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Performance Analysis of Fault-Tolerant
Multi-Agent Coordination Mechanisms

Riccardo Pinciroli and Catia Trubiani

Abstract— Performance evaluation of multi-agent sys-
tems (MAS) embraces several challenges due to uncer-
tain operational environments, such as software/hardware
failures and unfaithful communications that facilitate the
spread of deceptive messages. One way to smooth the im-
pact of reliability and security potential issues in MAS is to
enforce different coordination mechanisms among agents
(i.e., coordinating multiple agents that need to perform a
sequence of actions to maximize a system-level reward),
and evaluate their efficiency. In this paper, we propose a
tool-based approach, namely COORDINATE, that simulates
and compares the performance characteristics of different
coordination mechanisms for MAS while considering fault-
tolerant and corrupted agents. A Smart Hospital is adopted
as illustrative example to show the need of performance-
based analysis results pointing out which coordination
mechanism is more efficient. Experimental results indicate
that the inter-arrival time of tasks to be accomplished, the
failure probability of agents, and the ratio of faithful to
malicious agents contribute to determining the efficiency
of different coordination mechanisms. When varying these
parameters in the considered scenarios, the system la-
tency can be reduced up to 4.2× by selecting the opti-
mal coordination mechanism. This way, software develop-
ers are informed on the system peculiarities that trigger
the switching among such coordination mechanisms for a
performance-based optimal solution.

Index Terms— Performance Evaluation, Multi-Agent Sys-
tems, Coordination, System Latency.

I. INTRODUCTION

Multi-Agent Systems (MAS) have been recently advocated
to accomplish cooperative tasks [1], [2], and the coordination
of agents is indeed nontrivial, even more so when they need
to maximize a system-level reward. In the literature, it is well-
assessed the synergy between MAS and challenges of Cyber-
Physical Systems (CPS) since semantic technologies can be
used to empower embedded computing and communication
capabilities [3], [4]. CPS are increasingly adopted in many
industrial environments, such as warehouse logistics and pro-
duction monitoring [5], [6]. One of the key advantage is that
a cyber–physical entity integrates its hardware function with a
digital counterpart, hence it acts as a virtual representation

The authors would like to thank the Editor and the anonymous review-
ers for their valuable feedback. We are also grateful to the Computing
and Network Service for their support in our experiments on the U-
LITE cluster at INFN, LNGS, L’Aquila, Italy. This work has been partially
supported by the MUR PRIN project SEDUCE 2017TWRCNB.

R. Pinciroli and C. Trubiani are with the Gran Sasso Science Institute,
L’Aquila, Italy (e-mail: name.surname@gssi.it).

for the physical part. From an industrial perspective, this
fosters the development of products/processes where agents
take autonomous actions in response to their internal state
and their perception of the environment [7]. Besides guar-
anteeing the correctness of the system behavior, there exist
important challenges, such as performance, reliability, and
security, which must be tackled, especially in an industrial
context. For instance, trustworthiness, intended as the capacity
of CPS to deal with disruption while guaranteeing a temporary
impact on provided services, has been recently outlined in the
literature as one of the major challenges [8], [9], mainly due to
these difficulties: (i) failures can occur in various unexpected
ways due to uncertainties in the operational environment;
(ii) adversarial threats (e.g., the opportunistic behavior of
agents [10]) are likely to take place in practice [11], and it is
not trivial to plan which countermeasures need to be applied
for system recovery.

Motivation. With the raising of critical industrial applica-
tions subject to stringent quality-of-service requirements, it
becomes fundamental to provide support for the performance
evaluation of fault-tolerant MAS. In the literature [11] there
exist many fault-tolerant control strategies, we are interested to
study cooperative methodologies where agents work together
to achieve the system goal. For instance, let us consider a smart
hospital where robots are in charge of delivering medicines
to patients within a given time (e.g., 2 minutes from doc-
tors’ requests). Robots may show a software/hardware failure
while working on their tasks [11]. A failed robot can still
communicate and ask for help from other robots to complete
its task. This scenario calls for coordination mechanisms that
facilitate the spreading of help requests. Robots may also ask
for help maliciously (e.g., deception attacks [12] with the
intent of affecting the system performance to gain a personal
advantage [10]) even if they actually complete their tasks.
Note that malicious robots inject deceptive messages (i.e.,
fake help requests) in the communication [13], but they keep
working toward the completion of their tasks. Any robot that
receives the malicious request takes a detour and slows down
its mission to check if help is really needed. These robots
resume their original mission only after ensuring that no
help is required. This way, malicious robots gain personal
advantage by delivering medicines without delay and faster
than misled robots. This scenario implies that it may be
more suitable to adopt coordination mechanisms limiting the
spread of (fake) help requests. Moreover, in the literature [14]
exist plan synthesis schemes to handle dependencies among
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agents’ actions, i.e., participants have insufficient resources
to solve the entire problem and need to cooperate. In our
scenario, this means that some robots move medicines from
the hospital pharmacy to clinical departments, whereas other
robots are in charge of delivering these medicines to the
patients. These dependencies on actions motivate the need
for (i) evaluating the performance characteristics of MAS and
(ii) making software developers aware of the importance of
the underlying coordination mechanism as an indicator of the
promptness of reaction among agents.

Challenges. The performance evaluation of coordination
mechanism for fault-tolerant MAS triggers two main chal-
lenges: (i) many system parameters need to be considered,
e.g., characteristics of physical space, agent dependencies,
workload intensity of application tasks, security and reliability
potential issues. Even more the interplay among these param-
eters makes the performance analysis rather complex; (ii) the
complexity of modeling the system behavior with performance
engineering techniques (e.g., stochastic Petri nets) that require
high expertise to be used efficiently and incur the state space
explosion problem, i.e., a solution may not be found in a
reasonable time.

