Software and Systems Modeling
https://doi.org/10.1007/s10270-023-01137-x

REGULAR PAPER

®

Check for
updates

Modeling more software performance antipatterns in cyber-physical
systems

Riccardo Pinciroli'® - Connie U. Smith? . Catia Trubiani’

Received: 4 November 2022 / Revised: 29 September 2023 / Accepted: 18 October 2023
© The Author(s) 2023

Abstract

The design of cyber-physical systems (CPS) is challenging due to the heterogeneity of software and hardware components
that operate in uncertain environments (e.g., fluctuating workloads), hence they are prone to performance issues. Software
performance antipatterns could be a key means to tackle this challenge since they recognize design problems that may lead to
unacceptable system performance. This manuscript focuses on modeling and analyzing a variegate set of software performance
antipatterns with the goal of quantifying their performance impact on CPS. Starting from the specification of eight software
performance antipatterns, we build a baseline queuing network performance model that is properly extended to account for
the corresponding bad practices. The approach is applied to a CPS consisting of a network of sensors and experimental results
show that performance degradation can be traced back to software performance antipatterns. Sensitivity analysis investigates
the peculiar characteristics of antipatterns, such as the frequency of checking the status of resources, that provides quantitative
information to software designers to help them identify potential performance problems and their root causes. Quantifying
the performance impact of antipatterns on CPS paves the way for future work enabling the automated refactoring of systems
to remove these bad practices.

Keywords Software modeling - Software performance antipatterns - Model-based performance analysis - Cyber-physical
systems

1 Introduction

In the software development process, there is high inter-
est in the early validation of requirements, especially for
performance-related characteristics that (recently) are con-
sidered as the new system correctness [1]. This is further
motivated by the cost of fixing errors that has been demon-
strated to escalate exponentially as the project matures
through its life cycle [2]. Predicting performance issues early

Communicated by Robert Pettit.

I Catia Trubiani
catia.trubiani @gssi.it

Riccardo Pinciroli
riccardo.pinciroli @ gssi.it

Connie U. Smith
http://www.speed.com
Gran Sasso Science Institute, L’ Aquila, Italy

Performance Engineering Services, L&S Computer
Technology, Inc., Austin, TX, USA

Published online: 20 December 2023

in software development is indeed valuable to avoid fixes to
consolidated software artifacts [3]. Our work deals with the
open problem of understanding the reason for performance
degradation when evaluating different design choices (e.g.,
the frequency of checking the status of system resources) on
the basis of their impact on the system performance [4].

Software performance engineering (SPE) [5] aims to pro-
duce performance models early in development. In recent
years, several approaches have been successfully developed
to automate the modeling and analysis of software perfor-
mance [6, 7], and optimization techniques [8]. However, the
problem of interpreting model-based performance analysis
results is still critical, especially when considering modern
and complex application domains, such as cyber-physical
systems (CPS), where the heterogeneity of software and
hardware components triggers new challenges for traditional
SPE approaches. CPS share with reactive systems the typical
characteristics of handling the occurrence of events [9] that
determine the integration of computing and communication
with the monitoring and/or control of entities in the physical
world.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-023-01137-x&domain=pdf
http://orcid.org/0000-0003-3375-7256
http://orcid.org/0000-0002-7675-6942

R. Pinciroli et al.

Our research focuses on understanding the performance
degradation in CPS. We present an approach that can be
applied to any reactive software system that may include
bad practices leading to performance problems. There exist
many challenges in modeling, specifying, and verifying reac-
tive systems [10], mainly due to the interaction of agents with
their computing environment, hence we are interested in cap-
turing those system events that may become root causes of
performance issues. Our goal is to identify the system perfor-
mance problems by localizing the software components that
may cause such problems. To achieve this objective, we make
use of software performance antipatterns [11], recently cus-
tomized for CPS [12] and detected in open-source projects
[13]. The rationale behind this choice is that software per-
formance antipatterns include the description of (i) design
problems that lead to performance issues and (ii) solutions to
the problems that improve performance. Consider as an illus-
trative example the Blob performance antipattern. It occurs
when a single component monopolizes the computation man-
aging most of the work and becomes a system bottleneck. To
solve this, it is necessary to improve the management of the
system workload by delegating work to surrounding software
components in a distributed fashion.

Note that the specification of software performance
antipatterns in [11] is intentionally generic and not con-
strained to application domains, making them flexible to
capture bad practices in different contexts, e.g., information
systems. In this paper we focus on modeling antipatterns to
address the open problem of investigating which bad prac-
tices find a counterpart for performance issues that may
occur in CPS. In our previous work [14], we focused on
three software performance antipatterns defined in [12]. This
manuscript moves a step forward in the direction of extending
the types of bad practices, to provide software develop-
ers an understanding of a larger set of problems. To this
end, we investigate the specification of performance antipat-
terns in [11], and we provide models of antipatterns along
with analysis results that give evidence of the large impact
these antipatterns have on the performance of CPS. Specif-
ically, we consider the following five additional software
performance antipatterns: (i) Circuitous Treasure Hunt, i.e.,
requests that must look in multiple places to find the needed
information; (ii) One-Lane Bridge, i.e., requests running in
parallel that are temporarily restricted to execute sequen-
tially; (iii) More is Less, i.e., too many processes competing
for computing resources; (iv) The Ramp, i.e., the amount of
resources required increasing over time; (v) Traffic Jam, i.e.,
a burst of requests overloading computing resources for a
period of time. These antipatterns are modeled with queuing
network (QN) performance models [15], since this formal-
ism is well-established in the SPE community and widely
used to analyze modern real-world applications, e.g., auto-

@ Springer

motive [16], unmanned aerial vehicle [17], IoT-enhanced
spaces [18], or Industry 4.0 [19].

The objective of our research is to support software
developers in understanding root causes of performance
degradation in CPS. To this end, we propose a model-based
approach that includes a variegate set of performance models
for software antipatterns. The simulation-based analysis of
these models provides evidence on the impact of antipatterns,
eventually resulting in fluctuations and bottleneck switches
in the system performance. A network of sensors is used to
assess the usefulness of the proposed QN models in analyzing
performance problems that emerge in software development.
The main contributions of this manuscript can be summarized
as follows:

e the specification of QN models expressing the peculiari-
ties of five additional software performance antipatterns
that are newly applied to the CPS domain;

e the injection of eight software performance antipatterns
in a real-world system, and empirical evidence on their
benefit for interpreting the performance issues of CPS;

e the modeling of antipatterns using QN in the context of
CPS advances the software modeling field since these
models can be used to analyze software performance
quantitatively.

The rest of the manuscript is organized as follows. Sec-
tion 2 explains the connection between software performance
antipatterns and real-world CPS. Section3 describes QNs
that model the antipatterns and shows their impact on the sys-
tem performance. Section4 assesses software performance
antipatterns in a network of continuously-monitored sen-
sors, and experimental results demonstrate the performance
impact of antipatterns on the system response time while
varying the peculiar characteristics of these bad practices.
Threats to validity are argued in Sect.5. Section6 briefly
reviews related work. Concluding remarks and future work
are outlined in Sect. 7. All models, experiments, and replica-
tion data are publicly available [20].

2 Antipatterns in CPS

The demand for developers with domain expertise as well
as expertise with the new CPS technology exceeds the tal-
ent pool. This combination of new technology and lack of
expertise dramatically increases the risk of performance (and
other) failures. Previous work contrasted characteristics of
CPS of the past, particularly Real Time Embedded Systems
(RTES), with today’s CPS to illustrate why CPS perfor-
mance problems are now occurring much more frequently

Modeling more software performance antipatterns in cyber-physical systems

[12]. CPS performance antipatterns aim to solve these per-
formance challenges in today’s CPS.

By today’s CPS we mean systems showing distinguishing
characteristics, as expressed in [12]. For instance: (i) the dra-
matic increase in control variables and automation of tasks is
confirmed in [21] by means of an open-source drone appli-
cation; (ii) the usage of complex and ambitious functions
are acknowledged by [22]; (iii) the need of managing large
numbers of processes that require communication and coor-
dination is studied in [23] through a smart traffic application;
(iv) the adoption of built-in functionalities are investigated
in [24] in the context of a smart city scenario for safe crowd
monitoring and control; (v) the need for dynamic scheduling
is analyzed in [25, 26].

In this section, we briefly describe the connection between
software performance antipatterns and a real-world CPS
example, i.e., the Smart Parking System [27]. However, we
also extend the discussion to generic real-world CPS and we
consider the characteristics of these systems in connection
with performance antipatterns specification.

The Smart Parking System [27] consists of a server orches-
trating scanning and parking cars that collaborate to identify
empty parking spots. We are interested in spotting probable
issues in the response time required to provide information
(possibly image data retrieved by scanning cars) to parking
cars looking for an empty spot. This scenario is indicative of
generic CPS where a set of physical entities need to interact
to acquire a resource of interest. There are several perfor-
mance antipatterns that could occur, and we discuss these
illustrative examples next.

For instance, the server may poll scanning cars to check
if new image data is available (i.e., Are We There Yet? per-
formance antipattern), and the polling interval may cause
performance problems. If the time interval is too small, then
the car is continuously interrupted, the server is busy with
overhead rather than real work, and the overall system perfor-
mance may suffer. If the time interval is too long, the images
may become stale before the server acts on it. CPS may
include physical entities that are continuously interrupted
when doing their job, hence performance delays occur.

The Is Everything OK? performance antipattern occurs
if the server (too) frequently contacts all cars to confirm
that their cameras are functioning correctly. This delays the
retrieval of images and cars may have an unexpected delay
in receiving parking results. As opposite, if cars initiate com-
munication of camera malfunctions, then fewer messages are
exchanged and this may be beneficial for the overall system
performance. The frequent check on the status of resources
in CPS may generate performance overhead.

The Where Was I? performance antipattern occurs when
the server does not remember previous parking results and
re-starts the image analysis. If instead the server remem-
bers “objects of interest” such as where parking spots were

available, it could first make a quick check to see if it is
still available. If the server forgets previous results, then it
wastes considerable time recalculating and the overall system
performance suffers. Traditional CPS preserved state infor-
mation to prevent Where Was I? performance degradation.
Even then, restoring the state on startup has led to exces-
sively long boot times and thus a failure to meet performance
requirements.

The Circuitous Treasure Hunt performance antipattern is
related to the database design for frequent access. A typical
example is when the number of available parking spaces in
an area is frequently needed. The Circuitous Treasure Hunt
occurs when the database design requires a “count” operation
of the raw data to calculate the number of available spaces. It
is even worse if images must be scanned to determine avail-
ability of spaces to be tallied. If instead the database stores
the number of spaces available in each area, and updates that
number as spaces are taken or left the performance is greatly
improved when that number is requested. Traditional CPS
seldom used database technology, but newer technology has
led to increased use of databases. Accessing resources in CPS
is expensive, better to limit the number of accesses.

The One-Lane Bridge antipattern is also related to
database design. When all cars concurrently send images
to the server, and the server appends the images to the end
of the database, all processes are competing to write to the
same location. However, only one process may execute at a
time, and the One-Lane Bridge limits parallelism. The per-
formance can be improved by first capturing the images to
different storage locations, then updating the database with
that location. This improves concurrency and shortens the
time to “cross the bridge” by only updating a location in
the single threaded section of code. Limiting concurrency in
CPS at a specific operational point may degrade the system
functionality.

