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RENDICONTI DI MATEMATICA
E DELLE SUE APPLICAZIONI

Regularized Quadratic Forms for a Three Boson System
with Zero-Range Interactions

Giulia Basti, Rodolfo Figari and Alessandro Teta

Abstract. We present two possible strategies to obtain a lower bounded Hamiltonian for three
bosons interacting through zero-range interactions. First, we investigate a family of zero-range
Hamiltonians defined in a Hilbert space of tensorial wave functions. Then, we examine the
regularizing effect of an ultraviolet cutoff on the boundary conditions satisfied by functions in
the form domain of zero-range Hamiltonians of a three boson system.

1 Introduction

In this note we discuss some stability properties for Hamiltonians of a system of
three quantum particles interacting via pairwise, local, zero-range interactions.

In the early days of Nuclear Physics, the first attempt to model interactions
among nucleons has been pursued making use of such kind of Hamiltonians. It was
immediately noticed [33] that stability problems arise out of the request of vanish-
ing interaction range. Much later, within the framework of constructive relativistic
quantum field theory it was realized that, at least at a formal level, many parti-
cle zero-range Hamiltonians describe the non-relativistic limit of self-interacting
quantum boson fields, see [13] for the only rigorous result in this direction (for a
concise historical outline about the relation between point interactions and quan-
tum fields see the contribution of S. Albeverio and R. Figari in this issue; for a
recent proposal of a non-relativistic field model with creation and absorption of
particles at a fixed point see [19]). In the recent years the same kind of Hamiltoni-
ans have been considered in the study of gases of ultracold atoms, a very promising
research field which has been triggered by amazing experimental achievement in
low temperature physics at the end of last century. In particular, the system of
three bosons interacting via zero-range forces was the theoretical model used to
investigate the existence of huge trimers of cold atoms at energies close to the
continuum threshold (Efimov states).

In the last decades specific problems like boundedness from below, spectral
structure, occurrence of Efimov effect in these models were extensively studied.
A short (surely non-exhaustive) list of papers dealing with the above mentioned
problems in the theoretical physics literature is [5, 6, 7, 8, 11, 20, 30, 34, 35].
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Relevant results in a more rigorous mathematical framework are given in [2, 3, 4,
9, 10, 12, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32].

Using natural units (in particular setting ~ = 1), the formal Hamiltonians for
a system of three particles in Rd interacting via zero-range forces reads

H = −
3∑
i=1

1

2mi
∆xi +

3∑
i,j=1
i<j

νij δ(xi − xj), (1.1)

where with xi ∈ Rd we denoted the coordinate of the i-th particle, with mi its
mass, with ∆xi the Laplacian relative to xi and with νij ∈ R the coupling constant
of the interaction between particles i and j.

The usual strategy to give a rigorous meaning to (1.1) is to translate it in
the following request: the self-adjoint Hamiltonian H generates a unitary flow in
L2(R3d) which coincides with the free dynamics on functions supported outside
the union of hyperplanes

σ := ∪i<jσij , σij := {xi = xj} , (1.2)

where the coordinates of two particles coincide. In other words, one considers
the symmetric operator Ḣ0 obtained restricting the free Hamiltonian to a domain
of smooth functions vanishing in the neighbourhood of each hyperplane σij and
defines a Hamiltonian for a system of three quantum particles in Rd with a two-
body, zero-range interaction to be a non-trivial self-adjoint extension of Ḣ0. As is
very well known there are no non-trivial extensions of Ḣ0 in d ≥ 4.

In dimension one the Hamiltonian (1.1) can be given a rigorous meaning as it
stands due to the fact that the interaction term is a small perturbation of the free
Hamiltonian in the sense of quadratic forms. In dimension two a natural class of
Hamiltonians with local zero-range interactions was defined and analized in [12]
(see also [14] for an alternative definition of the same Hamiltonians). It was shown
that such Hamiltonians are all bounded from below.

