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Abstract
We consider an open interacting particle system on a finite lattice. The particles perform
asymmetric simple exclusion and are randomly created or destroyed at all sites, with rates
that grow rapidly near the boundaries. We study the hydrodynamic limit for the particle
density at the hyperbolic space-time scale and obtain the entropy solution to a boundary-
driven quasilinear conservation law with a source term. Different from the usual boundary
conditions introduced in Bardos et al (Commun Partial Differ Equ 4(9):1017–1034, https://
doi.org/10.1080/03605307908820117, 1979) and Otto (C RAcad Sci Paris 322(1):729–734,
1996), discontinuity (boundary layer) does not formulate at the boundaries due to the strong
relaxation scheme.

Keywords Asymmetric simple exclusion process · Hydrodynamic limit · Open dynamics ·
Hyperbolic balance law · Entropy solution

1 Introduction

In the past decades, hydrodynamic limit for interacting particle system with boundary effect
has attracted a lot of attention [1, 2, 4–6, 8, 11, 15, 24]. The limit captures the evolution of the
conserved field of the microscopic dynamics as hydrodynamic equation, at the macroscopic
time scale that the dynamics is equilibrated locally. Most of these works focus on symmetric
dynamics and theFick’s lawof diffusion or fractional diffusionwith various types of boundary
conditions, see, e.g., [2, 4–6, 8, 15].
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For asymmetric mass-conserving systems, the dynamics reaches local equilibrium at the
hyperbolic time scale, and the hydrodynamic equations are given by hyperbolic transport
equations [22]. When nonlinear interaction exists, these equations are featured by discon-
tinuous phenomenon both inside the domain (shock wave) and at the boundary (boundary
layer). The non-regularity becomes the main obstacle in deducing the hydrodynamic limit.
Asymmetric simple exclusion process (ASEP) with open boundaries is the simplest model.
In its dynamics, each particle performs an asymmetric random walk on the finite lattice
{1, . . . , N − 1} under the exclusion rule: two particles cannot occupy the same site simul-
taneously. Particles are created and annihilated randomly at sites 1 and N − 1, modeling
the exchange of mass between the system and two external reservoirs at given densities.
In [1, 24, 25], the hydrodynamic limit for the mass density of open ASEP is proved to be
Burgers equation with boundary conditions introduced in [3, 20]. Due to the discontinuous
nature, these boundary conditions do not prescribe the density at boundary, even when the
reservoir dynamics is overwhelmingly accelerated compared to the exclusion [25]. Instead,
they impose a set of possible values for the boundary density. The hydrostatic limit for the
same dynamics is studied in [1, 9]: the stationary density profile is the stationary solution
to the hydrodynamic equation. It is determined by the boundary data through a variational
property [21]: the stationary flux is maximized if the density gradient is opposite to the drift,
and is minimized otherwise. The result is generalized in [7] to the quasi-static transform: if
the reservoir densities are changing slowly at a time scale that is larger than the hyperbolic
one, the profile evolves with the corresponding quasi-static solution [17].

The motivation of this article is to study the hydrodynamic limit for a hyperbolic system
disturbed by a nonlocal external field. We are particularly interested in the macroscopic
behavior when the perturbation is extremely strong at the boundary. Consider the ASEP on
{1, . . . , N − 1} where particles are created (resp. annihilated) at each site i with rate Viρi

(resp. Vi (1 − ρi )). Assume two profiles (V , ρ) : (0, 1) → R+ × [0, 1] such that
(Vi , ρi ) = (V , ρ)

( i
N

)
, lim

x→0+ V (x) = lim
x→1− V (x) = ∞. (1.1)

In other words, a reservoir of density ρi is placed at each site i , and the system exchanges
particles with it with frequency Vi that is growing rapidly near the boundaries. When the
exclusion dynamics is accelerated by N , the density profile shall evolve with the L∞ entropy
solution to the following quasilinear balance law in the [0, 1]-interval:

∂t u + ∂x (u(1 − u)) + G(x, u) = 0, G = V (x)(u − ρ(x)), (1.2)

with proper boundary conditions. We prove in Theorem 2.8 that, when the integrals of V are
infinity around both 0 and 1, the boundary conditions are u|x=0 = ρ(0), u|x=1 = ρ(1). In
sharp contrast to the equations obtained in [1, 24, 25], the boundary values ofu arefixedbyρ in
a weak sense, see Proposition 2.11. Hence, any shock wave is attenuated while approaching
the boundaries, and no boundary layer is observable at any positive macroscopic time. A
consequence of the hydrodynamic limit is the L1-weak continuity in time of the entropy
solution obtained in Corollary 2.10.

The term G in (1.2) acts as a source (resp. sink) where u is less (resp. greater) than
ρ, so it can be viewed as a relaxation scheme to the profile ρ. When ρ is a constant, it is a
conservation systemwith relaxation introduced in [16], with the first component degenerated
to a stationary solution. Such system is widely used to model non-equilibrium transport in
kinetic theory and fluid dynamics. In our situation, the entropy solution to the initial-boundary
problem of (1.2) is constructed in different ways depending on the integrability of V , see
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Definition 2.1 and 2.7. We focus on the non-integrable case and discuss the integrable case
briefly in Sect. 2.4.

The proof in this article is proceeded in two main steps. First, we prove that in the space-
time scaling limit, the empirical Young measure of the particle field is concentrated on the
space of Dirac-type Young measures. Then, we show that the limit is a measure-valued
entropy solution to (1.2) with proper boundary conditions. The hydrodynamic limit then
follows from the uniqueness of the entropy solution. Both steps are proved through delicate
analyses of the microscopic entropy production associated with Lax entropy–flux pairs.

The use of Young measure and microscopic entropy production is present in the seminal
paper [22]. It is combined with the compensated compactness method to prove the concen-
tration property of the Young measure in [12, 13]. To use this method, additional oscillating
dynamics is added toASEP to createmicroscopic viscosity. Finally,we point out that although
the process studied in this article is attractive, we cannot apply the coupling argument used
in [1] because the invariant measure is not product in general.

2 Model and Results

2.1 Model

For a scaling parameter N ∈ N+, consider the configuration space

�N := {
η = (ηi )0≤i≤N , ηi ∈ {0, 1}}.

The dynamics on �N consists of three parts: the nearest-neighbor asymmetric exclusion, the
external Glauber field and the boundary dynamics. The exclusion is generated by

Lexc f (η) =
N−1∑

i=0

(
ci,i+1(η) + σN

2

) [
f (ηi,i+1) − f (η)

]
,

for any function f on �N , where, for constant p ∈ ( 12 , 1],
ci,i+1(η) = pηi (1 − ηi+1) + (1 − p)ηi+1(1 − ηi ), (2.1)

σN is a parameter that grows to infinity slower than N , and ηi,i+1 is the configuration obtained
from η by swapping the values of ηi and ηi+1. The factor σN stands for a strong microscopic
viscosity, which is necessary for the technique used in Sect. 5. The Glauber dynamics is
generated by

LG f (η) = 1

N

N−1∑

i=1

ci,G(η)
[

f (ηi ) − f (η)
]
,

where, for parameters Vi > 0 and ρi ∈ (0, 1),

ci,G(η) := Vi [ρi (1 − ηi ) + (1 − ρi )ηi ], (2.2)

and ηi is the configuration obtained from η by flipping the value of ηi . Finally, the sites
i = 0 and N are attached to two extra birth-and-death dynamics, interpreted as boundary
reservoirs. The corresponding generator reads

Lbd f (η) = c0(η)
[

f (η0) − f (η)
]

+ cN (η)
[

f (ηN ) − f (η)
]
,
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where, for boundary rates c±
in, c±

out ≥ 0,

c0(η) = c−
in(1 − η0) + c−

outη0, cN (η) = c+
in(1 − ηN ) + c+

outηN . (2.3)

Assume two profiles V : (0, 1) → R+ and ρ : [0, 1] → (0, 1) such that Vi = V ( i
N ) and

ρi = ρ( i
N ) for i = 1,..., N − 1. Suppose that V ∈ C1((0, 1);R+), V → +∞ as x → 0, 1,

and ρ ∈ C1([0, 1]; (0, 1)) with Lipschitz continuous ρ′. In particular,

inf
x∈(0,1)

V (x) > 0, inf
x∈[0,1] ρ(x) > 0, sup

x∈[0,1]
ρ(x) < 1. (2.4)

The generator of the process then reads

L N = N
(
Lexc + LG + Lbd

)
, (2.5)

where the factor N corresponds to the hyperbolic time scale.

2.2 Scalar Balance Law in a Bounded Domain

In this part, we introduce the partial differential equation that is obtained in the hydrodynamic
limit for the model defined in the previous section. Let

J (u) := (2p − 1)u(1 − u), G(x, u) := V (x)(u − ρ(x)) (2.6)

be the macroscopic flux and the source term corresponding to Lexc and LG, respectively.
Given measurable function u0 : (0, 1) → [0, 1], consider the following balance law: for
(t, x) ∈ � := R+ × (0, 1),

∂t u(t, x) + ∂x [J (u(t, x))] + G(x, u(t, x)) = 0, u|t=0 = u0, (2.7)

with proper boundary conditions that will be specified later.
Theweak solution to (2.7) is in general not unique, sowe are forced to consider the entropy

solution. Recalling (1.1), our aim is to examine the case when the strength of the source is
extremely strong at the boundaries. We see in Definitions 2.1 and 2.7 that the definition of
entropy solution is different when V is integrable or not at the boundaries.

We begin with the case that V is non-integrable at 0 and 1, i.e., for any small y,
∫ y

0
V (x) dx = +∞,

∫ 1

1−y
V (x) dx = +∞. (2.8)

Recall that a Lax entropy–flux pair of (2.7) is a pair of functions f , q ∈ C2(R) such that
f ′′ ≥ 0 and q ′ = J ′ f ′ = (2p − 1)(1 − 2u) f ′(u) for all u ∈ R.