The More is Less antipattern happens when too many
processes attempt to do computation in parallel, and the
associated overhead and contention delays negatively impact
performance. This could occur in “smart” parking when it is
necessary to update maps of the parking areas. If all cars
request updates of all maps in parallel, the system will be
overloaded with too many parallel requests. If instead cars
request a few map updates at a time, perhaps by prioritizing
the update requests by the current location of the car, the
overall performance improves. Overwhelming concurrency
in CPS may generate a system bottleneck in managing an
extraordinary number of requests.

The Ramp antipattern can occur because the informa-
tion on empty parking spots continuously evolves as the
system is used. Thus the complexity and execution time
of requests processed by the server increase with system
operations. Data structures and algorithms tailored to the
maximum operational size could help to avoid an increas-

@ Springer

R. Pinciroli et al.

ing and unpredictable processing time. The adoption of
continuously increasing data structures in CPS should be dis-
couraged since their management becomes too costly.

An example of the Traffic Jam antipattern occurs when
the system must refresh the database with the status of all
parking spots, either at start-up or after an outage. If the
system acquires all parking spot status for all areas at the
same time, the system will be overloaded for a long period
of time and will be unable to respond to parking spot requests.
If a phased refresh can be implemented, perhaps prioritizing
the most important areas or the most likely to be needed first,
the load will be spread, performance and availability will
improve. Physical entities in CPS should act asynchronously
to avoid a burst of large requests. Processing for initialization
and for re-boot should spread the load so system availability
is preserved.

3 Our approach

CPS include real-time concerns and requirements that are
critical. To this end, we report the system response time, i.e.,
the average time (i.e., the sum of waiting and service time)
taken by requests to be processed. This performance index
represents a key factor in our analysis since it provides knowl-
edge on the timeliness of these systems, i.e., the ability to
produce the expected result by a specific deadline. Designers
can compare the model-based performance analysis results
with the stated requirements, thus assessing real-time con-
cerns of CPS. We also analyze the utilization of resources
(i.e., the percentage of time that each resource is busy) to
identify which resource is the bottleneck of the system and
degrades the system performance.

It is worth remarking that system response time and
utilization of resources are used to monitor the system
performance. However, the specification of performance
antipatterns also includes bad practices that are poor design
choices leading to system misbehavior. As stated in [28], pre-
dictability is a key factor of real-time systems, i.e., the timing
behavior of a system has to satisfy its specifications. Our work
contributes in the direction of introducing design techniques
that anticipate operational uncertainties. In fact, the specifi-
cation of antipatterns plays the crucial role of expressing bad
practices that may contribute to errors in the timing behavior
of systems.

In this section, we discuss how to model performance
antipatterns [11, 12] using QNs [15]. It is worth remark-
ing that QNs represent an abstraction of the software system
under analysis. Our approach relies on strategies that have
been defined in the literature to derive performance models
from the software design specification [29, 30]. Hereafter,
we describe our baseline QN model that is represented by
a simple and abstract system with two resources, namely

@ Springer

Resourcel and Resource2. Software performance antipat-
terns are described by decorating the baseline model and we
evaluate their impact on the system performance using Java
Modelling Tools (JMT) [31] to simulate the proposed QN
models. All simulations in this section stop when analyzed
metrics are observed with 99% confidence interval and 3%
maximum relative error with the exception of those showing
the evolution of performance indices over time, see Sects. 3.8
and 3.9. Simulations are stopped despite the relative error
value after 1M samples are collected, i.e., the maximum
number of analyzed samples is set to 1 M.

3.1 Baseline
3.1.1 Modeling

The effect of performance antipatterns on a system is inves-
tigated using a single-class QN model with a delay station
and two queuing centers (i.e., Resourcel and Resource?), as
shown in Fig. 1a. Specifically, we consider a batch (closed)
system whose workload is defined by the number of requests
(Nyeg) and a think time (Z,.,; = 0 s). This is a common
assumption when modeling CPS (e.g., [19]). It does not limit
the generality of our approach since equivalent closed QNs
can be derived from open ones [32]. All requests are first
served by Resourcel and later processed by Resource2 with
two exponential distributions whose average service time are
Srr:?l and S:‘fgz, respectively. A First Come First Served queu-
ing strategy is used in both stations.

The choice of using only two queuing centers as the
baseline model is to simplify the modeling of software perfor-
mance antipatterns and demonstrate their impact. The choice
of input model parameters also follows this objective, and
the numerical values are reported in Fig. 1b. We consider
Nyeq = 10 requests, S,°7, = 0.02, and S/, = 0.04, both
service times are expressed in seconds (sec). These values,
as well as others considered in Sect. 3, are consistent with
real-world CPS tasks [33] whose completion deadline ranges
from a few milliseconds to several seconds. Figure 1b shows
also the performance indices (i.e., Ryye, Urest, and Upes2)
obtained analytically using the mean value analysis (MVA)
[15].

3.1.2 Analysis

Figure 1c depicts the considered performance indices: the
system response time of requests (R;;?, blue line with cir-
cular dots, left y-axis), the utilization of Resourcel (Uy,s1,
red line with triangular dots, right y-axis), and the utiliza-
tion of Resource2 (U, .52, green line with squared dots, right
y-axis). All the performance indices are depicted with their
99% confidence interval (i.e., shaded areas). These indices

are depicted against the service time of Resource2, S, .o, that

Modeling more software performance antipatterns in cyber-physical systems

| Resourcel Resource2
(a) QN model
Parameters Indices
Parameter | Value || Parameter | Value
Npeg 10 Rg;g 0.4
S,::gl 0.02 || Urest 50%
S::gz 0.04 || Upesa 100%
Lreq 0.0
CPUs 1

(b) Input parameters and analytical performance indices

Fig.1 Baseline—performance modeling and evaluation

varies from 0 to 0.08, while the service time of Resourcel,
S7°9,,is set t0 0.02. Resourcel is the system bottleneck when
Srr:g2 < 0.02, otherwise the system capacity is limited by
Resource2, see the utilization curves crossing in Fig. 1c. Per-
formance indices observed for the baseline service time of
Resource2, 84 0.04, are indicated by a vertical dashed

res2 —

line, i.e., Ryyd = 0.4, Uyest = 50%, and Uye5o = 100%.
3.2 Are We There Yet?
3.2.1 Modeling

Requests that need computational power to check the occur-
rence of an event are modeled by defining a new request
class (i.e., Check), as in Fig.2a. Specifically, N pi requests
of the new Check class are initialized in the system (i.e.,
one for each event that is monitored). The time spent by a
Check request in the delay station and Resourcel is exponen-
tially distributed with average Z.nr and Scpk, respectively.
The overhead for checking is significant and requires many
resources [12], Sepx = 4. For the sake of simplicity and
without loss of generality, we assume that Resource2 is not
affected by this software performance antipattern. Therefore,
Check requests do not visit Resource2 and they are routed
back to the delay station after being processed by Resourcel.

3.2.2 Analysis

Numerical values used to analyze this antipattern are shown
in Fig. 2b. We assume 250 requests are sent to Resourcel
to check if an event has occurred, i.e., N = 250. Since
checking for the occurrence of an event is expensive, the ser-
vice time of Check requests is set to half the time required
to execute default requests (i.e., Scpx = 0.01 s). We analyze
the system with 0 < Z.x < 10 s to evaluate the effect
of checking frequency. Results are depicted in Fig. 2¢c whose
x-axis is inverted to highlight the effect of more frequent
checking requests (i.e., a shorter think time). As expected, the

System Response Time [sec]

0.8 100
0.6 =
— R =3
v E
1
0.4 = Upest 50 =
—— Ures2 =
=

0.2 25

0'()(].(}[] 0.02 0.04 0.06 [}4()8\)

Sred, [sec]

res2

(c) Performance metrics

system response time increases when the event occurrence is
checked more frequently (i.e., for small Z.p; values). Small
Z i values increase the usage of Resourcel,reduce the usage
of Resource2, and make the request execution slower. The
baseline system response time (i.e., R:;g = 0.4) is observed
for Zcpxe > 5 s. This is depicted by the dashed blue line
and the blue arrow pointing towards the direction where
Ry is not longer than the baseline. For the sake of clarity,
Zni values that allow observing the baseline utilization of
resources are not depicted in Fig. 2c. Summarizing, checking
more frequently the occurrence of an event generates per-
formance overhead that increases resource usage, prevents
other resources from accomplishing their work, most likely
switches the system bottleneck, and slows down the overall
computation.

3.3 Is Everything OK?
3.3.1 Modeling

This antipattern is modeled by adding a Check class to
the baseline, see Fig. 3a. In this case, Check requests are
repeatedly invoked to verify the status of resources (e.g.,
battery). Check requests visit only the affected resource (i.e.,
Resourcel) before being routed to the delay station where
they spend Z.j; time units. The cyclic invocation of these
requests (i.e., the think time) is modeled by a Uniform dis-
tribution with average p and a small range of values, i.e.,
u - (1 £ 0.02). Differently from [14] where a Determinis-
tic distribution modeled the cyclic nature of this antipattern,
here we use a Uniform distribution with a small coefficient
of variation (approximately 0.012) to better represent the
monitoring of system components without hard real-time
performance requirements. There are N px Check requests
in the system, each one monitoring the status of the resource.
The time needed to verify the component status, Scpi, iS
assumed to be much smaller than the time required to process
default requests, i.e., Sepr < .7

resl:

@ Springer

R. Pinciroli et al.

chlk.

N
N. Resourcel Resource2
Sred e
G 59~ 57
(a) QN model

Parameter | Value || Parameter | Value
Nyeq 10 || Nenk 250
Sred 0.02 || Zepk (0, 10)
ST 0.04 || Scnr 0.01
CPUs 1 || Zyeq 0.0

(b) Input parameters

Fig.2 Are We There Yet?—performance modeling and evaluation

chk.

Neeg

Nenre Resourcel Resource2

e t) req. II@
Zyy ~ E1p T g
7o g ek < ey
(a) QN model

Parameter | Value || Parameter Value
Nz 10 || Nenk 250
st | 002 ||z | Ui nan oo,
Sreds 0.04 || Senk 0.001
CPUs 1| Zreq 0.0

(b) Input parameters

Fig.3 Is Everything OK?—performance modeling and evaluation

3.3.2 Analysis

Numerical values used to analyze this antipattern are shown
in Fig. 3b. The number of components whose status is repeat-
edly checked is set to Nopx = 250. A status check (the Is
Everything OK? antipattern) requires fewer resources than
requests generated by the Are We There Yet? antipattern
since only the status of the checked component needs to be
returned. Hence, S¢jx is assumed to be one order of magni-
tude smaller than the previous case (i.e., Scpr = 0.001 s).
The system performance is studied against Z.j; and shown
in Fig. 3¢ where the x-axis is inverted to highlight the effect
of the antipattern. Due to the similarity of this antipattern
with the previous one [12], the performance indices observed
in the two cases show similar behaviors. Since monitoring
the status of a component is a fast task, the baseline system
response time (i.e., R:;g = 0.4) is observed for Z 5, > 0.5
s, i.e., much shorter than the one observed for Are We There
Yet? (Zcni > 5). Thisis depicted by the dashed blue line and
the blue arrow pointing towards the direction where Rgy is
not longer than the baseline. For the sake of clarity, Z., val-
ues that allow observing the baseline utilization of resources
are not depicted in Fig. 3c. Summing up, Is Everything OK?
and Are We There Yet ? antipatterns show similar performance
variations (i.e., switching the system bottleneck and increas-

@ Springer

System Response Time [sec|

System Response Time [sec]

100
2.5 ?

req
" Rsys

(S}

o
-1
ot

=
L5 resl

—

=
[%] vorezin

res2

(8]
(2}

-

0.5 —

10 8 6 4 2 0
Zepy [sed]

(¢) Performance metrics

. ey 100
0.52
M =
0.48 R:/Z 5
—— Uew 0 g
044 — Use <
- =3
25
0.40] A eIy

o

1.0 0.8 0.6 0.4 0.2 0.0
Zepi [sec]

(c) Performance metrics

ing/decreasing the utilization of resources). In this case, the
performance overhead is due to the high checking frequency
rather than the checking activity itself.

