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Abstract

Online social networks such as Facebook, LinkedIn, and Twitter are an inseparable

part of our life. They help us to interact with other people at little cost (and) easily.

These networks play an essential role in spreading information, ideas, and knowledge

among users. This results in affecting or changing users’ opinions about certain topics.

When a user of a social network receives a piece of information, she may share it with

her friends, and her friends can share it with her friends’ friends and so on. In this way,

the information may spread to a large number of people. In computer science, these

phenomena have been studied under two names information diffusion and social influ-

ence. These topics have received a high level of attention by researchers and have many

applications in advertisement, news propagation, disease spread, viral marketing, sales

promotions and many others. However, social media has been criticized for creating sit-

uations that some users or groups of users have a high chance of receiving information or

getting most of the attention while others stay disregarded, thus discriminating among

users or groups of users. Note that such discrimination or disparity among different

groups of a network especially in real world applications related to health, education,

and job opportunities, can put minority groups at a big disadvantage. In computational

social choice, the notion of group fairness was developed in order to address this issue.

The study of this notion in the context of information diffusion is the main focus of

this thesis. We study several optimization problems with the focus of addressing the

groups of a network in a fair way when information is spread in the network.

We first consider the standard maximin criterion for group fairness and study the prob-

lem of determining key seed nodes to maximize the minimum probability that groups

(or communities) receive information. We define two different variants of this problem

that involve probabilistic strategies and analyze the relation between the two prob-

lems. We then design approximation algorithms achieving a constant multiplicative

factor of 1− 1/e minus an arbitrarily small additive error, while the original determin-

istic maximin problem was inapproximable. Our experimental study shows that the

our methods ex-ante fairness values, i.e., minimum expected probability that an indi-

vidual (or group) receives the information, dominate over the fairness values achieved

by previous approaches. Interestingly and maybe more surprisingly, we observe that

even the our methods ex-post fairness values, i.e., fairness values obtained by sampling
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single sets according to the probabilistic strategies, frequently outperform the ex-post

fairness achieved by other tested methods.

When using the maximin criterion, it is likely that still different groups receive different

shares of information. Hence, we turn to study two classes of optimization problems

involving notions of group fairness that aim to lessen this unfavourable situation. The

goal here is to maximize the overall spread (or spread within a target set) while enforc-

ing strict levels of fairness via constraints (either ex-post or ex-ante). The constraints

require the coverage among groups to be similar. The level of fairness hence becomes

a user choice rather than a property to be observed upon output. We present several

NP-hardness and hardness of approximation results, even in the case that the fairness

constraints are violated (multiplicatively and additively). For one of our problems we

still design an algorithm with both constant approximation factor and constant fairness

violation. For the other problem class, we propose two heuristics that allow the user

to choose the tolerated fairness violation. In an extensive experimental study, we show

that our algorithms perform well in practice, that is, they achieve the best fairness

values while maintaining similar levels of total spread.

Finally, we study optimization problems with the goal of modifying the network struc-

ture by adding links in such a way that the minimum community coverage is maxi-

mized when information is spread using a purely efficiency oriented seeding strategy.

We propose two optimization problems and present NP-hardness and hardness of ap-

proximation results for them. For some special cases, we propose efficient algorithms

as well as several heuristics for solving one of the problems. In our experimental study,

we show that our approach can be very successful in practice.
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Chapter 1

Introduction

Access to news or important information like job-related information may have a big

impact on our life, because people make important decisions based on the information

they receive or have access to. Social media platforms such as Facebook, LinkedIn, and

Twitter, have provided a situation where users can easily access information and share

their opinions about certain topics online. With the rapid growth of these platforms,

online social networks have received a high level of attention. These social network

platforms are very effective tools in bringing people together, sharing, exchanging, and

spreading information or ideas to influence a large population in a short period of time.

