
Gran Sasso Science Institute
MATHEMATICS OF NATURAL, SOCIAL AND LIFE SCIENCES

DOCTORAL PROGRAMME
Cycle: XXXVI - AY 2020/2024

Low-rank properties in structured matrix
nearness problems

PhD candidate:

Stefano Sicilia

Supervisor:

Prof. Dr. Nicola Guglielmi
Gran Sasso Science Institute

Thesis submitted for the degree of Doctor of Philosophy

iii

Thesis Jury Members
Prof. Dr. Daniele Boffi (King Abdullah University of Science and Technology)
Prof. Dr. Dajana Conte (Università di Salerno)
Prof. Dr. Raffaele D’Ambrosio (Università dell’Aquila)
Prof. Dr. Volker Mehrmann (Technische Universität Berlin)
Prof. Dr. Vanni Noferini (Aalto University)

Thesis Referees
Prof. Dr. Volker Mehrmann (Technische Universität Berlin)
Prof. Dr. Vanni Noferini (Aalto University)

v

Abstract

In numerical linear algebra, the problem of computing the distance of a given matrix
A from a given set P arises in different fields of matrix and control theory, where it is
used to characterize the robustness of considered systems. Some examples include, but
are not limited to, distance to singularity, matrix stability, measures in control theory,
etc. (see e.g. [28, 33, 44, 45, 46, 53]). The problem consists in computing an element
B ∈ P such that the distance between B and A is the smallest possible; under suitable
assumptions on P, the problem is always well defined. The most common version in
this matrix nearness context concerns the unstructured distance, which means that the
optimization problem introduced for the computation of the matrix B does not take
into account any specific structure of the original matrix A, e.g. its sparsity pattern,
its reality, a particular design of the entries etc.. Quite recently, an increasing interest
has risen for the structured version of the distance (see e.g. [21, 31, 34, 37, 38, 49, 65]),
where the optimizer sought is required to preserve a specific structure that the matrix
A has. In this case we talk about structured distance between A and the set P , which
is clearly larger or equal than the unstructured distance between the same objects and
it could have a different order of magnitude. Also in this case the problem may not be
well-defined, for instance if the constraint forced by the structure is too strong and it
makes impossible to find a matrix B ∈ P with the structure required, but again under
reasonable assumptions it is possible to consider that the problem is solvable. The
main motivation behind the introduction of the structured distance is that it allows to
take into account some features of the original matrix A and it can be exploited to get
a more appropriate matrix B that provides a more meaningful solution to the matrix
nearness problem.

In this PhD thesis we study some examples of matrix nearness problems and we
focus particularly on their structured version. We show a versatile two-level approach
that can be used in this context and that can be adapted to many applications. In
particular we discuss in detail the structured distance to stability of a Hurwitz or Schur
matrix, the structured distance to singularity of an invertible matrix, the robustness of
the spectral clustering of a graph and the structured stabilization of a matrix. All the
unstructured versions of these problems possess an intrinsic low-rank feature, which is
evident in their solution, but this remarkable fact seems less obvious for the structured
case. We show how to uncover the low-rank property of the problem also in the
structured case and we describe how it is possible to exploit this fact to get an efficient
algorithm that computes the distance sought and the associated extremizer(s).

vii

Acknowledgements

This thesis is the result of the four years spent in L’Aquila at GSSI for my PhD.
During this period I had the chance to meet many people and this work would not
have been possible without them. Thus I wish to acknowledge them all and to dedicate
a few words to thank their support.

First and foremost I am very grateful to my supervisor, Prof. Nicola Guglielmi,
for his guidance, support and encouragement during my PhD. His lectures on the
first year attracted me and made me appassionate to the very interesting subject that
then has become the topic of my PhD thesis. I really appreciated doing research with
him and his advices have been very useful to me to understand many crucial facts in
numerical analysis. I also thank him, together with Prof. Francesco Tudisco, for their
financial support, which allowed me to attend many conferences also abroad.

I want to thank all the members of the jury for accepting to attend my PhD
defence. I am very grateful to the two referees that reviewed my PhD thesis, Prof.
Volker Mehrmann and Prof. Vanni Noferini. I thank them for the time spent to read
the draft of the thesis and I appreciated their constructive comments and suggestions
which allowed to improve a previous version of the thesis.

I really wish to thank Prof. Nicolas Gillis for the opportunity to visit him in Mons
and for his financial support. The two months spent there gave me the possibility to
share ideas with him and with his research group, in order to work on the topic of my
thesis also from another perspective.

I would like to thank Prof. Dario Bini for all his advices during my Master’s degree
in Pisa and in particular I am grateful for suggesting me to follow my studies after the
degree. Thanks to that, I decided to start the PhD at GSSI and I believe that this has
been an excellent choice for my career.

During my stay at GSSI I had the chance to be part of the numerical analysis
group and to attend many seminars organized in this environment. I want to thank
all of its members for arranging very intersting workshops with many guests, so that I
had the chance to learn more about their research field and to share ideas with them.

Now I would like to say a few words of gratitude also for the people I met during
these years and with whom I shared some moments together also outside of the
mathematical work.

During the conferences I had the chance to meet many other PhD students and
young researchers and I wish to thank all of them for the nice moments spent together.
In particular, I want to thank the numerical analysis group of Pisa that I frequently
met in many workshops and schools and with which I kept in touch with these events.

I am really grateful to the research group I met in Mons. During my visit in
Belgium they made me feel one of them and it has been a pleasure to travel together
around the country and to try many belgian food specialties!

I would like to thank all the GSSI people, since they made me really feel part of a
community. Especially I am grateful to all the colleagues with whom I shared the office.

viii

Small breaks, chats and snacks gave a great boost to my working skills! Moreover I
really want to thank Arturo and Martino for all the fantastic moments spent together,
from the walks around the mountains in L’Aquila to the Italian Formula 1 Grand Prix.

I also want to thank all my friends from Pisa with whom I spent amazing moments
during my Bachelor’s and Master’s degrees. I want to acknowledge Lorenzo and
Marilena for all the amazing moments during the lessons’ breaks at the university and
for all the funny video calls of these years where we relive them. Moreover I wish to
thank Alberto, Giacomo, Mattia P. and Mattia F. for all the trips we arranged in the
last four years and for all the nice video calls that make me feel like if we were all still
in the same place; they also deserve a special mention, for inviting and hosting me in
Pisa and Trieste multiple times.

Finally, I would like to express my gratitude to my family and in particular to my
parents. Their support in all these years constituted a solid base to build up my future
and to let me continue my studies. I am really thankful that they always believe in
me and that they encouraged me to do the same in all situations.

ix

Contents

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Matrix nearness problems . 1
1.2 Outline of the thesis . 4
1.3 A two-level approach . 5
1.4 The new structured-low-rank ODE . 7
1.5 The applications studied . 7
1.6 Notation . 9

2 Unstructured gradient system approach 11
2.1 The objective functional . 11
2.2 Outline of the two-level approach . 13
2.3 Inner Iteration: minimization with a fixed perturbation size 13

2.3.1 Low-rank trajectory . 16
2.4 Outer iteration: tuning the perturbation size 19

3 Structured gradient system approach 21
3.1 Structured inner iteration . 22

3.1.1 The structured gradient system properties 23
3.1.2 A low-rank ODE for the structured problem 24
3.1.3 Local convergence to the low-rank stationary points 28

3.2 Structured outer iteration . 32

4 Rank-1 structured eigenvalue optimization 33
4.1 Introduction . 33
4.2 Structured constrained gradient flows 35

4.2.1 Problem formulation and motivation 35
4.2.2 Minimizing the objective functional 36
4.2.3 Constrained gradient flow for structure-projected rank-1 matrices 41

4.3 A rank-1 matrix differential equation 41
4.3.1 Formulation and properties of the rank-1 differential equation . 42
4.3.2 Stationary points . 42
4.3.3 Possible loss of monotonicity 43
4.3.4 Differential equations for the factors of rank-1 matrices 43
4.3.5 Cases of interest for the rank-1 ODE 45

4.4 Local convergence to the rank-1 stationary points 45
4.5 Numerical integration by a splitting method 48

4.5.1 Splitting method . 48
4.5.2 Fully discrete splitting algorithm 49

4.6 Application to structured matrix nearness problems 51

x

4.6.1 Structured distances to singularity and to instability 52
4.7 Numerical experiments . 54

4.7.1 The matrix ORANI678 from the Harwell Boeing collection . . . 54
4.7.2 The matrix FIDAPM11 from the SPARSKIT collection 55
4.7.3 A comparison with Manopt . 56
4.7.4 An example of control of the Stokes problem 56

4.8 Perturbation matrices of prescribed range and co-range 57

5 Spectral clustering robustness 59
5.1 Introduction . 59
5.2 Distance to ambiguity for spectral clustering 60
5.3 Constrained gradient system for the inner iteration 63

5.3.1 Penalized gradient system . 66
5.4 Rank-4 symmetric projection of the gradient system 67

5.4.1 Formulation of the low-rank symmetric ODE 67
5.4.2 Relationship between stationary points 68
5.4.3 Local convergence to the stationary points of the rank-4 ODE . 69
5.4.4 Implementation of the low-rank inner iteration 70

5.5 The structured outer iteration . 72
5.5.1 The penalized version . 72

5.6 Numerical experiments . 73
5.6.1 A Machine Learning example: the ECOLI matrix 74
5.6.2 A slightly sparse example: the JOURNALS matrix 75
5.6.3 A social network community: the EGO-FACEBOOK matrix . . 76

Whole matrix . 77
Compressed matrix . 77
Reduced matrix . 78

5.6.4 An example with penalization: the Stochastic Block Model . . 78
5.6.5 Comparison with a different graph partitioning algorithm . . . 79

6 Low-rank-adaptive stabilization of a matrix 81
6.1 Introduction . 81
6.2 Gradient system . 83
6.3 A rank-adaptive integrator for the gradient system 85
6.4 Rank adaptivity for fixed perturbation size 87

6.4.1 An illustrative example . 87
6.4.2 Grcar matrix . 88
6.4.3 Smoke matrix . 88

6.5 Outer iteration: tuning the perturbation size 89
6.5.1 Another functional . 91
6.5.2 Smoke matrix . 92
6.5.3 Gcdmat matrix . 94

6.6 Structured distance via a low-rank adaptive ODE 95
6.7 Numerical examples for the structured case 96

6.7.1 Pentadiagonal Toeplitz matrix 97
6.7.2 Brusselator matrix . 97
6.7.3 Fidap matrix . 98
6.7.4 BCS matrix . 99

7 Conclusion and perspectives 101

xi

A Fixed rank manifold and its tangent space 105

B Projections 107

C Some non-generic examples 113

D Miscellaneous results 115

Bibliography 119

1

Chapter 1

Introduction

A matrix nearness problem is an optimization problem whose aim is to estimate how
far a given matrix A is to fulfil a certain property. More precisely, given a matrix
A ∈ Cm×n and a property P, the goal of the problem is to approximate the distance
between A and the set

P = {M ∈ Cm×n :M fulfils the property P}

and to compute the corresponding element B ∈ P that realizes it. This kind of problem
arises in a wide range of topics, such as in graph theory (see [3, 37]), in dynamical
systems (see [20]), in control theory (see e.g. [53]), in machine learning (see e.g. [25])
and in any field where it could be useful to consider the robustness of a certain tool,
element or feature. In this PhD thesis we will focus on the case in which the property
P is related to the spectrum of A (or to that of a matrix explicitly related to it, such
as the Laplacian of A) and hence we always assume n = m; this setting leads to an
eigenvalue optimization problem.

1.1 Matrix nearness problems

The most common matrix nearness problems may be divided into two classes: the
violating type and the recovering type. The first group concerns robustness of a nice
property of a matrix, while the second one is interested in the closest matrix to the
given one that fulfils a desired property that the original matrix does not possess.

In some applications it is important that A does not have a certain property P,
and it useful to know how close A is to have this undesirable property. If the distance is
small, then the source problem is likely to be ill-conditioned for A, and remedial action
may need to be taken. We refer to this kind of applications as violating problems, since
they concern the break of a desirable property. Some examples are the computation of
the distance to singularity or to instability (see e.g. [34]), but also the computation of
the ε-pseudospectrum of a matrix, i.e. the set of all eigenvalues of all the perturbations
of A in the form A+∆ with ∥∆∥ ≤ ε, belongs to this class (see e.g. [36, 65, 66]). A
relevant instance of violating problem is the computation of the distance to instability
of a Hurwitz matrix, that is a matrix with all its eigenvalues with negative real part.
If we define the pseudoabscissa of the matrix A ∈ Cn×n as

α(A) := max{Re(λ) : λ is an eigenvalue of A},

this optimization problem can be written as

argmin
∆∈Cn×n

{∥∆∥ : α(A+∆) = 0}, (1.1)

2 Chapter 1. Introduction

where ∥ · ∥ is a matrix norm and ∆ is a matrix perturbation. In this case the property
we want to violate is P = {A is a Hurwitz-stable matrix}, which only concerns the
eigenvalue with largest real part. The aim of this problem is to verify whether the
stability property of the given matrix A is robust or not. If the value of the distance,
i.e. the minimum of the optimization problem, is not large, then it is possible to find
a matrix ∆⋆ with small norm such that A+∆⋆ is not Hurwitz-stable anymore. This
means that the computations performed with the matrix A, that is theoretically stable,
may not be reliable, since the matrix is close to be unstable. This issue is relevant
in many applications, such as when the entries of the matrix A are given with an
uncertainty error, which usually occurs while dealing with physical measurements: in
this case, even though the unperturbed matrix A is guaranteed to be Hurwitz, there
could be some small changes in its entries that destroy the stability of A, making it
not suitable for performing reliable computations. If the Hurwitz matrix A is sparse,
one may also be interested in the matrix nearness problem that concerns its structured
stability robustness, that is

argmin
∆∈S

{∥∆∥ : α(A+∆) = 0}, (1.2)

where S ⊆ Cn×n denotes the set of the matrices with the same sparsity pattern of A.
This measure provides a more meaningful guarantee, since the perturbation ∆ is only
allowed to affect the non-zero entries of A, thus leaving its pattern unchanged.

The second class of matrix nearness problems refers to the situation where a
complex square matrix A ∈ Cn×n approximates a matrix B, and B is known to possess
a certain property P. Because of errors occurred during the computation and the
approximation, the determined matrix A may not fulfil property P. The most direct
way to overcome this issue is to replace the matrix A with the nearest matrix B which
instead satisfies the property P. This kind of problems act as a recovering of the
property P and thus we refer to them with this qualification. Nearness problems
arising in this context involve, for example, the stabilization of a matrix (see [31, 38]),
which is one of the most relevant instances of recovering problem. This is somehow the
opposite of the previous discussed violating example and it concerns a non-Hurwitz
matrix A such as α(A) > 0 and the purpose is to move all its eigenvalues to the
complex left half-plane. In other words we aim to solve the optimization problem

argmin
∆∈Cn×n

{∥∆∥ : α(A+∆) ≤ 0},

which involves all the eigenvalues of A with positive real part. An application of this
problem concerns the discretization of a PDE with some known stability properties
that are broken by a numerical scheme, because it computes a non-Hurwitz matrix A.
In order to recover the stability property, we wish to make A Hurwitz by means of the
smallest possible perturbation. Again, if the matrix A has a certain structure, we may
further ask that also the optimal perturbation ∆⋆ preserves this structure, so that the
stabilized matrix A+∆⋆ has the same structure of the original matrix A. In this case,
the result provided is more appropriate and it solves the structured matrix nearness
problem

argmin
∆∈S

{∥∆∥ : α(A+∆) ≤ 0},

which also involves all the eigenvalues of A with positive real part.
Both recovering and violating problems can be formalized in the same way as

follows: given a square complex matrix A ∈ Cn×n that fulfils a certain spectral property

1.1. Matrix nearness problems 3

P, we consider the matrix nearness problem defined as

A = argmin
∆∈Cn×n

{∥∆∥ : A+∆ does not fulfil the property P}, (1.3)

where ∥ · ∥ is a matrix norm and ∆ is a matrix perturbation. A solution ∆⋆ ∈ A
is a perturbation that added to the original matrix A implies that A+∆⋆ loses its
property P. Problem (1.3) is written in a violating form, but by considering the
property Q = ¬P it is also possible to represent a generic recovering problem.

Remark 1.1.1. The use of the terms ‘recovering’ and ‘violating’ problems is not
mathematically rigorous, but simply intuitive. Indeed the fact that a property P
is desirable or not depends on a subjective opinion and it is also influenced by the
application considered. Moreover both problems share the same formalization in (1.3),
making them hard to distinguish from a mathematical point of view.

The purpose of this subdivision is rather to give an idea of the qualitative differences
among matrix nearness problems involving the spectrum of a matrix. In particular the
word ‘recovering’ is associated with a problem concerning the distance to stability, which
in general involves all the eigenvalues of a matrix. In contrast, the word ‘violating’
refers to a distance to instability that generally concerns a single or a few eigenvalues
of a matrix. According to this intuition, ‘recovering’ problems are generally harder to
face than ‘violating’ problems, since it is easier to deal with few eigenvalues rather than
with all the spectrum of the matrix.

As already mentioned, in many cases the matrix A has a certain structure, such as
a prescribed sparsity pattern, a Toeplitz structure, it has real entries, etc. and one
may ask that this feature is considered as a constraint in the matrix nearness problem,
in order to maintain the structure also for the perturbed matrix. Formally, assume
that A satisfies the property P and that it belongs to a certain subspace S ⊆ Cn×n;
the associated structured matrix nearness problem is

AS = argmin
∆∈S

{∥∆∥ : A+∆ does not fulfil the property P}, (1.4)

where the perturbation ∆ must preserve the structure S. The structured problems
make sense even in the case that A /∈ S, but in many applications it is more relevant to
assume that also A possesses the structure. In some contexts it is more appropriate to
consider a structured matrix nearness problem like (1.4), rather than an unstructured
one as (1.3). As already mentioned in the examples discussed, an important motivation
behind the introduction of the structured problem (1.4) concerns the approximation
of a sparse matrix A, that it is known by theory to fulfil a certain property, but
because of errors and approximations occurred during the computation, the property
is lost. By considering the subspace S as the description of the sparsity pattern of A,
we can ensure that the perturbed matrix ∆⋆ computed as a solution of the matrix
nearness problem preserves the structure, so that the zero entries are not changed by
the perturbation ∆⋆.

Some unstructured matrix nearness problems have explicit solution that do not
need the implementation of an involved algorithm to be computed. For instance, in
the Frobenius norm metric, in order to find the closest real matrix to a given one it is
sufficient to take the real part of its entries, while the closest symmetric matrix to a
given one is its symmetric part. However, when we consider the structured version
(1.4), it is generally unlikely to find an analytic expression for the solution, and even
in the easiest examples there is not a known explicit formula. This generally makes

4 Chapter 1. Introduction

non-trivial the computation of a solution of (1.4) and hence it is needed to approximate
it through a numerical method.

In this PhD thesis we aim to generalize a two-level approach recently developed by
Guglielmi and Lubich (see e.g. [31]) that has been originally designed for unstructured
problems. We show how to adapt it to the structured case without compromising its
remarkable properties, such as its low-rank features and the gradient system that it
uses to compute the solution.

1.2 Outline of the thesis

The thesis is divided into three main parts:

1. Chapter 1 introduces the topic, while Chapter 2 and Chapter 3 describe the
underlying technique used by the two-level approach, both for the unstructured
and structured cases. We present some general theoretical results that can be
used in all the three proposed applications.

2. Chapter 4, 5 and 6 are dedicated to the three applications mentioned in Section 1.5.
They represent the steps of the development of the method from the chronological
point of view: rank-1, fixed rank r and adaptive rank.

3. Chapter 7 draws the conclusions of the thesis, while the appendix concerns some
basic but useful results and some examples.

More in detail, the outline of the thesis is the following:

• Chapter 1 contains the introduction to the topic of the thesis and it presents the
method and the applications that will be discussed in the other chapters.

• Chapter 2 introduces the two-level approach for solving problem (1.3) and it
discusses its low-rank features. It shows how to obtain a full-rank gradient system
whose stationary points coincide with the solution of the optimization problem.
Then it derives a low-rank ODE which shares many features with the full-rank
gradient system.

• Chapter 3 generalizes the two-level approach presented in Chapter 2 to the
structured case. It shows how to derive the structured gradient system as for
the unstructured case and how to prove its properties. Then it introduces a
low-rank ODE also in this setting and it describes all its features. At the end of
the chapter, we state and prove the main theorem about the local convergence
of the integration of the low-rank equation towards its stationary points, that
are also associated to the solution of the matrix nearness problem.

• Chapter 4 presents a technique to compute the distance to instability of a matrix
or the distance to singularity, by solving a violating matrix nearness problem
through the integration of a rank-1 system.

• Chapter 5 concerns the robustness of the spectral clustering algorithm by means
of a violating matrix nearness problem of distance to ambiguity that involves
the integration of a rank-4 symmetric differential equation.

• In Chapter 6 we present a recovering matrix nearness problem for computing
the closest stable matrix to a given one, also considering its structure, by means
of a rank-adaptive system solved by an integrator well designed for this purpose.

1.3. A two-level approach 5

• In Chapter 7 we draw the conclusions of the thesis and we discuss some future
research directions.

• Appendix A contains some basic results about the fixed rank manifold.

• Appendix B provides some basic properties of projections and some examples
related to this thesis.

• Appendix C shows two non-generic counterexamples associated to the applications
studied.

• Appendix D contains some miscellaneous results.

1.3 A two-level approach

The method proposed in this thesis for solving the matrix nearness problems (1.3) and
(1.4) relies on a two-level approach that splits the original problem into two nested
sub-problems that are solved by an inner iteration and by an outer iteration (see
e.g. [26, 27, 35]). In our setting and from now on we consider the metric induced by
the Frobenius norm and the Frobenius inner product (see Section 1.6 for the formal
definition).

Let us consider a subspace S ⊆ Cn×n (in the unstructured case S = Cn×n), a
real number a⋆ ∈ R and a functional F : S → R such that F (0) > a⋆ and, for all
∆ ∈ Cn×n,

F (∆) ≤ a⋆ ⇐⇒ A+∆ does not fulfil the property P,

which means that the functional F takes values non-greater than a⋆ if and only if ∆
is admissible. In many applications a⋆ = 0 or a⋆ = −1, and the condition F (0) > a⋆
simply means that the zero matrix is not an admissible perturbation and hence A does
not fulfil the property P. We rewrite the perturbation ∆ = εE, where ε > 0 is the
perturbation size and E has unit Frobenius norm and we define the functional Fε as

Fε(E) := F (εE).

The inner iteration minimizes the functional Fε when the perturbation size ε is fixed,
while the outer iteration aims in finding the smallest value ε⋆ such that it is possible
to have F (∆) = a⋆ for some perturbation ∆ with Frobenius norm ε⋆. The outline of
the two-level method is the following:

• Inner iteration: For a fixed ε, compute a matrix perturbation E⋆(ε) such that

E⋆(ε) ∈ argmin
∥E∥F=1

Fε(E), (1.5)

which for the structured case becomes

E⋆(ε) ∈ argmin
∥E∥F=1,E∈S

Fε(E) = argmin
∥∆∥F=ε, ∆∈S

F (∆), (1.6)

• Outer Iteration: Find the smallest value ε⋆ > 0 such that

φ(ε) := Fε(E⋆(ε)) = a⋆.

6 Chapter 1. Introduction

In almost all the applications we will consider, we have a⋆ = 0, so we assume this fact
unless something else is stated.

The inner iteration is the most elaborated procedure, while the outer iteration
is theoretically easier to solve, since it consists of a one-dimensional root-finding
problem quite simple to describe, even though it could be challenging. For instance,
for the violating problem (1.1) concerning the computation of the distance to Hurwitz
instability, the functional takes the form

F (∆) = −Re(λtarget(A+∆)),

where λtarget is the eigenvalue with largest real part, while for the recovering stabiliza-
tion problem (1.2) for a non-Hurwitz matrix we have

F (∆) =
1

2

n∑
i=1

(
(Re (λi(A+∆)))+

)2
where λi(A+∆) denotes the i-th eigenvalue of A+∆ and a+ = max(a, 0).

To solve problem (1.5), the inner iteration introduces a perturbation matrix path
E(t) with t ≥ 0 and it integrates the following matrix ODE

Ė = −Gε(E) + Re⟨Gε(E), E⟩E, (1.7)

where Gε(E) is the gradient of Fε. The expression of Gε(E) is generally available and
for instance, for the computation of the distance to Hurwitz instability, we have

Gε(E) = −xy∗,

where x and y are, respectively, the unit left and right eigenvectors associated with
the target eigenvalue λtarget(A+ εE) so that x∗y > 0 (see Lemma 4.2.3). It is possible
to prove that the stationary points of (1.7) corresponds to the local minima of Fε and,
in order to find them, we integrate the ODE (1.7) until we reach a sought stationary
point. Since equation (1.7) is a gradient system, an integration of it will always
lead to a stationary point and this is exactly what we are interested in for solving
the optimization problem (1.5). In the structured case, the ODE integrated by the
structured inner iteration is similar, but in its expressions it shows up the orthogonal
projection with respect to the Frobenius inner product onto S, denoted by ΠS :

Ė = −ΠSGε(E) + Re⟨ΠSGε(E), E⟩E. (1.8)

Also equation (1.8) is a gradient system and hence its integration always leads to one
of its stationary points, that again correspond to the local minimizers of (1.6) (see
Theorems 3.1.3 and 3.1.4). Both in the unstructured and structured cases, it is possible
to show that, up to non-generic events, the stationary points of the ODEs are of the
form E ∝ Gε(E) for equation (1.7) and E ∝ ΠSGε(E) for equation (1.8).

Since in many applications the matrix Gε(E) has low-rank, say rank(Gε(E)) =
r ≪ n, it follows that in the unstructured case the stationary points have themselves
low-rank. This motivates to introduce a different ODE whose trajectory belongs to
the rank-r manifold Mr:

Ė = PE (−Gε(E) + Re⟨Gε(E), E⟩E) , (1.9)

where PE denotes the orthogonal projection with respect to the Frobenius inner product
onto the tangent space TEMr of Mr in E. Again ODE (1.9) is a gradient system

1.4. The new structured-low-rank ODE 7

and it is possible to show that equations (1.7) and (1.9) share the same stationary
points, although the trajectories of their solutions do not coincide. Thus, since we
focus our interest just on the stationary points and not on the whole trajectory of the
solution of the ODE, we can integrate this new low-rank ODE instead of the original
full-rank. This makes it possible to exploit the remarkable low-rank property that
is naturally found in the unstructured problem, allowing us to get benefits in the
numerical computations.

In contrast, for the structured problem (1.4), it is less obvious to prove this fact,
since the projection ΠS generally destroys the low-rank property of the optimizers of
the structured ODE (1.8). Thus it would be very appealing to recover the low-rank
features of the unstructured matrix nearness problem also in the structured case.

1.4 The new structured-low-rank ODE

In this section we highlight the main theoretical novelties of this thesis. We observe
that solutions of (1.8) can be rewritten as E = ΠSZ, where Z solves the ordinary
differential equation

Ż = −Gε(ΠSZ) + Re⟨Gε(ΠSZ),ΠSZ⟩Z, (1.10)

but this does not guarantee that Z(t) is a low-rank matrix path. Thus we introduce a
new perturbation that, for simplicity, we call again E(t), although it does not coincide
with the solution of (1.8), and we look for a low-rank matrix path Y (t) ⊆ Mr such
that

E(t) = ΠSY (t), t ∈ [0,+∞).

Taking inspiration from equation (1.10), we project the right hand side onto TY Mr

and we get
Ẏ = PY (−Gε(ΠSY) + Re⟨PY (Gε(ΠSY)),ΠSY ⟩Y) . (1.11)

There exists an explicit one-to-one correspondence between the stationary points of
(1.8) and those of (1.11), which ensures that we are not introducing nor losing solutions
of problem (1.4) if we integrate the low-rank equation instead of the full-rank one.
However in this case it occurs an issue that does not appear in the unstructured case:
equation (1.11) is not a gradient system. This means that it is not guaranteed a priori
that its integration leads to a stationary point, but, for instance, it may run into a
periodic orbit or simply diverge. The latter fact is an important point, since it could
potentially make integrating equation (1.11) useless.

Fortunately it is possible to show that, despite ODE (1.11) is not a gradient
system, it is somehow close to that. In particular, by choosing a proper starting point
sufficiently close to a stationary point, integrating equation (1.11) always leads to that
stationary point. This just yields a local convergence result weaker than the global
convergence property of a gradient system, but our numerical experiments show that
this is enough to make the method work in practice. In this way, integrating (1.11)
makes it possible to exploit the underlying low-rank features of the matrix nearness
problem also in the structured case.

1.5 The applications studied

Chapters 4, 5 and 6 of this thesis concern three applications where the benefit of the
low-rank insights can be exploited for a structured matrix nearness problem.

8 Chapter 1. Introduction

Structured distances to instability and singularity

Chapter 4 (see [34]) focuses on three problems that belong to the class of violating
matrix nearness problems: the structured distance to instability (both in Hurwitz and
Schur terms) and the structured distance to singularity.

• A Hurwitz-stable matrix is a matrix whose spectrum lies in the complex left
half-plane. It is almost unstable if an eigenvalue is close to the imaginary axis.

• A Schur-stable matrix is a matrix whose spectrum lies in the complex unit disk.
It is close to being unstable when an eigenvalue is not far from the border of the
disk.

• An invertible matrix is close to being singular when one of its eigenvalues is close
to the origin.

By exploiting the similarities between these problems, it is possible to solve them with
the same approach that considers a single target eigenvalue λtarget for the definition of
the functional F for the two-level approach: the one with largest real part (Hurwitz
instability), the one with largest modulus (Schur instability) or the one with smallest
modulus (distance to singularity). In all cases the expression of the functional to be
minimized in the structured inner iteration for a fixed perturbation size ε is

Fε(E) = f
(
λtarget (A+ εE) , λtarget (A+ εE)

)
where f(z, z) = −Re(z) for Hurwitz instability, f(z, z) = −|z|2 for Schur instability
and f(z, z) = |z|2 for the distance to singularity. For Schur instability we have a⋆ = −1,
while a⋆ = 0 in the other cases. These definitions of f imply that the gradient of the
objective functional is a rank-1 matrix, which means that the trajectory of equation
(1.11) belongs to the rank-1 manifold.

Spectral clustering robustness

Chapter 5 focuses on the problem of spectral clustering robustness. Given an undirected
weighted graph, the spectral clustering is an algorithm that partitions the vertices
into k-clusters, where the input k is a non negative integer much smaller than the
cardinality of the vertex set. The robustness of the computed clustering is connected
with the k-th and (k + 1)-st eigenvalues λk and λk+1 of the Laplacian of the weight
matrix L(W). In particular, if the spectral gap gk := λk+1 − λk is small, this means
that the cluster associated to k is not stable. However gk provides an unstructured
measure of robustness, that does not take into account the pattern of the original
weight matrix, and hence it is not generally appropriate. We propose a different
structured distance to instability, which corresponds to a violating matrix nearness
problem, that can be computed by means of the two-level approach whose structured
inner iteration minimizes the functional

Fε(E) = λk+1(L(W + εE))− λk(L(W + εE))

where ε is the perturbation size. In this case, the perturbation E considered is inside
the Laplacian operator, but it is still possible to use the method proposed with some
slight modifications in order to get an ODE analogous to (1.8). The gradient associated
to the functional turns out to be a symmetric rank-4 matrix and hence the solution of
the adaptation to this framework of equation (1.11) is symmetric and belongs to the
rank-4 manifold.

1.6. Notation 9

Structured stabilization of a matrix

In Chapter 6 we consider a recovering problem: given a structured unstable matrix,
in the Hurwitz sense, we look for the closest stable matrix with the same structure.
In the structured inner iteration of the two-level approach, we construct an objective
functional that has a variable number of summands that corresponds to the unstable
eigenvalues of the perturbed matrix, whose expression is

Fε(E) =
1

2

n∑
i=1

(
(Re (λi(A+ εE)) + δ)+

)2
where a+ = max(a, 0) denotes the positive part of a, ε is the perturbation size and
0 < δ ≪ 1 is a parameter. This means that the associated gradient does not have a
fixed rank. However if we assume that the original matrix is almost stable, which is
also the most interesting case in practice, then the gradient is low-rank. After adapting
equation (1.11) to this setting, we use a rank-adaptive integrator, originally proposed
in [13], that captures perfectly the features of the problem while allowing to exploit
the low-rank properties.

1.6 Notation

Throughout the thesis we will use some standard mathematical notation that we list
below.

• We denote the imaginary unit as i =
√
−1. For a given complex number

z = x + iy ∈ C we define its real part x := Re(z) and its imaginary part
y := Im(z). The complex conjugate is denoted as z := x− iy.

• The set of n ×m complex matrices is denotes as Cn×m and its subset of real
matrices is Rn×m ⊆ Cn×m. A matrix A ∈ Cn×m will be denoted from its entries
by using the corresponding small letter as A = (ai,j), where 1 ≤ i ≤ n and
1 ≤ j ≤ m.

• The conjugate matrix of a complex matrix A = (ai,j) is A∗ = (aj,i), while its
transpose is A⊤ = (aj,i).

• Given a matrix B, we denote by ker(B) and range(B) its kernel and range
respectively.

• Given a subspace S, we denote its dimension as dim(S). If it is ambiguous, we
specify in the text if we mean the complex or the real dimension. The rank
of a matrix A is defined as rank(A) := dim(range(A)) and in some tables it is
denoted as rk.

• The trace of a matrix B = (bi,j) is tr(B) =
∑n

i=1 bii. Throughout the thesis we
often use the well-known properties

tr(AB) = tr(BA), tr(A) = tr(A⊤).

• We always consider as a matrix norm the Frobenius norm since it is induced by
a matrix inner product. For all A = (ai,j) ∈ Cn×n and B = (bi,j) ∈ Cn×n, the

10 Chapter 1. Introduction

Frobenius inner product is defined as

⟨A,B⟩ := tr(A∗B) =
n∑

i,j=1

ai,jbi,j .

The induced Frobenius norm is

∥A∥F :=
√
⟨A,A⟩ =

 n∑
i,j=1

|ai,j |2
 1

2

,

which usually is the most suitable norm in a matrix optimization context.

• For any vector v ∈ Cn, we always consider the 2-norm ∥v∥ =
√
v∗v.

• Given a matrix A ∈ Rn×n, we denote its symmetric and skew-symmetric part,
respectively, as

sym(A) =
A+A⊤

2
, skew(A) =

A−A⊤

2
.

• With the symbol I we denote the identity matrix, and if its dimension is unclear
we write it as a subscript, e.g. In.

• We use the standard big O notation O(δ) to denote asymptotic quantities to δ.

• Given a real number a, we denote by (a)+ := max(a, 0) and (a)− := min(a, 0)
its positive and negative part respectively.

11

Chapter 2

Unstructured gradient system
approach

In this chapter we focus on the unstructured problem (1.3) and we also give some
general definitions used in the other chapters. More precisely, given a square complex
matrix A ∈ Cn×n that fulfils a certain property P, we consider the problem

A = argmin
∆∈Cn×n

{∥∆∥F : A+∆ does not fulfil the property P}. (2.1)

The choice of the Frobenius norm is motivated by the fact that it is induced by a scalar
product, which makes it easier to formalize and tackle the problem. In our framework
we always assume that A is non-empty, which implies that the minimum of (2.1) is
attained, but the minimizer may not be unique. We look for an optimizer ∆⋆ ∈ A
and so we introduce a suitable optimization problem, equivalent to (2.1), based on the
minimization of an objective functional.

2.1 The objective functional

Let us consider a functional F : Cn×n → R such that, for a given real number a⋆ and
for all ∆ ∈ Cn×n:

• the value of the functional in the zero matrix is greater than a⋆, that is

F (0) > a⋆, (2.2)

• the functional is non-greater than a⋆ for all the admissible perturbations, that is

F (∆) ≤ a⋆ ⇐⇒ A+∆ does not fulfil the property P, (2.3)

• the functional is of the form

F (∆) = f
(
H (∆),H (∆)

)
, (2.4)

where H : Cn×n → C is holomorphic, and f : C× C → C is a smooth function
such that

f(z, z) = f(z, z) ∈ R, ∀z ∈ C. (2.5)

Assumption (2.2) ensures that the 0 matrix is not a solution of the problem, while
assumption (2.3) implies that problem (2.1) can be reformulated as

A = argmin
∆∈Cn×n

{∥∆∥F : F (∆) ≤ a⋆}. (2.6)

12 Chapter 2. Unstructured gradient system approach

As already mentioned, in most applications a⋆ = 0. Now we comment on the other
features of the functional F . Assumption (2.4) guarantees differentiability of the
functional, which is a property that we need to use a gradient system approach for the
optimization problem we will introduce. Concerning the function f , the two choices
we consider are

f(z, w) =
z + w

2
, and f(z, w) = zw,

that for w = z corresponds to the real part and the squared absolute value of z,
respectively. In some application it is also possible to use −f in order to deal with the
argmax case in (2.1).

For the applications we are interested in, we suppose that the function H is a
linear combination of the eigenvalues of a function L of the perturbed matrix A+∆,
that is

H (∆) =

n∑
i=1

γiλi(L (A+∆)), (2.7)

where L : Cn×n → Cn×n is a smooth linear operator, λ1(M), . . . , λn(M) denote the
eigenvalues of M and γi ∈ C is a coefficient for i = 1, . . . n. In Chapters 4 and 6 L is
simply the identity operator, while in Chapter 5 we consider the Laplacian operator

L(A) = diag(A1)−A, 1 = (1, . . . , 1)⊤ ∈ Rn.

so that L (A+∆) = L(A+∆). We always assume that the number of summands in
the definition (2.7) is limited, say r ≪ n, which means that many of the coefficients
γi are 0 and thus the functional F depends on a small amount of eigenvalues of the
perturbed matrix. This property implies a low-rank setting that is exploited in the
solution of the optimization problem (2.6).

We also suppose that the eigenvalues involved in the expression of H are simple
and this implies that H is holomorphic. A possible way to prove this is provided
by [55, Theorem 2], where it is shown that, given a simple eigenvalue λ0 of a matrix
Z0 ∈ Cn×n, it is always possible to define in a neighbourhood of Z0 a smooth function
λ(Z) with λ(Z0) = λ0 such that λ(Z) is an eigenvalue of Z.

Remark 2.1.1. The assumptions on the functional F and on its components appear
very natural for the setting we are interested in and we will always assume them
throughout the thesis. We briefly collect here the two most important suppositions and
their purpose:

• the eigenvalues involved in the definition (2.7) of H are simple, which guarantees
regularity of the objective functional F ,

• the number of addends in the sum that defines H is r ≪ n, which yields low-rank
properties we aim to exploit.

Both the assumptions are satisfied in many applications and in particular in those
considered in this thesis.

In Chapters 4, 5 and 6 we consider different choices of the functional F which
corresponds to different applications. In particular the expressions of F are of the
form

§ 4: F (∆) = f(λtarget(A+∆), λtarget(A+∆)), where λtarget is the eigenvalue with
largest real part or absolute value,

2.2. Outline of the two-level approach 13

§ 5: F (∆) = λk+1(L(A+∆))− λk(L(A+∆)), where L is the Laplacian operator
and k < n is a non-negative integer,

§ 6: F (∆) = 1
2

∑n
i=1

(
Re (λi(A+∆) + δ)+

)2, where δ > 0 and a+ = max(a, 0).

In Chapters 5 and 6 we have a⋆ = 0 and F takes always non-negative values, while
in Chapter 4 the functional can also take strictly negative values. In the dedicated
chapters we describe in more detail these functionals, we give formal definitions of
them and we highlight how the assumptions of Remark 2.1.1 are fulfilled.

2.2 Outline of the two-level approach

In general, the optimization problem (2.6) is highly non-convex and it is quite com-
plicated to compute its global minima. Hence in this thesis we aim to find the local
minima in the optimization problem (2.6) associated to F that may only provide an
upper bound for the unstructured distance.

In order to do so, we introduce a two-level approach which splits the original
problem into two different sub-problems, called inner iteration and outer iteration.
Following the approach introduced by Guglielmi and Lubich (see e.g. [30]), we rewrite
the perturbation ∆ = εE, where ε > 0 is the perturbation size and E has unit
Frobenius norm and we define the functional Fε as

Fε(E) := F (εE).