Proposed solution. To address the aforementioned
challenges, we propose a tool-based approach, namely
COORDINATE (COORDINation of fAult Tolerant agEnts),
i.e., a tool that simulates the behavior of agents starting
from the specification of multiple coordination mechanisms.
Specifically, we consider three different coordination
mechanisms inspired by [15]: (i) centralized (CE) – also
defined as internal communication in [14] – in which agents
communicate their failures to a central coordinator that
decides which other agent should intervene according to
different strategies. For instance, the proximity strategy, i.e.,
the closest agent, or the importance strategy, i.e., the agent
involved in the least important task; (ii) semi-decentralized
(SD) – also defined as external communication in [14] –
which selects a subset of agents to be informed of the failure,
most likely those occupying spaces adjacent to the occurrence
of the failure; (iii) fully-decentralized (FD) in which each
agent is in charge of verifying the status of the physical
space, and it is autonomous in the process of discovering
agents to be rescued or uncompleted tasks that still need to be
carried out. The goal of COORDINATE is to quantitatively
compare the performance characteristics of these coordination
mechanisms acting on different space topologies. Our
experiments show that both the characteristics of the physical
space and reliability/security threats (e.g., failure probabilities,
number of malicious agents that do not reveal their intention
otherwise the identification of such agents would have a
high impact on the system performance [11]) play a key
role in identifying the optimal coordination mechanism.
Note that the performance evaluation abstracts from the
hardware infrastructure, it is intended to be executed at the
design time of the software development process. Predictive
results represent knowledge for software developers that
are informed, with quantitative data, on the performance of
different coordination mechanisms. More specifically, we are
interested to quantitatively compare different strategies for

coordinating multiple fault-tolerant agents (possibly showing
dependencies) that need to perform a sequence of actions
with the goal of maximizing a system-level reward.

Contributions. In this article, we propose a performance-
based evaluation approach for selecting optimal coordination
mechanisms while considering reliability and security poten-
tial issues. The main contributions of this article are as follows.

• Provide a tool-based approach for the performance analy-
sis of fault-tolerant multi-agent coordination mechanisms,
using dependability characteristics (e.g., failure probabil-
ities and number of malicious agents) contributing to the
coordination selection.

• Design a tool supporting different pre-defined coordina-
tion mechanisms, and flexible to simulate varying sce-
narios. Software developers can change the values of
predefined system parameters and analyze their impact
on multiple space topologies.

• Evaluate the proposed tool in terms of workload intensity,
scalability, and its applicability to both synthetic and real-
world scenarios.

The paper is structured as follows. Section II briefly reviews
the related work. Section III describes the proposed tool.
Section IV presents the conducted experimentation: research
questions, analysis results, and threats to validity. Section V
concludes the paper and provides future research directions.
The tool and replication data are publicly available [16].

II. RELATED WORK

This paper relates to three main streams of research: coordi-
nation among agents, dependability (i.e., reliability and secu-
rity) issues, and simulation. These three aspects are reviewed
in the following. Table I reports the approaches that are more
closely related to COORDINATE along with a brief summary
of strengths and characteristics related to their scope, thus to
better position our tool-based approach in the field.

Coordination among agents. Many recent studies focus on
coordination that is a fundamental aspect of modern sys-
tems [17]. For instance, the importance of coordination in
MAS and possible algorithms for decision making alternatives
are discussed in [18]. Swarm intelligence algorithms are
proposed in [19] to enable the autonomous coordination of
multi-agent systems. Yun et al. [20] propose a leader-based
autonomous coordination mechanism to increase the perfor-
mance (i.e., data resolution and area coverage) of unmanned
aerial vehicles. A control-based approach that allows coordi-
nation under intermittent Denial-of-Service (DoS) attacks is
presented in [21]. A coordination language that focuses on
quantitative aspects (e.g., energy consumption and security) is
defined in [22], but it is not complemented with an analysis
tool. Task completion time and overall system performance
efficiency is evaluated in [23], in particular reward-based
task offloading schemes regulate the collaboration among
nearby robots. Performance evaluation is conducted through
Veins [24] and OMNeT++ [25] simulators tracking vehicles
in urban mobility and their communication protocols. Rewards
are estimated while increasing vehicle density to determine
when network congestion is achieved. A similar problem
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TABLE I: Summary of related work - strengths and scope on
performance analysis.

Approach Strengths Scope

co
or

di
na

tio
n [23]

Reward-based task of-
floading schemes

Tailored for vehicles mobility
and their network communi-
cations

[26]
Collision avoidance is
a major concern

Focused on automated guided
vehicles and acting on their
speed

[28] Performance modeling
of agents’ interactions

Subject to the GSPNs state
space explosion problem

de
pe

nd
ab

ili
ty

[30]
Optimal reliability and
ensuring security

Circumscribed to the timing
of workflow scheduling algo-
rithms

[31]
Optimal performance
but preserving privacy

Confined to estimate energy
storage under privacy require-
ments

[32]
Probabilistic operators
for stochastic behav-
iors

Customized to generate
counter examples for
unsatisfied relations

si
m

ul
at

io
n

ARGoS
Large-scale swarms of
(multi-physics) robots

Conceived for analyzing
synchronization, flocking, or
gripping

Gazebo
Robots moving in
complex environments

Envisaged for robots’ path
planning and control algo-
rithms

RST
Versatile to model
kinematics and
dynamics

Aimed to robots’ motion
planning and trajectory gen-
eration

COORDINATE

Flexible in the
specification of
the system design
(physical space,
application tasks,
system agents and
their dependencies)

Comparison of three
coordination mechanisms.
A large number of system
design characteristics (e.g.,
space topology, workload)
may affect the system
latency.

(i.e., reducing the delivery time prioritizing urgent tasks) is
tackled in [26], but the focus is on collision avoidance among
vehicles. Microsoft Robotics Developer Studio [27] is adopted
as simulator, kinematic equations are aimed to predict the
movement of automated guided vehicles with the goal of
overcoming the intersections safely, possibly by changing the
speed of vehicles. Stochastic models are used in [28] to eval-
uate the performance of coordination mechanisms, but agents
operate in a limited physical space (i.e., three rooms only) and
no reliability or security issues are investigated. Generalized
Stochastic Petri Nets (GSPNs) [29] are used for performance
analysis, but the formalism is known to suffer from state space
explosion, and a large physical space may hinder the model-
based analysis. Differently from these approaches, this paper
investigates the performance behavior of three coordination
mechanisms while considering reliability and security issues
as first-class concerns.