3.4 Where Was I?
3.4.1 Modeling

A process that loses its state must resume the execution
from a previous checkpoint. This is modeled by increas-
ing the service time of the process at the station affected
by the antipattern. Assuming that this performance antipat-
tern affects only Resourcel, recomputing the lost state takes
A time units on average that are added to the service time of
the resource, i.e., S, o + A, as shown in Fig. 4a. State recal-
culation might be a short activity, i.e., the value of A may
be small. However, there are cases (e.g., connectivity issues)
that require extensive processing to recalculate the state [12].

3.4.2 Analysis

Numerical values used to analyze this antipattern are shown
in Fig. 4b. Here we assume a value A thatis added to the orig-
inal service time of the affected resource (i.e., Resourcel) to
model the extra processing time required to recalculate the

Modeling more software performance antipatterns in cyber-physical systems

Resource2

sourcel
)
o)>— 110 ne
S +4
ZH‘V
(a) QN model

Parameter Value || Parameter Value
Nreq 10 || A [0.0, 0.18]
Sredy 0.024+ A || Zreq 0.0
sred, 0.04
CPUs 1

(b) Input parameters

Fig.4 Where Was I?—performance modeling and evaluation

lost state. We consider 0 < A < 0.18 s and evaluate the
system performance against these values. Results are shown
in Fig. 4c. If A = 0 s the antipattern has no effect on the sys-
tem and we observe the baseline performance (i.e., response
time and utilization) discussed in Sect.3.1. In Fig. 4c, this is
depicted by the dashed black line. Summing up, if recal-
culating the lost state is more expensive than the actual
computation, the performance of the system deteriorates and
the system bottleneck may switch. The system response time
increases when requests served by Resourcel need to recal-
culate their state (i.e., Srr:g] + A) due to the Where Was I?
antipattern. Resourcel is the bottleneck of the system when
A > S 8% ie., restoring the state requires extensive

res2 ~ “resl’
processing.

3.5 Circuitous Treasure Hunt
3.5.1 Modeling

This antipattern increases the number of visits required to
satisfy a request, e.g., multiple retrievals from a database
are required before obtaining the desired information [11].
The model represents this increase by specifying a probabil-
ity that a request will visit a resource again. This worsens
the system performance by making the service demand (i.e.,
the product of service time and visits) of affected resources
longer. In Fig. 5a, this bad practice is modeled by changing
the probability p (i.e., 0 < p < 1) to visit Resourcel again.
The higher the value of p the greater the number of visits to
the station.

3.5.2 Analysis

Numerical values used to analyze this antipattern are shown
in Fig. 5b. To investigate the effect of this software antipat-
tern on the system performance, we vary the probability of
requests to visit Resourcel, i.e., 0 < p < 1. As depicted
in Fig. 5c, high values of p increase the number of vis-
its to Resourcel, switch the system bottleneck (i.e., from

System Response Time [sec]

2.0 100
15 16 g
50 5
1.0 =
2% =
0.5
= 0
0.00 0.05 0.10 0.15
A [sec]

(c) Performance metrics

Resource2 to Resourcel), and make the system response
time longer. Resource?2 is the bottleneck of the system only
if p 0 (i.e., the baseline). The baseline performance
(i.e., response time and utilization) presented in Sect.3.1 is
observed for p = 0. In Fig. Sc, this is depicted by the dashed
black line. Summarizing, increasing the number of visits to
one of the resources makes the response time longer since
requests spend more time in the system.

3.6 One-Lane Bridge
3.6.1 Modeling

Single-threaded programs can serve only one process at a
time regardless of the available resources. A finite capac-
ity region (i.e., FCR) is used to model the One-Lane Bridge
antipattern and limit the number of requests that are con-
currently processed by resources. Figure 6a depicts this QN
model assuming that only Resourcel is affected by the soft-
ware antipattern. In this case, both Resourcel and Resource2
have multiple CPUs, but the FCR only limits Resourcel.

3.6.2 Analysis

Numerical values used to analyze this antipattern are shown
in Fig. 6b. This performance antipattern is studied by chang-
ing the baseline and specifying quantity 10 (processing units)
for all resources (i.e., Resourcel and Resource2). The com-
putational capacity of Resourcel (i.e., the resource affected
by the antipattern) is reduced to 1 using a finite capacity
region. This way, Resourcel can serve only one request at
a time even if it has ten processing units, thus limiting its
degree of parallelism. The effect of One-Lane Bridge is ana-
lyzed against the number of requests in the system, N,,, and
plotted in Fig. 6¢. The shortest system response time is
observed when N,., = 1. In this case, the antipattern (i.e.,
FCR = 1) does not slow down the execution of the request,
and Resource2 is the bottleneck of the system. Since
resources might have more processing units than the number

@ Springer

R. Pinciroli et al.

Resource2
(a) QN model
Parameter | Value || Parameter Value
Nreq 10 || p [0.0, 0.9]
5:531 0.02 || Zyeq 0.0
greas 0.04
CPUs 1

(b) Input parameters

System Response Time [sec]

Fig.5 Circuitous Treasure Hunt—performance modeling and evaluation

]]] :
Resource2

(a) QN model
Parameter | Value || Parameter | Value
Nreq [1,10] || FCR 1
Srea1 0.02 || Zyreq 0.0
S 0.04
CPUs 10

(b) Input parameters

Fig.6 One-Lane Bridge—performance modeling and evaluation

of requests in the system, the utilization of Resourcel and
Resource2 is normalized over N,.,. When N,.y > 1,
requests must take turn to be served by Resourcel since it
can process only a request at a time due to the One-Lane
Bridge antipattern. No N, values allow observing the base-
line performance since the number of CPUs allocated to each
resource has been increased to model this antipattern. Over-
all, limiting the computational capacity of resources worsens
the system performance when the number of requests to be
served increases.

3.7 More is Less
3.7.1 Modeling

Multiple requests might be sent together to be processed
in parallel with the intent to reduce overall response time
for handling all requests. Resources that must handle these
requests in parallel observe a load surge (due to requests
arriving simultaneously) that negatively impacts the system
performance. As shown in Fig. 7a, we model this antipattern
by placing the affected resource (i.e., Resourcel) between a
Fork and a Join. All N 7.« requests spend S'o7, (N rork) time

resl
req

units at Resourcel to be processed. We assume that S,

depends on the number of parallel requests due to possible

@ Springer

System Response Time [sec]

2.0 100
5 o
15 75 E;
]
50 =
1.0 —
25 =
0.5
0
0.0 0.2 0.4 0.6 0.8
p
(c) Performance metrics
100
=
g
50 g
=
=
25
0

Nieq

(c) Performance metrics

overheads. When all N ., requests are served by Resourcel
they are joined together and sent to Resource2 that handles

the result of all requests in S°%, time units.

3.7.2 Analysis

Numerical values used to analyze this antipattern are shown
in Fig. 7b. The effect of this antipattern on the system
performance is observed by increasing the number of par-
allel requests (i.e., Nyorr). In this case, there is a single
request into the system (i.e., Ny.; = 1) that is forked into
1 < Nyorx < 20 sub-requests before being processed by
Resourcel. We assume that the service time of Resourcel
increases by 10% for every sub-request (except the first one)
forked from the initial request and is defined as:

Nfark —1
10 ’

with S::?l (1) = 0.02 (i.e., as in the baseline configuration,
see Sect. 3.1). Figure 7c depicts the system performance as a
function of N f,¢. The system response time keeps increas-
ing since it accounts for the average time spent by a request at
Resourcel and Resource2 (including the waiting time at the

Join station for all sub-requests being served by Resourcel).

Srr:g] (Nfork) = 5:531(1) : <1 + (1)

Modeling more software performance antipatterns in cyber-physical systems

| Resourcel Join
S1ei (Norr) 2,
&
(a) QN model g
8
o
Parameter Value ‘ Parameter ‘ Value g
Nreq 1| Nfork [1,20] g
Nfork—1 -
st oo (14 2ty |z, | 00 %
Sres 0.04
CPUs L |

(b) Input parameters

Fig.7 More is Less—performance modeling and evaluation

Resourcel is the system bottleneck when Ny > 1; its
utilization keeps increasing. The utilization of Resource2
is smaller when N, increases since it processes a single
request, i.e., all sub-requests together. The baseline system
response time (i.e., R;;? = 0.4) is observed for Ns,rx < 10.
This is depicted by the dashed blue line and the blue arrow
pointing towards the direction where R:;f is not longer than
the baseline. In this case, the system response time might be
even shorter than the baseline value since N, is now set to
1 to model this antipattern. For the sake of clarity, N s« val-
ues that allow observing the baseline utilization of resources
are not depicted in Fig. 7c.

3.8 The Ramp
3.8.1 Modeling

The processing time of a request might increase over time
due to software operations that accumulate (an increasing)
overhead while the system is in operation. In Fig. 8a, this bad
practice is modeled by defining (for the affected resource,
i.e., Resourcel) a class-dependent service time, S, (cl),
and using a class-switch component that changes the class of
requests visiting it. When the class of a request changes, its
service time at Resourcel increases.

3.8.2 Analysis

Numerical values used to analyze this antipattern are shown
in Fig. 8b. Differently from other software antipatterns, here
we need to consider the evolution of the system over time
to observe the impact of this antipattern on the baseline per-
formance. Assuming that The Ramp antipattern affects only
Resourcel, the service time of this resource depends on the
class (i.e., cl) of the served request as shown in Fig. 8b.
Specifically, requests that visit the class-switch (CS) change
their class with a 0.01% probability. Figure 8c depicts the evo-
lution of the response time of the baseline system (flat line)

1.2 100
0.9 n g
g

0.6 50 =
0.3 —— Uy 25

N*"*—I——-—_H_._-

0

00 5 10 15 20

Nfork

(c) Performance metrics

and of the system affected by The Ramp antipattern (sloped
line) over a pre-defined time interval (i.e., 3 days). All val-
ues are obtained by averaging the system response time from
50K observations. Although the effect of The Ramp on the
system performance is barely visible after a few hours, the
system response time keeps increasing and, after only a day,
it is almost 50% longer compared to the baseline. After three
days, the system affected by The Ramp takes 125% longer
than the baseline system to process incoming requests.

3.9 TrafficJam
3.9.1 Modeling

Periodic load variations may deteriorate the performance of
a system that cannot always provide enough computational
power to process all the incoming requests. In Fig. 9a, the
Traffic Jam antipattern is modeled by introducing a new class
of requests (i.e., Check) with a long and Uniform think time
whose average is ¢ and possible values range between 0.98 -
w and 1.02 - . This way, we model a scheduled periodic
event that needs a large amount of time Sgpx > S,r:gz to be
processed by the affected resource, i.e., Resource2 in this
case. This model allows studying a system that requires an
increased amount of resources for a limited time due to a load
that alternates between phases (e.g., light and heavy loads).