The internet and especially social media have revolutionized the way information spreads

through the population. On social media platforms users can pass information on to

users they have a connection to, and subsequently these users are also connected to

other users, and so on. Thus, information can be spread at little cost quite efficiently

thanks to news platforms and social media. Consider the following examples that deal

with the spread of information in social networks. Suppose that a company develops an

online application for an online social network and would like to market it with the hope

that it will be used by many individuals in the network. The idea is to select a small

number of influential users in the network to use the application (by providing it for free

or by paying them). These users will recommend the application to their friends, and

their friends would recommend it to their friends’ friends and so on, and thus through

the “word-of-mouth” effect many individuals will end up using the application [27]. As

another example consider Facebook, where a user John writes a post about an event

that is happening in town. John’s friends can see this post and by commenting on or

1



Chapter 1 Introduction 2

sharing this post, their friends can see the information about this event and so on. In

this way, the information about John’s post will propagate through the network.

The basic algorithmic question here is which initial individuals to target such as to max-

imize the overall spread of influence in the network. More precisely, given a directed

graph where nodes represent the users of a social network, and edges show the relation-

ship between them and a probabilistic model on how information propagates through it,

the main addressed question has been the following: Which seed set (influential users)

of a limited size to target such that the expected number of nodes that obtain the in-

formation is maximized, when the information spreads from the chosen seed set? This

problem, called influence maximization, was first introduced by Domingos and Richard-

son [35, 64] and formulated by Kempe et al. [46] as a discrete optimization problem.

The problem has received a tremendous amount of attention [13, 18, 19, 22, 26, 30, 67]

and has many applications in domains such as viral marketing [64], social recommen-

dations, propagation of information related to jobs, financial inclusion [10], and public

health programs [78, 79].

Efficient algorithmic solutions to the influence maximization clearly have the potential

of being exploited with a malicious intention and there is reasons to believe that such

malicious acts have already had a big impact on the world recently. Notice that about

two-thirds of American adults get news on social media 1, and hence are comparatively

vulnerable to fake news that are spread with the intention not to inform but to manipu-

late. Many believe this to have had a decisive impact on the 2016 presidential elections

in the US 2 [61, 63]. Another consequence on society related to efficient algorithmic

solutions for this problem stems from the fact that networks are not homogeneous but

instead composed of different individuals forming groups or communities. Such groups

can be defined based on the common attributes of their members like race, age, and

gender. It is possible that some groups are well-connected and some are poorly con-

nected. Thus, network structure can cause that any influence maximization algorithm

may focus on well-connected users because choosing such nodes as seeds maximizes the

overall spread (coverage). This implies that algorithms discriminate among different

users or groups of users (called communities) (i.e., some users or communities may

be covered with high probability, some may not be covered at all). Such observations,
1https://www.pewresearch.org/journalism/2018/09/10/news-use-across-social-media-platforms-

2018/
2https://www.buzzfeednews.com/article/craigsilverman/viral-fake-election-news-outperformed-

real-news-on-facebook



Chapter 1 Introduction 3

have motivated researchers to take fairness issues with respect to information spread

into account. More precisely, the social network may be composed of individuals or

communities (based on sensitive attributes such as race, age, and gender) and the goal

is to provide similar information access to all of them. General works have then shifted

focus away from maximizing the spread of information, towards assuring that each of

the communities gets its fair share of information (or coverage). For instance, when

spreading information about a health awareness program or when advertising a job on

social media, the information should be propagated among different communities in a

way that sensitive attributes of individuals in the communities have no effect on their

access to the information. There is a wide variety of fairness notions [11] and we will

study some of them in this thesis.

In summary, as social networks may have a big impact on our lives, and more and more

people access information via social networks, it is essential to spread information in

a fair way. In this thesis, we study different notions of (group) fairness. We define

different optimization problems in this scope, prove several NP-hardness and hardness

of approximation results, and design approximation algorithms as well as heuristics for

proposed problems. Our methodology also includes thorough experimental evaluation

of proposed algorithmic techniques both on randomly generated as well as on real world

instances.

1.1 Our Contribution

The contributions of this thesis are summarized as follows.

• In Chapter 2, we provide some preliminaries related to influence maximization

problem and describe fairness notions that we use in this thesis.