The three dimensional case requires a subtler analysis. In analogy with the
two body case (see, e.g., [1]) one is brought to consider extensions of Ḣ0, called
Skornyakov-Ter-Martirosyan (STM) operator Hα, which are symmetric operators
acting on functions ψ ∈ L2(R9) ∩H2(R9 \ σ) satisfying a singular boundary con-
dition for |xi − xj | → 0:

ψ(x1,x2,x3) =
Qij(rij ,xk)

|xi − xj |
+Rij(rij ,xk) + o(1) , with Rij = αijQij , (1.3)

where rij :=
mixi +mjxj
mi +mj

, k 6= i, j, Qij is a function defined on the hyperplane σij

and {αij} is a collection of real parameters labelling the extension. Furthermore,
one has to have

(Hαψ)(x1,x2,x3) = (Hfψ)(x1,x2,x3) , for xi 6= xj (1.4)
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where Hf is the free Hamiltonian and the equality (1.4) must be intended in the
sense of distributions. In spite of being the most natural generalization of the con-
dition required in the two body case, the boundary condition (1.3), identifying the
STM extension of Ḣ0, does not necessarily define a self-adjoint operator. Indeed,
for a system of three identical bosons it was shown in [15] that the STM operator
is not self-adjoint and all its self-adjoint extensions are unbounded from below (see
also [23]). Referring to the seminal paper [33], this kind of instability appears in
the literature as Thomas effect.

It is known that for a system made of two identical fermions plus a different
particle the Thomas effect does not occur for suitable values of the mass ratio (see,
e.g., [9, 10, 25, 26], see also [5, 7, 30] and reference therein).

Here we discuss the case of three identical bosons with the aim to outline
possible strategies to obtain a lower bounded Hamiltonian. To fix the notation,
we consider three bosons with mass one in the center of mass reference frame,
so that the Hilbert space is L2

s(R6), i.e., the space of square-integrable functions
symmetric under the exchange of particle coordinates. In the Fourier space, we
fix a pair of coordinates k1,k2 defined by k1 = p1,k2 = p3, where pi is the
momentum of the i-th boson with

∑
i pi = 0. Then p2 = −k1 − k2 and the

symmetry condition reads ψ̂(k1,k2) = ψ̂(k2,k1) = ψ̂(k1,−k1 − k2), where f̂ is
the Fourier transform of f . Furthermore, with an abuse of notation we denote by
Hα the STM operator and by Hf the free Hamiltonian in L2

s(R6). For any λ > 0,
we define the symmetrized potential in the Fourier space

Ĝλξ(k1,k2) =

√
2

π

ξ̂(k1) + ξ̂(k2) + ξ̂(−k1 − k2)

k2
1 + k2

2 + k1 · k2 + λ
, (1.5)

where Gλξ ∈ L2
s(R6) but Gλξ /∈ H1(R6). Writing ψ = wλ + Gλξ with wλ ∈

H1(R6), it is not difficult to see that ([4]) (ψ,Hαψ) = Fα(ψ), where

Fα(ψ) = (wλ, Hfw
λ) + λ‖wλ‖2 − λ‖ψ‖2 +

12

π
Φλα(ξ) , (1.6)

Φλα(ξ) = Φdiag
λ (ξ̂) + Φoff

λ (ξ̂) + α

∫
dk|ξ̂(k)|2 ,

Φdiag
λ (ξ̂) = π2

∫
dk|ξ̂(k)|2

√
3

4
k2 + λ ,

Φoff
λ (ξ̂) = −

∫
dk1 dk2

ξ̂(k1)ξ̂(k2)

k2
1 + k2

2 + k1 · k2 + λ
.

Here and in the following we denote with x the modulus of a vector x in Rd. The
above expressions suggest to define the following domain for the quadratic form

D(Fα) =
{
ψ ∈ L2

s(R6) |ψ = wλ + Gλξ, wλ ∈ H1(R6), ξ ∈ H1/2(R3)
}
. (1.7)
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Let us recall some known results concerning the quadratic form (1.6), (1.7). In

[16], section 4, it is shown that there exists an f0 such that Φdiag
λ (f0)+Φoff

λ (f0) < 0
and then, by a scaling argument, one proves that the form is unbounded from
below. This fact is in agreement with the already mentioned result that the STM
operator is not self-adjoint and all its self-adjoint extensions are unbounded from
below, showing the occurrence of the Thomas effect ([15]).