3.9.2 Analysis

Numerical values used to analyze this antipattern are shown
in Fig. 9b. The performance effect of this antipattern is stud-
ied by considering the evolution of performance metrics over
time. There is N.px = 1 Check request representing the Traf-
fic Jam antipattern in the system. This request is executed
once every hour on average, i.e., Z.pr ~ Unif(3528, 3672)
seconds, with service time set to 100s at Resource2 (Sepr =
100 s). All values depicted in Fig. 9c are obtained by averag-
ing the system response time of 20K samples. The response

@ Springer

R. Pinciroli et al.

Resourcel Resource2

Zrea di(el)
1-—a
@
(a) QN model
Parameter Value ‘ Parameter | Value
Nreq 1| Pr(CS) 0.01%
Sred) 0.02- (1+ £).cl € [0,400) ‘ Zyreq 0.0
Sred 0.04
CPUs L

(b) Input parameters

Fig.8 The Ramp—performance modeling and evaluation

L.

Nyeq
Nonk | chk. Resourcel

Sreny

Resource2

Teq.

Z,

™~ B S
Lo ~ Unif > Zyoy

res2
S > ST

(a) QN model
Parameter | Value || Parameter Value
Nreq L || Nenk 1
Sred 0.02 || Zenk Unif(3528, 3672)
Sreds 0.04 || Scnr 100
CPUs 1| Zreq 0.0

(b) Input parameters

Fig.9 Traffic Jam—performance modeling and evaluation

time of the baseline system and the one affected by Traffic
Jam are observed over a pre-defined time (i.e., 8 h). If a Check
request is introduced into the system, Resource2 needs along
time to handle it, other requests must wait for their turn to
be processed, and their system response time increases up to
25% compared to the baseline. When the Check request is in
the Delay station as shown in Fig. 9a, Resource2 serves other
requests, the increased traffic is assimilated, and the system
response time goes back to the baseline value.

3.10 Lessons learned

The modeling of software performance antipatterns using
QNs is a challenging task due to the need of introducing mul-
tiple and different components (e.g., finite capacity region,
fork and join, class-switch) that are required for capturing
all the performance problems that may originate. However,
each antipattern model includes a set of system peculiari-
ties that, despite the required (nontrivial) modeling effort,
nicely represent probable bad practices that become actual
performance problems. Moreover, QNs enable a sensitivity
analysis of considered systems and allow drawing quanti-
tative observations about the effect of antipatterns on the
system performance.

@ Springer

System Response Time [sec|

tem Response Time [se

Sys

=
=]

—— The Ramp

Baseline

=
o0

=
>

0.41 -~
0 1 2 3
Time [days]
(c) Performance metrics
0.52 —— Traffic Jam
0.50 Baseline
0.48
0.46
0.44
0.42
0.401 A .\"L,W\va‘w ,«/\w,u_,«ir.ﬂA.'«w‘ b

0 1 2 3 4 5 6 7 8
Time [h]

(c) Performance metrics

The outcome of modeling and analyzing performance
antipatterns raises the following main observations for
generic CPS. Checking the occurrence of specific events in
the systems might delay other operations, and the frequency
of performing these checks becomes fundamental to avoid
performance issues. Verifying the status of system resources
too often is counter-productive since the system might spend
too much time performing this verification. Restoring the
state of a resource is not always beneficial due to the per-
formance overhead that might prevent other operations from
being processed. Accessing a resource too many times causes
excessive use of the resource, it is recommended to limit
the accesses to the resource. Parallel computation of system
operations is beneficial as long as there are enough proces-
sors so there is minimal resource contention. A continuing
increase in data size may lead to infinite response times. A
sudden burst of requests might generate delays that remain
in the system for a long time before going back to normal
processing of incoming requests.

It is worth remarking that these considerations for generic
CPS do lead to quantitative information. In fact, our model-
based analysis results show the variation of performance
indicators (e.g., system response time, resource utilization)
while varying the specificities of CPS, such as the frequency

Modeling more software performance antipatterns in cyber-physical systems

of checking the status of sensors. Section4.5 discusses the
percentage of performance degradation we found in a con-
crete case study under analysis.

4 Evaluation

The analyzed system is a SensorNet CPS [7] consisting of a
controller, a database, and sensors. It is based on an actual
CPS, but it is an abstract version that hides confidential
details. Additionally, system details have been modified to
inject all the antipatterns considered here. This is necessary
because one seldom finds all of the antipatterns present in a
single system, whereas we want to illustrate how they can be
modeled and analyzed separately and together. The specific
antipatterns we inject have been found in other CPS, just not
combined in this way. This approach serves as a reference
case to show how the antipattern models can be used in a
plug and play manner.

4.1 Case study description

This CPS uses sensors to acquire data that are analyzed by
the controller and might trigger some actions (e.g., store the
observed data in the database, issue control commands, check
if the system is properly working).

The network of sensors acquire data at different rates,
so the system polls to see if new data is available (ie., Are
We There Yet? performance antipattern). When sensor data
is received, the next step analyzes the data and the required
analysis time increases as the system operates (ie., The Ramp
performance antipattern). This happens when previous sen-
sor values need to be compared to current values and an
inappropriate data structure is used that takes longer to access
previous values as the number of values increases (e.g., a
sequential search of previous values). The Where Was I? per-
formance antipattern is also represented in the analysis step
by assuming that the analysis needs to start from the begin-
ning each time, and specifying a service time that accounts
for this re-calculation.

Sensor values and analysis results are stored in a database.
Incoming data is buffered, so when a buffer fills it is writ-
ten to the database. Data in the database may be needed in
the analysis. Two antipatterns are associated with database
accesses: the One-Lane Bridge may occur when a process
must lock the database before updating, and the Circuitous
Treasure Hunt may occur when multiple database accesses
are needed to retrieve the data.

Once the data is captured and analyzed, a set of Actors
use the results to make control decisions and issue com-
mands that cause actions to occur in the environment. There
are no antipatterns represented by the Actors in this sys-
tem, but they are representative of CPS that trigger actions

based on sensor values, and they introduce contention for
resources that demonstrates the effect of the considered soft-
ware antipatterns. This illustrates how performance problems
can propagate to unrelated processing in a system containing
performance antipatterns.

Resilience is represented in this CPS by periodically exe-
cuting virus scans. While traditional CPS (e.g., RTES) do
not address cyberthreats, systems of today are increasingly
vulnerable, as evidenced by the Stuxnet penetration of the
Iranian nuclear power plant [34] and the HVAC penetra-
tion into a hospital information system [35]. So we consider
the performance affect of adding a virus scan that also rep-
resents the Traffic Jam performance antipattern. Note that
Garbage Collection is another type of Traffic Jam that never
occurred in traditional CPS, but now also occurs in today’s
systems. Our case study focuses on the former to illustrate
how this performance antipattern can be represented, and
thus how additional Traffic Jam can be represented when they
are present. In our case study, we focus on the performance
aspects leaving aside the power constraints on edge devices,
such as the sensors, that would make this type of virus scan
impractical. We acknowledge this assumption may not apply
to all CPS.

The Is Everything OK? performance antipattern is repre-
sented in this CPS by periodically checking if the sensors are
functioning correctly. The performance effect is studied by
varying the frequency of the status checks.

The More is Less performance antipattern is represented
by using Fork and Join to parallelize the data retrieval and
analysis that finds “objects of interest” (OOI) in the data
provided by sensors.

The resulting system with all the performance antipat-
terns injected is somewhat contrived because it is rare to find
all of these in one system. Nevertheless, in our combined
experience, all but two of these examples of performance
antipatterns have been found in other CPS, they just have not
all been found together. The two exceptions are the database
related antipatterns, but those are common antipatterns in
database systems in general and as databases become more
commonplace in CPS, and they are, it is only a matter of time
until those antipatterns occur.

The resulting models illustrate how one or more of these
performance antipatterns might be combined in other real-
istic CPS. The parameters used in the models in the next
section (Table 1) are realistic values based on our experience
with similar systems, yet adapted somewhat to this example
to illustrate the combination of performance antipatterns.

4.2 Modeling
The CPS under analysis is modeled using a multi-class QN,

i.e., the same formalism adopted to define the software per-
formance antipatterns in Sect. 3. There are three resources,

@ Springer

R. Pinciroli et al.

Sensors

7777777 —
Controller).
Delay ontroter Controller P DB
I . Delay .
1—pi—p 1—¢q
1=pi—p2
"
(a) PollingAnalysis (b) VirusScan
P
: 1119 = [[)=
. Controller
Controller Delay Join DB Controller
1—p Sensors G L—p ay 1—p DB
(c) Status (d) FindOOI (e) Actors

Fig. 10 QN used to study the CPS presented in [7]. Different workloads coexist in the same model and interfere with each other even if they are

presented separately for the sake of clarity

i.e., the Controller that is modeled as a queuing center with
two CPUs and a First Come First Served policy, Sensors,
and DB, both represented as a station with infinite servers
(hence without any queue). The Delay center is used to drive
the arrival of new requests. There are five classes of requests
in the system, i.e., PollingAnalysis, VirusScan, Status, Find-
0O0l, and Actors, whose interactions with the resources of
the CPS are depicted in Fig. 10a—e. Although these classes
are depicted separately for the sake of clarity, they coexist in
the system and compete for the available resources interfer-
ing with each other. Request classes used to investigate the
effect of software antipatterns on the system performance are
discussed in the following. Input parameters used to define
the baseline system are shown in Table 1.

PollingAnalysis. This class represents data being polled
from the sensors, analyzed by the controller, and stored in
the database. There are N p, 4, requests of this class and each
one spends Zp,4, time units in the Delay. The delay repre-
sents the frequency of PollingAnalysis requests and is used
to study the Are We There Yet? antipattern. These requests
are then sent to the Controller where they are processed in
§PoAn (¢) time units. This time increases with the value of

ctrl
¢, i.e., the sub-class of PollingAnalysis requests. This way,

we can evaluate the effect of The Ramp antipattern on the
system performance. When c is fixed, we vary the value of
S CI:;’ZA" to quantify the effect of the Where Was 1?7 antipattern.
After having been processed by the Controller, PollingAnaly-
sis requests are sent to the Sensors with probability p;. Here,
they spend S£247 time units to acquire data. With probabil-
ity pa, requests go to the DB where they store information in
S dP b"A" time units. In all other cases, the requests have already
polled and analyzed data, hence they go back to the Delay sta-
tion to restart the process. Before reaching the Delay, there is
a probability « that the request goes through the class-switch
CS and its sub-class c is changed. The number of Polling-
Analysis requests concurrently processed by the database is
limited by the size of the FCR (requests that find the FCR
busy must wait outside the region for their turn). This way,
we limit the capacity of the DB and investigate the effect of
the One-Lane Bridge antipattern when Np,4, changes. The
FCR affects only PollingAnalysis requests, i.e., requests of a
different class enter the DB as soon as they are completed by
the Controller. When PollingAnalysis requests are processed
by the DB, there is a probability ¢ that they need to visit the

DB again before being processed by another resource. The

Table 1 Parameters of the CPS used to validate the QN model and evaluate the effect of performance antipatterns. Time values (inspired by
real-world CPS tasks [33]) are in milliseconds (ms) and follow an Exponential distribution with the given mean value (unless differently indicated).

