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Abstract
Ground-based disaster damage assessments typically take the form of a team of experts 
being sent to the affected areas to conduct a survey. This approach is time-consuming, 
difficult, and costly. An alternative to this is an assessment based on satellite data, which 
can provide faster, cheaper, and possibly accurate insights into disaster’s specific impacts. 
An even timelier option of disaster ‘nowcasting’ is supposed to inform on impacts during 
or very shortly after the event. Typically, this has been done using risk models, but these 
usually do not account for compounding and cascading effects. We propose a novel now-
casting approach for tropical cyclones employing pre-existing socio-economic and demo-
graphic data and calibrated with satellite data. The method could be used to assess cyclone 
impacts based only on its known trajectory, and even before post-event satellite imagery is 
available. We investigate the feasibility of this approach focusing on Fiji and its agricultural 
sector. We link remote sensing data with available household surveys and the agricultural 
census data to identify potential correlates of vegetation damage from cyclones. If robust 
enough, these correlates could later be used for nowcasting cyclone impacts. We show that 
remote sensing data, when combined with pre-event socio-economic and demographic 
data, can be used for both nowcasting and post-disaster damage assessments.
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1  Introduction

In the last few decades, satellite-based Earth observation data have been increasingly used 
for applications in different fields due to the significant innovations of this technology. One 
of these applications is for disaster and emergency management (Voigt et al. 2016). Within 
this field, satellite data are currently being employed in all the four phases of emergency 
management: mitigation, preparedness, response, and recovery.

One specific application of these data is for post-disaster damage assessment. Tradition-
ally, post-disaster damage (or needs) assessment has been done by experts on the ground 
through a structured surveys, which is time-consuming, costly, and associated with poten-
tial negative psychological impacts on the assessment team. Alternatively, governments 
and especially public and private insurance companies employ risk models to quantify 
damages, but their results are often not accurate, as the models do not account for com-
pounding or cascading effects. In contrast, satellite imagery can function as an easily avail-
able, timely and accurate data source to gauge the damage severity and the specific impacts 
caused by a disaster event (including compounded or cascading effects). Satellite data are 
now being used for damage assessments of many types of disasters induced by natural haz-
ards—tropical storms, floods, landslides, earthquakes, and tsunamis.

Additionally, historical satellite data could also assist in creating tools to forecast dis-
aster impacts during or shortly after an event (i.e., nowcasting), at a time when a stand-
ard damage assessment has not yet been done and impact information is very scarce. Our 
purpose, in this paper, is to develop a method for nowcasting agricultural damages from 
tropical storms employing remote sensing and socio-economic data. By combining histori-
cal satellite, cyclone path and socio-economic data (household surveys and the agricul-
tural census), we aim to identify potential correlates of vegetation damage from tropical 
cyclones (TCs). If robust enough, these correlates may later be combined with the cur-
rent cyclone path data to produce preliminary estimates of remote sensing measurements 
(before post-event satellite imagery is available) and assess the degree and spatial distri-
bution of agricultural damage. Secondly, we describe a potential method for estimating 
cyclone-induced agricultural income losses based on the historical relationship between 
post-event remote sensing data and agricultural income trends.

In this paper, we focus on Fiji, a Pacific island country. For Fiji and many other coun-
tries in the region, TCs are the main disaster-inducing hazard. Between 1950 and 2004 
these events accounted for 76% of the reported disasters in the region (Bettencourt et al. 
2006). TCs are associated with intense winds, extreme and prolonged precipitation, storm 
surges, flooding and landslides (Terry 2007). They lead to deaths, injuries and disease, 
displacement and loss of livelihoods, disruptions to essential and other infrastructure, and 
negative impacts on many sectors such as agriculture, housing, transport, primary indus-
tries, and tourism (Doocy et al. 2013; Esler 2016). Fiji, the most populated country in the 
South Pacific, has particularly high exposure to cyclone impacts and suffers significant 
losses due to these events (Peduzzi et al. 2012; Noy 2016).

Since reliable satellite pictures of adequate resolution and frequency are only available 
for recent events, we consider the effect of four recent TCs on Fiji’s agricultural sector. 
They are TC Winston (February 15, 2016), TCs Josie and Keni (April 2 and 10, 2018) and 
TC Harold (April 7, 2020). These events caused massive social and economic losses in 
Fiji, especially in the case of TC Winston, which was one of the strongest tropical storms 
in recorded history. The cyclone resulted in economic losses of approximately USD 1.4 
billion—one third of Fiji’s GDP, and affected more than half of the country’s population 
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(NOAA, 2021a; WFP 2017). We combine the satellite and cyclone path data on these TCs 
with socio-economic data to attempt to identify any significant socio-economic, demo-
graphic, or agronomic correlates of cyclone-induced vegetation damage, which could then 
be utilized to nowcast future cyclone vegetation damages.

2 � Literature review

2.1 � Optical satellite imagery for disaster damage assessment

For disaster damage assessment, the most frequently used satellite sensors are: (1) optical, 
(2) synthetic aperture radar, and (3) light detection and ranging sensors. For optical sen-
sors, the used combination of visible and infrared wavelengths is particularly useful for the 
detection of water surfaces and vegetation-covered areas, which makes it well suited for 
flood mapping or estimating vegetation impacts.

The utilization of optical satellite data for assessments of storm and flood damage is 
constrained by its reliance on cloud-free conditions, and the fact that the occurrence of 
these extreme events is often correlated with extensive cloud cover in the days surrounding 
the event (Rahman 2019). Secondly, many sources of high-resolution satellite imagery may 
be costly to acquire or not publicly available. For rapid post-disaster impact assessment 
that can effectively assist emergency responders, there are high demands on both the tem-
poral and spatial resolutions of the imagery (Battersby et al. 2012; Hodgson et al. 2010). 
This often requires the use of different satellite sources to gather as much relevant data as is 
possible during the first few days after the disaster.

Most damage assessment approaches combine the remote sensing imagery with ancil-
lary data (e.g., satellite-derived digital elevation or terrain models, soil data or land use 
data) to derive more accurate disaster-related information. Many of these data types are 
freely accessible online from the US Geological Survey, national sources, or other interna-
tional organisations. It is uncommon, in this literature, to combine the remote sensing data 
with socio-economic and demographic data, such as the data collected in standard house-
hold living standards surveys, or the decadal census.

2.2 � General damage assessments

Damage assessments of floods and storms based on optical satellite data employ various 
satellite sources with different spatial and temporal resolutions. Spatial resolutions are typi-
cally categorized as low (> 100 m/px), moderate (5–100 m/px) or high (< 5 m/px). Gen-
eral damage estimations of tropical storms typically employ moderate resolution (Al-Amin 
Hoque et al. 2015, 2016, 2017; Phiri et al. 2020) or high-resolution imagery (Barnes et al. 
2007; Doshi et  al. 2018; Mas et  al. 2015). Flood mapping and impact assessments on a 
large scale mainly make use of publicly available low resolution optical sensors, most com-
monly the Moderate Resolution Imaging Spectroradiometer (MODIS) (e.g., Arvind et al. 
2016; Ban et al. 2017; Coltin et al. 2016; Lin et al. 2017, 2019; Memon et al. 2015). The 
benefits of MODIS are high spatial coverage and temporal resolution along with free avail-
ability. However, the low spatial resolution limits the assessments to relatively less detailed 
impact estimations. Flood mapping and damage assessments based on moderate resolu-
tion imagery employ data from Landsat (Du et  al. 2020; Gianinetto et  al. 2005; Hutanu 
et al. 2018; Li et al. 2016; Ma et al. 2011; Sivanpillai et al. 2020), Sentinel-2 (Kordelas 
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et al. 2018) or HC-CCD (Feng et al. 2015) sensors. Flood mapping employing high resolu-
tion satellite imagery, which may also provide insight into damages inflicted on individual 
structures, utilizes satellite sources such as SPOT-5 (Lamovec et  al. 2013a), RapidEye 
(Lamovec et al. 2013b) or Worldview2 (Malinowski et al. 2015; Scarsi et al. 2014).