Let us define the invariant subspace H0 made of ψ ∈ L2
s(R6) which are rota-

tionally invariant. In [4] it is proved that the quadratic form (1.6), (1.7) restricted
to the subspace H⊥0 is bounded from below and closed for any α ∈ R. This means
that if we exclude the s-wave subspace then the quadratic form (1.6), (1.7) defines
a self-adjoint and lower bounded Hamiltonian.

In the next two sections, our aim is to modify the above quadratic form in
order to obtain a new, physically reasonable, quadratic form which is closed and
bounded from below in L2

s(R6).

2 Dipolar regularization

First of all, we want to stress that (1.3) does not necessarly imply that the singular
part of the wave function ψ is the potential of a charge density. In fact the potential
of any regular multipole distribution of charges on the coincidence planes would
show the same behaviour. As an example, let us consider the simplest case of a
distribution of dipoles with direction along the m-th axis of the position vector
xi = xj on each coincidence plane σij . The corresponding potential is in this case

(Gλd,m ρ)(y) =
∑
{i,j}

∫
σij

(
∂

∂xm
Gλ)(x− y) ρ(x) dx (2.1)

= −
∑
{i,j}

∫
σij

Gλ(x− y)
∂ρ

∂xm
(x) dx

which is obviously equivalent to the potential of a charge − ∂ρ
∂xm (x). Accordingly,

the behaviour of the integral over σij for y → x ∈ σij is (for details see [16])

− 1√
2

∂ρ
∂xm (x)

|x− y|
+

1

4π
(
√
−∆x + λ)

∂ρ

∂xm
(x) + o(1) .

This suggests the definition of a STM operator Hm
α for a three boson system

on the domain

D(Hm
α ) =

{
Ψm ∈ L2

s(R9) | Ψm = Wm
λ + Gλd,m ρ (2.2)

Wm
λ ∈ H2

s (R9), ρ ∈ H3/2(R6) + boundary conditions
}
.

Notice that the symmetry of the potential is guaranteed by the fact that the
density ρ does not depend on the particular coincidence plane.



Regularized Quadratic Forms 209

In accordance with (1.3) the boundary conditions are chosen to be

Ψm(y) = − 1√
2

∂ρ
∂xm (x)

|x− y|
+ α

∂ρ(x)

∂xm
+ o(1)

for y → x ∈ σij , where α does not depend on {ij} for symmetry reasons. On
D(Hm

α ) the action of the operator is

(Hm
α + λ)Ψm = (−∆ + λ)Wm

λ . (2.3)

The corresponding quadratic form would finally read

(Ψm, Hm
α Ψm)= (∇Wm

λ , ∇Wm
λ ) + λ(Wm

λ , Wm
λ )− λ(Ψm , Ψm) (2.4)

+
1

4π
√

2

∑
{i,j}

∫
σij

∂ρ̄

∂xm
(x) (

√
−∆x + λ+ α)

∂ρ

∂xm
(x) dx

−
∑

{i,j}6={k,l}

∫
σij

⋃
σkl

∂ρ̄

∂xm
(x)

∂ρ

∂ym
(y)Gλ(x− y)dx dy .

