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We consider a Hamiltonian describing three quantum particles in dimension one inter-
acting through two-body short-range potentials. We prove that, as a suitable scale
parameter in the potential terms goes to zero, such a Hamiltonian converges to one
with zero-range (also called delta or point) interactions. The convergence is under-
stood in the norm resolvent sense. The two-body rescaled potentials are of the form
v"�(x�)= "�1v�("�1x�), where � = 23, 12, 31 is an index that runs over all the possi-
ble pairings of the three particles, x� is the relative coordinate between two particles,
and " is the scale parameter. The limiting Hamiltonian is the one formally obtained
by replacing the potentials v� with ↵��� , where �� is the Dirac delta-distribution
centered on the coincidence hyperplane x� = 0 and ↵� = sR v�dx� . To prove the con-
vergence of the resolvents, we make use of Faddeev’s equations. Published by AIP
Publishing. https://doi.org/10.1063/1.5030170

I. INTRODUCTION

In a dilute quantum gas at a low temperature, the typical wavelength of the particles is usually
much larger than the effective range of the two-body interaction. In this regime, the system exhibits
a universal behavior, which means that the relevant observables do not depend on the details of the
interaction but only on few low-energy parameters, like the scattering length. For the mathematical
modeling of these systems, it is often convenient to introduce Hamiltonians where the two-body
interaction is replaced by an idealized zero-range or � interaction, i.e., an interaction that is non-
trivial only when the coordinates xi and xj of two particles coincide. A Hamiltonian of this type
is usually constructed as a self-adjoint operator in the appropriate Hilbert space using the theory
of self-adjoint extensions. Roughly speaking, one obtains an operator acting as the free Hamilto-
nian except at the coincidence hyperplanes {xi = xj}, i < j, where a suitable boundary condition
is satisfied. Many interesting mathematical results in this direction are available; see, e.g., Ref. 2
which addresses mostly the two-body problem and Ref. 10 for a review on the N-body problem,
mainly in dimension three, and the references therein. See also Refs. 4 and 9 for applications of
such Hamiltonians in dimension one. Here we only remark that these results strongly depend on the
dimension d of the configuration space. In particular, for d = 1, the resulting Hamiltonian is a small
perturbation in the sense of the quadratic forms of the free Hamiltonian; for d = 2, 3, the situation
is different and the Hamiltonian is characterized by singular boundary conditions at the coincidence
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hyperplanes; and, finally, for d > 3, a no-go theorem prevents the construction of a nontrivial
zero-range interaction.

The construction of Hamiltonians with zero-range interactions based on the theory of self-adjoint
extensions could appear rather abstract from the physical point of view. A more transparent and
natural justification is obtained if one shows that these Hamiltonians are the limit of Hamiltonians
with smooth, suitably rescaled two-body potentials. In the two-body case, reduced to a one-body
problem in the relative coordinate, such a procedure is well established in all dimensions d = 1, 2, 3,
see Ref. 2, while in the case of three or more particles only few results are available (Ref. 6).

In this paper, we approach the problem in the simpler case of three particles in dimension one.
More precisely, we consider the three-body Hamiltonian

H
",3 :=� 1

2m1
�1 �

1
2m2
�2 �

1
2m3
�3 + V

"
12 + V

"
23 + V

"
31 =H

3
0 +

X

�

V
"
� ,

where mj is the mass of the jth particle and �j denotes the one-dimensional Laplacian with respect to
the coordinate xj of the jth particle, and, for simplicity, we set the reduced Planck constant ~ equal to
one. We use Greek letters�, �, . . . to denote an index that runs over the pairs 12, 23, and 31. Moreover,
V

"
� , for " > 0, describes the two-body, rescaled interaction between the particles in the pair �, i.e.,

V
"
23 denotes the multiplication operator by the rescaled potential v"23(x2 � x3)= "�1v23("�1(x2 � x3))

(and similarly for the other two pairs).
One reasonably expects that for "! 0 the above Hamiltonian reduces to the Hamiltonian formally

written as

H
3 :=� 1

2m1
�1 �

1
2m2
�2 �

1
2m3
�3 + ↵12�12 + ↵23�23 + ↵31�31 =H

3
0 +

X

�

↵��� ,

where �23 denotes the Dirac-delta distribution supported on the coincidence plane {x2 = x3} of the
second and third particle (and similarly for �12 and �31). Here �� are understood as distributions on
S(R3), and ↵� are some fixed real parameters, depending on v� , which measure the strength of the
interaction.

In order to study the limiting procedure "! 0, it is convenient to work in the center of the mass
reference frame so that the Hilbert space of the states of the system reduces to L2(R2). We denote by
(x�, y`) a generic set of Jacobi coordinates, where � is an index that can assume the value over any
of the pairs 12, 23, and 31 and ` (more precisely, one should write `�) is the companion index of �,
which means that if � = 23 then ` = 1 and so on. For example, we have

x23 = x2 � x3 , y1 =
m2x2 + m3x3

m2 + m3
� x1.

In the center of the mass reference frame and using the Jacobi coordinates, the approximating
Hamiltonian has the form

H
"B� 1

2m�
�x� �

1
2µ`
�y` +

X

�

V
"
� =H0 +

X

�

V
"
� , (1.1)

where m� is the reduced mass between the particles of the pair � and µ` is the reduced mass between
the particle ` and the subsystem composed by the two particles of the pair �, i.e.,

m23 =
m2m3

m2 + m3
, µ1 =

m1(m2 + m3)
M

with M =m1 + m2 + m3, (1.2)

and similarly for the other pairs. We shall assume conditions on the potentials v� such that H
" is a

self-adjoint and lower bounded operator in L2(R2), with a lower bound independent of " (see Sec. II).
The limiting Hamiltonian has the formal expression

HBH0 +
X

�

↵��� . (1.3)
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Its rigorous definition as a self-adjoint, lower bounded operator in L2(R2) will be given in Sec. III.
Our main result is stated in the following:

Theorem 1. Assume that v� 2 L1(R, (1 + |x |)sdx) for some s > 0 and for all � = 23, 31, 12.
Moreover set ↵� = sR v�(x) dx. Then H

" converges to H in the norm resolvent sense for "! 0.

Remark 1.1. From the proof of the theorem, it is clear that larger s gives faster convergence
speed, up to s = 1. More precisely for all z 2C with Im z , 0, one has that

k(H" � z)�1 � (H � z)�1kB(L2(R2)) C"� 8 � <min{1, s}, (1.4)

where k · kB(L2(R2)) denotes the usual norm for bounded operators in L2(R2).
The paper is organized as follows.
In Sec. II, we show that H

" is self-adjoint and lower bounded in L2(R2), with a lower bound
independent of ". Moreover, we write the resolvent of H

" in the form of Faddeev’s equations in
momentum space.

In Sec. III, we construct the limiting Hamiltonian H as a self-adjoint and lower bounded operator
in L2(R2). An approach to the formal definition of H (for the case of identical masses) is in Ref. 1; to
make the paper as self-contained as possible, we discuss the definition of H for the general case of
different masses. We also find a suitable representation (in a form that resembles Faddeev’s equations)
for the resolvent in momentum space.

Section IV is devoted to the Proof of Theorem 1. In particular, we first prove the estimate (1.4)
for z = �, with � > 0 large enough, and then we extend the result to z 2C \ R.

We conclude the paper with two appendices. In Appendix A, we recall the derivation of Faddeev’s
equations and the definitions and basic properties of the operators introduced in Sec. II. In Appendix B,
we collect several explicit formulae and useful identities, mostly concerning the operators introduced
in Sec. III.