Definition 2.1 Suppose that V satisfies (2.8). We call u = u(t, x) an entropy solution to (2.7)
with the compatible boundary conditions

u(·, 0) = ρ(0), u(·, 1) = ρ(1), (2.9)

if u : � → [0, 1] is measurable and satisfies the generalized entropy inequality
∫ 1

0
f (u0)ϕ(0, ·) dx +

∫∫

�

[
f (u)∂tϕ + q(u)∂xϕ

]
dxdt

≥
∫∫

�

f ′(u)V (x)(u − ρ)ϕ dxdt . (2.10)

for any Lax entropy–flux pair ( f , q) and any ϕ ∈ C2c (R × (0, 1)), ϕ ≥ 0.
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Remark 2.2 When ρ ∈ C1, u in Definition 2.1 satisfies the energy estimate
∫ T

0

∫ 1

0
V (x)[u(t, x) − ρ(x)]2 dxdt < ∞, ∀ T > 0. (2.11)

Indeed, suppose that ρ is smooth. For any ε > 0, choose ψε ∈ C∞
c ((0, 1)) such that ψε(x) ∈

[0, 1], ψε|[ε,1−ε] ≡ 1 and |ψ ′
ε(x)| ≤ 2ε−1. Fixing any φ ∈ C∞

c (R) such that φ ≥ 0 and
applying (2.10) with f1 = 1

2u2, ϕ1 = φ(t)ψε(x) and f2 = −u, ϕ2 = ϕ1ρ respectively, we
obtain the upper bound

∫∫

�

V (x)[u(t, x) − ρ(x)]2φ(t)ψε(x)dxdt

=
∫∫

�

f ′
1(u)V (x)(u − ρ)ϕ1 dxdt +

∫∫

�

f ′
2(u)V (x)(u − ρ)ϕ2 dxdt

≤ φ(0)
∫ 1

0

[
f1(u0) − u0ρ

]
ψε dx

+
∫∫

�

[
f1(u)∂tϕ1 + q1(u)∂xϕ1 − u∂tϕ2 − J (u)∂xϕ2

]
dxdt,

where q1 is the flux corresponding to f1. Since |ψε| ≤ 1, the first term on the right-hand side
is bounded by |φ|∞‖ f1(u0) − u0ρ‖L∞ . The second term reads

∫∫

�

[
( f1(u) − uρ)∂tϕ1 + (q1(u) − J (u)ρ)∂xϕ1 − J (u)ρ′ϕ1

]
dxdt

≤ C
∫∫

�

(|φ′(t)ψε(x)| + |ψ ′
ε(x)φ(t)| + |ρ′(x)φ(t)ψε(x)|)dxdt,

whereC = ‖ f1(u)−uρ‖L∞+‖q1(u)−J (u)ρ‖L∞+‖J (u)‖L∞ . Since |ψε| ≤ 1, |ψ ′
ε| ≤ 2ε−1

and is non-zero if and only if x ∈ (0, ε) ∪ (1 − ε, 1), it is bounded by Cφ(1 + |ρ′|∞) with
a constant Cφ that is independent of ε. Taking ε → 0 and using monotone convergence
theorem,

∫∫

�

V (x)[u(t, x) − ρ(x)]2φ(t)dxdt ≤ Cφ(1 + |ρ′|∞).

Since φ ∈ C∞
c (R;R+) is arbitrary, (2.11) holds for any finite T > 0. By standard argument

of compactness, the estimate can be extended to any ρ ∈ C1([0, 1]).
Remark 2.3 If u is continuous in space, (2.11) together with (2.8) implies that u(t, 0) = ρ(0)
and u(t, 1) = ρ(1) for almost all t > 0. Hence, (2.9) turns out to be the reasonable choice
of the boundary conditions, see also Proposition 2.11 below.

The following uniqueness criteria is taken from [26, Theorem 2.12].

Proposition 2.4 Assume further that

lim sup
y→0+

1

y2

∫ y

0

[
1

V (x)
+ 1

V (1 − x)

]
dx < +∞, (2.12)

lim
y→0+

[∫ y

0
V (x)

[
ρ(x) − ρ(0)

]2
dx +

∫ 1

1−y
V (x)

[
ρ(x) − ρ(1)

]2
dx

]
= 0. (2.13)

Then, there is at most one function u ∈ L∞(�) that fulfills Definition 2.1.
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Remark 2.5 Suppose that V > 0 satisfies (2.12). By Cauchy–Schwarz inequality,

lim inf
y→0+

∫ y

0
V (x)dx ≥ lim inf

y→0+

(
1

y2

∫ y

0

1

V (x)
dx

)−1

> 0,

which means that V is not integrable at 0. The same argument holds for the integration on
(1 − y, 1). Therefore, (2.12) contains the non-integrable condition (2.8).

Nowwe turn to the integrable case: V ∈ L1((0, 1)). The next definition is first introduced
by F. Otto, see [20, Eq. 9].

Definition 2.6 We call (F, Q) ∈ C2([0, 1]2;R2) a boundary entropy–flux pair if

(i) for all k ∈ [0, 1], (F, Q)(·, k) is a Lax entropy-flux pair, i.e., ∂u Q(·, k) = J ′∂u F(·, k);
(ii) for all k ∈ [0, 1], F(k, k) = ∂u F(u, k)|u=k = Q(k, k) = 0.

For V integrable, the definition of entropy solution is the same as [20, Proposition 2] for
V ≡ 0 and [18, Definition 1] for V bounded and smooth.

Definition 2.7 Let α, β ∈ [0, 1] be two constants and suppose that V ∈ L1((0, 1)). We call
u = u(t, x) an entropy solution to (2.7) with the boundary conditions given by

u(t, 0) = α, u(t, 1) = β, (2.14)

if u : � → [0, 1] is a measurable function such that for any boundary entropy–flux pair
(F, Q), any k ∈ [0, 1], and any ϕ ∈ C2c (R2) such that ϕ ≥ 0,

∫ 1

0
fk(u0)ϕ(0, ·) dx +

∫∫

�

[
fk(u)∂tϕ + qk(u)∂xϕ

]
dxdt

≥
∫∫

�

f ′
k(u)V (x)(u − ρ)ϕ dxdt −

∫ ∞

0

[
fk(β)ϕ(·, 1) + fk(α)ϕ(·, 0)] dt,

(2.15)

where ( fk, qk) := (F, Q)(·, k).

Since the integrable case is not the focus of this paper, we omit the uniqueness and other
properties and refer to [26] and the references therein.

2.3 Hydrodynamic Limit

Let {ηN (t) ∈ �N ; t ≥ 0} be the Markov process generated by L N in (2.5) and initial
distribution μN . Through this article, the superscript N in ηN is omitted when there is no
confusion. Denote by PμN the distribution of η(·) onD([0,∞),�N ), the space of all càdlàg
paths on �N , and by EμN the expectation of PμN .

Suppose that the sequence of μN is associated with a measurable function u0 : (0, 1) →
[0, 1] in the following sense: for any ψ ∈ C(R),

lim
N→∞ μN

{∣∣∣∣∣
1

N

N∑

i=0

ηi (0)ψ
( i

N

)−
∫ 1

0
u0(x)ψ(x)dx

∣∣∣∣∣
> δ

}

= 0, ∀ δ > 0. (2.16)

Our main result shows that in the non-integrable case, the empirical density of the particles
converges, as N → ∞, to the entropy solution to (2.7) and (2.9).
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Theorem 2.8 Assume (2.12), (2.13) and (2.16). Also assume that

lim
N→∞ N−1σ 2

N = ∞, lim
N→∞ N−1σN = 0. (2.17)

Then, for any ψ ∈ C(R) and almost all t > 0,

lim
N→∞PμN

{∣∣
∣
∣
∣
1

N

N∑

i=0

ηi (t)ψ
( i

N

)−
∫ 1

0
u(t, x)ψ(x)dx

∣
∣
∣
∣
∣
> δ

}

= 0, ∀ δ > 0, (2.18)

where u is the unique entropy solution in Definition 2.1.

Remark 2.9 Below we list two important remarks concerning Theorem 2.8.

(i) We assume (2.12) and (2.13) only for the uniqueness in Proposition 2.4. If V satisfies
only (2.8), our argument proves that the empirical distribution of ηN is tight and all
limit points are concentrated on the possible entropy solutions.

(ii) Observe that the rates in Lbd do not appear in the limit. Indeed, let Fε(η) = ∑
0≤i≤εN ηi

be the cumulative mass on {η0, . . . , η[εN ]}. Then,
L N Fε(η) = N

[
c−
in − (c−

in + c−
out)η0

]− N J[εN ]
− N (1 − p + σN )(η[εN ] − η[εN ]+1) +

∑

1≤i≤εN

Vi (ρi − ηi ),

where Ji = (2p − 1)ηi (1− ηi+1). From (2.8),
∑

1≤i≤εN Vi � N . Hence, to make the
contribution of the last term be of orderO(N ), the mass density of the boundary block
{1, . . . , εN } should be near to ρ(0).

As a corollary of Theorem 2.8, the regularity of the entropy solution is improved.

Corollary 2.10 Assume (2.12) and (2.13). Let u be the unique entropy solution to (2.7) and
(2.9) in Definition 2.1. Then,

u ∈ L∞((0,∞) × (0, 1)) ∩ C([0,∞); L1),

where L1 = L1((0, 1)) is endowed with the weak topology. In particular, the convergence in
Theorem 2.8 holds for all t > 0.

Under (2.12), the macroscopic density near the boundary is prescribed by the reservoir in
the following sense: for any t > 0,

lim
y→0+ lim

N→∞

∫ t

0

1

yN

�yN�∑

i=0

ηi (s)ds = tρ(0) in PμN − probabili t y, (2.19)

and similarly for the right boundary. Indeed, for any t > 0, y ∈ (0, 1) and δ > 0,

1

y

∫ t

0

∫ y

0
|u(s, x) − ρ(x)| dxds

≤ 1

4δ

∫ t

0

∫ y

0
V (x)(u − ρ)2dxds + tδ

y2

∫ y

0

1

V (x)
dx .

Taking y → 0+, (2.11) together with (2.12) yields that

lim
y→0+

1

y

∫ t

0

∫ y

0
|u(s, x) − ρ(x)| dxds ≤ Ctδ.
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As δ is arbitrary, the limit is 0. Recall that ρ is continuous, so we have

lim
y→0+

1

y

∫ t

0

∫ y

0
|u(s, x) − ρ(0)| dxds = 0, ∀ t > 0.

Combining this with Theorem 2.8, we obtain (2.19) for all positive time t . These limits can
be derived directly from the microscopic dynamics by imposing a slightly stronger growth
condition on V , see the next proposition.

