp. on Discrete Algorithms (SODA).
270–277. https://doi.org/10.1137/1.9781611974331.ch20

[26] Mohsen Ghaffari, Christoph Grunau, and Václav Rozhon. 2021. Improved Deter-

ministic Network Decomposition. In Proc. 32nd ACM-SIAM Symposium on Discrete
Algorithms (SODA). 2904–2923. https://doi.org/10.1137/1.9781611976465.173

[27] Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. 2018. On Derandomizing

Local Distributed Algorithms. In Proc. 59th Symp. on Foundations of Computer
Science (FOCS). 662–673.

[28] Mohsen Ghaffari and Fabian Kuhn. 2021. Deterministic Distributed Vertex Col-

oring: Simpler, Faster, and without Network Decomposition. In Proc. 62nd IEEE
Symp. on Foundations of Computing (FOCS).

[29] M. Ghaffari, F. Kuhn, and Y. Maus. 2017. On the Complexity of Local Distributed

Graph Problems. In Proc. 49th ACM Symp. on Theory of Computing (STOC). 784–
797.

[30] Mohsen Ghaffari, Fabian Kuhn, Yannic Maus, and Jara Uitto. 2018. Deterministic

distributed edge-coloring with fewer colors. In Proc. 50th ACM Symp. on Theory
of Computing (STOC). 418–430.

[31] A.V. Goldberg, S.A. Plotkin, and G.E. Shannon. 1988. Parallel Symmetry-Breaking

in Sparse Graphs. SIAM Journal on Discrete Mathematics 1, 4 (1988), 434–446.
[32] Magnús M. Halldórsson, Fabian Kuhn, Alexandre Nolin, and Tigran Tonoyan.

2021. Near-Optimal Distributed Degree+1 Coloring. CoRR abs/2112.00604 (2021).

[33] Michal Hanckowiak, Michal Karonski, and Alessandro Panconesi. 1998. On the

Distributed Complexity of Computing Maximal Matchings. In Proc. 9th ACM-
SIAM Symp. on Discrete Algorithms (SODA). 219–225.

[34] Michal Hanckowiak, Michal Karonski, and Alessandro Panconesi. 1999. A Faster

Distributed Algorithm for Computing Maximal Matchings Deterministically. In

Proc. 18th ACM Symp. on Principles of Distributed Computing (PODC). 219–228.
[35] David G. Harris. 2020. Distributed Local ApproximationAlgorithms forMaximum

Matching in Graphs and Hypergraphs. SIAM J. Comput. 49, 4 (2020), 711–746.

https://doi.org/10.1137/19M1279241

[36] David G. Harris, Johannes Schneider, and Hsin-Hao Su. 2018. Distributed (Δ
+1)-Coloring in Sublogarithmic Rounds. J. ACM 65, 4 (2018), 19:1–19:21.

[37] Amos Israeli and A. Itai. 1986. A fast and simple randomized parallel algorithm

for maximal matching. Inform. Process. Lett. 22, 2 (1986), 77–80. https://doi.org/

10.1016/0020-0190(86)90144-4

[38] Fabian Kuhn. 2009. Local Weak Coloring Algorithms and Implications on Deter-

ministic Symmetry Breaking. In Proc. 21st ACM Symp. on Parallelism in Algorithms
and Architectures (SPAA).

[39] Fabian Kuhn. 2020. Faster Deterministic Distributed Coloring Through Recursive

List Coloring. In Proc. 32st ACM-SIAM Symp. on Discrete Algorithms (SODA).
1244–1259.

[40] Fabian Kuhn and Roger Wattenhofer. 2006. On the complexity of distributed

graph coloring. In Proc. 25th ACM Symp. on Principles of Distributed Computing
(PODC). 7–15.