In what follows, C denotes a generic positive constant, independent of the parameters " and �.

II. THE APPROXIMATING PROBLEM

We denote by B0 the sesquilinear form

B0(', )=
1

2m�

⌅

R2
@x�' @x� dx� dy` +

1
2µ`

⌅

R2
@y` ' @y` dx� dy` , D(B0)BH1(R2)⇥H1(R2).

(2.1)
The quadratic form associated with H

" is

B"( , )=B0( , ) +
X

�

�
 , V

"
� 

�
L2(R2), D(B")BH1(R2) ⇥ H1(R2).

We note the inequality

sup
x2R

⌅

R
dy| (x, y)|2  ⌘k@x k2L2(R2)

+
1
⌘
k k2

L2(R2)
, (2.2)

which holds true for all ⌘ > 0. This is sometimes referred to as the Sobolev trace inequality and
follows from the identity

⌅ 1

�1
dy` | (x, y`)|2 =

⌅ 1

�1
dy`

⌅ x

�1
dx� @x�

��� (x�, y`)���2,

together with the chain of inequalities

@x�
��� (x�, y`)���2  2|@x� (x�, y`)| | (x�, y`)|  ⌘ |@x� (x�, y`)|2 + | (x�, y`)|2/⌘.

By Eq. (2.2), and by the change of variables x�/"! x� , it immediately follows that
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���� , V
"
� 

�
L2(R2)

���=
⌅

R
dx� |v�(x�)|

⌅

R
dy` | ("x� , y`)|2  kv� kL1(R)

 
⌘k@x� k2L2(R2)

+
1
⌘
k k2

L2(R2)

!

for all ⌘ > 0. Hence ������
X

�

�
 , V

"
� 

�
L2(R2)

������  aB0( , ) + bk k2
L2(R2)

for some 0 < a < 1 and b > 0, and by the KLMN theorem, the form B" is closed, semi-bounded and
defines a self-adjoint operator, coinciding with H

"; see, e.g., Ref. 11. Additionally, H
" is bounded

from below uniformly in "; i.e., there exists �0 > 0 such that inf �(H") > �0 for all " > 0.
Since it is more convenient to formulate both the approximating problem and the limiting problem

in Fourier space, in what follows we introduce some notation concerning the variables in momentum
space. We remark that we define the Fourier transform so as to be unitary in L2(Rd); see Appendix B
for the explicit definition.

We denote by k� the conjugate coordinate of x� and by p` the conjugate coordinate of y` .
Let Ĥ0 be the operator unitarily equivalent to H0 via Fourier transform and let R̂0(�)= (Ĥ0 + �)�1,
� > 0. Both of them act as multiplication operators, more precisely,

Ĥ0f (k� , p`)= *,
k2
�

2m�
+

p2
`

2µ`
+
-f (k� , p`), R̂0(�)f (k� , p`)= *,

k2
�

2m�
+

p2
`

2µ`
+ �+-

�1

f (k� , p`).

For the reader’s sake, we recall that different pairs of Jacobi coordinates are related by the
following formulae:

k31 =
m3M

(m2 + m3)(m3 + m1)
p1 �

m1

m3 + m1
k23, p2 =�

m2

m2 + m3
p1 � k23, (2.3)

k12 =�
m2M

(m2 + m3)(m1 + m2)
p1 �

m1

m1 + m2
k23, p3 =�

m3

m2 + m3
p1 + k23, (2.4)

where M is the total mass of the system; see Eq. (1.2). The other changes of coordinates are obtained
by permutation of the indices in the formulae above. For example, if for the sake of concreteness we
fix � = {23} and ` = 1, we have

Ĥ0 f (k23, p1)= *,
k2

23

2m23
+

p2
1

2µ1

+
- f (k23, p1).

We can also write functions in the p’s coordinates only; for this reason, we recall the change of
variables

k23 =�p2 �
m2

m2 + m3
p1 ; p1 = p1. (2.5)

In the coordinates (p2, p1), we have

Ĥ0 f (p2, p1)= *,
p2

2

2m23
+

p2 · p1

m3
+

p2
1

2m13

+
- f (p2, p1). (2.6)

We remark that in the latter formula we abused notation and used the symbol f to denote the
same function written in two different systems of coordinates, the (k�, p`)-coordinates and the
p-coordinates.

Analogous changes of coordinates are obtained by permutations of the indices and by taking into
account the identity p1 + p2 + p3 = 0, for more explicit formulae, we refer to Ref. 8. Similar formulae
hold for R̂0(�).

We introduce some notation before representing R
"(�)= (H"+�)�1 through Faddeev’s equations.

Here we always assume � > 0 such that inf �(H") > � for all " > 0.
Denote by t"� (�; k�, k 0�) the integral kernel in Fourier transform of the operator t

"
� (�) : L2(R)!

L2(R) defined in Eq. (A10). One has that
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t̂
"
� (�)f (k�)=

⌅

R
t"� (�; k�, k 0�)f (k 0�)dk 0�. (2.7)

By taking the Fourier transform of Eq. (A10), one infers that the kernel t"� (�) satisfies the following
integral equation:

t"� (�; k�, k 0�)=
1p
2⇡
v̂�("(k� � k 0�)) � 1p

2⇡

⌅

R
dq v̂�("(k� � q))

1
q2/(2m�) + �

t"� (�; q, k 0�). (2.8)

Hence, by Eq. (A11), in Fourier transform, the operator T
"
� (�) : L2(R2)!L2(R2) is given by

T̂
"
� (�)f (k�, p`)=

⌅

R
dk 0� t"� (� + p2

`/(2µ`); k�, k 0�)f (k 0�, p`). (2.9)

We remark that in what follows, in particular, in Eq. (2.12), we shall rewrite the latter formula for
T̂
"
� (�) in the p’s coordinates. Equation (2.12) is obtained by taking into account the changes of

variables (2.3)–(2.5).
We are now ready to write down Faddeev’s equations in explicit form [see Appendix A,

Eqs. (A7)–(A9)]: let R̂
"
(�) be the conjugate operator to R

"(�); then we have

R̂
"
(�)f = R̂0(�)f + R̂0(�)

3X

m=1

⇢(m),"(�), (2.10)

where the functions ⇢(m),"(�) satisfy the system of equations obtained by permuting indices in

⇢(1),"(�)=�T̂
"
23(�)R̂0(�)f � T̂

"
23(�)R̂0(�)⇢(2),"(�) � T̂

"
23(�)R̂0(�)⇢(3),"(�). (2.11)

In the coordinates (p2, p1), Eq. (2.11) reads

⇢(1),"(�; q, p)=�
⌅

R
dq0

t"23(� + p2/(2µ1);�q � m2
m2+m3

p,�q0 � m2
m2+m3

p)

q02

2m23
+ q0 ·p

m3
+ p2

2m13
+ �

f (q0, p)

�
⌅

R
dq0

t"23(� + p2/(2µ1);�q � m2
m2+m3

p,�q0 � m2
m2+m3

p)

q02

2m23
+ q0 ·p

m3
+ p2

2m13
+ �

⇢(2),"(�;�p � q0, q0)

�
⌅

R
dq0

t"23(� + p2/(2µ1);�q � m2
m2+m3

p, q0 + m3
m2+m3

p)

q02

2m23
+ q0 ·p

m2
+ p2

2m12
+ �

⇢(3),"(�; p, q0).