2.3 � Specific impacts: vegetation and crop damage

Apart from hazard assessments and flood mapping of general storm- or flood-affected 
areas, some studies focus specifically on analysing and quantifying damages to certain fea-
tures of interest such as vegetation, forests, agricultural production or buildings and infra-
structure. We do the same here, focusing on vegetation and agricultural production.

Satellite-based assessments of storm-induced vegetation damage focus on various veg-
etation types such as forests (Cortés-Ramos et  al. 2020; Chehata et  al. 2014; Furukawa 
et  al. 2020; McInerney et  al. 2016; Negrón-Juárez et  al. 2010; Rossi et  al. 2013; Wang 
et  al. 2010; Wang and Xu 2018; Zhang et  al. 2013a), coastal vegetation (Charrua et  al. 
2021; Konda et  al. 2018; Lu et  al. 2020; Rodgers et  al. 2009; Wang and D’Sa 2010) or 
mangroves specifically (Bhowmik and Cabral 2011, 2013; Long et al. 2016; Mandal and 
Hosaka 2020).

Even more closely related to our approach, another set of studies focuses on estimating 
storm and flood impacts on agriculture. Satellite-based storm and flood crop loss assess-
ments are typically conducted based on flood intensity (Haq et al. 2012; Kwak et al. 2015a, 
2015b; Van der Sande et al. 2003), crop condition (e.g., Di et al. 2013, 2018; Kotera et al. 
2016; Rahman et  al. 2020; Zhang et  al. 2013b) or a combination of these two methods 
(Chen et al. 2017, 2019; Dao and Liou 2015; Gu et al. 2015). Flood-intensity-based studies 
typically estimate crop damages using stage-damage curves based on satellite-derived cri-
teria such as flood extent or duration. Studies based on crop condition usually involve com-
paring pre- and post-flood values of satellite-derived spectral indices and apply regressions 
using these indices, associating them with crop yields or other measures (Rahman and Di 
2020). This is similar to the approach we take here, as is described in detail in Sect. 3.

For the purposes of estimating crop condition in this paper, we employ the index dif-
ferencing technique. This frequently used method belongs in the group of pre-classification 
change detection methods, which generally use an automated algorithm to detect differ-
ences in images between two discrete points in time, accounting for changes in pixel values 
(Deer 1995). In addition to being straightforward, this method has the advantage of reduc-
ing the impact of topographic effects and illumination (Lu et al. 2004). Index differencing 
techniques commonly employ vegetation indices such as the disaster vegetation damage 
index (DVDI), the normalized difference vegetation index (NDVI) or the enhanced vegeta-
tion index (EVI), with the EVI having an improved sensitivity over high biomass regions 
such as forests, and less sensitivity to atmospheric noise (Brun and Barros 2013).

While combining remote sensing data with socio-economic datasets is not entirely novel 
in disaster response and recovery (see for example Ghaffarian et al. 2021), it is typically not 
employed for post-disaster damage assessments. This is the case for macro-economic, or 
aggregated datasets, such as those we use here. In this case, the economic data are aggre-
gated spatially for administrative units within a country (e.g., districts, regions, provinces, 
and states) or aggregated to the country level (when more regional and spatially-detailed data 
are not available). More challenging, but equally informative can be the use of micro-level 
economic data, such as household surveys or administrative (unit record) data on firms’ bal-
ance sheets and tax information. If these data are geo-located, it can in principle be feasible to 
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match these with remote sensing data that is of sufficient resolution. One of the main impedi-
ments for this kind of approach, however, is a justified concern about privacy. Regarding the 
analysis used in this paper, this concern was irrelevant as the household-level data are geo-
located only to the district-level.

3 � Data and methodology

3.1 � Satellite sources

In this paper, we employ optical satellite data from Sentinel-2 and MODIS. Sentinel-2 is 
an Earth observation mission from the Copernicus Programme acquiring imagery over 
land and coasts with two twin satellites—Sentinel-2A and Sentinel-2B (ESA 2021). The 
imagery from the Sentinel-2 mission is characterized by moderate spatial (10, 20 and 60 m) 
and high temporal (5 days) resolution. We mask grid cells labelled as ‘No data’, ‘Saturated 
or defective’ as well as cloudy pixels (‘Cloud [high or medium probability]’). Note that Fiji 
is covered by different orbit tracks (R029, R072 and R129), therefore the dates of available 
images differ between the tracks. We also set the parameters to download images with less 
than 50% of cloud coverage only. This results in areas with missing data.

A different satellite source, MODIS, is used to supplement the missing Sentinel data. 
MODIS is obtained from instruments onboard the Earth Observing System Terra and Aqua 
platforms. Vegetation Indices data (MOD13Q1) Version 6 (LP DAAC 2021) from MODIS 
are provided every 16 days at a 250 m resolution. Cloudy and lower-quality pixels are also 
masked.

3.2 � Vegetation damage

To estimate vegetation damage, we use satellite-derived vegetation indices. While vegeta-
tion indices are not greatly correlated with standard disaster loss measures such as disaster 
mortality, morbidity, or total economic losses (see Tables  1 and 2), they act as a useful 
proxy for vegetation or agricultural damages. In this paper, we use the EVI, which is more 
suitable to be used for the dense vegetation of the islands than other vegetation indices. 
Following Huete et al. (1997), the EVI is calculated as:

(1)EVI = 2.5
�NIR − �red

�NIR + 6�red − 7.5�blue + 1

Table 1   Correlation analysis at 
the regional level—EMDAT

Variables Sentinel MODIS

EVIch EVIdiff EVIch EVIdiff

Disaster magnitude value 0.132 0.346 − 0.209 − 0.272
Total deaths 0.138 0.340 − 0.199 − 0.261
Number of injured people 0.142 0.331 − 0.188 − 0.248
Number of affected people 0.131 0.346 − 0.210 − 0.273
Total number of affected people 0.131 0.346 − 0.210 − 0.273
Economic damages 0.139 0.337 − 0.195 − 0.256
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using the near-infrared (NIR; 841–876 nm), red (620–670 nm) and blue band (459–479 nm) 
spectral bands and ρ the top-of-the atmosphere reflectance.

The impact of TCs on vegetation is estimated using vegetation image differencing 
between the pre- and post-TC EVI values using map algebra at the grid cell level. The clos-
est available images within two months before and after each tropical cyclone are selected.1 
The calculated EVI change is regarded as cyclone-induced vegetation cover damage. We 
use indicators for both absolute (EVIdiff) and relative (EVIch) EVI change. These are cal-
culated as:

whereby EVIpostTC and EVIpreTC correspond to post- and pre-TC landfall reading from the 
EVI, respectively. Average district-level EVIdiff and EVIch values are calculated as the 
average of the grid-level EVI values for all grid-cells within each district, based on Fiji’s 
administrative division.

3.3 � Socio‑economic and cyclone path data

The socio-economic and demographic data, from which we attempt to identify vegetation 
damage correlates, are sourced from two primary sources: 2013–14 Household Income and 
Expenditure Survey (HIES) and 2020 Fiji Agriculture Census (FAC).

HIES contains household-level data for a sample of 6,020 households and is aimed to 
be representative per district. Household income values were averaged per district using 
weights included in the original HIES dataset to arrive at average household income values 

(2)EVIdiff = EVIpostTC − EVIpreTC

(3)EVIch =

EVIpostTC − EVIpreTC

EVIpreTC

Table 2   Correlation analysis at 
the regional level—Desinventar

Variables Sentinel MODIS

EVIch EVIdiff EVIch EVIdiff

Total deaths 0.043 0.136 − 0.156 − 0.190
Number of injuries 0.059 0.135 − 0.155 − 0.195
Number of missing people − 0.051 0.094 − 0.110 − 0.104
Destroyed houses 0.061 0.135 − 0.155 − 0.195
Damaged houses − 0.110 0.012 − 0.021 0.016
Directly affected people − 0.113 0.007 − 0.015 0.025
Evacuated people − 0.010 0.122 − 0.140 − 0.152
Total losses 0.062 0.134 − 0.155 − 0.195
Local losses 0.062 0.134 − 0.155 − 0.195
Hospitals 0.062 0.134 − 0.155 − 0.195

1  TCs Josie and Keni occurred only several days apart and images from the time between the two TCs were 
not available in many locations. Therefore, we calculate the EVI difference for this set of events using pre-
Josie and post-Keni values (as if both were one single storm event).
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at the district level (Tikina Cokavata). The respective districts were assigned to households 
based on the household ID numbers.