[41] Nathan Linial. 1987. Distributive graph algorithms – Global solutions from local

data. In Proc. 28th Symp. on Foundations of Computer Science (FOCS 1987). IEEE,
331–335. https://doi.org/10.1109/SFCS.1987.20

[42] Michael Luby. 1986. A Simple Parallel Algorithm for the Maximal Independent

Set Problem. SIAM J. Comput. 15, 4 (1986), 1036–1053. https://doi.org/10.1137/

0215074

[43] Yannic Maus and Tigran Tonoyan. 2020. Local Conflict Coloring Revisited: Linial

for Lists. CoRR abs/2007.15251 (2020).

[44] Alessandro Panconesi and Romeo Rizzi. 2001. Some simple distributed algorithms

for sparse networks. Distributed Computing 14, 2 (2001), 97–100.

[45] Alessandro Panconesi and Aravind Srinivasan. 1996. On the Complexity of

Distributed Network Decomposition. Journal of Algorithms 20, 2 (1996), 356–374.
https://doi.org/10.1006/jagm.1996.0017

[46] Alessandro Panconesi and Aravind Srinivasan. 1997. Randomized Distributed

Edge Coloring via an Extension of the Chernoff-Hoeffding Bounds. SIAM J.
Comput. 26, 2 (1997), 350–368. https://doi.org/10.1137/S0097539793250767

[47] David Peleg. 2000. Distributed Computing: A Locality-Sensitive Approach. Society
for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898719772

[48] Václav Rozhoň and Mohsen Ghaffari. 2020. Polylogarithmic-Time Deterministic

Network Decomposition and Distributed Derandomization. In Proc. 52nd ACM
Symp. on Theory of Computing (STOC). 350–363.

[49] Johannes Schneider and Roger Wattenhofer. 2010. A new technique for dis-

tributed symmetry breaking. In Proc. 29th ACM Symp. on Principles of Distributed
Computing (PODC). 257–266. https://doi.org/10.1145/1835698.1835760

[50] Hsin-Hao Su and Hoa T. Vu. 2019. Towards the locality of Vizing’s theorem. In

Proc. 51st ACM Symp. on Theory of Computing (STOC). 355–364. https://doi.org/

10.1145/3313276.3316393

[51] Mario Szegedy and Sundar Vishwanathan. 1993. Locality based graph coloring.

In Proc. 25th ACM Symp. on Theory of Computing (STOC). 201–207.

Session 1 PODC ’22, July 25–29, 2022, Salerno, Italy

25

https://doi.org/10.1137/1.9781611973730.26
https://doi.org/10.1137/1.9781611973730.26
https://doi.org/10.1109/FOCS.2017.25
https://doi.org/10.1109/FOCS.2017.25
https://doi.org/10.1137/1.9781611974331.ch20
https://doi.org/10.1137/1.9781611976465.173
https://doi.org/10.1137/19M1279241
https://doi.org/10.1016/0020-0190(86)90144-4
https://doi.org/10.1016/0020-0190(86)90144-4
https://doi.org/10.1109/SFCS.1987.20
https://doi.org/10.1137/0215074
https://doi.org/10.1137/0215074
https://doi.org/10.1006/jagm.1996.0017
https://doi.org/10.1137/S0097539793250767
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1145/1835698.1835760
https://doi.org/10.1145/3313276.3316393
https://doi.org/10.1145/3313276.3316393

	Abstract
	1 Introduction
	2 Model and Definitions
	3 Road Map and High Level Ideas
	4 The Generalized Token Dropping Game
	4.1 Distributed Token Dropping Algorithms

	5 Generalized Defective 2-Edge Coloring
	6 bold0mu mumu O()O()sectionO()O()O()O()-Edge Coloring in the CONGEST Model
	7 bold0mu mumu (2-1)(2-1)section(2-1)(2-1)(2-1)(2-1)-Edge Coloring in the LOCAL Model
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 37.92, 719.32 Width 549.86 Height 17.91 points
 Origin: bottom left

 1
 0
 BL

 1
 AllDoc
 1

 CurrentAVDoc

 37.9211 719.318 549.8552 17.9072

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 10
 11
 10
 11

 1

 HistoryList_V1
 qi2base