(2.12)

We remark that the functions ⇢(m),"(�) are always understood to be written in their “natural” variables,
i.e., ⇢(1),"(�) = ⇢(1),"(�; p2, p1), ⇢(2),"(�) = ⇢(2),"(�; p3, p2), and ⇢(3),"(�) = ⇢(3),"(�; p1, p3).

III. THE LIMITING PROBLEM

In this section, we discuss the rigorous definition of the Hamiltonian H describing three particles
interacting through contact interactions and formally written as in Eq. (1.3).

We shall denote by ⇡� the coincidence line (hyperplane) of the particles in the pair �, i.e., in the
Jacobi coordinates (x�, yl), ⇡� is identified by x� = 0. The hyperplanes ⇡� identify six regions �r ,
r = 1, . . ., 6. For the sake of clarity, we write explicitly the definition of �r in the coordinates
(x23, y1); obviously we could have equivalently used any other pair of Jacobi coordinates,

�1 =
8>><>>:

(x23, y1)
����

x23 � 0,

y1 <�
m3

m2 + m3
x23

9>>=>>;
, �2 =

8>><>>:
(x23, y1)

����
x23 � 0,

� m3

m2 + m3
x23 < y1 <

m2

m2 + m3
x23

9>>=>>;
,

�3 =
8>><>>:

(x23, y1)
����

x23 � 0,

y1 >
m2

m2 + m3
x23

9>>=>>;
, �4 = {(x23, y1)| (�x23,�y1) 2 �1},

�5 = {(x23, y1)| (�x23,�y1) 2 �2}, �6 = {(x23, y1)| (�x23,�y1) 2 �3}.
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For any function  2Hs(R2) with s > 1/2, we denote by  |⇡� its trace on the hyperplane ⇡� and
we recall that the map  ! |⇡� extends to a continuous one from Hs(Rn) to Hs�1/2(Rn�1) for any
n 2N and s > 1/2. Sometimes, when we need to make explicit the dependence of  ! |⇡� on the
coordinate y` , we shall simply write  ! |⇡� (y) omitting the suffix ` when no misunderstanding is
possible.

To give a rigorous definition of the operator H, we start with a natural choice of the quadratic
(sesquilinear) form: since the potential ↵��� is supported by the hyperplane ⇡�, we set

B(', )BB0(', ) +
X

�

↵�
�
'|⇡� , |⇡�

�
L2(⇡� ), D(B)BH1(R2) ⇥ H1(R2),

where the definition of B0 was given in Eq. (2.1).

Remark 3.1. By Eq. (2.2), it immediately follows that
X

�

|↵� |k |⇡� k2L2(⇡� )  aB0( , ) + bk k2
L2(R2)

for some 0 < a < 1 and b > 0; hence by KLMN theorem, the form B is closed, semi-bounded and
defines a self-adjoint operator bounded from below; see also Ref. 3.

We denote by ⇧ the union of the hyperplanes ⇡12, ⇡23, ⇡31: ⇧ = [�⇡� .
Moreover we denote by

f
@x� 

g
⇡�

the jump of the normal derivative of the function  across the

plane ⇡�, i.e., f
@x� 

g
⇡�
⌘
f
@x� 

g
⇡�

(y`)B lim
⌘!0+

⇣
@x� (⌘, y`) � @x� (�⌘, y`)

⌘
.

Theorem 2. The self-adjoint operator associated with the closed and semi-bounded quadratic
form B is

D(H)B
⇢
 2H2(R2\⇧) \ H1(R2)|

f
@x� 

g
⇡�
= 2m�↵� |⇡� 8 �

�
, (3.1)

H =H0 on R2\⇧. (3.2)

Proof. According to the general theory, the operator associated with B is defined by

D(H)B { 2H1(R2)| 9f 2 L2(R2) s.t. B(', )= (', f )8' 2H1(R2)},
H = f .

Let ' 2C10 (�1) ⇢H1(R2) and  2 D(H). Then

(', f )=B(', )=B0(', ),

and hence  2 H2(�1) and f = H0 in �1. Repeating the argument for �r , r = 2, . . ., 6, we conclude
that  2 D(H) implies  2H2(R2\⇧) and f = H0 on R2\⇧. This proves Eq. (3.2).

It remains to show the validity of the boundary conditions in Eq. (3.1): [@x� ]⇡� = 2m�↵� |⇡�8�.
To this end, we consider ' 2C10 (�6 [ �1) 2H1(R2). Using for definiteness the coordinates (x23, y1),
we have

(', f )=B(', )=B0(', ) + ↵23

⌅ 0

�1
dy1'��⇡23

(y1) ��⇡23
(y1). (3.3)

Let ⇡23,� = {(x23, y1): |x23| < �, y1 < 0}, ��6 = �6\⇡23,� , ��1 = �1\⇡23,� . Then, by Eq. (3.2), it follows

(', f )= lim
�!0

⌅
��6

dx23dy1 'H0 +
⌅

��1

dx23dy1 'H0 
�
. (3.4)

On the other hand,

B0(', )= lim
�!0

⌅

��6 [��1

1
2m23

@x23' @x23 +
1

2µ1
@y1' @y1 dx23 dy1.
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Integrating by parts and taking the limit for �! 0 on the boundary term, one obtains

B0(', )= lim
�!0

⌅
��6

dx23dy1'H0 +
⌅

��1

dx23dy1'H0 
�
� 1

2m23

⌅ 0

�1
dy1 '��⇡23

(y1) [@x23 ]⇡23 (y1).

(3.5)
By Eqs. (3.3)–(3.5), we conclude

⌅ 0

�1
dy1'��⇡23

(y1)

↵23 ��⇡23

(y1) � 1
2m23

[@x23 ]⇡23 (y1)
�
= 0 8' 2C10 (�6 [ �1).

Hence f
@x� 

g
⇡23
= 2m23↵23  |⇡23

on ⇡�23 = {(x23, y1) : x23 = 0, y1 < 0}. Repeating the argument for �i [ �j, i < j, we conclude the
proof. ⇤

In the following, we find the expression of the resolvent operator (H + �) 1 for � > 0 such that
inf �(H) > �. First we introduce several operators. Let

Ğ(�) : L2(R2)!L2(⇡23) � L2(⇡31) � L2(⇡12),

Ğ(�)B (Ğ23(�), Ğ31(�), Ğ12(�))

with Ğ�(�) : L2(R2)!L2(⇡�) defined by

Ğ�(�)f BR0(�)f |⇡� . (3.6)

Let
G(�) : L2(⇡23) � L2(⇡31) � L2(⇡12)!L2(R2),

G(�)B Ğ(�)⇤.

Hence, for q = (q(1), q(2), q(3)) 2 L2(⇡23) � L2(⇡31) � L2(⇡12), one has

G(�)q=
X

�

G�(�)q(`),

where G�(�) : L2(⇡�)!L2(R2) is the adjoint of Ğ�(�). We note that the action of G�(�) is formally
given by

G�(�)q(`) =R0(�)(q(`)��).

We refer to G(�)q as the potential produced by the charges q. Note also that, as a matter of fact, the
spaces L2(⇡�) can be identified with L2(R, dy`). Finally, we introduce two matrix operators acting
on L2(⇡23) � L2(⇡31) � L2(⇡12). The operator M is defined by

(M(�))��BM��(�), M��(�) : L2(⇡�)!L2(⇡�)

with
M��(�)qBG�(�)q|⇡� , q 2 L2(⇡�),

and the constant matrix A with components

A�� =
8><>:
↵�, � =�

0, � ,�.

Denote moreover by I the identity operator in L2(⇡23) � L2(⇡31) � L2(⇡12).