The max value of p, p1, p2, ¢, and o is 1

Class Flg N Z Schl Sdb Ssensm“s N/ork FCR p y4! P2 q «
PollingAnalysis 10(a) | 10 75 0.30067 0.6 0.1 - 1 - 11/15 3/15 0 0.0001
VirusScan 10(b) | 1 Unif(0.98 -10714, 1.02 - 10713) 2048.78 0.6 1000 - - - 20/41 20/41 - -

Status 10(c) | 1 Unif(0.098, 0.102) 0.05 - 1 - - 0.5 - - - =
FindOOI 10d) | 1 1000 1.2155 0.6 - 10 - 0.5 - - - -
Actors 10(e) | 5 30 0.72 0.6 - - - 2/3 - - - -

@ Springer

Modeling more software performance antipatterns in cyber-physical systems

value of ¢ is used to analyze the Circuitous Treasure Hunt
antipattern.

VirusScan. This class visits the DB with probability p, to
retrieve the latest virus definitions then scans Sensors with
probability pi to check that no virus is affecting them. Results
are always reported to the Controller. The time required
by these requests at the Controller, Sensors, and DB (i.e.,

§YirusScan - gVirusScan - and §YirusScan respectively) are

longer than the service time of all other request classes to
represent the impact of the Traffic Jam antipattern on sys-
tem performance. For model validation, we set Zv ;s Scan tO
approximately O's to represent only the busy period when the
virus scan is active, and to obtain sufficient completions for
model precision. The variation of Zy;,ys5cqn s discussed in
Sect. 4.4 where experiments show the performance evolution
of the Traffic Jam antipattern.

Status. These are requests issued by the system to check that
Sensors are working as expected. There are Ngiqz,s r€qUESsts
that spend Zg;qz,s time units in the Delay station. Chang-
ing the think time of Status requests allows investigating the
effect of the Is Everything OK? antipattern on the system per-
formance. Status requests are then served by the Controller
in §3747“S time units. With probability p, they must check
the status of Sensors (i.e., S31914s) whereas with probabil-
ity 1 — p they have already reported the status to the controller
and go back to the Delay station.

FindOOL. This class represents requests that find OOI:
they alternate processing at the Controller, and retrieving
data from the DB. These requests introduce the More is
Less antipattern by using Fork and Join to parallelize the
data retrieval and analysis. The Controller service time of
each forked sub-request depends on Ny, as in Eq. (1).
The service time (when only one sub-request is forked) is
§Find0OI(1y = ().639737 ms and the service time with

ctrl

N york = 10 (see Table 1) is:

ctrl ctrl 10

= 0.639737 ms - (1 +0.9)
= 1.2155 ms.

§Eind00I (1) — gFind0OI 1y (1 + E)

When a forked sub-request is completed (with probability
1 — p), it waits in the Join station for all other forked sub-
requests to retrieve the required data before being joined into
the original request and returning to the Delay station.
Actors. This class models requests that need to use Con-
troller and DB for their execution. As stated earlier, it is not
meant to inject software antipatterns into the system, but it
increases the contention for resources and emphasizes the
effect of the considered software antipatterns.

4.3 Model-based comparison of analysis results

The baseline QN model proposed in Sect.4.2 is verified
against an extended version of the execution graph (EG)
model originally proposed in [14]. The EG model is solved
with SPE-ED [5], i.e., atool designed to support SPE methods
and models, that returns performance analysis results. Each
request class described in Sect.4.2 is modeled by a SPE-ED
scenario derived from a sequence diagram. It is possible to
generate EGs from sequence diagrams by following the flow
of messages through the performance scenario and repre-
senting actions as basic nodes in the EG. For instance, Fig. 11
shows the sequence diagram of the PollingAnalysis class, and
Fig. 12 depicts the most performance-wise relevant actions
from the PollingAnalysis sequence diagram. Table 2 reports
performance measures (i.e., system response time, system
throughput, and controller utilization) obtained by simulat-
ing the EG model with SPE-ED and the QN model with JMT.
All simulations (except those showing the evolution of per-
formance indices over time, see Sects.4.4.7 and 4.4.8) in this

latency
Timer

|Sensor| |A1ml_ytics| | aes | | filter | |DBSel’\'er|

start()

loop

. arrival?() |

read_Mess

ge

read_Message(aes_encrypt()

r(‘fl'c:%hStatc()
predit()

a(‘s,onicry])t()

Fig. 11 Sequence diagram of PollingAnalysis scenario [14]

Refresh Predi Post
redict Result

Process
Reading State

Fig.12 Steps in the PollingAnalysis sequence diagram [14]

@ Springer

R. Pinciroli et al.

Table2 EG and QN results. The 99% confidence interval of JMT simulations is shown in parenthesis. Mean absolute percentage errors (MAPEs)

are computed wrt. average values

a1 System Response Time System Throughput Controller Utilization
ass EG [msec] QN [msec] MAPE [%] | EG [req/sec] QN [req/sec] MAPE [%] | EG [%] QN [%] MAPE [%]
PollingAnalysis 17.700 18374 (£ 0.376) 3.808 107.782 107.096 (= 0.431) 0.636 2386 2423(£071) 3.539
VirusScan | 98,091.900 101,365.617 (+ 2,746.938) 5.527 0.010 0.010 (= 0.000) 0.000 4079 4057 (+1.08) 0.542
Status 2.000 1.949 (4 0.050) 2.550 469.872 487.997 (+ 11.843) 3.857 234 243 (£0.05) 3.539
FindOOI | 33.500 31.976 (+ 0.815) 4.549 0.959 0.969 (4 0.001) 1.043 1.16 1.18(+0.03) 1.356
Actors 6.100 5.912 (& 0.148) 3.082 138,564 139.231 (+ 0.574) 0.481 1496 1504 (£033) 0525
. . . . —&— PollingAnalysis Status —A— Actors —¥— FindOOI —4— VirusScan
section stop when every analyzed metric is observed with 110K
99% confidence interval and 3% maximum relative error. L.
. . . . , 106K
Simulations are stopped despite the relative error values when E B e
100M samples are collected, i.e., the maximum number of %“"Jjﬁ; -
samples to analyze is set to 100 M. The mean absolute per- g 30 j
. = 20
centage error (i.e., MAPE) made by the QN when compared E
to the EG is also reported in Table 2. Specifically, the MAPE E 05, e T 0
Zpoan [msce]

is computed as:

IMEG — Mon|

MAPE (%) = -
EG

100,

where M ¢ is the measure obtained from the EG, Mgy is the
measure obtained from the QN, and the result is multiplied
times 100 to give a percentage error. Observed MAPEs are
never larger than 6%, meaning that the QN model discussed
in Sect.4.2 is a faithful representation of the extended CPS
used in [14]. This strengthens the adoption of QN as a valid
modeling notation to predict the performance of real-world
systems.

4.4 Antipattern experiments

Figures 13, 14, 15, 16, 17, 18, 19 and 20 show the effect of the
analyzed software antipatterns on the system response time
and controller utilization of the considered CPS. For antipat-
terns associated with the evolution of the system performance
(i.e., The Ramp and Traffic Jam, see Sect. 3), only the system
response time is shown since it is derived from simulation
logs. The baseline performance used to verify the QN model
of the CPS in Sect. 4.3 is indicated by a dotted vertical line.
Figures depicting utilization show the overall Controller uti-
lization, the Controller utilization of each class, and the DB
utilization for the PollingAnalysis class (i.e., the only class
for which the DB is not modeled by an infinite server station
due to the Finite Capacity Region).

4.4.1 Are We There Yet?
This software antipattern is injected into the CPS by

decreasing the time between two consecutive PollingAnalysis
requests, i.e., changing the Zp,4, value. Consistently with

@ Springer

(a) Response time

—8— PollingAnalysis (Ctrl) Status (Ctrl) —%— FindOOI (Ctrl) - Ctrl
PollingAnalysis (DB) ~ —&— Actors (Ctrl) ~ —— VirusScan (Ctrl)
100
B R
o (R—
= 60
S B /
)
0

200 150 100)
Zpoan [msec]

(b) Utilization

Fig.13 Are We There Yet?

what is observed in Sect. 3.2, Fig. 13a (note the inverted x-
axis) shows that as the frequency of PollingAnalysis requests
increases (i.e., the smalleris Z p, 4,), the time required to pro-
cess all requests increases exponentially. Figure 13b (that also
shows an inverted x-axis) depicts the Controller utilization
whose trend follows that of the PollingAnalysis class. The
Controller and DB usages decrease when Zp,4, increases
due to the longer time spent by PollingAnalysis requests in
the Delay station. The Controller utilization of other classes
is not affected by Zp,a,.

4.4.2 Is Everything OK?

The effect of this performance antipattern is studied by vary-
ing the frequency of status checks, i.e., changing the Zg; 4y
value. To better highlight it, Ng;4sys (i-e., the number of Sta-
tus requests) is set to 20. In this case, no dotted line is depicted
in Fig. 14a and b since the baseline performance is obtained
with Ng;qrus = 1. Considering the system response time in
Fig. 14a (note the inverted x-axis), Is Everything OK? mainly

Modeling more software performance antipatterns in cyber-physical systems

—&— PollingAnalysis —#— Status —&— Actors —¥— FindOOI —#— VirusScan
115K
£ 10K
o 105K e T e ———,
Z 100K
£ 100
$ O5K- 1
a0 T
Do T
2
T
7 0 8 6 1 2 0
Zstatus [msec]
(a) Response time
—e— PollingAnalysis (Ctrl) ~ —®— Status (Ctil) ~ —¥— FindOOI (Ctal) - Cirl

--®- PollingAnalysis (DB) —&— Actors (Ctrl) —4— VirusScan (Ctrl)

ooy
s
= 60
_5” 40] ———————— e,
5 .
0
10 8 6 4 2 0
ZStatus [mse(f]
(b) Utilization
Fig. 14 Is Everything OK?
—e— PollingAnalysis —®— Status —— Actors —¥— FindOOl —— VirusSean
110K
g
< 105K
E WWM*’—’
e
5 100K+ +
2 1007 T
z 8
= 60
g 40
% 2 W"“:
E e e
0.4 0.6 0.8 1.0
Shodn [msec]
(a) Response time
—e— PollingAnalysis (Ctrl) ~ —#— Status (Ctrl) ~ —¥— FindOOI (Ctrl) === Ctrl

@~ PollingAnalysis (DB)

100

—A— Actors (Ctrl) —4— VirusScan (Ctrl)

®
S

=

Utilization [%]

|

o
S
]
$
4

0.4 0.6 0.8 1.0
SPoAn (msec]

(b) Utilization

Fig. 15 Where Was 1?

affects the PollingAnalysis class, and light effects are also
observed for Actors and FindOOI classes. When the status
of system components is checked too frequently, all requests
compete with Status for Controller resources. Looking at
the utilization of the Controller in Fig. 14b (its x-axis is also
inverted), the curve for the Status class shows the largest
variation since requests of this class spend more time in the
Controller when Z ;4145 18 short. The overall Controller uti-

—&— PollingAnalysis —#— Status —&— Actors —¥— FindOOI —4— VirusScan
110K
<
g
105K) e
% 100K+ +
607 -

N\

i

System Response Time [my

=)

0.0 0.2 0.4 0.6 0.8
q

(a) Response time

—e— PollingAnalysis (Ctrl)
@~ PollingAnalysis (DB)

—m— Status (Ctrl)
—&— Actors (Ctrl)

—¥— FindOOI (Ctrl) == Ctrl

~—4— VirusScan (Ctrl)

100
_ 8pf
S
5 60 .
__% 4] F———————
S o
20{ D —
0
0.0 0.2 0.4 0.6 0.8
qa
(b) Utilization
Fig. 16 Circuitous Treasure Hunt
—®— PollingAnalysis #— Status —&— Actors —¥— FindOOI —4#— VirusScan
= 110K

[mse

=
&
-

L =

% 100K~ -

=
S
{
\
\

System Response Time [m:
b o= D
oS O O

Npoan

(a) Response time

—e— PollingAnalysis

~®- PollingAnalysis

—#— Status (Ctrl)
—&— Actors (Ctrl)

—¥— FindOOI (Ctil) - Cirl
—4— VirusScan (Ctrl)

T —
- R o
< o
= | _-
_5 60
_5 40] —— s
5 —
20 -
- — .
0 —
0 10 20)
Npoan

(b) Utilization

Fig. 17 One-Lane Bridge

lization decreases when Z increases; this improves the
Status
performance of all system classes.