The inner iteration minimizes the functional Fε when the perturbation size ε is fixed,
while the outer iteration aims in finding the smallest value ε⋆ such that it is possible
to annihilate the objective functional. The outline of the two-level method is the
following:

• Inner iteration: For a fixed ε, compute a matrix perturbation E⋆(ε) such that

E⋆(ε) ∈ argmin
∥E∥F=1

Fε(E) = argmin
∥∆∥=ε

F (∆). (2.8)

• Outer Iteration: Find the smallest value ε⋆ > 0 such that

φ(ε) := Fε(E⋆(ε)) = a⋆.

The inner iteration is the most elaborated procedure and we describe in Section 2.3
how to perform it. In contrast, the outer iteration is a theoretically simpler problem,
once a solution of the inner iteration is available, and we describe it in detail in
Section 2.4.

2.3 Inner Iteration: minimization with a fixed perturba-
tion size

In this section we fix the perturbation size ε > 0 and we describe an ordinary differential
equation that is used to solve problem (2.8). We follow a similar approach to that
proposed in [32, 34, 37].

In order to find an optimal value of E that minimizes the objective functional
Fε(E), we introduce a matrix differentiable path E(t) of unit Frobenius norm matrices

14 Chapter 2. Unstructured gradient system approach

that depends on a real time variable t ≥ 0. We denote by S1 the unit norm sphere in
Cn×n

S1 =
{
M ∈ Cn×n : ∥M∥F = 1

}
,

so that E(t) ⊆ S1. In this way it is possible to consider the continuous version Fε(E(t))
of the objective functional, whose derivative is characterized by the following result.

Lemma 2.3.1. Let E(t) ⊆ S1 be a differentiable path of matrices for t ∈ [0,+∞) and
let ε be fixed. Then Fε(E(t)) is differentiable in [0,+∞) with

d

dt
Fε(E(t)) = εRe⟨Gε(E(t)), Ė(t)⟩,

where Gε(E) is the (rescaled) gradient of the objective functional Fε(E) and Ė(t) =
dE(t)
dt .

Proof. The assumption (2.4) on the definition of F implies that the gradient ∇H (∆)
is a well-defined matrix for all ∆ ∈ Cn×n. By using the abbreviations

fz :=
∂f(z, z)

∂z
, fz :=

∂f(z, z)

∂z
,

property (2.5) and Proposition D.0.1 yield that fz = fz. Thus, denoting E(t) = (ei,j(t)),
yields

d

dt
Fε(E(t)) =

d

dt
F (εE(t)) =

d

dt
f
(
H (εE(t)),H (εE(t))

)
=

= fz ·
d

dt
H (εE(t)) + fz ·

d

dt
H (εE(t)) = fz ·

d

dt
H (εE(t)) + fz ·

d

dt
H (εE(t)) =

= 2εfz Re
(

d

dt
H (εE(t))

)
= 2εfz Re

 n∑
i,j=1

dH (εE)

dei,j
· dei,j(t)

dt

 =

= 2εRe⟨fz · ∇H (εE(t)), Ė(t)⟩ = εRe⟨Gε(E(t)), Ė(t)⟩,

where Gε(E) = 2fz∇H (εE) and hence, by definition, εGε(E) = ∇Fε(E).

The matrix G := Gε(E(t)) introduced in Lemma 2.3.1 gives the steepest descent
direction for minimizing the objective functional Fε. However this choice is generally
not admissible, since it does not take into account the fact that the Frobenius norm of
E(t) must remain constantly equal to 1 for all t ∈ [0,+∞). In order to consider also
this fact, we rewrite this unit norm restriction to get an equivalent formulation easy to
deal with. Differentiating the constraint on the unit norm yields

0 =
d

dt
∥E(t)∥2F =

d

dt
⟨E(t), E(t)⟩ = ⟨Ė(t), E(t)⟩+ ⟨E(t), Ė(t)⟩ = 2Re⟨E(t), Ė(t)⟩,

which implies the equivalence

∥E(t)∥F = 1 ∀t ∈ [0,+∞) ⇐⇒ ∥E(0)∥ = 1 and Re⟨E(t), Ė(t)⟩ = 0. (2.9)

By taking advantage of relation (2.9), the next result shows how to select the best
direction to follow in order to fulfil the unit Frobenius norm condition on E(t).

Lemma 2.3.2. Given E ∈ S1 and G ∈ Cn×n, the solution of the optimization problem

argmin
Z∈S1, Re⟨Z,E⟩=0

Re⟨G,Z⟩

2.3. Inner Iteration: minimization with a fixed perturbation size 15

is
Z⋆ =

−G+ Re⟨G,E⟩E
∥ −G+ Re⟨G,E⟩E∥F

.

Proof. Consider the real vectorized forms z, e and g in R2n2 of the matrices Z,E and
G. Since the real part of the Frobenius inner product in Cn×n turns into the standard
scalar product of R2n2 , the claim is equivalent to show that

argmin
∥z∥2=1, z⊤e=0

g⊤z =
−g + (e⊤g)e

∥ − g + (e⊤g)e∥2
,

which follows from Proposition D.0.2.

By giving to the variable Z the role of the derivative of E, Lemma 2.3.2 provides
an ordinary differential equation for the perturbation E that guarantees the best
admissible descent direction in order to minimize the time derivative of Fε(E(t)).
Omitting the normalization factor, which actually corresponds to a time rescaling,
yields

Ė = −Gε(E) + Re⟨Gε(E), E⟩E. (2.10)

By construction of this ordinary differential equation, we have that Re⟨E, Ė⟩ = 0 along
its solutions and so the unit Frobenius norm of E is conserved.

Now we investigate the properties of equation (2.10). We begin by showing that this
ODE is a gradient system, meaning that along its trajectories the objective functional
monotonically decreases.

Theorem 2.3.3. Let E(t) be a solution of (2.10) with starting value E(0) of unit
Frobenius norm. Then

d

dt
Fε(E(t)) ≤ 0.

Proof. We show the explicit rate of decay of the objective functional. Since E(t)
satisfies (2.10) and relation (2.9) implies that it has unit Frobenius norm, we have

d

dt
Fε(E(t)) = Re⟨Gε(E(t)), Ė(t)⟩ = −∥Gε(E(t))∥2F + (Re⟨Gε(E(t)), E(t)⟩)2 ≤ 0,

(2.11)
where the last inequality follows from the Cauchy-Schwarz inequality, since ∥E∥F =
1.

The next result states that it is possible to characterize a stationary point E⋆ of
equation (2.10), under the assumption that the gradient Gε(E⋆) does not vanish. In
Chapters 4, 5 and 6 we discuss in detail the degenerate case when the gradient is 0
and we show that it is a non-generic event in the applications considered.

Theorem 2.3.4. Let E(t) ⊆ S1 be a solution of equation (2.10) passing through
E⋆ = E(t⋆) at time t⋆ > 0 and assume that Gε(E⋆) ̸= 0. Then the following facts are
equivalent:

1.
d
dt
Fε(E(t))

∣∣∣∣
t=t⋆

= 0

2. E⋆ is a stationary point of (2.10)

3. E⋆ is a non-zero real multiple of Gε(E⋆)

16 Chapter 2. Unstructured gradient system approach

Proof. The implications 3. ⇒ 2. and 2. ⇒ 1. follow from equation (2.10) and
Lemma 2.3.1 respectively. To conclude the proof we show that 1.⇒ 3.. Assumption 1.
implies that (2.11) is actually an equality, that is

d

dt
Fε(E⋆) = −∥Gε(E⋆)∥2F + (Re⟨Gε(E⋆), E⋆⟩)2 = 0.

Since Gε(E⋆) ̸= 0, the Cauchy-Schwarz inequality in (2.11) would be strict unless
Gε(E⋆) is a real multiple of E⋆, which implies 3..

Theorem 2.3.4 shows that, up to degenerate cases where the gradient vanishes,
there is an equivalence between the stationary points of the gradient system (2.10) and
the local minima of Fε. Thanks to Theorem 2.3.3, for any starting point E0 = E(0)
of unit Frobenius norm, the integration of (2.10) leads to a stationary point E⋆ and
it is ensured that other scenarios like periodic orbits of the system are avoided, since
the derivative of the objective functional is always non-positive and vanishes only in
stationary points. Hence it is always guaranteed that integrating (2.10) provides a
local minima of Fε, no matter the starting point chosen.

2.3.1 Low-rank trajectory

In many applications, it turns out that the matrix Gε(E) is low-rank. In particular,
as already assumed by Remark 2.1.1, the function H used in the definition of the
functional F in (2.4) is a combination of few eigenvalues of the perturbed matrix
L (A + εE), say r ≪ n, and then the gradient Gε(E) turns out to be a linear
combination of the r outer products of the left and right eigenvectors associated to the
eigenvalues considered in H . More precisely, in Chapter 4 we have r = 1, in Chapter 5
we have r = 4, while in Chapter 6 the value of r changes during the trajectory.

When this situation arises, Theorem 2.3.4 ensures that the stationary points are
proportional to a rank-r matrix. This fact suggests to design a new trajectory for the
perturbation E(t) contained in the rank-r manifold (see Proposition A.0.1 for more
details about the rank-r manifold)

Mr = {M ∈ Cn×n : rank(M) = r}.

A fundamental tool used for building such a trajectory is the orthogonal projection PE ,
with respect to the Frobenius inner product, at a point E ∈ Mr onto the tangent space
TEMr (see Proposition A.0.2 for more details). Before giving an explicit expression
for PE , we introduce decomposition that generalizes the well-known Singular Value
Decomposition (SVD). Given E ∈ Mr, an SVD-like is

E = USV ∗ U, V ∈ Cn×r such that U∗U = V ∗V = Ir, S ∈ Cr×r invertible,
(2.12)

where it is not required that the matrix S is diagonal with non-negative real entries, but
only that it is invertible (see [51] for further details). Thanks to this decomposition of E,
for all M ∈ Cn×n it is possible to give the explicit formula for PE (see Proposition B.0.3
for a proof)

PE(M) =M − (I − UU∗)M(I − V V ∗) = UU∗M +MV V ∗ − UU∗MV V ∗.

We still call E(t) the new low-rank trajectory, even though it is generally not a solution
of equation (2.10). Imposing that E(t) is contained in Mr requires that the time
derivative Ė(t) belongs to the the tangent space TE(t)Mr for all t. This provides

2.3. Inner Iteration: minimization with a fixed perturbation size 17

the idea for the definition of a new ODE for the low-rank trajectory: we project the
right-hand side of equation (2.10) onto the tangent space and we get

Ė = PE (−Gε(E) + Re⟨Gε(E), E⟩E) , (2.13)

where Doležal’s theorem (see [18]) guarantees that E(t) can be decomposed as an
analytic SVD-like (see e.g. [8])

E(t) = U(t)S(t)V (t)∗, U(t), V (t) ∈ Cn×r, S(t) ∈ Cr×r invertible,

where U(t) and V (t) have orthonormal columns. By observing that PE(E) = E, we
can rewrite equation (2.13) as

Ė = −PE(Gε(E)) + Re⟨Gε(E), E⟩E

and by using the decomposition of E and the formula for PE we get

U̇SV ∗ + UṠV ∗ + USV̇ ∗ = −UU∗G−GV V ∗ + UU∗GV V ∗ + µUSV ∗,

where G = Gε(E) and µ = Re⟨G,E⟩. In order to fulfil the gauge conditions U∗U̇ =
V ∗V̇ = 0, we choose the matrices U̇ , Ṡ and V̇ as the solutions of following system

U̇ = −(I − UU∗)GV S−1

Ṡ = −U∗GV + µS

V̇ = (I − V V ∗)G∗US−∗

, (2.14)

which is equivalent to (2.13). In this way it is also possible to determine uniquely the
matrices U̇ , Ṡ and V̇ from Ė = U̇SV ∗ + UṠV ∗ + USV̇ ∗, since

U̇ = (I − UU∗)ĖV S−1

Ṡ = U∗ĖV

V̇ = (I − V V ∗)Ė∗US−∗

.

System (2.14) consists of two matrix ODEs of dimension n× r and one of dimension
r × r, which, from the computational point of view, are preferable to the n × n
equation (2.10). The reason behind the choice of the SVD-like, rather than the
standard SVD, is motivated by the fact that, in general, system (2.14) does not
preserve the diagonal structure of S along the trajectory. We observe that a classical
integration, e.g. by means of Euler’s method, of system (2.14) is generally not suitable,
because of the presence of the inverse of S that may cause numerical issues. Thus it
is generally preferable to use a splitting method which overcomes this problem. We
give more details about the integration of this low-rank system in the applications
proposed in the next chapters.

After introducing the new low-rank ODE (2.13), we describe its features and how
it is related with the original gradient system (2.10). First of all we show that also
(2.13) is a gradient system that preserves the unit Frobenius norm of the solution E(t).

Theorem 2.3.5. Let E(t) be a solution of (2.13) with starting value E(0) of unit
Frobenius norm. Then E(t) ∈ S1 and

d

dt
Fε(E(t)) ≤ 0.

18 Chapter 2. Unstructured gradient system approach

Proof. Let G = Gε(E) for short. In order to show both the claims, we notice that

Re⟨G,E⟩ = Re⟨G,PE(E)⟩ = Re⟨PE(G), E⟩,

since PE is an orthogonal projection such that PE(E) = E. Thus, since ∥E(0)∥F = 1,
(2.13) yields

Re⟨E, Ė⟩ = −Re⟨E,PE(G)⟩+ Re⟨PE(G), E⟩E⟩∥E∥2F = 0,

that is the unit Frobenius norm of E(t) is preserved along the trajectory. Finally
the monotonicity of the objective functional is given again by the Cauchy-Schwarz
inequality, since

d

dt
Fε(E(t)) = Re⟨G, Ė⟩ = −∥PE(G)∥2F + (Re⟨PE(G), E(t)⟩)2 ≤ 0,

where we have used that Re⟨G,PE(G)⟩ = ∥PE(G)∥2F .

By using the same arguments of Theorem 2.3.5 and Theorem 2.3.4, it is also
possible to extend in the same way the latter result for equation (2.13).

Theorem 2.3.6. Let E(t) ⊆ S1 be a solution of equation (2.13) passing through
E⋆ = E(t⋆) at time t⋆ > 0 and assume that PE⋆Gε(E⋆) ̸= 0. Then the following facts
are equivalent:

1.
d
dt
Fε(E(t))

∣∣∣∣
t=t⋆

= 0

2. E⋆ is a stationary point of (2.10)

3. E⋆ is a non-zero real multiple of PE⋆Gε(E⋆)

Proof. It follows the same steps of the proof of Theorem 2.3.4.

Once shown that the original ODE and its projected version are both gradient
systems that preserve the unit norm of the trajectory, we need to ensure that the
integration of (2.13) leads to the same stationary points that are minimizers of the
objective functional Fε. The following result guarantees that the two equations (2.10)
and (2.13) share the same stationary points, that is integrating the second equation
does not introduce nor lose minimizers of the objective functional Fε.

Theorem 2.3.7. Let E⋆ ∈ S1 be such that G⋆ = Gε(E⋆) ∈ Mr. Then

E⋆ is a stationary point of (2.10) ⇐⇒ E⋆ is a stationary point of (2.13).

Proof. ⇒) It is trivial, since PE(0) = 0.
⇐) Assume that E⋆ is a stationary point of (2.13). Thanks to Theorem 2.3.4,

the claim is equivalent to show that E⋆ is a real multiple of G⋆. By Theorem 2.3.6,
we know that there exists a matrix W ∈ Cn×n with PE(W) = 0 such that, for some
non-zero µ ∈ R,

E⋆ = µG⋆ +W. (2.15)

By the definition of PE , we have

W = (I − U⋆U
∗
⋆)W (I − V⋆V

∗
⋆)

2.4. Outer iteration: tuning the perturbation size 19

where we have considered an SVD-like of E⋆ ∈ Mr as E⋆ = U⋆S⋆V
∗
⋆ , where S⋆ ∈ Cr×r.

Pre-multiplying equation (2.15) by U∗
⋆ and post-multiplying it by V⋆ yields

S⋆V
∗
⋆ = µU∗

⋆G⋆, U⋆S⋆ = µG⋆V⋆,

which shows that E⋆, G⋆ ∈ Mr have the same kernel and range and thus we are in the
hypothesis of Proposition D.0.4, which guarantees G⋆ = U⋆U

∗
⋆G⋆. We pre-multiply by

U⋆U
∗
⋆ equation (2.15) to get

E⋆ = µUU∗
⋆G⋆ = µG⋆,

and hence E⋆ is a non-zero real multiple of G⋆ and the claim follows from Theorem 2.3.5.

The implementation of the inner iteration is discussed more in detail for each
application in the next chapters. Indeed the expression of the gradient takes a more
important role in this case and hence it is needed to differentiate the cases.

2.4 Outer iteration: tuning the perturbation size

Once that a computation of the optimizers is available for a given ε > 0, we need to
determine an optimal value for the perturbation size ε⋆. Let E⋆(ε) be a solution of
the optimization problem (2.8) and consider the function

φ(ε) := Fε(E⋆(ε)).

This function is non-negative and we define ε⋆ as the smallest zero of φ−a⋆. Assuming
that the eigenvalues of L (A+ εE⋆(ε)) that appear in the definition (2.7) of H are
simple, for 0 ≤ ε < ε⋆, yields that φ is a differentiable function in the interval [0, ε⋆).
The aim of the outer iteration is to estimate ε⋆, which is the solution of the optimization
problem (1.3) and hence an approximation of the distance sought. In order to solve
this problem, we use a combination of the well-known Newton and bisection methods,
which provides an approach similar to [24, 28, 33] or [34]. If the current approximation
ε is smaller than ε⋆, it is possible to exploit Newton’s method, since φ is differentiable
there (see Lemma 2.4.1); otherwise, if ε > ε⋆, we use the bisection method. The
following result provides a simple formula for the first derivative of φ, which is cheap
to compute, making the Newton method easy to apply.

Lemma 2.4.1. For 0 ≤ ε < ε⋆ we have

φ′(ε) =
d

dε
Fε(E⋆(ε)) = ⟨Gε(E⋆(ε)), E⋆(ε)⟩ = −∥Gε(E⋆(ε))∥F ≤ 0.

Proof. As shown in Lemma 2.3.1, we get

d

dε
Fε(E⋆(ε)) =

d

dε
F (εE⋆(ε)) =

d

dε
f
(
H (εE⋆(ε)),H (εE⋆(ε))

)
=

= fz ·
d

dε
H (εE⋆(ε)) + fz ·

d

dε
H (εE⋆(ε)) = fz ·

d

dε
H (εE⋆(ε)) + fz ·

d

dε
H (εE⋆(ε)) =

= 2fz Re
(

d

dε
H (εE⋆(ε))

)
= 2fz Re

 n∑
i,j=1

dH (εE⋆)

dei,j
·
(
ei,j + ε

dei,j(ε)

dε

) =

20 Chapter 2. Unstructured gradient system approach

= 2Re⟨fz · ∇H (εE⋆(ε)), E⋆(ε) + εE′
⋆(ε)⟩ = Re⟨Gε(E⋆(ε)), E⋆(ε) + εE′

⋆(ε)⟩,

where E′
⋆(ε) is the derivative with respect to ε of E⋆(ε). Since E⋆(ε) is a unit

norm stationary point of (2.10) and (2.13), and a zero of the derivative of the objec-
tive functional Fε, then Gε(E⋆(ε)) is a negative multiple of E⋆. Thus Gε(E⋆(ε)) =
−∥Gε(E⋆(ε))∥F E⋆(ε) and, since ∥E⋆(ε)∥F = 1 for all ε, we have

Re⟨Gε(E⋆(ε)), E
′
⋆(ε)⟩ = −∥Gε(E⋆(ε))∥F

2

d

dε
∥E⋆(ε)∥2F = 0,

which yields the claim.

Remark 2.4.2. The assumption on the simplicity of the eigenvalues of L (A+ εE⋆(ε))
can be supported by similar reasons as the ones stated in Remark 4.2.2. In any case
the root-finding technique used in this context relies also on a bisection method that
does not need differentiability to hold. In this way Newton’s method is replaced when
the differentiability is lost.

Algorithm 1 provides the outline of the outer iteration in order to solve problem
(2.1).

Algorithm 1 Outer iteration

Input: A matrix A, an interval and an initial guess ε0 ∈ [εlb, εub] for ε⋆, a tolerance
τout and a maximum number of iterations niter

Output: The value ε⋆ solution of problem (2.1) and the associated minimizer E⋆(ε⋆)

1: Compute a stationary point E⋆(ε0) of (2.10) and (2.13) (inner iteration).
2: Set ℓ = 0.
3: while ℓ < niter and εub − εlb > τout do
4: if φ(εℓ)− a⋆ < toler then
5: Set εub := min(εub, εℓ).
6: Set εℓ+1 :=

εlb+εub
2 (bisection step).

7: else
8: Set εlb := max(εlb, εℓ).
9: Compute φ(εℓ) and φ′(εℓ).

10: Update εℓ+1 := εℓ − φ(εℓ)
φ′(εℓ)

(Newton step).
11: end if
12: if εℓ+1 /∈ [εlb, εub] then
13: Set εℓ+1 :=

εlb+εub
2 .

14: end if
15: Set ℓ := ℓ+ 1.
16: Compute E⋆(εℓ) by integrating problem (2.8) with starting value E⋆(εℓ−1).
17: end while
18: Return ε⋆ := εℓ and E⋆(ε⋆).

The integration of the inner iteration in steps 1 and 16 in Algorithm 1 is discussed
for the different applications in Chapters 4,5 and 6.

21

Chapter 3

Structured gradient system
approach

In this chapter we focus on the structured problem (1.4), which is an extension of
problem (1.3). In this framework we consider a subset S ∈ Cn×n that describes the
admissible set of perturbation allowed, i.e. the structure. Given a square complex
matrix A ∈ Cn×n that fulfils a certain property P, we consider the problem

AS = argmin
∆∈S

{∥∆∥F : A+∆ does not fulfil the property P}. (3.1)

Although the problem is well-defined also for all A ∈ Cn×n, we usually assume
that A ∈ S. Indeed this is the most interesting case where the perturbation is asked
to preserve the same structure of A.

From now on we suppose that AS is not empty, that is the minimum of (2.1) is
attained, and we look for a minimizer ∆⋆ ∈ AS . This assumption is relevant, since in
general the constraint on the structure that appears in problem (1.4) and (3.1) may
be too restrictive, especially if the dimension of S is small. Example C.0.1 in the
appendix shows a case where problem (3.1) does not have a solution and neither an
infimum, since A+∆ fulfils the property P for all ∆ ∈ Cn×n.

As done for the unstructured case, we consider a real number a⋆ and a functional
F : Cn×n → R that satisfies properties (2.2), (2.3), (2.4) and (2.5) and we reformulate
problem (3.1) as

AS = argmin
∆∈S

{∥∆∥F : F (∆) ≤ a⋆}.

We make use of a two-level approach similar to that introduced for the unstructured
problem (2.1). We rewrite the perturbation ∆ = εE, where ε > 0 is the perturbation
size and E is a unit Frobenius norm matrix that is

E ∈ S1 := {M ∈ S : ∥M∥F = 1}

and we define again the functional Fε as

Fε(E) := F (εE).

The outline of the structured-two-level method is the following:

• Structured Inner iteration: For a fixed ε, compute a matrix perturbation E⋆(ε) ∈
S1 such that

E⋆(ε) ∈ argmin
E∈S1

Fε(E) = argmin
∆∈S, ∥∆∥=ε

F (∆). (3.2)

22 Chapter 3. Structured gradient system approach

• Structured Outer Iteration: Find the smallest value ε⋆ > 0 such that

φ(ε) := Fε(E⋆(ε)) = a⋆.

Also in this case the structured inner iteration is the most elaborated procedure while
the structured outer iteration is theoretically simpler to solve, once a solution of (3.2)
is available (see Section 3.2). In Section 3.1 we retrace the ideas behind the solution
of the inner iteration and we generalize them for the structured inner iteration. This
extension is straightforward for some results, but it requires more effort for others.
For instance the introduction of a low-rank ODE analogous to that of (2.13) for the
structured case is not trivial and it is one of the main novelties of this thesis. In
particular it shows the intrinsic low-rank property of the problem also in the structured
case.

Throughout this chapter and the next ones, we make use of the orthogonal projection
ΠS , with respect to the Frobenius inner product, onto the subspace S. The function
ΠS is linear and, for all M,N ∈ Cn×n, it fulfils the condition

Re⟨ΠS(M), N⟩ = Re⟨ΠS(M),ΠS(N)⟩ = Re⟨M,ΠS(N)⟩, (3.3)

which follows directly from the definition of an orthogonal projection and it is equivalent
to impose that ΠS(M) is the element of S that is the nearest matrix to a given matrix
M in the distance induced by the Frobenius norm (see Proposition B.0.2). We always
assume that an explicit expression for ΠS is available. For instance in the case
S = Rn×n, then it is easy to show that ΠS(M) = Re(M), while when S is defined by
the sparsity pattern of the given matrix A = (ai,j), then, for all M = (mi,j) ∈ Cn×n,
we have (see Proposition B.0.4)

(ΠS(M))i,j =

{
mi,j if ai,j ̸= 0

0 otherwise
.

In Propositions B.0.6, B.0.7 and B.0.8 it is possible to find the expression of ΠS in
some other interesting choices of the subspace S. For convenience, we sometimes omit
the parenthesis when writing the projection, meaning that ΠSM = ΠS(M).

3.1 Structured inner iteration

In this section, given a fixed perturbation size ε > 0, we solve problem (3.2) by
generalizing the approach presented in Section 2.3, where we introduced a matrix
ordinary differential equation whose stationary points coincide with the minimizers
sought. In particular we describe how to deal with the structure constraint on S as
proposed in [34].

We introduce a matrix differentiable path E(t) ⊆ S1 of structured unit Frobenius
norm matrices that depends on a real time variable t ≥ 0 so that we can obtain a
differentiation formula for the objective functional.

Lemma 3.1.1. Let E(t) ⊆ S1 be a differentiable path of matrices for t ∈ [0,+∞) and
let ε be fixed. Then Fε(E(t)) is differentiable in [0,+∞) with

d

dt
Fε(E(t)) = εRe⟨Gε(E(t)), Ė(t)⟩ = εRe⟨ΠSGε(E(t)), Ė(t)⟩,

3.1. Structured inner iteration 23

where Gε(E) is the (rescaled) gradient of the objective functional Fε(E) and Ė(t) =
dE(t)
dt .

Proof. It is identitical to the proof of Lemma 2.3.1. The second equality follows form
the property (3.3), since the assumption that E(t) is contained in S implies that
Ė = ΠSĖ ∈ S.

The next lemma provides a result for detecting the best direction to follow in order
to minimize the objective functional Fε, to fulfil the unit Frobenius norm condition on
E(t) and to preserve the structure S.

Lemma 3.1.2. Given E ∈ S1 and P ∈ S, the solution of the optimization problem

argmin
Z∈S1, Re⟨Z,E⟩=0

Re⟨P,Z⟩

is
Z⋆ =

−P + Re⟨P,E⟩E
∥ − P + Re⟨P,E⟩E∥F

.

Proof. It follows the same approach of Lemma 2.3.2, since the assumptions yield that
Z⋆ ∈ S1 and hence it is admissible.

By considering P = ΠSGε(E) in Lemma 3.1.2, we can write an ordinary differential
equation for the perturbation E that guarantees the best admissible descent direction in
order to minimize the time derivative of Fε(E(t)) and that also preserves the structure
constraint on the trajectory and its unit norm. Omitting the normalization factor,
which actually corresponds to a time rescaling, yields

Ė = −ΠSGε(E) + Re⟨ΠSGε(E), E⟩E. (3.4)

It turns out that equations (2.10) and (3.4) have many features in common, which are
highlighted in the next section.

3.1.1 The structured gradient system properties

Similarly to Theorem 2.3.3, the next result shows that also equation (3.4) is a gradient
system.

Theorem 3.1.3. Let E(t) be a solution of (3.4) with starting value E(0) ∈ S1. Then

d

dt
Fε(E(t)) ≤ 0.

Proof. As in the unstructured case, we show the explicit rate of decaying of the
objective functional. Since E(t) satisfies (3.4) and relation (2.9) implies that it has
unit Frobenius norm, we have

d

dt
Fε(E(t)) = Re⟨ΠSGε(E), Ė⟩ = −∥ΠSGε(E)∥2F + (Re⟨ΠSGε(E), E⟩)2 ≤ 0 (3.5)

and the Cauchy-Schwarz inequality ensures that the derivative is non-positive.

Also in this case it is possible to characterize the stationary points of the gradient
system (3.4) similarly to Theorem 2.3.4.

24 Chapter 3. Structured gradient system approach

Theorem 3.1.4. Let E(t) ⊆ S1 be a solution of equation (3.4) passing through
E⋆ = E(t⋆) at time t⋆ > 0 and assume that ΠSGε(E⋆) ̸= 0. Then the following facts
are equivalent:

1.
d
dt
Fε(E(t))

∣∣∣∣
t=t⋆

= 0,

2. E⋆ is a stationary point of (3.4),

3. E⋆ is a non-zero real multiple of ΠSGε(E⋆).

Proof. The implications 3.⇒ 2. and 2.⇒ 1. follow from equation (3.4) and Lemma 3.1.1
respectively. To conclude the proof we show that 1.⇒ 3.. Assumption 1. implies that
(3.5) is actually an equality, that is

d

dt
Fε(E⋆) = −∥ΠSGε(E⋆)∥2F + (Re⟨ΠSGε(E⋆), E⋆⟩)2 = 0.

Since ΠSGε(E⋆) ̸= 0, the Cauchy-Schwarz inequality in (3.5) is strict unless ΠSGε(E⋆)
is a real multiple of E⋆, which implies 3..

Also for the structured setting, the characterization of the stationary points of the
gradient system relies on the case where the gradient does not vanish, but here it is
further required that also the projection onto the structure of the gradient does not
vanish. When the dimension of S is high enough, the annihilation of the gradient and
its projection is non-generic, since Gε(E⋆) ̸= 0 generally guarantees ΠSGε(E⋆) ̸= 0 .
However, if the dimension of S is too small, it may happen that Gε(E⋆) ̸= 0, while
ΠSGε(E⋆) = 0, which means that the problem may be unsolvable due to the excessive
strict constraint given by S, for instance as shown in Example C.0.1. In the next
chapters we take into account this issue and we specify when some further assumptions
on the non-vanishing projected gradient are needed.

A difference between the unstructured and structured characterization of the
stationary point E⋆ (that is Theorem 2.3.4 and Theorem 3.1.4 respectively) concerns
the low-rank properties associated to the gradient Gε(E⋆). While in the unstructured
case it is evident that E⋆ has the same rank as Gε(E⋆), in the structured case we can
only say that this is true up to the projection ΠS . Unfortunately this means that E⋆

is generically full-rank, since the projection onto the structure usually destroys the
low-rank property. The recovery of the low-rank feature is still possible, but it is more
complicated and we describe how to deal with it in the following sections.

3.1.2 A low-rank ODE for the structured problem

Until this point, the generalization of the inner iteration to the structured inner
iteration is quite simple, but the extension of how to exploit the low-rank insights is
less straightforward. In this section we retrace a similar idea to what is done for the
unstructured case, but we introduce an auxiliary new low-rank perturbation matrix Y
that will take the role of the pre-projection of the full-rank perturbation E.

As said for the unstructured case, in many applications it turns out that the matrix
Gε(E) is low-rank and it is a linear combination of the r outer products of the left and
right eigenvectors associated to the eigenvalues considered in the function H in the
objective function F . In order to exploit this fact, we wish to introduce a low-rank
matrix path whose projection onto S consists of a suitable matrix path that acts as
the matrix perturbation.

3.1. Structured inner iteration 25

Figure 3.1: Representation of the low-rank trajectory Y (t) solution
of (3.9) and of its associated structured projection E(t) = ΠSY (t).

We observe that solutions of (3.4) can be rewritten as E(t) = ΠSZ(t), where Z(t)
solves the ordinary differential equation

Ż = −Gε(ΠSZ) + Re⟨Gε(ΠSZ),ΠSZ⟩Z, (3.6)

but this does not guarantee that Z(t) is a low-rank matrix path. Thus, we introduce a
new perturbation that, for simplicity, we call E(t) (but actually does not coincide with
the solution of (3.4)) and we look for a low-rank matrix path Y (t) ⊆ Mr such that

E(t) = ΠSY (t), t ∈ [0,+∞).

Taking inspiration from equation (3.6), we project the right hand side and we get

Ẏ = PY (−Gε(ΠSY) + Re⟨PY (Gε(ΠSY)),ΠSY ⟩Y) , (3.7)

where PY denotes the orthogonal projection onto TY Mr. By highlighting the role of
the perturbation E = ΠSY , we can rewrite equation (3.7) in a more compact way

Ẏ = −PY (Gε(E)) + Re⟨PYGε(E), E⟩Y,

since PY Y = Y by definition. Figure 3.1 shows a visualization of the trajectory of the
solution of equation (3.9) and of its associated structured perturbation.

The following result describes the main properties of the solutions of equation (3.7).

Lemma 3.1.5. Let Y (t) be a solution of equation (3.7) for t ∈ [0,+∞) with starting
value Y (0) = Y0 ∈ Mr. Then Y (t) ∈ Mr for all t. Moreover, if ∥ΠSY0∥F = 1, then
∥ΠSY (t)∥F = 1 for all t.

26 Chapter 3. Structured gradient system approach

Proof. From the right-hand side of (3.7) we notice that Ẏ ∈ TY Mr, which means that
the whole trajectory Y (t) belongs to the rank-r manifold. Finally the unit norm of
E = ΠSY is conserved along the solution of the ODE, since

d

dt
∥E(t)∥2F = Re⟨ΠSY, Ẏ ⟩ = −Re⟨E,PY (Gε(E))⟩+ Re⟨PY (Gε(E)),ΠSY ⟩∥E∥2F = 0,

where we have used the properties of the projection ΠS and that ∥E∥2F = Re⟨E, Y ⟩.

Lemma 3.1.5 ensures that, if we consider a starting point Y0 ∈ Mr such that
ΠSY0 has unit Frobenius norm, then the matrix path Y (t) solution of the ODE (3.7)
is low-rank and it is associated with an admissible perturbation path E(t) ⊆ S1.
This new perturbation determined in general is not a solution of (3.4), but we show
that it shares the same stationary points. Before doing this, we give a preliminary
characterization of the stationary points of (3.7).

Theorem 3.1.6. Let Y (t) ⊆ Mr be a solution of equation (3.4) passing through
Y⋆ = Y (t⋆) at time t⋆ > 0 and such that ΠSY (t) has unit Frobenius norm. Assume
that PY⋆Gε(E⋆) ̸= 0. Then the following facts are equivalent:

1.
d
dt
Fε(ΠSY (t))

∣∣∣∣
t=t⋆

= 0

2. Y⋆ is a stationary point of (2.10)

3. Y⋆ is a non-zero real multiple of PY⋆Gε(E⋆)

Proof. It uses the same arguments of Theorem 2.3.4 and Theorem 2.3.6.

The following result retraces Theorem 2.3.7 in order to show that there exists an
explicit connection between the stationary points of the two ODEs (3.4) and (3.7).

Theorem 3.1.7. Consider the two matrix ordinary differential equations

Ė = −ΠSGε(E) + Re⟨ΠSGε(E), E⟩E, (3.8)

Ẏ = −PYGε(E) + Re⟨PYGε(E), E⟩Y. (3.9)

1. Let E⋆ ∈ S1 of unit Frobenius norm be a stationary point of (3.8) and assume
that Gε(E⋆) has rank r. Then E⋆ = ΠSY⋆ for a certain matrix Y⋆ ∈ Mr that is
a stationary point of (3.9).

2. Conversely, let Y⋆ ∈ Mr be a stationary point of (3.9) such that E⋆ = ΠSY⋆ has
unit Frobenius norm and PY⋆G⋆ ̸= 0, where G⋆ = Gε(E⋆). Then PY⋆G⋆ = G⋆,
Y⋆ is a non-zero real multiple of G⋆ and E⋆ is a stationary point of (3.8).

Proof. We start with the first statement. Theorem 3.1.4 states that the assumption
is equivalent to say that there exists a non-zero µ ∈ R such that E⋆ = µ−1ΠSG⋆,
where G⋆ := Gε(E⋆) ∈ Mr. Let us introduce Y⋆ = µ−1G⋆ ∈ Mr and we show
that it is the stationary point of (3.9) sought. It is clear that E⋆ = ΠSY⋆ and
PY⋆G⋆ = µPY⋆Y⋆ = µY⋆ = G⋆, which implies

Re⟨PY⋆G⋆, E⋆⟩ = Re⟨G⋆, E⋆⟩ = µRe⟨Y⋆, E⋆⟩ = µ∥E⋆∥2F = µ

and similarly Re⟨ΠSG⋆, E⋆⟩ = µ. Hence the left-hand side of (3.9) becomes

−PY⋆G⋆ + Re⟨PY⋆G⋆, E⋆⟩Y⋆ = −G⋆ + µY⋆ = 0,

3.1. Structured inner iteration 27

which means that Y⋆ is a stationary point of (3.9).
For the second statement we begin by showing that Y⋆ is a non-zero real multiple

of G⋆. Since Y⋆ is a stationary point, Theorem 3.1.6 yields Y⋆ = ν−1PY⋆G⋆ ̸= 0 for
some ν ∈ R \ {0}, that is

G⋆ = νY⋆ +W, (3.10)

where W ∈ Cn×n satisfies PY⋆W = 0. Let Y⋆ = U⋆S⋆V
∗
⋆ where U⋆, V⋆ ∈ Cn×r has

orthonormal columns and S⋆ ∈ Cr×r is invertible. Then

W = (I − U⋆U
∗
⋆)W (I − V⋆V

∗
⋆)

and equation (3.10) becomes

G⋆ = νU⋆S⋆V
∗
⋆ + (I − U⋆U

∗
⋆)W (I − V⋆V

∗
⋆).

By multiplying from the right by U⋆ we get

G⋆U⋆ = νU⋆S⋆,

which means that G⋆, Y⋆ and U⋆ have the same range. Then Proposition D.0.4 implies

G⋆ = G⋆U⋆U
∗
⋆ = νU⋆S⋆V

∗
⋆ = νY⋆,

which shows that Y⋆ is a non-zero multiple of G⋆. Thus PY⋆G⋆ = G⋆ and the properties
of the projection imply

⟨PY⋆G⋆, E⋆⟩ = ⟨G⋆, E⋆⟩ = ν⟨Y⋆, E⋆⟩ = ν∥E⋆∥2F = ν,

since E⋆ has Frobenius unit norm by assumption. Finally the left-hand side of (3.8)
becomes

−ΠSG⋆ + ⟨ΠSG⋆, E⋆⟩ΠSY⋆ = −νΠSY⋆ + ⟨G⋆, E⋆⟩ΠSY⋆ = 0,

which shows that E⋆ = ΠSY⋆ is a stationary point of (3.8).

Theorem 3.1.7 shows that there exists a one-to-one correspondence between the
stationary points of (3.4) and (3.7), but this is not enough to guarantee that integrating
equation (3.7) leads to them. Indeed it is not possible to prove a result, analogous
to Theorem 3.1.3, for the monotonicity of the objective functional evaluated in the
perturbation described by ΠSY (t), because actually it is not true. Indeed there exist
cases where the functional increases along the trajectory of the solution of equation
(3.9) (see Figure 4.1).

The main motivation behind this issue is that the projections ΠS and PY do not
commute. For instance, if S ⊆ C2×2 is the subspace of real symmetric matrices, we
can consider the rank-1 matrices

Y =

(
1
0

)(
0 1

)
, G =

(
1 2
2 4

)
and we observe that

ΠS(PYG) = ΠS

((
1 2
2 4

)
−
(
0 0
0 1

)(
1 2
2 4

)(
1 0
0 0

))
= ΠS

((
1 2
0 4

))
=

(
1 1
1 4

)
,

28 Chapter 3. Structured gradient system approach

while

PY (ΠSG) =

(
1 2
2 4

)
−
(
0 0
0 1

)(
1 2
2 4

)(
1 0
0 0

)
=

(
1 2
0 4

)
.