• In Chapter 3, we study the maximin criterion for group fairness and introduce

two randomized versions of the maximin problem. In the first one, we consider

randomized strategies that pick nodes as seeds independently with some proba-

bility such that the expected size of the resulting seed set is bounded by k (an

input parameter), we call this the node-based problem. In the second problem, we

study a more general feasible set. That is, we consider strategies that consist of

probability distributions over seed sets of expected size k, i.e., not restricting to
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the special case of distributions that pick nodes independently but allowing for

correlation. We then analyze the relation between the two probabilistic problems.

In Section 3.2, we quantify the loss in efficiency that can be incurred by following

our fairness criteria, i.e., we show bounds on the price of fairness. We continue

by proving that both randomized variants of the maximin influence problems are

NP-hard. For the node-based problem, we in addition show that, unless P = NP,

there is no algorithm with approximation ratio better than 1−1/e. Thereafter we

show that still, in this setting of fairness in influence maximization, randomization

leads to a number of advantages.

In Section 3.3, we prove that the resulting problems can be approximated to

within a factor of 1 − 1/e (plus an additive −ε term that is also inherent in

the work of Tsang et al. [71]) even in the case when the number of communities

exceeds the number of seed nodes k. For the node-based problem (up to the addi-

tive error term) we thus give a tight approximation result. Furthermore, our work

shows that the inapproximability result of Fish et al. [38] can be circumvented

by introducing randomization to the problem. Our algorithms are comparatively

simple. For the node-based problem, the feasible set is of dimension n. After ap-

proximating (to within an additive ±ε term) all functions σv using concentration

bounds, we still face the problem that the resulting optimization problem is not

linear. We show however that the non-linear optimization problem is approxi-

mated to within a factor of 1 − 1/e by a linear program of the same size. Thus

we obtain a polynomial time algorithm with multiplicative approximation ratio

1− 1/e (plus the additive −ε term). For the set-based problem, the situation is

different. Here, by introducing a variable for every possible seed set, the prob-

lem can be approximated (to within an additive ε term) by a linear program.

The downside of course is that this program is of dimension Θ(2n). As the linear

program is a covering linear program however, we are able to show that a multi-

plicative weights routine that is essentially a black-box application of a method by

Young [82] and can be used to obtain the described approximation. This method,

as a subroutine, requires an algorithm for an oracle problem. We observe that

the oracle problem in our case can be solved using standard (weighted) influence

maximization and thus can be approximated to within a factor of 1 − 1/e effi-

ciently both in theory and practice. Although the feasible set to the set-based

problem is of exponential dimension, the computed solution that is guaranteed to
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be a multiplicative 1− 1/e approximation (plus the additive −ε term) has only a

linear support in n.

In Section 3.4, we evaluate implementations of multiplicative weight routines for

both node and set-based problems on random instances, synthetic instances from

the work of Tsang et al. [71], and a wide range of real world networks. We compare

both the ex-ante and ex-post performance of our techniques with standard greedy

techniques, as well as with the routines proposed by Tsang et al. [71] and Fish et

al. [38]. We observe that our ex-ante values are superior to the ex-post values of all

other algorithms and, maybe surprisingly, our experiments indicate that even the

ex-post values of our algorithms are competitive or even improve over the ex-post

values achieved by the other techniques. We also experimentally evaluate the loss

in efficiency, i.e., in total information spread resulting from using our algorithm

over a standard IM algorithm that does not consider any fairness criteria. We

conclude that our algorithms lead to much fairer solutions while incurring at most

a small loss in total spread on all instances tested.

The summery of our theoretical results can be found in Table 1.1 together with

references to the respective statements in later sections.

Node-based

NP-hard
[Theorem 3.7]
NP-hard to
1− 1/e+ ε-
approximate

[Theorem 3.11]

Price of fairness
is unbounded
[Lemma 3.4]

1− 1/e-approximate
minus the ε term
[Theorem 3.16]

Set-based NP-hard
[Theorem 3.7]

Price of fairness
is unbounded
[Lemma 3.4]

1− 1/e-approximate
minus the ε term
[Theorem 3.20]

Table 1.1: Summary of our complexity results in Chapter 3. The number α can be
any factor in (0, 1] and ε in (0, 1).