The above informal computations suggest (see also [4] for details) the expres-
sion of the quadratic form in the center of mass reference frame. With an abuse of
notation, we use the symbol Gλd,mξ to denote the (dipolar) symmetrized potential
produced by ξ in the center of mass reference frame, so that in the Fourier space
we have (see (1.5))

Ĝλd,mξ(k1,k2) = −i
√

2

π

k1,mξ̂(k1) + k2,mξ̂(k2) + (−k1,m − k2,m)ξ̂(−k1 − k2)

k2
1 + k2

2 + k1 · k2 + λ
,

(2.5)

where ki,m, i = 1, 2, is the component m of the vector ki. Then, the quadratic
form for the three boson system reads (see (1.6) and (1.7))

D(Fmα )=
{
ψ ∈ L2

s(R6) |ψ = wλ + Gλd,m ξ, wλ ∈ H1
s (R6), ξ ∈ H3/2(R3)

}
, (2.6)

Fmα (ψ) = (wλ, Hfw
λ) + λ‖wλ‖2 − λ‖ψ‖2 +

12

π
Θλ
α,m(ξ) , (2.7)

where

Θλ
α,m(ξ) = Θdiag

λ,m(ξ̂) + Θoff
λ,m(ξ̂) + α

∫
dk k2|ξ̂(k)|2,

Θdiag
λ,m(ξ̂) = π2

∫
dk k2

m|ξ̂(k)|2
√

3

4
k2 + λ ,

Θoff
λ,m(ξ̂) = −

∫
dk1 dk2

k1,m ξ̂(k1) k2,m ξ̂(k2)

k2
1 + k2

2 + k1 · k2 + λ
.
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Notice that the only difference with respect to the form defined in (1.6), (1.7)

is the substitution of ξ̂(ki) with ki,m ξ̂(ki) for i = 1, 2. Nevertheless, the off
diagonal part Θoff

λ,m of the quadratic form Fmα is always computed on functions in

the subspace H⊥0 orthogonal to the s-wave sector, which was defined at the end of
the previous section. In turn, as it was already mentioned, the form (2.6), (2.7) is
bounded from below.

In order to get rid of any dependence on a preassigned direction, excluded
the local gradient of the dipole distribution, one is brought to define zero-range
interactions on vector wave functions. Nevertheless, it is possible to keep an s-
wave contribution (a main ingredient for the presence of the Efimov effect) on an
orthogonal scalar sector.

To summarize, the kinematics and dynamics of the model we are presenting
here are defined in the following way

• Hilbert space H =
⊕3

m=0 L
2
s(R6)

• Form domain

D(Fα) =
{

Ψ ≡ (ψ0, . . . , ψ3) ∈ H | ψ0 = wλ0 + Gλξ, ψm = wλm + Gλd,mξ,

wλ0 , w
λ
m ∈ H1(R6), ξ ∈ H3/2(R3), m = 1, 2, 3

}
• Quadratic form

Fα(Ψ) =

3∑
m=0

[
(wλm, Hfw

λ
m) + λ‖wλm‖2 − λ‖ψm‖2

]
+

12

π
Θλ
α(ξ)

Θλ
α(ξ) = Θdiag

λ (ξ̂) + Θoff
λ (ξ̂) + α

∫
dk (k2 + 1)|ξ̂(k)|2

Θdiag
λ (ξ̂) = π2

∫
dk(k2 + 1)|ξ̂(k)|2

√
3

4
k2 + λ

Θoff
λ (ξ̂) = −

∫
dk1 dk2

k1ξ̂(k1) · k2ξ̂(k2)

k2
1 + k2

2 + k1 · k2 + λ

−
∫
dk1 dk2

ξ̂(k1)ξ̂(k2)

k2
1 + k2

2 + k1 · k2 + λ

Few properties of the quadratic form Fα and its comparison with the form Fα
are worth considering.

• Fα differs significantly from Fα for large k′s whereas the two forms are
similar for small k′s
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• The k2 term in the vector diagonal sector acts like a large-k cut-off which
bounds the off-diagonal scalar sector term of the form.

We want to emphasize that an additional k2 term in the quadratic form for
a three boson system appeared many times in the physical as well as in the
mathematical-physics literature (see, e.g., [7],[32]). It was introduced by several
authors, in significantly different ways and with diverse motivations. We wanted
here to show a way to regularize the energy form following usual techniques of
defining point interaction Hamiltonians for few body quantum particle systems.
It is worth noticing that the Hamiltonian uniquely associated to the quadratic
form Fα is not a STM operator because the boundary conditions satisfied by the
functions in its domain are different in different sectors.