Also for larger dimension it is usually false that PY (ΠSM) and ΠS(PYM) are equal
for all M ∈ Cn×n, since rank(PY (ΠS(M))) ≤ 2 rank(Y) by the definition of PY , while
the latter matrix is generally full-rank. This shows that in general

Re⟨ΠSG,PYM⟩ = Re⟨ΠSG,ΠSPYM⟩ ≠ Re⟨ΠSG,PY ΠSM⟩

with G = Gε(E), M ∈ Cn×n and hence, for the derivative formula in Lemma (3.1.1)
with Ė = ΠS Ẏ , we have that

d

dt
Fε(E(t)) = Re⟨G,ΠS Ẏ ⟩ =

= −Re⟨ΠSG,PYG⟩+ Re⟨PYG,E⟩Re⟨G,E⟩ ≠ −∥ΠSPYG∥2 + (Re⟨PYG,E⟩)2,

which, if it were true, together with the Cauchy-Schwarz inequality, would have ensured
the monotonicity of the objective functional.

However, the monotonicity of Fε(ΠSY (t)) is related to the choice of the starting
point for the integration of (3.9), which plays a crucial role. In the next paragraph we
aim to overcome this problem by asking a weaker requirement about the monotonic
decrease of the objective functional.

3.1.3 Local convergence to the low-rank stationary points

Unlike the ODE (3.4), equation (3.7) is not a gradient system, but somehow it is close
to. In particular we show that, given a suitable starting point, the value of Fε(ΠSY (t))
decreases exponentially to 0 as t → +∞. Before doing this, we need a preliminary
lemma.

Lemma 3.1.8. Assume that the gradient Gε(E) in the ODE (3.7) has rank r and it
consists of a linear combination of eigenvectors corresponding to simple eigenvalues
of L (A + εE). Let Y⋆ ∈ Mr be a stationary point of equation (3.7) such that
E⋆ = ΠSY⋆ ∈ S1. Then there exists δ⋆ > 0 such that, for all δ ∈ (0, δ⋆] and all Ŷ ∈ Mr

with ∥Y⋆ − Ŷ ∥F ≤ δ and ΠS Ŷ ∈ S1, we have

∥PŶGε(ΠS Ŷ)−Gε(ΠS Ŷ)∥ ≤ Cδ2,

where C is a constant independent of δ.

Proof. The assumptions on the gradient imply that it is possible to write

G⋆ := Gε(E⋆) = B⋆Λ⋆C
∗
⋆ ,

where B⋆, C⋆ ∈ Cn×r have orthonormal columns containing the unit left and right
eigenvectors, respectively, of L (A + εE⋆) and Λ⋆ ∈ Cr×r contains the associated
eigenvalues on the diagonal. Let Y⋆ = U⋆S⋆V

∗
⋆ be the SVD-like (see (2.12)) of a

stationary point of (3.7) that fulfils the assumptions. Then, as shown in Theorem 3.1.7,
there exists ν ∈ R \ {0} such that

Y⋆ = U⋆S⋆V
∗
⋆ = ν−1G⋆ = ν−1B⋆Λ⋆C

∗
⋆ ,

3.1. Structured inner iteration 29

meaning that U⋆ = ν−1B⋆Λ⋆C
∗
⋆V⋆S

−1
⋆ and V ∗

⋆ = ν−1S−1
⋆ U∗

⋆B⋆Λ⋆C
∗
⋆ . Thus

Y⋆ = B⋆

(
ν−2Λ⋆C

∗
⋆V⋆S

−1
⋆ U∗

⋆B⋆Λ⋆

)
C∗
⋆

and hence it is not restrictive to assume for the SVD-like of Y⋆ that U⋆ = B⋆ and
V⋆ = C⋆. We introduce the matrix paths

Ỹ (τ) = Ũ(τ)S̃(τ)Ṽ (τ)∗, G̃(τ) = B̃(τ)Λ̃(τ)C̃(τ)∗, τ ∈ [0, δ]

which are guaranteed to be differentiable by the assumption on the simple eigenvalues,
and such that

Y⋆ = Ỹ (0), G⋆ = G̃(0), Ŷ = Ỹ (δ), Gε(Ê) = G̃(δ).

Since any matrix Ŷ that satisfies the hypothesis can be written as Ŷ = Ỹ (δ), for
instance

Ỹ (τ) = Ŷ +
τ − δ

δ

(
Ŷ − Y⋆

)
,

it is enough to study these straight paths in order to conclude.
We will denote, for brevity, by U, V,B,C,Λ and later U̇ , V̇ , Ḃ, Ċ, Λ̇ the associated

function (equipped with the ∼) evaluated at τ = 0. The derivatives of B̃ and of the
other matrix functions, are well defined in a right-neighbourhood of τ = 0. Given the
left and right unit eigenvectors x̃(τ) and ỹ(τ) of L (A+εE(τ)) (where E(τ) = ΠS Ỹ (τ))
associated to the eigenvalue λ(τ), the eigenvectors’ derivative formulas are (see [34,
58] for more details)

1

ε

d

dτ
x̃(τ)∗ = −x(τ)∗L

(
Ė(τ)

)
Z(τ) + Re

(
x(τ)∗L

(
Ė(τ)

)
Z(τ)x(τ)

)
x(τ)∗,

1

ε

d

dτ
ỹ(τ)∗ = −Z(τ)L

(
Ė(τ)

)
y(τ) + Re

(
y(τ)∗Z(τ)L

(
Ė(τ)

)
y(τ)

)
y(τ),

where
Z(τ) =

(
L
(
W + εE

(
Ỹ (τ)

))
− λI

)♯
is the group inverse of the perturbed matrix, that is bounded since the eigenvalues
are simple. This shows that the first derivative of x̃(τ) and ỹ(τ) and hence also
U̇ , V̇ , Ḃ, Ċ and Λ̇ are well defined, since their columns are exactly the derivatives of
the eigenvectors, and this allows to expand until the first order the matrices G̃ and
PỸ G̃ for 0 ≤ τ ≤ δ. Recalling that U(0) = U⋆ = B⋆ = B(0), V (0) = V⋆ = C⋆ = C(0)
and that U∗U = V ∗V = Ir yields

PỸ (τ)G̃(τ) = Ũ(τ)Ũ(τ)∗G̃(τ) + G̃(τ)Ṽ (τ)Ṽ (τ)∗ − Ũ(τ)Ũ(τ)∗G̃(τ)Ṽ (τ)Ṽ (τ)∗ =

= BΛC∗ + τ
(
U̇U∗BΛC∗ + UU̇∗BΛC∗ + UU∗ḂΛC∗ + UU∗BΛ̇C∗ + UU∗BΛĊ∗

)
+

+τ
(
ḂΛC∗V V ∗ +BΛ̇C∗V V ∗ +BΛĊ∗V V ∗ +BΛC∗V̇ V ∗ +BΛC∗V V̇ ∗

)
+

+τ
(
−U̇U∗BΛC∗V V ∗ − UU̇∗BΛC∗V V ∗ − UU∗ḂΛC∗V V ∗ − UU∗BΛ̇C∗V V ∗

)
+

+τ
(
−UU∗BΛĊ∗V V ∗ − UU∗BΛC∗V̇ V ∗ − UU∗BΛC∗V V̇ ∗

)
+O(τ2) =

= BΛC∗ + τ
(
U̇ΛV ∗ + UU̇∗UΛV ∗ + UU∗ḂΛV ∗ + U Λ̇V ∗ + UΛĊ∗

)
+

30 Chapter 3. Structured gradient system approach

+τ
(
ḂΛV ∗ + U Λ̇V ∗ + UΛĊ∗V V ∗ + UΛV ∗V̇ V ∗ + UΛV̇ ∗

)
+

+τ
(
−U̇ΛV ∗ − UU̇∗UΛV ∗ − UU∗ḂΛV ∗ − U Λ̇V ∗

)
+

+τ
(
−UΛĊ∗V V ∗ − UΛV ∗V̇ V ∗ − UΛV̇ ∗

)
+O(τ2) =

= BΛC∗ + τ
(
ḂΛV ∗ + U Λ̇V ∗ + UΛĊ∗

)
+O(τ2),

while
G̃(τ) = BΛC∗ + τ(ḂΛC∗ +BΛ̇C∗ +BΛĊ∗) +O(τ2),

which proves the claim.

Lemma 3.1.8 is crucial for providing a local convergence result. It states that, in a
neighbourhood of width δ of a stationary point Y⋆, the gradient and its projection onto
TY⋆Mr coincide up to quadratic terms in δ, meaning that the two matrices are very
close. For stating the main theorem of the section we need the following definition.

Definition 3.1.9. A strict local minimum of a smooth function F : S1 → [0,+∞) is
a matrix E such that the Hessian matrix H(E) of F defines a positive definite bilinear
form when restricted to TES1, that is there exists α > 0 such that, for all Z ∈ TES1,

⟨H(E)Z,Z⟩ ≥ α∥Z∥2F .

The next result shows the local convergence of equation (3.7) towards a stationary
point Y⋆ under two main assumptions:

• ΠS is smooth and bijective on the image when restricted to Mr,

• the matrix ΠSY⋆ is a strict local minimum of Fε.

After the proof of the theorem we comment on these assumptions.

Theorem 3.1.10. Let Y⋆ ∈ Mr be a stationary point of the projected differential
equation (3.7) such that E⋆ = ΠSY⋆ ∈ S1 and PY⋆Gε(E⋆) ̸= 0. Suppose that E⋆ is a
strict local minimum of the functional Fε on S1 and assume that

ΠS |Mr
: Mr → ΠS(Mr) ⊆ S

is a diffeomorphism. Then, for an initial datum Y (0) sufficiently close to Y⋆, the
solution Y (t) of (3.7) converges to Y⋆ exponentially as t→ +∞. Moreover Fε(ΠSY (t))
decreases monotonically with t and converges exponentially to the local minimum value
F (E⋆) as t→ +∞.

Proof. By applying ΠS to both sides of (3.7) and by recalling the properties of the
projections we get the equivalent form

Ė = ΠS (−PY (G) + ⟨PY (G), E⟩Y) = −ΠSPY (G) + ⟨ΠSPY (G), E⟩E,

where E(t) = ΠSY (t) ∈ S1 and G = Gε(E) for short. By means of Lemma 3.1.8, this
equation can be rewritten as a perturbation of the original gradient system of E, that
is

Ė = −ΠS(Gε(E)) + ⟨ΠS(Gε(E)), E⟩E +D := −Π̂S
E(Gε(E)) +D,

3.1. Structured inner iteration 31

where ∥D(t)∥ = O(∥Y (t)−Y⋆∥2F) and the orthogonal projection of B ∈ Rn×n onto the
tangent space TES1 is defined as (see Proposition B.0.9)

Π̂S
E(B) = ΠS(B)− ⟨ΠS(B), E⟩E.

For δ := ∥E(t) − E⋆∥F , which is supposed to be sufficiently small, the assumptions
yield

∥D(t)∥ = O(∥Y (t)− Y⋆∥2F) = O(∥E(t)− E⋆∥2F) = O(δ2)

and
E − E⋆ = Π̂S

E⋆
(E − E⋆) +O(δ2).

Since E⋆ is a strict local minimum, by definition (see 3.1.9) there exists α > 0 such
that the Hessian matrix Hε(E⋆) of Fε at E⋆ satisfies

⟨Z,Hε(E⋆)Z⟩ ≥ αZ, ∀Z ∈ TE⋆S1.

By the definition of Π̂S
E it also follows that

Π̂S
E⋆

(Gε(E)) = Π̂S
E⋆

(Gε(E))− Π̂S
E⋆

(Gε(E⋆)) = Π̂S
E⋆
Hε(E⋆)Π̂

S
E⋆

(E − E⋆) +O(δ2),

since Theorem 3.1.4 implies Π̂S
E⋆

(Gε(E⋆)) = ΠSGε(E⋆)−⟨ΠSGε(E⋆), E⋆⟩E⋆ = 0. Thus

1

2

d

dt
∥E(t)− E⋆∥2F = ⟨E − E⋆,−Π̂S

E⋆
(Gε(E)) +D⟩ =

= ⟨Π̂S
E⋆

(E − E⋆) +O(δ2),−Π̂S
E⋆
Hε(E⋆)Π̂

S
E⋆

(E − E⋆) +O(δ2)⟩ =

= ⟨Π̂S
E⋆

(E − E⋆),−Hε(E⋆)Π̂
S
E⋆

(E − E⋆)⟩+O(δ3) ≤

≤ −α∥Π̂S
E⋆

(E − E⋆)∥2F +O(δ3) ≤ −α
2
∥E − E⋆∥2F ,

where we have used that Π̂S
E⋆
Hε(E⋆)Π̂

S
E⋆

(E − E⋆) = O(δ), Proposition B.0.10 for the
projection Π̂S

E⋆
and that δ is sufficiently small. This proves the exponential convergence

of E(t) towards E⋆ as t→ +∞ and a similar approach shows that F (E(t)) converges
monotonically towards F (E⋆) as t→ +∞:

1

ε

d

dt
Fε(E(t)) = Re⟨Gε(E), Ė⟩ = Re⟨Π̂S

E⋆
Gε(E), Ė⟩ =

= Re⟨Π̂S
E⋆
Gε(E),−Π̂S

E⋆
Gε(E) +D⟩ = ∥Π̂S

E⋆
Hε(E⋆)Π̂

S
E⋆

(E − E⋆)∥2F +O(δ3) ≤

≤ −α2∥Π̂S
E⋆

(E − E⋆)∥2F +O(δ3) ≤ −α
2

2
∥E − E⋆∥2F .

The first assumption on the regularity of ΠS is usually fulfilled when the dimension
of S is large enough. If this is not the case, then it is also less attractive to consider
equation (3.7) instead of (3.4), since there would not be a gain in computational terms,
meaning that the assumption on the fact that ΠS is a local diffeomorphism is not
restrictive. The second assumption is mainly technical and in practice we experienced
that it is verified. We give more specific details about this facts in Chapter 4.

32 Chapter 3. Structured gradient system approach

3.2 Structured outer iteration

As done for the outer iteration in the unstructured case, it is possible to follow the
same approach for the structured outer iteration. Let E⋆(ε) be the minimizer computed
by the structured inner iteration, that is a stationary point of (3.4) or the projection
onto S of a stationary point of (3.7), and define

φ(ε) := Fε(E⋆(ε)).

We are interested in the smallest zero ε⋆ of φ− a⋆, that we compute by means of the
Newton-bisection method described in Algorithm 1. The following lemma provides the
formula for the derivative of φ in ε < ε⋆ for the structured case.

Lemma 3.2.1. For 0 ≤ ε < ε⋆ we have

φ′(ε) =
d

dε
Fε(E⋆(ε)) = ⟨ΠSGε(E⋆(ε)), E⋆(ε)⟩ = −∥ΠSGε(E⋆(ε))∥F ≤ 0.

Proof. With the same steps of Lemma 2.4.1 we have

d

dε
Fε(E⋆(ε)) = Re⟨Gε(E⋆(ε)), E⋆(ε) + εE′

⋆(ε)⟩ = Re⟨ΠSGε(E⋆(ε)), E⋆(ε) + εE′
⋆(ε)⟩,

where E′
⋆(ε) is the derivative with respect to ε of E⋆(ε). Theorem 2.3.6 yields that

the unit norm stationary point E⋆(ε) of (3.4) is a real multiple of ΠSGε(E⋆(ε)) and,
since the objective functional Fε is monotonically decreasing, then E⋆ is a negative
multiple of ΠSGε(E⋆(ε)). Thus ΠSGε(E⋆(ε)) = −∥ΠSGε(E⋆(ε))∥F E⋆(ε) and, since
∥E⋆(ε)∥F = 1 for all ε, we have

Re⟨ΠSGε(E⋆(ε)), E
′
⋆(ε)⟩ = −∥ΠSGε(E⋆(ε))∥F

2

d

dε
∥E⋆(ε)∥2F = 0.

Hence, the algorithm for performing the structured outer iteration is the same as
Algorithm 1, but in steps 1 and 16 the structured inner iteration is solved instead of
its unstructured version.

33

Chapter 4

Rank-1 structured eigenvalue
optimization

In this chapter, that is mainly based on the results from [34], we show how the
structured two-level method introduced in Chapter 2 and Chapter 3 can be exploited
in a matrix stability framework.

We propose and discuss a new approach for solving eigenvalue optimization problems
for large structured matrices, where it is required to control a single target eigenvalue
of a given matrix A ∈ Cn×n. The class of optimization problems considered is
related to compute structured pseudospectra and their extremal points, but it is also
suitable to deal with structured matrix nearness problems such as computing the
distance to instability or to singularity under structured perturbations. The structure
consists of a linear subspace of the matrix set and generally it denotes a property
of the original matrix that we want to preserve after perturbing it. In particular,
we focus on the practically important cases of large matrices with a given sparsity
pattern and on perturbation matrices with given range and co-range. It is known
that analogous eigenvalue optimization for unstructured complex matrices favorably
works with rank-1 matrices. The novelty presented in this chapter is that structured
eigenvalue optimization can still be performed with rank-1 matrices, which yields a
significant reduction of storage and in some cases of the computational cost. Optimizers
are shown to be rank-1 matrices orthogonally projected onto the given structure and
this fact is used in the numerical algorithms designed to solve the problem.

4.1 Introduction

We describe an approach to solve structured eigenvalue optimization problems that
uses constrained gradient flows and the underlying rank-1 property of the optimizers.
We illustrate basic techniques on a class of problems that arise in computing structured
pseudospectra or their extremal points and appear as the essential algorithmic building
block in structured matrix nearness problems. For example, we determine the largest
possible spectral abscissa or radius of a given matrix under perturbations of a prescribed
norm that preserve its structure, or - in other words - the structured pseudospectral
abscissa or radius. This is an important subtask in the computation of structured
stability radii (or structured distance to instability in another terminology). In the
literature these quantities are extensively studied with the purpose of analyzing stability
properties and robustness of linear dynamical systems (see, e.g., [47]). Similarly, if one
is interested in the distance of a matrix to singularity, the unstructured distance is the
smallest singular value. However, if the matrix is structured, having a small singular
value does not imply the existence of a small structured perturbation that makes it
singular, and the structured distance to singularity is not readily obtained.

34 Chapter 4. Rank-1 structured eigenvalue optimization

The structures considered in this chapter are general complex- or real-linear
structures, that is, the perturbation matrices are restricted to lie in a structure space
S, which can be an arbitrary linear subspace of Cn×n or Rn×n. We will put the focus
on two very different classes of major interest in applications:

(i) perturbation matrices with a given sparsity pattern,

(ii) perturbation matrices with given range and co-range.

Instead of a direct discrete approach to solve the optimization problems, we present
a continuous approach using structure- and norm-constrained gradient flows, which
reveals the underlying rank-1 property of optimizers, on which we build our discrete
optimization method. The rank-1 property is well-known for unstructured problems
(see e.g. [67]) and has been exploited for developing suitable algorithms (see e.g. [29, 36,
52]). The rank-1 differential equation is finally fully discretized, using an appropriate
time discretization (here chosen beyond mere gradient descent) and an adaptive, line
search-type stepsize selection. We mention that there are several situations previously
addressed in the literature where considering a time-continuous approach provides new
insights, e.g. [1, 7, 16, 42, 67] and references therein. This list is far from exhaustive.

In previous works, structured eigenvalue optimization problems were addressed
for some specific structures. For example when the matrices are required to be real
(the unstructured problem would consider them as complex), it has been proved that
the optimizers have a rank-2 structure [62] and indeed are obtained as real parts of
an underlying rank-1 matrix [30]. Similarly, Hamiltonian eigenvalue optimization has
been studied in detail in [57] and [2], in the setting of robust passivity analysis of linear
control systems, where eigenvalues of Hamiltonian matrices have to be bounded away
from the imaginary axis. In that case it is possible to show that for a real Hamiltonian
matrix, extremal perturbations have rank 4 [28]. However, when considering for
example a sparse matrix, the low-rank property of optimizers seems to be irremediably
lost. It is a basic goal of this chapter to uncover the underlying rank-1 property and to
show how it can be used in algorithms for structured eigenvalue optimization.

The chapter is organized as follows. In Section 4.2 we set up the framework and
present our approach, which is based on a structure- and norm-constrained gradient
system. We show that optimizers are orthogonal projections of rank-1 matrices onto
the given structure. We discuss the possibilities and difficulties of using a gradient
system for structure-projected rank-1 matrices. This works well for the case (ii) of
prescribed range and co-range, but it is not feasible for the case (i) of a prescribed
sparsity pattern. In Section 4.3 we introduce instead a differential equation on the
manifold of rank-1 matrices of unit Frobenius norm, for which the stationary points are
shown to be in a bijective correspondence with the stationary points of the structure-
and norm-constrained gradient system. In Section 4.4 we prove local convergence to
strict minima under an assumption that appears to be generically satisfied in case
(i) of sparse matrices, but that is not satisifed in case (ii) of perturbation matrices
with prescribed range and co-range. A basic observation, valid for all cases, is that
near a local minimizer, the rank-1 tangent projection is very close to the identity map,
and so the computationally favorable rank-1 projected system behaves locally like
the gradient system. In Section 4.5 we discretize the rank-1 differential equation by
a splitting method. This leads us to a fully discrete algorithm that updates rank-1
matrices in every step. Then, in Section 4.6 we describe a two-level approach to
compute the structured stability radius (or structured distance to instability), used
to characterize robustness of spectral stability properties. This is an important use
of the considered class of eigenvalue optimization problems for solving structured

4.2. Structured constrained gradient flows 35

matrix nearness problems. The structured distance to singularity is computed in an
analogous way. In Section 4.7 we present some numerical examples showing that the
rank-1 system is well-suited for the efficient computation of optimizers. Finally, in
Section 4.8 we show how the alternative approach of using the gradient system for
structure-projected rank-1 matrices can be used for the case (ii) of prescribed range
and co-range.

4.2 Structured constrained gradient flows

In this section we formulate and discuss a class of eigenvalue optimization problems
that are related to structured pseudospectra. We derive and study structure- and
norm-constrained gradient systems and their stationary points, which turn out to be
structure-projected rank-1 matrices.

4.2.1 Problem formulation and motivation

For a matrix A ∈ Cn×n, let λ(A) ∈ C be a target eigenvalue of A, for example:

• eigenvalue of minimal or maximal real part;

• eigenvalue of minimal or maximal modulus;

• closest eigenvalue to a given set in the complex plane.

We note that here the eigenvector associated with the target eigenvalue may not depend
continuously on the matrix A when several eigenvalues are simultaneously extremal,
but it depends continuously on A when the extremal eigenvalue is unique. Let S be a
subspace of the vector space of complex or real n×n matrices, e.g., a space of matrices
with a prescribed sparsity pattern, or matrices with given range and co-range. We let

f : C2 → C with f (z, z) = f (z, z) ∈ R for all z ∈ C (4.1)

be a given smooth function that will be minimized over target eigenvalues λ(A+∆)
for structured perturbations ∆ ∈ S to a given matrix A. While our theory applies to
general functions f with (4.1), in our examples we consider specific cases where f or
−f evaluated at (z, z) equals

Re(z) =
z + z

2
or |z|2 = zz.

As it is dicussed in more detail in Section 4.6, the real part function is used in studying
the distance to instability (or stability radius) of a Hurwitz matrix, that is with all
eigenvalues in the left complex half-plane. The interest is in computing the nearest
matrix A+∆ to A for which the rightmost eigenvalue is on the imaginary axis. Here,
the perturbation ∆ will be constrained to be in the structure space S, and “nearest”
will refer to the Frobenius norm ∥∆∥F . Similarly, the squared modulus function is used
when A is a Schur matrix, that is with all eigenvalues in the unit disk, to compute the
nearest matrix A+∆ to A for which the eigenvalue with largest absolute value is on
the unit circle. The squared modulus function is also used to compute the structured
distance to singularity of an invertible matrix.

We consider the following structured eigenvalue optimization problem, which turns
out to be a particular case of problem (3.1): for a given perturbation size ε > 0, find

argmin
∆∈S, ∥∆∥F=ε

f
(
λ (A+∆) , λ (A+∆)

)
, (4.2)

36 Chapter 4. Rank-1 structured eigenvalue optimization

where ∥∆∥F is the Frobenius norm of the structured matrix ∆ ∈ S and λ(A+∆) is
the considered target eigenvalue of the perturbed matrix A+∆. The argmax case is
treated analogously, replacing f by −f . This problem arises in computing extremal
points of the structured ε-pseudospectrum

ΛS
ε (A) = {λ ∈ C : λ is an eigenvalue of A+∆ for some ∆ ∈ S with ∥∆∥F ≤ ε}.

For f(z, z) = −Re(z), (4.2) yields the structured pseudospectral abscissa

αS
ε (A) = max

{
Re(z) : z ∈ ΛS

ε (A)
}

and for f(z, z) = −|z|2 it yields the structured pseudospectral radius

ρSε (A) = max
{
|z| : z ∈ ΛS

ε (A)
}
.

The structured distance to instability is then obtained by finding the smallest ε > 0
such that αS

ε (A) = 0 (for a Hurwitz matrix A) or ρSε (A) = 1 (for a Schur matrix A).
In the following, as done in Chapter 2 and Chapter 3, we write

∆ = εE with ∥E∥F = 1 and Fε(E) = f
(
λ (A+ εE) , λ (A+ εE)

)
,

so that Problem (4.2) is equivalent to the problem of finding

argmin
E∈S, ∥E∥F=1

Fε(E). (4.3)

Problem (4.2) and Problem (4.3) are nonconvex, nonsmooth optimization problems
and, as far as we know, generally there is no analytic formula for their solution.

4.2.2 Minimizing the objective functional

In order to deal with problem (4.3), we use the projection onto the subspace introduced
in Chapter 3 and we briefly recall its main features. Let ΠS be the orthogonal projection
(with respect to the Frobenius inner product) onto S as defined in Definition B.0.1:
for every Z ∈ Cn×n,

ΠSZ ∈ S and Re⟨ΠSZ,W ⟩ = Re⟨Z,W ⟩ ∀W ∈ S.

For a complex-linear subspace S, taking the real part of the complex inner product
can be omitted (because with W ∈ S, then also iW ∈ S), but taking the real part is
needed for real-linear subspaces. Note that for S = Rn×n, we then have ΠSZ = Re(Z)
for all Z ∈ Cn×n, while Proposition B.0.4 and Proposition B.0.5 provide, respectively,
the explicit formula for the orthogonal projection onto a given sparsity pattern and
onto the set of prescribed range and co-range matrices.

As done in Chapter 2 and Chapter 3, we introduce a differentiable matrix path
E(t) of unit Frobenius norm matrices. To get the gradient of the functional Fε(E(t)),
we need the derivative of the target eigenvalue λ(A+ εE(t)) for t in some interval I,
for instance I = [0,+∞). In the case of a simple eigenvalue, which is the situation we
will consider in the following, this derivative is obtained from the following well-known
result (see e.g. or [50], [23, Theorem 1] or [48]).

Lemma 4.2.1 (Derivative of simple eigenvalues). Consider a continuously differentiable
path of square complex matrices M(t) for t in an interval I. For t ∈ I, let λ(t) be
a continuous path of simple eigenvalues of M(t) and let x(t) and y(t) be left and

4.2. Structured constrained gradient flows 37

right eigenvectors, respectively, of M(t) associated with the eigenvalue λ(t). Then,
x(t)∗y(t) ̸= 0 for all t ∈ I and λ is continuously differentiable on I with

λ̇ =
x∗Ṁy

x∗y
, (4.4)

where the · indicates (entrywise) differentiation with respect to t.

Remark 4.2.2. We mention some situations where the assumption of a smoothly
evolving simple eigenvalue is violated. As such situations are either non-generic or can
happen generically only at isolated times t, they do not affect the computation after
discretization of the differential equation.

• Along a trajectory E(t), the target eigenvalue λ(t) = λ(A+ εE(t)) may become
discontinuous. For example, in the case of the eigenvalue of largest real part, a
different branch of eigenvalues may get to have the largest real part. In such a
case of discontinuity, the differential equation is further solved, with descent of
the largest real part until finally a stationary point is approximately reached.

• A multiple eigenvalue λ(t) may occur at some finite t because of a coalescence of
eigenvalues. Even if some continuous trajectory runs into a coalescence, this is
non-generic to happen after discretization of the differential equation, and so the
computation will not be affected.

• A multiple eigenvalue may appear in a stationary point, in the limit t → +∞.
The computation will stop before, and items 1.-3. in Theorem 4.2.8 will then be
satisfied approximately.

Although the situations above do not affect the time-stepping of the gradient system,
close-to-multiple eigenvalues do impair the accuracy of the computed left and right
eigenvectors that appear in the gradient.

Hence, assuming that the target eigenvalue is simple appears quite natural in this
context. A further intuition that motivates this fact is that the set of matrices with
multiple eigenvalues has zero measure in Cn×n (see e.g. [4] for more details about
this fact), even though this does not guarantee that matrices with large Jordan blocks
do not occur with probability zero in the algorithm’s dynamics. In addition to this
theoretical motivations, we have never experienced in practice the issue of a multiple
target eigenvalue. Thus, we will always assume the setting where equation (4.4) holds.

Since Theorem 4.2.1 ensures x(t)∗y(t) ̸= 0, for all t we can apply the normalization

∥x(t)∥ = 1, ∥y(t)∥ = 1, x(t)∗y(t) is real and positive. (4.5)

In this chapter we always assume that normalization (4.5) holds. We observe that a
pair of left and right eigenvectors x and y fulfilling this property may be replaced by
µx and µy for any complex µ of modulus 1 without changing the property (4.5). With
this normalization it is always possible to define the eigenvalue condition number, that
is

κ(t) =
1

x(t)∗y(t)
> 0,

which gives the idea of how close a simple eigenvalue is to become multiple.
The following lemma, which adapts Lemma 2.3.1 to this setting, allows to compute

the steepest descent direction of the functional Fε in Cn×n, which means neglecting
any structural constraint. For this reason, we refer to it as the free gradient of the
functional.

38 Chapter 4. Rank-1 structured eigenvalue optimization

Lemma 4.2.3. Let E(t) ∈ Cn×n, for t near t0, be a continuously differentiable path of
matrices, with the derivative denoted by Ė(t). Assume that λ(t) is a simple eigenvalue
of A+ εE(t) depending continuously on t, with associated eigenvectors x(t) and y(t)
satisfying (4.5), and let the eigenvalue condition number be

κ(t) =
1

x(t)∗y(t)
> 0.

Then, Fε(E(t)) = f
(
λ(t), λ(t)

)
is continuously differentiable with respect to t and we

have
1

εκ(t)

d

dt
Fε(E(t)) = Re⟨Gε(E), Ė(t)⟩, (4.6)

where the (rescaled) gradient of Fε is the rank-1 matrix

Gε(E) = 2fλ xy
∗ ∈ Cn×n with fλ =

∂f

∂λ
(λ, λ).

Proof. It follows directly from Lemma 4.2.1, Lemma 2.3.1 and Lemma 3.1.1, but we
also show the direct computation:

d

dt
Fε (E(t)) = fλ λ̇+ fλ λ̇ =

ε

x∗y

(
fλ x

∗Ėy + fλx
∗Ėy

)
=

ε

x∗y
2Re

(
fλ x

∗Ėy
)
.

It is easy to compute the coefficient of the free gradient introduced in Lemma 4.2.3
in the cases we are considering. When the target eigenvalue is the one with largest
real part we have:

f(λ, λ) = −Re(λ), 2fλ = −1, Gε(E) = −xy∗,

which is non-zero for all λ. Instead if the target eigenvalue is the one with largest
absolute value we have:

f(λ, λ) = −|λ|2, 2fλ = −2λ, Gε(E) = −2λxy∗,

which is non-zero whenever λ ̸= 0, i.e. if the original matrix has at least a non-zero
eigenvalue. In Lemma 4.2.6 we discuss the assumption made in Chapter 2 which states
that in general Gε(E) ̸= 0.

The next step we need to focus on is the preservation of the structure and the unit
Frobenius norm of the perturbation. Let us consider a differentiable path of structured
matrices E(t) in the linear space S. Since the subspace does not depend on t, then
also Ė(t) ∈ S and Lemma 4.2.3 and the properties of the projection ΠS yield

1

εκ(t)

d

dt
Fε(E(t)) = Re⟨ΠSGε(E(t)), Ė(t)⟩, (4.7)

where the free gradient has been replaced by the rescaled structured gradient ΠSGε(E),
which is the projection onto S of a rank-1 matrix. To fulfil the constraint

E(t) ⊆ S1 := {M ∈ S : ∥M∥F = 1},

we must have
0 =

1

2

d

dt
∥E(t)∥2F = Re⟨E(t), Ė(t)⟩.

4.2. Structured constrained gradient flows 39

In view of equation (4.7) we are thus led to the following constrained optimization
problem for the admissible direction of steepest descent.

Lemma 4.2.4. Given E ∈ S1 and G ∈ Cn×n, the solution of the optimization problem

argmin
Z∈S1, Re⟨Z,E⟩=0

Re⟨ΠSG,Z⟩

is
Z⋆ =

−ΠSG+ Re⟨ΠSG,E⟩E
∥ −ΠSG+ Re⟨ΠSG,E⟩E∥F

.

Proof. It follows directly from Lemma 3.1.2.

Lemmas 4.2.3 and 4.2.4 show that the admissible direction of steepest descent of
the functional Fε at a matrix E ∈ S of unit Frobenius norm is given by the positive
multiples of the matrix −ΠSGε(E)+Re⟨ΠSGε(E), E⟩E. This leads us to consider the
(rescaled) gradient flow on the manifold S1 of matrices in the structure space S of unit
Frobenius norm:

Ė = −ΠSGε(E) + Re⟨ΠSGε(E), E⟩E. (4.8)

By construction of this ordinary differential equation, we have that Ė ∈ S for E ∈ S
and Re⟨E, Ė⟩ = 0 along its solutions, and so both the structure S and the Frobenius
norm 1 are conserved.

As we follow the admissible direction of steepest descent of the functional Fε along
solutions E(t) of the ODE (4.8), we obtain the following.

Theorem 4.2.5. Assume that λ(t) is a simple eigenvalue of A+ εE(t) and that λ(·) is
continuous at t. Let E(·) of unit Frobenius norm satisfy the differential equation (4.8).
Then,

d

dt
Fε(E(t)) ≤ 0.

Proof. We write G = Gε(E) for short and take the inner product of (4.8) with Ė.
Using that Re⟨E, Ė⟩ = 0, we find

∥Ė∥2F = −Re⟨G− Re⟨G,E⟩E, Ė⟩ = −Re⟨G, Ė⟩

and hence Lemma 4.2.3 and (4.8) yield

1

εκ

d

dt
Fε(E(t)) = Re⟨G, Ė⟩ = −∥Ė∥2F = −∥G− Re⟨G,E⟩E∥2F ≤ 0,

which gives the precise rate of decay of Fε along a trajectory E(t) of (4.8).

Theorem 4.2.5 shows that the ODE (4.8) is a gradient system; in order to find its
stationary points we need the following important result that states the non-vanishing
property of the structured gradient.

Lemma 4.2.6. Let A,E ∈ S and ε > 0, and let λ be a simple target eigenvalue of
A+ εE.

(i) Complex case: let S be a complex-linear subspace of Cn×n. Then,

ΠSGε(E) ̸= 0 if λfλ ̸= 0.

40 Chapter 4. Rank-1 structured eigenvalue optimization

(ii) Real case: let S be a real-linear subspace of Rn×n. Then,

ΠSGε(E) ̸= 0 if Re(λfλ) ̸= 0.

Proof. We give the proof for the real case. The complex case is analogous but slightly
simpler. We take the real inner product of ΠSGε(E) with A+ εE ∈ S and use the
definition of ΠSGε(E):

⟨ΠSGε(E), A+ εE⟩ = Re⟨ΠS(2fλ xy
∗), A+ εE⟩ = Re⟨2fλ xy

∗, A+ εE⟩
= Re

(
2fλ x

∗(A+ εE)y
)
= Re

(
2fλλx

∗y
)
= 2 Re

(
fλλ
)
(x∗y),

where x∗y > 0 by (4.5). This yields the claim.

Remark 4.2.7. If the identity matrix I is in S, then the condition for ΠSGε(E) ̸= 0
can be weakened:

(i) In the complex case, it then suffices to have fλ ̸= 0. This is seen by taking the
inner product with A+ εE − µI ∈ S for an arbitrary µ ∈ C.

(ii) In the real case, if λ is real, then it suffices to have Re fλ ̸= 0. If λ is non-real,
then it even suffices to have fλ ̸= 0. In both cases this is seen by taking the inner
product with A+ εE − µI ∈ S for an arbitrary µ ∈ R.

In the rest of the chapter we implicitly assume that the structured gradient does
not vanish, as this is a generic property. Moreover we choose the time interval to be
I = [0,+∞).

We have the following characterization of stationary points of the norm- and
structure-constrained gradient system (4.8) on S1.

Theorem 4.2.8. Let E(t) ⊆ S1 be a solution of equation (4.8) passing through
E⋆ = E(t⋆) at time t⋆ > 0 and assume that ΠSGε(E⋆) ̸= 0. Then the following facts
are equivalent:

1.
d
dt
Fε(E(t))

∣∣∣∣
t=t⋆

= 0,

2. E⋆ is a stationary point of (4.8),

3. E⋆ is a non-zero real multiple of ΠSGε(E⋆).

Proof. Follows from Theorem 3.1.4.

Since minimizers of the optimization problem (4.3) are stationary points of the
norm- and structure-constrained gradient system (4.8), Theorem 4.2.8 immediately
yields the following corollary.

Corollary 4.2.9. Optimizers E⋆ of (4.3) are projections onto S of rank-1 matrices.

This provides the motivation to search for a differential equation that retains the
rank-1 property along its solutions. We describe a first, seemingly obvious approach in
the next subsection and then turn to a less obvious alternative in Section 4.3 on which
we focus in Sections 4.3 to 4.7.

4.3. A rank-1 matrix differential equation 41

4.2.3 Constrained gradient flow for structure-projected rank-1 ma-
trices

Let M1 be the manifold of complex n× n rank-1 matrices, and let MS
1 = ΠSM1 be

the set of S-projected rank-1 matrices. We note that MS
1 need not be a manifold.

For example, for S = Rn×n = ReCn×n we have MS
1 = ReM1, which is the union of

{0} and the two manifolds of real rank-1 and rank-2 matrices. Let us suppose in this
short subsection that MS

1 is a manifold, at least locally in a neighbourhood of interest.
For E ∈ MS

1 (in such a neighbourhood), we then let TEMS
1 be the tangent space at

E of MS
1 . We further suppose that the orthogonal projection PS

E onto the tangent
space TEMS

1 is computationally readily available. This is the case when the structure
space S consists of matrices of prescribed range and co-range, as will be discussed in
Section 4.8. However, this is not the case when the structure is given by a sparsity
pattern, for which we therefore propose the alternative approach of Section 4.3.

We consider the projected gradient system on the manifold MS
1 :

Ė = −PS
EΠSGε(E) + Re ⟨PS

EΠSGε(E), E⟩E. (4.9)

We note that PS
EE = E for E ∈ MS

1 , because the fact that scalar multiples of E
are again in MS

1 implies that E ∈ TEMS
1 . Therefore, the right-hand side of (4.9) is

in the tangent space TEMS
1 , and so we have a differential equation on MS

1 . Since
Re⟨E, Ė⟩ = 0, the unit Frobenius norm is preserved. Moreover, we again have the
monotonicity property of Theorem 4.2.5 by the same argument as before. Under the
non-degeneracy condition PS

EΠSGε(E⋆) ̸= 0, we have that E⋆ ∈ MS
1 is a stationary

point of (4.9) if and only if E⋆ is a real multiple of PS
E⋆
ΠSGε(E⋆). Clearly, every

stationary point E⋆ of (4.8) is also a stationary point of (4.9). In fact if the right-hand
side R(E) of (4.8) vanishes, then also PS

ER(E) vanishes, which is the right-hand side of
(4.9). However, in general we cannot exclude that (4.9) may have additional, spurious
stationary points E⊙ that are not a real multiple of GS

ε (E⊙).
In Section 4.8 we show how the projected gradient system (4.9) can actually be

used in computations when the structure space S consists of complex matrices with
prescribed range and co-range. Moreover, we find that in this particular case no
spurious stationary points are possible.