Proposition 2.11 Suppose that V satisfies the following condition:

lim
y→0+

{
y inf

x∈(0,y)
V (x)

}
= ∞. (2.20)

Then, (2.19) and the similar limit for the right boundary hold for all t > 0.

Example Fix some γ > 0, ρ0 and ρ1 ∈ (0, 1). By taking

V (x) = 1

xγ
+ 1

(1 − x)γ
, ρ(x) = ρ0(1 − x)γ + ρ1xγ

(1 − x)γ + xγ
,

we obtain the source term given by

G(x, u) = u − ρ0

xγ
+ u − ρ1

(1 − x)γ
.

In this case, the dynamics of LG can be interpreted as two infinitely extended reservoirs [4–6]
placed respectively at the sites {−1,−2, . . . , } and {N + 1, N + 2, . . .}. When γ ≥ 1, V
satisfies (2.12), so the hydrodynamic limit can apply.

2.4 Discussion on the Integrable Case

When V ∈ L1((0, 1)), we expect that Theorem 2.8 holds with the entropy solution in
Definition 2.7. Since the dynamics of LG is no more dominating at the boundaries, the
boundary data (α, β) may depend on c±

in, c±
out as well as V , ρ. In particular when V = 0, we

expect that α, β are determined by

J (α) = c−
in(1 − α) − c−

outα, J (β) = c−
outβ − c+

in(1 − β).

This is proved in [1] for microscopic dynamics without extra symmetric regularization and
the special choice of reservoirs such that

c−
in = pα, c−

out = (1 − p)(1 − α), c+
in = (1 − p)β, c+

out = p(1 − β).

We underline that the problem remains open for general reservoirs even when V = 0.
The situation is easier when further speed-up is imposed on the boundary reservoirs. Let

V ∈ L1((0, 1)) satisfy (1.1) and assume the compatibility conditions

ρ(0) = c−
in

c−
in + c−

out
, ρ(1) = c+

in

c+
in + c+

out
.

Fix a > 0 and consider the process generated by L ′
N := N (Lexc + LG + N a Lbd). In this

case, the hydrodynamic equation is still given by (2.7) and (2.9), but the solution should be
understood in the sense of Definition 2.7. This can be proved with the argument in [25].
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3 Outline of the Proof

Hereafter, we fix an arbitrary T > 0 and restrict the argument within the finite time horizon
[0, T ]. Let M+([0, 1]) be the space of finite, positive Radon measures on [0, 1], endowed
with the weak topology. Define the empirical distribution π N = π N (t, dx) as

π N (t, dx) := 1

N

N∑

i=0

ηi (t)δ i
N
(dx), ∀ t ∈ [0, T ], (3.1)

where δu(dx) stands for the Dirac measure at u. Denote by D = D([0, T ];M+([0, 1]))
the space of càdlàg paths on M+([0, 1]) endowed with the Skorokhod topology. To prove
Theorem2.8, it suffices to show that the distribution ofπ N onD convergesweakly as N → ∞
and the limit is concentrated on the single path π(t, dx) = u(t, x)dx . However, to formulate
the evolution equation (2.7) of u we need a type of convergence that also applies to nonlinear
functions. The idea is to introduce the Young measure corresponding to the mesoscopic block
average, cf. [12, 13, 22] and [14, Chapter 8].

Let �T = (0, T ) × (0, 1). Recall that a Young measure on �T is a measurable map
ν : �T → P(R), where P(R) is the space of probability measures on R endowed with
the topology defined by the weak convergence. Denote by Y = Y(�T ) the set of all Young
measures on �T , and by ν = {νt,x ; (t, x) ∈ �T } the element in Y . A sequence {νn; n ≥ 1}
of Young measures is said to converge to ν ∈ Y if for any bounded and continuous function
f on �T × R,

lim
n→∞

∫∫

�T

dxdt
∫

R

f (t, x, λ)νn
t,x (dλ) =

∫∫

�T

dxdt
∫

R

f (t, x, λ)νt,x (dλ). (3.2)

Any measurable function u on �T is naturally viewed as a Young measure:

νt,x (dλ) := δu(t,x)(dλ), ∀ (t, x) ∈ �T . (3.3)

Denote by Yd the set of all ν ∈ Y of this kind.
Hereafter, we fix some mesoscopic scale K = K (N ) such that

K � σN , NσN � K 3, σ 2
N � N K . (3.4)

The existence of such K is guaranteed by (2.17). For η ∈ �N and i = K ,..., N − K , define
the smoothly weighted block average as

η̂i,K :=
K−1∑

j=−K+1

w jηi− j , w j := K − | j |
K 2 . (3.5)

Consider the space-time empirical density

uN (t, x) :=
N−K∑

i=K

η̂i,K (t)χN ,i (x), ∀ (t, x) ∈ �T , (3.6)

where χN ,i (·) is the indicator function of the interval [ i
N − 1

2N , i
N + 1

2N ).

Lemma 3.1 (Tightness) Let QN be the distribution of (π N , νN ), where π N is defined in (3.1)
and νN is the Young measure corresponding to uN in (3.6) in the sense of (3.3). Then, the
sequence of QN is tight with respect to the product topology on D × Y .
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Let Q be a limit point of QN . With some abuse of notations, we denote the subsequence
converging to Q still by QN . Below we characterize Q by three propositions.

Proposition 3.2 The following holds for Q-almost every (π, ν).

(i) π(t, dx) = �(t, x)dx for every t ∈ [0, T ] with some �(t, ·) ∈ L1((0, 1)), and t �→
�(t, ·) is a continuous map with respect to the weak topology of L1.

(ii) νt,x ([0, 1]) = 1 for almost all (t, x) ∈ �T .
(iii) �(t, x) = ∫

λνt,x (dλ) for almost all (t, x) ∈ �T .

Proposition 3.3 Q(D × Yd) = 1, where Yd is the set of delta-Young measures in (3.3).

To state the last proposition, define the entropy production

X ( f ,q)(ν, ϕ) := −
∫∫

�T

dxdt

[
∂tϕ

∫

R

f dνt,x + ∂xϕ

∫

R

q dνt,x

]
, (3.7)

for ν ∈ Y , ϕ ∈ C1(R2) and Lax entropy–flux pair ( f , q).

Proposition 3.4 It holds Q-almost surely that

X ( f ,q)(ν, ϕ) +
∫∫

�T

dxdt

[
ϕ

∫

R

f ′(λ)G(x, λ)νt,x (dλ)

]
≤
∫ 1

0
f (u0)ϕ(0, x)dx, (3.8)

for any Lax entropy–flux pair ( f , q) and any ϕ ∈ C2c ([0, T )× (0, 1)) such that ϕ ≥ 0, where
G(x, λ) = V (x)[λ − ρ(x)].
Remark 3.5 Similarly to Remark 2.2, one can obtain ameasure-valued energy bound: it holds
Q-almost surely that

∫∫

�T

dxdt

[
V (x)

∫

R

[
λ − ρ(x)

]2
dνt,x

]
< ∞. (3.9)

This can be derived directly from the microscopic dynamics, see Sect. 6.

Remark 3.6 The arguments we used to prove Lemma 3.1 and Proposition 3.2, 3.3 and 3.4
do apply to all V ∈ C1((0, 1)), bounded or unbounded. However, only in the non-integrable
case are they sufficient to identify the limit equation.

We organize the remaining contents as follows. Lemma 3.1 and Proposition 3.2 are proved
in Sect. 4. Proposition 3.3 is proved in Sect. 5 and Proposition 3.4 is proved in Sect. 6.1. With
these results, the proofs of Theorem 2.8 and Corollary 2.10 are straightforward and are stated
right below. The direct proofs of Proposition 2.11 and (3.9) using the relative entropy method
[27] are stated in Sect. 6.2 and 6.3.

Proof of Theorem 2.8 and Corollary 2.10 Recall that Q is a probability measure on D × Y . In
view of Proposition 3.2 (i) and 3.3, π(t) = �(t, x)dx and νt,x = δu(t,x), Q-almost surely.
Proposition 3.2 (i i i) then yields that Q is concentrated on the trajectories such that � = u.

To prove Theorem 2.8, we need to show that u, and hence � , is the entropy solution to
(2.7) and (2.9). By Proposition 3.2 (i i), u(t, x) ∈ [0, 1] so that u ∈ L∞(�T ). Furthermore,
by substituting νt,x = δu(t,x)(dλ) in Proposition 3.4, we obtain that u satisfies the generalized
entropy inequality in Definition 2.1. The proof is then concluded by the uniqueness of the
entropy solution, see Proposition 2.4.

Finally, Corollary 2.10 follows directly from the argument above and the sample path
regularity of � obtained in Proposition 3.2 (i). ��
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We close this section with some useful notations. For a function ϕ = ϕ(t, x), let

ϕi (t) := ϕ
(
t, i

N − 1
2N

)
, ϕ̄i (t) := N

∫ i
N + 1

2N

i
N − 1

2N

ϕ(t, x)dx . (3.10)

Recall the mesoscopic scale K = K (N ) in (3.4). For a sequence {ai ; i = 0, . . . , N }, âi,K

stands for the smoothly weighted average in (3.5). Since K is fixed through the paper, we
write âi when there is no confusion. We shall frequently use the notions of discrete gradient
and Laplacian operators, which are defined as usual:

∇ai = ai+1 − ai , ∇∗ai = ai−1 − ai , �ai = ai+1 − 2ai + ai−1. (3.11)

Notice that � = −∇∇∗ = −∇∗∇.

4 Tightness

Recall that QN is the distribution of (π N , νN ) on D × Y . Here D = D([0, T ],M+([0, 1]))
is the space of càdlàg paths endowed with the Skorokhod topology and Y = Y(�T ) is the
space of Young measures endowed with the topology defined by (3.2).

Proof of Lemma 3.1 It suffices to show that both {π N } and {νN } are tight. The coordinate νN

is easy. Since uN ∈ [0, 1], for all N we have QN {νN ∈ Y∗} = 1, where

Y∗ := {
ν ∈ Y

∣∣ νt,x ([0, 1]) = 1 for all (t, x) ∈ �T
}
.