Dependability issues. Dependability properties of systems
are investigated via several approaches, for instance using
probabilistic model checking [33] or logic-based specifications
in conjunction with a monitoring tools [34]. Reliability and
security concerns are jointly analyzed in [30] for scheduling
workflows that include timing constraints, but the migration
of tasks among agents is not foreseen. The performance
evaluation consists of simulating the workflow scheduling
algorithms and measuring their execution times, since the
overall goal is to decrease the probability of errors caused
by transient faults while ensuring security services. Malicious
activities are considered in [35] where the communication
layer is monitored to guarantee reliability and to avoid the

propagation of security threats at the application level. He et
al. [12] survey malicious attacks in MAS and report those
considered in this paper, i.e., deception attacks including false
data injection. These attacks are analyzed in Sargolzaei et
al. [36] with the goal of detecting their occurrence, however
the impact of these attacks on the system performance is not
considered. The trade-off between performance and security
is analyzed in [31] and privacy mechanisms are considered
as overheads that slow down the system. Specifically, perfor-
mance refers to energy storage that is kept under control, and
privacy requirements are embedded in the defined optimization
problem. Energy-related constraints are investigated in [37]
with DoS attacks limiting sensors to transmit data, and in [38]
with convolution neural networks that are proposed to increase
the device lifetime by reducing the communication cost (i.e.,
energy consumption). Non-functional analysis is also carried
out in [32] where model-checking techniques support formal
verification of UPPAAL models. A set of probabilistic opera-
tors is defined to model dynamic and stochastic behaviors, and
the verification consists of probabilistic queries that generate
counter examples in case of unsatisfied relations. A recent
trend consists of building digital twins to support decision
making and improve the resilience [39], i.e., machine learning
techniques are adopted to look for the best sequence of
decisions ensuring resilience in systems subject to uncertainty
in their evolution. To the best of our knowledge, there exists no
work looking at how the severity of dependability issues (i.e.,
failure probabilities and number of malicious agents) impacts
on different coordination mechanisms among agents, as we do
in this paper.

Simulation. There are several tools to simulate robots and
their behavior. For instance, ARGoS [40] provides examples
of properties applied to swarms of robots, such as synchro-
nization, flocking, or gripping. Gazebo [41] focuses on robots
moving in complex indoor and outdoor environments, and
it supports path planning and control algorithms; it can be
also synchronized with Simulink models through the Robotics
System Toolbox (RST) [42] that is versatile in modeling
robots’ kinematics and dynamics, and it provides motion plan-
ning and trajectory generation. To the best of our knowledge,
despite the large availability of robotics simulators, none of
them integrates coordination mechanisms among agents and
provides a performance evaluation in terms of system latency
affected by multiple and peculiar system characteristics.

Summary of the literature review. To the best of our knowl-
edge, in the literature most of the work for the performance
analysis of coordination mechanisms (see Table I) targets
different scopes and relies on specific agents (e.g., vehicles)
or communication protocols. Differently from the state-of-the-
art, in this paper we investigate the performance characteristics
of multiple coordination mechanisms to study their efficiency
while varying system characteristics and considering agent de-
pendencies. A key advantage is that our tool (COORDINATE)
is flexible in the specification of the system design, hence
physical space (e.g., its topology), application tasks (e.g., their
priority), and system agents (e.g., their failure probability) can
be configured with a certain degree of freedom by system
designers. The novelty consists of demonstrating that the sys-
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tem performance can be optimized by switching coordination
mechanisms on the basis of the application scenario under
analysis along with its reliability/security peculiarities.

III. PROPOSED TOOL: COORDINATE

Fig. 1 provides an overview of COORDINATE that is
constituted of two main components. First, an analyzer (focus
of this paper, see the shaded box) builds the knowledge
at design time by simulating the system design with three
coordination mechanisms playing in a user-defined observation
time. Fixed/prescribed-time fault tolerant cooperative control
for MAS has not received adequate attention and constitutes
a promising topic [43]; this strengthens our goal of evaluating
the system response time of fault-tolerant and cooperative
MAS. Later, at runtime, an evaluation engine takes perfor-
mance requirements and system monitoring data as input,
and returns the optimal coordination mechanism(s) as output.
Note that the system monitoring is left aside from this paper
contributions, we refer to state-of-the-art approaches [43] for
this scope. The evaluation engine fully leverages the design
time knowledge that we discuss in the following.

Fig. 2 provides an illustrative scenario to exemplify the
description of the proposed tool. We assume that there are
five agents moving into nine rooms to accomplish their appli-
cation tasks (e.g., carrying medicines). Our scenario includes
a Lobby (i.e., the source zone) where agents are instructed
on their task, two patient rooms (i.e., PT1 and PT2), a
Nurses Station for monitoring all patients, a Waiting Area for
patients’ relatives waiting to get information by physicians,
and two target zones (i.e., the Surgical Unit and the Waste
Management areas) where agents are supposed to deliver
objects and complete their task. A Corridor is represented
as multiple inter-connected rooms (see dashed lines in Fig. 2).
For simplicity, we fix the time required to cross a room, but
it can be increased or decreased to cover physical spaces of
larger or smaller sizes, respectively.

A. System Design

1) Physical Space: Software developers have the possibility
to build their own physical space of interest by specifying
rooms (through an identifier) and their connections.

Fig. 3 depicts some common space topologies [44] provided
by our tool, where (i) the upper part reports the textual de-
scription, (ii) the bottom part abstracts the upper specification
and graphically reproduces the physical space: each node of
the graph is a room with its ID (i.e., 0 to 8), whereas edges
represent connections.

Mesh. Each node is connected to a subset of neighbour
nodes which in turn are connected to other nodes. For instance,
the text 0:[1, 3] means that the room with ID 0 is connected
to two other rooms (i.e., those with ID 1 and 3).

Ring. When considering a ring topology, each room has
exactly two connections. For instance, the room with ID 0 is
connected to rooms with ID 1 and 8.