4.3 A rank-1 matrix differential equation

When the structure space S consists of matrices with a prescribed sparsity pattern,
where the tangent space projection PS

E is not readily available, and the projected
gradient system (4.9) of the previous subsection can apparently not be used in a
computationally efficient way. As a more accessible alternative, we consider a differential
equation on the manifold M1 of rank-1 matrices, which uses only the known and
computationally very simple orthogonal projections ΠS onto the structure and PY onto
the tangent space TY M1 at Y ∈ M1 (note that in general PS

E ̸= ΠSPY for E = ΠSY
and Y ∈ M1, since ΠS and PY do not commute). The alternative differential equation
is shown to lead to the same stationary points as the structure- and norm-constrained
gradient flow (4.8), without any spurious stationary points (under a non-degeneracy
condition). However, this differential equation is not a gradient system, and the
monotonicity property of Theorem 4.2.5 is therefore not guaranteed (though it is
usually observed in numerical experiments). Also for this alternative differential
equation, reformulated for the factors of the rank-1 matrices, we will numerically
approximate its stationary points.

42 Chapter 4. Rank-1 structured eigenvalue optimization

4.3.1 Formulation and properties of the rank-1 differential equation

Solutions of (4.8) can be written as E(t) = ΠSZ(t), where Z(t) solves

Ż = −Gε(ΠSZ) + Re⟨Gε(ΠSZ),ΠSZ⟩Z, (4.10)

as it is immediately seen by projecting both sides onto S with ΠS and comparing with
(4.8). We note that if E(t) = ΠSZ(t) has unit Frobenius norm, then

Re⟨E, Ė⟩ = −Re⟨E,Gε(E)⟩+ Re⟨Gε(E), E⟩,Re⟨E,E⟩ = 0.

Therefore, the unit Frobenius norm of E(t) = ΠSZ(t) is conserved for all t. Since
Gε(E) is of rank 1 (unless Gε(E) = 0, which we exclude), every stationary point Z⋆

of the differential equation (4.10) is of rank 1. We therefore project the right-hand
side onto the tangent space TY M1 at Y ∈ M1 and consider instead the projected
differential equation with solutions of rank 1:

Ẏ = −PYGε(ΠSY) + Re⟨PYGε(ΠSY),ΠSY ⟩Y. (4.11)

Here, PY : Cn×n → TY M1 is the orthogonal projection onto the tangent space TY M1,
which for a rank-1 matrix Y = σuv∗ with ∥u∥ = ∥v∥ = 1 is given as (see [51] and
Proposition A.0.2)

PY (Z) = Z − (I − uu∗)Z(I − vv∗). (4.12)

It is useful to note that PY (Y) = Y . For E = ΠSY of unit Frobenius norm in (4.11),
we find

Re⟨E, Ė⟩ = Re⟨E, Ẏ ⟩ = −Re⟨E,PYGε(E)⟩+ Re⟨PYGε(E), E⟩ Re⟨E, Y ⟩ = 0,

where we used that Re⟨E, Y ⟩ = Re⟨ΠSE, Y ⟩ = Re⟨E,ΠSY ⟩ = Re⟨E,E⟩ = ∥E∥2F = 1.
So, for all t, we have that E = ΠSY has unit Frobenius norm.

4.3.2 Stationary points

The following theorem states that the differential equations (4.8) and (4.11) yield the
same stationary points.

Theorem 4.3.1. There exists a one-to-one correspondence between the stationary
points of the original gradient system and those of the rank-1 matrix ODE.

(a) Let E⋆ ∈ S of unit Frobenius norm be a stationary point of the gradient system
(4.8). Then, E⋆ = ΠSY⋆ for some matrix Y⋆ ∈ M1 that is a stationary point of
the differential equation (4.11).

(b) Conversely, let Y⋆ ∈ M1 be a stationary point of the differential equation (4.11)
such that E⋆ = ΠSY⋆ has unit Frobenius norm and PY⋆Gε(E⋆) ̸= 0. Then,
PY⋆Gε(E⋆) = Gε(E⋆), Y⋆ is a non-zero real multiple of Gε(E⋆), and E⋆ is a
stationary point of the gradient system (4.8).

Proof. It is a direct consequence of Theorem 3.1.7. However we report it for this
specific case, since the proof is easier in the rank-1 setting. Let G⋆ = Gε(E⋆) in this
proof for short.

(a) By Theorem 4.2.8, E⋆ = µ−1ΠSG⋆ for some non-zero real µ. Then, Y⋆ := µ−1G⋆

is of rank 1 and we have E⋆ = ΠSY⋆. We further note that PY⋆G⋆ = µPY⋆Y⋆ = µY⋆ =
G⋆. Thus

−PY⋆G⋆ + Re⟨PY⋆G,E⋆⟩Y⋆ = −G⋆ + Re⟨G,E⋆⟩Y⋆,

4.3. A rank-1 matrix differential equation 43

and hence

Re⟨G⋆, E⋆⟩ = Re⟨ΠSG⋆, E⋆⟩ = Re⟨µE⋆, E⋆⟩ = µ∥E⋆∥2F = µ.

So we have
−G⋆ + Re⟨G⋆, E⋆⟩Y⋆ = −G⋆ + µY⋆ = 0

by the definition of Y⋆. This shows that Y⋆ is a stationary point of (4.11).
(b) We show that Y⋆ is a non-zero real multiple of G⋆. By Theorem 4.2.8, E⋆ is

then a stationary point of the differential equation (4.8). For a stationary point Y⋆
of (4.11), we have that PY⋆(G⋆) is a non-zero real multiple of Y⋆. Hence, in view of
PY⋆(Y⋆) = Y⋆, we can write G⋆ as

G⋆ = µY⋆ +W, where µ ̸= 0 is real and PY⋆(W) = 0.

Writing the rank-1 matrix Y⋆ = ρuv∗ with ρ ̸= 0 and ∥u∥ = ∥v∥ = 1, we then have by
(4.12) that

W =W − PY⋆(W) = (I − uu∗)W (I − vv∗).

On the other hand, G⋆ = 2fλxy
∗ is also of rank 1. So we have

2fλxy
∗ = µuv∗ + (I − uu∗)W (I − vv∗).

Multiplying from the right with v yields that x is a complex multiple of u, and
multiplying from the left by u∗ yields that y is a complex multiple of v. Hence, G⋆

is a complex multiple of Y⋆. Since we already know that PY⋆(G⋆) is a non-zero real
multiple of PY⋆(Y⋆) = Y⋆, it follows that G⋆ is the same real multiple of Y⋆. Thus
stationary points Y⋆ ∈ M1 of the differential equation (4.11) are characterized as real
multiples of G⋆. Hence, E⋆ = ΠSY⋆ is a real multiple of ΠSG⋆, and by Theorem 4.2.8,
E⋆ = ΠSY⋆ is a stationary point of (4.8).

4.3.3 Possible loss of monotonicity

Since the projections ΠS and PY do not commute, along solutions of (4.11) we cannot
guarantee the monotonicity property of Theorem 4.2.5 that we have for the constrained
gradient system (4.8). However, in all our numerical experiments we observed that
starting with an initial datum given by the negative free gradient of the considered
functional, i.e. Y (0) = −Gε(0), we always obtained a monotone convergence behaviour
to a (local) optimum. Only in very few cases, by starting from a randomly chosen
initial datum, we were able to observe a non-monotonic convergence. However the
loss of monotonicity occurred only once, after the first step, and monotonicity was
recovered from the following step onwards (see Figure 4.1). In the following section we
will explain this behaviour locally near a stationary point, but we have no theoretical
explanation for the favourable numerically observed monotonic behaviour far from
stationary points.

4.3.4 Differential equations for the factors of rank-1 matrices

Equation (4.11) is an abstract differential equation on the rank-1 manifold M1. We
write any matrix Y ∈ M1 in a non-unique way as

Y = ρuv∗,

44 Chapter 4. Rank-1 structured eigenvalue optimization

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iterations

F
ε

Figure 4.1: Non-monotonic decrease of the objective functional Fε

during the integration of equation (4.8).

where ρ ∈ R with ρ > 0 and u, v ∈ Cn have unit norm. The following lemma shows
how we can rewrite the rank-1 differential equation (4.11) in terms of differential
equations for the factors u, v and an explicit formula for ρ.

Lemma 4.3.2. Let Y (t) ⊆ M1 be a solution of the rank-1 differential equation (4.11)
such that ∥ΠSY (t)∥F = 1. Then it is always possible to decompose it as

Y (t) = ρ(t)u(t)v(t)∗,

where ρ(t) fulfils the unit norm constraint on E = ΠSY , that is

ρ =
1

∥ΠS(uv∗)∥F
,

and the unit norm factors u(t) and v(t) are solutions of the ODEs

ρu̇ = −(I − uu∗)Gv − i

2
Im(u∗Gv)u,

ρv̇ = −(I − vv∗)G∗u+
i

2
Im(u∗Gv)v,

where G = Gε(E).

Proof. The equation for ρ is obvious because 1 = ∥E∥F = ρ∥ΠS(uv
∗)∥F . We write the

right-hand side of (4.11) and use (4.12) to obtain for Y = ρuv∗

Ẏ = −PYG+ Re⟨PYG,E⟩Y =

= −(I − uu∗)Gvv∗ − uu∗G(I − vv∗)− uu∗Gvv∗ + Re⟨PYG,E⟩Y =

= −
(
(I − uu∗)Gvv∗ + ωu

)
v∗ − u

(
u∗G(I − vv∗) + ωv∗

)
−
(
ζ + Re⟨PYG,E⟩ρ

)
uv∗,

4.4. Local convergence to the rank-1 stationary points 45

where ζ = Re(u∗Gv) and ω = i
2 Im(u∗Gv) are such that u∗Gv = ζ + 2ω. Since it is

also possible to write
Ẏ = (ρu̇)v∗ + u(ρv̇∗) + ρ̇uv∗,

we can read off ρu̇, ρv̇∗ and ρ̇ as the three terms in big brackets in the former expression
for Ẏ . This yields the stated differential equations for u and v (and another one for ρ,
which will not be needed). Moreover, since Re(ω) = 0, we have

d

dt
∥u∥2 = 2 Re(u∗u̇) =

2

ρ

(
Re(−u∗(I − uu∗)Gv) + Re(ω)∥u∥2

)
= 0

and analogously for v, so that the unit norm of u and v is conserved.

The positive factor ρ on the left-hand sides of the differential equations for u
and v only determines the speed with which the trajectory is traversed, but has no
influence on the trajectory itself. Since Lemma 4.2.3 provides the explicit expression
for G = Gε(E) = 2fλ xy

∗, we can rewrite the differential equations for u and v as
ρu̇ = (αβγ)u− (βγ)x− i

2
Im(αβγ)u,

ρv̇ = (αβγ)v − (αγ)y − i

2
Im(αβγ)v,

(4.13)

where α = u∗x, β = v∗y and γ = 2fλ.

4.3.5 Cases of interest for the rank-1 ODE

The real dimension of the manifold of complex n × n rank-1 matrices of unit norm
is 4n − 2. Integrating (4.11) instead of (4.8) is very appealing in those cases where
dim(S) is significantly larger than 4n− 2. An important example is given by sparse
matrices with a sparsity pattern with a number of non-zero elements of order cn with
c > 4 (and ideally much larger than 4). In the case of a real target eigenvalue the
dimension of the manifold of real n× n rank-1 matrices of unit norm is 2n− 1 so that
for structured matrices it is meaningful to make use of (4.11) if c > 2. Similarly, when
considering matrices with prescribed range and co-range,

S = {B∆C : ∆ ∈ Rk×l}, (4.14)

where B ∈ Rn×k and C ∈ Rl×n with k, l < n, replacing the unknown matrix ∆,
which is a full k × l real matrix, by a rank-1 matrix, significantly reduces the memory
requirements when k and l are large. As for the computational cost, we may argue
that the reduced number of variables may lead to a faster convergence of the method.

4.4 Local convergence to the rank-1 stationary points

In this section we show that solutions of the rank-1 projected differential equation (4.11)
converge locally to strong (or strict) local minima of the functional Fε, that is the
solution converges to a local minimum E for which the Hessian matrix Hε(E) of Fε

at E yields a positive definite quadratic form when restricted to the tangent space
TES1 of the manifold S1 at E (see also Definition 3.1.9). Here, S1 is the manifold of
matrices in S of unit Frobenius norm. We formulate and prove a key lemma, analogous
to Lemma 3.1.8, we discuss some assumptions needed for the main result and then we
state the local convergence result.

46 Chapter 4. Rank-1 structured eigenvalue optimization

Lemma 4.4.1. Let Y⋆ ∈ M1 with E⋆ = ΠSY⋆ ∈ S of unit Frobenius norm. Let Y⋆ be a
stationary point of the rank-1 projected differential equation (4.11), with an associated
target eigenvalue λ of A+ εE⋆ that is simple. Then, there exists δ̄ > 0 such that, for
all positive δ ≤ δ̄ and all Y ∈ M1 with ∥Y − Y⋆∥F ≤ δ and ΠSY of unit norm, we
have

∥PYGε(ΠSY)−Gε(ΠSY)∥F ≤ Cδ2

with C > 0 independent of δ.

Proof. The proof is the same of that of Lemma 3.1.8, but in the rank-1 setting; we report
it for completeness. Let us consider a smooth regular path Y (τ) = u(τ)v(τ)∗ ∈ M1

(with non-zero u(τ), v(τ) ∈ Cn) such that E(τ) = ΠSY (τ) is of unit Frobenius norm
and

Y (0) = Y⋆ = αG⋆ for some real α, where G⋆ = Gε (E(0)) = 2fλxy
∗,

where (λ, x, y) is the eigentriplet of A+ εE(0) associated with the target eigenvalue λ.
Similarly, for τ ∈ [0, δ] with δ such that λ(τ) remains simple, we have

G(τ) = Gε(E(τ)) = 2fλ(τ)x(τ)y(τ)
∗.

We may assume that the path is parametrized such that ∥Ẏ (τ)∥F = 1 and hence
we have ∥Y (τ)− Y⋆∥F ∼ τ for small τ . By the given assumptions all quantities are
smooth with respect to τ . In particular, for a simple eigenvalue, under a smooth matrix
perturbation, the derivatives ẋ(τ) and ẏ(τ) of the associated eigenvectors, under the
assumed normalization (4.5), are given by (see e.g. [31, 58])

1

ε
ẋ(τ)∗ = −x(τ)∗Ė(τ)N(τ) + Re

(
x(τ)∗Ė(τ)N(τ)x(τ)

)
x(τ)∗,

1

ε
ẏ(τ) = −N(τ)Ė(τ)y(τ) + Re

(
y(τ)∗N(τ)Ė(τ)y(τ)

)
y(τ),

where N(τ) is the group inverse of A + εE(τ) − λ(τ)I and the last terms on the
right-hand side of both differential equations account for the unit norm preservation
for both eigenvectors and for the positivity of their inner product. Note that by the
simplicity of λ(τ), the group inverse N(τ) and thus also ẋ(τ) and ẏ(τ) as well as their
derivatives are bounded. With the formula (4.12) for the projection PY , we thus have
the following first order expansion near τ = 0. Here we indicate by u, v, x, y and fλ
(and further u̇, v̇, ẋ, ẏ and ḟλ) the associated functions of τ at τ = 0, i.e. corresponding
to the stationary point. We have

PY (τ)G(τ) = PY (τ)

(
fλ(τ)x(τ)y(τ)

∗
)
=

=
(
fλ + τ ḟλ

)
·

((
xx∗ + τ (u̇x∗ + xu̇∗)

)(
xy∗ + τ (ẋy∗ + xẏ∗)

)
+

+
(
xy∗ + τ (ẋy∗ + xẏ∗)

)(
yy∗ + τ (v̇y∗ + yv̇∗)

)
+

−
(
xx∗ + τ (u̇x∗ + xu̇∗)

)(
xy∗ + τ (ẋy∗ + xẏ∗)

)(
yy∗ + τ (v̇y∗ + yv̇∗)

))
+O(τ2) =

= fλxy
∗ + τ

(
ḟλxy

∗ + fλxẏ
∗ + fλẋy

∗
)
+O(τ2).

4.4. Local convergence to the rank-1 stationary points 47

Consequently, PY (τ)G(τ) has the same first order expansion as

G(τ) = fλ(τ)x(τ)y(τ)
∗ = fλxy

∗ + τ
(
ḟλxy

∗ + fλxẏ
∗ + fλẋy

∗
)
+O(τ2),

which yields the result.

For the formulation of our local convergence result we need the following assump-
tions. Here, M1 is the manifold of rank-1 matrices in Cn×n, and MS

1 = ΠSM1 consists
of structure-projected rank-1 matrices. The first assumption is made on the structure
space S. It excludes, in particular, spaces S that are too low-dimensional: it requires
dim(S) ≥ dim(M1) = 4n− 2 (as before dim indicates the real dimension).

Assumption 4.4.2. The restricted projection ΠS
∣∣
M1

: M1 → MS
1 ⊂ S is a local

diffeomorphism, or equivalently:

(i) If E = ΠSY ∈ MS
1 for some Y ∈ M1, then Y is locally unique.

(ii) The local inverse map (ΠS
∣∣
M1

)−1 : E → Y is continuously differentiable.

Remark 4.4.3. We comment on Assumption 4.4.2 to (a) make it plausible in the case
of perturbation matrices E with prescribed sparsity pattern and (b) show that it is not
satisfied in the case of perturbation matrices with prescribed range and co-range.

(a) Consider the structure S of real n × n matrices with a prescribed sparsity
pattern. Let E ∈ MS

1 ⊂ S be given. So E = ΠS Ŷ for some Ŷ ∈ M1. In principle, in
order to determine all solutions of the equation

ΠSY = E

we should form Y = uv∗ with u, v ∈ Cn with ∥u∥ = 1 and v ̸= 0, and write a system
of quadratic equations in the variables {ui}ni=1 and {vj}nj=1 that reads

Re
(
uiv

∗
j

)
= Eij for all (i, j) ∈ S

where S is the considered sparsity pattern, together with the norm constraint ∥u∥2 = 1,
and moreover the first non-zero entry of u can be chosen to be real and positive to
guarantee uniqueness of the representation Y = uv∗. This gives a system of s + 1
quadratic equations where s = #S = dim(S) is the number of entries of E which are
not prescribed to be zero. In terms of the real variables Re(ui), Im(ui),Re(vi), Im(vi)
(excluding Im(u1) = 0), the system has s+ 1 quadratic equations in 4n− 1 variables:
Φ(u, v) ≡ ΠSY = E. We have local uniqueness of Ŷ = ûv̂∗ if the derivative matrix
DΦ(û, v̂) ∈ C(s+1)×(4n−1) has only the trivial kernel 0. This can be expected to hold
true generically if s ≥ 4n− 2 (and the more so as s gets larger). On the other hand,
if s < 4n − 2, then integrating the gradient system (4.8), translated into a system
of differential equations in terms of the s non-zero entries of E, would be favorable
over integrating the rank-1 matrix differential equation (4.8). This further indicates
that Assumption 4.4.2 is reasonable in the case where the structure is given by a
sparsity pattern. For the structure space S of matrices with a prescribed sparsity
pattern, Assumption 4.4.2 is reminiscent of the problem of matrix completion, where
the aim is to minimize the rank r such that there exists a unique matrix M of rank
r with ΠSM = E for a given matrix E ∈ S; see e.g. [12]. Note, however, that in
Assumption 4.4.2 the condition is not about existence but about local uniqueness, and
the rank is fixed to 1.

(b) Assumption 4.4.2 is not satisfied in the case where the structure S is given by
matrices with prescribed range and co-range. Since in this case the orthogonal projection

48 Chapter 4. Rank-1 structured eigenvalue optimization

onto the structure is given by ΠSY = BB†Y C†C (see Proposition B.0.5), we have that
for a rank-1 matrix Y = uv∗, the projected matrix E = ΠSY can also be written as
E = ΠS Ỹ with Y = (u+ ũ)(v + ṽ)∗ for arbitrary ũ ∈ ker(B⊤) and ṽ ∈ KerC⊤, and
so condition (i) in Assumption 4.4.2 is violated. This could be remedied by requiring
that Y = uv∗ be such that u ∈ ker(B⊤)⊥ = RanB and v ∈ ker(C⊤)⊥ = RanC and
incorporating these constraints in the differential equation. We will not carry this out
in detail for two reasons: On the one hand it did not seem necessary in our numerical
experiments, and on the other hand we can here work instead with the projected gradient
system (4.9) on MS

1 , as is described in Section 4.8.

The next assumption is made on the Hessian of the functional Fε at a stationary
point of the differential equation (4.8).

Assumption 4.4.4. Let E0 ∈ S1 be a stationary point of the constrained gradient
system (4.8). We assume that E0 is a strict minimum of the functional Fε on S1 (see
Definition 3.1.9), that is, the Hessian matrix Hε(E0) of Fε at E0 yields a positive
definite quadratic form when restricted to the tangent space TE0S1 of the manifold S1

at E0. In other words there exists α > 0 such that

⟨Z,Hε(E0)Z⟩ ≥ α∥Z∥2F , ∀Z ∈ TE0S1.

Under these assumptions we have the following result.

Theorem 4.4.5 (Local convergence to a strict local minimum). Under Assump-
tion 4.4.2, let the rank-1 matrix Y0 ∈ M1 be a stationary point of the projected
differential equation (4.11) such that E0 = ΠSY0 ∈ S1 is of unit Frobenius norm
and PY0Gε(E0) ̸= 0. We assume that E0 satisfies Assumption 4.4.4. Then, for an
initial datum Y (0) sufficiently close to Y0, the solution Y (t) of (4.11) converges to Y0
exponentially as t → ∞. Moreover, Fε (ΠSY (t)) decreases monotonically with t and
converges exponentially to the local minimum value Fε(E0) as t→ ∞.

Proof. See Theorem 3.1.10.

Note that E0 = ΠSY0 ∈ S1 is a stationary point of (4.8) by Theorem 4.3.1. So
the assumption on E0 reduces to the condition in Assumption 4.4.4 on the Hessian
Hε(E0).

4.5 Numerical integration by a splitting method

In this section we discuss how to integrate numerically the differential equations
(4.13). The objective here is not to follow a particular trajectory accurately, but to
arrive quickly at a stationary point, which corresponds to the sought solution of the
optimization problem (4.2). The simplest method is the normalized Euler’s method,
or normalized gradient descent method, where the result after an Euler step (i.e. a
steepest descent step) is normalized to unit norm for both the u- and v-component.
This can be combined with a standard line search strategy to determine the stepsize
adaptively. However, a more efficient approach is obtained with a splitting method
instead of Euler’s method.

4.5.1 Splitting method

The splitting method consists in dividing the right-hand sides of system (4.13) in two
parts: the integration of a first step, that acts as an horizontal move, is applied to the

4.5. Numerical integration by a splitting method 49

equations {
ρu̇ =

(
αβγ

)
u−

(
βγ
)
x

ρv̇ = (αβγ) v − (αγ) y
, (4.15)

followed by a step for the differential equations
ρu̇ = − i

2
Im(αβγ)u

ρv̇ = +
i

2
Im(αβγ)v

. (4.16)

Since the right-hand sides of the equations in system (4.16) consists, respectively, of
just an imaginary coefficient for u and v, the differential equations in the second step
are a mere rotation of u and v. In the case of a real eigenvalue of a real matrix,
the system (4.16) has a vanishing right-hand side and can therefore be ignored. The
following result show that this approach preserves stationary points, which is unusual
for splitting methods.

Lemma 4.5.1. A pair of vectors (u, v) is a stationary point of system (4.13) if and
only if (u, v) is a stationary point of systems (4.15) and (4.16).

Proof. If (u, v) is a stationary point of (4.13), then u is proportional to x and v is
proportional to y. This implies that x = αu and y = βv, by means of the definition of
α and β and hence (u, v) is a stationary point of (4.15). Thus

0 = (αβγ)u− (βγ)x− i

2
Im(αβγ)u = − i

2
Im(αβγ)u

and an analogous relation holds also for the second equation. Hence (u, v) is a stationary
point also of (4.16). The converse direction is evident.

4.5.2 Fully discrete splitting algorithm

Now we describe a numerical method for integrating systems (4.15) and (4.16). Starting
from the pair of vectors (uk, vk) of unit norm, we define

ρk =
1

∥ΠS(ukv
∗
k)∥F

,

we denote by xk and yk the left and right eigenvectors to the target eigenvalue λk of
A+ ερkΠS(ukv

∗
k) and we set

αk = u∗kxk, βk = v∗kyk, γk = 2fλk
. (4.17)

We apply Euler’s method with stepsize h to (4.15) to obtain
û(h) = uk +

h

ρk

((
αkβkγk

)
uk −

(
βkγk

)
xk

)
v̂(h) = vk +

h

ρk

(
(αkβkγk) vk − (αkγk) yk

) , (4.18)

followed by a normalization to unit norm

ũ(h) =
û(h)

∥û(h)∥
, ṽ(h) =

v̂(h)

∥v̂(h)∥
.

50 Chapter 4. Rank-1 structured eigenvalue optimization

Then, as a second step, we integrate the rotating differential equations (4.16) by
setting

u(h) = eiϑh ũ(h), v(h) = e−iϑh ṽ(h), ρ(h) =
1

∥ΠS(u(h)v(h)∗)∥F
, (4.19)

where
ϑ = − 1

2ρk
Im(αkβkγk)

and finally we compute the target eigenvalue λ(h) of the perturbed matrix

A+ ερ(h)ΠS
(
u(h)v(h)∗

)
.

The fully discrete method, which preserves the stationary points of the continuous
system (4.13), is implemented by Algorithm 2 and in the following we comment on its
main steps. One motivation for choosing this method is that near a non real stationary
point, the motion is almost rotational since x ≈ αu and y ≈ βv. The dominant term
determining the motion is then the rotational term on the right-hand sides of (4.13),
which is integrated by a rotation in the above scheme (the integration would be exact if
α, β and γ were constant). Algorithm 2 requires in each step one computation of target
eigenvalues and associated eigenvectors of structure-projected rank-1 perturbations to
the matrix A, which can be computed at moderate computational cost for large sparse
matrices A by a Krylov Schur algorithm [64], as implemented in the Matlab function
eigs. We also tried a variant where, in the rotation step, α, β and γ are updated from
(ũ(h), ṽ(h)) and from the left and right eigenvectors associated to the target eigenvalue
λ̃(h) of A + ερ(h)ΠS(ũ(h)ṽ(h)

∗). In our numerical experiments we found, however,
that the slight improvement in the speed of convergence to the stationary state does
not justify the nearly doubled computational cost per step.

According to all our numerical experiments we have observed that if we start the
integration from the initial datum (corresponding to the free gradient)

Y (0) = −2fλxy
∗, (4.20)

where (λ, x, y) is the target eigentriplet of the matrix A, the functional Fε turns out to
be decreasing along solution of (4.11), which is consistent with the quasi-gradient local
structure of the ODE, as discussed in the previous section (see Theorem 4.4.5). As a
consequence we have designed a stepsize control strategy based on the assumption of
monotonicity of Fε. If this were not the case we would commute (for the non descent
steps) to a standard stepsize control method for ODE solvers, based on standard error
estimation of the solution. We use an Armijo-type line search strategy, adapted to
the possibility that the functional f(λ, λ) is not everywhere reduced along the flow of
the differential equation (4.11) (even though this was never observed in our numerical
experiments when we chose the initial value according to (4.20)). By Lemma 4.2.3,
the change of the functional along solutions of (4.11) is (with G = Gε(E) for short)

d

dt
Fε(E(t)) = εκRe⟨G, Ė⟩ = −εκ

(
∥ΠSG∥2F − Re⟨ΠSPYG,E⟩ Re⟨ΠSG,E⟩

)
=: −g

(4.21)
For the choice E = Ek = ukv

∗
k, we write gk = g, G = Gε(Ek) = 2fλ(λk, λk)xky

∗
k, and

κ = κk = 1/(x∗kyk). We set

fk = f(λk, λk), f(h) = f(λ(h), λ(h))

4.6. Application to structured matrix nearness problems 51

Algorithm 2 Integration step for the rank-1 differential equations (4.13).

Input: A given matrix A, a perturbation size ε, a parameter θ > 1, two starting
vectors uk ≈ u(tk) and vk ≈ v(tk), a proposed stepsize hk and a target eigenvalue
λk of A+ εΠS(ukv

∗
k)/∥ΠS(ukv

∗
k)∥F .

Output: The updated variables uk+1, vk+1, hk+1 and λk+1.

1: Initialize the stepsize by the proposed one: h = hk.
2: Compute left/right eigenvectors xk and yk of A+∆k to λk that fulfils condition

(4.5).
3: Compute αk, βk and γk by (4.17) and gk by (4.21).
4: Initialize f(h) = fk.
5: while f(h) ≥ max(fk, fk − hθgk) do
6: Compute (u(h), v(h)) according to (4.18) and (4.19).
7: Compute ∆(h) = ερ(h)ΠS(u(h)v(h)

∗) with ρ(h) = 1/∥ΠS(u(h)v(h)
∗)∥F .

8: Compute λ(h) target eigenvalue of A+∆(h).
9: Compute the value f(h) = f

(
λ(h), λ(h)

)
.

10: if f(h) ≥ max(fk, fk − hθgk) then
11: Reduce the stepsize by setting h := h/θ
12: end if
13: end while
14: if

(
gk ≥ 0 and f(h) ≥ fk − (h/θ)gk

)
or
(
gk < 0 and f(h) ≥ fk − hθgk

)
then

15: Reduce the stepsize for the next step: hnext := h/θ.
16: else
17: if h = hk then
18: Set hnext := θhk (augment the stepsize if no rejection has occurred).
19: else
20: Set hnext := hk.
21: end if
22: end if
23: Set hk+1 := hnext, λk+1 := λ(h) and define the starting values for the next step as

uk+1 := u(h) and vk+1 := v(h).

and we accept the result of the step with stepsize h if, for a given parameter θ > 1,

f(h) < max(fk, fk − hθgk).

If gk ≥ 0 and f(h) ≥ fk − (h/θ)gk, or if gk < 0 and f(h) ≥ fk − hθgk, then we reduce
the stepsize for the next step to h/θ. If the stepsize has not been reduced in the
previous step, we try for a larger stepsize. Algorithm 2 describes in detail the step
from tk to tk+1 = tk + hk of the splitting method.

4.6 Application to structured matrix nearness problems

In this section we consider some matrix nearness problems that arise in a stability
setting and that are closely related to the eigenvalue optimization method considered
in this chapter. Given a structure space S, let again A ∈ Cn×n be a given matrix
and let λ(A) ∈ C be a target eigenvalue of A. We again consider the smooth function
f(λ, λ) satisfying (4.1) that is to be minimized. For a prescribed real number a⋆ in

52 Chapter 4. Rank-1 structured eigenvalue optimization

the range of f we assume that

f(λ(A), λ(A)) > a⋆,

so that, for sufficiently small ε > 0, we have φ(ε) > a⋆, where

φ(ε) := min
∆∈S, ∥∆∥F=ε

f
(
λ (A+∆) , λ (A+∆)

)
.

The aim is to find the smallest ε > 0 such that φ(ε) = a⋆:

ε⋆ = min
{
ε > 0 : φ(ε) ≤ a⋆

}
. (4.22)

Determining ε⋆ is a one-dimensional root-finding problem for the function φ that is
defined by the considered eigenvalue optimization problem.

4.6.1 Structured distances to singularity and to instability

Let us consider three problems which corresponds to three different target eigenvalues:
the structured distance to instability, the stability radius of a Schur matrix and the
structured distance to singularity.

• Let A be a Hurwitz matrix, i.e. with negative spectral abscissa α(A) < 0, where

α(A) := max{Re(λ) : λ is an eigenvalue of A}.

With the function f(λ, λ) = −1
2(λ + λ) = −Re(λ), meaning that the target

eigenvalue λ is the one with largest real part, and a⋆ = 0, we arrive at the
problem of computing the structured distance to instability of A, defined as

ε⋆ = min{ε > 0 : αS
ε (A) = 0},

where
αS
ε (A) = max

E∈S, ∥E∥F=1
α(A+ εE)

is the ε-pseudospectral abscissa with respect to the structure space S.

• With f(λ, λ) = −λλ = −|λ|2, meaning that the target eigenvalue λ(M) is chosen
as an eigenvalue of largest modulus of a matrix M , and a⋆ = −1 we arrive at
the problem of computing the stability radius of a Schur matrix A, i.e. a matrix
with spectral radius ρ(A) < 1, where

ρ(A) := max{|λ| : λ is an eigenvalue of A}.

The stability radius is defined as

ε⋆ = min{ε > 0 : ρSε (A) = 1},

where
ρSε (A) = max

E∈S, ∥E∥F=1
ρ(A+ εE)

is the ε-pseudospectral radius with respect to the structure space S.

• Let A be a nonsingular matrix. With f(λ, λ) = λλ = |λ|2, implying that the
target eigenvalue λ the one of smallest modulus, we arrive at the problem of

4.6. Application to structured matrix nearness problems 53

computing the distance to singularity of A, defined as

ε⋆ = min{ε > 0 : ϱSε (A) = 0},

with
ϱSε (A) = min

E∈S, ∥E∥F=1
ϱ(A+ εE),

where ϱ(M) is the smallest modulus of eigenvalues of a matrix M . In this case,
instead of eigenvalues of smallest modulus, we could take the smallest singular
value in the objective functional: the resulting approach is similar to the one
presented, but the role of the eigenvectors in the associated gradient is replaced
by the singular vectors. A possible advantage is that the smallest singular value
could have a better conditioning with respect to the eigenvalue with smallest
modulus, for instance in the presence of a couple of conjugate eigenvalues that
coalesce under real perturbations.

As seen in Chapter 2 and Chapter 3, to solve these kind of problems we use the
following two-level method:

(i) Inner iteration: Given ε > 0, we aim to compute a matrix E⋆(ε) ∈ S of unit
Frobenius norm, such that Fε(E) = f

(
λ (A+ εE) , λ (A+ εE)

)
is minimized:

E(ε) = argmin
E∈S, ∥E∥F=1

Fε(E). (4.23)

(ii) Outer iteration: We compute the smallest positive value ε⋆ with

φ(ε⋆) = a⋆, (4.24)

where
φ(ε) = Fε (E(ε)) = f

(
λ (A+ εE(ε)) , λ (A+ εE(ε))

)
.

The eigenvalue optimization problem (4.23) is precisely of the type studied in
the previous sections. To compute E⋆(ε) for a given ε > 0, we integrate numerically
either the ODE system (4.8) or (4.11); see Section 4.5. The computational cost can
be significantly reduced if we are able to compute efficiently ΠS(Y) and the matrix
vector multiplication ΠS(Y)v (with v ∈ Cn) which is typically used by an iterative
eigensolver applied to A + εΠS(Y). This is true for example when S is the set of
matrices with a prescribed sparsity pattern. Note that often also linear system solves
are required to find the desired eigenvalue and a convenient solution of the structured
linear systems is desirable (see e.g. [63]).

The outer iteration determines the smallest positive solution of the one-dimensional
root-finding problem (4.24). We make use of a locally quadratically convergent Newton-
type method, which can be justified under appropriate regularity assumptions (see
Section 2.4 and Section 3.2). It turns out that the derivative of φ is then simply (see
Lemma 3.2.1)

φ′(ε) = −∥ΠSGε(E(ε))∥F /(x(ε)∗y(ε)), (4.25)

where x(ε) and y(ε) with x(ε)∗y(ε) > 0 are the eigenvectors to the (simple) target
eigenvalue λ(ε) of A+ εE(ε) at the extremizer E(ε); cf. [24, 32] for related derivative
formulas. If the assumptions justifying this formula are not met, we can always resort
to bisection. The algorithm we use is indeed a combined Newton/bisection approach,
similar to [24, 28, 32] and it is described in Algorithm 1.

54 Chapter 4. Rank-1 structured eigenvalue optimization

0 500 1000 1500 2000 2500

nz = 90158

0

500

1000

1500

2000

2500

Figure 4.2: Sparsity patterns of the matrices ORANI678 (left) and
FIDAPM11 (right).

k Re(λk)
0 −1.232670912085709
1 −1.745212357950066
2 −1.917229680782718
3 −2.076407232182272
4 −2.249359154133923
5 −2.343018078428841
6 −2.343036033336665
7 −2.349611649664635
8 −2.350556073486847
9 −2.350620017092603
...

...
25 −2.350634775262768

Table 4.1: Computed values using Algorithm 2 for the ORANI678
matrix.

4.7 Numerical experiments

In this section we show the behaviour of Algorithm 2, which is based on the rank-1
differential equation (4.11), on two sparse matrices and an example with prescribed
range and co-range. We start by considering two well-known sparse matrices.

4.7.1 The matrix ORANI678 from the Harwell Boeing collection

The matrix A is a sparse real nonsymmetric square matrix taken from the set
ECONAUS. It has dimension n = 2529 and a number of non-zero entries nz =
90158 ≈ 40n. Its sparsity pattern is plotted in Figure 4.2.

We have set ε = 1 and applied our algorithms to the minimization problem (4.3)
with f(λ, λ) = −1

2(λ+ λ) = −Re(λ) and S the space of real matrices with the sparsity
pattern of A. The target eigenvalue is the one with largest real part. We thus aim to
compute the structured ε-pseudospectral abscissa of A with an accuracy of 14 digits.

We denote by neig the total number of eigenvalue computations (that is the number
of calls to the Matlab routine eigs). We integrated (4.11) by Algorithm 2 and obtained
the results in Table 4.1. The main cost is the number of eigentriplets evaluations by
the Matlab routine eigs and it is given by neig = 38. The CPU time is around
1.5 seconds. For comparison we also integrated the full-rank ODE (4.8) by Euler’s

4.7. Numerical experiments 55

k εk φ(εk) # eigs
1 0.0104015 1.1019564 · 10−2 13
2 0.0176409 9.5284061 · 10−4 13
3 0.0219541 2.5263758 · 10−4 14
4 0.0243116 6.5050153 · 10−5 13
5 0.0255439 1.6503282 · 10−6 13
6 0.0261739 4.1561289 · 10−6 13
7 0.0264923 1.0428313 · 10−6 13
8 0.0266524 2.6118300 · 10−7 13
9 0.0267327 6.5355110 · 10−8 13
10 0.0267728 9.6346192 · 10−9 13
11 0.0267930 1.7293467 · 10−10 4

Table 4.2: Distance to singularity for the ORANI678 matrix: com-
puted values εk, φ(εk) = |λmin(A+ εkEk)|2 and number of eigenvalue

computations of the inner rank-1 algorithm.

method (gradient descent) with variable stepsize and we obtained a similar behaviour.
The number of eigentriplets evaluations is neig = 35 and the final approximation to
the ε-pseudospectral abscissa is 2.350634775261177, which coincides with the value
computed by the rank-1 method up to the 11-th digit. The CPU time is 1.6 seconds.
Since u and v turn out to be real, the gain in terms of memory requirements for the
rank-1 algorithm is 90158/5058 ≈ 17.82, which is a significant reduction in the storage
of the iterates.

Setting next f(λ, λ) = λλ = |λ|2 and the target eigenvalue the one - say λmin - with
smallest modulus, we approximated the structured distance to singularity of A. Given
the convergence to a local optimizer of Algorithm 2 we obtain this way an upper bound
to this distance. An immediate lower bound is the unstructured distance σmin(A),
i.e. the smallest singular value, which is equal to 0.0033388. As we see in Table 4.2,
the effective structured distance to singularity is one order of magnitude larger. By
applying a Newton-bisection method we obtained the results shown in Table 4.2. Since
the function φ and its derivative (see (4.25)) are computed inexactly (by Algorithm 2),
we do not observe quadratic convergence. The average CPU time of an outer iteration
is around 528.6 seconds, which is due to the augmented computational cost required by
the routine eigs for linear systems solves and it is also motivated by the high accuracy
requested. The average number of eigentriplets evaluation is neig = 12.

4.7.2 The matrix FIDAPM11 from the SPARSKIT collection

The FIDAPM11 matrix A considered now is a sparse real nonsymmetric square matrix
taken from the set ECONAUS. It has dimension n = 22294 and a number of non-
zero entries nz = 623554 ≈ 30n. Its sparsity pattern is plotted in Figure 4.2. We
have set ε = 0.5 and applied our algorithms to the minimization problem (4.3) with
f(λ, λ) = −λλ = −|λ|2 and S the space of real matrices with the sparsity pattern of A,
and the target eigenvalue is the one with largest absolute value. We are thus aiming
to compute the structured ε-pseudospectral radius of A. Integrating both ODEs (4.8)
and (4.11), we obtain the same optimizer λ = 1.9716893. The number of computed
eigentriplets is neig = 107 and neig = 99, with a slight advantage of the rank-1 method.
The CPU time is close to 32.95 and 31.32 seconds respectively. Also in this case u and
v turn out to be real so that the gain in terms of memory requirements is significant,
623554/44588 ≈ 13.98.