Theorem 3. For all � > 0 sufficiently large, one has

R(�)= (H + �)�1 =R0(�) �G(�)(1 + AM(�))�1
AĞ(�).

Proof. First we remark that H is a semi-bounded operator; hence, its resolvent R(�) is a bounded
operator for all � > 0 such that inf �(H) > �. Let f 2 L2(R2). We want to show that the unique
solution of

(H + �) = f (3.7)
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is given by
 =R0(�)f + G(�)q, (3.8)

where q 2 L2(⇡23) � L2(⇡31) � L2(⇡12) is

q=�(1 + AM(�))�1
AĞ(�)f . (3.9)

First we show that (1 + AM(�)) is invertible. Let q 2 L2(⇡�); recalling Eq. (B5) and by the unitarity
of the Fourier transform, we get

���M��(�)q���2

L2(R)
=

m�

2

⌅

R
dp`

��������
q̂(p`)

q
p`

2µ`
+ �

��������

2

C
kqk2

L2(R)

�
.

On the other hand, if q 2 L2(⇡� 0), by Eq. (B6) [see also Eq. (B7)], by the unitarity of the Fourier
transform and by the Cauchy-Schwarz inequality, we get

���M��0(�)q���2

L2(R)

kqk2

L2(R)

(2⇡)2

⌅

R2
dp` dp`0

1
����

p2
`

2m�
+ p` ·p`0

2mj
+

p2
`0

2m�0
+ �

����
2
C
kqk2

L2(R)

�
, � , �0,

with `0 denoting the companion index of �0 and j , `, `0. The latter inequality can be easily proved
by scaling. We conclude that for � > 0 sufficiently large one has kAM(�)k < 1; hence, (1 + AM(�))
is invertible.

It remains to show that  defined by Eq. (3.8) is the solution of Eq. (3.7). First note that
 2H1(R2) \ H2(R2\⇧) as a direct consequence of Eq. (3.8) and of Eq. (B4). Moreover from
Eq. (B4), it is easy to convince oneself of the fact that

⇥
@x� G�(�)q(`)⇤

⇡�
=�2m�q(`),

⇥
@x� G�(�)q(`)⇤

⇡�
= 0, � , �,

and since [@x� R0(�)f ]⇡� = 0, one infers

[@x� ]⇡� =�2m�q(`).

Using now Eqs. (3.9) and (3.8), one has

q(`) =�↵�Ğ�(�)f � ↵�
X

�0
M��0(�)q(`0) =�↵� |⇡� . (3.10)

Hence, [@x� ]⇡� = 2↵�m� |⇡� and  belongs to D(H). Moreover, by Eq. (B4), it follows that
G�(�)q(` ) satisfies

(H0 + �)G�(�)q(`) = 0 onR2\⇧.

Recalling Eq. (3.2), the above equation implies

(H + �) = f ,

which concludes the proof. ⇤

In the following, we explicitly write the equation for the charges q in momentum space. The
Fourier transform of Eq. (3.10), taking into account the formulae collected in Appendix B, gives

*.....
,
1 +

↵23
p

2m23

2

r
p2

1
2µ1

+ �

+/////
-
q̂(1)(p1)=� ↵23p

2⇡

⌅

R
dp2

1
p2

2
2m23

+ p2 ·p1
m3

+
p2

1
2m31

+ �
f (p2, p1)

� ↵23

2⇡

⌅

R
dp2

1
p2

2
2m23

+ p2 ·p1
m3

+
p2

1
2m31

+ �
q̂(2)(p2) � ↵23

2⇡

⌅

R
dp3

1
p2

3
2m23

+ p3 ·p1
m2

+
p2

1
2m12

+ �
q̂(3)(p3).

Two similar equations are obtained by permutation of the indices. We note that with a slight abuse
of notation we denoted by the same symbol the function f and its Fourier transform.
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Define ⇠(`)(p`)= q̂(`)(p`)/
p

2⇡ and set

⌧�(�)B
1

2⇡
↵�

1 + ↵�
q

m�

2�

, ↵� 2R.

Then ⇠(` )(p`) satisfy the system of equations [in what follows, we make explicit the dependence of
⇠(` ) on �],

⇠(1)(�; p)=�
⌅

R
dq0

⌧23
�
� + p2

2µ1

�

q02

2m23
+ q0 ·p

m3
+ p2

2m31
+ �

f (q0, p) �
⌅

R
dq0

⌧23
�
� + p2

2µ1

�

q02

2m23
+ q0 ·p

m3
+ p2

2m31
+ �

⇠(2)(�; q0)

�
⌅

R
dq0

⌧23
�
� + p2

2µ1

�

q02

2m23
+ q0 ·p

m2
+ p2

2m12
+ �

⇠(3)(�; q0),

(3.11)

and two more equations obtained by permutation of indices.
We conclude this section with the proof of a bound on the L2-norm of the functions ⇠(j), j = 1,

2, 3; see Proposition 3.4.

Remark 3.2. For any ↵� 2R, there exists �̃ > 0 such that, for all � > �̃, one has that

|⌧�(�)|  |↵� |
⇡

.

To see that this is indeed the case: if ↵� � 0, one has ⌧�(�)  ↵
2⇡ for all � > 0; if ↵ < 0, take

�̃ = 2↵2
�m�.

Remark 3.3. We note that

q2

2m23
+

q · p
m3

+
p2

2m31
� q2 + p2

2 max{m1, m2}
.

So that, by setting C12 B 2 max{m1, m3}, we get

1
q2

2m23
+ q ·p

m3
+ p2

2m31
+ �
 C12

q2 + p2 + C12�
.

In what follows, we shall often use, without further warning, the latter inequality (or similar ones
obtained by permutation of the indices). Moreover, we shall use the identity

⌅

R

1
(s2 + ⌘)b

ds=
Cb

⌘b� 1
2

, ⌘ > 0, b> 1/2.

Proposition 3.4. For all � > 0 sufficiently large, one has

k⇠(j)(�)kL2(R) C kf kL2(R2), j = 1, 2, 3. (3.12)

Proof. From Eq. (3.11), we have that
⌅

R
dp |⇠(1)(�; p)|2 C

 ⌅
R

dp
 ⌅

R
dq0

1
q02 + p2 + C12�

|f (q0, p)|
!2

+
⌅

R
dp

✓ ⌅

R
dq0

1
q02 + p2 + C12�

|⇠(2)(�; q0)|
◆2

+
⌅

R
dp

 ⌅

R
dq0

1
q02 + p2 + C31�

|⇠(3)(�; q0)|
!2�

C
 ⌅

R
dp

1

(p2 + C12�)
3
2

⌅

R
dq0 |f (q0, p)|2

+
⌅

R
dp

1

(p2 + C12�)
3
2

⌅

R
dq0 |⇠(2)(�; q0)|2 +

⌅

R
dp

1

(p2 + C31�)
3
2

⌅

R
dq0 |⇠(3)(�; q0)|2

�
.



072104-10 Basti et al. J. Math. Phys. 59, 072104 (2018)

Here, in the first inequality, we took into account Remarks 3.2 and 3.3; in the second inequality, we
used the Cauchy-Schwarz inequality and again Remark. 3.3. Hence

k⇠(1)(�)k2L2(R) 
C

�
3
2

kf k2
L2(R2)

+
C
�

⇣
k⇠(2)(�)k2L2(R) + k⇠(3)(�)k2L2(R)

⌘
.