FAC is organised at a subdistrict (Tikina Vou) level. The data from a total of over 71,000 
households capture detailed economic and demographic information related to the agri-
cultural sector in rural and peri-urban areas where most agricultural activities are concen-
trated. Grouping up subdistricts into respective districts was done based on the administra-
tive associations as defined in House of Chiefs (n. d.), and a combination of regional maps 
in FAC documentation. Average district values were calculated using a weighted average 
with the number of farmers, agricultural households or their members used as weights for 
the respective indicators.

Regarding the variables indicating the ratio of agricultural land used for specific crops, 
we were unable to access district-level data on sugarcane, which is the main crop grown 
in Fiji and represents approximately 60% of area harvested averaged over the period 
2016- 2020 (FAO 2021). Using the available dataset on non-sugarcane crops, out of 75 
crop types, only the crop types that cover at least 2% of the area used for non-sugarcane 
crops were selected: banana, cassava, coconuts, taro, rice and yaqona. These 6 crop types 
account for more than 85% of the non-sugarcane cropland. Similarly, for the land tenure 
variables, only the land tenure types which accounted for at least 5% of the total farmland 
area were selected: land under freehold, traditionally owned land, land under lease from 
state, and native lease. These four land tenure types together account for 98% of farm land.

Besides the data from HIES and FAC, a ‘cyclone distance’ variable was added to the 
regression model to account for the effect of cyclone proximity on vegetation damage. The 
value of this variable ranges from 1 (closest to cyclone path) to 4 (furthest from cyclone 
path). More specifically, the distance from the cyclone was accounted for by establishing 4 
zones with borders at 50, 100 and 200 km from the cyclone path, with the value of 1 indi-
cating that the majority (> 50%) of the district area is closer than 50 km from the cyclone 
path. The values were calculated using cyclone trajectory maps from the International Best 
Track Archive for Climate Stewardship (IBTrACS) (NOAA 2021b), and Reliefweb (2016). 
For the combined cyclone events of Josie and Keni, the lower cyclone distance value was 
selected from the two (implicitly assuming no cumulative damage).

A complete list of the independent variables used in the regression models is pre-
sented in Table 3, along with their description and source. From the list of variables that 
were extracted from HIES and FAC, selected variables were removed from variable pairs 
that had a correlation coefficient higher than 0.7. The variables removed were: No sav-
ings account due to lack of access, number of females per agricultural household, ratio of 
agricultural land used for growing coconuts, native lease land ownership, average age, and 
imputed rent and wages 2.

3.4 � Regression models

A linear regression model was applied to identify potential relationships between the 
demographic and socio-economic factors on one hand and cyclone-induced vegetation 
damage (approximated by the EVI) on the other. In principle, our aim is to identify the 

2  With respect to outliers, for the indicator ‘Average Income from Sale of Crops’, two extreme values were 
removed for subdistricts Muaira and Vaturova as these were more than 20 times higher than the average. 
Therefore, the average crop income values for the respective districts did not account for these two subdis-
tricts.
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correlates of vegetation damage from cyclones. We are not necessarily aiming to identify 
any causal mechanism from these independent control variables on the dependent variables 
(the variants of the EVI measure – see below) in our models.

We estimate the following equation:

whereby EVIx
cd

 , the dependent variable, is calculated as one of the four variants of the 
EVI change around the time of the respective cyclone (c) in district (d). The EVI variants 
include: (1) absolute EVI change, EVIdiff (Eq. 2); (2) relative EVI change, EVIch (Eq. 3); 
(3) the same as (1) but including the condition that the EVIdiff < 0; and (4) the same as 
(2) but including the condition that EVIch < 0. The latter two variations of the independ-
ent variable are used as an attempt to limit the effect of other potential influencing factors 
that may have caused the EVI change values in certain districts to be positive despite the 
cyclone occurrence.

As for the independent variables (described in detail in Sect. 3.3), HIESd is the vector 
of district-level variables available from the Fiji household survey. FACsd⊂d is the vector 
of subdistrict-level variables available from the agricultural census, aggregated to the dis-
trict level (to match the level of aggregation in the household survey data) 3. DISTcd is the 
measured distance from the cyclone path, identified for each cyclone, for each district. The 
error term ( �cd ) is assumed to be independent and identically distributed.

For each of the four independent variables, we estimate a set of regressions for four dis-
tinct samples: all cyclones together (Harold, Winston, and Josie and Keni); Winston; Josie 
and Keni; and Winston + Josie/Keni (all events except Harold).

Cyclone Harold is the only cyclone within the dataset that is associated with a positive 
average EVI value (when combining both Sentinel and MODIS data). This would, on its 
own, suggest that the overall condition of Fiji’s vegetation improved after cyclone Harold’s 
occurrence.4 Due to this, we include the category ‘Winston + Josie/Keni’, which excludes 
the TC Harold observations. We present the regression results for TC Harold separately in 
Table 13 in the Appendix.5

From the full set of independent variables extracted from HIES and FAC, the variables 
used in the final regression models were selected by the following method. Initially, all 
available independent variables were included in the regression model, and the least sta-
tistically significant variable was identified based on its p-value and removed. Then, the 
regression was run again removing the least statistically significant independent variable. 
This process was repeated until all the independent variables were statistically significant 
at the 10% level of significance. This method was used to identify potentially significant 
variables separately for each of the total of 16 regression models reported below (four EVI 
categories and four cyclone grouping categories).

(4)EVIx
cd

= 𝛼 + 𝛽
1
HIESd+𝛽2FACsd⊂d + 𝛽

3
DISTcd + 𝜀cd

3  We note that FAC was collected after the TCs hit Fiji. Ideally, pre-cyclone data should be used. However, 
the census is not run frequently (the previous one was in 2009), and we were not granted access to it. In 
addition, land use is a slowly moving variable, and it is unlikely that the TCs themselves have led to such 
rapid land use changes to make the 2020 census irrelevant. We therefore use the 2020 census, in spite of its 
timing.
4  We discuss TC Harold in more detail in Sect. 5.
5  Regression results for cyclone Harold when using negative EVIdiff and EVIch values are not reported due 
to the small number of observations (28).
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The regression models applied in the first table within each of the four EVI cate-
gories (Tables 4, 6, 8 and 10) and within each cyclone type (table columns 1–4) con-
tain only variables that were identified as statistically significant at the 10% level of 
significance for the specific regression for each specification. The second table within 
each EVI category (Tables  5, 7, 9, 11) shows a single regression model (a selection 
of independent variables) applied across all four types of cyclone grouping categories. 
Here, all variables that proved statistically significant for at least one cyclone event were 
included. Table 14 presents the summary statistics of all variables.

3.5 � Data and method for agricultural income analysis

With sufficient data, one could apply statistical analysis to the historical relationship 
between post-cyclone satellite data (e.g., vegetation indices such as the EVI) and agricul-
tural income trends. The insights could then be used to estimate cyclone-induced agricul-
tural income losses using satellite data following a cyclone event. As we were not able to 
access annual district- or subdistrict-level agricultural income data, we are limited to an 
analysis on the national level, which is based on a very limited number of observations. 
Therefore, we only discuss the basic pattern and the correlation between the EVI change 
and the agricultural income change during the cyclone years.

The data for the annual agricultural income of Fiji were obtained from the Reserve 
Bank of Fiji, which contains Fiji’s agricultural gross value added at constant basic prices of 
2014. The data for the years 2015–2019 are from the Fiji Bureau of Statistics; the data for 
2020 are based on the Macroeconomic Committee’s estimates as of July 2021.

A list of variables used for agricultural income analysis is presented in Table 15. The 
country-level weighted average of EVIdiff and EVIch was calculated from district-level 
EVIdiff and EVIch values using household crop income values from FAC as weights, to 
account for varying contribution of the districts to the country’s total agricultural income. 
Because the only available district-level crop income data were for the year 2020 (dur-
ing which TC Harold occurred), these values were also used as weights to calculate the 
weighted EVI averages for the years 2016 and 2018 (the years of the other two cyclone 
events).