56 Chapter 4. Rank-1 structured eigenvalue optimization

10-1 100 101 102 103

t

10-10

10-5

F
(E

(t
))

-F
*

101 102

t

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

F
(E

(t
))

-F
*

Figure 4.3: behaviour Fε (E(t)) − F ∗
ε (where F ∗

ε is the computed
value of Fε at the stationary point) in the numerical integration by
Algorithm 2 for the matrix ORANI678 with f(λ, λ) = −Re(λ) (left
picture) and for the matrix FIDAPM11 with f(λ, λ) = −|λ|2 (right

picture). In both cases Fε (E(tk)) decays monotonically with k.

4.7.3 A comparison with Manopt

In order to compare our method, we made experiments on the sparse matrices considered
above using Manopt, a well-known toolbox for optimization on manifolds and matrices
[6]. By applying Manopt to the same problem considered for the ORANI678 matrix,
where we provided the Riemannian gradient on the manifold of sparse matrices with
unit Frobenius norm, the method yields a result very close to the one computed
with our method (the difference is around 10−13). The CPU time for our algorithm
is approximately 1.4 seconds. Concerning the algorithm implemented in Manopt,
with the conjugate-gradient method, we have found that the method converges in 20
iterations using a CPU time which is approximately 14 seconds; with the BFGS solver
it converges in 15 iterations using a CPU time of approximately 16 seconds and finally
with the Barzilai-Borwein method it converges in 117 iterations in about 57 seconds.
The trust region method (which is the default choice) instead turns out to converge
very slowly.

Then we applied Manopt, with the conjugate-gradient solver, to the considered
example with the FIDAPM11 matrix and we obtained that the result coincides with
the one we obtain to 5 digits. However the CPU time exceeds 5 hours when the default
accuracy is used, but it drops to around 8 minutes when a tolerance of 10−2 is required,
which still gives 3 correct digits. With the option of adaptive line search and the same
tolerance, a result with the same accuracy is obtained in a slightly larger CPU time.

4.7.4 An example of control of the Stokes problem

We consider an example from [41], which arises in the discretization of the 2-dimensional
Stokes problem on a uniform quadratic grid. Setting 25 grid points on both sides
of the square, we get a sparse matrix A (J − R in the notation of [41]) which has
dimension n = 1824, while we choose the control matrices B and C = B⊤ to have size
n× k and l × n, respectively with k = l = 40, with randomly i.i.d. entries and unit
Frobenius norm. The matrix A has the rightmost eigenvalue λ = −6.4343098 · 10−4,
which suggests a non-robust Hurwitz stability. Although Assumption 4.4.2 is not
fulfilled we successfully execute the rank-1 algorithm. Running it on this example, we
find the structured stability radius to be 0.0384039, which is 60 times larger than |λ|.

4.8. Perturbation matrices of prescribed range and co-range 57

k εk φ(εk) # eigs
0 0 −6.4343098 · 10−4 1
1 0.02 −3.1062242 · 10−4 23
2 0.0385299 2.1414201 · 10−6 26
3 0.0384039 9.7779625 · 10−11 18

Table 4.3: Iterates for computing the structured stability radius
for the Stokes problem matrix with range- and co-range-constrained

perturbations.

Since the matrix is sparse we can exploit favourably the matrix vector products of
the form (with p ∈ Rn the vector, Z = uv∗ ∈ M1, and ρ the normalization factor)(

A+ ερB B†ZC†C
)
p,

whose cost is linear in n. In Table 4.3 we show the Newton iteration where the number
of eigentriplets evaluation is again indicated by neig. The quadratically convergent
behaviour is evident.

4.8 Perturbation matrices of prescribed range and co-
range

In this final section, we consider the (complex) structure space S of (4.14), which only
allows for perturbations of given range and co-range. We recall that the orthogonal
projection onto S is given by ΠSZ = BB†ZC†C (see Proposition B.0.5). In this case,
the set MS

1 = ΠSM1 of structure-projected rank-1 matrices equals the submanifold
of rank-1 matrices that have the prescribed range and co-range:

MS
1 = {E ∈ Cn×n : E = ρuv∗ with ρ > 0, u ∈ Ran(B), v ∈ Ran(C)} ⊆ M1.

For such an E = ρuv∗ with u and v of unit norm and in the range of B and C,
respectively, the orthogonal projection PS

E onto the tangent space TEMS
1 turns out to

be given by the same expression as in (4.12):

PS
E (Z) = Z − (I − uu∗)Z(I − vv∗).

This has important consequences. On the theoretical side, it allows us to use the
same argument as in the proof of part (b) of Theorem 4.3.1 to show that every
stationary point of the gradient system (4.9) on MS

1 is also a stationary point of the
gradient system (4.8) on S; hence, there are no spurious stationary points. On the
computational side, for a solution E(t) = u(t)v(t)∗ ∈ MS

1 of unit Frobenius norm of
the differential equation (4.9) we therefore obtain differential equations for the factors
u and v of unit norm that are formally the same as in Lemma 4.3.2: with the projected
gradient GS = ΠSG(E) for short,

u̇ = −(I − uu∗)GSv − i

2
Im(u∗GSv)u,

v̇ = −(I − vv∗)(GS)∗u+
i

2
Im(u∗GSv)v

.

Note that here u̇ and v̇ are in the range of B and C, respectively, so that u and v
stay in these ranges. In order to obtain a further compression we set u = Bp and

58 Chapter 4. Rank-1 structured eigenvalue optimization

k εk ϕ(εk) # eigs
1 0.02 −3.1061082 · 10−4 26
2 0.0386113 4.3234455 · 10−5 33
3 0.0384036 8.2212343 · 10−10 16

Table 4.4: Iterates for computing the structured stability radius
for the Stokes problem matrix with range- and co-range-constrained

perturbations with inner iteration realized integrating (4.26).

v = C∗q with p ∈ Ck and q ∈ Cl. In this way - with G = Gε(E) - we obtain for
E = uv∗ = Bpq∗C the differential equations

ṗ = −B†GC∗q + pp∗B∗GC∗q − i

2
Im(p∗B∗GC∗q)p

q̇ = −(C∗)†G∗Bp+ qq∗CG∗Bp+
i

2
Im(p∗B∗GC∗q)q

. (4.26)

With the rank-1 matrix G = Gε(E) = 2fλ xy
∗ (see Lemma 4.2.3) and with α = p∗B∗x,

β = q∗Cy and γ = 2fλ, we thus obtain the differential equations (cf. (4.13))
ṗ =

(
αβγ

)
p−

(
βγB†

)
x−

(
i

2
Im(αβγ)

)
p

q̇ = (αβγ) q −
(
αγ(C∗)†

)
y −

(
i

2
Im(αβγ)

)
q.

This system of differential equations is treated numerically in the same way as described
in Section 4.5, using a splitting between the first two terms on the right-hand side and
the third term. We present numerical results for the Stokes example of Section 4.7.4,
now treated with the above implementation of the gradient system (4.9) for comparison.

59

Chapter 5

Spectral clustering robustness

In this chapter we aim to adapt the structured two-level method introduced in Chapter 3
in a graph theory setting, making it a three-level method. The problem is the
following: given an undirected weighted graph G = (V ,E ,W) with n vertices V , edges
E ⊆ V × V and weights described by the non-negative symmetric matrix W ∈ Rn×n,
we look for the best integer k for partitioning G into k clusters. More precisely, given
2 ≤ kmin < kmax ≤ n− 1, we seek an integer k ∈ {kmin, . . . , kmax} for performing the
spectral clustering algorithm on G such that the partitioning reflects the graph’s main
features and such that the clustering is stable under small perturbations. In order to
do so, we introduce a new measure for the robustness of this method which is more
appropriate with respect to the state-of-the-art spectral gaps, since it also takes into
account the sparsity pattern of W . The chapter is mainly based on the article [37]
and it is an extension of the results from [3] and [34].

5.1 Introduction

Clustering is the task of dividing a data set into k communities such that members in
the same groups are related. It is an unsupervised method in machine learning that
discovers data groupings without the need of human intervention and its aim is to gain
important insights from collected data. Spectral clustering (originating with Fiedler
[19]) is a type of clustering that makes use of the Laplacian matrix of an undirected
weighted graph to cluster its vertices into k clusters. More precisely it performs a
dimensionality reduction of the dataset and then it clusters in lower dimension.

The stability of this procedure is often associated with the spectral gap gk, i.e. the
difference between the (k + 1)-st and k-th eigenvalues of the Laplacian. When gk is
not large, usually small perturbations may cause a coalescence of the two consecutive
eigenvalues and they could significantly change the clustering. Thus, according to the
spectral gaps criterion, a suitable number of clusters is the index of the largest spectral
gap. This choice is also motivated by the fact that spectral gaps can be seen as an
unstructured measure to ambiguity. In fact, up to a constant factor, gk represents the
minimum Frobenius norm of the difference between the Laplacian and a symmetric
matrix with coalescing k-th and (k + 1)-st eigenvalues (see Theorem 5.2.2). Since the
computation of the spectral gaps is not expensive it is widely used with the aim of
identifying an optimal index k.

In this chapter we introduce a structured measure to stability that takes into
account the preservation of the pattern of the weight matrix of the graph. In this way
it is possible to achieve a result that is more appropriate than the one provided by the
spectral gaps criterion. The distance considered here is similar to the one presented in
[3], but it makes use of a different metric.

The main objective of the chapter is to describe in detail how to determine the new
criterion for spectral clustering stability and how to exploit the underlying low-rank

60 Chapter 5. Spectral clustering robustness

structure of extremizers. We propose to compute the structured distance to ambiguity
via a three-level approach, similar to the two-level approach of [28, 32], which is divided
in a structured inner iteration, a structured outer iteration and then a selection of k,
i.e. the best value for the number of clusters chosen in the given set {kmin, . . . , kmax}.

As already mentioned in Chapter 3, the structured inner iteration is the part of
the algorithm that requires more effort: it consists in the solution of a non-convex
structured eigenvalue optimization problem whose extremizers are seen as stationary
points of a system of matrix ODEs with size depending on the structural pattern of
the weight matrix of the graph. Then, by generalizing the approach of [34], we define a
rank-4 symmetric ODE whose stationary points are the same as those of the full-rank
system and we integrate it on the rank-4 manifold until it converges to a stationary
point. When the n× n weight matrix has a number of non-zeros (significantly) higher
than 4n, then integrating the rank-4 ODE turns out to be more convenient due to the
(significantly) lower memory requirements.

The chapter is organized as follows. In Section 5.2 we briefly describe the spectral
clustering method and we illustrate how to measure its robustness by the introduction
of a structured distance to ambiguity. In Section 5.3 we discuss how to solve the
structured inner iteration by means of a structured matrix ODE that is a gradient
system. In Section 5.4 we exploit the underlying low-rank structure of the gradient
system to project it and formulate a similar low-rank ODE that is used to solve the
structured inner iteration. In Section 5.5 we describe the structured outer iteration.
Finally in Section 5.6 we present the numerical results of the algorithm in a few graphs
with different features.

5.2 Distance to ambiguity for spectral clustering

Consider an undirected weighted graph G = (V ,E ,W), with vertices V = {1, . . . , n},
edges E ⊆ V × V and non-negative weight matrix W = (wi,j) ∈ Rn×n. Its Laplacian
matrix is defined as

L = L(W) = diag(W1)−W, 1 = (1, . . . , 1)⊤.

It is well-known that L is a symmetric and positive semi-definite matrix. Indeed, since
the graph is undirected, wij = wji for all i, j ∈ {1, . . . , n} and, for all v = (vi) ∈ Rn,
we have

v⊤Lv =
1

2

n∑
i=1

v2i

n∑
j=1

wi,j+
1

2

n∑
j=1

v2j

n∑
i=1

wi,j−
n∑

i=1

n∑
j=1

wi,jvivj =
1

2

n∑
i,j=1

(vi−vj)2wi,j ≥ 0.

(5.1)
Thus the spectral theorem ensures that the eigenvalues of L

λn ≥ · · · ≥ λ2 ≥ λ1 = 0

are real non-negative and that their associated unit eigenvectors xn, . . . , x1 form an
orthonormal basis of Rn. The following result (see e.g. [68]) gives the theoretical
reason behind the spectral clustering algorithm, which is shown in Algorithm 3. We
denote the indicator vector 1Ci associated to the set Ci ⊆ V as the vector whose j-th
entry is 1 if j ∈ Ci and 0 otherwise.

Theorem 5.2.1. Let W ∈ Rn×n be the weight matrix of an undirected weighted
graph G and denote by L(W) its Laplacian. Then the number of the connected
components C1, . . . , Ck of the graph equals the dimension of the kernel of L(W).

5.2. Distance to ambiguity for spectral clustering 61

Moreover the eigenspace associated with the eigenvalue 0 is spanned by the indicator
vectors 1C1 , . . . ,1Ck

.

Algorithm 3 Unnormalized spectral clustering

Input: An undirected weighted graph G = (V ,E ,W) and the number of clusters k

Output: Clusters C1, . . . , Ck that form a partition of V

1: Find the k smallest eigenvalues 0 = λ1 ≤ · · · ≤ λk of L(W) and denote the
associated normalized eigenvectors by x1, . . . , xk ∈ Rn.

2: Build

X =

x1 x2 · · · xk

 :=


r1
r2
...

rn

 .

3: Associate the i-th row ri of X with the i-th vertex of the graph.
4: Cluster the points r1, . . . , rn ∈ Rk by the k-means algorithm (see e.g. [40]) into k

clusters C1, . . . , Ck.

Spectral gaps provide a criterion to identify a reasonable value of the number of
clusters k. The k-th spectral gap is characterized as the unstructured distance between
the Laplacian and the set of symmetric matrices with coalescing eigenvalues λk and
λk+1, as stated in the following result.

Theorem 5.2.2. The k-th spectral gap gk = λk+1 − λk of L(W) is characterized as

gk√
2
= min

{
∥L(W)− L̂∥F : L̂ ∈ sym

(
Rn×n

)
, λk+1(L̂) = λk(L̂)

}
,

where sym(Rn×n) denotes the set of the symmetric real matrices.

Proof. We follow the approach used in [3, Theorem 3.1], where we first exhibit a matrix
L̂ such that gk =

√
2∥L(W)− L̂∥ and then we prove that this matrix is a minimizer.

Let L := L(W) = QΛQ⊤ be a spectral decomposition with the eigenvalues λi = Λi,i

in descending order and define L̂ = QΛ̂Q⊤, where λi = λ̂i := Λ̂i,i for all i /∈ {k, k + 1}
and λ̂k = λ̂k+1 =

λk+1−λk

2 . Then, since the Frobenius norm is unitarily invariant,

∥L− L̂∥2F = ∥Λ− Λ̂∥2F = (λk+1 − λ̂k+1)
2 + (λk − λ̂k)

2 =
λk+1 − λk

2
.

In order to show that gk√
2

is the minimum value, we make use of the Hoffman-Wielandt
theorem (see [48, Theorem 6.3.5 and Corollary 6.3.8]) that, for all symmetric matrices
L and L̂ with eigenvalues λi and λ̂i in descending order, states that

n∑
i=1

(λi − λ̂i)
2 ≤ ∥L− L̂∥2F .

Let L̂ be an arbitrary symmetric matrix with coalescing eigenvalues λ̂k+1 = λ̂k. Then

λk+1 − λk
2

= min
λ∈R

(
(λk+1 − λ)2 + (λk − λ)2

)
≤

62 Chapter 5. Spectral clustering robustness

≤ (λk+1 − λ̂k+1)
2 + (λk − λ̂k)

2 ≤
n∑

i=1

(λi − λ̂i)
2

and the Hoffman-Wielandt theorem proves the claim.

However, in the minimization problem of Theorem 5.2.2, the optimizer is a sym-
metric real matrix that in general is not a graph Laplacian, making this unstructured
measure associated with the spectral gaps not completely reliable. This motivates
us to introduce a new stability measure that takes into account the structure of the
weight matrix W , that is described by the sets

S =
{
A = (aij) ∈ Rn×n : aij = 0 ∀(i, j) /∈ E

}
and E = S ∩ sym(Rn×n).

We define the optimization problem

∆
(k)
⋆ = argmin

∆∈D
{∥∆∥F : λk(L(W +∆)) = λk+1(L(W +∆))} , (5.2)

where
D = {∆ ∈ E : W +∆ ≥ 0 entrywise}

is the set of all admissible perturbation that added to the weight matrix W return a
matrix with non-negative entries and with the same structure of W . The minimum of
(5.2)

dk(W) = ∥∆(k)
⋆ ∥F

defines the k-th structured distance to ambiguity between W and W (k)
⋆ :=W +∆

(k)
⋆ .

This new distance considered is similar to the one defined in [3], but it concerns
a different geometry: in this framework we work with the Frobenius norm of the
perturbation ∆, instead of considering a unit normalization of L(∆). The reason
behind this new choice is that in this way it is possible to exploit the underlying
low-rank properties of the problem by the introduction of a rank-4 symmetric ODE.
Instead it is less evident how to take advantage of these low-rank features for the
distance introduced in [3].

In the following we denote the unit Frobenius norm sphere by

S1 =
{
A ∈ Rn×n : ∥A∥F = 1

}
and we introduce the sets

S1 = S ∩ S1, E1 = E ∩ S1, D1 = D ∩ S1.

The approach presented in this chapter consists of a three-level procedure, whose
first two steps are analogous to the method presented in Chapter 2:

• Structured inner iteration: Given a perturbation size ε > 0, we consider the
non-negative objective functional

F (k)
ε (E) = λk+1 (L(W + εE))− λk (L(W + εE)) ,

where we have written the perturbation ∆ = εE with ∥E∥F = 1. We look for a
minimizer, which we denote as E(k)

⋆ (ε), of the optimization problem

argmin
E∈D1

F (k)
ε (E). (5.3)

5.3. Constrained gradient system for the inner iteration 63

• Structured outer iteration: We tune the parameter ε to obtain the smallest value
ε
(k)
⋆ of the perturbation size such that the objective functional evaluated in the

minimizer vanishes, that is

F (k)
ε⋆

(
E

(k)
⋆ (ε

(k)
⋆)
)
= 0.

Then the approximated closest weighted adjacency matrix with coalescing eigen-
values k and k + 1 would be W (k)

⋆ =W + ε
(k)
⋆ E

(k)
⋆ (ε

(k)
⋆).

• Choice of k: We repeat the procedure for all the values of k ∈ {kmin, . . . , kmax}
and then select

kopt(W) = argmax
kmin≤k≤kmax

ε
(k)
⋆ .

The objective functional introduced for this problem is a particular case of the
structured version of

F (εE) = f
(
H (εE),H (εE)

)
described in (2.4). Indeed we have selected a⋆ = 0 and

• f(z, z) = Re(z), which in this case acts like the identity since the eigenvalues of
a symmetric matrix are real,

• H (εE) = λk+1 (L(W + εE)) − λk (L(W + εE)), where the sum in (2.7) is
actually made up by just two addends.

5.3 Constrained gradient system for the inner iteration

In this section we describe how to apply the ODE based approach to solve the
optimization problem (5.3) defined in the structured inner iteration for problem (5.2).
We will consider as fixed parameters the perturbation size ε > 0 and a positive integer
k ∈ {kmin, . . . , kmax}. We introduce a matrix path E(t) ⊆ E1 that represents the
normalized perturbation of the weight matrix W . As done in Chapter 3, we look for a
time derivative of the objective functional F (k)

ε (E(t)). Whenever there is no ambiguity,
we avoid to write the dependence of k, for instance we denote the objective functional
in short as Fε(E(t)). For computing an explicit formula, we make use of the orthogonal
projection ΠE with respect to the Frobenius inner product onto the pattern E , whose
expression for all V = (vi,j) ∈ Rn×n is

(ΠE(V))i,j =


vi,j + vj,i

2
if (i, j) ∈ E

0 otherwise
.

Indeed it is easy to show the definition of orthogonal projection (see Definition B.0.1)

⟨ΠE(V),W ⟩ = ⟨V,W ⟩, ∀V ∈ Rn×n, ∀W ∈ E .

In this way we are able to introduce the adjoint L∗ of the Laplacian operator with respect
to the Frobenius inner product, which satisfies the formula (see Proposition D.0.5)

L∗(V) = ΠE(diagvec(V)1⊤ − V), ∀V ∈ Rn×n, (5.4)

where diagvec(V) ∈ Rn is the vector of the diagonal entries of V . Then Lemma 2.3.1
can be adapted to this setting as shown in the following result (see e.g. [3, 37]), where

64 Chapter 5. Spectral clustering robustness

we make use of the componentwise product denoted by the symbol • such that

(x • y)i := xiyi, ∀x, y ∈ Rn, ∀i ∈ {1, . . . , n}.

Lemma 5.3.1. Let E(t) be a differentiable path of matrices in E1 for t ∈ [0,+∞).
Assume that, for a given ε > 0, the eigenvalues λ(t) = λk+1(L(W + εE(t))) and
µ(t) = λk(L(W + εE(t))) are simple for all t. Let x(t) and y(t) be the normalized
eigenvectors associated with λ(t) and µ(t). Then

1

ε

d

dt
Fε(E(t)) = ⟨Gε(E(t)), Ė(t)⟩,

where

G = Gε(E(t)) := L∗
(
xx⊤ − yy⊤

)
= ΠE

(
(x • x− y • y)1⊤ − (xx⊤ − yy⊤)

)
is the rescaled gradient of the objective functional Fε(E(t)).

Proof. We proceed similarly as shown in Lemma 2.3.1 and Lemma 3.1.1, where the
result is formulated for the generic objective functional F (∆) = f

(
H (∆),H (∆)

)
,

with ∆ = εE. The framework of this chapter yields that the setting is real, meaning that
H (εE) = λk+1 (L(W + εE))− λk (L(W + εE)) := λ (L(W + εE))− µ (L(W + εE))
and f(z, z) = Re(z). Thus Lemma 4.2.1 yields

d

dt
H (εE(t)) = x⊤L(Ė)x− y⊤L(Ė)y,

and hence the derivative formula for Fε turns into

1

ε

d

dt
Fε(E(t)) = x⊤L(Ė)x− y⊤L(Ė)y = ⟨xx⊤ − yy⊤, L(Ė)⟩.

In order to get an expression analogous to that of Lemma 2.3.1 and Lemma 3.1.1, we
use the definition of L∗ and we get the claim

1

ε

d

dt
Fε(E(t)) = ⟨L∗(xx⊤ − yy⊤), Ė⟩ =

〈
ΠE

(
(x • x− y • y)1⊤ − (xx⊤ − yy⊤)

)
, Ė
〉
.

The negative gradient −G = −Gε(E(t)) introduced in Lemma 5.3.1 gives the
steepest descent direction for minimizing the objective functional, without considering
the constraint on the norm of E. In this setting, it is possible to show that, when
λ ̸= µ, the gradient Gε(E(t)) never vanishes, as predicted in Chapter 2.

Lemma 5.3.2. With the same notations introduced in Lemma 5.3.1, assume that
E ∈ D1 and that the Laplacian L(W + εE) has two distinct eigenvalues λ ≠ µ. Then
L∗(xx⊤ − yy⊤) ̸= 0, which means that Gε(E(t)) ̸= 0 for all t.

Proof. Assume by contradiction that L∗(xx⊤ − yy⊤) = 0. Then, by means of (5.4),
for all (i, j) ∈ E (i.e. the entries (i, j) belonging to the pattern E) it holds that

x2i + x2j
2

− xixj =
y2i + y2j

2
− yiyj ,

5.3. Constrained gradient system for the inner iteration 65

which is equivalent to
1

2
(xi − xj)

2 =
1

2
(yi − yj)

2.

Multiplying by the weights ŵi,j = wi,j + εei,j and summing over all (i, j) ∈ E yields∑
(i,j)∈E

1

2
ŵi,j(xi − xj)

2 = x⊤L(W + εE)x = λ

where we have followed the same steps as in (5.1). Similarly∑
(i,j)∈E

1

2
ŵi,j(yi − yj)

2 = y⊤L(W + εE)y = µ,

which yields λ = µ, in contradiction with the assumption.

The following result, see e.g. [3, 32] and [34], shows the optimal direction to take
in order to fulfil the unit norm condition, which can be rewritten as ⟨E, Ė⟩ = 0.

Lemma 5.3.3. Given E ∈ E1 and G ∈ E, the solution of the optimization problem

argmin
Z∈E1, ⟨Z,E⟩=0

⟨G,Z⟩ (5.5)

is
αZ⋆ = −G+ ⟨G,E⟩E,

where α is a normalization parameter assuring that ∥Z⋆∥F = 1.

Proof. By considering the real setting, the proof is identical to that of Lemma 3.1.2.

Lemmas 5.3.1 and 5.3.3 suggest to consider the matrix ordinary differential equation

Ė(t) = −Gε(E(t)) + ⟨Gε(E(t)), E(t)⟩E(t), (5.6)

whose stationary points are zeros of the derivative of the objective functional Fε(E(t)).
Equation (5.6) is a gradient system for Fε(E(t)), since along its trajectories

d

dt
Fε(E(t)) = ε

(
−∥Gε(E(t))∥2F + (⟨Gε(E(t)), E(t)⟩)2

)
≤ 0

by means of the Cauchy-Schwarz inequality, which also implies, similarly to Theo-
rem 3.1.4, that the derivative vanishes in E⋆ if and only if E⋆ is a stationary point
of (5.6). Thanks to the monotonicity property along the trajectories, an integration
of this gradient system leads necessarily to a stationary point E⋆ that belongs, by
construction, to E1.

However, in the formulation of (5.6), it is not guaranteed that the found stationary
point E⋆ is an admissible perturbation of W , because W +εE⋆ may have some negative
entries and hence it would not provide a solution of the optimization problem (5.3).
In our experience this usually does not occur, but it is a possibility we wish to avoid
for safety. In order to ensure the admissibility of E⋆, we need to take into account the
non-negative constraint W + εE⋆ ≥ 0 componentwise, i.e. that E⋆ ∈ D1.

66 Chapter 5. Spectral clustering robustness

5.3.1 Penalized gradient system

A possible way to impose that the path E(t) is contained in D1 is by introducing the
penalization term proposed in [3, 37]

Qε(E) =
1

2

∑
(i,j)∈E

((wij + εeij)−)
2 ,

where (a)− = min(a, 0) denotes the negative part of a. The new objective functional
becomes

Fε,c(E) = Fε(E) + cQε(E),

where c > 0 is the penalization size and the new optimization problem for the structured
inner iteration (5.3) turns into the constrained structured inner iteration

argmin
E∈E1

Fε,c(E). (5.7)

In this way solutions of (5.7) are forced to stay close to the set D if c is big enough, in
order to fulfil the non-negativity constraint of the weight matrix. As shown in [3, 37],
the results for Fε(E) extend to this new functional.

Lemma 5.3.4. With the same hypothesis of Lemma 5.3.1 we have

1

ε

d

dt
Fε,c(E(t)) = ⟨Gε,c(E(t)), Ė(t)⟩,

where
Gε,c(E) = Gε(E) + c(W + εE)−

is the penalized gradient.

Proof. Since E, Ė ∈ E are symmetric, we have

d

dt
Qε(E(t)) =

∑
(i,j)∈E

εėij(t)(wij + εeij(t))− = ε⟨Ė(t), (W + εE(t))−⟩,

where Ė(t) = (ėij(t)). The same steps of the proof of Lemma 5.3.1 lead to the
claim.

By replacing the gradient with the penalized gradient Gε,c(E), we obtain, as we
did for equation (5.6), the ODE

Ė = −Gε,c(E) + ⟨Gε,c(E), E⟩E. (5.8)

In analogy to the previous section, we can show that equation (5.8) is a gradient
system whose stationary points are the only zeros of the derivative of Fε,c(E). Thus
the trajectory E(t) of equation (5.8) is forced to stay close to D1, when c is big enough,
and hence the reached stationary points are admissible solutions of problem (5.2) up
to an error that is small if c is large. We give further details in the numerical examples
in Section 5.6.

5.4. Rank-4 symmetric projection of the gradient system 67

5.4 Rank-4 symmetric projection of the gradient system

In this section we will consider a modified version of (5.2), which does not take into
account the non-negativity constraint of the set D:

W̃
(k)
⋆ = argmin

∆∈E
{∥∆∥F : λk(L(W +∆)) = λk+1(L(W +∆))} . (5.9)

The introduction of this new problem is motivated by the observation that in our
experiments the violation of this constraint seems to be uncommon and hence generally
W̃

(k)
⋆ and the solution of (5.2) coincide. In the case when the solutions of (5.2) and (5.9)

are the same, we propose a new matrix ODE whose aim is to exploit the underlying
low-rank property of the problem and it allows to solve more efficiently the structured
inner iteration (5.3). In this way it is possible to generalize also in this framework the
ideas discussed in Section 3.1.2.

5.4.1 Formulation of the low-rank symmetric ODE

We introduce two low-rank matrices N and R, depending on the matrix E, on the
perturbation size ε and on the fixed positive integer k (which will be omitted for
brevity):

N = Nε(E) = z1⊤−xx⊤+yy⊤, R = Rε(E) =
N +N⊤

2
=
z1⊤ + 1z⊤

2
−xx⊤+yy⊤,

where
z = x • x− y • y (5.10)

is the vector of entries zi = x2i − y2i and • denotes the componentwise product. We
observe that the gradient introduced in Lemma 5.3.1 can be rewritten as

G = Gε(E) = ΠE(Nε(E)) = ΠS(Rε(E)),

where ΠS denotes the (orthogonal) projection onto the pattern S associated with the
low-rank symmetric matrix R. Note that

ΠE(M) = ΠS(sym(M)), ∀M ∈ Rn×n.

Remark 5.4.1. Since x and y have unit 2-norm, we observe that

z⊤1 =
n∑

i=1

(x2i − y2i) = 1− 1 = 0,

which means that 1 and z are orthogonal. The vectors x, y and z are generally linearly
independent, but it may happen that they are not; however this seems to be a non-
generic case, up to some very specific counterexamples (see e.g. Example C.0.2). In
the following we assume that x, y and z are linearly independent, which implies, that
the matrix N has rank 3 and hence R has rank 4.

As done for equation (3.4), we observe that solutions of (5.6) can be rewritten as
E = ΠSZ, where Z solves the ODE

Ż = −Rε(E) + ⟨Rε(E), E⟩Z, (5.11)

68 Chapter 5. Spectral clustering robustness

and we recall Gε(E) = ΠSRε(E). We take inspiration from equation (5.11) and
consider the ODE in M4 = {A ∈ Rn×n : rank(A) = 4}

Ẏ = −PYRε(E) + ⟨PYRε(E), E⟩Y, E = ΠSY, (5.12)

where PY is the orthogonal projection, with respect to the Frobenius inner product,
onto the tangent space TY M4 at Y (see Proposition B.0.3 or [51]). Since in this case Y
is symmetric of rank 4, it can be written as Y = USU⊤ where U ∈ Rn×4 has full-rank
and orthonormal columns and S ∈ sym(R4×4) is invertible and hence the expression
for the projection PY takes the simpler form

PYA = A− (I − UU⊤)A(I − UU⊤) = UU⊤A+AUU⊤ − UU⊤AUU⊤, (5.13)

where I denotes the n× n identity matrix.
The following result states two important properties of the solution Y (t) of (5.12).

Lemma 5.4.2. Let Y (t) be a solution of equation (5.12) for t ∈ [0,+∞) with starting
value Y (0) = Y0 ∈ sym(Rn×n)∩M4. Then Y (t) ∈ sym(Rn×n)∩M4 for all t. Moreover,
if ∥ΠSY0∥F = 1, then ∥ΠSY (t)∥F = 1 for all t.

Proof. Since PY (Y) = Y , the right hand side of (5.12) is PY (−Rε(E) + Y) ∈ TY M4,
which means that the whole trajectory Y (t) belongs to the rank-4 manifold. Similarly,
Ẏ (t) ∈ sym(Rn×n) and hence Y (t) is symmetric for all t. Finally the unit norm of
E = ΠSY is conserved by the ODE, since ⟨E, Y ⟩ = ∥E∥2F = 1 and

⟨ΠSY,ΠS Ẏ ⟩ = ⟨ΠSY, Ẏ ⟩ = −⟨E,PY (Rε(E))⟩+ ⟨PYRε(E), E⟩⟨E, Y ⟩ = 0.

In the next sections we investigate how the solution of (5.12) is related to that of
(5.6). More precisely we are interested in their stationary points and in the monotonicity
property of the low-rank system, which are crucial for the implementation of the
structured inner iteration (5.3) by means of the low-rank ODE. If these properties
are shared between the equations, then it would be possible to integrate the low-rank
ODE instead of the original ODE.

5.4.2 Relationship between stationary points

As shown in Theorem 3.1.4 and Theorem 3.1.6, it is possible to characterize the
stationary points of the ODEs (5.6) and (5.12) as real multiples of the associated
gradient, where here the structured gradient writes as Gε(E) = ΠSRε(E). Also
Theorem 3.1.7 can be adapted to this setting and it turns out that equations (5.6) and
(5.12), under non-degeneracy conditions, share the same stationary points, as stated
by the following result.

Theorem 5.4.3. Consider the two matrix ordinary differential equations

Ė = −Gε(E) + ⟨Gε(E), E⟩E, (5.14)

Ẏ = −PYRε(E) + ⟨PYRε(E), E⟩Y, (5.15)

1. Let E⋆ ∈ E1 of unit Frobenius norm be a stationary point of (5.14). Then
E⋆ = ΠSY⋆ for a certain symmetric matrix Y⋆ ∈ M4 that is a stationary point
of (5.15).

5.4. Rank-4 symmetric projection of the gradient system 69

2. Conversely, let Y⋆ ∈ M4 be a symmetric stationary point of (5.15) such that
E⋆ = ΠSY⋆ has unit Frobenius norm and PY⋆R⋆ ̸= 0, where R⋆ = Rε(E⋆). Then
PY⋆R⋆ = R⋆, Y⋆ is a non-zero real multiple of R⋆ and E⋆ is a stationary point
of (5.14).

Proof. It is analogous to that of Theorem 3.1.7.

5.4.3 Local convergence to the stationary points of the rank-4 ODE

Theorem 5.4.3 ensures that the original and the low-rank ODEs share the same
stationary points. Now we are interested in understanding whether the integration
of (5.12) leads to at least one of the local minima (i.e. the stationary points of the
low-rank ODE) or not. This convergence is always guaranteed for equation (5.6), since
it is a gradient system, but unfortunately equation (5.12) is not a gradient system and
the monotonicity property of the functional may not hold.

However, provided a suitable starting value for the integration of the ODE suffi-
ciently close to a local minimum, the low-rank ODE turns out to be close to a gradient
system. The following key lemma adapts the result of Lemma 3.1.8 and it shows the
main reason behind this fact.

Lemma 5.4.4. Let Y⋆ ∈ M4 ∩ sym(Rn×n) be a stationary point of the rank-4 ODE
(5.12) such that E⋆ = ΠSY⋆ ∈ E1 and PY⋆R(E⋆) ̸= 0. Then there exists δ⋆ > 0 such
that for all Ŷ ∈ M4 that satisfy

∥Ŷ − Y⋆∥F = δ < δ⋆, Ê = ΠS Ŷ ∈ E1,

we have
∥PŶRε(Ê)−Rε(Ê)∥F ≤ Cδ2,

where C is a positive constant independent of δ.

Proof. The proof is similar to that of Lemma 3.1.8. We just show that in this framework
it is possible to bound the derivatives of the eigenvectors x and y through suitable
formulas as in [58] that involve the group inverse (see [11]), that here coincides with
the more familiar Moore-Penrose pseudo-inverse and then apply the same ideas of [34,
Lemma 4.5]. The matrix R = Rε(E(t)) can be rewritten in the form

R =

(
z + 1

2

)(
z + 1

2

)⊤
−
(
z − 1

2

)(
z − 1

2

)⊤
− xx⊤ + yy⊤ = RURSR

⊤
U ,

where

RU =
(
z + 1 z − 1 x y

)
, RS =


1
4 0 0 0
0 −1

4 0 0
0 0 −1 0
0 0 0 1

 .

Thus, by means of a QR decomposition RU = QΛ where Q ∈ Rn×4 has orthonormal
columns and Λ is a 4-by-4 invertible symmetric matrix, it follows that Q and Λ depend
smoothly on 1, x, y and z, where we assume that the order and sign of the columns of
Q do not change. Hence R depends smoothly on the eigenvectors of the Laplacian of
the perturbed weight matrix and x and y have bounded derivatives.

Now we are ready to adapt the local convergence result of Theorem 3.1.10 to the
framework of this chapter.

70 Chapter 5. Spectral clustering robustness

Theorem 5.4.5. Let Y⋆ ∈ M4 ∩ sym(Rn×n) be a stationary point of the projected
differential equation (5.12) such that E⋆ = ΠSY⋆ ∈ S1 and PY⋆Rε(E⋆) ̸= 0. Suppose
that E⋆ is a strict local minimum of the functional Fε on S1 and assume that

ΠS

∣∣∣
M4

: M4 → ΠS(M4) ⊆ S

is a diffeomorphism. Then, for an initial datum Y (0) sufficiently close to Y⋆, the
solution Y (t) of (5.12) converges to Y⋆ exponentially as t→ +∞. Moreover Fε(ΠSY (t))
decreases monotonically with t and converges exponentially to the local minimum value
F (E⋆) as t→ +∞.

Proof. It follows the same idea of the proof of Theorem 3.1.10.

The assumption that ΠS
∣∣
M4

is a diffeomorphism is sufficient in Theorem 5.4.5,
but it seems that it is not necessary. In fact in our experience we observed that the
integration of (5.12) converges even in many examples where the dimension of S is
small. Thus we believe that this assumption is not restrictive (see Section 4.4 for more
details).

Theorem 5.4.5 proves that, at least locally, the integration of the low-rank ODE
approaches a stationary point, as it happens for the gradient system (5.6). Hence
equation (5.12) can replace the original ODE. This fact can lead to computational
benefit from the low-rank underlying structure of the problem.

5.4.4 Implementation of the low-rank inner iteration

In this section we illustrate some details of the implementation of the structured inner
iteration for solving equation (5.9), through a numerical integration of a system of
ODEs. We show how to highlight the low-rank properties of equation (5.12) by means
of an equivalent system of ODEs, and we discuss the numerical integration of the
system.

Given a decomposition Y = USU⊤, where U ∈ Rn×4 has orthonormal columns
and S ∈ R4×4 is invertible, we can rewrite equation (5.12) as

U̇SU⊤ + UṠU⊤ + USU̇⊤ = −R+ (I − UU⊤)R(I − UU⊤) + ηUSU⊤, (5.16)

where η = ⟨PY (Rε(E)), E⟩. In the real setting, the property U⊤U = I implies
U⊤U̇ + U̇⊤U = 0. Since the decomposition of Y is not unique, because for any
orthogonal square matrix Q ∈ R4×4 we have another equivalent decomposition Y =
UQ(Q⊤SQ)Q⊤U⊤, we uniquely select the following one{

U̇ = −(I − UU⊤)RUS−1

Ṡ = −U⊤RU + ηS
, (5.17)

which satisfies the gauge condition U⊤U̇ = 0 and satisfies (5.16) (equivalently (5.12)).
The matrix S may lose the diagonal structure along the trajectory, but the decomposi-
tion Y = USU⊤ still holds, where U has orthonormal columns and S is symmetric.
System (5.17) consists of two matrix ODEs of dimension n-by-4 and 4-by-4 respectively.

Integration of system (5.17) can be done in many ways. The simplest choice is
the normalized explicit Euler’s method, which generally performs well. However in
some cases the matrix S may be close to singularity and Euler’s method may suffer
the presence of the inverse of S in its formulation. This problem can be overcome by
means of a different integrator. Since we are not interested in the whole trajectory

5.4. Rank-4 symmetric projection of the gradient system 71

Y (t), but only in the approximation of its stationary points, we can use a splitting
method similar to that proposed in [14]. Algorithm 4 shows the outline of a single step
integration of this approach. The right-hand side of (5.12)

−PY (Rε(E)) + ηY = PY (−Rε + ηY), η := ⟨PY (Rε(E)), E⟩,

can be rewritten explicitly, according to equation (5.13), as the sum of three alternating
projections that are integrated consecutively by the splitting integrator. The first two
steps of Algorithm 4 correspond to the “K-step” and to the “L-step” of the algorithm
proposed in [14], which in this case coincide since the ODE is symmetric, while the
remaining steps perform the “S-step”. Then the structured inner iteration (5.3) is
given by a combinations of the single integration steps of Algorithm 4, as shown in
Algorithm 5.