Tree. It includes a root node that is connected to a subset
of nodes which in turn are connected to other nodes. For

Performance 
Requirements

Physical 
Space

Application 
Tasks

System 
Agents

Evaluation 
Engine

Observation 
Time

Coordination 
Mechanisms

System Design

Optimal
Coordination 
Mechanism(s)

System 
Monitoring

Fig. 1: COORDINATE – Proposed tool for the performance
evaluation of coordination mechanisms.

Lobby

Surgical
Unit

Waste
Management

Waiting
Area

Nurses
Station

PT1

PT2

A1: imp=1A2: imp=0 A3: imp=2

A4: “free”

A5: “free”

C: central
coordinator

Corridor

Fig. 2: Smart Hospital illustrative scenario.

instance, in our example the room labeled as 0 is the root
node connected to rooms labeled as 1, 3, 5, and 7.

It is worth remarking that these templates represent some
feasible structures of the physical space. Software developers
can specify their own topology (see Section IV-E) by providing
IDs of rooms and their connections, the room where tasks are
generated (i.e., source), and possible destinations (i.e., targets).

2) Application Tasks: They represent a system goal to be
achieved (e.g., delivery of medicines). Each task is regulated
by an inter-arrival time that models the frequency with which
tasks are generated in the system. Besides, each task is
associated with a value denoting its importance (e.g., low,
medium, and high) to be accomplished.

3) System Agents: They represent the entities in charge of
completing application tasks while moving in the physical
space. Each agent is initialized with the option of being mali-

mesh9 = {
0: [1, 3], 1: [0, 2, 4],
2: [1, 5], 3: [0, 4, 6],
4: [1, 3, 5, 7], 
5: [2, 4, 8], 6: [3, 7],
7: [4, 6, 8], 8: [5, 7] }

0 1 2

6 7 8

3 4 5

ring9 = {
0: [1, 8], 1: [0, 2],
2: [1, 3], 3: [2, 4],
4: [3, 5], 5: [4, 6],
6: [5, 7], 7: [6, 8],
8: [0, 7] }

0 1 2

678

3

4

5

tree9 = {
0: [1, 3, 5, 7], 
1: [0, 2], 2: [1],
3: [0, 4], 4: [3],
5: [0, 6], 6: [5],
7: [0, 8], 8: [7] }

0

1

2 6

7

8

3

4

5

Fig. 3: Templates of space topologies, inspired by [44].
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Fig. 4: Sequence diagram for the SD mechanism.

cious and a failure probability that takes into account multiple
aspects. We distinguish malicious from faulty agents since they
impact the system performance differently. Malicious agents
unnecessarily invoke peers and slow down their operation,
whereas faulty agents ask for help only when they cannot
complete their tasks. We do not explicitly simulate the battery
consumption of agents, if they run out of energy a failure is
raised. We also assume that failures arise if agents hamper
each other when they operate in the physical space.

4) Agent Dependencies: They represent constraints that
limit agents from autonomously completing the application
tasks and force cooperation among agents. This implies mak-
ing decisions concerning a global solution plan and distribut-
ing the task goals among the agents, possibly operating in
different areas of the physical space. We focus on inter-
leaved planning and coordination [14] since this plan synthesis
scheme fits with agents efficiently addressing group goals.

B. Coordination Mechanisms

We use the illustrative example shown in Fig. 2 (where agent
R1 fails) to describe coordination mechanisms, and we provide
sequence diagrams to represent interaction among agents if
any. Independently of the coordination mechanism, we assume
failed agents take Trepair time units on average to be repaired.

1) Fully-Decentralized: This is the most simple mechanism
since agents do not communicate with their peers, they au-
tonomously check if there are unaccomplished tasks to be
completed. Considering the snapshot of the system in Fig. 2,
all agents may enter the PT1 room and decide to swap their
task with the uncompleted one if it has greater importance. It is
worth noting that for this mechanism, the malicious behavior
of agents does not affect the system performance since agents
do not receive any deceptive notification, they independently
check for unfinished application tasks.

2) Semi-Decentralized: Fig. 4 reports the sequence diagram
illustrating the interaction between the agent encountering a
failure (A1), and all other agents close to it. A message asking
for help (along with the task importance) is broadcasted, and
only agents in the same or adjacent room(s) can receive it.
Agents compare the communicated importance with the one
of the task they are carrying out, and they send a message of

Fig. 5: Sequence diagram for the CE mechanism.

being available for rescue only if the importance of the uncom-
pleted task is larger. Free agents have the lowest importance,
and they always reply to any rescue request they receive. The
agent originating the enquiry for rescue might receive more
than one offer, but it sends an acknowledgment to the first
offer only, so that all other agents are not interrupted in their
activities. Considering the snapshot of the system in Fig. 2,
A1 communicates with A2 and A3, but only A2 replies since
the importance of its own task is lower than the importance
of the uncompleted one. For this coordination mechanism, the
malicious behavior of agents affects the system, agents may
receive a fake rescue request. To stress this aspect, later in the
experimentation, we set the importance of fake uncompleted
tasks to a maximum value, so that all agents that receive the
request are available for providing help.

3) Centralized: Fig. 5 reports the sequence diagram illustrat-
ing the centralized coordination mechanism. The interaction is
established between the agent encountering a failure (A1), and
a central coordinator (C) that is in charge of deciding which is
the most suitable agent to be involved in the rescue. The status
check is performed on all agents in the physical space. Four
strategies have been implemented for this scope: (i) proximity,
i.e., the agent that is closer to the failure; (ii) importance,
i.e., the agent showing the lowest importance; (iii) proximity-
importance, i.e., the agent with the lowest importance among
the closest ones; (iv) importance-proximity, i.e., the closest
agent among those with the lowest importance. Considering
the example in Fig. 2, A1 contacts C that checks the status
of other agents (i.e., A2 to A5). On the basis of the strategies
defined above, C sends a message of acting for rescue to
different agents. A2 is contacted whether the proximity is priv-
ileged over the importance. C selects A4 or A5 when only the
importance is considered, since they are equally eligible due
to the condition of being “free”, i.e., no tasks are assigned. In
the case of the importance-proximity strategy, C contacts A4
since it is the closest agent to the uncompleted task showing
the lowest importance. Similar to SD, the malicious behavior
of agents affects the performance of the CE mechanism since
the central coordinator may receive fake requests. Note that
malicious agents communicate maximum importance when a
(fake) rescue request is sent to the central coordinator so that
all agents can be selected for rescuing the uncompleted task.
Besides, CE builds upon a single component (the coordinator)
that, in case of failure, invalidates the rescue operation. Hence,
the switch to SD and FD mechanisms becomes even more
crucial in this scenario.