4 � Results

4.1 � Regression results

We present the regression results for absolute EVI change (EVIdiff) in Tables 4, 5, 6 and 7 
and the results for relative EVI change (EVIch) in Tables 8, 9,10 and 11. Out of the total of 
29 variables originally identified to be potentially significant, only 5 variables come out as 
repeatedly significant6 in the EVIdiff specification with a full set of observations and only 

6  We consider a variable repeatedly statistically significant if it is significant at the 10% level in at least 3 
out of 4 specifications, significant at the 5% level in at least 2 specifications and significant at the 1% level 
in at least 1 specification.
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Table 4   All EVIdiff – selected independent variables

Independent variable All TCs Winston Josie/Keni Winston + Josie/Keni

Distance 0.0458*** 0.0899*** 0.0433*** 0.0422***
(0.0058) (0.0212) (0.0102) (0.0068)

Female farmers 0.1895* 0.3233* 0.3166***
(0.0971) (0.1740) (0.1153)

Banana − 0.2957*** − 0.6218*** − 0.5103***
(0.0882) (0.1586) (0.1103)

Cassava 0.1111*** 0.4136*** 0.2439***
(0.0327) (0.0877) (0.0535)

Taro − 0.1332***
(0.0490)

Average income 0.0027* 0.0092*** 0.0066***
(in thousands of FJD) (0.0016) (0.0029) (0.0021)
Average transfer − 0.0103* − 0.0190* − 0.0126** − 0.0221***
(in thousands of FJD) (0.0055) (0.0111) (0.0052) (0.0073)
Other income − 0.0501** − 0.0813* − 0.0693**
(in thousands of FJD) (0.0230) (0.0418) (0.0299)
 > 8 years of education − 1.0667*** − 0.4451***

(0.2346) (0.1571)
No savings account (money/access) − 0.2168** − 0.1586**

(0.1074) (0.0717)
Permanent crop area 0.2058** 0.1388**

(0.0862) (0.0538)
Land under freehold − 0.1779**

(0.0808)
Yaqona 0.1743** 0.1189**

(0.0697) (0.0494)
Household size 0.0513**

(0.0211)
 > 10 years of education − 0.5711***

(0.1525)
Self-employed 0.0942*

(0.0481)
Irrigated farm area − 0.1272**

(0.0495)
Rice − 0.2410**

(0.0962)
Agricultural income
(in thousands of FJD)
Farmers with difficulties 0.4341*

(0.2282)
Mobile phone ownership 0.1398*

(0.0829)
N 183 60 62 122
adj. R-sq 0.349 0.591 0.508 0.446
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the selected variables (Table 4): Distance, Banana, Cassava, Average Income, and Average 
transfer.

The most consistent results are observed for the Distance variable, as it is significant at 
the 1% level of statistical significance across all specifications in Tables 4, 8 and 9.7 This 

Table 5   All EVIdiff values – all independent variables

Parentheses contain standard errors
*** p < 0.01, **p < 0.05, and *p < 0.1. Variables that were included in all columns but were never statistically 
significant are not presented. These include household size, > 10 years of education, mobile phone owner-
ship, no saving account, irrigated farm area, permanent crop area, Yaqona, Taro, and agricultural income

Independent variable All TCs Winston Josie/Keni Winston + Josie/Keni

Distance 0.0445*** 0.0787*** 0.0345* 0.0421***
(0.0063) (0.0269) (0.0175) (0.0070)

 > 8 years of education − 0.2041 − 0.9757** − 0.1612 − 0.5573*
(0.2640) (0.4752) (0.3355) (0.3101)

Farmers with difficulties 0.1991 0.4991 0.1556 0.4289*
(0.2185) (0.4091) (0.2715) (0.2564)

Female farmers 0.2006* 0.3837* 0.2244 0.2998**
(0.1202) (0.2120) (0.1508) (0.1413)

Land under freehold − 0.0357 − 0.1882* 0.0523 − 0.0576
(0.0424) (0.1005) (0.0509) (0.0522)

Rice − 0.0664 0.0927 − 0.3073** − 0.0959
(0.1058) (0.1929) (0.1366) (0.1249)

Banana − 0.3202*** − 0.6722*** − 0.1801 − 0.4819***
(0.1202) (0.2303) (0.1501) (0.1412)

Cassava 0.1165 0.3767** − 0.0063 0.1655*
(0.0834) (0.1471) (0.1033) (0.0976)

Average income 0.0043** 0.0107*** 0.0014 0.0065***
(in thousands of FJD) (0.0020) (0.0038) (0.0026) (0.0024)
Average transfer − 0.0137** − 0.0242* − 0.0161** − 0.0221***
(in thousands of FJD) (0.0065) (0.0142) (0.0079) (0.0079)
Other income − 0.0576** − 0.0848 − 0.0242 − 0.0629*
(in thousands of FJD) (0.0291) (0.0524) (0.0363) (0.0341)
N 183 60 62 122
adj. R-sq 0.323 0.541 0.452 0.425

Table 4   (continued)
Parentheses contain standard errors
*** p < 0.01, **p < 0.05, and *p < 0.1

7  We note that the distance variable was not found to be significant for the Josie/Keni event in the specifi-
cations using only negative EVIdiff values. These specifications include a significantly smaller number of 
observations.
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Table 6   Negative EVIdiff – selected independent variables

Independent variable All TCs Winston Josie/Keni Winston + Josie/Keni

Distance 0.0413*** 0.0985*** 0.0379***
(0.0052) (0.0192) (0.0063)

Household size 0.0283** 0.0437***
(0.0141) (0.0139)

Banana − 0.1670** − 0.3338***
(0.0793) (0.0941)

Cassava 0.1167*** − 0.3088** 0.0712** 0.1569***
(0.0298) (0.1286) (0.0339) (0.0438)

Taro − 0.1226*** − 0.4305*** − 0.0912**
(0.0413) (0.1107) (0.0377)

Household crop income 0.0014** 0.0025*
(in thousands of FJD) (0.0007) (0.0014)
 > 8 years of education − 0.7859*** − 0.3879**

(0.2728) (0.1665)
Tertiary education 1.5789*** 0.5166*

(0.4970) (0.2840)
Mobile phone ownership − 0.4719**

(0.1777)
Savings account ownership 0.5290*** − 0.1066*

(0.1384) (0.0576)
Female farmers 0.7470*** 0.2102** 0.1910*

(0.2336) (0.0842) (0.1022)
Irrigated farm area − 0.1798** − 0.0633**

(0.0713) (0.0293)
Traditionally owned land − 0.2291*** − 0.0825**

(0.0663) (0.0393)
Land under freehold − 0.4953*** 0.1081*** − 0.0973*

(0.1120) (0.0293) (0.0541)
Land under lease from state − 0.5753** − 0.3076**

(0.2540) (0.1337)
Yaqona − 0.1381*

(0.0668)
Rice − 0.3561** − 0.1897**

(0.1526) (0.0845)
Average income 0.0101** 0.0043*
(in thousands of FJD) (0.0039) (0.0024)
Average transfer − 0.0232* − 0.0122*
(in thousands of FJD) (0.0119) (0.0068)
 > 10 years of education − 0.3993***

(0.1069)
Agricultural education 0.9081***

(0.1970)
Self-employed 0.0935**

(0.0351)
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is the only proxy we use for the intensity of the hazard, and the data suggest that a change 
in the EVI is a satisfactory proxy for damage from tropical cyclones. The coefficient is 
consistently positive; and this suggests that an increased distance from the cyclone path 
was associated with higher EVI change values (i.e., less vegetation damage, a better out-
come), which is consistent with our basic hypothesis. Considering the consistency and high 
statistical significance of the variable, cyclone distance is the primary correlate of cyclone 
vegetation damage among the independent variables included in the regression models.