The choice of the stepsize is performed by means of an Armijo-type line search
strategy as in [34], since the time derivative of the objective function is available.
Provided a starting point sufficiently close to a stationary point, Theorem 5.4.5 ensures
the convergence towards that stationary point. A possible choice for U0 and S0
comes from a decomposition of the gradient as provided in the proof of Lemma 5.4.4:
this choice generally leads to a suitable approximation of a minimizer. We compute
x0 = x(L(W)), y0 = y(L(W)) and z0 = x0 •x0 − y0 • y0 and we choose Y0 := U0S0U

⊤
0 ,

where

[U0, D0] = qr
((
z0 + 1 z0 − 1 x0 y0

))
, S0 = −D0


1
4 0 0 0
0 −1

4 0 0
0 0 −1 0
0 0 0 1

D⊤
0 ,

(5.18)
and [Q,R] = qr(A) denotes the thin QR factorization of A = QR. However, during
the structured outer iteration (5.9), it could be more convenient to choose as starting
value for the iteration of εℓ+1 the stationary points found in the ℓ-th outer iteration,
as shown in Algorithm 6.

Algorithm 4 Splitting method for the numerical integration step from t0 to t1 = t0+h

Input: U0 ∈ Rn×4 orthogonal and S0 ∈ sym(R4×4) invertible such that Y0 =
U0S0U

⊤
0 = Y (t0)

Output: U1 ∈ Rn×4 orthogonal and S1 ∈ sym(R4×4) invertible such that Y1 =
U1S1U

⊤
1 ≈ Y (t1)

K-step/L-step
1: Compute K1 = U0S0 + h (−R(Y0)U0 + ⟨PY0R(Y0),ΠSY0⟩U0S0).
2: Perform a thin QR factorization K1 = U1T1 and compute M1 = U⊤

1 U0.
S-step

3: Define Ŝ0 =MS0M
⊤ and Ŷ0 = U1Ŝ0U

⊤
1 .

4: Normalize Ŷ0 and get Ỹ0 = U1S̃0U1 such that ∥ΠS Ỹ0∥F = 1.
5: Compute R̃0 = R(Ỹ0) and η = ⟨PỸ0

R̃0,ΠS Ỹ0⟩.
6: Compute S̃1 = S̃0 + hU⊤

1

(
−R̃0 + ηỸ0

)
U1.

7: Normalize S̃1 and get S1 such that ∥ΠS(U1S1U
⊤
1)∥F = 1.

8: Return U1 and S1.

72 Chapter 5. Spectral clustering robustness

Algorithm 5 Inner iteration

Input: A weight matrix W , a perturbation size ε > 0, the starting values U0 and
S0, an initial stepsize h0, a tolerance τinn and a maximum number of iterations
maxit

Output: The matrices U⋆(ε) and S⋆(ε) that form the solution of the optimization
problem (5.3) E⋆(ε) = ΠS(U⋆(ε)S⋆(ε)U⋆(ε)

⊤)

1: Initialize U0 and S0 (e.g. by means of (5.18)).
2: Compute f0 = Fε(ΠS(U0S0U

⊤
0)) and set f1 = +∞

3: Set j = 0.
4: while |f1 − f0| > τinn and j < maxit do
5: With an Armijo stepsize choice, perform Algorithm 4 and compute U1 and S1.
6: Update f0 = f1, f1 := Fε(ΠS(U1S1U

⊤
1)) and set j := j + 1.

7: end while

5.5 The structured outer iteration

Once that a computation of the optimizers is available for a given ε > 0 and a fixed
k, we need to determine an optimal value for the perturbation size. Let E⋆(ε) be a
solution of the optimization problem (5.3) and consider the function

φ(ε) := Fε(E⋆(ε)).

This function is non-negative and we define ε⋆ as the smallest zero of φ. By assuming
that the k-th and (k+1)-st eigenvalues of L(W +εE⋆(ε)) are simple for 0 ≤ ε < ε⋆, we
conclude that φ is a smooth function in the interval [0, ε⋆). The aim of the structured
outer iteration is to approximate ε⋆, which is the solution of the optimization problem
(5.9).

In order to find ε⋆ we use a combination of the well-known Newton and bisection
methods, which provides an approach similar to [24, 28] or [34]. If the current
approximation ε lies in (0, ε⋆), it is possible to exploit Newton’s method, since φ
is differentiable there (see Lemma 5.5.1); otherwise, if ε > ε⋆, we use the bisection
method (see Algorithm 6). The following result provides a simple formula for the first
derivative of φ required by Newton’s method.

Lemma 5.5.1. It holds that

φ′(ε) =
d

dε
Fε(E⋆(ε)) = ⟨Gε(E⋆(ε)), E⋆(ε)⟩ = −∥Gε(E⋆)∥F .

Proof. It follows the same pattern of Lemma 2.4.1.

The tolerance τinn and τout may coincide, but sometimes it could be useful to choose
slightly different values to improve the accuracy of the result. Finally we perform
Algorithm 6 for some values of k ∈ {kmin, . . . , kmax} and we select the index of the
largest structured distance computed.

5.5.1 The penalized version

A similar approach can be followed for the penalized problem (5.7). For ε, c > 0, let
E⋆(ε, c) be a solution of the penalized structured inner iteration (5.7) and consider the

5.6. Numerical experiments 73

Algorithm 6 Outer iteration

Input: A weight matrix W , an interval and an initial guess ε0 ∈ [εlb, εub] for ε⋆, a
tolerance τout and a maximum number of iterations niter

Output: The value ε⋆ and the associated minimizer E⋆(ε⋆)

1: Perform Algorithm 5 and compute E⋆(ε0).
2: Set ℓ = 0.
3: while ℓ < niter and εub − εlb > τout do
4: if φ(εℓ) < toler then
5: Set εub := min(εub, εℓ).
6: Set εℓ+1 :=

εlb+εub
2 (bisection step).

7: else
8: Set εlb := max(εlb, εℓ).
9: Compute φ(εℓ) and φ′(εℓ).

10: Update εℓ+1 := εℓ − φ(εℓ)
φ′(εℓ)

(Newton step).
11: end if
12: if εℓ+1 /∈ [εlb, εub] then
13: Set εℓ+1 :=

εlb+εub
2 .

14: end if
15: Set ℓ := ℓ+ 1.
16: Compute E⋆(εℓ) by applying Algorithm 5 with starting value E⋆(εℓ−1).
17: end while
18: Return ε⋆ := εℓ and E⋆(ε⋆).

function
φc(ε) = Fε,c(E⋆(ε.c))

Let ε⋆ be the smallest zero of φc. Again assuming that the k-th and (k + 1)-st
eigenvalues of L(W + εE(ε, c)) are simple, for 0 ≤ ε < ε⋆, yields that φc is a smooth
function in the interval [0, ε⋆).

Lemma 5.5.2. It holds that

φ′
c(ε) =

d

dε
Fε,c(E⋆(ε)) = ⟨Gε,c(E⋆(ε, c)), E⋆(ε, c)⟩ = −∥Gε,c(E⋆(ε, c))∥F .

Proof. It is a direct consequence of Lemma 5.5.1.

As done for the low-rank method, it is possible to implement an algorithm to
solve problem (5.2) by introducing the penalization term. The only difference is in
the structured inner iteration where we integrate equation (5.8), for instance with the
normalized Euler’s method.

5.6 Numerical experiments

In this section we compare the behaviour of the spectral gaps

gk(W) = λk+1(W)− λk(W)

and the structured distance to ambiguity as stability indicators. For the computation
of dk(W) we use both Algorithm 6 and the integration of the full-rank system. To

74 Chapter 5. Spectral clustering robustness

distinguish between these two results, we will denote, respectively, the unstructured
distances as

dlow
k (W), dfull

k (W).

If the optimizer found is not admissible, we integrate only the penalized equation (5.8),
since the low-rank system is not suitable. However, if the solution (ε, E) found is such
that the norm of min(W + εE, 0) is not large, say less than 0.05, we make it admissible
by replacing it with the admissible solution (ε̃, Ẽ) defined as

W + εE −min(W + εE, 0) =W + ε̃Ẽ, (5.19)

where the minimum between two matrices is meant entry-wise, and hence we consider
also the low-rank solution in these cases. In the experiments we also report the absolute
value of the difference between the two distances

ek(W) = |dlow
k (W)− dfull

k (W)|,

the number of outer iterations, denoted by M low
k and M full

k and the number of calls to
the MATLAB’s eigs function, denoted by N low

k and N full
k . In order to have a more

detailed analysis, for the first example we compare our results with those presented in
[3], even though the latter method uses a different metric with respect to the one we
use here for the computation of the distance to ambiguity (which will be denoted by
δk(W)).

We present four different examples with different features: in the first three the
penalization term is not required and hence we can use Algorithm 6, while the last
one shows a non-common case where the non-negativity constraint must be taken into
account. Finally we compare the algorithm with a graph partitioning method proposed
in [43]. In all experiments we set the tolerance of τout = 10−2 for the structured outer
iteration.

5.6.1 A Machine Learning example: the ECOLI matrix

The ECOLI matrix is a Machine Learning dataset from the SuiteSparse Matrix
Collection and the UCI Machine Learning Repository (see [61]) that describes the
protein localization sites of the bacteria E. coli. For n data points, the connectivity
matrix C ∈ Rn×n is created from a k-nearest neighbours routine, with k set such that
the resulting graph is connected. The similarity matrix S ∈ Rn×n = (sij) between the
data points is defined as

sij = max{si(j), sj(i)} with si(j) = exp

(
−4

∥xi − xj∥2

σ2i

)
with σi standing for the Euclidean distance between the i-th data point and its closest
k-nearest neighbour, namely the nearest connected vertex in the graph. The adjacency
matrix W is then created as W = C • S (here • denotes the componentwise product).

This matrix has n = 336 vertices and m = 4560 ≈ 13.6n edges and its pattern is
shown in Figure 5.1. In this case the structure of W contains three possible clusters
and the second and third appear to be split in two sub-communities. This facts suggest
that a suitable number of clusters should be k ∈ {3, 4, 5}. We test the capability of
our methods to identify this feature in Table 5.1, which shows the performances of
the algorithms with τinn = 10−9, where for k = 3, 4 the solutions have been made
admissible by means of (5.19). It is evident that for all the methods the best choices
are k = 3, 4 or 8, but the criteria disagree on the optimal choice. More precisely the

5.6. Numerical experiments 75

0 50 100 150 200 250 300

nz = 4560

0

50

100

150

200

250

300

0 20 40 60 80 100 120

nz = 12068

0

20

40

60

80

100

120

Figure 5.1: Patterns of the ECOLI (left) and JOURNALS (right)
matrices.

k gk(W) δk(W) dlow
k (W) dfull

k (W) ek(W) M low
k M full

k N low
k N full

k

2 0.0079 0.0056 < 10−7 < 10−7 < 10−7 2 2 36 138
3 0.0328 0.2739 0.1096 0.1139 0.0043 8 8 840 1522
4 0.0223 0.1164 0.1544 0.1535 0.0019 9 9 122 1206
5 0.0048 0.0034 < 10−7 < 10−7 < 10−7 2 2 12 158
6 0.0093 0.0066 < 10−7 < 10−7 < 10−7 2 2 18 127
7 0.0074 0.0053 < 10−7 < 10−7 < 10−7 2 2 22 158
8 0.0316 0.0888 0.0731 0.0731 < 10−7 7 7 462 635
9 0.0133 0.0174 0.0110 0.0110 < 10−7 6 6 36 545
10 0.0113 0.0109 0.0035 0.0035 < 10−7 6 6 60 700

Table 5.1: Comparison between the distances for ECOLI matrix. The
marked bold results indicate the best value for k according to each
method. According to all the criteria, k = 3, 4 are the best choices.

largest spectral gap is g3(W) = 0.328 slightly greater than g8(W) = 0.316, the largest
structured distance for the method of [3] is δ3 = 0.2739, while for the structured
distances dlow

k and dfull
k the best choice is k = 4, that is preferable than k = 3. In this

example, the size and the pattern of the matrix implies that the low-rank ODE is
more convenient than the full-rank gradient system. In particular the gain in memory
requirement is given by the ratio between m (for E of ODE (5.6)) and 4n+ 16 (for U
and S of system (5.17)), that is

m

4n+ 16
=

4560

4 · 336 + 16
≈ 3.35,

while the CPU times are 7 seconds for the low-rank, 20 seconds for the full-rank
gradient system and 16 seconds for the method of [3]. Thus in this case the low-rank
method is the fastest.

5.6.2 A slightly sparse example: the JOURNALS matrix

The JOURNALS matrix comes from a Pajek network converted to a sparse adjacency
matrix for inclusion in the University of Florida SuiteSparse matrix collection (see [17]

76 Chapter 5. Spectral clustering robustness

k gk(W) dlow
k (W) dfull

k (W) ek(W) M low
k M full

k N low
k N full

k

3 8.9963 5.3133 5.3076 0.0056 9 10 2068 1954
4 39.1923 6.3186 6.3190 0.0004 6 6 1792 1108
5 27.9853 5.3639 5.3702 0.0063 12 12 3888 2657
6 10.4987 4.3464 4.3561 0.0097 12 13 3966 2742
7 22.0178 7.4559 7.4324 0.0235 12 12 4210 2384
8 33.9873 8.1698 7.9233 0.2464 7 12 842 2236

Table 5.2: Comparison between the distances for Journals matrix.
The marked bold results indicate the best value for k according to each

method.

for more details). It represents an undirected weighted graph with n = 124 vertices
and m = 12068 ≈ 97n edges, whose structural pattern is shown in Figure 5.1.

The pattern of W does not suggest a suitable number of clusters to partition
the graph. We select k ∈ {3, . . . , 8} and we compare in Table 5.2 the results of the
unstructured distances with the spectral gaps, where we have set the inner tolerance
τinn = 10−4. For k = 8 the low-rank result has been made admissible by means of
(5.19). Also in this case the two criteria for the choice of the best number of clusters
disagree: while the structured distances select kopt = 8, the unstructured distance, i.e.
the largest spectral gap, prefers k = 4. Even in this setting there is a gain in memory
saving, even larger than the previous example,

m

4n+ 16
=

12068

4 · 124 + 16
≈ 23.57,

which shows the ability to perform the low-rank approach for even larger matrices
with moderate memory requirements. However the CPU time of the low-rank system
method is 78 seconds against the 55 seconds of the full-rank system. A possible
reason behind this behaviour is that the gradient system requires less effort to reach
convergence and hence less eigenvalues computations, which are the most expensive
procedures in all the methods. In this case the low-rank system required in total 16766
calls to eigs, while the full-rank system required 13081.

5.6.3 A social network community: the EGO-FACEBOOK matrix

The EGO-FACEBOOK matrix represents a dataset that consists of “circles” (or “friends
lists”) of the social network Facebook from the SNAP dataset (see [54] for more details).
The data were collected from survey participants using this Facebook app. The whole
matrix W1 has n1 = 4039 vertices with m1 = 176468 ≈ 43.1n1 edges (see Figure 5.2).
In order to perform further tests of the algorithms, we also consider two reduced
versions, W2 and W3, of the whole matrix W1.

The matrix W2 is obtained by means of a compression that maintains the pattern
and the density of the original matrix, but it halves the dimension: more precisely, for
i, j = 1, . . . , n1−1

2 , we define

(W2)i,j =
(W1)2i−1,2j−1 + (W1)2i−1,2j + (W1)2i,2j−1 + (W1)2i,2j

4
,

and then we set to zero the entries with the smallest value such that the compressed
matrix has the same density of W1 (the largest entry cancelled is 0.25). We obtain
the matrix W2 with n2 = 2019 vertices and m2 = 43967 ≈ 21.8n2 edges. Finally we
considered the main minor W3 of W1 formed by the first n3 = 896 vertices and with

5.6. Numerical experiments 77

0 500 1000 1500 2000

nz = 43967

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200 400 600 800

nz = 19078

0

100

200

300

400

500

600

700

800

Figure 5.2: EGO-FACEBOOK matrices: on the left the whole struc-
tural pattern of the full matrix W1, in the middle the compressed

matrix W2 and on the right the sub-matrix W3.

k gk(W1) dlow
k (W1) dfull

k (W1) ek(W1) M low
k M full

k N low
k N full

k

3 0.0182 1.0977 1.0977 < 10−7 10 10 436 1118
4 0.0211 3.2305 3.2305 < 10−7 11 11 1464 1427
5 0.0423 5.7510 5.7510 < 10−7 12 12 3086 1943
6 0.0526 6.6364 6.6364 < 10−7 13 13 1846 1834
7 0.5153 1.5223 1.1744 0.3479 10 9 1704 1353
8 0.0546 0.4725 0.4725 2 · 10−5 11 11 3506 2346

Table 5.3: Comparison between the distances for the full EGO-
FACEBOOK matrix W1. The marked bold results indicate the best

value for k according to each method.

m3 = 19078 ≈ 21.3n3 edges, which contains the first three main blocks of the whole
matrix.

Whole matrix

First we analyse the whole matrix W1. In Table 5.3 we report the results where we
set the inner tolerance 10−9, which will be also the tolerance of the experiments for
W2 and W3. The criterion disagree also in this case: the unstructured distance prefers
k = 6, while the largest spectral gap is for k = 7. The factor for the memory saving
gain with respect to the full-rank system is

m1

4n1 + 16
=

176468

4 · 4039 + 16
≈ 10.91,

while the CPU time performances are 1204 seconds for the low-rank and 966 seconds
for the gradient system, since also in this case the global number of calls to eigs of
the low-rank method (12042) is larger than that of the full-rank method (10021).

Compressed matrix

In order to test the robustness of the algorithms, we compare the results between the
full matrix W1 and its compressed version W2. Table 5.4 shows that the algorithms
gives the same optimal values of the whole matrix computation, even though there are
some differences in magnitude. The factor for the memory saving gain with respect to

78 Chapter 5. Spectral clustering robustness

k gk(W2) dlow
k (W2) dfull

k (W2) ek(W2) M low
k M full

k N low
k N full

k

3 0.0037 < 10−7 < 10−7 < 10−7 2 2 98 96
4 0.0155 0.2996 0.2996 < 10−7 10 10 1556 1146
5 0.0030 < 10−7 < 10−7 < 10−7 2 2 34 103
6 0.0638 2.0849 1.7597 0.3253 13 13 1132 1870
7 0.3865 1.8066 1.5887 0.2179 11 10 190 1633
8 0.0036 < 10−7 < 10−7 2 · 10−5 2 2 4 4

Table 5.4: Comparison between the distances for the compressed
EGO-FACEBOOK matrix W2. The marked bold results indicate the

best value for k according to each method.

k gk(W3) dlow
k (W3) dfull

k (W3) ek(W3) M low
k M full

k N low
k N full

k

3 0.6040 1.5039 1.3450 0.1589 10 12 1334 1025
4 0.1724 0.4883 0.4883 < 10−7 10 10 500 922
5 0.1870 0.2650 0.2650 < 10−7 9 9 234 706
6 < 10−7 < 10−7 < 10−7 < 10−7 2 2 4 4

Table 5.5: Comparison between the distances for EGO-FACEBOOK
matrix reduced W3. The highlighted results indicate the best value for

k according to each method.

the full-rank system is

m2

4n2 + 16
=

43967

4 · 2019 + 16
≈ 5.43,

while the CPU time performances are 73 seconds for the low-rank and 112 seconds for
the gradient system. This means that the computational time has scaled between W1

and W2 approximately by a factor 16.5 for the low-rank system and by a factor 8.6 for
the full-rank system.

Reduced matrix

Now we focus on W3. From its pattern it is clear that the most reasonable choices
for the number of clusters k should be between 3, 4 and 5. We also include k = 6 and
we investigate the performances of the methods for these values. In this case all the
methods agree and the best number of clusters is k = 3. The factor for the memory
saving gain with respect to the full-rank system is

m3

4n3 + 16
=

19078

4 · 896 + 16
≈ 5.30,

while the CPU time performances are 23 seconds for the low-rank and 37 seconds for
the gradient system.

5.6.4 An example with penalization: the Stochastic Block Model

The Stochastic Block Model (SBM) is a model of generating random graphs that tend
to have communities. It is an important model in a wide range of fields, from sociology
to physics. In this example we consider n = 160 vertices partitioned in p = 8 clusters
C1, . . . , Cp of q = 20 elements each. We consider a random full symmetric matrix

5.6. Numerical experiments 79

0 50 100 150

nz = 3480

0

20

40

60

80

100

120

140

160

k gk(W) dfull
k (W) M full

k N full
k

3 0.6488 6.2489 14 2560
4 0.7654 8.0190 12 2991
5 0.7654 6.1975 10 2542
6 0.6488 8.5668 11 1225
7 0.4335 5.6359 14 3437
8 12.1650 11.5727 26 2808
9 0.1522 0.7656 15 1859

Figure 5.3: SBM matrix: structural pattern (left) and comparison of
the distances (right). The marked bold results indicate the best value

for k according to each method.

J ∈ Rq×q and we build the matrix

W = Ip ⊗ J +Bp ⊗ Iq, Bp =



0 1 0 . . . 0

1 0 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1

. . . 1
0 . . . 0 1 0


∈ Rp×p,

where ⊗ denotes the Kronecker product. The weight matrix generated has the pattern
in Figure 5.3, with m = 3480 ≈ 21.75n non-zero entries and it has p blocks by
construction. If we apply Algorithm 6, some values of k provide a non-admissible
solution, which means that in this case a penalization is needed and the low-rank
system (5.17) cannot be exploited. In particular for k = 8, which is one of the candidate
optimal values, the non-negativity constraint violation cannot be ignored. In Figure 5.3
we show the results of the integration of the full-rank gradient system (5.8), where
we introduce in the j-th structured inner iteration a penalization cj that starts from
c0 = 0 and then increases by adding 0.5 during each iteration, that is cj = 0.5j. The
results found are admissible or slightly not, with the norm of min(W + ε⋆E⋆, 0) of
order 10−5: in the last case we ensure that the optimizer is admissible by removing
this error. The time required by the computation is 33 seconds.

5.6.5 Comparison with a different graph partitioning algorithm

In this section we compare the clustering of the Graph Partitioning algorithm proposed
in [43] with the result provided by the spectral clustering. More precisely we consider
the examples of the previous sections and we compare the cost of the cut associated
with the partitioning, for the most interesting values of k.

For a fixed k, the Graph Partitioning algorithm presented in [43] computes a
partition P = {V1, . . . , Vk} of the vertices set and it minimizes the cost function

C(P) =
∑
h̸=l

∑
i∈Vh,j∈Vl

ŵi,j ,

80 Chapter 5. Spectral clustering robustness

Figure 5.4: Clustering of the EGO-FACEBOOK graph for k = 6, on
the left Spectral Clustering, while on the right Graph Partitioning.

k Graph Partitioning Spectral Clustering

ECOLI
3 2.5699 2.4968
4 6.7949 5.2607
8 15.0172 11.5777

EGO-FACEBOOK 6 0.6228 0.5608
7 0.8172 0.5933

SBM 8 10.8664 10.8664

Table 5.6: Cost function C(P) for the examples shown in the previous
section.

where Ŵ = (ŵi,j) is the normalized weight matrix, i.e. the rows sum to 1. It can be
shown (see [43, Lemma 2]) that a simple formula for the computation of the cost is
given by

C(P) = 1
⊤Ŵ1− tr(Π⊤ŴΠ),

where Π ∈ Rn,k is the permutation matrix associated with the partitioning, that is

Πi,j =

{
1 if i ∈ Vj

0 if i /∈ Vj
i = 1, . . . , n, j = 1, . . . , k.

The minimization of C(P) is then performed by means of the spectral decomposition of
Ŵ , where the discrete partitions are obtained after applying the k-means algorithm to
the retrieved eigenvectors. The algorithms provide similar partitionings (see for instance
Figure 5.4), but the cost associated with the Spectral Clustering result is less or equal
than that of the Graph Partitioning, as shown in Table 5.6 (the JOURNALS matrix
has not been considered here, since the Graph Partitioning algorithm computes a large
cluster that includes almost all the vertices and so the clustering is not meaningful).

Code and Data Availability

The codes implementing the algorithms discussed in this chapter are publicly available
at:

https://github.com/StefanoSicilia/Spectral-Clustering-stability

81

Chapter 6

Low-rank-adaptive stabilization of a
matrix

In this chapter we adapt the structured two-level method introduced in Chapter 2 and
in Chapter 3 in order to stabilize a matrix, in the Hurwitz sense, by moving all its
eigenvalues in the left open complex half-plane.

Let A be a square matrix with a given structure (e.g. real matrix, sparsity pattern,
Toeplitz structure, etc.) and assume that it is unstable, i.e. at least one of its
eigenvalues lies in the complex right half-plane. The problem of stabilizing A consists
in the computation of a matrix B, whose eigenvalues have all negative real part and
such that the perturbation ∆ = B −A has infimal norm. The structured stabilization
further requires that the perturbation preserves the structural pattern of A. This
non-convex problem is solved by a two-level procedure which involves the computation
of the stationary points of a matrix ODE. It is possible to exploit the underlying
low-rank features of the problem by using a rank-adaptive integrator that follows
rigidly the rank of the solution. Some benefits derived from the low-rank setting are
shown in several numerical examples. These computational advantages also allow to
deal with high dimensional problems.

The chapter is based on [38], which is a paper that extends the results of [31]
and it generalizes them to the structured case by means of the method introduced in
Chapter 4 (see [34]) and by using the rank-adaptive integrator proposed in [13] for the
solution of the ODE.

6.1 Introduction

Given a matrix A ∈ Cn×n with spectrum σ(A) = {λ1, . . . , λn} ordered such that

Re(λn) ≤ · · · ≤ Re(λ1),

we consider the problem of its stabilization, that is we look for a matrix B close to
A such that B is a stable matrix, i.e. all its eigenvalues lie in the open left complex
half-plane. This problem is well-known in the literature and it has been addressed
with different methods (see e.g. [9, 20, 22, 59, 60]). In this chapter we follow the
approach of [32] and we improve it by means of an implementation that highlights the
low-rank features of the problem. We combine the approach presented in [34] with
the rank-adaptive integrator of [13, 14] and we derive a new efficient method. We
also introduce an alternative functional that exploits the cubic Hermite interpolating
polynomial and we compare it with the one presented in [32]. The results of our new
method are similar to the other approaches, but the novelty introduced also allows to
deal with higher dimensional problems.

82 Chapter 6. Low-rank-adaptive stabilization of a matrix

In order to obtain a strict stability, we fix a parameter δ > 0, usually called
stability margin (see e.g. [10, 56]), and we further require that the stabilized matrix B
is δ-stable, that is all its eigenvalues lie in the set

C−
δ = {λ ∈ C : Re(λ) ≤ −δ}.

Formally, we wish to find a perturbation ∆ of minimum Frobenius norm such that
A+∆ is δ-stable, that is we consider the optimization problem

argmin
σ(A+∆)⊆C−

δ

∥∆∥F (6.1)

and we look for its minimum and its minimizer(s). We denote by mδ(A) the number of
δ-unstable eigenvalues of A (i.e. the eigenvalues with real part larger than −δ), which
is zero if and only if A is δ-stable.

We focus on the most interesting case where mδ(A) is moderate, since in many
applications the original matrix is close to be stable and so generally just a few of its
eigenvalues lie in the right closed complex half-plane. In this way it will be possible
to exploit the low-rank features of the problem, by taking inspiration from what has
been discussed in Section 3.1.2.

For solving problem (6.1), we use a two-level approach similar to the one presented
in [32]. Given a fixed perturbation size ε > 0 and a predetermined parameter δ > 0
(that ensures strict stability), we rewrite the matrix perturbation ∆ = εE with
∥E∥F = 1 and we minimize in the inner iteration the objective functional

Fε(E) =
1

2

n∑
i=1

(
(Re (λi(A+ εE)) + δ)+

)2
=

1

2

mδ(A+εE)∑
i=1

(Re (λi(A+ εE)) + δ)2 ,

(6.2)
where a+ = max(a, 0) is the positive part of a real number a. Then the outer
iteration tunes the perturbation size ε > 0 and finds the minimum value ε⋆ such that
Fε⋆(E⋆(ε⋆)) = 0, where

E⋆(ε) = argmin
∥E∥F=1

Fε(E) (6.3)

is the solution of the optimization problem that arises in the inner iteration.
While in [32] the number of addends of the summation in the objective functional

is fixed and it is based on an initial guess of the amount of unstable eigenvalues, in our
new approach the number of summands depends on E and relies on its current number
of δ-unstable eigenvalues. This feature makes it possible to exploit the properties of
the perturbation E with an adaptive choice of its rank. The optimizers of problem
(6.1) are seen as stationary points of a gradient system, which is integrated through a
rank-adaptive strategy based on the one presented in [13, 14].

The procedure described can be adapted also to the structured stabilization problem,
that takes into account the structure of the original matrix and hence gives a more
meaningful result; as far as we know, this problem has received much less attention in
the literature than the unstructured. Given A ∈ S, where S ⊆ Cn×n is a subspace of
the complex matrices, we consider

argmin
σ(A+∆)⊆C−

δ , ∆∈S
∥∆∥F , (6.4)

that is the structured version of (6.1). Also in this case we proceed with the two-level
approach and we show how the method can be reused in order to exploit all the

6.2. Gradient system 83

low-rank properties that arise in the unconstrained problem.
The chapter is organized as follows. In Section 6.2 we introduce the gradient

system for the inner iteration of the unstructured problem. In Section 6.3 we show the
rank-adaptive integrator used for the solution of the gradient system. In Section 6.4
we investigate the behaviour of the rank during the integration of the gradient system
and we show it in several numerical examples. The outer iteration is presented in
Section 6.5, where an alternative functional for the inner iteration is introduced. In
Section 6.6 we adapt the procedure to the structured case and in Section 6.7 we show
some numerical examples of large dimension.

6.2 Gradient system

In this section we fix the perturbation size ε > 0 and we describe an ordinary differential
equation that is used to solve problem (6.3). We follow the same approach shown in
Chapter 2 and we adapt the results of Lemma 2.3.2, Theorem 2.3.4 and Lemma 2.3.1.

In the following, given a matrix whose eigenvalues are simple, we denote by xi and
yi, respectively, the unit left and right eigenvectors associated to λi, such that x∗i yi is
real and non-negative. We will often exploit the following standard perturbation result
for eigenvalues (see [50]), which we have stated also in Chapter 4 as Lemma 4.2.1.

Lemma 6.2.1. Let λ(t) be a simple eigenvalue of a differentiable matrix path A(t)
in a neighbourhood of t0 and let x(t) and y(t) be, respectively, the left and right unit
eigenvectors associated. Then x(t0)

∗y(t0) ̸= 0 and

λ̇(t0) =
x(t0)

∗Ȧ(t0)y(t0)

x(t0)∗y(t0)
.

We will always suppose that the hypothesis of Lemma 6.2.1 holds true in our
setting. This is a generic assumption in the unstructured perturbation case, since the
matrices with at least a 2-by-2 Jordan block form a set of zero measure in Cn×n, see
e.g. [4] for more details.

In order to find an optimal value of E that minimizes the objective functional
Fε(E), we introduce a matrix differentiable path E(t) of unit Frobenius norm matrices
that depends on a real non-negative time variable t ≥ 0. By denoting S1 the unit norm
sphere in Cn×n

S1 =
{
A ∈ Cn×n : ∥A∥F = 1

}
,

it holds that E(t) ⊆ S1. In this way it is possible to consider the continuous version
Fε(E(t)) of the objective functional, whose derivative is characterized by the following
result.

Lemma 6.2.2. Let E(t) ⊆ S1 be a differentiable path of matrices for t ∈ [0,+∞). Let
ε and δ be fixed. Then Fε(E) is differentiable in [0,+∞) with

d

dt
Fε(E(t)) = εRe⟨Gε(E(t)), Ė(t)⟩,

where Gε(E(t)) is the gradient

Gε(E(t)) =

n∑
i=1

γi(t)xi(t)yi(t)
∗, γi(t) =

(Re (λi(A+ εE(t))) + δ)+
xi(t)∗yi(t)

∈ R.

84 Chapter 6. Low-rank-adaptive stabilization of a matrix

Proof. It is a direct adaptation of Lemma 2.3.1. Since

u∗Bv = ⟨uv∗, B⟩, ∀B ∈ Cn×n, ∀u, v ∈ Cn

and ((x+)
2)′ = 2x+, Lemma 6.2.1 implies

d

dt
Fε(E) =

n∑
i=0

Re

(
εx∗i Ėyi
x∗i yi

)
(Re (λi(A+ εE) + δ))+ =

= εRe

〈
n∑

i=1

γixiy
∗
i , Ė

〉
= εRe⟨Gε(E), Ė⟩.

The matrix G = Gε(E(t)) introduced in Lemma 6.2.2 gives the steepest descent
direction for minimizing the objective functional, without considering the constraint
on the norm of E. Differently from the analogous formulas for the objective functional
derivative in [32, 34, 37], where the gradient G has less or none dynamical changes in
the rank, the gradient introduced here is a matrix whose rank strongly depends on the
δ-unstable eigenvalues of A+ εE(t) and hence it may change in time. This feature is
relevant, since it implies low-rank properties in the problem we focus on. Indeed, if the
number of unstable eigenvalues of A is moderate, that is the case of our interest, the
gradient G has low-rank by construction. The next result shows the best direction to
follow in order to fulfil the unit norm condition, which is equivalent to Re⟨E, Ė⟩ = 0.

Lemma 6.2.3. Given E ∈ S1 and G ∈ Cn×n \ {0}, the solution of the optimization
problem

argmin
Z∈S1, Re⟨Z,E⟩=0

Re⟨G,Z⟩

is
αZ⋆ = −G+ Re⟨G,E⟩E,

where α > 0 is the normalization parameter.

Proof. The proof is a direct consequence of Lemma 2.3.2.

Lemmas 6.2.2 and 6.2.3 suggest to consider the matrix ordinary differential equation

Ė(t) = −Gε(E(t)) + Re⟨Gε(E(t)), E(t)⟩E(t), (6.5)

whose stationary points are zeros of the derivative of the objective functional Fε(E(t)).
Lemma 6.2.2 implies that equation (6.5) is a gradient system for Fε(E(t)), since along
its trajectories

d

dt
Fε(E(t)) = ε⟨Gε(E(t)), Ė(t)⟩ = ε

(
−∥Gε(E(t))∥2F + (⟨Gε(E(t)), E(t)⟩)2

)
≤ 0

by means of the Cauchy-Schwarz inequality, which also implies that the derivative
vanishes in E⋆ if and only if E⋆ is a real multiple of Gε(E⋆). Thanks to the monotonicity
property along the trajectories, an integration of this gradient system must lead to a
stationary point E⋆. The next result provides the important property of the minimizers
that reveals the underlying low-rank structure of the problem.

Theorem 6.2.4. Let E⋆ be a stationary point of (6.5), such that Fε(E⋆) > 0. Then
Gε(E⋆) ̸= 0 and E⋆ is a real multiple of Gε(E⋆), that is there exists ν ̸= 0 and an

6.3. A rank-adaptive integrator for the gradient system 85

integer 1 ≤ m ≤ n such that

E⋆ = νG(E⋆) = ν
m∑
i=1

γixiy
∗
i .

Proof. For all E ∈ S1, and with the same notations of Lemma 6.2.2, it holds that

Re⟨Gε(E), A+ εE⟩ = Re

〈
m∑
i=1

γixiy
∗
i , A+ εE

〉
= Re

(
m∑
i=1

γix
∗
i (A+ εE)yi

)
=

=

m∑
i=1

Re(γiλix∗i yi) =
m∑
i=1

Re(λi)γi(x∗i yi) ≥ 0,

which means that the gradient Gε(E) vanishes if and only if A+ εE is δ-stable, which
is not the case since Fε(E⋆) > 0. Thus the claim follows from the fact that the right
hand side of (6.5) vanishes for E = E⋆, implying that E⋆ must be a real multiple of
the non-zero matrix Gε(E⋆).

Theorem 6.2.4 together with the monotonicity property, show that the integration
of equation (6.5) always lead to a low-rank stationary point.

6.3 A rank-adaptive integrator for the gradient system

In this section we discuss how to integrate system (6.5). Let us assume that for all t
the rank r(t) of the matrix E(t) ∈ Cn×n is piecewise constant, that is in agreement
with the changing rank of the gradient. This means that in an interval where r(t) ≡ r
is constant, E(t) can be decomposed as an analytic SVD-like (see e.g. [8])

E(t) = U(t)S(t)V (t)∗, U(t), V (t) ∈ Cn×r, S(t) ∈ Cr×r invertible.

This decomposition generalizes the SVD since it is not required that the matrix S is
diagonal and, up to the points of discontinuity of r(t), it can be extended to the whole
trajectory of E. In particular, in a neighbourhood of a stationary point, we expect
that the rank r(t) is constant. We can rewrite equation (6.5) as

U̇SV ∗ + UṠV ∗ + USV̇ ∗ = −G+ µUSV ∗,

where G = Gε(E) and µ = Re⟨G,E⟩. Imposing the gauge conditions U∗U̇ = V ∗V̇ = 0,
similarly as done in system (5.17) or in [37, Equation 14], yields

U̇ = −(I − UU∗)GV S−1

Ṡ = −U∗GV + µS

V̇ = (I − V V ∗)G∗US−∗

, (6.6)

which is equivalent to (6.5). The structure of the matrix S is not diagonal in general,
but the decomposition assumed for E holds along all the trajectory. System (6.6)
consists of two matrix ODEs of dimension n-by-r and one of dimension r-by-r, where
r is the rank of E(t).

A classical integration, e.g. by means of Euler’s method, of system (6.6) is not
suitable. Indeed the presence of S−1 may cause numerical issues and moreover this
integration does not capture the change of the rank of G along the trajectory. To

86 Chapter 6. Low-rank-adaptive stabilization of a matrix

overcome this problem, we exploit a rank-adaptive strategy similar to the one exposed
in [13]. We define

g(E) := −Gε(E) + Re⟨Gε(E), E⟩E

as the left-hand side of (6.5) such that Ė = g(E) and we fix a tolerance τ . To
update the perturbation path E(t) = U(t)S(t)V (t)∗ from t0 to t1, we start from
E0 = E(t0) = U(t0)S(t0)V (t0)

∗ = U0S0V
∗
0 of rank r0 and we get E1 = E(t1) =

U(t1)S(t1)V (t1)
∗ = U1S1V

∗
1 of rank r1 by performing the following steps:

1. Set ρ = min(2r0, n). This choice differs a bit from the one in [13], where ρ = 2r0,
and it is made in order to avoid that the dimension of the augmented basis
exceeds the dimension of the space. This fact is unlikely, but it cannot be
excluded a priori.

2. Compute augmented basis Û ∈ Cn×ρ and V̂ ∈ Cn×ρ

K-step: Integrate from t0 to t1 the n-by-r0 differential equation

K(t0) = U0S0, K̇(t) = f (K(t)V ∗
0)V0.

Perform a QR factorization of (K(t1), U0), save the first ρ columns in Û ∈ Cn×ρ

and compute M̂ = Û∗U0 ∈ Cρ×r0 .

L-step: Integrate from t0 to t1 the n-by-r0 differential equation

L(t0) = V0S
∗
0 , L̇(t) = f (U0L(t)

∗)∗ U0.

Perform a QR factorization of (L(t1), V0), save the first ρ columns in V̂ ∈ Cn×ρ

and compute N̂ = V̂ ∗V0 ∈ Cρ×r0 .

3. Augment and update S

S-step: Integrate from t0 to t1 the ρ-by-ρ differential equation

Ŝ(t0) = M̂S0N̂
∗,

˙̂
S(t) = Û∗f

(
Û Ŝ(t)V̂ ∗

)
V̂ .

4. Adapt the rank for the updated matrices

Truncation: Compute the SVD Ŝ(t1) = P̂ Σ̂Q̂∗, where Σ̂ = diag(σ1, . . . σρ), and
choose the new rank r1 ≤ ρ such that(

ρ∑
i=r1+1

σ2i

) 1
2

≤ τ.

Define S1 as the r1-by-r1 diagonal main sub-matrix of Σ̂ and denote by P1, Q1 ∈
Cρ×r1 the first r1 columns of P̂ and Q̂ respectively.