4.4.3 Where Was I?

This antipattern is injected by increasing the time spent by
PollingAnalysis requests in the Controller. Figures 15a and b
show that both the system response time and the Controller

utilization of the PollingAnalysis class increase with S2oA"

@ Springer

R. Pinciroli et al.

—8— PollingAnalysis #— Status —&— Actors —¥— FindOOIT 4— VirusScan
glll’)K
£
o 105K
R R o e S
=
% 100K~ A
g 160 b
I
é 120
~ 80
S w L
7 ol== —
0 10 20 30
Niork
(a) Response time
—e— PollingAnalysis (Ctrl) ~ —#— Status (Ctrl) ~ —¥— FindOOI (Ctal) - Cul
PollingAnalysis (DB) ~ —4— Actors (Ctil) —#— VirusScan (Ctrl)
100
801 T I
5 60
_ﬁ 4] ————————
5 ——
20
0 . +—— [

0 10 . 20 30
Nyork

(b) Utilization

Fig. 18 More is Less

—&— PollingAnalysis —#— Status —&— Actors —¥— FindOOI —4— VirusScan
— 90K
85K
o

SOK+ L
1207 T

% /
60

30

System Response Time [msec

Time [hr]

Fig. 19 The Ramp—response time

—8— PollingAnalysis —#— Status —&— Actors —¥— FindOOI

=20

15

10 ™ M — .

ot

System Response Time [mse

Time [hr]

Fig.20 Traffic Jam—response time

due to the longer time spent by these requests in the Con-
troller, while the DB utilization of the PollingAnalysis class
decreases. As a consequence, the system response time of

other classes also increases with SS;’IA".

@ Springer

4.4.4 Circuitous Treasure Hunt

To analyze this performance antipattern, we change the prob-
ability ¢ that PollingAnalysis requests visit the DB. Its effect
is visible on the system response time of PollingAnalysis
requests, see Fig. 16a; it is longer when there is a high prob-
ability that these requests visit the DB multiple times. The
effect on the Controller utilization, Fig. 16b, is almost neg-
ligible since the antipattern overhead is on the DB whose
utilization increases with ¢ and becomes the system bottle-
neck for large values of gq.

4.4.5 One-Lane Bridge

As described in Sect.3.6, the effect of this antipattern is
observed by increasing the number of requests. Here, we
change Npyay, i.e., the number of PollingAnalysis requests.
The larger the load intensity (i.e., Npoan), the longer the sys-
tem response time of all classes in the system, see Fig. 17a,
due to the increased resource contention at the Controller. As
expected, the Controller and DB usages also increase due to
the larger number of PollingAnalysis requests, see Fig. 17b.
The Controller utilization of other classes is barely affected
by this antipattern.

4.4.6 More is Less

This antipattern is studied against the number of sub-requests
(i.e., Nfork) forked from the FindOOI request (see Table
1). Only FindOOI requests are affected by More is Less;
Fig.18a shows longer system response times when N ok
increases. The increased system response time of FindOOI
requests is due to the time spent by the forked sub-requests
at the Join station waiting for the completion of all other
sub-requests. This is visible from Fig. 18b which shows that
the Controller utilization does not change with N . This
illustrates the performance effect of the guilty More is Less
antipattern when the number of forked sub-requests exceeds
the number of processors.

4.4.7 The Ramp

The effect of this antipattern is observable when the evolution
of the system performance is analyzed over time. Figure 19
shows the system response time of the five classes within
a 4-hour interval. All classes (except VirusScan) show an
increasing trend during the observation period due to the ser-
vice time of PollingAnalysis requests (i.e., the class on which
The Ramp has the greatest impact) at the Controller (S c};;’lA”)
which might become 10% longer when these requests go
through the class-switch, see Sect.4.2. The system response
time of VirusScan requests is not affected much by this
antipattern since it is four orders of magnitude longer than the

Modeling more software performance antipatterns in cyber-physical systems

response time of PollingAnalysis requests. Results shown in
Fig. 19 are obtained by averaging the system response time
observed for all the requests of the same class.

4.4.8 TrafficJam

The VirusScan request (i.e., NvirusScan = 1) is used to inject
this antipattern into the system. To highlight the impact of
Traffic Jam, differently from the value in Table 1, the think
time of VirusScan is Zvyrusscan ~ Unif(3528, 3672) sec-
onds. This way, the system is scanned for viruses once per
hour on average. The effect of the antipattern is presented
in Fig. 20 where the system response time of FindOOI,
PollingAnalysis, and Actors requests increases when VirusS-
can checks the system for viruses. The effect of Traffic Jam
on the system response time of the Status class is negligible
due to the short service time of this class at the Controller. For
the sake of clarity, the system response time of the VirusScan
request is not depicted in Fig. 20 since this class is used to
inject the Traffic Jam in the system and the antipattern has
no effect on it.

4.5 Lessons learned

Our experimentation shows the following main findings.
When the SensorNet checks too often if sensors polled new
data (Are We There Yet?), the response time of PollingAnal-
ysis degrades by 151%. Frequently checking the status of
sensors (Is Everything OK?) delays other system operations,
e.g., the response time of PollingAnalysis deteriorates by
50%. If the SensorNet recalculates the lost state (Where Was
1?), the response time of PollingAnalysis increases up to
398%. Repeatedly accessing the database (Circuitous Trea-
sure Hunt) worsens the response time of PollingAnalysis up
to 180%. Limiting the concurrency when accessing to the
database (One-Lane Bridge) delays PollingAnalysis requests
by 638%. A large number of batched requests (More is Less)
increases by 4208% the response time of FindOOI requests.
If size of data stored in the database increases over time (The
Ramp), other operations that need to access the database,
e.g., PollingAnalysis requests, take longer, e.g., up to 1870%.
Checking the presence of viruses at a specific point in time
for all sensors (Traffic Jam) clogs the system, e.g., FindOOI
requests experience delays up to 29%. The Controller utiliza-
tion increases for most of the antipatterns, and the maximum
growth of 40% is observed for the One-Lane Bridge. Overall,
the performance degradation is significant and performance
antipatterns nicely capture the root causes of such deteriora-
tion.

Summarizing, we conclude that generic CPS do show
several bad practices leading to performance issues. For
instance, checking too often the status of system events leads
to performance degradation. If an internal routine is in charge

of verifying the functioning of resources, and the verifica-
tion is executed too frequently, system requests are inevitably
delayed. When processes do not remember state information,
it might be necessary to look for current information. This
increases computation which then increases resource utiliza-
tion and response time. Further bad practices are: excessive
access to the database, limiting the concurrency, allowing a
large number of batched requests, establishing time synchro-
nization among operations executed by physical entities, and
ever-increasing size of data structures.

The benefit of our model-based analysis is the quantifi-
cation of performance degradation. This way, designers can
verify if system performance requirements are satisfied. Our
antipattern models also allow relating detected problems
to their root causes. This way, designers can refactor the
software using remedies prescribed for antipatterns. More
importantly, refactored systems can be analyzed to check if
they meet the stated requirements.

5 Threats to validity

Besides inheriting all limitations of the underlying soft-
ware performance engineering research [36], our approach
exhibits the following main threats to validity [37].

Construct threats relate to the validity of metrics used dur-
ing our experimentation. To smooth these types of threats,
all simulations undergo a 99% confidence interval, so the
accuracy of the presented experimental results has been mon-
itored.

Conclusion threats deal with the reliability of collected
measures. To smooth these threats, the model-based perfor-
mance analysis is delegated to two well-assessed and widely-
used tools for this scope, i.e., JMT [31] and SPE-ED [5].

Internal threats are related to how we designed our exper-
iments. Queuing models include a set of input parameters
whose numerical value may largely influence the observed
fluctuations in the system performance. To smooth this type
of threat, we provide the models as part of our replication
data, and users can set their own numerical values, so that
additional parameter values can be analyzed. QNs represent
an abstraction of the software system under analysis, we
acknowledge that the connection to the actual system design
and implementation, as well as the quantitative validation
against a real system, remains an open issue. We refer to
[16—-19] to support the validity of QN models approximat-
ing actually implemented systems. Moreover, the choice of
using QN as the target notation to model antipatterns does
not reduce the applicability of our approach. In principle, any
formalism can be adopted to model antipatterns as long as it
is suitable to manifest performance variations. We plan to fur-
ther experiment this point by investigating other languages
to model antipatterns.

@ Springer

R. Pinciroli et al.

External threats concern the generalization of results. We
are aware this is not guaranteed, since our models have been
applied to the SensorNet only, however it has been used as a
CPS representative example in software performance engi-
neering [7]. Although CPS are the focus of this manuscript,
the proposed abstract models generalize to other types of sys-
tems. Hence, we expect that it is possible to generalize our
results and findings, and we plan as future work to investigate
the applicability of proposed models in different application
domains.

6 Related work

The work presented in this paper relates to two main streams
of research that we review in the following.

Software Performance Antipatterns. They have been
defined in the literature as bad practices leading to per-
formance issues [5], and recently customized for the CPS
domain in [12]. Performance modeling of software antipat-
terns is an open issue of the performance engineering domain,
since many system characteristics need to be captured, and
it is not trivial to derive the expected performance degra-
dation. This paper addresses this challenge presenting QN
models that give evidence of antipatterns’ impact on the sys-
tem performance. Our recent work focused on investigating
the performance antipatterns across the operational profile
space [38], previously defined with a first-order logic repre-
sentation, and later applied to multiple modeling notations.
A first attempt of injecting software performance antipat-
terns in systems is provided in [39], where the root causes
of performance problems are isolated and matched with the
specification of antipatterns. More recently, load testing and
profiling data is exploited to detect software performance
antipatterns when running Java applications in [40]. Applica-
tion profiling is used also in [41] where patterns are adopted;
metrics measure their architectural impact and potential per-
formance optimization. There exist other approaches dealing
with different types of antipatterns, e.g., in [42] the focus is on
services, and detection algorithms are generated out of a sim-
plified metamodel whose specification is explicitly tailored
for service-based systems. In the broader context of matching
the connections between (anti)patterns and quality attributes
(such asreliability and security), several approaches e.g., [43,
441 are representative. Recently, the number of detected per-
formance antipatterns has been adopted as a parameter to
optimize performance and reliability properties of software
systemsin [45]. Complementary to performance antipatterns,
a line of research focuses on monitoring the runtime perfor-
mance characteristics of software systems subject to dynamic
changes, e.g., in [46] monitors are used to instrument sys-
tem components with the goal of diagnosing performance

@ Springer

problems such as bottlenecks and hotspots. Run-time adap-
tation is tackled also in [47] where principles of designing
smart CPS are reviewed, and performance is acknowledged
as a characteristic that changes over time due to new opera-
tional circumstances affecting the system behavior. Overall,
the main difference with state-of-the-art approaches using
software performance antipatterns is that they do not provide
plug-and-play models that analyze the performance charac-
teristics of CPS as we do in this paper.