Because Y∗ is compact in Y , {νN } is tight.
For the coordinate π N , by [14, Chapter 4, Theorem 1.3 & Proposition 1.7], we only need

to show that for any ψ ∈ C([0, 1]), some constant Cψ and any δ > 0,

sup
N

QN

{

sup
t∈[0,T ]

∣∣〈π N (t), ψ〉∣∣ < Cψ

}

= 1, (4.1)

lim
ε↓0 lim

N→∞QN

{

sup
|t−s|<ε

∣∣〈π N (t), ψ〉 − 〈π N (s), ψ〉∣∣ > δ

}

= 0, (4.2)

where 〈 ·, · 〉 is the scalar product between M+ and C([0, 1]). The first one is obvious:
∣∣〈π N (t), ψ〉∣∣ = 1

N

∣∣∣∣∣

N∑

i=0

ηi (t)ψ
( i

N

)
∣∣∣∣∣
≤ 1

N

N∑

i=0

∣∣ψ
( i

N

)∣∣ , ∀ t ∈ [0, T ]. (4.3)

For the second one, choose ψ∗ ∈ C2c ((0, 1)) such that ‖ψ − ψ∗‖L1 < 4−1δ. Note that

∣∣〈π N (t), ψ − ψ∗〉 − 〈π N (s), ψ − ψ∗〉
∣∣ ≤ 1

N

N∑

i=0

∣∣ψ
( i

N

)− ψ∗
( i

N

)∣∣ <
δ

2
,

uniformly in s, t and all sample paths. Hence, it suffices to show (4.2) with ψ replaced by
ψ∗. Without loss of generality, let s < t . Then,

〈π N (t), ψ∗〉 − 〈π N (s), ψ∗〉 =
∫ t

s
L N

[〈π N (r), ψ∗〉
]
dr + MN ,ψ∗(t − s), (4.4)
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where MN ,ψ∗ is the Dynkin’s martingale. As ψ∗ is compactly supported, η0 or ηN does not
appear in 〈π N (r), ψ∗〉, so that

L N
[〈π N , ψ∗〉

] = (1 − p + σN )

N−1∑

i=1

ηi
[
ψ∗

( i+1
N

)+ ψ∗
( i−1

N

)− 2ψ∗
( i

N

)]

+ (2p − 1)
N−1∑

i=0

ηi (1 − ηi+1)
[
ψ∗

( i+1
N

)− ψ∗
( i

N

)]

+ 1

N

N∑

i=0

V
( i

N

) [
ηi − ρ

( i
N

)]
ψ∗

( i
N

)
.

Using the fact that σN � N and ψ∗ ∈ C2c ((0, 1)), L N [〈π N , ψ∗〉] is uniformly bounded.
Therefore, the first term in (4.4) vanishes uniformly when |t − s| → 0. We are left with the
martingale in (4.4). Dy Dynkin’s formula, the quadratic variation reads

〈MN ,ψ∗ 〉(t − s) =
∫ t

s

(
L N

[〈π N , ψ∗〉2
]− 2〈π N , ψ∗〉L N

[〈π N , ψ∗〉
])

dr .

Recall that ψ∗ ∈ C2c ((0, 1)), direct calculation shows that

L N
[〈π N , ψ∗〉2

]− 2〈π N , ψ∗〉L N
[〈π N , ψ∗〉

] = 1

N 2

N−1∑

i=0

ci,G(η)(1 − 2ηi )
2ψ2∗

( i
N

)

+ 1

N

N−1∑

i=0

(
ci,i+1(η) + σN

2

)
(ηi − ηi+1)

2 [ψ∗
( i+1

N

)− ψ∗
( i

N

)]2
.

By (2.17), it is bounded from above by C N−1. Therefore,

EQN
[|〈MN ,ψ∗ 〉(t − s)|] ≤ C(t − s)N−1. (4.5)

We only need to apply Doob’s inequality.

Proof of Proposition 3.2 For (i), notice that (4.3) and the weak convergence yield that for any
fixed ψ ∈ C([0, 1]), Q{supt∈[0,T ] |〈π(t), ψ〉| ≤ C‖ψ‖L1} = 1. Since C([0, 1]) is separable,
by standard density argument it holds Q-almost surely that

sup
t∈[0,T ]

∣∣〈π(t), ψ〉∣∣ ≤ C‖ψ‖L1 , ∀ ψ ∈ C([0, 1]).

So π(t) is absolutely continuous with respect to the Lebesgue measure on [0, 1] and can then
be written as�(t, x)dx . Moreover, (4.2) assures thatQ is concentrated on continuous paths,
see [14, Chapter 4, Remark 1.5]. The continuity of t �→ �(t, ·) is then proved.

Since (i i) is a direct result from the proof of the tightness of {νN }, we are left with (i i i).
Pick ϕ ∈ C1(�T ). From the definition of νN

t,x ,

∫ 1

0
ϕ(t, x)dx

[∫ 1

0
λνN

t,x (dλ)

]
= 1

N

N−K∑

i=K

η̂i,K (t)ϕ̄i (t),

where ϕ̄i (t) is given by (3.10). By the regularity of ϕ,
∣∣∣∣

∫∫

�T

dxdt

[
ϕ

∫ 1

0
λνN

t,x (dλ)

]
−
∫ T

0
〈π N , ϕ(t, ·)〉dt

∣∣∣∣ ≤ CϕT K

N
.
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Since K = K (N ) � N , the right-hand side above vanishes as N → ∞. From the weak
convergence, this yields that for any δ > 0 and fixed ϕ ∈ C1(�T ),

Q

{∣∣
∣
∣

∫∫

�T

dxdt

[
ϕ

∫ 1

0
λνt,x (dλ)

]
−
∫ T

0
〈π, ϕ(t, ·)〉dt

∣
∣
∣
∣ > δ

}
= 0.

By choosing a countable and dense subset of C1(�T ) and applying (i),

Q

{∫∫

�T

ϕ

[∫ 1

0
λνt,x (dλ) − �

]
dxdt = 0, ∀ ϕ ∈ C1(�T )

}
= 1.

The conclusion in (i i i) then follows. ��

5 Compensated Compactness

Given a Lax entropy–flux pair ( f , q), recall the entropy production defined in (3.7). To
simplify the notations, we will write X(ν, ϕ) when the choice of ( f , q) is clear. Without loss
of generality, we also fix p = 1 to shorten the formulas.

This section is devoted to the proof of Proposition 3.3. Note that Yd , the subset of delta-
type Young measures, is not closed in Y , so QN (Yd) = 1 for all N does not guarantee that
Q(Yd) = 1. From [12, Proposition 2.1 & Lemma 5.1], Proposition 3.3 follows from the next
result, see also [13, Section 5.6].

Proposition 5.1 Fix an arbitrary Lax entropy–flux pair ( f , q). Letϕ = φψ withφ ∈ C∞
c (�T )

and ψ ∈ C∞(R2). Then, we have the following decomposition:

X(νN , ϕ) = YN (ϕ) + Z N (ϕ),

and there exist random variables AN ,φ , BN ,φ independent of ψ , such that

|YN (ϕ)| ≤ AN ,φ‖ψ‖H1 , lim sup
N→∞

EμN [AN ,φ] = 0; (5.1)

|Z N (ϕ)| ≤ BN ,φ‖ψ‖L∞ , sup
N≥1

EμN [BN ,φ] < ∞. (5.2)

Here, ‖ · ‖H1 and ‖ · ‖L∞ are the H1- and L∞-norm computed on �T = (0, T ) × (0, 1).

Remark 5.2 Proposition 5.1 is amicroscopic (stochastic) synthesis of theMurat–Tartar theory
established in [19, 23]. The role of the function φ ∈ C∞

c (�T ) is to localize the estimates in
(5.1) and (5.2) away from the boundaries where the potential V is unbounded.

5.1 Basic Decomposition

Wefirst prove abasic decomposition for themicroscopic entropyproduction.Given abounded
function ϕ = ϕ(t, x), recall the notations ϕi = ϕi (t) and ϕ̄i = ϕ̄i (t) defined in (3.10). Denote
by η̂i (t) = η̂i,K (t), Ĵi (t) = Ĵi,K (t) and Ĝi (t) = Ĝi,K (t) the smoothly weighted averaged
averages introduced in (3.5) of ηi (t), Ji (t) = ηi (t)(1−ηi+1(t)) and Gi (t) = Vi (ηi (t)−ρi ).
We shall abbreviate them to η̂i , Ĵi and Ĝi when there is no confusion.

Lemma 5.3 Fix a Lax entropy–flux pair ( f , q). For ϕ ∈ C1(R2) such that ϕ(T , ·) = 0,

X(νN , ϕ) = 1

N

N−K∑

i=K

f (η̂i (0))ϕ̄i (0) + AN + SN + GN + MN + EN . (5.3)

123



78 Page 14 of 30 L. Xu et al.

The terms in (5.3) are defined below. AN , SN and GN are given by

AN = AN (ϕ) :=
∫ T

0

N−K∑

i=K

ϕ̄i (t) f ′(η̂i )∇∗ [ Ĵi − J (η̂i )
]

dt,

SN = SN (ϕ) := σN

∫ T

0

N−K∑

i=K

ϕ̄i (t) f ′(η̂i )�η̂i dt,

GN = GN (ϕ) := −
∫ T

0

1

N

N−K∑

i=K

ϕ̄i (t) f ′(η̂i )Ĝi dt .

MN is a martingale given by

MN = MN (ϕ) := −
∫ T

0

1

N

N−K∑

i=K

ϕ̄′
i (t)Mi (t)dt,

where Mi = Mi (t) is the Dynkin’s martingale associated with f (η̂i (t)), see (5.5) below.
Finally, EN = EN ,1 + EN ,2 + EN ,3 is defined through

EN ,1 = EN ,1(ϕ) := − f (0)
∫∫

BT ,N

∂tϕ dxdt − q(0)
∫∫

BT ,N

∂xϕ dxdt,

EN ,2 = EN ,2(ϕ) :=
∫ T

0

N−K∑

i=K

[
ϕ̄i∇∗q(η̂i ) − q(η̂i )∇ϕi

]
dt,

EN ,3 = EN ,3(ϕ) :=
∫ T

0

1

N

N−K∑

i=K

ϕ̄i

[
ε
(1)
i,K + ε

(2)
i,K

]
dt,

where BT ,N is the region t ∈ [0, T ] and x ∈ [0, 2K−1
2N ) ∪ [1 − 2K−1

2N , 1],

ε
(1)
i,K = L N f (η̂i ) − f ′(η̂i )L N η̂i , ε

(2)
i,K = N

[
f ′(η̂i )∇∗ J (η̂i ) − ∇∗q(η̂i )

]
.