Similar inequalities are obtained by permutation of the indices, i.e.,

k⇠(2)(�)k2L2(R) 
C

�
3
2

kf k2
L2(R2)

+
C
�

⇣
k⇠(1)(�)k2L2(R) + k⇠(3)(�)k2L2(R)

⌘
,

k⇠(3)(�)k2L2(R) 
C

�
3
2

kf k2
L2(R2)

+
C
�

⇣
k⇠(1)(�)k2L2(R) + k⇠(2)(�)k2L2(R)

⌘
.

Summing up all the inequalities, we obtain
 
1 � C

�

! 3X

j=1

k⇠(j)(�)k2L2(R) 
C

�
3
2

kf k2
L2(R2)

.

For � large enough, the latter inequality implies
P3

j=1 k⇠(j)(�)k2
L2(R)

Ckf k2
L2(R2)

, which in turn
implies Bound (3.12). ⇤

IV. PROOF OF THE MAIN THEOREM

In this section, we prove Theorem 1. As a preliminary result, we prove an a priori estimate on
t"� (�) and a bound on t"� (�) � ⌧�(�).

Lemma 4.1. Assume that v� 2 L1(R, (1 + |x |)bdx) for some 0 < b < 1 and for all � = 23, 31, 12.
Moreover set ↵� = sR v� dx. Then for all � > 0 sufficiently large, one has

sup
k,k0 2R

|t"� (�; k, k 0)| C (4.1)

and

sup
k,k0 2R

|t"� (�; k, k 0) � ⌧�(�)|
|k |b + |k 0 |b + 1

C "b, (4.2)

where 0 < " < 1.

Remark 4.2. Obviously the assumption on the potentials v� is satisfied whenever v� 2 L1(R,
(1 + |x |)sdx) for some s > 0. We note that the speed of converges in Bound (4.2) improves only up to
s = 1; in particular, it does not exceed "� , � < min{1, s}.

Proof of Lemma 4.1. Denoting by v̂�(k) the Fourier transform of v�(x), we note that, since
v� 2 L1(R),

sup
k2R
|v̂�(k)| C. (4.3)

From Eqs. (2.8) and (4.3), we infer

|t"� (�; k, k 0)| C +
Cp
�

sup
p2R
|t"� (�; p, k 0)|.

By taking the supremum over k and k 0, and up to choosing � large enough, the latter bound implies
the a priori estimate (4.1).

To prove Bound (4.2), we start by noting that since v� 2 L1(R, (1 + |x |)bdx), we have that

|v̂�(k) � v̂�(0)| =
�����

1p
2⇡

⌅

R
(eikx � 1)v�(x)dx

�����  |k |
b 1p

2⇡

⌅

R
|x |b |v�(x)|dx C |k |b. (4.4)

Moreover, ↵� =
p

2⇡v̂�(0) and the function ⌧�(�) satisfies the identity

⌧�(�)=
v̂�(0)
p

2⇡
� 1p

2⇡

⌅

R

v̂�(0)

p2/(2m�) + �
⌧�(�)dp. (4.5)



072104-11 Basti et al. J. Math. Phys. 59, 072104 (2018)

By taking the difference of Eqs. (2.8) and (4.5), one has

t"� (�; k, k 0) � ⌧�(�)=
v̂�("(k � k 0)) � v̂�(0)

p
2⇡

� 1p
2⇡

⌅

R

v̂�("(k � p)) � v̂�(0)

p2/(2m�) + �
⌧�(�)dp

� 1p
2⇡

⌅

R

v̂�("(k � p))

p2/(2m�) + �
(t"� (�; p, k 0) � ⌧�(�))dp.

(4.6)

By using the fact that v̂� is bounded and Bound (4.4) in Eq. (4.6), we have that

|t"� (�; k, k 0) � ⌧�(�)|
|k |b + |k 0 |b + 1

C"b +
C"b |⌧�(�)|
|k |b + |k 0 |b + 1

⌅

R

|k |b + |p|b
p2/(2m�) + �

dp

+
C

|k |b + |k 0 |b + 1

⌅

R

|p|b + |k 0 |b + 1
p2/(2m�) + �

|t"� (�; p, k 0) � ⌧�(�)|
|p|b + |k 0 |b + 1

dp.

We note that

1
|k |b + |k 0 |b + 1

⌅

R

|p|b + |k |b + |k 0 |b + 1
p2/(2m�) + �

dp  C

�
1
2 + C

�
1
2 �

b
2

.

Hence, for � > 1, one has

sup
k,k0 2R

|t"� (�; k, k 0) � ⌧�(�)|
|k |b + |k 0 |b + 1

C"b
 
1 +
|⌧�(�)|
�

1
2� b

2

!
+

C

�
1
2� b

2

sup
p,k0 2R

|t"� (�; p, k 0) � ⌧�(�)|
|p|b + |k 0 |b + 1

.

The latter bound implies Bound (4.2), by Remark 3.2 and up to taking � large enough. ⇤

Proof of Theorem 1. In the proof of the theorem, we set b = s if 0 < s < 1; if s � 1, one can
choose any b 2 (0, 1).

We fix �0 such that

min{inf �(H"), inf �(H)} >��0 8" > 0,

and we prove that, for � > �0 large enough, one has

lim
"!0
k(H" + �)�1 � (H + �)�1kB(L2(R2)) = 0.

The convergence of (H" � z)�1 to (H z) 1 for any z 2C\R follows from the identity

(H" � z)�1 � (H � z)�1 =
H

" + �
H

" � z

f
(H" + �)�1 � (H + �)�1

g H + �
H � z

,

and see, for example, Ref. 5, Lemma 2.6.1. Since they are unitarily equivalent, we can estimate the
norm of R̂

"
(�) � R̂(�) where R̂(�) is the conjugate of R(�) through Fourier transform. Taking into

account Eqs. (2.10) and (3.8), we have that

(R̂
"
(�) � R̂(�))f = R̂0(�)

X

m

⇢(m),"(�) � Ĝ(�)q̂(�),

where Ĝ(�)= (Ĝ23(�), Ĝ31(�), Ĝ12(�)) and q̂= (q̂(1), q̂(2), q̂(3)). Taking into account the explicit form
of the resolvent R̂0(�) in the p-coordinates, see, e.g., Eq. (2.6), and by Eq. (B8) [together with the
definition of ⇠(` )(�)], we have

(R̂
"
(�) � R̂(�))f (p2, p1)=

=
⇢(1),"(�; p2, p1) � ⇠(1)(�; p1)

p2
2

2m23
+ p2 ·p1

m3
+

p2
1

2m13
+ �

+
⇢(2),"(�; p3, p2) � ⇠(2)(�; p2)

p2
3

2m31
+ p3 ·p2

m1
+

p2
2

2m21
+ �

+
⇢(3),"(�; p1, p3) � ⇠(3)(�; p3)

p2
1

2m12
+ p1 ·p3

m2
+

p2
3

2m32
+ �

,
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where p3 = p1 p2. Hence,

k(R̂"
(�) � R̂(�))f k2

L2(R2)
C

⌅

R2
dq dp

266666664

���⇢(1),"(�; q, p) � ⇠(1)(�; p)���2���� q2

2m23
+ q ·p

m3
+ p2

2m13
+ �

����
2

+
���⇢(2),"(�; q, p) � ⇠(2)(�; p)���2���� q2

2m31
+ q ·p

m1
+ p2

2m21
+ �

����
2

+
���⇢(3),"(�; q, p) � ⇠(3)(�; p)���2���� q2

2m12
+ q ·p

m2
+ p2

2m32
+ �

����
2

377777775
. (4.7)

We note the chain of inequalities

⌅

R2
dq dp

���⇢(1),"(�; q, p) � ⇠(1)(�; p)���2���� q2

2m23
+ q ·p

m3
+ p2

2m13
+ �

����
2
C2

12

⌅

R
dq

1
(q2 + C12�)2�b

⌅

R
dp

���⇢(1),"(�; q, p) � ⇠(1)(�; p)���2
(q2 + p2 + C12�)b

 C

�
3
2�b

sup
q2R

⌅

R
dp

���⇢(1),"(�; q, p) � ⇠(1)(�; p)���2
(q2 + p2 + C123�)b

, (4.8)

for any 0 < b < 3/2. Here we used Remark 3.3 and the trivial inequality

1
(q2 + p2 + C12�)2

 1
(q2 + C12�)2�b

1
(q2 + p2 + C12�)b

and defined C123 to be the least of C12, C23, and C31. Two analogous inequalities hold true for the
terms involving ⇢(2)," ⇠(2) and ⇢(3)," ⇠(3).