Regarding the socio-economic variables, four variables are repeatedly statistically 
significant in the specification with only the selected variables (Table 4). From the FAC 
measures that describe the crop composition of each district, the noteworthy variables are 
Banana (negative) and Cassava (positive). The negative coefficient for banana suggests 
that a higher proportion of land cultivating banana, in an exposed district, is associated 
with more vegetation damage from the cyclone 8, making the banana plant relatively more 
vulnerable to cyclone impact. The opposite was found for cassava – higher fraction of land 
used for the cassava plant is linked to less district-level vegetation damage (holding every-
thing else constant). Interestingly, the coefficients for banana and cassava were found to be 
less significant or inconsistently estimated (for cassava) in some of the regressions specifi-
cations which use only the negative EVI values. Here, it was the coefficient for Taro which 
was found to be consistently negative and repeatedly significant in Tables 6 and 10. This 
suggests that the taro plant may be more vulnerable compared to other crops. However, 
its statistical insignificance in the regression models using all EVI change values limits us 
from including this variable among the more reliable agronomic vegetation damage cor-
relates such as Banana or Cassava.

Apart from Distance, Banana and Cassava, the remaining two repeatedly statistically 
significant damage correlates in Tables  4 and 5 are average household income (positive 
coefficient) and average household transfer (negative coefficient). While these two variables 

Parentheses contain standard errors
*** p < 0.01, **p < 0.05, and *p < 0.1

Table 6   (continued)

Independent variable All TCs Winston Josie/Keni Winston + Josie/Keni

No savings account (money/access) − 0.2891***
(0.0492)

No savings account (money) 0.2570***
(0.0864)

Other income − 0.0260* − 0.0570**
(in thousands of FJD) (0.0133) (0.0250)
Farmers with difficulties 0.4255**

(0.2027)
N 127 39 50 91
adj. R-sq 0.463 0.731 0.749 0.499

8  We remind the readers that by vegetation damage here we refer to a decrease in the EVI. It therefore 
might also be that banana plants experience more (remotely) visible damage, rather than genuine economic 
damage that manifests in reduced income from these crops. Unfortunately, data on income, by district/year, 
from specific crops are not available, but we discuss this issue in more detail in Sect. 5.
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Table 7   Negative EVIdiff – all independent variables

Parentheses contain standard errors
*** p < 0.01, **p < 0.05, and *p < 0.1. Variables that were included in all columns but were never statistically 
significant are not presented. These include household size, > 8 and > 10 years of education, tertiary educa-
tion, no saving account, Yaqona, Cassava, and other income from the HIES

Independent variable All TCs Winston Josie/Keni Winston + Josie/Keni

Distance 0.0384*** 0.1196** 0.0024 0.0380***
(0.0057) (0.0394) (0.0143) (0.0069)

Agricultural education − 0.2650 − 1.0799 0.8260** − 0.1899
(0.3148) (0.6671) (0.2958) (0.3934)

Self-employed 0.0008 0.0414 0.0869* 0.0120
(0.0519) (0.1314) (0.0502) (0.0625)

Farmers with difficulties 0.4139* 0.3575 0.1495 0.6643**
(0.2297) (0.5668) (0.2042) (0.2746)

No savings account (money/access) − 0.0022 − 0.1990 − 0.2721*** − 0.0475
(0.0822) (0.2301) (0.0835) (0.1019)

No savings account (money) 0.0013 0.0431 0.2143* − 0.0112
(0.1280) (0.3779) (0.1220) (0.1535)

Female farmers 0.0571 0.7060** 0.1885 0.2537
(0.1407) (0.2754) (0.1206) (0.1709)

Irrigated farm area − 0.0283 − 0.2251* − 0.0693* − 0.0716
(0.0461) (0.1089) (0.0404) (0.0555)

Traditionally owned land − 0.0898** − 0.2513** − 0.0475 − 0.1037*
(0.0428) (0.1037) (0.0374) (0.0524)

Land under freehold − 0.0989* − 0.4585*** 0.0608 − 0.1091
(0.0566) (0.1379) (0.0548) (0.0690)

Land under lease from state − 0.1995 − 0.6153 − 0.0943 − 0.3153*
(0.1264) (0.3691) (0.1270) (0.1817)

Yaqona − 0.0509 − 0.2189 − 0.0029 − 0.0490
(0.0513) (0.1864) (0.0511) (0.0685)

Rice − 0.0116 − 0.3177 − 0.2555* − 0.0664
(0.1083) (0.2149) (0.1279) (0.1276)

Banana − 0.2011* − 0.0839 − 0.0407 − 0.3101**
(0.1099) (0.2650) (0.1099) (0.1411)

Cassava 0.1049 − 0.2452 0.0745 0.1205
(0.0654) (0.2255) (0.0701) (0.0935)

Taro − 0.1457* − 0.5942*** − 0.0609 − 0.1260
(0.0802) (0.1772) (0.0842) (0.0997)

Household crop income 0.0016* 0.0033* − 0.0004 0.0006
(in thousands of FJD) (0.0009) (0.0017) (0.0010) (0.0012)
Average income 0.0021 0.0087 0.0001 0.0058*
(in thousands of FJD) (0.0027) (0.0060) (0.0026) (0.0034)
Average transfer − 0.0123* − 0.0264 − 0.0033 − 0.0168*
(in thousands of FJD) (0.0070) (0.0156) (0.0061) (0.0084)
Other income − 0.0250 3.54e−08 − 0.0246 − 0.0499
(in thousands of FJD) (0.0278) (0.0761) (0.0276) (0.0357)
N 117 39 50 89
adj. R-sq 0.467 0.695 0.662 0.462
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are slightly less significant in the specifications with relative EVI change and negative EVI 
change values, the results generally indicate that districts with higher average income suffer 
less damage from tropical cyclones, ceteris paribus, and increased government transfers 
and international remittances are associated with more vegetation damage.

Most of the other variables initially identified to be potentially significant are not 
robustly associated with post-cyclone EVI change. In the negative EVI change regres-
sions with only the selected variables (Tables 6 and 10), Household size is significant and 

Table 8   All EVIch – selected independent variables

Parentheses contain standard errors
*** p < 0.01, **p < 0.05, and *p < 0.1

Independent variable All TCs Winston Josie/Keni Winston + Josie/Keni

Distance 0.0761*** 0.1440*** 0.0915*** 0.0735***
(0.0101) (0.0301) (0.0157) (0.0119)

Permanent crop area 0.1043**
(0.0500)

Banana − 0.4865*** − 0.8138*** -0.6357***
(0.1534) (0.2714) (0.1816)

Cassava 0.2364*** 0.6036*** 0.2738***
(0.0514) (0.1156) (0.0651)

Average transfer − 0.0235*** − 0.0261** − 0.0277**
(in thousands of FJD) (0.0078) (0.0098) (0.0118)
 > 8 years of education − 1.6837*** − 0.7441***

(0.3935) (0.2643)
Female farmers 0.4936*

(0.2688)
Yaqona 0.1813**

(0.0810)
Average income 0.0120** 0.0072**
(in thousands of FJD) (0.0048) (0.0035)
Other income − 0.1970*** − 0.0910*
(in thousands of FJD) (0.0700) (0.0487)
Mobile phone ownership 0.2723**

(0.1166)
Agricultural use < 10 years − 0.1960**

(0.0907)
Irrigated farm area − 0.2143**

(0.0910)
Rice − 0.4032**

(0.1720)
Self-employed
Agricultural income
(in thousands of FJD)
N 183 60 62 122
adj. R-sq 0.305 0.526 0.453 0.380
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consistently positive in 5 out of 8 specifications, indicating that the districts with bigger 
households were associated with less cyclone-induced vegetation damage. As this variable 
is related to Average income, it is not surprising that Household size is significant in the 
columns where Average income is not and vice versa in Table 6.