Table II summarizes all the parameters that can be set by
software developers to analyze their own scenarios. Following
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TABLE II: Parameters that software developers can change to
define and simulate their own system scenarios.

Type Parameter Description

Simulation CoordMech Coordination mechanism
T Observation time

Space

NRooms Number of rooms in the space
Source Source room
Targets Target room(s), source is excluded

(-1 means randomly selected)
Topology Space topology (room connections)

Tasks

Tarrival Avg. time between the creation of
two consecutive tasks

ImpProb Percentage of tasks with a given
importance

Texpire Avg. time after which a task expires
(-1 means tasks do not expire)

Agents

Nbot Number of agents in the space
Nmal/Nbot Percentage of malicious agents in

the space (Nmal ≤ Nbot)
Fagent Probability of each agent to fail
Tload Avg. time of agents to start a task
Tmove Avg. time of agents to cross a room
Tdrop Avg. time of agents to finalize a task
Tcomp Avg. time of agents for decision
Tcomm Avg. time of agents to communicate
Trepair Avg. time to repair an agent

Comm. Fmsg Probability of each message to fail

a survey on decision making in MAS [18], our tool includes
time complexity for agents: (i) Tcomp (computational overhead
for decision making), i.e., the amount of time needed to
search for a solution; (ii) Tcomm (communication overhead),
i.e., the amount of time needed for the communication. We
focus on sequential decision problems with a finite horizon,
i.e., decisions need to be made for a finite number of time
steps that last up to the accomplishment of the system goal
(e.g., the delivery of an object in our scenario). We consider a
decentralized learning process, i.e., each agent learns its own
policies in parallel to other agents. Our tool also includes the
possibility to model the failure probability of communication
among agents, i.e., Fmsg in Table II.

C. Implementation

To enable the system performance analysis, we develop
a discrete-event simulator. It is written in Python, and
it allows comparing the different coordination strategies. It
comes with a library of existing solutions, but developers can
easily customize the parameters to build their own application
scenarios. Source code is publicly available [16].

IV. EXPERIMENTATION

In this section, we present experimental results obtained
by analyzing synthetic and real-world scenarios where agents
are robots whose tasks consist of delivering some items
(e.g., medicines) from a source room to a target one. All
experimental results (i.e., average, solid line) are shown with
the 95% confidence interval (i.e., the shaded area).

Table III shows the value of input parameters used for exper-
iments and set by exploring some literature in this domain [45],
[46]. All time parameters follow an exponential distribution.
Different values can be used, e.g., the average time of robots to

cross a room can refer to ad-hoc requirements. In our scenario,
the importance probability of items is set with larger values
when referring to items of low/high importance. We consider
50% of generated items showing a low importance, 10%
medium, and 40% high (see ImpProb in Table III). Underlined
values indicate preferred settings unless performance metrics
are evaluated as a function of that parameter.

A. Research Questions

The goal of our experimental evaluation is twofold: i)
it provides empirical evidence on the impact of different
coordination mechanisms when evaluating the performance
characteristics of systems subject to reliability and security
issues; ii) it shows that our tool can be applied to real-world
medium-sized scenarios. We aim to answer three research
questions:

RQ1: What is the impact of workload intensity, malicious
robots, and failure probability on the system latency?
What is the computation (for decision making) and
communication (with probable loss of messages)
performance overhead? Motivation: we are inter-
ested in evaluating how workload, security, reliabil-
ity, computation, and communication (with message
failures) parameters affect the system performance.

RQ2: What is the impact of agent dependencies on the
system performance? Motivation: we are interested
in evaluating to which extent COORDINATE can
analyze agent dependencies.

RQ3: How do workload intensity, number of robots, and
rooms in the environment affect the scalability of
the proposed tool? Motivation: we are interested in
evaluating the scalability of COORDINATE.

RQ4: Does system design affect the performance of sys-
tems deployed in real-world scenarios? Motivation:
we are interested in evaluating to which extent
COORDINATE can be realistically applied.

To answer these questions, we analyze different scenarios
using the proposed tool. COORDINATE is deployed on a
cluster hosting a virtual machine with 16 vCPU and 32GB
memory. We recall that a replication package is provided for
inspection of artifacts and results [16].

B. System Latency

Here we report experiments on the system latency that is
defined as the time interval (i.e., consisting of queuing time
and service time) between a user’s request of a service and
the response of the system [47], and usually upper bounds
are defined as business requirements by stakeholders [48]. In
our scenario, the system latency represents the time interval
between the generation of an item and its delivery.

Workload intensity. Figs. 6(a)–(c) compare the system la-
tency of the three coordination mechanisms when the average
inter-arrival time of items varies from 90 to 300 seconds.
As shown in Table III, 25 rooms, 20 robots (of which 18
malicious ones), and a failure probability of 5% are used
for these experiments. Fig. 6(a) shows that, with the mesh
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Fig. 6: Latency as a function of workload intensity, system security, or system reliability. Nbot = 20 robots operate in an
environment with Nrooms = 25 rooms organized as the mesh, ring, or tree topology. Other system parameters are in Table III.

topology, the inter-arrival time of items affects the three coor-
dination mechanisms in different ways. FD and SD manifest a
counter-intuitive result where latency increases when the inter-
arrival time is longer, i.e., items are generated less frequently.
Checking simulation logs, we observe that a less frequent item
generation implies reduced robot mobility (i.e., robots wait in
the source room if they have no tasks) and a slower rescue
of abandoned objects (i.e., uncompleted tasks). CE has a full
knowledge of the system status and a rescue task is assigned
to the most suitable robot as soon as an object is dropped. This
way, rescue operations are not delayed and the system latency
decreases when fewer items are created. Similar considerations
hold for the ring topology, see Fig. 6(b). The impact of the
load intensity is exacerbated by fewer connections that lead to
a larger variation of the system latency. Fig. 6(c) depicts results
for the tree topology. Independently of the load intensity, FD
is the least efficient mechanism, whereas CE is the best one.