3 High-energy cut-off

Another direct way to obtain a closed and bounded from below quadratic form
for the three boson system is to replace the real parameter α by an operator A
acting on the charge ξ which regularizes the behavior of the quadratic form for
high momenta. As an example, we consider the operator

Âξ(k) = α ξ̂(k) + β k2χR(k)ξ̂(k) (3.1)

where β > 0, R ≥ 0 and χR is characteristic function of the set {k ∈ R3 | k ≥ R}.
With this choice of the operator A, we define the quadratic form FA as in (1.6)
with Φλα replaced by ΦλA, where

ΦλA(ξ) = Φ̃diag
λ (ξ̂) + Φoff

λ (ξ̂) + α

∫
dk|ξ̂(k)|2 , (3.2)

Φ̃diag
λ (ξ̂) = π2

∫
dk |ξ̂(k)|2

√
3

4
k2+λ + β

∫
k>R

dk k2|ξ̂(k)|2 , (3.3)

Φoff
λ (ξ̂) = −

∫
dk1 dk2

ξ̂(k1)ξ̂(k2)

k2
1 + k2

2 + k1 · k2 + λ
. (3.4)

Taking into account the explicit form of the operator A, it is natural to fix the
following domain for the quadratic form

D(FA) =
{
ψ ∈ L2

s(R6) |ψ = wλ + Gλξ, wλ ∈ H1(R6), ξ ∈ H1(R3)
}
. (3.5)

It is not difficult to prove that the quadratic form FA, D(FA) is closed and bounded
from below in L2

s(R6) and, therefore, it uniquely defines a self-adjoint and bounded
from below Hamiltonian HA. Here we give the line of the proof.

The first step is to show that there exists a positive constant Cβ,R(λ) such that

|Φoff
λ (ξ̂)| ≤ Cβ,R(λ) Φ̃diag

λ (ξ̂) ∀ξ ∈ H1(R3) (3.6)
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where limλ→∞ Cβ,R(λ) = 0 for any fixed β,R.
Taking into account that k1·k2 ≥ − 1

2 (k2
1 +k2

2), it is enough to obtain an upper
bound for ∫

dk1 dk2
|ξ̂(k1)||ξ̂(k2)|
k2

1 + k2
2 + λ

=

∫
k1<R
k2<R

dk1dk2
|ξ̂(k1)||ξ̂(k2)|
k2

1 + k2
2 + λ

+ 2

∫
k1>R
k2<R

dk1 dk2
|ξ̂(k1)||ξ̂(k2)|
k2

1 + k2
2 + λ

+

∫
k1>R
k2>R

dk1 dk2
|ξ̂(k1)||ξ̂(k2)|
k2

1 + k2
2 + λ

= I1 + I2 + I3.

(3.7)

We note that by Cauchy-Schwartz inequality

I1 ≤

[∫
k1<R
k2<R

dk1 dk2
1

k1(k2
1 + k2

2 + λ)2k2

]1/2 ∫
k<R

dk k|ξ̂(k)|2

≤ 4π√
3

log1/2

(
(1 + R2

λ )2

1 + 2R
2

λ

)∫
dk

√
3

4
k2 + λ |ξ̂(k)|2 .

Hence,
I1 ≤ C1(λ)Φ̃diag

λ (ξ̂) (3.8)

with C1(λ)→ 0 as λ→ +∞. As for I2, we have

I2 ≤ 2L1/2

(∫
k1<R

dk1 k1 |ξ̂(k1)|2
)1/2(∫

k2>R

dk2 k
2
2 |ξ̂(k2)|2

)1/2

≤ L1/2

(∫
k1<R

dk1 k1 |ξ̂(k1)|2 +

∫
k2>R

dk2 k
2
2 |ξ̂(k2)|2

) (3.9)

where

L =

∫
k1<R
k2>R

dk1 dk2
1

k1(k2
1 + k2

2 + λ)2k2
2

=
8π2

√
λ

(π
2
− tan−1 R√

λ

)
− 8π2

√
λ

1√
1 + R2

λ

(π
2
− tan−1 R

√
λ
√

1 + R2

λ

)
.