Proof By the definition of νN ,

X(νN , ϕ) = −
∫ T

0

1

N

N−K∑

i=K

f (η̂i )ϕ̄
′
i dt −

∫ T

0

N−K∑

i=K

q(η̂i )∇ϕi dt + EN ,1(ϕ). (5.4)

By Dynkin’s formula, for K ≤ i ≤ N − K ,

Mi (t) := f (η̂i (t)) − f (η̂i (0)) −
∫ t

0
L N

[
f (η̂i (s))

]
ds, t ∈ [0, T ], (5.5)

defines a martingale. Since ϕ vanishes at t = T , MN (ϕ) satisfies that

−
∫ T

0

1

N

N−K∑

i=K

f (η̂i )ϕ̄
′
i dt = 1

N

N−K∑

i=K

f (η̂i (0))ϕ̄i (0)

+
∫ T

0

1

N

N−K∑

i=K

ϕ̄i L N
[

f (η̂i )
]
dt + MN (ϕ).

(5.6)
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Recall the definition of L N in (2.5). Note that, for K ≤ i ≤ N − K , η̂i does not depend on
η0 or ηN , and thus Lbdη̂i = Lbdη̂i = 0. Notice that

L N [η̂i ] = N∇∗ Ĵi + NσN �η̂i − Ĝi , ∀ i = K , . . . , N − K .

Therefore, for i = K ,..., N − K , L N [ f (η̂i )] is equal to
ε
(1)
i,K + f ′(η̂i )

(
N∇∗ Ĵi + NσN �η̂i − Ĝi

)
= ε

(1)
i,K + ε

(2)
i,K

+ N f ′(η̂i )∇∗ [ Ĵi − J (η̂i )
]

+ N∇∗q(η̂i ) + f ′(η̂i )
(

NσN �η̂i − Ĝi

)
.

From the above formula of L N [ f (η̂i )],
∫ T

0

1

N

N−K∑

i=K

ϕ̄i L N
[

f (η̂i )
]
dt =

∫ T

0

N−K∑

i=K

ϕ̄i∇∗q(η̂i ) dt

+ AN (ϕ) + SN (ϕ) + GN (ϕ) + EN ,3(ϕ).

(5.7)

We then conclude the proof by inserting (5.6) and (5.7) into the first term on the right-hand
side of (5.4). ��

5.2 Dirichlet Forms

Given a function α : [0, 1] → (0, 1), denote by νN
α(·) the product measure on �N with

marginals

νN
α(·)(η(i) = 1) = α(i/N ), ∀ i = 0, 1, . . . , N .

When α(·) ≡ α is a constant, we shorten the notation as νN
α(·) = νN

α . Given two probability
measures ν and μ on �N , let f := μ/ν be the density function. Define

DN
exc(μ; ν) := 1

2

∑

η∈�N

N−1∑

i=0

(√
f (ηi,i+1) −√

f (η)
)2

ν(η), (5.8)

DN
G (μ; ν) := 1

2N

∑

η∈�N

N−1∑

i=1

ci,G(η)
(√

f (ηi ) −√
f (η)

)2
ν(η), (5.9)

DN− (μ; ν) := 1

2

∑

η∈�N

c0(η)
(√

f (η0) −√
f (η)

)2
ν(η), (5.10)

DN+ (μ; ν) := 1

2

∑

η∈�N

cN (η)
(√

f (ηN ) −√
f (η)

)2
ν(η), (5.11)

with ci,G in (2.2) and c0, cN in (2.3). Note that DN− ≡ 0 if c−
in = c−

out = 0, and similarly for
DN+ . Let μN

t be the distribution of the process at time t . Define

DN
exc(t) = DN

exc(μ
N
t ; νN

1
2
), DN

G (t) = DN
G (μN

t ; νN
ρ(·)), ∀ t ≥ 0.

Let c− = c−
in(c

−
in + c−

out)
−1 when at least one of c−

in and c−
out is positive. Define

DN− (t) = DN− (μN
t ; νN

c−), ∀ t ≥ 0.

If c−
in = c−

out = 0 we fix DN− (t) ≡ 0. Let c+ and DN+ (t) be defined similarly.
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Lemma 5.4 For any t > 0, there is a constant C independent of N , such that
∫ t

0

[
σN DN

exc(s) + DN
G (s) + DN− (s) + DN+ (s)

]
ds ≤ C .

Proof Let ν = νN
α with α ≡ 1

2 . For a probability measure μ = f ν on �N , from the
calculation in Appendix A,

〈
f , Lexc[log f ]〉

ν
≤ −(σN + 1)DN

exc(μ; ν) + C, (5.12)

〈
f , LG[log f ]〉

ν
≤ −2DN

G (μ; νN
ρ(·)) + 1

N

N−1∑

i=1

Vi log
(

ρi
1−ρi

)
(ρi − Eμ[ηi ]), (5.13)

〈
f , Lbd[log f ]〉

ν
≤ −2

[
DN− (μ; νN

c−) + DN+ (μ; νN
c+)

]+ C . (5.14)

For s ∈ [0, t], let f N
s := μN

s /ν, then
〈
f N
s , L N log f N

s

〉
ν

≤ − 2NσN DN
exc(s) − 2N DN

G (s) − 2N
[
DN− (s) + DN+ (s)

]

+
N−1∑

i=1

Vi log
(

ρi
1−ρi

) (
ρi − EμN [ηi (s)]

)+ C N .

Applying Lemma 5.5 below, we obtain the estimate
∫ t

0

[
σN DN

exc(s) + DN
G (s) + DN− (s) + DN+ (s)

]
ds ≤

∫ t

0

〈 f N
s ,−L N [log f N

s ]〉ν
2N

ds + C .

Standard manipulation gives that
∫ t

0

〈
f N
s ,−L N [log f N

s ]〉
ν

ds =
∑

η∈�N

log[ f N
0 (η)]μN

0 (η) −
∑

η∈�N

log[ f N
t (η)]μN

t (η)

is bounded by C ′N , so we conclude the proof. ��
The following a priori bound is used in the previous proof.

Lemma 5.5 Suppose that a ∈ C1([0, 1]) has Lipschitz continuous derivative. Let ai = aN
i =

a( i
N ). Then, there is a constant C independent of N , such that

EμN

[∫ t

0

1

N

N−1∑

i=1

Vi ai
(
ρi − ηi (s)

)
ds

]

≤ C .

In particular, the profile a(x) = log[ρ(x)] − log[1 − ρ(x)] satisfies the condition in the
lemma.

Proof By Dynkin’s formula,

EμN

[
1

N

N∑

i=0

ai
(
ηi (t) − ηi (0)

)−
∫ t

0

1

N

N∑

i=0

ai L N ηi (s) ds

]

= 0.

From the definition of L N ,

1

N

N∑

i=0

ai L N ηi = 1

N

N−1∑

i=1

Vi ai (ρi − ηi ) +
N−1∑

i=0

(∇ai ) ji,i+1

+ a0
[
c−
in − (c−

in + c−
out)η0

]+ aN
[
c+
in − (c+

in + c+
out)ηN

]
,
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where ji,i+1 = ηi (1 − ηi+1) + σN (ηi − ηi+1). As |ai | ≤ |a|∞ and |ηi | ≤ 1,

EμN

[∫ t

0

1

N

N−1∑

i=1

Vi ai (ρi − ηi ) ds +
∫ t

0

N−1∑

i=0

(∇ai ) ji,i+1 ds

]

≤ C .

Furthermore, using sum-by-parts formula,

N−1∑

i=0

(∇ai ) ji,i+1 =
N−1∑

i=0

(∇ai )ηi (1 − ηi+1)

+ σN

[
N−1∑

i=1

(�ai )ηi + (∇a0)η0 − (∇aN−1)ηN

]

.

Since σN = o(N ), one can conclude from the regularity of a(·). ��

5.3 Proof of Proposition 5.1

We fix φ ∈ C∞
c (�T ) and prove Proposition 5.1 by estimating each term in the decomposition

(5.3) uniformly in ψ . Compared to the proofs of [25, Proposition 6.1] and [24, Lemma 4.3],
extra effort is needed to take care of the term with respect to V . In the following contents,
C is constant that may depend on ( f , q) and T but is independent of (φ, ψ), while Cφ is
constant that also depends on φ but is independent of ψ .

We first show that the error term EN vanishes in the limit.

Lemma 5.6 EN ,1 ≡ 0 for sufficiently large N. Moreover, as N → ∞,

(i) EN ,2 vanishes uniformly in H−1(�T ), thus satisfies (5.1);
(ii) EN ,3 vanishes uniformly in M(�T ), thus satisfies (5.2).

Proof For φ ∈ C1c (�T ), there is δφ > 0 such that φ(t, x) = 0 for x /∈ (δφ, 1− δφ). Note that
K � N , so we can find Nφ depending only on φ such that ϕ = φψ = 0 on BT ,N for all ψ
and N > Nφ . The vanishment of EN ,1 then follows.

We first prove (i). For N > Nφ , we can perform summation by parts without generating
boundary term:

EN ,2(ψ) =
∫ T

0

N−K∑

i=K

(
ϕ̄i − ϕi

)∇∗q(η̂i )dt .

Note that for some θx ∈ ((2i − 1)/2N , x),

|ϕ̄i − ϕi | ≤
∫ i

N + 1
2N

i
N − 1

2N

|∂xϕ(θx )|dx, |∇∗q(η̂i )| ≤ C
∣∣η̂i−1 − η̂i

∣∣ ≤ C K −1.

Thus, by Cauchy-Schwarz inequality and that ϕ = ψφ,

|EN ,2(ϕ)| ≤ C K −1‖ϕ‖H1 ≤ Cφ K −1‖ψ‖H1 .

To prove (i i), Taylor’s expansion gives that

∣∣∣ε(1)
i,K

∣∣∣ ≤ C
i+K∑

j=i−K

[
NσN (η̂

j, j+1
i − η̂i )

2 + V
(

j
N

)
(η̂

j
i − η̂i )

2
]
.
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By the definition of η̂i in (3.5), |η̂ j, j+1
i − η̂i | = K −2 and |η̂ j

i − η̂i | = w j−i , so

∣
∣
∣ε(1)

i,K

∣
∣
∣ ≤ C NσN K −3 + C

∑

| j |<K

V
(

i+ j
N

)
w2

j .