Modeling and Performance Evaluation of CPS. Model-
based performance analysis of CPS is an open issue of the
performance engineering domain since the interplay between
cyber and physical entities is challenging. This paper advo-
cates the introduction of performance models that capture the
most common bad practices leading to performance prob-
lems. In the literature several approaches have been defined
for CPS modeling (e.g., [48-50]), however most approaches
investigate the security-related aspects of CPS (e.g., [51]).
The performance evaluation of CPS uses a plethora of tech-
niques [52], and there exist two macro classes: (i) analytical
and (i) simulation analysis. Analytical approaches use math-
ematical formulas or equations that are formal and rigorous,
but they may fail to capture some system dynamics (e.g.,
unexpected events, uncertainties, transient states) that can
be expressed in simulation environments [53] (i.e., emulat-
ing the system behavior) at the cost of less scalability [54].
A linear stochastic model is adopted in [55] to quantify the
performance degradation of CPS when exposed to integrity
attacks. In [56] the performance evaluation is conducted
through a control law that undergoes a trade-off analysis
including privacy costs. In [57] Markov models are applied
in the intelligent transportation system domain, and traffic
is guided by model predictions. A framework is proposed
in [58] to improve the performance of heterogeneous systems
at design time, but software allocation is considered only as
refactoring strategy. A Markovian environment is described
in [59], where queuing models are adopted to get perfor-
mance indices of a CPS, with the goal of quantifying resource
provisioning under uncertain workload. Uncertainty is also
investigated in [60] where the sensitivity of the performance
models is studied taking into account variations in the param-
eters of different modeling elements. A simulation-based
approach is proposed in [61] to evaluate how human fac-
tors affect the performance of CPS when human interaction
is required. Overall, the main difference with state-of-the-
art approaches modeling and evaluating the performance of
CPS is that they do not convey the root causes of performance
issues as we do in this paper.

Summarizing, to the best of our knowledge, none of these
approaches is specifically tailored to modeling and analyz-
ing software performance antipatterns to support software
developers in the interpretation of CPS performance issues.

Modeling more software performance antipatterns in cyber-physical systems

7 Conclusion and future work

This paper presents a model-based approach to understand
the performance issues of reactive systems, such as CPS,
under development. We develop plug-and-play QN models
to analyze the impact of eight software performance antipat-
terns on CPS. These models allow users to quantitatively
determine the root causes of performance problems in reac-
tive systems. The performance deterioration due to these
antipatterns might undermine software resilience, e.g., by
slowing the analysis of incoming requests and preventing
the system from managing critical situations, thus failing
to meet performance and other requirements. This leads
to stakeholder dissatisfaction and economic loss, especially
when real-time concerns are not satisfied. Experimental
results obtained by applying our model-based approach show
increased system response time due to a software bottleneck
switch. When the abstract models are applied to a real-world
CPS, quantitative results confirm that antipatterns deeply
affect the system performance.

As future work, we plan to develop a framework that
automatically detects antipatterns in CPS by monitoring the
system performance and exploiting the provided abstract
models (along with their corresponding analysis results).
For instance, knowing the point where the system bottleneck
switches is of key relevance to preventing it. Moreover, we
want to determine which antipatterns are the major culprits
in terms of performance degradation, i.e., how much antipat-
terns contribute to the violation of requirements, to prioritize
their solution when they coexist in a CPS. This is of key
relevance to enable technology for future work that automat-
ically detects the presence of antipatterns, determines which
ones are more relevant, and thus points out how to refactor
systems for the removal of these bad practices.

Acknowledgements The authors would like to thank the Editor and
the anonymous reviewers for their constructive comments and valuable
feedback. This work has been partially funded by MUR PRIN project
20228FT78M DREAM (modular software design to reduce uncertainty
in ethics-based cyber-physical systems) and the PNRR MUR project
VITALITY (ECS00000041), Spoke 2 ASTRA - Advanced Space Tech-
nologies and Research Alliance.

Funding Open access funding provided by Gran Sasso Science Institute
- GSSI within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Harman, M., O’Hearn, P.W.: From start-ups to scale-ups: opportu-
nities and open problems for static and dynamic program analysis.
In: Proceedings of the International Conference on Source Code
Analysis and Manipulation (SCAM), pp. 1-23 (2018)

2. Stecklein, J.M., Dabney, J., Dick, B., Haskins, B., Lovell, R.,
Moroney, G.: Error cost escalation through the project life cycle.
NASA technical report (2004)

3. Chen, T.-H., Shang, W., Jiang, Z.M., Hassan, A.E., Nasser, M.,
Flora, P.: Detecting performance anti-patterns for applications
developed using object-relational mapping. In: Proceedings of the
International Conference on Software Engineering (ICSE), pp.
1001-1012 (2014)

4. Kolesnikov, S.S., Siegmund, N., Kistner, C., Grebhahn, A., Apel,
S.: Tradeoffs in modeling performance of highly configurable soft-
ware systems. Softw. Syst. Model. 18(3), 2265-2283 (2019)

5. Smith, C.U., Williams, L.G.: Performance Solutions: A Practi-
cal Guide to Creating Responsive, Scalable Software. Addison-
Wesley, Boston (2002)

6. Connell, W., Menascé, D.A., Albanese, M.: Performance modeling
of moving target defenses with reconfiguration limits. IEEE Trans.
Depend. Secur. Comput. 18(1), 205-219 (2021)

7. Gémez, A., Smith, C.U., Spellmann, A., Cabot, J.: Enabling
performance modeling for the masses: initial experiences. In: Pro-
ceedings of the International Conference on System Analysis and
Modeling (SAM), pp. 105-126 (2018)

8. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.:
Software architecture optimization methods: a systematic literature
review. IEEE Trans. Softw. Eng. 39(5), 658-683 (2013)

9. Talcott, C.: Cyber-physical systems and events. In: Software-
Intensive Systems and New Computing Paradigms: Challenges and
Visions, pp. 101-115 (2008)

10. Aceto, L., Ingélfsdottir, A., Larsen, K.G., Srba, J.: Reactive
Systems: Modelling, Specification and Verification. Cambridge
University Press, Cambridge (2007)

11. Smith, C.U., Williams, L.G.: More new software performance
antipatterns: even more ways to shoot yourself in the foot. In:
Proceedings of the International Conference on Computer Mea-
surement Group (CMG), pp. 717-725 (2003)

12. Smith, C.U.: Software performance antipatterns in cyber-physical
systems. In: Proceedings of the International Conference on Per-
formance Engineering (ICPE), pp. 173-180 (2020)

13. van Dinten, I., Derakhshanfar, P., Panichella, A., Zaidman,
A.: The slow and the furious? Performance antipattern detec-
tion in cyber-physical systems. SSRN (2023). https://ssrn.com/
abstract=4459043

14. Pinciroli, R., Smith, C.U., Trubiani, C.: QN-based modeling and
analysis of software performance antipatterns for cyber-physical
systems. In: Proceedings of the International Conference on Per-
formance Engineering (ICPE), pp. 93-104 (2021)

15. Lazowska, E.D., Zahorjan, J., Scott Graham, G., Sevcik, K.C.:
Computer System Analysis Using Queueing Network Models.
Prentice-Hall, New Jersey (1984)

16. Lu, Y., Wang, B., Huang, L., Zhao, N., Su, R.: Modeling of driver
cut-in behavior towards a platoon. IEEE Trans. Intell. Transp. Syst.
23(12), 2463624648 (2022)

17. Zhu, Y., Bai, W., Sheng, M., Li, J., Zhou, D., Han, Z.: Joint UAV
access and GEO satellite backhaul in IoRT networks: performance
analysis and optimization. IEEE Internet Things J. 8(9), 7126-7139
(2021)

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://ssrn.com/abstract=4459043
https://ssrn.com/abstract=4459043

R. Pinciroli et al.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

. Hassan, H.H., Bouloukakis, G., Kattepur, A., Conan, D., Belaid,

D.: PlanloT: A framework for adaptive data flow management
in IoT-enhanced spaces. In: IEEE/ACM Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS),
pp. 157-168 (2023). https://doi.org/10.1109/SEAMS59076.2023.
00029

Kattepur, A.: Towards structured performance analysis of Indus-
try 4.0 workflow automation resources. In: Proceedings of the
ACM/SPEC International Conference on Performance Engineer-
ing (ICPE), pp. 189-196 (2019)

Pinciroli, R., Smith, C.U., Trubiani, C.: Replication package: Mod-
eling more software performance antipatterns in cyber-physical
systems. https://doi.org/10.6084/m9.figshare.15101925 (2022)
Mandrioli, C., Carlsson, M.N., Maggio, M.: Testing abstractions
for cyber-physical control systems. ACM Trans. Softw. Eng.
Methodol. https://doi.org/10.1145/3617170 (2023)

Giaimo, F., Andrade, H., Berger, C.: Continuous experimentation
and the cyber-physical systems challenge: an overview of the lit-
erature and the industrial perspective. J. Syst. Softw. 170, 110781
(2020)

Schranz, M., Di Caro, G.A., Schmickl, T., Elmenreich, W., Arvin,
F., Sekercioglu, A., Sende, M.: Swarm intelligence and cyber-
physical systems: concepts, challenges and future trends. Swarm
Evol. Comput. 60, 100762 (2021)

Audrito, G., Casadei, R., Damiani, F., Stolz, V., Viroli, M.: Adap-
tive distributed monitors of spatial properties for cyber-physical
systems. J. Syst. Softw. 175, 110908 (2021)

Bai, Y., Huang, Y., Xie, G., Li, R., Chang, W.: Asdys: dynamic
scheduling using active strategies for multifunctional mixed-
criticality cyber-physical systems. IEEE Trans. Ind. Inf. 17(8),
5175-5184 (2020)

Capota, E.A., Stangaciu, C.S., Micea, M.V., Curiac, D.-1.: Towards
mixed criticality task scheduling in cyber physical systems: chal-
lenges and perspectives. J. Syst. Softw. 156, 204-216 (2019)
Bures, T., Matena, V., Mirandola, R., Pagliari, L., Trubiani,
C.: Performance modelling of smart cyber-physical systems. In:
Proceedings of the International Conference on Performance Engi-
neering (ICPE), pp. 37-40 (2018)

Stankovic, J.A.: Misconceptions about real-time computing: a seri-
ous problem for next-generation systems. IEEE Comput. 21(10),
10-19 (1988)

Petriu, D.B., Woodside, M.: An intermediate metamodel with sce-
narios and resources for generating performance models from UML
designs. Softw. Syst. Model. 6, 163—184 (2007)