5. Return U1 = ÛP1 ∈ Cn×r1 , V1 = V̂ Q1 ∈ Cn×r1 and S1 ∈ Cr1×r1 .

In [13], it is shown that this algorithm computes an approximation of U(t), S(t)
and V (t) with an error proportional to the tolerance τ and the time step t1 − t0.
This integration method is ideal for its structure-preserving properties in order to
maintain the main features of the gradient system (6.5), that is the monotonicity of the
objective functional and the constraint on the unit Frobenius norm (see [13, Section 4]).
Moreover this algorithm allows the truncation of the rank, according to the tolerance

6.4. Rank adaptivity for fixed perturbation size 87

τ
ε = 2 ε = 2.38

Fε(E⋆(ε)) max rank Fε(E⋆(ε)) max rank
10−1 0.6981 6 0.2501 6
10−2 0.4695 6 0.1600 6
10−3 0.2408 6 0.0283 7
10−4 0.2062 8 0.0039 8
10−5 0.2450 9 0.0001 9
10−6 0.2458 9 8.4212 · 10−6 9

Table 6.1: Illustrative matrix (6.7): numerical results of the inner
iteration

τ in order to adapt the size of the invertible matrix S along the trajectory. These
properties make the rank-adaptive integrator a suitable choice for the computation
of the solution of the gradient system (6.5) and strongly motivate the usage of this
approach for the integration of this ODE.

6.4 Rank adaptivity for fixed perturbation size

In this section we show with three different examples how the integrator introduced in
Section 6.3 chooses the adaptive rank of the perturbation. Unless otherwise stated,
we set the parameter δ = 10−3. We consider here illustrative examples with small
dimension n, while larger examples will be presented in Section 6.7.

6.4.1 An illustrative example

Consider the matrix

A =



0 1 1 1 −1 0 −1 0 0 0
1 −1 0 1 1 0 1 0 0 0

−1 0 −1 −1 −1 1 1 1 0 0
1 0 0 −1 1 −1 −1 1 0 0
0 0 −1 1 0 1 1 −1 0 0
0 −1 1 1 −1 0 0 1 1 0

−1 1 −1 1 1 0 −1 0 1 1
0 0 1 −1 −1 1 1 1 −1 1
0 0 0 0 0 0 0 −1 1 −1
0 0 0 0 0 0 0 0 −1 1


∈ C10×10, (6.7)

which has 6 unstable eigenvalues. Table 6.1 contains the results of the functional
Fε(E⋆) and the maximum rank of E(t) achieved during the inner iteration with
different choices of ε and of the tolerance τ ; in particular ε = 2.38 is close to be ε⋆.
In both cases it is possible to observe how much the value of the objective function
decreases when the tolerance is lowered, which is explained by the higher adaptive
rank of the perturbation. This means that lower values of the tolerance lead to more
accurate results, but they also increase the rank of the perturbation and hence the
computational cost. Thus, a suitable choice of τ is crucial to balance these two factors.

88 Chapter 6. Low-rank-adaptive stabilization of a matrix

τ
ε = 4 ε = 5.5

Fε(E⋆(ε)) max rank Fε(E⋆(ε)) max rank
10−1 3.7646 20 0.2321 20
10−2 3.7646 20 0.2469 20
10−3 3.7646 20 0.0306 20
10−4 3.7646 20 0.0487 20
10−5 3.7646 20 0.0330 20
10−6 3.7646 20 0.0292 20

Table 6.2: Grcar matrix (6.8): numerical results of the inner iteration

6.4.2 Grcar matrix

The rank-adaptive procedure is not effective in all cases. For instance let us consider
the Grcar n-by-n matrix, with n ≥ 5, that is a Hessenberg and Toeplitz matrix of the
form

Gn =



1 1 1 1

−1
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . 1

. . .
. . .

. . . 1
. . .

. . . 1
−1 1


∈ Rn×n. (6.8)

The eigenvalues of Gn are all unstable and also quite sensitive. We consider n = 20
and we show in Table 6.2 the results of the inner iteration with different choices of ε
and of the tolerance τ .

In this case the fact that all the eigenvalues are unstable provides a perturbation of
full (or almost full) rank and the rank-adaptive integrator does not seem to be effective.
During the integration, some eigenvalues may become stable before the other ones
and after that they begin to cross back and forth the imaginary axis. Consequently
they activate or disable their respective rank-1 component in the gradient, producing
a minimal change of the rank (e.g. 18 or 19) that is not worth to exploit with the
adaptive integrator.

6.4.3 Smoke matrix

In this example we show in more detail the changes of the rank perturbation during the
integration. Let Sn be the n×n Smoke matrix from the gallery function of Matlab

Sn =



ζ1 1
ζ2 1

. . .
. . .

. . . 1
ζn−1 1

1 ζn


∈ Rn×n, (6.9)

whose diagonal contains the n distinct roots of the unit

ζj = e
2πij
n , j = 1, . . . , n

6.5. Outer iteration: tuning the perturbation size 89

τ
ε = 2.5

Fε(E⋆(ε)) max rank
10−1 0.1916 11
10−2 0.0498 12
10−3 0.0061 13
10−4 0.0011 15
10−5 0.0002 16
10−6 5.0540 · 10−6 17

Table 6.3: Smoke matrix (6.9): numerical results of the inner iteration

such that ζnj = 1 for all j. The characteristic polynomial p(λ) = det(Sn − λIn)
associated to Sn is

p(λ) = (−1)n+1 +

n∏
j=1

(ζj − λ) = (−1)n

−1 +

n∏
j=1

(λ− ζj)

 = (−1)n(λn − 2)

and hence the eigenvalues of S are equally distributed along the circle of radius n
√
2.

For n even the matrix Sn has half eigenvalues stable and half unstable. We consider
n = 20 and we collect the results of the inner iteration in Table 6.3.

Figure 6.1 shows the trend of the rank and the objective functional. We can notice
how the rank is increased or decreased by the integrator, but definitely it stabilizes
when it approaches the stationary point.

6.5 Outer iteration: tuning the perturbation size

Once that a computation of the optimizers is available for a given ε > 0, we need to
determine an optimal value for the perturbation size ε⋆. Let E⋆(ε) be a solution of
the optimization problem (6.3) and consider the function

φ(ε) := Fε(E⋆(ε)).

This function is non-negative and we define ε⋆ as the smallest zero of φ. Assuming
that the unstable eigenvalues of A+ εE⋆(ε) are simple (see also Remark 2.4.2), for
0 ≤ ε < ε⋆, yields that φ is a differentiable function in the interval [0, ε⋆). The aim
of the outer iteration is to approximate ε⋆, which is the solution of the optimization
problem (6.1). In order to solve this problem, we use a combination of the well-known
Newton and bisection methods, which provides an approach similar to [24, 28, 33]
or [34]. If the current approximation ε is smaller than ε⋆, it is possible to exploit
Newton’s method, since φ is smooth there; otherwise, if ε > ε⋆, we use the bisection
method. The following result provides a simple formula for the first derivative of φ
which is cheap to compute, making the Newton’s method easy to apply.

Lemma 6.5.1. For 0 ≤ ε < ε⋆ it holds that

φ′(ε) =
d

dε
Fε(E⋆(ε)) = ⟨Gε(E⋆(ε)), E⋆(ε)⟩ = −∥Gε(E⋆)∥F ≤ 0.

90 Chapter 6. Low-rank-adaptive stabilization of a matrix

1 1.5 2 2.5 3 3.5

10−1

100

101
Objective functional versus time steps

2 4 6 8 10
8

9

10

11

12
Ranks

1 1.5 2 2.5 3 3.5
10−3

10−2

10−1

100

101
Objective functional versus time steps

0 5 10 15 20 25
10

11

12

13

14

15
Ranks

1 2 3 4
10−6

10−5

10−4

10−3

10−2

10−1

100

101
Objective functional versus time steps

0 20 40 60
10

11

12

13

14

15

16

17
Ranks

Figure 6.1: Smoke matrix: functional and ranks in the inner iteration
for τ = 10−2 (up), τ = 10−4 (middle) and τ = 10−6 (down).

6.5. Outer iteration: tuning the perturbation size 91

Proof. It is similar to the proof of Lemma 2.4.1. As shown in Lemma 6.2.2, we get

φ′(ε) =
d

dε

(
1

2

n∑
i=1

(
(Re (λi(A+ εE⋆(ε))) + δ)+

)2)
=

=

n∑
i=1

(Re (λi(A+ εE⋆(ε))) + δ)+
d

dε

(
Re (λi(A+ εE⋆(ε)))+

)
=

= Re⟨Gε(E⋆(ε)), E⋆(ε) + εE′
⋆(ε)⟩,

where E′
⋆(ε) is the derivative with respect to ε of E⋆(ε). Since E⋆ is a unit norm

stationary point of (6.5) and a zero of the derivative of the objective functional Fε,
then Gε(E⋆(ε)) is a negative multiple of E⋆. Thus Gε(E⋆) = −∥Gε(E⋆)∥F E⋆(ε) and,
since ∥E⋆(ε)∥F = 1 for all ε (omitted in the following formula), it holds that

Re⟨Gε(E⋆), E
′
⋆⟩ = −∥Gε(E⋆)∥F · Re⟨E⋆, E

′
⋆⟩ = −∥Gε(E⋆))∥F

2

d

dε
∥E⋆∥2F = 0.

6.5.1 Another functional

For a deeper analysis of the method developed, we introduce also the alternative
objective functional Φε. Given 0 < δ1 < δ2 ≪ 1 we define it as

Φε(E) =
1

2

n∑
i=1

ψ(ρi) (ρi + δ2)
2
+ , ρi = Re(λi(A+ εE)),

where ψ ∈ C1(R) is the cubic Hermite interpolating polynomial defined as

ψ(x) =


0 x < −δ2
(x+δ2)2(2x+3δ1−δ2)

(δ1−δ2)3
−δ2 ≤ x ≤ −δ1

1 x > −δ1

,

with derivative

ψ′(x) =

{
6(x+δ2)(x+δ1)

(δ1−δ2)3
−δ2 ≤ x ≤ −δ1

0 otherwise
,

such that
ψ(−δ1) = 1, ψ(−δ2) = ψ′(−δ1) = ψ′(−δ2) = 0.

The aim of this functional Φε is to soften the passage of an eigenvalue from unstable
to stable and vice-versa, by smoothening the function (x + δ2)+ into ψ(x)(x + δ2).
In this way the interval [−δ2,−δ1] defined by the new parameters δ1 and δ2 acts like
a transition region that covers the non-differentiable point of the original functional
Fε. Lemma 6.5.2 shows that the previous theory can be applied also in this case, by
means of a slight change of the gradient associated to the objective functional. In
particular the new gradient is made up by the same rank-one perturbations of the
previous version, but the coefficients associated are different.

92 Chapter 6. Low-rank-adaptive stabilization of a matrix

Lemma 6.5.2. Let E(t) ⊆ S1 be a differentiable path of matrices for t ∈ [0,+∞). Let
ε and δ be fixed. Then Φε(E) is differentiable in [0,+∞) with

d

dt
Φε(E(t)) = εRe⟨Γε(E(t)), Ė(t)⟩,

where Γε(E(t)) is the gradient of Φε

Γε(E(t)) =
n∑

i=1

κi(t)xi(t)yi(t)
∗, κi(t) =

(ρi + δ2)+ (ψ′(ρi)(ρi + δ2)+ + 2ψ(ρi))

2xi(t)∗yi(t)
≥ 0,

with ρi(t) = Re (λi(A+ εE(t))).

Proof. The proof is the same as that of Lemma 6.2.2, since for any i = 1, . . . , n

d

dt

(
ψ(ρi)(ρi + δ2)

2
+

)
= ρ̇iψ

′(ρi)(ρi + δ2)
2
+ + 2ψ(ρi)ρ̇i(ρi + δ2)+ =

= ρ̇i(ρi + δ2)+
(
ψ′(ρi)(ρi + δ2)+ + 2ψ(ρi)

)
= ⟨κixiy∗i , Ė⟩.

Also the outer iteration can be adapted to the functional Φε. In practice we
have always considered δ2 = 2δ1 and δ = δ1 = 10−3, but, depending on the case,
these parameters may be tuned differently. We recall that, for both the functionals
Fε and Φε, the outer iteration aims to achieve Re(λ1(A+ ε⋆E⋆(ε⋆))) < −δ, instead
of Re(λ1(A + ε⋆E⋆(ε⋆))) < 0. In all tables of Section 6.5 and Section 6.7 we write
Re(λ1) = Re(λ1(A+ ε⋆E⋆(ε⋆))) for short.

6.5.2 Smoke matrix

Let us consider again the Smoke matrix S ∈ Rn×n. For n = 30 we generate a random
orthogonal matrix by selecting the first factor of the QR decomposition of a matrix
whose entries follows the standard normal distribution (in Matlab notation we set
rng(1) and [Q,∼] = qr (randn(n) + i · randn(n))) and we apply the algorithm on the
Smoke-like matrix

A = QSQ∗. (6.10)

In Table 6.5 we consider both the functionals Fε and Φε and we report the results
for different integration strategies: we study the difference between the rank-adaptive
approach and the fixed-rank method proposed in [32] with several values of the rank r.
In all the experiments we set

τinn = 10−9, τout = 10−9, τrk = 10−8, maxitinn = 150, maxitout = 200,

where τ stands for tolerance, maxit for the maximum number of iteration allowed and
inn and out refers to the inner and outer iterations respectively.

For the standard functional Fε, the rank-adaptive integrator provides the smallest
distance ε⋆ = 3.2613, even though it is slightly slower than the fixed-rank approaches.
For the Hermite functional Φε the best results is given by the fixed-rank 23 approach
(that is ε⋆ = 3.3304), but it is very close to the result provided by the adaptive
integrator (that is ε⋆ = 3.3307). The rank-adaptive approach provides one of the best
results in similar computational time and it detects quite well the rank of the best
optimizer found by the fixed-rank procedures. In this way it is possible to avoid to

6.5. Outer iteration: tuning the perturbation size 93

Rank feature ε⋆ rk(E⋆) Functional Re(λ1) Time (s)

Fε

Adaptive 3.2613 21 4.4194 · 10−10 −9.7821 · 10−4 9.3625
Fixed (15) 3.7332 15 1.6790 · 10−14 −0.0010 6.1151
Fixed (16) 3.5529 16 1.6452 · 10−12 −0.0010 7.0870
Fixed (17) 3.3478 17 2.8299 · 10−11 −9.9248 · 10−4 5.5593
Fixed (18) 3.4473 18 2.3842 · 10−11 −9.9324 · 10−4 8.8625
Fixed (19) 3.3726 19 1.6593 · 10−11 −9.9560 · 10−4 5.5715
Fixed (20) 3.3364 20 1.5095 · 10−11 −0.0010 4.9986
Fixed (21) 3.2845 21 3.4372 · 10−11 −9.9464 · 10−4 5.8921
Fixed (22) 3.2867 22 1.5229 · 10−11 −9.9494 · 10−4 6.7260
Fixed (23) 3.2960 23 4.2070 · 10−10 −9.8680 · 10−4 7.4120

Φε

Adaptive 3.3307 21 1.0000 · 10−9 −0.0020 7.3604
Fixed (15) 4.0971 15 0 −0.0066 15.6724
Fixed (16) 3.5358 16 1.0000 · 10−9 −0.0020 11.2574
Fixed (17) 3.3671 17 1.0000 · 10−9 −0.0020 8.2343
Fixed (18) 3.4353 18 1.2461 · 10−7 −8.6848 · 10−4 19.6561
Fixed (19) 3.3453 19 1.0000 · 10−9 −0.0020 8.3218
Fixed (20) 3.3603 20 8.4282 · 10−8 −0.0013 16.1668
Fixed (21) 3.3530 21 2.7206 · 10−8 −0.0012 16.3811
Fixed (22) 3.3742 22 1.0000 · 10−9 −0.0020 8.7161
Fixed (23) 3.3304 23 1.0000 · 10−9 −0.0020 14.4259

Table 6.4: Comparison between the rank-adaptive and fixed-rank
integrators of the Smoke-like matrix (6.10) for both the functionals Fε

and Φε. Best results highlighted in bold.

perform several times the fixed-rank integration in order to improve the result, which
is more expensive especially when a GPU is not available.

In all the experiments we observed an alignment along the imaginary axis of the
unstable eigenvalues, as shown in Figure 6.2. This means that all the algorithms move
the unstable eigenvalues towards the imaginary axis, but they also change some of
the stable ones making them closer to have zero real part. This is the reason behind
the fact that the optimal fixed-rank (between 21 and 23 in this example) is not the
original number of unstable eigenvalues (15).

In Table 6.5 we have compared the results of our algorithm with other competitors:
the methods by Gillis and Sharma (G-S) developed in [20] and the approach by Noferini
and Poloni (N-P) proposed in [59]. In this case, in order to have a fair comparison,

Rk feature ε⋆ rk(E⋆) Functional Re(λ1) Time (s)
Fε Adaptive 3.2744 21 5.5126 · 10−11 6.8931 · 10−6 8.2525

G-S
BCD 3.5757 30 0 −9.5148 · 10−15 1.4973
Grad 3.1732 30 3.5818 · 10−30 2.6765 · 10−15 1.4723
FGM 2.8263 30 4.9565 · 10−26 3.1485 · 10−13 1.4644

N-P Hurw-Cpx 0.7803 29 0 0 4.2401

Table 6.5: Comparison between the rank-adaptive approach and the
algorithms by Gillis and Sharma (G-S) and that by Noferini and Poloni

for the Smoke-like matrix (6.10). Best results highlighted in bold.

94 Chapter 6. Low-rank-adaptive stabilization of a matrix

−1 0 1
−2

−1

0

1

2

−1 0 1
−2

−1

0

1

2

Figure 6.2: Smoke-like matrix (6.10): original eigenvalues (black
circles), stabilized ones (if Re(λ) < −δ in green) and unclear (if −δ ≤
Re(λ) ≤ 0 in orange). On the left the functional considered is Fε, while

on the right Φε.

we have set δ = 0 and thus we do not consider the functional Φε, but just Fε. The
rank-adaptive integrator provides similar results to those shown in Table 6.4, even
though the distance is a bit larger due to a different integration trajectory followed.
Two of the algorithms (Grad and FGM) proposed by Gillis and Sharma reach smaller
distances in less computational time and they are the fastest among all the methods
shown here. But the overall best result is provided by the method proposed in [59] by
Noferini and Poloni for Hurwitz and complex stabilization, Hurw-Cpx in the tables,
where the value of the distance is significantly smaller than the other competitors
considered in Table 6.5 and also in terms of accuracy it is the best.

6.5.3 Gcdmat matrix

For another comparison of the computation of the unstructured distance with the
competitors, we consider the Gcdmat matrix M ∈ Rn×n from the gallery function of
Matlab, whose entries are defined as

Mi,j = GCD(i, j), i, j = 1, . . . , n

The matrix M is symmetric positive definite and in our example we fix n = 40 and
consider

A = −M +
1

2
I, (6.11)

which has 2 unstable eigenvalues. We show the results of the comparison in Table 6.6.
Also in this case the best distance ε⋆ = 0.3326 is provided by the method of

Noferini-Poloni, while the other methods compute ε⋆ = 0.3898. But, in terms of CPU
time, the approach of [59] is very slow compared to the other ones.

A possible explanation of this behaviour, due to Professor Vanni Noferini, is the
following. This issue may be caused by the fact that this method computes a smaller
distance that is attained by a minimizer with very large Jordan blocks, which seems to
be ignored by the two-level approach. This feature could slow down the convergence if
a too high accuracy is asked by the default choice of parameters of Manopt, which
is the Riemannian optimization software the method in [59] relies on. In particular
the algorithm may waste time in improving digits that just cannot numerically be

6.6. Structured distance via a low-rank adaptive ODE 95

Rk feature ε⋆ rk(E⋆) Functional Re(λ1) Time (s)
Fε Adaptive 0.3898 2 1.0000 · 10−9 4.2433 · 10−5 0.6165

G-S
BCD 0.3898 40 9.1067 · 10−31 9.5429 · 10−16 2.6775
Grad 0.3898 37 1.2439 · 10−30 1.1153 · 10−15 0.0445
FGM 0.3898 39 9.1493 · 10−31 1.3527 · 10−15 0.0373

N-P Hurw-Cpx 0.3326 38 0 0 39.5402

Table 6.6: Comparison between the rank-adaptive approach and the
algorithms by Gillis and Sharma (G-S) and that by Noferini and Poloni

for the Gcdmat matrix (6.11). Best results highlighted in bold.

improved and it is plausible that a small edit in this sense can improve this issue. I
agree with this interpretation.

Remark 6.5.3. The two examples considered here suggest that for low dimensional
matrices the methods proposed by Gillis and Sharma are preferable in terms of time,
while the one by Noferini and Poloni computes the smallest distance; however it could
be too expensive to perform them for high dimensional matrices. The algorithms in
[20] and [59] do not take into account the rank properties of the problem and hence the
perturbations found have higher rank, almost full. Moreover, it seems that they are not
easy to extend to the structured version of the problem, while this can be done for the
rank-adaptive approach.

6.6 Structured distance via a low-rank adaptive ODE

In this section we briefly describe the generalization of the unstructured problem (6.1)
to its structured version, as done in Chapter 3. Let now S ∈ Cn×n be a linear subspace,
such as a prescribed sparsity pattern, Toeplitz matrices, real matrices, etc.. Given an
unstable matrix A ∈ S, we look for a matrix ∆ ∈ S with smallest norm that stabilizes
A. Formally we want to solve the optimization problem

argmin
∆∈S

{
∥∆∥F : σ(A+∆) ⊆ C−

δ

}
,

which is a generalization of (6.1). For the solution of this structured optimization
problem we follow the same approach used in the previous sections, with the structured
inner and outer iterations. Let ΠS be the orthogonal projection, with respect to the
inner Frobenius product, to the subspace S. Generally it is easy to compute an explicit
formula for ΠS and some examples can be found in Appendix B. By proceeding as in
the unstructured case, we project onto S the gradient Gε (see for instance [32]) to get
the new system

Ė = −ΠS(Gε(E)) + Re⟨ΠS(Gε(E)), E⟩E. (6.12)

Equation (6.12) represents a gradient system where the gradient Gε has been replaced
by ΠSGε. All the results for the unconstrained case extend to the structured system,
with the replacement of the structured gradient. However the gradient is generally not
low-rank, since the property of Gε is now subject to the presence of the projection
ΠS and cannot be exploited as before. But it turns out that also in this case we
can formulate a low-rank adaptive ODE that takes into account also the structure
constraint. Let us assume that E = ΠSY , for a certain Y that has the same rank r of

96 Chapter 6. Low-rank-adaptive stabilization of a matrix

0 200 400 600 800
nz = 4640

0

200

400

600

800
0 500 1000 1500

nz = 32287

0

500

1000

1500

0 5000 10000
nz = 619488

0

2000

4000

6000

8000

10000

12000

Figure 6.3: Structural patterns of the Brusselator (left), Fidap (centre)
and BCS (right) matrices.

Gε(E). As in [34], let us consider the ODE

Ẏ = −PYGε(ΠSY) + Re⟨PYGε(ΠSY),ΠSY ⟩Y, (6.13)

where PY is the projection onto the tangent space TY Mr at the rank r manifold Mr.
An explicit expression for PY is given by (see Proposition B.0.3 or [32])

PY (A) = A− (I − UU∗)A(I − V V ∗)

where Y = USV ∗ is an SVD decomposition of Y (here S is required to be invertible,
but it may not be diagonal). If the rank of Y is fixed, this is a low-rank ODE whose
stationary points are explicitly related to the ones of the gradient system and in
particular this correspondence is bijective. Equation (6.13) is not a gradient system,
but it can be proved, similarly as done in Section 3.1.3, that its integration locally
converges to a stationary point Y⋆ that represents a stationary point E⋆ = ΠSY⋆ of
the original gradient system (6.12). Indeed when the trajectory is close to a stationary
point, the rank of the gradient stabilizes and thus it is possible to proceed as in
Theorem 3.1.10. Thus, it is possible to solve (6.13) by means of the rank-adaptive
integrator, so that we can exploit the low-rank features of this problem even in the
structured case.

6.7 Numerical examples for the structured case

In this section we investigate the behaviour of the algorithm for the structured
optimization problem in some numerical examples, including matrices with large
dimension. In all the cases we consider as structure the sparsity pattern of the matrix
with the further constraint that the perturbation is real. In Figure 6.3 we show the
patterns of the large examples we consider in the numerical experiments.

6.7. Numerical examples for the structured case 97

−2 −1 0 1

−2

−1

0

1

2

Figure 6.4: Pentadiagonal Toeplitz matrix: original eigenvalues
(black circles), stabilized ones (if Re(λ) < −δ in green) and unclear (if

−δ ≤ Re(λ) ≤ 0 in orange).

Rk feature ε⋆ rk(E⋆) F (E⋆(ε⋆)) Re(λ1) Time (s)
Adaptive 2.8573 11 7.0889 · 10−10 −9.7337 · 10−4 4.5366
Fixed (8) 2.8888 8 9.0637 · 10−10 −9.7890 · 10−4 4.5569
Fixed (9) 2.8935 9 2.6935 · 10−11 −9.9613 · 10−4 4.6275
Fixed (10) 2.8848 10 9.9999 · 10−10 −9.6838 · 10−4 3.6226
Fixed (11) 2.8698 11 7.5315 · 10−12 −9.9775 · 10−4 7.7734

Table 6.7: Pentadiagonal Toeplitz matrix (6.14) results with func-
tional Fε. Best results highlighted in bold.

6.7.1 Pentadiagonal Toeplitz matrix

Let us consider the pentadiagonal Toeplitz matrix

P =



−1
2 1 1
1 −1

2 1 1

1 1
. . .

. . .
. . .

. . .
. . . 1 1

1 1 −1
2 1

1 1 −1
2


∈ R20×20. (6.14)

We apply the method where the solution of the structured inner iteration is obtained
by the integration of (6.13) and we collect the results in Table 6.7 and in Figure 6.4.

The rank-adaptive integrator computes the smallest distance, similar to those
provided by the fixed-rank methods. The results are identical also when the algorithms
are applied for the functional Φε.

6.7.2 Brusselator matrix

Now we consider the Brusselator matrix 1 from the NEP collection [5]. This matrix has
size n = 800 with non-zeros nnz = 4640 ≈ 5.8n and it arises from a two-dimensional

1See https://math.nist.gov/MatrixMarket/data/NEP/brussel/rdb800l.html

98 Chapter 6. Low-rank-adaptive stabilization of a matrix

Rk feature ε⋆ rk(E⋆) Functional Re(λ1) Time (s)

Fε
Adaptive 0.9912 2 1.0000 · 10−9 −9.6838 · 10−4 8.2220
Fixed (2) 0.9912 2 1.0000 · 10−9 −9.6838 · 10−4 16.9868

Φε
Adaptive 0.9912 2 9.9984 · 10−10 −9.6838 · 10−4 75.9460
Fixed (2) 0.9912 2 1.0000 · 10−9 −9.6838 · 10−4 195.4750

Table 6.8: Brusselator matrix: features of the solution of the struc-
tured outer iteration. Best results highlighted in bold.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2
−2

−1

0

1

2

Figure 6.5: Zoom of Brusselator matrix eigenvalues: original eigenval-
ues (black circles), stabilized ones (if Re(λ) < −δ in green) and unclear

(if −δ ≤ Re(λ) ≤ 0 in orange).

reaction-diffusion model in chemical engineering. It has two conjugate unstable
eigenvalues that are close to the imaginary axis and some eigenvalues with negative
real part close to zero. We applied the algorithm with δ = 10−3 and parameters

τinn = 10−9, τout = 10−9, τrk = 10−9, maxitinn = 150, maxitout = 200.

For the fixed-rank method, we were only able to select r = 2, since in the other cases
the computations in the Matlab function eigs did not converge.

The results in Table 6.8 show that for the functional Fε the algorithm is quicker
and it provides the same distances as those associated to Φε. As shown in Figure 6.5,
the rank-adaptive integrator captures the fact that two stable eigenvalues are close to
the imaginary axis and it considers them in the gradient by moving them leftwards.

6.7.3 Fidap matrix

Now we consider the Fidap matrix 2 from the SPARSKIT collection [5], which arises
in fluid dynamics modelling. This matrix has size 1601× 1601 and it is symmetric. In
our example we consider the shifted matrix A− 3

2I so that the number of unstable
eigenvalues reduces to 4. In this case the parameters chosen are

τinn = 10−9, τout = 10−9, τrk = 10−9, maxitinn = 150, maxitinn = 200.

2See https://math.nist.gov/MatrixMarket/data/SPARSKIT/fidap/fidap004.html

6.7. Numerical examples for the structured case 99

−0.3 −0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

Figure 6.6: Zoom of Fidap matrix eigenvalues: original eigenvalues
(black circles), stabilized ones (if Re(λ) < −δ in green) and unclear (if

−δ ≤ Re(λ) ≤ 0 in orange).

Table 6.9 and Figure 6.6 show the results of the algorithm applied on the shifted
matrix.

Rk feature ε⋆ rk(E⋆) Functional Re(λ1) Time (s)

Fε

Adaptive 0.1886 5 1.0000 · 10−9 −9.5528 · 10−4 13.4614
Fixed (4) 0.1883 4 1.0000 · 10−9 −9.5528 · 10−4 23.5807
Fixed (5) 0.1883 5 1.0000 · 10−9 −9.5528 · 10−4 25.8531

Φε

Adaptive 0.1888 5 1.0000 · 10−9 −9.5528 · 10−4 85.0830
Fixed (4) 0.1882 4 5.9640 · 10−10 −9.6546 · 10−4 433.4435
Fixed (5) 0.1881 5 6.3283 · 10−10 −9.6442 · 10−4 500.0907

Table 6.9: Fidap matrix: results with functional Fε. Best results
highlighted in bold.

Also in this case we observe that the distance provided by the functional Φε is
slightly lower than the one associated to the functional Fε, but this improvement is
not significant enough to justify the higher computational time needed by Φε with
respect to the functional Fε.

6.7.4 BCS matrix

Finally, in order to show that the low-rank-adaptive-integrator can be applied success-
fully to high dimensional examples, we consider the BCS matrix3 from the SPARSKIT
collection [5], which represents a stiffness matrix. This matrix has size n = 13992 with
nnz = 619488 ≈ 44n non-zero entries.

We applied our algorithm on the shifted matrix A− 103
2 I so that the number of

unstable eigenvalues reduces to 2 and it is possible to use effectively the adaptive-
integrator. With the same choice of the parameters, we show the results of the
rank-adaptive method in Table 6.10 and Figure 6.7.

The algorithm manages to achieve the sought accuracy in 555 seconds, for a
computed distance given by ε⋆ = 2.3640.

3https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstruc5/bcsstk29.html

100 Chapter 6. Low-rank-adaptive stabilization of a matrix

−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4
−1

−0.5

0

0.5

1

Figure 6.7: Zoom of BCS matrix eigenvalues: original eigenvalues
(black circles), stabilized ones (if Re(λ) < −δ in green) and unclear (if

−δ ≤ Re(λ) ≤ 0 in orange).

ε⋆ rk(E⋆) Functional Re(λ1) Time (s)
Adaptive 2.3640 3 1.0000 · 10−9 −9.5528 · 10−4 555.0496

Table 6.10: BCS matrix: features of the solution of the structured
outer iteration for the functional Fε.

Code and Data Availability

The codes implementing the algorithms discussed in this chapter are publicly available
at:

https://github.com/StefanoSicilia/MatrixStabilization

The figures have been created with the usage of the software matlab2tikz, that can
be found at

https://github.com/matlab2tikz/matlab2tikz

101

Chapter 7

Conclusion and perspectives

In this thesis we have presented a versatile two-level approach that can be used in a wide
class of unstructured and structured matrix nearness problems and we have applied it
to different settings of both violating and recovering problems. We have shown that,
in the cases considered, the optimization problems possess low-rank properties and we
have shown how to exploit them. In the following we briefly recap the main results of
each chapter.

• Chapters 1 and 2 have introduced the general problem and the two-level approach
used for its solution. In particular in Chapter 2 we have discussed in detail the
method for the unstructured matrix nearness problem and this has represented
the starting point of the research for the extensions of the results to the structured
version.

• Chapter 3 has presented the main theoretical results of this PhD thesis that
are common for all the applications studied. The two-level method has been
adapted to the structured case and then the low-rank underlying property has
been revealed in order to take advantage of its associated computational benefits.

• In Chapter 4 we have focused on three violating problems arising in matrix theory:
the computation of the distance to Hurwitz-instability, the approximation of the
distance to Schur-instability and the computation of the distance to singularity.
We have shown how to solve these problems, both the unstructured and structured
versions, by means of the two-level approach and we have exploited their intrinsic
rank-1 nature by integrating a rank-1 matrix ODE whose stationary points
corresponds, up to an eventual projection onto the structure, to the sought
optimizers. We have implemented and tested the resulting algorithm by means
of a splitting method that integrates the rank-1 ODE and we have shown the
results on several numerical examples. The contents of this chapter have been
published as a scientific article (see [34]).

• In Chapter 5 we have considered an application of a violating matrix nearness
problem in a graph setting. Given an undirected weighted graph to be partitioned,
we have presented a method for computing the best number k that needs to be
given as an input to the spectral clustering algorithm, so that the partitioning
provided is the most robust as possible. We have done this by approximating
a structured distance between the weight matrix of the graph and another
weight matrix whose associated Laplacian has vanishing k-th spectral gap. This
approach provides a more reliable measurement of the robustness of the clustering
with respect to the classical criterium of the spectral gaps, which instead relies
on an unstructured distance associated to a less appropriate measure. We have
applied the two-level approach to this setting and we have shown how to compute

102 Chapter 7. Conclusion and perspectives

the sought optimizers of the problem by means of the integration of a symmetric
rank-4 ODE. The resulting algorithm is a generalization to the low-rank case
of that developed in Chapter 4. This chapter has been published as a scientific
article (see [37]) and the codes associated are available on Github at the webpage
https://github.com/StefanoSicilia/Spectral-Clustering-stability .

• Chapter 6 has focused on the recovering problem of the unstructured and
structured stabilization of a matrix. The two-level approach has been adapted
also in this case and the associated (structured) inner iteration deals with an
objective functional with a variable number of addends, which corresponds to the
unstable eigenvalues, and consequently a variable rank of the associated gradient.
The low-rank properties of the problem have been exploited also in this setting
by means of the rank-adaptive integrator presented in [13] which turns out to be
very suitable, since it preserves many of the theoretical properties of the ODE,
while also allowing to follow precisely the current rank of the solution. We have
shown the results of the corresponding algorithm on several numerical examples,
including some of large dimension. The contents of this chapter have been
published as a scientific paper (see [38]) and the associated codes are available on
Github at the webpage https://github.com/StefanoSicilia/MatrixStabilization .

While there exist other approaches to face unstructured matrix nearness problems,
for the structured version, at the best of our knowledge, there are fewer methods.
Hence the contribution of this PhD thesis aims to fill this gap in the literature by
providing a technique that solves the structured problem and that also favourably
exploits its low-rank underlying properties. Moreover the two-level approach is very
versatile and, as shown, it can be adapted to many topics of mathematics. In particular
the applications studied here concern robustness problems, stabilization problems and
robustness for a clustering method for an undirected weighted graph. However there
are many potential future directions where to extend and apply the method developed
and we illustrate some possible perspectives.

First of all, the parameters in the algorithms have been generally tuned heuristically
and hence it could be interesting to investigate more how to select them. In particular,
the choice of the upper and lower bounds for the outer iteration could be improved
by means of some theoretical estimates on the distance to be found and also the
tolerances for both the inner and outer iterations can be further studied. This is also
an important aspect for practical implementations in the applications considered.

A research direction concerns the stability of neural ODEs (see e.g. [15]). A neural
ODE is an ordinary differential equation whose vector field is a neural network, that is

ẋ(t) = σ(Ax(t) + b), t ∈ [0, T],

where x(t) ∈ Rn is the feature vector evolution function, σ : R → R is a smooth
activation function applied entry-wise, T > 0 is the time horizon, A ∈ Rn×n is the
weight matrix and b ∈ Rn is the bias vector. Usually neural ODEs are naturally prone
to adversarial attacks, i.e. perturbations in input designed to make a neural network
return a wrong output. The two-level approach can be applied also in this case to
control the stability of the weight matrix so that a new training of the parameters
provides more robust outputs from the neural network. A work on this topic is currently
in progress and it concerns an extension of [25].

Recently the interest in structured matrix nearness problems has increased and
some new methods have been developed. For instance the method proposed in [21]
is apparently quite different from the two-level approach discussed in this thesis, but

Chapter 7. Conclusion and perspectives 103

somehow it resembles a sort of dual of it. It divides the main task into sub-problems
and it takes advantage of the fact that some of them have an explicit solution that
do not require much effort to be computed. This sort of dual connection between the
methods may be exploited for a future research direction that aims to combine the two
approaches in order to get the best properties from each of them. This perspective is
currently under discussion.

The versatility of the two-level approach and the chance of exploiting the low-
rank properties makes the application of this method very appealing also for large
dimensional problems. Indeed, thanks to the low memory requirements of the developed
algorithm, it is possible to tackle more practical problems which are usually associated
to large matrices. This feature enables to explore many future perspectives also from
this point of view.

105

Appendix A

Fixed rank manifold and its tangent
space

In this chapter of the appendix we include some classical results in differential geometry,
see e.g. [39] for further details. We show that the set of all matrices with fixed-rank is a
manifold and we characterize its tangent space. We consider a field K of characteristic 0,
such as K = C or K = R, and we characterize the set of rank-r matrices Mr ⊆ Km×n.

Proposition A.0.1. Given a field K of characteristic 0, the subset

Mr = {M ∈ Km×n : rank(M) = r}

is a submanifold of Km×n of K-dimension mn− (m− r)(n− r).

Proof. Let us define the subset of Km×n

Z =

{(
A B
C D

)
: A ∈ Kr×r invertible

}
,

where B ∈ Kr×(n−r), C ∈ K(m−r)×r, D ∈ K(m−r)×(n−r) are arbitrary matrices and
consider N = Z ∩Mr. Up to a permutation of rows and columns, that is a linear
isomorphism mapping φ, a matrix M ∈ Mr can always be written as a matrix in N .
If we show that N is a manifold, then also Mr is, since it is possible to define charts
as a composition of φ and the inherited charts of N .

In order to show that N is a manifold, we make use of the preimage theorem.
Post-multiplying by an invertible matrix does not change the rank of a matrix and
hence

rank

((
A B
C D

)(
Ir −A−1B
0 I(n−r)

))
= rank

((
A 0
C −CA−1B +D

))
= r,

which implies that

M :=

(
A B
C D

)
∈ N ⇐⇒ f(M) := D − CA−1B = 0.

To conclude we just need to show that 0 ∈ K(m−r)×(n−r) is a regular value of the
smooth function f : N → K(m−r)×(n−r). For any M ∈ N and any X ∈ K(m−r)×(n−r),
let us consider the curve parametrized in t ≥ 0

γ(t) =

(
A B
C D + tX

)
⊆ Z.

106 Appendix A. Fixed rank manifold and its tangent space

We have

df(γ(t))

dt

∣∣∣∣
t=0

=
d

dt

(
D + tX − CA−1B

)∣∣∣∣
t=0

= X = dfM
((

0 0
0 X

))
,

which shows that dfM is surjective for any M and hence 0 is a regular value for f .

The following result provides two equivalent characterizations of the tangent space
at point in Mr.

Proposition A.0.2. Given M ∈ Mr ⊆ Km×n, consider an SVD-like decomposition

M = USV ∗,

where U ∈ Kn×r, V ∈ Km×r and S ∈ Kr×r is invertible and U∗U = V ∗V = Ir. Then
the tangent space at M is

TMMr =
{
WSV ∗ + UXV ∗ + USZ∗ : X ∈ Kr×r, W ∗U + U∗W = Z∗V + V ∗Z = 0

}
.

which coincides with

TMMr =
{
WSV ∗ + UXV ∗ + USZ∗ : X ∈ Kr×r, W ∗U = Z∗V = 0

}
.

Proof. Let us define the curve γ : R → Mr

γ(t) = (U + tW +O(t2))(S + tX +O(t2))(V + tZ +O(t2))∗.

By construction γ(t) ∈ Mr if we impose that (U + tW +O(t2)) and (V + tZ +O(t2))
have orthonormal columns. The conditions of the first constraint becomes

Ir = (U + tW +O(t2))∗(U + tW +O(t2)) = Ir + t(U∗W +W ∗Z) +O(t2)

and evaluating the derivative at t = 0 yields U∗W+W ∗Z = 0. Similarly Z∗V +V ∗Z = 0
for the second equation. Thus

dγ

dt

∣∣∣∣
t=0

=WSV ∗ + UXV ∗ + USZ∗

and thus the set of tangent vectors is

TMMr =
{
WSV ∗ + UXV ∗ + USZ∗ : X ∈ Kr×r, W ∗U + U∗W = Z∗V + V ∗Z = 0

}
.