As ϕ = φψ , the definition (3.10) of ϕ̄i yields that

1

N

N−K∑

i=K

ϕ̄i

∑

| j |<K

V
(

i+ j
N

)
w2

j ≤ ‖ψ‖L∞
∑

| j |<K

w2
j

N−K∑

i=K

V
(

i+ j
N

) ∫ i
N + 1

2N

i
N − 1

2N

|φ| dx .

Recall that φ = 0 for x /∈ (δφ, 1 − δφ). Let N ′
φ be such that K N−1 < 2−1δφ for N > N ′

φ .
Then, for every N > N ′

φ , the expression above is bounded by

‖ψ‖L∞
∑

| j |<K

w2
j

(
‖φV ‖L1 + ‖φ‖L1 sup

{
|V ′|; x ∈

[
δφ

2
, 1 − δφ

2

]}
2K + 1

2N

)
.

From the choice of w j in (3.5), it is bounded by Cφ K −1‖ψ‖L∞ . Similarly, using Taylor’s
expansion and the relation f ′ J ′ = q ′,

∣∣∣ε(2)
i,K

∣∣∣ ≤ C N (η̂i−1 − η̂i )
2 ≤ C N K −2.

Putting the estimates above together,

|EN ,3(ψ)| ≤ Cφ

(
NσN

K 3 + N

K 2 + 1

K

)
‖ψ‖L∞ .

The proof is then concluded by the choice of K in (3.4). ��

Similarly, with the compactness of φ we can carry out the estimate for GN .

Lemma 5.7 The functional GN satisfies (5.2).

Proof Recall that Gi = Vi (ηi − ρi ), so |Gi | ≤ C |V ( i
N )|. Then,

|GN (ϕ)| ≤ C
∫ T

0

1

N

N−K∑

i=K

|ϕ̄i |
∑

| j |<K

∣∣∣V
(

i+ j
N

)∣∣∣w j dt .

By the argument in Lemma 5.6 (i i), it is bounded by Cφ‖ψ‖L∞ uniformly in N . ��

Now, we deal with the martingale term.

Lemma 5.8 The martingale MN (ψ) satisfies (5.1).

Proof Since ∂tϕ = φ∂tψ + ψ∂tφ, using Cauchy–Schwarz inequality,

|MN (ϕ)|2 ≤ ‖ψ‖2H1

∫ T

0

N−K∑

i=K

∫ i
N + 1

2N

i
N − 1

2N

[
φ2 + (∂tφ)2

]
M2

i (t)dxdt .
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Through Dynkin’s formula, Mi satisfies that

EμN

[
M2

i (t)
] = EμN

⎡

⎣
∫ t

0

i+K∑

j=i−K

N
(
η j (1 − η j+1) + σN

)(
f (η̂

j, j+1
i ) − f (η̂i )

)2
ds

+
∫ t

0

i+K−1∑

j=i−K+1

Vj
[
η j (1 − ρ j ) + ρ j (1 − η j )

](
f (η̂

j
i ) − f (η̂i )

)2
ds

⎤

⎦

≤ C NσN

i+K∑

j=i−K

EμN

[
(η̂

j, j+1
i − η̂i )

2]+ C
∑

| j |<K

V
(

i+ j
N

)
w2

j .

Similarly to the estimate in Lemma 5.6(i i), |MN (ϕ)| ≤ aN ,φ‖ψ‖H1 with

EμN [aN ,φ] ≤ Cφ

√
NσN

K 3 + 1

K
.

The proof is then concluded by the choice of K in (3.4). ��
To deal with AN and SN , we need the block estimates stated below. They follow from

the upper bound of DN
exc in Lemma 5.4 and the logarithmic Sobolev inequality for exclusion

process [28]. The proofs are the same as [25, Proposition 6.4 & 6.5] and [24, Proposition 4.6
& 4.7]. For this reason, we omit the details here.

Lemma 5.9 There exists some finite constant C independent of N , such that

EμN

[ ∫ T

0

N−K∑

i=K

(
Ĵi (t) − J (η̂i (t))

)2
dt
]

≤ C
(K 2

σN
+ N

K

)
, (5.15)

EμN

[ ∫ T

0

N−K∑

i=K

(
∇η̂i (t)

)2
dt
]

≤ C
( 1

σN
+ N

K 3

)
. (5.16)

Using Lemma 5.9, we can conclude the decompositions of AN and SN .

Lemma 5.10 Define functionals AN ,1 and SN ,1 respectively by

AN ,1(ϕ) :=
∫ T

0

N−K∑

i=K

ϕ̄i

[
Ĵi − J (η̂i )

]
∇ f ′(η̂i )dt, (5.17)

SN ,1(ϕ) := − σN

∫ T

0

N−K∑

i=K

ϕ̄i∇ ˆηi∇ f ′(η̂i )dt . (5.18)

Then, AN − AN ,1 and SN − SN ,1 satisfy (5.1), while AN ,1 and SN ,1 satisfy (5.2).

The proof of Lemma 5.10 follows [25, Lemma 6.6 & 6.7] almost line by line, so we only
sketch the difference. It is worth noting that, SN ,1 turns out to be the only term that survives
in the limit, eventually generates the non-zero macroscopic entropy in (2.10).

Proof We first treatAN . Since ϕ = φψ with φ ∈ C∞
c (�T ) being fixed, similarly to the proof

of Lemma 5.6 (i), we have for N > Nφ that

(AN − AN ,1)(ϕ) =
∫ T

0

N−K∑

i=K

f ′(η̂i+1)
[

Ĵi − J (η̂i )
]
∇ϕ̄i dt .
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Applying Cauchy–Schwarz inequality and Lemma 5.9, we obtain that |(AN −AN ,1)(ϕ)| ≤
aN ‖ϕ‖H1 and |AN ,1(ϕ)| ≤ bN ‖ϕ‖L∞ , where (aN , bN ) are random variables such that

EμN [aN ] ≤ C

√
K 2

NσN
+ 1

K
, EμN [bN ] ≤ C

(
K

σN
+ N

K 2

)
.

Noting that ‖ϕ‖H1 ≤ Cφ‖ψ‖H1 , ‖ϕ‖L∞ ≤ Cφ‖ψ‖L∞ , the conclusion follows from (3.4).
The proof for SN is similar. For N > Nφ ,

(SN − SN ,1)(ϕ) = −σN

∫ T

0

N−K∑

i=K

f ′(η̂i+1)∇ϕ̄i∇η̂i dt .

By Cauchy–Schwarz inequality and Lemma 5.9, |(SN − SN ,1)(ϕ)| ≤ a′
N ‖ϕ‖H1 and

|SN ,1(ϕ)| ≤ b′
N ‖ϕ‖L∞ with random variables (a′

N , b′
N ) satisfying

EμN [a′
N ] ≤ C

√
σN

N
+ σ 2

N

K 3 , EμN [b′
N ] ≤ C

(
1 + NσN

K 3

)
.

The conclusion follows similarly. ��

6 Measure-Valued Entropy Solution

We prove that under Q, ν satisfies (3.8) with probability 1. We call such a Young measure
a measure-valued entropy solution to the initial-boundary value problem (2.7) and (2.9).
Thanks to Proposition 3.3, ν is essentially the entropy solution.

6.1 Proof of (3.8)

Fix an arbitrary Lax entropy–flux pair ( f , q) and ϕ ∈ C2c ([0, T ) × (0, 1)) such that ϕ ≥ 0.
As in Sect. 5, we shall let N → ∞ and examine the limit of each term in the decomposition
(5.3). The main difference is that the proof of Proposition 5.1 requires uniform estimate in
the test function, which is no more necessary here.

First, by Lemma 5.6, 5.8 and 5.10, for any δ > 0,

lim
N→∞QN

{
|AN (ϕ)| + |SN (ϕ) − SN ,1(ϕ)| + |MN (ϕ)| + |EN (ϕ)| > δ

}
= 0.

Meanwhile, the convexity of f ensures that ∇ ˆηi∇ f ′(η̂i ) ≥ 0, so SN ,1(ϕ) given by (5.18) is
non-positive everywhere. Therefore, (3.8) holds Q-almost surely if we can show that

lim sup
N→∞

QN

{∣∣∣∣GN (ϕ) +
∫∫

�T

ϕ(t, x)

∫

R

f ′(λ)G(x, λ) νN
t,x (dλ) dxdt

∣∣∣∣ > δ

}
= 0,

(6.1)
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for any δ > 0, where G(x, λ) = V (x)(λ − ρ(x)). Recall the definition of GN (ϕ) in Lemma
5.3. As ϕ is compactly supported, for sufficiently large N we have

GN (ϕ) = −
∫∫

�T

ϕ(t, x)

∫

R

f ′(λ)G(x, λ) νN
t,x (dλ) dxdt

−
∫ T

0

N−K∑

i=K

f ′(η̂i )

∫ i
N + 1

2N

i
N − 1

2N

ϕ
[
Ĝi − G(·, η̂i )

]
dxdt,

where Ĝi is the smoothly weighted average of Gi = V ( i
N )(ηi − ρ( i

N )). Straightforward
computation shows that

∣
∣
∣
∣∣

∫ T

0

N−K∑

i=K

f ′(η̂i )

∫ i
N + 1

2N

i
N − 1

2N

ϕ
[
Ĝi − G(·, η̂i )

]
dxdt

∣
∣
∣
∣∣
≤ C K

N
,

which vanishes uniformly as N → ∞. We can then conclude (6.1).

6.2 Direct Proof of (3.9)

Notice that (3.9) holds if for some constant C0,

Q

{

sup
g∈C∞

c (R×(0,1))

{∫∫

�T

(ū − ρ)gV dxdt − C0

∫∫

�T

g2V dxdt

}
< ∞

}

= 1, (6.2)

where ū = ū(t, x) := ∫
R

λνt,x (dλ) is a measurable function on �T .
Let {g j ; j ≥ 1} be a countable subset of C∞

c (R × (0, 1)) which is dense in both the L1

and the L2 norm induced by V , i.e., for any g ∈ C∞
c (R × (0, 1)), there are g jn , n ≥ 1, such

that

lim
n→∞

∫∫

�T

(
g − g jn

)2
V dxdt + lim

n→∞

∫∫

�T

∣∣g − g jn
∣∣V dxdt = 0.