Malicious robots. Figs. 6(d)–(f) depict the system latency
when the percentage of malicious robots varies in the analyzed

scenario, i.e., NRooms = 25, Nbot = 20, Fagent = 5%,
and Tarrival = 120 seconds. We remind that malicious
robots affect only the communication, i.e., they spread fake
information to slow down other robots and get a personal
advantage. This implies that malicious robots always complete
their tasks, hence the system latency does not tend to infinity
even when all robots are malicious. Fig. 6(d) shows that, with
the mesh topology, CE minimizes the latency independently
of the number of malicious robots. This is explained by the
strategy adopted by CE that consists of distributing rescue
tasks to robots that are not busy, hence optimizing the available
agents. FD is not affected by the number of malicious robots
since agents do not communicate, and it performs as well
as the CE mechanism only when all robots are malicious.
The efficiency of CE decreases due to the overhead required
to manage a larger number of fake requests. SD is more
efficient than FD up to 80% of malicious robots, but for
larger values, its performance degrades due to the fake rescue
operations required by malicious robots. Differently from CE
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TABLE III: Parameter values used to run experiments.

Class Parameter Value

Simulation CoordMech FD, SD, CE
T 3 months

Space

NRooms 4, 9, 16, 25, 36, 49
Source 0
Targets -1
Topology Mesh, Ring, Tree

Tasks

Tarrival [sec] 90, 120, 150, 180, 210, 240, 270, 300
ImpProb 50%: low, 10%: medium, 40%: high
Texpire -1

Agents

Nbot 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Nmal/Nbot 0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1
Fagent [%] 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Tload [sec] 1
Tmove [sec] 5
Tdrop [sec] 1
Tcomp [sec] 0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1
Tcomm [sec] 0, .01, .02, .03, .04, . . . , .08, .09, .1
Trepair [sec] 1800

Comm. Fmsg [‰] 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

(recall that it tries to assign legit or fake rescue tasks to
robots that are not busy) SD allows failed (or malicious)
robots to ask for help only to agents that are close (i.e., in
adjacent rooms). Fig. 6(e) depicts the ring topology, and the
impact of malicious robots is more evident (see the latency
magnitude). CE performs well when the number of malicious
robots is small, otherwise FD (i.e., no communication) should
be preferred. In some cases, SD is also a valuable mechanism
since only robots in adjacent rooms may be affected by fake
rescue tasks. These results confirm the importance of switching
coordination mechanisms for system performance optimality.
Fig. 6(f) reports the system latency with the tree topology. In
this case CE always outperforms SD and FD. Similarly to Fig.
6(d), we notice that also here the performance of CE and SD
is indeed affected by the percentage of malicious robots that
entails more robots involved in the rescue of useless tasks, and
inevitably delaying the overall delivery of items.

Failure probabilities. Figs. 6(g)–(i) depict the system la-
tency of the three coordination mechanisms when the failure
probability of robots (Fagent) varies between 1% and 10%
[46]. For these experiments, NRooms = 25, Nbot = 20,
Nmal = 18, and Tarrival = 120 seconds. Fig. 6(g) shows
that, in the mesh topology, CE is optimal with Fagent ≤ 7%,
FD is optimal for all other values. Fig. 6(h) illustrates the ring
topology, and CE is worse than FD and SD when Fagent >
4%. Fig. 6(i) shows the performance of the tree topology. In
this case, FD is always the least efficient mechanism, while
CE is the best one. For small values of Fagent, the system
latency of SD is similar to the one of FD, but its performance
gets closer to the one of CE when Fagent ≥ 8%.

Computation and communication (with probable loss of
messages). COORDINATE allows developers to tune other
parameters, i.e., Tcomp, Tcomm, and Fmsg . However, their
effect on the system latency is negligible due to the different
order of magnitude used for mechanical (e.g., movements)
and software (e.g., computation/communication) times. For the
sake of space, these results are not depicted. To observe the
effect of these parameters on the system latency, we consider
a different system parameterization (see the replication pack-

age [16] for details on numerical values). Results are shown in
Fig. 7 for an environment with 16 rooms organized as a ring
topology. Fig. 7(a) shows that the computation time (for deci-
sion making) does not affect the latency of the CE mechanism
since all calculations are made by the coordinator. The latency
of systems with FD and SD mechanisms increases with Tcomp

since, in these cases, agents are in charge of determining the
next steps. The system latency as a function of communication
time is shown in Fig. 7(b). SD and CE are affected by this
parameter since agents need to exchange information (with
other agents or the coordinator, respectively). No effect is
observed when agents act in an independent way, i.e., using the
FD mechanism. In this scenario, CE is the optimal mechanism
for Tcomm ≤ 0.35 seconds, otherwise FD is preferable. The
SD mechanism is still the solution with the longest latency.
Fig. 7(c) depicts the effect of lost messages on the system
latency. The higher Fmsg , the more likely a message is lost.
While this type of failure has no effect on the FD mechanism
that does not leverage communication, it affects the system
latency of SD and CE mechanisms. SD works better with large
Fmsg , and this is due to malicious robots not being able to
spread fake rescue requests. The system latency deteriorates
for large values of Fmsg when CE is adopted. This is due
to the central coordinator that lessens the effect of malicious
robots and makes communication crucial for fast rescues.

RQ1: Workload intensity, malicious robots, and failure
probability of robots affect the system latency when
adopting different coordination mechanisms. It is crucial
to take into consideration the space topology since the
observed performance can largely deviate. Computation
and communication (with probable loss of messages) time
do not affect the performance of the considered system,
although they may impact other scenarios.