(3.10)

Defining C2(λ) = max

{
2L1/2

π2
√

3
,
L1/2

β

}
→ 0 as λ→ +∞, we conclude

I2 ≤ C2(λ)Φ̃diag
λ (ξ̂). (3.11)
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Proceeding analogously, I3 can be bounded by

I3 ≤
∫
k>R

dk k2|ξ̂(k)|2
[∫

k1>R
k2>R

dk1 dk2
1

k2
1(k2

1 + k2
2 + λ)2k2

2

]1/2

.

Moreover, one has that

M =

∫
k1>R
k2>R

dk1 dk2
1

k2
1(k2

1 + k2
2 + λ)2k2

2

= 16π2

∫ ∞
R

dρ

∫ ∞
R

dρ′
1

(ρ2 + ρ′2 + λ)2
≤ 16π2

∫ ∞
R

dr r

∫ π/2

0

dφ
1

(r2 + λ)2

=
4π3

R2 + λ
.

Hence
I3 ≤ C3(λ)Φ̃diag

λ (ξ̂) (3.12)

with C3(λ) = M1/2

β → 0 as λ → +∞. Equations (3.7),(3.8),(3.11),(3.12) yield

(3.6).
As a second step, we notice that there are two positive constants c1, c2, de-

pending on λ, β,R, such that

c1 ‖ξ‖2H1 ≤ Φ̃diag
λ (ξ̂) ≤ c2 ‖ξ‖2H1 (3.13)

Indeed, on the one hand

Φ̃diag
λ (ξ̂)

≤ π2

∫
k<R

dk

√
3

4
k2 + λ|ξ̂(k)|2 + π2

∫
k>R

dk

(√
3

2
k+
√
λ

)
|ξ̂(k)|2 + β

∫
dk k2|ξ̂(k)|2

≤ π2

√
3

4
R2 + λ

∫
dk|ξ̂(k)|2 +

π2

R2

(√
3

2
R+
√
λ

)∫
dk k2|ξ̂(k)|2 + β

∫
dk k2|ξ̂(k)|2

≤ c2
∫
dk (1 + k2)|ξ̂(k)|2

where in the second line we used
√

3
2 k+

√
λ ≤

√
3

2 k
k
R +
√
λ k

2

R2 in the region {k > R}
and we set

c2 = max

{
π2

√
3

4
R2 + λ,

[
π2

R2

(√
3

2
R+ λ

)
+ β

]}
.

On the other hand∫
dk(1 + k2)|ξ̂(k)|2 ≤

∫
dk|ξ̂(k)|2 +R2

∫
k<R

dk |ξ̂(k)|2 +

∫
k>R

dk k2 |ξ̂(k)|2

≤ 1

c1
Φ̃diag
λ (ξ̂)
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where
1

c1
= max

{
1 +R2

π2
√
λ
,

1

β

}
concluding the proof of (3.13). Following a standard approach (see, e.g. [9]), by
the estimates (3.6), (3.13) it is now easy to prove that the form FA is closed and
bounded below.

Few comments are worth.
We stress that the presence of the last term in (3.1) “forces” the charge ξ to

belong to H1(R3), implying a decay at infinity of the Fourier transform ξ̂ faster
than the decay required in (1.7). In this sense we have introduced a sort of cut-off
at high momenta which is the reason why the off diagonal term is dominated by
the diagonal one (see (3.6)), preventing the occurrence of the Thomas effect.

It is also worth noticing that the cut-off parameter R can be chosen arbitrary
large so that the perturbation introduced with respect to the standard quadratic
form Fα can be made arbitrary “small”.

The operator HA is an example of a self-adjoint and lower bounded Hamilto-
nian describing the dynamics of three bosons with zero-range interactions. There-
fore, in the case α = 0, it is a simple but non-trivial model where one could prove
the existence of the Efimov effect avoiding the difficulties arising from the Thomas
effect.
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