Hence it is sufficient to prove

lim
"!0

sup
q2R

⌅

R
dp

���⇢(`),"(�; q, p) � ⇠(`)(�; p)���2
(q2 + p2 + C123�)b

= 0, ` = 1, 2, 3.

Using Eqs. (2.12) and (3.11), we have

���⇢(1),"(�; q, p) � ⇠(1)(�; p)���2

C

26666664
�������
⌅

R
dq0

t"23(� + p2

2µ1
;�q � m2

m2+m3
p,�q0 � m2

m2+m3
p) � ⌧23

�
� + p2

2µ1

�

q02

2m23
+ q0 ·p

m3
+ p2

2m31
+ �

f (q0, p)
�������

2

+
�������
⌅

R
dq0

t"23(� + p2

2µ1
;�q � m2

m2+m3
p,�q0 � m2

m2+m3
p) � ⌧23

�
� + p2

2µ1

�

q02

2m23
+ q0 ·p

m3
+ p2

2m31
+ �

⇠(2)(�; q0)
�������

2

+
�������
⌅

R
dq0

t"23(� + p2

2µ1
;�q � m2

m2+m3
p, q0 + m3

m2+m3
p) � ⌧23

�
� + p2

2µ1

�

q02

2m23
+ q0 ·p

m2
+ p2

2m12
+ �

⇠(3)(�; q0)
�������

2

+
�������
⌅

R
dq0

t"23(� + p2

2µ1
;�q � m2

m2+m3
p,�q0 � m2

m2+m3
p)

q02

2m23
+ q0 ·p

m3
+ p2

2m31
+ �

(⇢(2),"(�;�p � q0, q0) � ⇠(2)(�; q0))
�������

2

+
�������
⌅

R
dq0

t"23(� + p2

2µ1
;�q � m2

m2+m3
p, q0 + m3

m2+m3
p)

q02

2m23
+ q0 ·p

m2
+ p2

2m12
+ �

(⇢(3),"(�; p, q0) � ⇠(3)(�; q0))
�������

237777775
.
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The latter inequality together with Lemma 4.1 and Remark 3.3 (setting, as above, C123 to be the least
of C12, C23, and C31) gives

⌅

R
dp

���⇢(1),"(�; q, p) � ⇠(1)(�; p)���2
(q2 + p2 + C123�)b

(4.9)

C"2b
⌅

R

dp
(q2 + p2 + C123�)b

 ⌅

R
dq0
|p|b + |q|b + |q0 |b + 1

q02 + p2 + C123�
��f (q0, p)��

!2

(4.10)

+ C"2b
⌅

R

dp
(q2 + p2 + C123�)b

 ⌅

R
dq0
|p|b + |q|b + |q0 |b + 1

q02 + p2 + C123�
���⇠(2)(�; q0)���

!2

(4.11)

+ C"2b
⌅

R

dp
(q2 + p2 + C123�)b

 ⌅

R
dq0
|p|b + |q|b + |q0 |b + 1

q02 + p2 + C123�
���⇠(3)(�; q0)���

!2

(4.12)

+ C
⌅

R

dp
(q2 + p2 + C123�)b

*.
,
⌅

R
dq0

���⇢(2),"(�;�p � q0, q0) � ⇠(2)(�; q0)���
q02 + p2 + C123�

+/
-

2

(4.13)

+ C
⌅

R

dp
(q2 + p2 + C123�)b

*.
,
⌅

R
dq0

���⇢(3),"(�; p, q0) � ⇠(3)(�; q0)���
q02 + p2 + C123�

+/
-

2

. (4.14)

Using the Cauchy-Schwarz inequality and the trivial inequality

(|p|b + |q|b + |q0 |b + 1)2 C(p2b + q2b + q02b + 1),

Term (4.10) can be estimated by

"2bC
⌅

R

dp
(q2 + p2 + C123�)b

*
,
⌅

R
dq0

p2b + q2b + q02b + 1
(q02 + p2 + C123�)2

+
-
 ⌅

R
dq0 |f (q0, p)|2

!

 "2bCkf k2
L2(R2)

,

where we used p2b+q2b

(q2+p2+C123�)b C and 1
(q2+p2+C123�)b  1 (for � large enough), which in turn imply

1
(q2 + p2 + C123�)b

⌅

R
dq0

p2b + q2b + q02b + 1
(q02 + p2 + C123�)2

C
⌅

R
dq0

q02b + 1
(q02 + C123�)2

C.

Using the Cauchy-Schwarz inequality, and Bound (3.12), Term (4.11) can be estimated by

"2bC
⌅

R

dp
(q2 + p2 + C123�)b

*
,
⌅

R
dq0

p2b + q2b + q02b + 1
(q02 + p2 + C123�)2

+
-
 ⌅

R
dq0 |⇠(2)(q0)|2

!
 "2bCkf k2

L2(R2)
,

where we used
⌅

R2
dp dq0

p2b + q2b + q02b + 1
(q2 + p2 + C123�)b(q02 + p2 + C123�)2


⌅

R2
dp dq0

1
(q02 + p2 + C123�)2

+
⌅

R2
dp dq0

q02b + 1

(p2 + C123�)b+ 1
2 (q02 + C123�)

3
2

C.

The same estimate holds true for Term (4.12).
Using the Cauchy-Schwarz inequality, Term (4.13) can be estimated by

C
⌅

R

dp
(q2 + p2 + C123�)b

*
,
⌅

R
dq0

p2b + q02b + (C123�)b

(q02 + p2 + C123�)2
+
-
*..
,
⌅

R
dq0

���⇢(2),"(�;�p � q0, q0) � ⇠(2)(�; q0)���2
(q02 + p2 + C123�)b

+//
-

 C
�

sup
p2R

⌅

R
dq0

���⇢(2),"(�;�p � q0, q0) � ⇠(2)(�; q0)���2
(q02 + p2 + C123�)b

,
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where we used
⌅

R2
dp dq0

p2b + q02b + (C123�)b

(q2 + p2 + C123�)b(q02 + p2 + C123�)2


⌅

R2
dp dq0

1
(q02 + p2 + C123�)2

+
⌅

R2
dp dq0

q02b

(p2 + C123�)b(q02 + p2 + C123�)2

 C
�

,

which can be easily proved by scaling. In the same way, Term (4.14) can be estimated by

C
�

sup
p2R

⌅

R
dq0

���⇢(3),"(�; p, q0) � ⇠(3)(�; q0)���2
(q02 + p2 + C123�)b

.