Now we show the equivalence between the two characterizations of TMMr. One
implication is immediate, while for the other one let us consider

δM =WSV ∗ + UXV ∗ + USZ∗

such that W ∗U + U∗W = Z∗V + V ∗Z = 0; then

δM = (W + UW ∗U)SV ∗ + U(S −W ∗US − SV ∗Z)V ∗ + US(Z + V Z∗V)∗

and it is also verified that (W + UW ∗U)∗U = (Z + V Z∗V)∗V = 0.

107

Appendix B

Projections

In this chapter of the appendix we consider some orthogonal projections with respect
to the Frobenius inner product. We show the equivalence of the definitions of the
projection and we provide the explicit formulas in some examples.

Definition B.0.1. Let V be an Hilbert space endowed with an inner product ⟨·, ·⟩ and
consider a subspace S ⊂ V. The orthogonal projection onto S is the unique linear
function ΠS : V → S such that

1. ΠS(v) = ΠS(ΠS(v)) for all v ∈ V.

2. ⟨ΠS(v), w⟩ = ⟨v, w⟩, for all v ∈ V and for all w ∈ S

The following result gives an equivalent characterization of the orthogonal projec-
tion.

Proposition B.0.2. Let V be an Hilbert space endowed with an inner product ⟨·, ·⟩
and consider a subspace S ⊂ V and a linear function f : V → S. The following facts
are equivalent:

1. for all x ∈ V, we have
f(x) = argmin

y∈S
∥x− y∥,

2. the function f is the orthogonal projection onto S.

Proof. 1.⇒ 2.: Since the fact that f(x) ∈ S for all x ∈ V is straightforward, the aim
is to prove that

Re⟨x− f(x), y⟩ = 0, ∀y ∈ S.

For all x ∈ V, ∀y ∈ S and ∀t ∈ R, f(x)− ty ∈ S and the hypothesis implies

∥x− f(x)∥2 ≤ ∥x− f(x) + ty∥2 = ∥x− f(x)∥2 − 2tRe⟨x− f(x), y⟩+ t2∥y∥2,

that is
p(t) := t2∥y∥2 − 2tRe⟨x− f(x), y⟩ ≥ 0, ∀t ∈ R.

Thus the quadratic polynomial p(t) must have a non-positive discriminant (otherwise
we would have p(t) < 0), that is

Re⟨x− f(x), y⟩2 ≤ 0, ∀y ∈ S

which implies the claim.
2.⇒ 1.: For all x ∈ V and for all y ∈ S, it holds that

∥x− f(x)∥2 = ∥x− y + y − f(x)∥2 = ∥x− y∥2 + ∥y − f(x)∥2 − 2Re⟨x− y, f(x)− y⟩

108 Appendix B. Projections

and since f(x)− y ∈ S, the hypothesis yields

Re⟨x−y, f(x)−y⟩ = Re⟨f(x−y), f(x)−y⟩ = Re⟨f(x)−f(y), f(x)−y⟩ = ∥f(x)−y∥2.

Thus
∥x− f(x)∥2 = ∥x− y∥2 − ∥y − f(x)∥2 ≤ ∥x− y∥2, ∀y ∈ S,

which is implies the claim.

The following results concerns some examples of projections related to the topics
of the thesis.

Proposition B.0.3. Given a field K of characteristic 0, let us consider M ∈ Mr ⊆
Km×n with decomposition

M = USV ∗,

where U ∈ Kn×r, V ∈ Km×r and S ∈ Kr×r is invertible and U∗U = V ∗V = Ir. The
orthogonal projection PM : Km×n → TMMr is given by

PMA = A− (I − UU∗)A(I − V V ∗) = UU∗A+AV V ∗ − UU∗AV V ∗.

Proof. As a first step we notice that PM is linear and PM (A) ∈ TMMr since

PMA =
(
(I − UU∗)AV S−1

)
SV ∗ + U(U∗AV)V ∗ + US

(
(I − V V ∗)A∗US−∗)∗ ,

which fulfils the characterization of Proposition A.0.2. Finally, for all δM =WSV ∗ +
UXV ∗ + USZ∗ ∈ TMMr, PM fulfils the definition of orthogonal projection since we
have

Re⟨PMA, δM⟩ = Re⟨A−(I−UU∗)A(I−V V ∗),WSV ∗+UXV ∗+USZ∗⟩ = Re⟨A, δM⟩,

where we have repeatedly used relations of the type

Re⟨(I − UU∗)A(I − V V ∗),WSV ∗⟩ = tr (WSV ∗(I − V V ∗)A∗(I − UU∗)) = 0.

Proposition B.0.4. Given a matrix A = (ai,j) ∈ Cn×n, we consider the sets

S = {M = (mi,j) ∈ Cn×n : mi,j = 0 ∀(i, j) such that ai,j = 0},

R = {M = (mi,j) ∈ Rn×n : mi,j = 0 ∀(i, j) such that ai,j = 0},

which consist of all the matrices with the same pattern as A and of its real version.
Then

(ΠS(M))i,j =

{
mi,j if ai,j ̸= 0

0 otherwise

and

(ΠR(M))i,j =

{
Re(mi,j) if ai,j ̸= 0

0 otherwise
.

Proof. Thanks to the result of Proposition B.0.2, the claims follow recalling that

ΠS(M) = argmin
N∈S

∥M −N∥2F , ΠR(M) = argmin
N∈R

∥M −N∥2F .

Appendix B. Projections 109

Proposition B.0.5. Let B ∈ Cn×k and C ∈ Cl×n be two given full-rank matrices,
with k, l ≤ n. Define the set of prescribed range and co-range as

S = {B∆C : ∆ ∈ Ck×l}.

Then ΠS(Z) = BB†ZC†C for all Z ∈ Cn×n, where B† = (B∗B)−1B∗ and C† =
C∗(CC∗)−1 denote the Moore-Penrose pseudoinverse.

Proof. By definition ΠS(Z) ∈ S for all Z ∈ Cn×n. Then the properties of the trace
operator show that, for all ∆ ∈ Ck×l,

Re⟨B∆C,ΠS(Z)⟩ = Re
(
tr(C∗∆∗B∗B(B∗B)−1B∗ZC∗(CC∗)−1C)

)
= Re tr(C∗∆∗B∗Z),

which implies the claim.

Proposition B.0.6. Let us consider the set of Toeplitz matrices

T =
{
A ∈ Cn×n : ai,j = ai+1,j+1 ∀i, j = 1, . . . , n− 1

}
.

For any Z ∈ Cn×n, we define the arithmetic means along the diagonal

ẑk =
1

n− |k|
∑

|i−j|=k

zi,j , k = −n+ 1, . . . , n− 1.

Then

ΠT (Z) =


ẑ0 ẑ1 . . . ẑn−1

ẑ−1
. . .

. . .
...

...
. . .

. . . ẑ1
ẑ−n+1 . . . ẑ−1 ẑ0

 . (B.1)

Proof. We rewrite the function we wish to minimize

φ(W) = ∥Z −W∥2F =

n∑
i,j=1

|zij − wij |2, ∀W ∈ T ,

as the sum of the contribution of each diagonal:

φ(W) =
n−1∑

k=1−n

∑
|i−j|=k

|zi,j − wk|2 = ψ(w1−n, . . . , wn−1),

where wj are the elements of the Toeplitz matrix W located as in the shape of (B.1),
that is

W =


w0 w1 . . . wn−1

w−1
. . .

. . .
...

...
. . .

. . . w1

w−n+1 . . . w−1 w0

 .

Now we see ψ as a real function of real variables: for all the possible indices, let
zi,j = ai,j + ibi,j and let wk = xk + iyk. Then

θ(x1−n, . . . , xn−1, y1−n, . . . , yn−1) =
n−1∑

k=1−n

∑
|i−j|=k

|ai,j + ibi,j − xk − iyk|2 =

110 Appendix B. Projections

=
n−1∑

k=1−n

∑
|i−j|=k

(ai,j − xk)
2 + (bi,j − yk)

2 = ψ(w1−n, . . . , wn−1).

Since θ is a convex function (sum of quadratic functions), the points where the gradient
vanishes are its minimizers. Thus, for all h ∈ {1 − n, . . . , n − 1}, we annihilate the
partial derivatives

0 =
∂θ

∂xh
= −2

∑
|i−j|=h

(ai,j − xh),

that is ∑
|i−j|=h

ai,j = (n− |h|)xh,

since in the hth diagonal there are n− |h| elements. Similarly

yh =
1

n− |h|
∑

|i−j|=h

bi,j , h = −n+ 1, . . . , n− 1,

which implies the claim

wk =
1

n− |k|
∑

|i−j|=k

zi,j = ẑk, k = −n+ 1, . . . , n− 1.

Proposition B.0.7. Consider n = 2d and define the set of Hamiltonian matrices

H =
{
A ∈ R2d×2d : sym(JA) = JA

}
, J =

(
0 Id

−Id 0

)
,

where sym(A) = (A+ AT)/2 denotes the symmetric part of a matrix. Then, for all
Z ∈ R2d×2d,

ΠH(Z) = J−1sym(J ReZ).

Proof. In order to prove the fact we note that JT = −J = J−1 and we exploit theorem
B.0.2. It is straightforward that J−1sym(J ReZ) ∈ H and for all W ∈ H it holds that

Re⟨ΠH(Z),W ⟩ = ⟨ΠH(Z),W ⟩ = tr
(
sym(J ReZ)J−TW

)
= ⟨sym(J ReZ), JW ⟩

and
Re⟨Z,W ⟩ = ⟨Re(Z),W ⟩ = ⟨J Re(Z), JW ⟩.

By means of the decomposition A = sym(A) + skew(A), the symmetry of JW , it
follows

⟨J Re(Z), JW ⟩ = ⟨sym(J ReZ), JW ⟩+ ⟨skew(J ReZ), JW ⟩ =

= ⟨sym(J ReZ), JW ⟩+ 1

2
tr
(
ReZTJTJW

)
− 1

2
tr (J ReZJW) =

= ⟨sym(J ReZ), JW ⟩+ 1

2
tr
(
ReZTW

)
− 1

2
tr
(
(J ReZ)TJW

)
= ⟨sym(J ReZ), JW ⟩,

where skew(A) = (A−AT)/2 denotes the skew-symmetric part of a matrix.

Appendix B. Projections 111

Proposition B.0.8. For K = R or K = C, let us define the perturbation space

P(B,C) =
{
B∆C : ∆ ∈ Kk×l

}
⊆ Kn×n,

where B ∈ Kn×k and C ∈ Kl×n are given matrices of full rank that prescribe the range
and co-range of the matrices in P(B,C). Then, for all Z ∈ Kn×n,

ΠP(B,C)(Z) = BB†ZC†C,

where B† and C† are the Moore-Penrose inverses of B and C respectively.

Proof. Since B and C have full rank, it is well known that

B† = (B∗B)−1B∗, C† = C∗(CC∗)−1.

We exploit again theorem B.0.2. It is straightforward that

ΠP(B,C)(Z) ∈ P(B,C)

and, for all ∆ ∈ Kk×l and for all Z ∈ Kn×n, we have

Re⟨B∆C,BB†ZC†C⟩ = Re
(
tr
(
C∗∆∗B∗B(B∗B)−1B∗ZC∗(CC∗)−1C

))
=

= Re
(
tr
(
∆∗B∗ZC∗(CC∗)−1CC∗)) = Re (tr (C∗∆∗B∗Z)) = Re⟨B∆C,Z⟩,

where we have used the properties of the trace operator.

Proposition B.0.9. Let S be a subspace of Cn×n (whose orthogonal projection is ΠS)
and define

S1 = {A ∈ S : ∥A∥F = 1}.

For any E ∈ S1, the orthogonal projection Π̂S
E onto the tangent space TES1 is

Π̂S
EZ = ΠSZ − Re⟨ΠSZ,E⟩E, ∀Z ∈ Cn×n.

Proof. We need to show that, for all Z ∈ Cn×n, Π̂S
EZ ∈ TES1 and

Re⟨Π̂S
EZ,W ⟩ = Re⟨Z,W ⟩, ∀W ∈ TES1.

For all 0 < δ << 1, the matrix E + δΠ̂S
EZ is in the subspace S and

∥E + δΠ̂S
EZ∥2F = 1 + 2δRe⟨E,ΠSZ − Re⟨ΠSZ,E⟩E⟩+O(δ2) = 1 +O(δ2),

that is E + δΠ̂S
EZ ∈ S1 up to quadratic terms in δ and thus Π̂S

EZ ∈ TES1. Moreover

Re⟨Π̂S
EZ,W ⟩ = Re⟨ΠSZ,W ⟩ − Re⟨ΠSZ,E⟩ · Re⟨E,W ⟩ =

= Re⟨Z,ΠSW ⟩ − Re⟨Z,E⟩ · Re⟨E,ΠSW ⟩ =

= Re⟨Z,ΠSW − Re⟨E,ΠSW ⟩E⟩ = Re⟨Z, Π̂S
EW ⟩

and the claim is straightforward since W = Π̂S
EW by hypothesis.

Proposition B.0.10. With the same notation of Proposition B.0.9, let A,B ∈ S1 and
assume that

δ = ∥A−B∥F << 1.

112 Appendix B. Projections

Then
Π̂B(A−B) = A−B +R,

where ∥R∥F = O(δ2).

Proof. It holds that
A = B + (A−B)

and taking the norms yields

1 = 1 + 2Re⟨B,A−B⟩+ ∥A−B∥2F

and hence Re⟨B,A−B⟩ = O(δ2). Thus

Π̂B(A−B) = ΠS(A−B) + Re⟨ΠS(A−B), B⟩B = A−B +R,

where
∥R∥F = |2Re⟨B,A−B⟩| · ∥B∥F = O(δ2).

113

Appendix C

Some non-generic examples

In this chapter of the appendix we collect two examples that provide uncommon events
in the framework of the matrix nearness problems described in the thesis.

Example C.0.1. Let n = 2 and consider the matrix

A =

(
0 1
0 0

)
∈ S =

{(
0 a
0 0

)
: a ∈ C

}
⊆ C2×2

which satisfies the property P = { the matrix is singular }. It is clear that for any
matrix ∆ ∈ S, then also A+∆ fulfils P and hence it is not possible to solve problems
(1.4) and (3.1).

Example C.0.2. This example provides a vector z defined as in (5.10) that is a
linear combination of x and y, leading to a case where the matrix Rε defined in
Section 5.4.1 has not rank 4. The counterexample was generated starting from the
vectors 1, u, v ∈ R7

1 =



1
1
1
1
1
1
1


, u =



6
7
10
7
7
10
10


, v =



9
1
1
1
1
1
1


,

which are linearly independent. Performing Gram-Schmidt algorithm yields the
orthogonal vectors with unit norm

1̃ =
1√
7



1
1
1
1
1
1
1


, x =

1√
924



−15
−8
13
−8
−8
13
13


, y =

1√
132



9
−4
1
−4
−4
1
1


.

Now we show that the vectors 1̃, x and y can be seen as the eigenvectors of the
Laplacian of a graph. Let us complete the three vectors to an orthonormal basis

114 Appendix C. Some non-generic examples

B = {1̃, x, y, d, e, f, g} of R7, where

d =
1√
6



0
2
0
−1
−1
0
0


, e =

1√
6



0
0
2
0
0
−1
−1


, f =

1√
2



0
0
0
1
−1
0
0


, g =

1√
2



0
0
0
0
0
1
−1


.

The matrix
L = 0.9xxT + 0.8yyT + ddT + eeT + ffT + ggT ,

is approximated as

L ≈



0.7101 −0.1013 −0.1354 −0.1013 −0.1013 −0.1354 −0.1354
−0.1013 0.8260 −0.1255 −0.1740 −0.1740 −0.1255 −0.1255
−0.1354 −0.1255 0.8373 −0.1255 −0.1255 −0.1627 −0.1627
−0.1013 −0.1740 −0.1255 0.8260 −0.1740 −0.1255 −0.1255
−0.1013 −0.1740 −0.1255 −0.1740 0.8260 −0.1255 −0.1255
−0.1354 −0.1255 −0.1627 −0.1255 −0.1255 0.8373 −0.1627
−0.1354 −0.1255 −0.1627 −0.1255 −0.1255 −0.1627 0.8373


and it is the Laplacian of the graph with weight matrix W

W ≈



0 0.1013 0.1354 0.1013 0.1013 0.1354 0.1354
0.1013 0 0.1255 0.1740 0.1740 0.1255 0.1255
0.1354 0.1255 0 0.1255 0.1255 0.1627 0.1627
0.1013 0.1740 0.1255 0 0.1740 0.1255 0.1255
0.1013 0.1740 0.1255 0.1740 0 0.1255 0.1255
0.1354 0.1255 0.1627 0.1255 0.1255 0 0.1627
0.1354 0.1255 0.1627 0.1255 0.1255 0.1627 0


.

Thus x and y are the eigenvectors associated to the eigenvalues λ3 = 0.9 and λ2 = 0.8
respectively, that is k = 2. Finally we prove that z is a linear combination of x and y.
We have

z = x • x− y • y =
1

154



−57
−8
27
−8
−8
27
27


= αx+ βy,

where

α = ⟨z, x⟩ = 150

11
√
924

, β = ⟨z, y⟩ = − 4
√
3

11
√
11
.

115

Appendix D

Miscellaneous results

This chapter of the appendix is dedicated to some minor results that are used in the
thesis.

Proposition D.0.1. Let f : C2 → C be a smooth function such that

f(z, z) = f(z, z) ∈ R, ∀z ∈ C.

Then we have
∂f(z, z)

∂z
=
∂f(z, z)

∂z

Proof. We recall that, for z = x+ iy, the Wirtinger derivatives are defined as

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
and since f(z, z) = f(z, z) we have

∂f(z, z)

∂z
=

1

2

(
∂f(z, z)

∂x
− i

∂f(z, z)

∂y

)
=

1

2

(
∂f(z, z)

∂x
+ i

∂f(z, z)

∂y

)
=
∂f(z, z)

∂z
.

Proposition D.0.2. Let v, w ∈ Rm be two linearly independent vectors, with ∥v∥ = 1
and let

Z = {z ∈ Rm : ∥z∥ = 1, ⟨z, v⟩ = 0} ,

where ⟨z, w⟩ = z⊤w and ∥v∥ =
√
v⊤v. Then

argmin
z∈Z

⟨w, z⟩ = −w + ⟨v, w⟩v
∥ − w + ⟨v, w⟩v∥

:= z∗.

Proof. A possible proof of the claim is that for all z ∈ Rm, it holds that

|⟨z, w⟩| ≤ ∥z∥∥w∥ = ∥w∥,

by means of Cauchy-Schwarz inequality and the equality is reached only for z = ±w.
Hence the global minimizer of the problem without constraints is −w. Thus the
extremizer sought is the normalized projection onto the space {z ∈ Rm : ⟨z, v⟩ = 0}.

Now we give a rigorous proof of the proposition. First of all the vector z∗ is an
admissible solution since it has unit norm and

⟨z∗, v⟩ =
−⟨w, v⟩+ ⟨v, w⟩∥v∥2

∥ − w + ⟨v, w⟩v∥
= 0.

116 Appendix D. Miscellaneous results

Let us consider a basis B of Rm of the form

B = {v, w, u1, . . . , um−2} ,

where

⟨v, ui⟩ = ⟨w, ui⟩ = 0, ∥ui∥ = 1, ⟨ui, uj⟩ = 0 i, j = 1, . . . ,m− 2, i ̸= j,

that can be obtained, for instance, by extending {v, w} to a basis of Rm and then by
applying Gram-Schmidt algorithm. Thus each z ∈ Rm can be written as a real linear
combination

z = αv + βw +
m−2∑
i=1

γiui, α, β ∈ R, γ = (γ1, . . . , γm−2)
T ∈ Rm−2.

Imposing that z ∈ Z yields

0 = ⟨v, z⟩ = α+ β⟨w, v⟩,

which means α = −β⟨v, w⟩. Thus the constraint on the norm and the orthogonality of
the vectors of the basis imply

1 = ∥z∥2 = ∥αv + βw∥2 +
m−2∑
i=1

γ2i = β2∥w − ⟨v, w⟩v∥2 + ∥γ∥2,

that is

β2 =
1− ∥γ∥2

∥w − ⟨v, w⟩v∥2
.

The quantity we want to minimize can be rewritten as

⟨z, w⟩ = α⟨v, w⟩+ β∥w∥2 = β
(
∥w∥2 − ⟨v, w⟩2

)
and, since

(
∥w∥2 − ⟨v, w⟩2

)
> 0 by means of the Cauchy-Schwarz inequality, the

optimal choice for β is the negative value

β⋆(γ) = −

√
1− ∥γ∥2

∥w − ⟨v, w⟩v∥2
,

which reaches its minimum for γ = 0. Hence

argmin
z∈Z

⟨z, w⟩ = argmin
γ∈Rm−2

{
β⋆(γ)

(
∥w∥2 − ⟨v, w⟩2

)}
and the unique solution, obtained for γ = 0, is

z⋆ = β⋆(0) · (−⟨v, w⟩v + w) =
−w + ⟨v, w⟩v
∥w − ⟨v, w⟩v∥

.

Proposition D.0.3. Let A ∈ Cn×n. Then

ker(A)⊥ = range(A∗).

Appendix D. Miscellaneous results 117

Proof. We have

ker(A) = {x ∈ Cn : Ax = 0} = {x ∈ Cn : y∗Ax = 0, ∀y ∈ Cn} =

= {x ∈ Cn : z∗x = 0, ∀z ∈ range(A∗)} = range(A∗)⊥,

which yields the claim by taking the orthogonal of the equality.

Proposition D.0.4. Let E,G ∈ Cn×n be two matrices with the same kernel and range.
Consider an SVD-like (see (2.12)) E = USV ∗, with S ∈ Cr×r. Then

UU∗G = G = GV V ∗.

Proof. For all x ∈ Cn, it holds that

Gx = GV V ∗x+G(I − V V ∗)x = GV V ∗x,

since (I − V V ∗)x ∈ ker(E) = ker(G). Similarly,

G∗UU∗x = G∗UU∗x+G∗(I − UU∗)x = G∗UU∗x,

since (I −UU∗)x ∈ ker(E∗) = range(E)⊥ = range(G)⊥ = ker(G∗). Thus the arbitrari-
ness of x implies the claim.

Proposition D.0.5. Given a subspace E ⊂ sym(Rn×n), the restricted Laplacian
operator L : E → Rn×n is defined as

L(W) = diag(W1)−W, 1 = (1, . . . , 1)⊤, ∀W ∈ E .

Let L∗ : Rn×n → E be the adjoint of L with respect to the Frobenius inner product such
that, for all V ∈ Rn×n and for all W ∈ E

⟨W,L∗(V)⟩ = ⟨L(W), V ⟩.

Then
L∗(V) = ΠE(diagvec(V)1⊤ − V),

where diagvec(V) ∈ Rn is the vector of the diagonal entries of V and ΠE is the
orthogonal projection with respect to the Frobenius inner product onto E.

Proof. For all V ∈ Rn×n and all W ∈ sym(Rn×n) it holds that

⟨diag(W1), V ⟩ =
n∑

i=1

 n∑
j=1

wi,j

 vi,i =

n∑
i=1

n∑
j=1

vj,jwj,i = ⟨diagvec(V)1⊤,W ⟩

and hence

⟨L(W), V ⟩ = ⟨W, diagvec(V)1⊤ − V ⟩ =
〈
W,ΠE

(
diagvec(V)1⊤ − V

)〉
,

which, by definition, shows the claim for L∗.

Proposition D.0.6. With the same notation of Proposition D.0.6, assume that, for
all W = (wi,j) ∈ E, then wi,i = 0 for i = 1, . . . n, i.e. W has no self-loops. Then

L∗(L(W)) = ΠE(W11
⊤) +W.

118 Appendix D. Miscellaneous results

Proof. By assumption diagvec(W) = 0 = ΠE(diag(W1)) for all W ∈ E . Thus, since
diagvec(diag(v)) = v for all v ∈ Rn, the formula for L∗ shown in Proposition D.0.6
yields

L∗(L(W)) = ΠE

(
diagvec(diag(W1)−W)1⊤ − diag(W1) +W

)
=

= ΠE(W11
⊤)−ΠE(diagvec(W)1⊤)−ΠE(diag(W1)) + ΠE(W) = ΠE(W11

⊤) +W.

119

Bibliography

[1] Pierre-Antoine Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization
algorithms on matrix manifolds. Princeton University Press, 2008.

[2] Rafikul Alam, Shreemayee Bora, Michael Karow, Volker Mehrmann, and Julio
Moro. “Perturbation theory for Hamiltonian matrices and the distance to
bounded-realness”. In: SIAM Journal on Matrix Analysis and Applications 32.2
(2011), pp. 484–514.

[3] Eleonora Andreotti, Dominik Edelmann, Nicola Guglielmi, and Christian Lu-
bich. “Measuring the stability of spectral clustering”. In: Linear Algebra and its
Applications 610 (2021), pp. 673–697.

[4] Joseph E Avron and Barry Simon. “Analytic properties of band functions”. In:
Annals of Physics 110.1 (1978), pp. 85–101.

[5] Ronald F Boisvert, Roldan Pozo, Karin Remington, Richard F Barrett, and
Jack J Dongarra. “Matrix Market: a web resource for test matrix collections”. In:
Quality of Numerical Software: Assessment and Enhancement (1997), pp. 125–
137.

[6] Nicolas Boumal, Bamdev Mishra, Pierre-Antoine Absil, and Rodolphe Sepulchre.
“Manopt, a Matlab toolbox for optimization on manifolds”. In: The Journal of
Machine Learning Research 15.1 (2014), pp. 1455–1459.

[7] Roger W Brockett. “Dynamical systems that sort lists, diagonalize matrices, and
solve linear programming problems”. In: Linear Algebra and its applications 146
(1991), pp. 79–91.

[8] Angelika Bunse-Gerstner, Ralph Byers, Volker Mehrmann, and Nancy K Nichols.
“Numerical computation of an analytic singular value decomposition of a matrix
valued function”. In: Numerische Mathematik 60 (1991), pp. 1–39.

[9] James V Burke, Adrian S Lewis, and Michael L Overton. “A nonsmooth, noncon-
vex optimization approach to robust stabilization by static output feedback and
low-order controllers”. In: IFAC Proceedings Volumes 36.11 (2003), pp. 175–181.

[10] R Cameron and B Kouvaritakis. “Relative stability margins of multivariable
systems A characteristic locus approach”. In: International Journal of Control
30.4 (1979), pp. 629–651.

[11] Stephen L Campbell and Carl D Meyer. Generalized inverses of linear transfor-
mations. SIAM, 2009.

[12] Emmanuel J Candès and Terence Tao. “The power of convex relaxation: Near-
optimal matrix completion”. In: IEEE transactions on information theory 56.5
(2010), pp. 2053–2080.

[13] Gianluca Ceruti, Jonas Kusch, and Christian Lubich. “A rank-adaptive robust in-
tegrator for dynamical low-rank approximation”. In: BIT Numerical Mathematics
(2022), pp. 1–26.

120 Bibliography

[14] Gianluca Ceruti and Christian Lubich. “An unconventional robust integrator
for dynamical low-rank approximation”. In: BIT Numerical Mathematics 62.1
(2022), pp. 23–44.

[15] Ricky Tian Qui Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duve-
naud. “Neural ordinary differential equations”. In: Advances in neural information
processing systems 31 (2018).

[16] Moody T Chu. “Linear algebra algorithms as dynamical systems”. In: Acta
numerica 17 (2008), pp. 1–86.

[17] Timothy A Davis and Yifan Hu. “The University of Florida sparse matrix
collection”. In: ACM Transactions on Mathematical Software (TOMS) 38.1
(2011), pp. 1–25.

[18] Vaclav Doležal. “The existence of a continuous basis of a certain linear subspace
of Er which depends on a parameter”. In: Časopis pro pěstování matematiky 89.4
(1964), pp. 466–469.

[19] Miroslav Fiedler. “Algebraic connectivity of graphs”. In: Czechoslovak mathemat-
ical journal 23.2 (1973), pp. 298–305.

[20] Nicolas Gillis and Punit Sharma. “On computing the distance to stability for
matrices using linear dissipative Hamiltonian systems”. In: Automatica 85 (2017),
pp. 113–121.

[21] Miryam Gnazzo, Vanni Noferini, Lauri Nyman, and Federico Poloni. “Riemann-
Oracle: A general-purpose Riemannian optimizer to solve nearness problems in
matrix theory”. In: arXiv preprint arXiv:2407.03957 (2024).

[22] Serge Konstantinovich Godunov. Ordinary differential equations with constant
coefficient. Vol. 169. American Mathematical Soc., 1997.

[23] Anne Greenbaum, Ren-cang Li, and Michael L Overton. “First-order perturbation
theory for eigenvalues and eigenvectors”. In: SIAM review 62.2 (2020), pp. 463–
482.

[24] Nicola Guglielmi. “On the method by Rostami for computing the real stability
radius of large and sparse matrices”. In: SIAM Journal on Scientific Computing
38.3 (2016), A1662–A1681.

[25] Nicola Guglielmi, Arturo De Marinis, Anton Savastianov, and Francesco Tudisco.
“Contractivity of neural ODEs: an eigenvalue optimization problem”. In: arXiv
preprint arXiv:2402.13092 (2024).

[26] Nicola Guglielmi, Mert Gürbüzbalaban, and Michael L Overton. “Fast approx-
imation of the H∞ norm via optimization over spectral value sets”. In: SIAM
Journal on Matrix Analysis and Applications 34.2 (2013), pp. 709–737.

[27] Nicola Guglielmi, Daniel Kressner, and Christian Lubich. “Computing extremal
points of symplectic pseudospectra and solving symplectic matrix nearness
problems”. In: SIAM Journal on Matrix Analysis and Applications 35.4 (2014),
pp. 1407–1428.

[28] Nicola Guglielmi, Daniel Kressner, and Christian Lubich. “Low rank differential
equations for Hamiltonian matrix nearness problems”. In: Numerische Mathematik
129.2 (2015), pp. 279–319.

[29] Nicola Guglielmi and Christian Lubich. “Differential equations for roaming
pseudospectra: paths to extremal points and boundary tracking”. In: SIAM
Journal on Numerical Analysis 49.3 (2011), pp. 1194–1209.

Bibliography 121

[30] Nicola Guglielmi and Christian Lubich. “Low-rank dynamics for computing
extremal points of real pseudospectra”. In: SIAM Journal on Matrix Analysis
and Applications 34.1 (2013), pp. 40–66.

[31] Nicola Guglielmi and Christian Lubich. Matrix nearness problems and eigenvalue
optimization. 2022.

[32] Nicola Guglielmi and Christian Lubich. “Matrix stabilization using differential
equations”. In: SIAM Journal on Numerical Analysis 55.6 (2017), pp. 3097–3119.

[33] Nicola Guglielmi, Christian Lubich, and Volker Mehrmann. “On the nearest
singular matrix pencil”. In: SIAM Journal on Matrix Analysis and Applications
38.3 (2017), pp. 776–806.

[34] Nicola Guglielmi, Christian Lubich, and Stefano Sicilia. “Rank-1 Matrix Differ-
ential Equations for Structured Eigenvalue Optimization.” In: SIAM Journal on
Numerical Analysis 61.4 (2023), pp. 1737–1762.

[35] Nicola Guglielmi and Manuela Manetta. “Approximating real stability radii”. In:
IMA Journal of Numerical Analysis 35.3 (2015), pp. 1402–1425.

[36] Nicola Guglielmi and Michael L Overton. “Fast algorithms for the approximation
of the pseudospectral abscissa and pseudospectral radius of a matrix”. In: SIAM
Journal on Matrix Analysis and Applications 32.4 (2011), pp. 1166–1192.

[37] Nicola Guglielmi and Stefano Sicilia. “A low-rank ODE for spectral clustering
stability”. In: Linear Algebra and its Applications (2024).

[38] Nicola Guglielmi and Stefano Sicilia. “Stabilization of a matrix via a low-rank-
adaptive ODE”. In: BIT Numerical Mathematics 64.4 (2024), p. 38.

[39] Victor Guillemin and Alan Pollack. Differential topology. Vol. 370. American
Mathematical Soc., 2010.

[40] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. “The elements of
statistical learning. Springer series in statistics”. In: New York, NY, USA (2001).

[41] Sarah-Alexa Hauschild, Nicole Marheineke, Volker Mehrmann, and Lehrstuhl
Modellierung und Numerik. “Model reduction techniques for linear constant
coefficient port-Hamiltonian differential-algebraic systems”. In: Control and Cy-
bernetics 48.1 (2019).

[42] Uwe Helmke and John B Moore. Optimization and dynamical systems. Springer
Science & Business Media, 2012.

[43] Joao P Hespanha. “An efficient matlab algorithm for graph partitioning”. In:
University of California (2004), pp. 1–8.

[44] Nicholas John Higham. “Computing a nearest symmetric positive semidefinite
matrix”. In: Linear algebra and its applications 103 (1988), pp. 103–118.

[45] Nicholas John Higham. “Computing the nearest correlation matrix—a problem
from finance”. In: IMA journal of Numerical Analysis 22.3 (2002), pp. 329–343.

[46] Nicholas John Higham. Matrix nearness problems and applications. University of
Manchester. Department of Mathematics, 1988.

[47] Diederich Hinrichsen and Anthony J Pritchard. Mathematical systems theory I:
modelling, state space analysis, stability and robustness. Vol. 48. Springer, 2005.

[48] Roger A. Horn and Charles R Johnson. Matrix analysis. Cambridge University
Press, 1985.

122 Bibliography

[49] Michael Karow, Effrosyni Kokiopoulou, and Daniel Kressner. “On the compu-
tation of structured singular values and pseudospectra”. In: Systems & control
letters 59.2 (2010), pp. 122–129.

[50] Tosio Kato. Perturbation theory for linear operators. Vol. 132. Springer Science
& Business Media, 2013.

[51] Othmar Koch and Christian Lubich. “Dynamical low-rank approximation”. In:
SIAM Journal on Matrix Analysis and Applications 29.2 (2007), pp. 434–454.

[52] Daniel Kressner and Bart Vandereycken. “Subspace methods for computing the
pseudospectral abscissa and the stability radius”. In: SIAM Journal on Matrix
Analysis and Applications 35.1 (2014), pp. 292–313.

[53] Daniel Kressner and Matthias Voigt. “Distance problems for linear dynamical
systems”. In: Numerical Algebra, Matrix Theory, Differential-Algebraic Equations
and Control Theory: Festschrift in Honor of Volker Mehrmann (2015), pp. 559–
583.

[54] Jure Leskovec and Julian Mcauley. “Learning to discover social circles in ego
networks”. In: Advances in neural information processing systems 25 (2012).

[55] Jan R Magnus. “On differentiating eigenvalues and eigenvectors”. In: Econometric
theory 1.2 (1985), pp. 179–191.

[56] M Mansour, Eliahu I Jury, and Luis F Chaparro. “Estimation of the margin of
stability for linear continuous and discrete systems”. In: International Journal of
Control 30.1 (1979), pp. 49–69.

[57] Volker Mehrmann and Hongguo Xu. “Perturbation of purely imaginary eigenval-
ues of Hamiltonian matrices under structured perturbations”. In: The Electronic
Journal of Linear Algebra 17 (2008), pp. 234–257.

[58] Carl D Meyer and Gilbert W Stewart. “Derivatives and perturbations of eigen-
vectors”. In: SIAM Journal on Numerical Analysis 25.3 (1988), pp. 679–691.

[59] Vanni Noferini and Federico Poloni. “Nearest Ω-stable matrix via Riemannian
optimization”. In: Numerische Mathematik 148.4 (2021), pp. 817–851.

[60] Francois-Xavier Orbandexivry, Yurii Nesterov, and Paul Van Dooren. “Nearest
stable system using successive convex approximations”. In: Automatica 49.5
(2013), pp. 1195–1203.

[61] Dimosthenis Pasadakis, Christie Louis Alappat, Olaf Schenk, and Gerhard
Wellein. “Multiway p-spectral graph cuts on Grassmann manifolds”. In: Machine
Learning (2022), pp. 1–39.

[62] Li Qiu, Bo Bernhardsson, Anders Rantzer, Edward Joseph Davison, Peter Michael
Young, and John C Doyle. “A formula for computation of the real stability radius”.
In: Automatica 31.6 (1995), pp. 879–890.

[63] Yousef Saad. Numerical methods for large eigenvalue problems: revised edition.
SIAM, 2011.

[64] Gilbert W Stewart. “A Krylov–Schur algorithm for large eigenproblems”. In:
SIAM Journal on Matrix Analysis and Applications 23.3 (2002), pp. 601–614.

[65] Françoise Tisseur and Nicholas John Higham. “Structured pseudospectra for
polynomial eigenvalue problems, with applications”. In: SIAM Journal on Matrix
Analysis and Applications 23.1 (2001), pp. 187–208.

[66] Lloyd Nick Trefethen. “Pseudospectra of matrices”. In: Numerical analysis 91
(1991), pp. 234–266.

Bibliography 123

[67] Lloyd Nick Trefethen. “Spectra and pseudospectra: the behavior of nonnormal
matrices and operators”. In: (2020).

[68] Ulrike Von Luxburg. “A tutorial on spectral clustering”. In: Statistics and com-
puting 17 (2007), pp. 395–416.

	Abstract
	Acknowledgements
	Introduction
	Matrix nearness problems
	Outline of the thesis
	A two-level approach
	The new structured-low-rank ODE
	The applications studied
	Notation

	Unstructured gradient system approach
	The objective functional
	Outline of the two-level approach
	Inner Iteration: minimization with a fixed perturbation size
	Low-rank trajectory

	Outer iteration: tuning the perturbation size

	Structured gradient system approach
	Structured inner iteration
	The structured gradient system properties
	A low-rank ODE for the structured problem
	Local convergence to the low-rank stationary points

	Structured outer iteration

	Rank-1 structured eigenvalue optimization
	Introduction
	Structured constrained gradient flows
	Problem formulation and motivation
	Minimizing the objective functional
	Constrained gradient flow for structure-projected rank-1 matrices

	A rank-1 matrix differential equation
	Formulation and properties of the rank-1 differential equation
	Stationary points
	Possible loss of monotonicity
	Differential equations for the factors of rank-1 matrices
	Cases of interest for the rank-1 ODE

	Local convergence to the rank-1 stationary points
	Numerical integration by a splitting method
	Splitting method
	Fully discrete splitting algorithm

	Application to structured matrix nearness problems
	Structured distances to singularity and to instability

	Numerical experiments
	The matrix ORANI678 from the Harwell Boeing collection
	The matrix FIDAPM11 from the SPARSKIT collection
	A comparison with Manopt
	An example of control of the Stokes problem

	Perturbation matrices of prescribed range and co-range

	Spectral clustering robustness
	Introduction
	Distance to ambiguity for spectral clustering
	Constrained gradient system for the inner iteration
	Penalized gradient system

	Rank-4 symmetric projection of the gradient system
	Formulation of the low-rank symmetric ODE
	Relationship between stationary points
	Local convergence to the stationary points of the rank-4 ODE
	Implementation of the low-rank inner iteration

	The structured outer iteration
	The penalized version

	Numerical experiments
	A Machine Learning example: the ECOLI matrix
	A slightly sparse example: the JOURNALS matrix
	A social network community: the EGO-FACEBOOK matrix
	Whole matrix
	Compressed matrix
	Reduced matrix

	An example with penalization: the Stochastic Block Model
	Comparison with a different graph partitioning algorithm

	Low-rank-adaptive stabilization of a matrix
	Introduction
	Gradient system
	A rank-adaptive integrator for the gradient system
	Rank adaptivity for fixed perturbation size
	An illustrative example
	Grcar matrix
	Smoke matrix

	Outer iteration: tuning the perturbation size
	Another functional
	Smoke matrix
	Gcdmat matrix

	Structured distance via a low-rank adaptive ODE
	Numerical examples for the structured case
	Pentadiagonal Toeplitz matrix
	Brusselator matrix
	Fidap matrix
	BCS matrix

	Conclusion and perspectives
	Fixed rank manifold and its tangent space
	Projections
	Some non-generic examples
	Miscellaneous results
	Bibliography