The negative EVIdiff regressions also show the variable measuring the irrigated farm 
area (as a share of the district’s total farm area) to be significant and consistently negative 
for Winston and Josie/Keni (in the regressions focusing on a specific TC event—Tables 6 
and 7). This suggests that irrigated agricultural land may be less resistant to cyclone 
impacts. One possible explanation could be that irrigated land is associated with higher 
levels of soil moisture, which could lead to more severe cyclone-induced flooding in flood-
prone regions, as was shown for example in Rajeev and Mishra (2022). But other factors 

Table 9   All EVIch values – all independent variables

Parentheses contain standard errors
*** p < 0.01, **p < 0.05, and *p < 0.1. Variables that were included in all columns but were never statistically 
significant are not presented. These include self-employed, irrigated farm area, and agricultural income

Independent variable All TCs Winston Josie/Keni Winston + Josie/Keni

Distance 0.0750*** 0.1553*** 0.0944*** 0.0735***
(0.0106) (0.0348) (0.0213) (0.0121)

 > 8 years of education − 0.2257 − 1.2493** − 0.2603 − 0.6629*
(0.3140) (0.5643) (0.4000) (0.3716)

Mobile phone ownership 0.1032 0.1327 0.3176* 0.2548
(0.1320) (0.2393) (0.1692) (0.1573)

Female farmers 0.2491 0.6499** 0.3067 0.4333**
(0.1792) (0.3150) (0.2416) (0.2097)

Agricultural use < 10 years − 0.0832 0.0042 − 0.2107* − 0.1141
(0.0959) (0.1745) (0.1237) (0.1152)

Permanent crop area 0.1651* 0.2621 0.0655 0.1513
(0.0880) (0.1577) (0.1161) (0.1044)

Yaqona 0.1237 0.3324** 0.0664 0.1723*
(0.0803) (0.1419) (0.1048) (0.0949)

Rice − 0.0481 0.1942 − 0.4736** − 0.1059
(0.1531) (0.2646) (0.2026) (0.1810)

Banana − 0.5319*** − 0.8800*** − 0.3853* − 0.7200***
(0.1723) (0.3018) (0.2184) (0.2010)

Cassava 0.2852*** 0.7331*** 0.1058 0.3560***
(0.0901) (0.1617) (0.1157) (0.1060)

Average income 0.0070** 0.0143** 0.0053 0.0096**
(in thousands of FJD) (0.0031) (0.0055) (0.0041) (0.0037)
Average transfer − 0.0234** − 0.0241 − 0.0309** − 0.0313**
(in thousands of FJD) (0.0104) (0.0202) (0.0133) (0.0126)
Other income − 0.1010** − 0.1330 − 0.0622 − 0.1050*
(in thousands of FJD) (0.0486) (0.0842) (0.0628) (0.0575)
N 183 60 62 122
adj. R-sq 0.305 0.507 0.426 0.381
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Table 10   Negative EVIch – selected independent variables

Independent variable All TCs Winston Josie/Keni Winston + Josie/Keni

Distance 0.0687*** 0.1378*** 0.0640***
(0.0081) (0.0288) (0.0095)

Household size 0.0405* 0.0561** 0.0581**
(0.0219) (0.0218) (0.0272)

Banana − 0.2317* − 0.4118***
(0.1235) (0.1533)

Cassava 0.1611*** − 0.3400* 0.1729***
(0.0464) (0.1719) (0.0602)

Taro − 0.1890*** − 0.7470*** − 0.2352*** -0.2007***
(0.0643) (0.1804) (0.0727) (0.0743)

Household crop income 0.0021** 0.0042*
(in thousands of FJD) (0.0010) (0.0021)
 > 8 years of education − 0.8894*

(0.4386)
 > 10 years of education 1.4935*** -0.5094**

(0.4639) (0.1902)
Agricultural education − 1.7946** 1.4420***

(0.7817) (0.3060)
Mobile phone ownership − 0.8078***

(0.2593)
Savings account ownership 0.6853*** -0.1793*

(0.1826) (0.1035)
Traditionally owned land -0.1943**

(0.0784)
Land under freehold − 0.3897** 0.1776***

(0.1706) (0.0463)
Yaqona − 0.3698*** − 0.1034*

(0.1146) (0.0536)
Self-employed 0.1293**

(0.0549)
No savings account (money/access) − 0.4516***

(0.0761)
No savings account (money) 0.3813***

(0.1358)
Female farmers 0.3644*** 0.3316*

(0.1308) (0.1683)
Irrigated farm area − 0.1419***

(0.0457)
Permanent crop area − 0.1051**

(0.0516)
Rice − 0.3953***

(0.1202)
Other income − 0.0474**
(in thousands of FJD) (0.0209)
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Table 10   (continued)

Independent variable All TCs Winston Josie/Keni Winston + Josie/Keni

Farmers with difficulties 0.5515**
(0.2682)

Average transfer − 0.0134*
(in thousands of FJD) (0.0075)
N 127 43 50 91
adj. R-sq 0.468 0.595 0.755 0.512

Parentheses contain standard errors
*** p < 0.01, **p < 0.05, and *p < 0.1

Table 11   Negative EVIch – all independent variables

Parentheses contain standard errors
*** p < 0.01, **p < 0.05, and *p < 0.1. Variables that were included in all columns but were never statistically 
significant are not presented. These include household size, > 8  years of education, self-employed, farm-
ers with difficulties, female farmer, permanent crop area, yaqona, banana, cassava, household crop income, 
Average transfers, and other income

Independent variable All TCs Winston Josie/Keni Winston + Josie/Keni

Distance 0.0649*** 0.2035** 0.0097 0.0626***
(0.0090) (0.0769) (0.0197) (0.0107)

 > 10 years of education 0.3457 1.6002 − 0.6392* 0.4220
(0.4176) (1.3931) (0.3474) (0.5041)

Agricultural education − 0.4070 − 2.3084* 1.3298*** − 0.3740
(0.5060) (1.1079) (0.4463) (0.6149)

Mobile phone ownership − 0.2605 − 1.1931* 0.0056 − 0.3050
(0.1768) (0.6320) (0.1644) (0.2306)

Savings account ownership 0.0794 0.8583* -0.1406 0.1567
(0.1682) (0.4320) (0.1575) (0.2062)

No savings account (money/access) 0.0362 − 0.2118 − 0.4127*** 0.0584
(0.1244) (0.4369) (0.1291) (0.1543)

No savings account (money) 0.0345 0.2177 0.3364* 0.0602
(0.1989) (0.6438) (0.1727) (0.2355)

Irrigated farm area − 0.0031 − 0.2384 − 0.1243** − 0.0625
(0.0692) (0.1620) (0.0591) (0.0836)

Traditionally owned land − 0.0816 − 0.2437* − 0.0339 − 0.0742
(0.0592) (0.1322) (0.0506) (0.0706)

Land under freehold − 0.0960 − 0.4436* 0.1180 − 0.0743
(0.0922) (0.2428) (0.0828) (0.1123)

Rice 0.0014 − 0.2880 − 0.4375** − 0.0869
(0.1759) (0.3508) (0.1887) (0.2071)

Taro − 0.2798 − 1.0747** − 0.1172 − 0.3633
(0.1766) (0.4132) (0.1630) (0.2337)

N 117 39 50 89
adj. R-sq 0.463 0.573 0.688 0.444
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such as the location of irrigated land (potentially in more exposed places) or the use of 
irrigation for more vulnerable crops could play a role.

There are a few other examples of regularities among the different regression specifica-
tions. For example, in the negative EVIdiff models with only selected variables (Table 6), 
the ratio of female farmers is significant and consistently positive in 3 out of 4 specifica-
tions. In the models which include all variables (Table 7), the ratio of traditionally owned 
land is significant and consistently negative, except for TC Josie/Keni. This suggests that 
the more agricultural land is under traditional ownership, the more sensitive to cyclone 
impacts is the district. But while these results may be indicative, they are not robust enough 
to enable us to reach any firmer conclusions or to employ these correlates for nowcasting 
(see next sub-section).

We observe that the specifications of individual cyclone events (columns 2 and 3) which 
use the sample of only negative EVI change observations contain more significant varia-
bles than the regressions that use a complete set of EVI change observations. The explana-
tory power of these models is also relatively higher, though the results of these regressions 
are statistically less robust because they use a smaller sample. As our aim is to identify a 
set of variables that will assist in nowcasting TC damage, we do not believe these can be 
reliably used.

4.2 � Nowcasting regression equation

Based on the regression results, five variables were identified to be repeatedly statisti-
cally significant. These were: Distance, Banana, Cassava, Average income, and Average 
transfers.