Li, C., Altamimi, T., Zargari, M.H., Casale, G., Petriu, D.C.: Tulsa:
atool for transforming UML to layered queueing networks for per-
formance analysis of data intensive applications. In: Bertrand, N.,
Bortolussi, L. (eds.) Proceedings of the International Conference
on Quantitative Evaluation of Systems (QEST), vol. 10503, pp.
295-299 (2017)

Bertoli, M., Casale, G., Serazzi, G.: JMT: performance engineer-
ing tools for system modeling. SIGMETRICS Perform. Eval. Rev.
36(4), 10-15 (2009)

Dallery, Y.: Approximate analysis of general open queuing net-
works with restricted capacity. Perform. Eval. 11(3), 209-222
(1990)

Higuera-Toledano, M.T., Risco-Martin, J.L., Arroba, P., Ayala,
J.L.: Green adaptation of real-time web services for industrial CPS
within a cloud environment. IEEE Trans. Ind. Inform. 13(3), 1249-
1256 (2017)

Alladi, T., Chamola, V., Zeadally, S.: Industrial control systems:
cyberattack trends and countermeasures. Comput. Commun. 155,
1-8 (2020)

Argaw, S.T., Troncoso-Pastoriza, J.R., Lacey, D., Florin, M., Cal-
cavecchia, F., Anderson, D., Burleson, W.P., Vogel, J., O’Leary, C.,
Eshaya-Chauvin, B., Flahault, A.: Cybersecurity of hospitals: dis-

@ Springer

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

cussing the challenges and working towards mitigating the risks.
BMC Med. Inform. Decis. Mak. 20(1), 146 (2020)

Cortellessa, V., Marco, A.D., Inverardi, P.: Model-Based Software
Performance Analysis. Springer, Berlin (2011)

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B.,
Wessln, A.: Experimentation in Software Engineering. Springer,
Berlin (2012)

Calinescu, R., Cortellessa, V., Stefanakos, I., Trubiani, C.: Analysis
and refactoring of software systems using performance antipattern
profiles. In: Proceedings of the International Conference on Funda-
mental Approaches to Software Engineering (FASE), pp. 357-377
(2020)

Wert, A., Happe, J., Happe, L.: Supporting swift reaction: auto-
matically uncovering performance problems by systematic experi-
ments. In: Proceedings of the International Conference on Software
Engineering (ICSE), pp. 552-561 (2013)

Trubiani, C., Bran, A., van Hoorn, A., Avritzer, A., Knoche, H.:
Exploiting load testing and profiling for performance antipattern
detection. Inf. Softw. Technol. 95, 329-345 (2018)

Chen, Z., Chen, B., Xiao, L., Wang, X., Chen, L., Liu, Y., Xu,
B.: Speedoo: prioritizing performance optimization opportunities.
In: Proceedings of the International Conference on Software Engi-
neering (ICSE), pp. 811-821 (2018)

Palma, F.,, Moha, N., Guéhéneuc, Y.-G.: Unidosa: the unified spec-
ification and detection of service antipatterns. IEEE Trans. Softw.
Eng. 45(10), 1024-1053 (2018)

Feitosa, D., Ampatzoglou, A., Avgeriou, P., Chatzigeorgiou, A.,
Nakagawa, E.Y.: What can violations of good practices tell
about the relationship between GoF patterns and run-time qual-
ity attributes? Inf. Softw. Technol. 105, 1-16 (2019)

Moha, N., Gueheneuc, Y.-G., Duchien, L., Le Meur, A.-F.: Decor:
a method for the specification and detection of code and design
smells. IEEE Trans. Softw. Eng. 36(1), 20-36 (2009)

Cortellessa, V., Pompeo, D.D., Stoico, V., Tucci, M.: On the
impact of Performance antipatterns in multi-objective software
model refactoring optimization. In: Proceedings of the Euromicro
Conference on Software Engineering and Advanced Applications
(SEAA), pp. 224-233 (2021)

Aceto, L., Attard, D.P., Francalanza, A., Ingdlfsdéttir, A.: On
benchmarking for concurrent runtime verification. In: Proceedings
of the International Conference on Fundamental Approaches to
Software Engineering (FASE), vol. 12649, pp. 3-23 (2021)
Tavcar, J., Horvdth, I.: A review of the principles of designing smart
cyber-physical systems for run-time adaptation: learned lessons
and open issues. I[EEE Trans. Syst. Man Cybern. Syst. 49(1), 145-
158 (2019)

Nuzzo, P., Li, J., Sangiovanni-Vincentelli, A.L., Xi, Y., Li, D.:
Stochastic assume-guarantee contracts for cyber-physical system
design. ACM Trans. Embed. Comput. Syst. 18(1), 2—-1226 (2019)
Heinzemann, C., Becker, S., Volk, A.: Transactional execution
of hierarchical reconfigurations in cyber-physical systems. Softw.
Syst. Model. 18(1), 157-189 (2019)

Larsen, K.G.: Validation, synthesis and optimization for cyber-
physical systems. In: Proceedings of the International Conference
on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS), vol. 10205, pp. 3-20 (2017)

Bakirtzis, G., Sherburne, T., Adams, S.C., Horowitz, B.M., Beling,
P.A., Fleming, C.H.: An ontological metamodel for cyber-physical
system safety, security, and resilience coengineering. Softw. Syst.
Model. 21(1), 113-137 (2022)

Bondi, A.B.: Foundations of Software and System Performance
Engineering: Process, Performance Modeling, Requirements,
Testing, Scalability, and Practice. Addison-Wesley Professional,
Boston (2015)

Matalonga, S., Amalfitano, D., Doreste, A., Fasolino, A.R., Travas-
sos, G.H.: Alternatives for testing of context-aware software

https://doi.org/10.1109/SEAMS59076.2023.00029
https://doi.org/10.1109/SEAMS59076.2023.00029
https://doi.org/10.6084/m9.figshare.15101925
https://doi.org/10.1145/3617170

Modeling more software performance antipatterns in cyber-physical systems

systems in non-academic settings: results from a rapid review. Inf.
Softw. Technol. 149, 106937 (2022)

54. Zhang, Z., Eyisi, E., Koutsoukos, X., Porter, J., Karsai, G.,
Sztipanovits, J.: A co-simulation framework for design of time-
triggered automotive cyber physical systems. Simul. Model. Pract.
Theory 43, 16-33 (2014)

55. Mo, Y., Sinopoli, B.: On the performance degradation of cyber-
physical systems under stealthy integrity attacks. IEEE Trans.
Autom. Control 61(9), 2618-2624 (2016)

56. Zhang, H., Shu, Y., Cheng, P., Chen, J.: Privacy and performance
trade-off in cyber-physical systems. IEEE Netw. 30(2), 62-66
(2016)

57. Chen, C., Liu, X., Qiu, T., Sangaiah, A.K.: A short-term traffic
prediction model in the vehicular cyber-physical systems. Future
Gener. Comput. Syst. 105, 894-903 (2020)

58. gvogor, 1., Crnkovié, 1., Vrcek, N.: An extensible framework for
software configuration optimization on heterogeneous computing
systems: time and energy case study. Inf. Softw. Technol. 105, 30—
42 (2019)

59. Gong, H., Li, R., An, J., Bai, Y., Li, K.: Quantitative modeling and
analytical calculation of an elasticity for a cyber-physical system.
IEEE Trans. Syst. Man Cybern. Syst. 50(11), 4746—4761 (2020)

60. Alasmari, N., Calinescu, R., Paterson, C., Mirandola, R.: Quantita-
tive verification with adaptive uncertainty reduction. J. Syst. Softw.
188, 111275 (2022)

61. Gil, M., Albert, M., Fons, J., Pelechano, V.: Engineering human-
in-the-loop interactions in cyber-physical systems. Inf. Softw.
Technol. 126, 106349 (2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Riccardo Pinciroli received M.S.
(2014) and Ph.D. (2018) degrees
in computer engineering from
Politecnico di Milano. He was a
Postdoc Fellow in Computer Sci-
ence at the Gran Sasso Science
Institute. His research interests
include stochastic modeling, per-
formance evaluation, energy effi-
ciency, and uncertainty propaga-
tion applied to cloud computing,
data centers, and cyber-physical
systems.

Connie U. Smith CTO of
L&S Computer Technology, Inc.,
is known for her work on defin-
ing the field of Software Perfor-
mance Engineering (SPE), inte-
grating SPE into the development
of new software systems, and cre-
ating software performance antip-
atterns. She received a BA from
University of Colorado and MA
and Ph.D. degrees in computer
science from the University of
Texas at Austin. She is the author
of the original SPE book, Perfor-
mance Engineering of Software
Systems, co-author of Performance Solutions: A Practical Guide to
Building Responsive, Scalable Software, and approximately 100 sci-
entific papers. In 1998, she initiated the first ACM Workshop on Soft-
ware and Performance (WOSP) now part of the International Confer-
ence on Performance Engineering (ICPE). She recently led a research
effort to develop tools to automate performance modeling of software
and system designs with focus on CPS and real-time embedded sys-
tems. More information is at www.spe-ed.com.

Catia Trubiani is Associate Pro-
fessor at the Gran Sasso Science
Institute (GSSI), Italy. Previously
she collaborated with the Karl-
sruhe Institute of Technology in
Germany, and the Imperial Col-
lege of London in UK. Her
research interests include software
performance modeling and anal-
ysis of large-scale and interact-
ing heterogeneous distributed sys-
tems. Recently, she is leading a
research effort funded by the MUR
(Ministry of University and
Research in Italy) to foster modu-
lar software designs and reduce uncertainties with a focus on cyber-
physical systems. For more information, please visit https://cs.gssi.it/
catia.trubiani.

@ Springer

www.spe-ed.com
https://cs.gssi.it/catia.trubiani
https://cs.gssi.it/catia.trubiani

	Modeling more software performance antipatterns in cyber-physical systems
	Abstract
	1 Introduction
	2 Antipatterns in CPS
	3 Our approach
	3.1 Baseline
	3.1.1 Modeling
	3.1.2 Analysis

	3.2 Are We There Yet?
	3.2.1 Modeling
	3.2.2 Analysis

	3.3 Is Everything OK?
	3.3.1 Modeling
	3.3.2 Analysis

	3.4 Where Was I?
	3.4.1 Modeling
	3.4.2 Analysis

	3.5 Circuitous Treasure Hunt
	3.5.1 Modeling
	3.5.2 Analysis

	3.6 One-Lane Bridge
	3.6.1 Modeling
	3.6.2 Analysis

	3.7 More is Less
	3.7.1 Modeling
	3.7.2 Analysis

	3.8 The Ramp
	3.8.1 Modeling
	3.8.2 Analysis

	3.9 Traffic Jam
	3.9.1 Modeling
	3.9.2 Analysis

	3.10 Lessons learned

	4 Evaluation
	4.1 Case study description
	4.2 Modeling
	4.3 Model-based comparison of analysis results
	4.4 Antipattern experiments
	4.4.1 Are We There Yet?
	4.4.2 Is Everything OK?
	4.4.3 Where Was I?
	4.4.4 Circuitous Treasure Hunt
	4.4.5 One-Lane Bridge
	4.4.6 More is Less
	4.4.7 The Ramp
	4.4.8 Traffic Jam

	4.5 Lessons learned

	5 Threats to validity
	6 Related work
	7 Conclusion and future work
	Acknowledgements
	References