Therefore we obtain

sup
q2R

⌅

R
dp

���⇢(1),"(�; q, p) � ⇠(1)(�; p)���2
(q2 + p2 + C123�)b

 "2bCkf k2
L2(R2)

+
C
�

*..
,
sup
q2R

⌅

R
dp

���⇢(2),"(�;�p � q, p) � ⇠(2)(�; p)
� ���2

(q2 + p2 + C123�)b
+ sup

q2R

⌅

R
dp

���⇢(3),"(�; q, p) � ⇠(3)(�; p)���2
(q2 + p2 + C123�)b

+//
-
. (4.15)

Two similar bounds with |⇢(2),"(�; q, p) ⇠(2)(�; p)| and |⇢(3),"(�; q, p) ⇠(3)(�; p)| at the l.h.s. are
obtained by permutation of the indices.

The estimate (4.15) is not sufficient to close the proof since it involves also terms containing the
function ⇢(` ),"(�; p q, p). To obtain bounds on those terms, we note that

���⇢(1),"(�;�q � p, p) � ⇠(1)(�; p)���2 
C

26666664
�������
⌅

R
dq0

t"23(� + p2

2µ1
; q + m3

m2+m3
p,�q0 � m2

m2+m3
p) � ⌧23

�
� + p2

2µ1

�

q02

2m23
+ q0 ·p

m3
+ p2

2m31
+ �

f (q0, p)
�������

2

+
�������
⌅

R
dq0

t"23(� + p2

2µ1
; q + m3

m2+m3
p,�q0 � m2

m2+m3
p) � ⌧23

�
� + p2

2µ1

�

q02

2m23
+ q0 ·p

m3
+ p2

2m31
+ �

⇠(2)(�; q0)
�������

2

+
�������
⌅

R
dq0

t"23(� + p2

2µ1
; q + m3

m2+m3
p, q0 + m3

m2+m3
p) � ⌧23

�
� + p2

2µ1

�

q02

2m23
+ q0 ·p

m2
+ p2

2m12
+ �

⇠(3)(�; q0)
�������

2

+
�������
⌅

R
dq0

t"23(� + p2

2µ1
; q + m3

m2+m3
p,�q0 � m2

m2+m3
p)

q02

2m23
+ q0 ·p

m3
+ p2

2m31
+ �

(⇢(2),"(�;�p � q0, q0) � ⇠(2)(�; q0))
�������

2

+
�������
⌅

R
dq0

t"23(� + p2

2µ1
; q + m3

m2+m3
p, q0 + m3

m2+m3
p)

q02

2m23
+ q0 ·p

m2
+ p2

2m12
+ �

(⇢(3),"(�; p, q0) � ⇠(3)(�; q0))
�������

237777775
.

Repeating the same steps used from Eq. (4.9) to Eq. (4.15), one can see that the estimate

sup
q2R

⌅

R
dp

���⇢(1),"(�;�q � p, p) � ⇠(1)(�; p)���2
(q2 + p2 + C123�)b

 "2bCkf k2
L2(R2)

+

+
C
�

*..
,
sup
q2R

⌅

R
dp

���⇢(2),"(�;�p � q, p) � ⇠(2)(�; p)���2
(q2 + p2 + C123�)b

+ sup
q2R

⌅

R
dp

���⇢(3),"(�; q, p) � ⇠(3)(�; p)���2
(q2 + p2 + C123�)b

+//
-

(4.16)

holds true, and similar ones are obtained by permutation of the indices.
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Summing up over permutations of indices the estimates (4.15) and (4.16), we obtain

3X

j=1

*..
,
sup
q2R

⌅

R
dp

���⇢(j),"(�;�q � p, p) � ⇠(j)(�; p)���2
(q2 + p2 + C123�)b

+ sup
q2R

⌅

R
dp

���⇢(j),"(�; q, p) � ⇠(j)(�; p)���2
(q2 + p2 + C123�)b

+//
-

"2bCkf k2
L2(R2)

+
C
�

3X

j=1

*..
,
sup
q2R

⌅

R
dp

���⇢(j),"(�;�q � p, p) � ⇠(j)(�; p)���2
(q2 + p2 + C123�)b

+ sup
q2R

⌅

R
dp

���⇢(j),"(�; q, p) � ⇠(j)(�; p)���2
(q2 + p2 + C123�)b

+//
-
.

For � sufficiently large, the latter inequality implies

3X

j=1

*..
,
sup
q2R

⌅

R
dp

���⇢(j),"(�;�q � p, p) � ⇠(j)(�; p)���2
(q2 + p2 + C123�)b

+ sup
q2R

⌅

R
dp

���⇢(j),"(�; q, p) � ⇠(j)(�; p)���2
(q2 + p2 + C123�)b

+//
-

 "2bCkf k2
L2(R2)

.

Hence, from Bounds (4.7) and (4.8), it follows that

k(R̂"
(�) � R̂(�))f k2

L2(R2)
 "2bCkf k2

L2(R2)
,

and the proof is concluded. ⇤
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APPENDIX A: FADDEEV’s EQUATIONS

For the convenience of the reader, in this section, we shortly recall the derivation of Faddeev’s
equations; for more details, we refer to Faddeev’s book.8

1. Resolvent formulae and Faddeev equations

We look for an equation for the resolvent of Hamiltonian (1.1). We start with the resolvent
identity and write

R
"(�)= (H" + �)�1 = (H0 +

X

�

V
"
� + �)�1 =R0(�) +

X

`

R
(`),"(�), (A1)

where R0(�)= (H0 + �)�1 is the resolvent of the free Hamiltonian H0, and

R
(`),"(�) :=�R0(�)V"

�R
"(�). (A2)

On the other hand, again by the resolvent identity, one has

R
"(�)=R

"
� (�) � R

"
� (�)

X

�,�
V

"
�R

"(�), (A3)

where R
"
� (�) := (H0 + V

"
� + �)�1. Note that the Hamiltonian H

"
� BH0 + V

"
� in the coordinates (x�,

y`) is factorized because V
"
� =V

"
� (x�). Plugging Eq. (A3) in Eq. (A2), one ends up with

R
(`),"(�)=�R0(�)V"

�R
"
� (�) + R0(�)V"

�R
"
� (�)

X

�,�
V

"
�R

"(�). (A4)

Next we define the operator
T
"
� (�)BV

"
� � V

"
�R

"
� (�)V"

�
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and note the identity
R0(�)V"

�R
"
� (�)=R0(�)T"

� (�)R0(�), (A5)

which is a direct consequence of the resolvent identity R
"
� (�)=R0(�) � R

"
� (�)V"

�R0(�). By using
Eq. (A5) in Eq. (A4), we get

R
(`),"(�)=�R0(�)T"

� (�)R0(�) � R0(�)T"
� (�)

X

m,`

R
(m),"(�). (A6)

By Eqs. (A1) and (A6), we conclude that for any function f 2 L2(R2) one has

R
"(�)f =R0(�)f +

X

m

g(m),"(�) with g(`),"(�)=R
(`),"(�)f , (A7)

where the functions g(` ),"(�) must solve the system of equations

g(`),"(�)=�R0(�)T"
� (�)R0(�)f � R0(�)T"

� (�)
X

m,`

g(m),"(�). (A8)

The system (A8) expresses a form of Faddeev’s equations.7 In our analysis, we shall write
Faddeev’s equations (in Fourier transform) for the functions

⇢(`),"(�)B (Ĥ0 + �)ĝ(`),"(�). (A9)

By Eqs. (A7) and (A8), it is easy to convince oneself that the resolvent R̂
"
(�) can be written as in

Eq. (2.10) and that the functions ⇢(` ),"(�) must satisfy the system of equations obtained by Eq. (2.11)
through permutation of the indices.