For � ≥ 1, consider the functional �� : Y → R defined as

��(ν) := max
1≤ j≤�

{∫∫

�T

g j V

[∫

R

(λ − ρ)νt,x (dλ)

]
dxdt − C0

∫∫

�T

(g j )2V dxdt

}
.

Note that �� is continuous for each fixed �. Lemma 6.1 below together with the weak
convergence of QN then shows that there is a constant C1 independent of �, such that

EQ
[
��

] = lim
N→∞ EQN

[
��

] ≤ C1, ∀ � ≥ 1.

Taking � → ∞ and applying the monotone convergence theorem,

EQ

[

sup
j≥1

{∫∫

�T

(ū − ρ)g j V dxdt − C0

∫∫

�T

(g j )2V dxdt

}]

≤ C1.

The condition (6.2) then follows from the dense property of {g j ; j ≥ 1}.
Lemma 6.1 There exist constants C0 and C1 such that, for each � ≥ 1,

lim sup
N→∞

EμN

[
max
1≤ j≤�

{∫∫

�T

(uN − ρ)g j V dxdt − C0

∫∫

�T

(g j )2V dxdt

}]
≤ C1.

(6.3)
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Proof Only in this proof, to shorten the formulas we denote

‖g‖2V :=
∫∫

�T

g2(t, x)V (x) dxdt, (gV )i (t) := N
∫ i

N + 1
2N

i
N − 1

2N

g(t, x)V (x) dx .

Since g j is compactly supported, for N sufficiently large,

∫∫

�T

(
uN − ρ

)
g j V dxdt =

∫ T

0

1

N

N−K∑

i=K

η̂i (g j V )i dt −
∫∫

�T

ρg j V dxdt .

To conclude the proof, it suffices to prove that

lim sup
N→∞

∣
∣
∣
∣
∣

∫ T

0

1

N

N−K∑

i=K

ρ̂i (g j V )i dt −
∫∫

�T

ρg j V dxdt

∣
∣
∣
∣
∣
= 0, ∀ 1 ≤ j ≤ �, (6.4)

lim sup
N→∞

EμN

[

max
j≤�

{∫ T

0

1

N

N−K∑

i=K

(η̂i − ρ̂i )(g j V )i dt − C0‖g j‖2V
}]

≤ C1. (6.5)

We begin with (6.4), which is completely deterministic. For some fixed j ≤ �, using the
fact that g j is compactly supported, we only need to show that

lim sup
N→∞

∣∣∣∣∣

∫ T

0
dt

N−K∑

i=K

∫ i
N + 1

2N

i
N − 1

2N

[
ρ̂i − ρ(x)

]
g j (t, x)V (x) dx

∣∣∣∣∣
= 0.

This follows as ρ is continuous and ρ̂i is the smoothly weighted average of ρ( i
N ).

Now we prove (6.5). First note that it suffices to prove it with K replaced by any other
mesoscopic scale n = n(N ) such that K ≤ n = o(N ), since

lim sup
N→∞

max
j≤�

{∫ T

0

1

N

( n−1∑

i=K

+
N−K∑

i=N−n+1

)∣∣(g j V )i

∣∣
}

= 0.

The choice of n is specified below in Lemma 6.2. Recall that νN
ρ(·) is the product measure

on �N associated with the profile ρ. From the entropy inequality, the expectation in (6.5) is
bounded by

H(μN | νN
ρ(·))

N
+ 1

N
logEνN

ρ(·)

[

exp

{

max
j≤�

{ ∫ T

0

N−n∑

i=n

(η̂i − ρ̂i )(g j V )i dt − C0N‖g j‖2V
}}]

.

Due to (2.4), the relative entropy is bounded by C N , so the first term is uniformly bounded.
Also notice that for any random variables X1,... X�,

log E
[
emax{X j ;1≤ j≤�}] ≤ log E

[ ∑

1≤ j≤�

eX j
]

≤ log � + max
1≤ j≤�

log E
[
eX j

]
,

so we only need to find universal constants C0 and C1, such that

logEνN
ρ(·)

[

exp

{∫ T

0

N−n∑

i=n

(η̂i − ρ̂i )(gV )i dt

}]

≤ (
C0‖g‖2V + C1

)
N , (6.6)
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for all g ∈ C∞
c (R × (0, 1)). By the Feynman–Kac formula (see, e.g., [2, Lemma 7.3]), the

left-hand side of (6.6) is bounded from above by

∫ T

0
sup

f

⎧
⎨

⎩

∑

η∈�N

N−n∑

i=n

(
η̂i − ρ̂i

)
(gV )i f (η)νN

ρ(·)(η) + 〈√
f , L N

√
f
〉
νN
ρ(·)

⎫
⎬

⎭
dt, (6.7)

where the supremum is taken over all νN
ρ(·)-densities. For each j , performing the change of

variables η �→ η j ,
∑

η∈�N

(η j − ρ j ) f (η)νN
ρ(·)(η)

= 1

2

∑

η∈�N

(η j − ρ j ) f (η)νN
ρ(·)(η) + 1

2

∑

η∈�N

(1 − η j − ρ j ) f (η j )νN
ρ(·)(η

j )

= 1

2

∑

η∈�N

(η j − ρ j )
[

f (η) − f (η j )
]
νN
ρ(·)(η),

where the last line follows from the equality (1 − η j − ρ j )ν
N
ρ(·)(η j ) = −(η j − ρ j )ν

N
ρ(·)(η).

Thus, the first term inside the supremum in (6.7) reads

N−n∑

i=n

(gV )i

∑

| j |<K

w j

∑

η∈�N

(ηi+ j − ρi+ j ) f (η)νN
ρ(·)(η)

= 1

2

N−n∑

i=n

(gV )i

∑

| j |<K

w j

∑

η∈�N

(ηi+ j − ρi+ j )
[

f (η) − f (ηi+ j )
]
νN
ρ(·)(η).

Using Cauchy–Schwarz inequality, we can bound it from above by I1 + I2, where

I1 := 1

2

N−n∑

i=n

∑

| j |<K

∑

η∈�N

w j ci+ j,G(η)
(√

f (η) −
√

f (ηi+ j )
)2

νN
ρ(·)(η),

I2 := 1

2

N−n∑

i=n

∑

| j |<K

∑

η∈�N

w j
(ηi+ j − ρi+ j )

2

ci+ j,G(η)
(gV )

2
i

(√
f (η) +

√
f (ηi+ j )

)2
νN
ρ(·)(η),

where ci,G(η) = Vi [ρi (1− ηi )+ ηi (1−ρi )] > 0 due to (2.4). Recall the Dirichlet form DN
G

defined in (5.9). Since
∑

| j |<K w j = 1,

I1 ≤ 1

2

N−1∑

i=1

∑

| j |<K

w j

∑

η∈�N

ci,G(η)
(√

f (η) −
√

f (ηi )
)2

νN
ρ(·)(η) = N DN

G (μ; νN
ρ(·)),

where μ := f νN
ρ(·). To estimate I2, notice that

(ηi+ j − ρi+ j )
2

ci+ j,G(η)
(gV )

2
i ≤ C

Vi+ j

∫ i
N + 1

2N

i
N − 1

2N

V dx ·
[ ∫ i

N + 1
2N

i
N − 1

2N

V dx

]−1

(gV )
2
i .

From (2.4), Lemma 6.2 below and Cauchy–Schwarz inequality,

(ηi+ j − ρi+ j )
2

ci+ j,G(η)
(gV )

2
i ≤ C N

∫ i
N + 1

2N

i
N − 1

2N

V (x)g(t, x)2dx,

123



78 Page 24 of 30 L. Xu et al.

with some constant C independent of (i, j, g). Therefore, I2 ≤ C0N‖g‖2V . Putting the
estimates for I1, I2 into (6.7), we see that (6.6) holds if we can show

N DN
G (μ; νN

ρ(·)) + 〈√ f , L N
√

f 〉νN
ρ(·)

≤ C N , (6.8)

for any N , any νN
ρ(·)-density f and μ = f νN

ρ(·)
The proof of (6.8) is standard. Since νN

ρ(·) is reversible for LG,

DN
G (μ; νN

ρ(·)) + 〈√
f , LG

√
f
〉
νN
ρ(·)

= 0.

In Appendix A, we prove that (cf. (5.12) and (5.14))

〈√
f , Lexc

√
f
〉
νN
ρ(·)

≤ − 1
4 (σN − 1)DN

exc(μ; νN
ρ(·)) + C, (6.9)

〈√
f , Lbd

√
f
〉
νN
ρ(·)

≤ −DN− (μ; νN
ρ(·)) − DN+ (μ; νN

ρ(·)) + C . (6.10)

Since the Dirichlet forms are non-negative, (6.8) follows. ��

Lemma 6.2 Suppose that V ∈ C1((0, 1)) and inf(0,1) V > 0. Define n = n(N ) as

n := inf

{
n ≥ K ; sup

{
|V ′(x)|; x ∈ [ n−K

N , 1 − n−K
N

] } ≤ N

K

}
.

Then, n = o(N ) as N → ∞, and there is a constant C = C(V ) such that

max
n≤i≤N−n,| j |<K

{

V
(

i+ j
N

)−1
∫ i

N + 1
2N

i
N − 1

2N

V dx

}

≤ C

N
.

Proof We first prove that for any ε > 0, n ≤ εN for sufficiently large N . Indeed, let Nε be
such that K N−1 < 2−1ε for all N > Nε . Then, if N > Nε ,

sup
{
|V ′(x)|; x ∈ [

εN−K
N , 1 − ε−K

N

] } ≤ sup
{
|V ′(x)|; x ∈ [

ε
2 , 1 − ε

2

] } = Cε.

We can further choose Nε such that K N−1 < C−1
ε for all N > Nε, then n ≤ εN .

For the second criterion, suppose that |V (
i+ j
N )| takes the minimum value for | j | < K at

some jN ,i . Then, for each i = n,..., N − n,

∣∣∣∣∣
N
∫ i

N + 1
2N

i
N − 1

2N

V dx − V
(

i+ jN ,i
N

)
∣∣∣∣∣
≤ sup

{
|V ′|1[ i−K

N , i+K
N ]

} | jN ,i | + 1

N

≤ sup
{
|V ′|1[ n−K

N ,1− n−K
N ]

}K

N
≤ 1.