Using the coefficients from the regression specification with all EVIdiff values with the 
highest explanatory power, which is the specification for TC Harold, we can derive the 
final regression equation for nowcasting of district-level EVI change values during or right 
after a cyclone event (Eq. 5). We discuss the application of the equation in more detail in 
Sect. 7.9

5 � Discussion

We identify a statistically robust relationship between the distance from the cyclone path 
and EVI change. This is in line with the results of other studies who find a strong link 
between cyclone distance and satellite-based vegetation indices such as NDVI, EVI or 
DVDI (Ayala-Silva and Twumasi 2004; Charrua et al. 2021; Lu et al. 2020; Zhang et al. 
2013a). In general, greater distance from the cyclone path expectedly entails less impact on 
vegetation and this impact can be measured by vegetation index change.

With respect to socio-economic correlates of damage, the most robust results were 
observed for the share of the banana and cassava crops on agricultural land, average 

(5)
EVIdiff d = 0.451 + 0.0899 ∗ TCDistanced − 0.6218 ∗ Bananad

+ 0.4136 ∗ Cassavad + 0.0092 ∗ Incomed − 0.0190 ∗ Transferd

9  See also the nowcasting tool described in Noy et al. (2023).
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household income and average household transfers. The finding that banana plants are rela-
tively more vulnerable to the cyclone shock may be explained by the fact that banana plants 
are known to be highly sensitive to wind stress (Ravi and Vaganan 2016). Consequently, 
cyclone impacts may lead to significant adverse effects on banana production and exports, 
as was documented for example for Dominica in Mohan (2017). On the other hand, a 
higher fraction of land used for cassava was, in our sample, associated with less vegetation 
damage. Even though cassava is known to be sensitive to flooding (Benkeblia et al. 2018), 
as a root crop, it is generally considered more resilient to abiotic stresses (such as wind 
stress) than most over-ground crops (Hershey et al. 2012).

Some indicative results also point to the taro plant, conversely to cassava, being highly 
sensitive to cyclone impacts. As both taro and cassava are root crops, one might expect 
similar results for both. There may be several reasons explaining this disparity. Interest-
ingly, McNamara and Prasad (2014) mention that some cyclone mitigation strategies used 
in Fiji include cutting down the cassava plant (but not taro) to lower its height and pre-
vent wind damage.10 However, different physical characteristics of the two plants and other 
factors may also play a role and cause them to respond to the cyclone shock differently. 
In general, these discussed agronomic correlates of cyclone vegetation damage and their 
later empirical verification could add to the literature discussing tropical storm impacts and 
agricultural land use such as in Philpott et al. (2008) or Uriarte et al. (2004).

Lower levels of average household income were linked to higher vegetation damage. 
Lower-income farmers are known to be more vulnerable to cyclone impacts due to the 
relatively lower ability to mitigate, cope with, or adapt to these shocks (Rakotobe et  al. 
2016). Equally, it is plausible to assume that regions that receive higher levels of govern-
ment transfers and remittances pre-event are poorer and more vulnerable (which is why 
they received more support). Therefore, these results fit well with the findings with respect 
to income.

The results for the identified socio-economic vegetation damage correlates (Banana, 
Cassava, Average income and Average transfer) appear to be indicative of certain observ-
able recurring vegetation damage patterns, but the statistical robustness of these correlates, 
given our available dataset, is not high enough for current nowcasting use as an algorithm 
for producing preliminary EVI change estimates for future cyclones. While most of these 
correlates were relatively robust in the specifications with all EVI change values, their 
significance was reduced in the specifications limited to a sample of districts where veg-
etation damage was observable on average (the negative EVI change specifications). Ide-
ally, damage correlates which can be employed for nowcasting should be confirmed with 
more statistical robustness. Later studies with access to more detailed (spatially and tem-
porally) data may further confirm, refute, or add to the cyclone damage correlates identi-
fied here. As such, at this point our contribution is focussed on describing and developing 
a procedure for constructing such a nowcasting tool, rather than providing an operational 
prototype.

Future efforts in identifying cyclone damage correlates may benefit from using a more 
accurate proxy for cyclone intensity than cyclone distance; in particular focusing on maxi-
mum sustained wind speed and local percipitation). Our current procedure does not distin-
guish between variations in cyclone magnitude. Including intensity measures could improve 
the accuracy of the projected damages and enable easier identification of socio-economic or 

10  It is worth pointing out that such a practice, were it conducted on a large enough scale, could lead to an 
EVI decrease itself.
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other damage correlates. However, as our purpose is to develop a tool that can be immediately 
implementable in post-disaster situations (possibly hours after the event), relying on mod-
els that require data (wind-speed, high-resolution precipitation), that may be very difficult to 
obtain in many post-cyclone cases, should be seen as a weakness of the modelling approach.

If statistically robust damage correlates are identified, the resulting nowcasting tool consist-
ing of the final regression equation also needs to be validated against verified damage data 
before the method could be reliably applied for Disaster Risk Reduction and Management 
purposes. Such validation could be conducted with ground-based measurements of cyclone 
impacts at a detailed spatial level, with aggregate ground-based impact measurements for mul-
tiple TCs.

We note a substantial difference between the results for TC Harold and the other exam-
ined cyclones (including the sample that includes all cyclone events). The cyclone distance 
variable, which is the most reliably significant variable in the other regression specifications, 
is not significant in the case of TC Harold. Potentially, this discrepancy in the results may 
be linked to the unusual EVI change values associated with the event, as Harold was associ-
ated with a positive EVI change on average. This would, on its own, suggest that the veg-
etation condition improved on average post-cyclone. One possible explanation could be that 
the cyclone-induced rainfall improved vegetation growth, perhaps due to low antecedent soil 
moisture conditions. We know that TC Harold led to significant crop damage especially in the 
most affected areas and the initial damage assessments estimated the total agricultural damage 
at over USD 12 million (ADB, n.d.; PHT 2023), but we were unable to find any estimates of 
the overall vegetation damage to verify such claim or the accuracy of the EVI readings. Alter-
natively, there might have been measurement errors or other factors that affected the outcomes 
associated with TC Harold, which we cannot explain.

Undeniably, this seems to be a weakness of our model – it is not yet good enough to 
account for each TC’s impact. Each cyclone has, to a certain extent, its own idiosyncratic pat-
tern of damage. Afterall, damage, per the UNDRR terminology, is determined by an interac-
tion of the hazard with exposure and vulnerability. Damage can therefore differ substantially 
between communities whose fields are differently exposed or vulnerable. Generally, a now-
casting effort is aimed at identifying ‘expected’ damage. The actual damage will inevitably 
deviate from this expected damage, and we are not yet able to explain why it deviates as it 
does in the case of Harold.

6 � Agricultural income analysis

In this section, we attempt to assess the historical relationship between post-cyclone satel-
lite data and agricultural income trends. More specifically, we compare the EVI change 
(EVIdiff and EVIch) observed for each of the tropical cyclones with the change in Fiji’s 
annual agricultural income as measured by agricultural gross value added.

As Table  12 shows, the year 2016, which is associated with the largest decrease 
(both absolute and relative) in EVI values is also associated with the worst outcome in 
terms of agricultural income, which decreased by 8.7% between 2015 and 2016. While 
the year 2018 still shows an overall negative EVI change related to TCs Josie and Keni, 
Fiji’s annual agricultural income increased by 5.6%, which is the highest agricultural 
income increase among the three observed years. The year 2020 is the only year that 
shows an increase in EVI values despite TC Harold’s occurrence, by 0.002 and 0.44% 
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in absolute and relative terms, respectively. In the same year, the country’s agricultural 
income increased by 3.0%.

The resulting correlation coefficient between the EVI change and agricultural 
income change is relatively high at 0.8, but the limited number of observations 
restricts us from drawing any firm conclusions. While the correlation can be com-
pletely coincidental, we do believe that the severe damage wrought about by TC Win-
ston (and in principle by other intense cyclones) is observable from space and that 
it may have implications for agricultural income in the affected regions. Vegetation 
damage is not the only determinant of cyclone agricultural impacts. Other effects may 
include damage to equipment, irrigation infrastructure or disruption of market access 
routes (Chikodzi et al. 2021). However, we suggest that the analysis of the relationship 
between vegetation damage and agricultural income trends holds promise and should 
be conducted with greater data abundance and in higher spatial detail (using at least 
district- or subdistrict-level data). As we were not able to do this due to data unavail-
ability, we believe future research efforts in this area may prove helpful.