C. Agent Dependencies

Fig. 8(a) shows the interleaved plan synthesis scheme [14]
that we consider in our experimentation. The physical space
(Nrooms = 25 and Nbot = 20) is split into two sub-areas: the
first one with Nrooms1 = 10 (i.e., horizontal-dashed nodes and
the white node) and Nbot1 = (Nrooms1 · Nbot)/Nrooms = 8;
the second one with Nrooms2 = 13 (i.e., shaded nodes and the
white node) and Nbot2 = Nbot − Nbot1 = 12. Note that the
room represented by the white node (whose ID is 6) is shared
by both sub-areas. Robots can move only in the sub-area where
they are deployed and are allowed to communicate only with
other robots in the same sub-area. All items are generated in
room 0 (i.e., top-left node) and may be delivered in any other
room. Robots need to cooperate in case an item has to be
transported to the second sub-area. For example, an item that
should be delivered to the bottom-right node of Fig. 8(a) is
first moved from node 0 to node 6 by a robot of the first sub-
area. Then, the item is taken by a robot of the second sub-area
and brought to its destination. Task and agent parameters are
set as in Table III with only two exceptions:
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Fig. 7: Latency as a function of computation time, communication time, or message failure probability. Nbot = 20 robots
operate in an environment with Nrooms = 16 rooms organized as the ring topology.
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Fig. 8: The considered plan synthesis scheme (a) and its latency against workload intensity (b), security (c), and reliability (d).
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FD+CE or CE+CE) are used. The 95% confidence interval (still narrow as for Fig. 6) is not depicted for the sake of readability.
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Fig. 9: Simulation time required to monitor 3 months of activity of a system deployed in a Mesh topology.

• Tarrival2 (i.e., the inter-arrival time of the second sub-
area) depends on the number of items delivered to room
6 by robots in the first sub-area;

• the number of malicious robots in the two sub-areas is:

Nmal1 = bNmal

2
c and Nmal2 = dNmal

2
e.

As for all other parameters in Table III, these values are
nominal and COORDINATE allows tuning them to better
model the system under investigation.

Figs. 8(b)–(d) show the mechanisms that allow the system
to minimize its latency when the load intensity, the number
of malicious robots, and the failure probability of agents vary.
In all these cases, two mechanism combinations (i.e., FD+CE
and CE+CE) minimize the latency of the considered system.

With light conditions (i.e., long inter-arrival time, a small
number of malicious agents, or small agent failure probabil-
ity), both sub-areas should use a centralized mechanism to
coordinate agents (i.e., CE+CE). Otherwise, when the system
operates under heavy conditions, it is more efficient to use the
fully-decentralized mechanism in the first sub-area, and the
centralized mechanism in the second sub-area (i.e., FD+CE).
The latency observed using any other mechanism combination
falls in the green-shaded area depicted in Figs. 8(b)–(d). Note
that Figs. 8(b)–(d) depict the average system latency only;
the 95% confidence interval is still observed to be narrow
(meaning that our results are accurate, as for predictions in
Fig. 6) but it is omitted for the sake of readability.
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RQ2: COORDINATE successfully analyzes an inter-
leaved plan synthesis scheme to study the effect of agent
dependencies, i.e., robots must collaborate to deliver
items. In the considered case, COORDINATE identifies
which combination of mechanisms allows optimizing the
system latency when agents are deployed and operate in
different sub-areas of the physical space.

D. Scalability

To evaluate the scalability of our tool, we focus on the mesh
topology since nodes are more interconnected, we refer to the
replication package [16] for results of other topologies.

Workload intensity. Fig. 9(a) reports the time required to
simulate three months of activities when 90 ≤ Tarrival ≤ 300
seconds, other parameters are shown in Table III. The three
coordination mechanisms behave similarly across the analyzed
space topologies. FD requires the lowest simulation time
which is comparable to the time of SD while simulating the
CE mechanism takes always the longest time, 800 seconds.

Number of robots. Fig. 9(b) shows the simulation time when
the number of robots in the system varies from 10 to 100.
The simulation time of FD does not change with Nbot since
robots do not communicate. The simulation time of SD and
CE mechanisms increases with Nbot and the largest impact is
observed with the CE mechanism, i.e., up to 1.2k seconds.

Number of rooms. Fig. 9(c) depicts the simulation time
required to simulate a system with 4 ≤ NRooms ≤ 49. The CE
mechanism shows the longest simulation time (i.e., more than
4k seconds), which increases with the number of rooms. This
is due to more connections in the topology and, consequently,
to more alternatives to reach target areas.

RQ3: The scalability of our tool is influenced by work-
load intensity, number of robots, and number of rooms in
the physical space. Of these parameters, the number of
rooms is the one which affects the simulation time the
most. The simulation of the CE coordination mechanism
takes longer due to many agent interactions.

E. Real-world Topologies

We use our tool to predict the performance of a system
deployed at the Ghent University Hospital [49]. The physical
space of the considered department (extracted from [49]) is
shown in Fig. 10(a), and it is constituted of a hallway, patient
rooms, a nursing post, and other service spaces (e.g., storage,
kitchen, terrace). A graph with 73 nodes is generated starting
from the floor plan of the department: nodes 0–22 describe
the hallway, nodes 23–41 are patient rooms, and other nodes
are (part of) service spaces. We assume available robots (i.e.,
Nbot = 20) pick items up at node 66 (i.e., the elevator hallway)
and move them to one of the other nodes (i.e., rooms or
hallway). For example, a robot might bring food and bed
sheets to a patient’s room, medicines and medical equipment

to the nursing post (nodes 50–53), or leave a stretcher in
front of some rooms, i.e., in the hallway. Parameters used in
this scenario (except those related to the physical space) are
shown in Table III. We recall that numerical values of these
parameters, as well as the topology of the department, can be
changed at user discretion.

Results obtained for the considered system and space topol-
ogy are shown in Figs. 10(b)–(d) when the workload intensity,
the percentage of malicious robots, and the robot reliability
vary, respectively. Although the system latency magnitude is
larger than the one observed for synthetic cases (i.e., mesh,
ring, and tree, see Fig. 6), interestingly findings are similar,
the performance of considered coordination mechanisms are
affected by the parameters used to define application tasks
and system agents. This indeed consolidates the importance
of switching coordination mechanisms to improve the perfor-
mance of systems subject to reliability and security issues.