Therefore, for each i and j ,

[
V
(

i+ j
N

) ]−1
∫ i

N + 1
2N

i
N − 1

2N

V dx ≤
[
V
(

i+ jN ,i
N

)]−1 [
1 + V

(
i+ jN ,i

N

)]
≤ 1 + 1

inf(0,1) V
.

The second criterion then follows from (2.4). ��
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6.3 Direct Proof of Proposition 2.11

By the continuity of ρ(·),

lim
ε→0+ lim

N→∞
1

εN

εN∑

i=1

ρi = ρ(0).

Thus, we only need to show for fixed ε > 0 that

lim
N→∞

∫ t

0

1

εN

εN∑

i=1

(
ηi (s) − ρi

)
ds = 0 inPμN − probabili t y. (6.11)

Take

A := A(ε) :=
√

ε/ inf
{

V (x); x ∈ (0, ε)
}
.

Let μ(εN )(s) denote the distribution of {η1(s), η2(s), . . . , ηεN (s)}. By entropy inequality,

EμN

[∣∣
∣
∫ t

0

1

εN

εN∑

i=1

(
ηi (s) − ρi

)
ds
∣
∣
∣
]

≤
∫ t

0
Eμ(εN )(s)

[∣∣
∣
1

εN

εN∑

i=1

(
ηi − ρi

)∣∣
∣
]
ds

≤
∫ t

0

H(μ(εN )(s)|νN
ρ(·))

AN
ds + t

AN
log EνN

ρ(·)
[
exp

{∣∣∣
A

ε

εN∑

i=1

(
ηi − ρi

)∣∣∣
}]

=: I + II.

We first bound II, which is simpler. Note that we could first remove the absolute value
inside the exponential. Since νN

ρ(·) is a product measure, and by Taylor’s expansion, there
exists some constant C such that

II ≤ t

AN

εN∑

i=1

log EνN
ρ(·)
[
exp

{ A

ε

(
ηi − ρi

)}] ≤ Ct A

ε
,

which converges to zero as ε → 0 by (2.20).
For I, we consider the following Markov chain X(t) := {Xi (t)}1≤i≤εN , where {Xi (t)},

1 ≤ i ≤ εN , are independent {0, 1}-valued Markov chains, and the transition rates for Xi (t)
are given by

1 → 0 rate Vi (1 − ρi ), 0 → 1 rate Viρi .

Since ρ(·) is bounded away from zero and one, the logarithmic Sobolev constant for the
chain Xi (t) is of order Vi . By [10, Lemma 3.2], the logarithmic Sobolev constant for the
chain X(t) has order

min
1≤i≤εN

Vi ≥ inf{V (x); x ∈ (0, ε)}.
Therefore,

H(μ(εN )(s)|νN
ρ(·)) ≤ C N

inf{V (x); x ∈ (0, ε)} DN
G (s).

By Lemma 5.4,
∫ t
0 DN

G (s)ds ≤ C . Thus,

I ≤ C

A inf{V (x); x ∈ (0, ε)} ,
which also converges to zero as ε → 0.
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Appendix A: Computations Concerning the Dirichlet Forms

Here we collect some fundamental estimates of the Dirichlet forms in (5.8)–(5.11).

A.1: Proof of (5.12)

From the definition of Lexc,

Lexc = σN + 1

2
Sexc + 2p − 1

2
Aexc, (A.1)

where the operators Sexc and Aexc are respectively given by

Sexcg =
N−1∑

i=0

[
g(ηi,i+1) − g(η)

]
, Aexcg =

N−1∑

i=0

(ηi − ηi+1)
[
g(ηi,i+1) − g(η)

]
.

Recall that ν = νN
1
2
and f is a ν-density. By the basic inequality x log(y/x) ≤ 2

√
x(

√
y−√

x)

for any x , y ≥ 0,
〈
f , Lexc[log f ]〉

ν
≤ 2

〈√
f , Lexc[

√
f ]〉

ν
.

We compute Sexc and Aexc respectively. Since ν is reversible for Sexc,
〈√

f , Sexc
√

f
〉
ν

= −DN
exc(μ; ν),

where μ = f ν. For Aexc, we only need to observe that

〈√
f , Aexc

√
f
〉
ν

=
∑

η∈�N

(ηN − η0) f (η)ν(η) = Eμ[ηN − η0].

The estimate is then concluded.

A.2: Proof of (5.13)

Let f∗ be the density of μ with respect to νN
ρ(·), then

log f (ηi ) − log f (η) = log f∗(ηi ) − log f∗(η) + log
[
νN
ρ(·)(η

i )
]− log

[
νN
ρ(·)(η)

]

= log f∗(ηi ) − log f∗(η) + (1 − 2ηi ) log
(

ρi
1−ρi

)
.

Therefore, 〈 f , LG[log f ]〉ν equals to

〈
f∗, LG[log f∗]

〉
νN
ρ(·)

+
∑

η∈�N

1

N

N−1∑

i=1

f (η)ci,G(η)(1 − 2ηi ) log
(

ρi
1−ρi

)
ν(η).

Since νN
ρ(·) is reversible with respect to LG, similarly as in Appendix A.1,

〈
f∗, LG[log f∗]

〉
νN
ρ(·)

≤ 2
〈√

f∗, LG
√

f∗
〉
νN
ρ(·)

= −2DN
G (μ; νN

ρ(·)).

The estimate (5.13) then holds since ci,G(η)(1 − 2ηi ) = Vi (ρi − ηi ).
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A.3: Proof of (5.14)

As in Appendix A.1, we begin with
〈
f , Lbd[log f ]〉

ν
≤ 2

〈√
f , Lbd

√
f
〉
ν
.

We compute the terms associated with η0 as an example. Those associated with ηN follow
the same argument. Notice that

2
∑

η∈�N

c0(η)
√

f (η)

[√
f (η0) −√

f (η)

]
ν(η)

= −
∑

η∈�N

c0(η)

[√
f (η0) −√

f (η)

]2
ν(η) +

∑

η∈�N

c0(η)
[

f (η0) − f (η)
]
ν(η)

= − 2DN− (μ; ν) +
∑

η∈�N

f (η)

[
c0(η

0)
ν(η0)

ν(η)
− c0(η)

]
ν(η).

The conclusion then follows since ν(η0) = ν(η) and c0(η0)− c0(η) = (c−
out − c−

in)(1−2η0).

A.4: Proof of (6.9)

Let f be a νN
ρ(·)-density function and denote μ = f νN

ρ(·). Observe that the main difference

from (5.12) is that the reference measure νN
ρ(·) is not reversible. Recall the decomposition

(A.1) and we estimate Sexc and Aexc respectively.
We begin with the symmetric part Sexc. Let g := √

f . By dividing g(η) into 2−1(g(η) −
g(ηi,i+1)) and 2−1(g(η) + g(ηi,i+1)), we obtain

〈g, Sexcg〉νN
ρ(·)

= −DN
exc(μ; νN

ρ(·)) +
∑

η

N−1∑

i=0

g(η) + g(ηi,i+1)

2

[
g(ηi,i+1) − g(η)

]
νN
ρ(·)(η).

Applying the change of variable ηi,i+1 → η, the second term becomes

1

2

∑

η

N−1∑

i=0

g(η)[g(ηi,i+1) − g(η)]
2

[
νN
ρ(·)(η) − νN

ρ(·)(η
i,i+1)

]

≤ 1

2
DN
exc(μ; νN

ρ(·)) + 1

4

∑

η∈�N

N−1∑

i=0

g2(η)

[
1 − νN

ρ(·)(ηi,i+1)

νN
ρ(·)(η)

]2
νN
ρ(·)(η).

Since ρ ∈ C1([0, 1]; (0, 1)), with a constant C independent of (i, N ) we have
∣∣∣∣∣
1 − νN

ρ(·)(ηi,i+1)

νN
ρ(·)(η)

∣∣∣∣∣
= |(ρi+1 − ρi )(ηi+1 − ηi )|

ρ
ηi
i (1 − ρi )1−ηi ρ

ηi+1
i+1 (1 − ρi+1)1−ηi+1

≤ C

N
. (A.2)

Since g2νN
ρ(·) = μ is a probability measure, we have

〈g, Sexcg〉νN
ρ(·)

≤ −1

2
DN
exc(μ; νN

ρ(·)) + C2

4N
.
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Now we treat the antisymmetric part Aexc. First observe that

〈g, Aexcg〉νN
ρ(·)

= − 1

2

∑

η

N−1∑

i=0

(ηi − ηi+1)
[
g(ηi,i+1) − g(η)

]2
νN
ρ(·)(η)

+ 1

2

∑

η

N−1∑

i=0

(ηi − ηi+1)
[
g2(ηi,i+1) − g2(η)

]
νN
ρ(·)(η).

As |ηi+1 − ηi | ≤ 1, the first term is bounded by DN
exc(μ; νN

ρ(·)). The second term reads

1

2

∑

η

N−1∑

i=0

(ηi+1 − ηi ) f (η)νN
ρ(·)(η

i,i+1) + 1

2

∑

η

N−1∑

i=0

(ηi+1 − ηi ) f (η)νN
ρ(·)(η).

Since f (η)νN
ρ(·)(η) = μ(η), its modulus is bounded by

1

2

∑

η

N−1∑

i=0

|ηi+1 − ηi |
∣
∣
∣∣∣

νN
ρ(·)(ηi,i+1)

νN
ρ(·)(η)

− 1

∣
∣
∣∣∣
μ(η) + Eμ[ηN − η0],

which is uniformly bounded due to (A.2). Therefore,

〈g, Aexcg〉νN
ρ(·)

≤ DN
exc(μ; νN

ρ(·)) + C .

Putting the two estimates into (A.1), we can conclude since σN � N .

A.5: Proof of (6.10)

Repeating the argument in the proof of (6.9) with ν replaced by νN
ρ(·), we only need to bound

1

2

∑

η∈�N

f (η)

[

c0(η
0)

νN
ρ(·)(η0)
νN
ρ(·)(η)

− c0(η)

]

νN
ρ(·)(η).

It is uniformly bounded since
∣∣∣∣∣
c0(η

0)
νN
ρ(·)(η0)
νN
ρ(·)(η)

− c0(η)

∣∣∣∣∣
=
∣∣∣∣c0(η

0)
( ρ0

1 − ρ0

)1−2η0 − c0(η)

∣∣∣∣ ≤ C .
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