2. Reduced operators in terms of one-particle operators

In this section, we derive a formula for the operators T
"
� (�) in terms of one-particle operators.

This formula allows us to write the action of the operator T
"
� (�) as in Eq. (2.9) and to obtain Eq. (2.12).

We denote by lower case letters one-particle operators, i.e., operators acting on the space L2(R).
In particular, we shall use the notations

h
(`)
0 B�

1
2µ`
�y` , h

(`)
0 : L2(R, dy`)!L2(R, dy`),

h0,�B�
1

2m�
�x� , h0,� : L2(R, dx�)!L2(R, dx�),

r0,�(�)B (h0,� + �)�1,

h
"
� Bh0,� + v

"
� , h� : L2(R, dx�)!L2(R, dx�),

r
"
� (�)B (h"

� + �)�1, where v
"
� is the two particle potential understood as a multiplication operator in

L2(R, dx�).
In particular, we shall be interested in the one particle operator defined by the identity

t
"
� (�) := v

"
� � v

"
�r

"
� (�)v"

� , t
"
� (�) : L2(R, dx�)!L2(R, dx�).

We note that, by the resolvent identity r
"
� (�)= r0,�(�) � r0,�(�)v"

�r
"
� (�), one infers that the

operator t(�) satisfies the equation

t
"
� (�)= v

"
� � v

"
�r0,�(�)t"� (�). (A10)

Recalling that the Hamiltonian H
"
� is factorized in the coordinates (x�, y`), one has that R

"
� (�)

can be formally written as

R
"
� (�)= r

"
� (� + h

(`)
0 ), R

"
� (�) : L2(R2, dx�dy`)!L2(R2, dx�dy`).

Similarly

T
"
� (�) :=V

"
� � V

"
�r

"
� (� + h

(`)
0 )V"

� = t
"
� (� + h

(`)
0 ) : L2(R2, dx�dy`)!L2(R2, dx�dy`). (A11)

Identity (A11) can be understood in Fourier transform; see Eqs. (2.7)–(2.9).
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APPENDIX B: SOME USEFUL EXPLICIT FORMULAE

In this section, we collect several useful formulae, in particular, for the operators appearing in
Sec. III. For the sake of concreteness, we write the formulae in the coordinates (x23, y1), and their
conjugates (k23, p1), or in the coordinates (p2, p1). Additional formulae are obtained by permutation
of the indices or by change of variables.

We remark that the Fourier transform is defined so as to be unitary in L2(Rd). Explicitly, the
Fourier transform in L2(Rd) is denoted byˆand defined as

f̂ (k)B
1

(2⇡)d/2

⌅

Rd
e�ikxf (x)dx.

The inverse Fourier transform is given by

f̌ (x)B
1

(2⇡)d/2

⌅

Rd
eikxf (k)dk.

Moreover F(f ⇤ g)(k)= (2⇡)d/2 f̂ (k) ĝ(k),

L(fg)(k)=
1

(2⇡)d/2
(f̂ ⇤ ĝ)(k),

and
(f , g)L2(Rd ) = (f̂ , ĝ)L2(Rd ).

We start by noticing that the Fourier transform of the operator Ğ23, see Eq. (3.6), is given by

M̆G23(�)f̂ (p1)=
1p
2⇡

⌅

R
dk23

1
k2

23
2m23

+
p2

1
2µ1

+ �
f̂ (k23, p1). (B1)

Hence,

Ğ23(�)f (y1)=
1p
2⇡

⌅

R
dp1eiy1p1M̆G23(�)f̂ (p1).

By taking the adjoint of Ğ23(�), it is easy to convince oneself that in Fourier transform the
operator G23(�) acts as the multiplication operator

Ĝ23(�)q̂(k23, p1)=
1p
2⇡

1
k2

23
2m23

+
p2

1
2µ1

+ �
q̂(p1). (B2)

Hence,

G23(�)q(x23, y1)=
1

2⇡

⌅

R2
dk23 dp1 eix23k23+iy1p1 Ĝ23(�)q̂(k23, p1) (B3)

=
1

2
p

2⇡

⌅

R
dp1eiy1p1

vut 2m23

p2
1

2µ1
+ �

e
� |x23 |

s

2m23

 
p2

1
2µ1

+�
!

q̂(p1), (B4)

where the latter identity was obtained by integrating over k23.
Noticing that M23,23(�)q(y1) = G23(�)q(0, y1) and taking into account Eq. (B4), one infers that

in Fourier transform M23,23(�) acts as the multiplication operator

M̂23,23(�)q̂(p1)=
1
2

vut 2m23

p2
1

2µ1
+ �

q̂(p1), (B5)

and M23,23(�)q(y1)= 1p
2⇡ sR dp1 eiy1p1 M̂23,23(�)q̂(p1).

To obtain the expression of M23,12(�) in Fourier transform, recall that, by changing the indices
in Eqs. (B2) and (B3), one has

G12(�)q(x12, y3)=
1

2⇡

⌅

R2
dk12 dp3 eix12k12+iy3p3

1p
2⇡

1
k2

12
2m12

+
p2

3
2µ3

+ �
q̂(p3).
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In the Jacobi coordinates (x23, y1) [and the corresponding conjugate set (k23, p1)], one has that
(x12k12 + y3p3)|⇡23 = y1p1. Since M23,12(�)q(y1)=G12(�)q|⇡23 (y1) and by the change of variables
(k12, p3)! (k23, p1) in the integral above, one obtains

M23,12(�)q(y1)=
1

2⇡

⌅

R2
dk23 dp1 eiy1p1

1p
2⇡

1
k2

23
2m23

+
p2

1
2µ1

+ �
q̂(p3(k23, p1)),

and note that p3 in the function q̂ must be understood as a function of the variables (k23, p1), as in
Eq. (2.4). By the change of variables (k23, p1)! (p3, p1), it follows that

M23,12(�)q(y1)=
1

2⇡

⌅

R2
dp3 dp1 eiy1p1

1p
2⇡

1
p2

3
2m23

+ p3 ·p1
m2

+
p2

1
2m12

+ �
q̂(p3),

and hence in Fourier transform, M23,12(�) acts as

M̂23,12(�)q̂(p1)=
1

2⇡

⌅

R
dp3

1
p2

3
2m23

+ p3 ·p1
m2

+
p2

1
2m12

+ �
q̂(p3). (B6)

In a similar way, one obtains

M̂23,31(�)q̂(p1)=
1

2⇡

⌅

R
dp2

1
p2

2
2m23

+ p2 ·p1
m3

+
p2

1
2m31

+ �
q̂(p2). (B7)

We conclude this section by noting that in the coordinates (p2, p1) the operators M̆G23(�) and
Ĝ23(�), see Eqs. (B1) and (B2), are given by

M̆G23(�)f̂ (p1)=
1p
2⇡

⌅

R
dp2

1
p2

2
2m23

+ p2 ·p1
m3

+
p2

1
2m13

+ �
f̂ (p2, p1)

and
Ĝ23(�)q̂(p2, p1)=

1p
2⇡

1
p2

2
2m23

+ p2 ·p1
m3

+
p2

1
2m13

+ �
q̂(p1), (B8)

where with a slight abuse of notation we used the same symbol to denote the function f̂ in both
coordinates (k23, p1) and (p2, p1).

Similar identities are obtained by changes of variables and permutations of the indices.
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