7 � Next steps

Lastly, we would like to suggest a possible algorithm for estimating the predicted veg-
etation damage and a change in agricultural income following a tropical cyclone.

•	 Once the TC path is known (this information is available immediately after the 
event), it is possible to provide preliminary estimates of district-level EVI change, 
based on the coefficients for cyclone distance and other damage correlates (we 
identified the share of the banana and cassava crops, average household income and 
transfers). As this information is not time-sensitive, it allows one to estimate the 
likelihood that the cyclone will entail significant vegetation damage and where that 
damage might be, based on the basic parameters of the event.

•	 Once remote sensing readings of the vegetation index after the cyclone are availa-
ble, one can identify affected districts more precisely based on the EVI change, and 
attempt to re-direct assistance toward them (when that is relevant). This, together 
with the information about general vulnerability (e.g., the share of banana planta-
tions in the district) can assist in disaster risk reduction planning and in recovery 
and reconstruction.

Table 12   Comparison of EVI 
with agricultural income change

Year EVIdiff EVIch Agricultural 
income 
change

2016 (TC Winston) − 0.077 − 11.79% − 8.72%
2018 (TC Josie/Keni) − 0.035 − 5.14% 5.55%
2020 (TC Harold) 0.002 0.44% 2.98%
EVI and agricultural 

income change correla-
tion

0.79 0.80
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•	 With additional spatially detailed data on agricultural production and income, one 
could potentially design a tool (as described in Sect. 6) that allows even more pre-
cise estimates of the economic impact on the agricultural sector more directly. We 
leave that for a time when the additional information required for this step will be, 
hopefully, forthcoming.

8 � Conclusion

The aim of this research was to develop a data management process that will enable 
nowcasting of disaster impacts. While there is extensive literature that attempts to link 
hazard indicators (such as ground shaking) with remote sensing data, we attempt to 
model the agricultural damage from a tropical cyclone also using socio-economic and 
demographic exposure and vulnerability information.

This project was hampered by the unavailability of socio-economic and demographic 
data in sufficiently high spatial and temporal resolution, so the analysis had to be cross-
sectional, and at the district level. Another limitation of the study is that due to the lack 
of data, we do not distinguish agricultural from non-agricultural land and analyse Fiji’s 
vegetation cover more broadly. This may be obscuring some damage patterns which 
may apply to agricultural land specifically.

Apart from cyclone distance, the results for the socio-economic damage correlates 
identified here (mainly banana, cassava, income, and transfers) may not be robust 
enough to be presently used for nowcasting, considering the data limitations of the pro-
ject. In essence, our aim was to demonstrate a method which can be applied to more 
detailed data to identify reliable vegetation damage correlates, which can be used to 
nowcast agricultural damages from tropical cyclones.

The use of nowcasting and timely disaster impact assessment can assist decision-
making during disaster response and help adequately direct resources towards the most 
affected areas and potentially improve disaster outcomes in the South Pacific. The type 
of nowcasting proposed in this paper is currently not being employed by Disaster Risk 
Reduction agencies (multi-lateral or national), but we believe it holds a significant 
promise for application in the South Pacific and other regions which are exposed and 
vulnerable to tropical cyclones (and potentially other natural hazards). We suggest it 
would be beneficial for this type of nowcasting using remote sensing high spatial and 
high-frequency imaging that is now available, coupled with socio-demographic and eco-
nomic data, to be further validated and consequently integrated in the Disaster Risk 
Reduction and Management efforts. This nowcasting may prove to be a useful comple-
ment to other nowcasting structural model-based approaches, such as those that have 
been used in initiatives such as the Pacific Catastrophe Risk Assessment and Financing 
Initiative (e.g. Begg et al. 2021).

Appendix

Tables 13, 14 and 15.
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Table 13   TC Harold regression output – EVIdiff and EVIch

Parentheses contain standard errors
*** p < 0.01, **p < 0.05, and *p < 0.1

Independent variable EVIdiff 
(selected vari-
ables)

EVIdiff (all variables) EVIch 
(selected 
variables)

EVIch (all variables)

Self-employed − 0.1167*** − 0.1352* − 0.1982** − 0.2479**
(0.0436) (0.0747) (0.0847) (0.1215)

Agricultural income − 0.0126** − 0.0099 − 0.0235** − 0.0159
(in thousands of FJD) (0.0048) (0.0080) (0.0094) (0.0138)
Other income − 0.1010*** − 0.0623 − 0.1940*** − 0.1180
(in thousands of FJD) (0.0241) (0.0439) (0.0468) (0.0781)
Permanent crop area 0.1360 0.2442*

(0.1235) (0.1431)
Agricultural use < 10 years − 0.0120

(0.1491)
N 61 61 61 61
adj. R-sq 0.259 0.056 0.241 0.127

Table 14   Summary statistics

Variable Obs Mean Std Min Max

EVIdiff 199 − 0.04 0.09 − 0.33 0.20
EVIch 199 − 0.05 0.16 − 0.49 0.47
Distance 199 2.58 0.98 1.00 4.00
Female farmers 197 0.13 0.07 0.00 0.32
Banana 197 0.03 0.06 0.00 0.40
Cassava 197 0.20 0.20 0.01 0.85
Taro 197 0.11 0.13 0.00 0.58
 > 8 years of education 197 0.86 0.06 0.66 0.96
No savings account (money/access) 197 0.22 0.14 0.03 0.72
Irrigated farm area 197 0.15 0.14 0.00 0.60
Land under freehold 197 0.11 0.16 0.00 0.95
Household size 197 4.21 0.40 2.78 5.24
 > 10 years of education 197 0.32 0.06 0.11 0.43
Selfemployed 197 0.41 0.18 0.08 0.85
Rice 197 0.02 0.08 0.00 0.45
Tertiary education 197 0.07 0.03 0.00 0.13
Mobile phone ownership 197 0.59 0.12 0.19 0.82
Savings account ownership 197 0.45 0.15 0.13 0.69
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Variable Obs Mean Std Min Max

Traditionally owned land 197 0.68 0.28 0.01 1.00
Land under lease from state 197 0.05 0.09 0.00 0.38
Yaqona 197 0.31 0.28 0.00 0.84
Agricultural education 197 0.05 0.02 0.00 0.11
No savings account (money) 197 0.12 0.05 0.00 0.28
Permanent crop area 197 0.29 0.24 0.01 0.92
Agricultural use < 10 years 197 0.39 0.15 0.03 0.74
Married 197 0.73 0.04 0.65 0.84
Farmers with difficulties 197 0.07 0.04 0.01 0.18
Household crop income (FJD) 191 5282.80 7790.91 7.01 44,202.96
Average income (FJD) 184 16,314.59 6151.03 6382.47 42,989.52
Average transfer (FJD) 184 1716.48 1293.41 136.00 6729.21
Other income (FJD) 184 268.98 340.90 0.00 1198.31
Business income (FJD) 184 595.54 510.32 0.00 1978.73
Agricultural income (FJD) 184 3315.48 1840.77 350.48 9301.18

Table 14   (continued)

Table 15   Variables used in agricultural income analysis

Variable Description Source

Absolute EVI change Weighted average of district EVIdiff 
values

Satellite imagery (Sentinel, MODIS)

Relative EVI change Weighted average of district EVIch 
values

Satellite imagery (Sentinel, MODIS)

Agricultural income change Relative change (%) of Fiji’s agricul-
tural gross value added compared to 
the previous year

Reserve Bank of Fiji

https://www.rbf.gov.fj/wp-content/uploads/2021/10/5.2-Gross-Domestic-Product-by-Industry-at-Constant-Prices.xlsx
https://www.rbf.gov.fj/wp-content/uploads/2021/10/5.2-Gross-Domestic-Product-by-Industry-at-Constant-Prices.xlsx
https://en.wikipedia.org/wiki/House_of_Chiefs_(Fiji
https://en.wikipedia.org/wiki/House_of_Chiefs_(Fiji
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Human or animal resources  The research involved no human or animal subjects and therefore did not require 
any ethics approval. None was therefore sought.
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as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.
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