RQ4: Our tool successfully models a system deployed
in a real-world environment. Results show that the work-
load intensity, system security, and reliability affect the
performance of real systems. A strategy that adapts the
coordination mechanism to system-monitored data is cru-
cial to optimize the system performance.

F. Threats to Validity
Internal validity. The implementation of the simulator has

been manually validated by checking the logs and considering
a few scenarios. We are aware that this may represent a
threat; to smooth it, we make the code publicly available for
inspection and all experiments are fully reproducible.

External validity. Generalization of results is very difficult
in this context since our tool has been applied only to medium-
sized scenarios. We are aware that conclusions are highly
dependent on the settings of parameters, but this is an open
issue for all simulation-based approaches. However, we foster
predictive results as peculiar and quantitative knowledge for
software developers that may want to enable switching of
coordination mechanisms on the basis of their own system
peculiarities. We plan to involve software developers in the
experimentation of further case studies as future work, thus
assessing the validity of obtained results.

Construct validity. To keep under control the accuracy of
experimental results presented in this section, all performance
indicators are provided with their 95% confidence interval.
Besides, our interest is not related to absolute values, the
goal of our experimentation is to show that coordination
mechanisms differently contribute to performance indicators
when system peculiarities vary.

V. CONCLUSION

In this paper, we present a tool-based approach that enables
the performance evaluation of three different coordination
mechanisms for fault-tolerant MAS. Specifically, we compare
such mechanisms quantifying their impact on the system
latency while exploring variations of security and reliability
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Fig. 10: Physical space and experimental results for a department of the Ghent University Hospital [49].

issues. We also study the effect of agent dependencies on
the performance of MAS. Experimental results confirm that
it is crucial to analyze circumstances triggered by security
and reliability concerns, and wisely choosing the most suitable
(from a performance-based perspective) coordination mecha-
nism. Our tool, namely COORDINATE, identifies the optimal
coordination mechanism and improves the system latency up
to 4.2× in the considered synthetic scenarios. COORDINATE
can be used also to study real-world systems since it scales
well with respect to load intensity, number of agents, and
number of rooms. In the case of the Ghent University Hospital,
we observe average improvements for system latency of 1.5×,
1.8×, and 2.2× when the load, security, and reliability vary,
respectively.

As future work, besides addressing all the limitations dis-
cussed as part of threats to validity, we plan: (i) to validate
the accuracy of performance results by comparing them with
actual measurements from the system implementation; (ii) to
use COORDINATE in different domains for investigating its
usefulness across diverse applications.

REFERENCES

[1] L. Tian, Y. Hua, X. Dong, J. Lv, and Z. Ren, “Distributed time-
varying group formation tracking for multi-agent systems with switching
interaction topologies via adaptive control protocols,” IEEE Trans. on
Industrial Informatics, 2022.

[2] B. Ning, Q.-L. Han, Q. Lu, and J. G. Sanjayan, “Cooperative control
of multi-robot systems subject to control gain uncertainty,” IEEE Trans.
on Industrial Informatics, 2022.

[3] J. Lin, S. Sedigh, and A. Miller, “Modeling cyber-physical systems with
semantic agents,” in Annual Computer Software and Applications Conf.
Workshops (COMPSACW), 2010, pp. 13–18.

[4] L. Zhao and G.-H. Yang, “End to end communication rate-based
adaptive fault tolerant control of multi-agent systems under unreliable
interconnections,” Inf. Sciences, vol. 460-461, pp. 331–345, 2018.

[5] Y. Zhang, Z. Guo, J. Lv, and Y. Liu, “A framework for smart production-
logistics systems based on CPS and industrial IoT,” IEEE Trans. on
Industrial Informatics, vol. 14, no. 9, pp. 4019–4032, 2018.
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[35] M. T. Khan and I. Tomić, “Securing industrial cyber–physical systems: A
run-time multilayer monitoring,” IEEE Trans. on Industrial Informatics,
vol. 17, no. 9, pp. 6251–6259, 2020.

[36] A. Sargolzaei, B. C. Allen, C. D. Crane, and W. E. Dixon, “Lyapunov-
Based Control of a Nonlinear Multiagent System With a Time-Varying
Input Delay Under False-Data-Injection Attacks,” IEEE Trans. on In-
dustrial Informatics, vol. 18, no. 4, pp. 2693–2703, 2022.

[37] H. Zhang, P. Cheng, L. Shi, and J. Chen, “Optimal denial-of-service
attack scheduling with energy constraint,” IEEE Trans. on Automatic
Control, vol. 60, no. 11, pp. 3023–3028, 2015.

[38] I. Raı̈s, O. Anshus, J. M. Bjørndalen, D. Balouek-Thomert, and
M. Parashar, “Trading data size and CNN confidence score for energy
efficient CPS node communications,” in Int. Symp. on Cluster, Cloud
and Internet Computing (CCGRID), 2020, pp. 469–478.

[39] E. Bellini, F. Bagnoli, M. Caporuscio, E. Damiani, F. Flammini,
I. Linkov, P. Liò, and S. Marrone, “Resilience learning through self
adaptation in digital twins of human-cyber-physical systems,” in Int.
Conf. on Cyber Security and Resilience (CSR), 2021, pp. 168–173.

[40] “ARGoS,” https://web.archive.org/web/20221228125701/https:
//www.argos-sim.info/.

[41] “Gazebo,” https://web.archive.org/web/20221228125833/https:
//gazebosim.org/.

[42] “Robotics System Toolbox,” https://web.archive.org/web/
20221228130135/https://www.mathworks.com/products/robotics.html.

[43] D. Ding, Q.-L. Han, Z. Wang, and X. Ge, “A survey on model-based
distributed control and filtering for industrial cyber-physical systems,”
IEEE Trans. on Industrial Informatics, vol. 15, no. 5, pp. 2483–99, 2019.
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