• In Chapter 4, we adopt a different and more strict view on fairness, that is,

we consider fairness as a requirement that has to be ensured by the algorithm

rather than a notion to be maximized. In terms of the optimization problems at

hand, this results in fairness being taken into account via constraints instead of

in the objective function, the obvious advantage being that the resulting fairness

violation is strictly bounded. More precisely, we develop optimization problems

that aim to maximize the overall spread (or spread within a target set) while

satisfying the fairness constraints (using equalized odds, demographic parity, and
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predictive parity notion). While such strict fairness notions may easily result in

infeasibility, we show how to bypass this problem by studying also ex-ante fairness

rather than just ex-post fairness.

It is clear that such a strict approach to fairness as adopted here may lead to

a big loss in efficiency, i.e., in overall spread and possibly also in time complex-

ity of respective algorithms. One of our contributions, is to rigorously analyze

these two kinds of loss. In Section 4.2, we provide the hardness of approximation

of the proposed optimization problems. We in fact prove that it is NP-hard to

approximate the problems to within any bounded factor, even if the fairness con-

straints are violated (multiplicatively and additively). In Section 4.3, we study

two optimization problems (under demographic parity) that permit randomized

strategies in seed selection process. We prove that the price of fairness may be

unbounded in this context. We then proceed by studying the complexity of the

proposed probabilistic problems. This includes both proving NP-hardness and

hardness of approximation results, see Subsection 4.3.3, and developing an ap-

proximation algorithm for one of the problems, see Section 4.4. Our study here

explicitly includes bi-criteria approximation, that is, we relax the fairness con-

straints or allow them to be violated within a limited amount (multiplicatively or

additively). This permits us to propose algorithms that entitle the user to choose

the tolerated amount of fairness violation freely instead of observing the fairness

violation upon seeing the output of the algorithm. We proceed by developing effi-

cient heuristics for the other problem and conclude with a detailed experimental

study on the performance of the developed algorithms both in terms of efficiency

and fairness in Section 4.5. For our experiments, we use random, synthetic, and

real world data sets. Our experimental study shows that although our theoret-

ical results are mainly pessimistic, our algorithms achieve a trade-off between

fairness and overall coverage and in some cases even achieve similar coverage as

state-of-the-art influence maximization algorithms while guaranteeing fairness on

top.

Table 1.2 contains a summery of our theoretical results.

• In Chapter 5, we first study an optimization problem with the goal of modifying

the network structure by adding at most b non-edges to the network in such

a way that the minimum community coverage is maximized when information

is spread using a purely efficiency oriented seeding strategy, i.e., a seed set S
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IMeo

NP-hard to
(α, β)-approximate

[Theorem 4.4]
NP-hard to

(α, ε)+-approximate
[Theorem 4.5]

— —

IMpp

NP-hard to
(α, β)-approximate

[Theorem 4.6]
NP-hard to

(α, ε)+-approximate
[Theorem 4.7]

— —

IMdp

NP-hard to
(α, β)-approximate

[Theorem 4.4]
NP-hard to

(α, ε)+-approximate
[Theorem 4.5]

Price of fairness
is unbounded
[Lemma 4.10]

—

iIMdp

NP-hard to
approximate better

than 1− 1/e
[Theorem 4.12]

Price of fairness
is unbounded
[Lemma 4.10]

(1− 1/e, 1− 1/e)-
approximate

[Theorem 4.13]

pIMdp NP-hard
[Theorem 4.11]

Price of fairness
is unbounded
[Lemma 4.10]

Heuristics

Table 1.2: Summary of our complexity results in Chapter 4. The numbers α and β
can be any factor in (0, 1] and ε in [0, 1).

of size k that maximizes the spread after adding links to the network. We call

this the FIMAL problem – fair influence maximization by adding links. We study

the complexity of solving FIMAL in Section 5.1 and provide plenty of evidence

that solving FIMAL is challenging, both exactly and approximately. Maybe most

importantly, we show that it is unlikely to be able to find an α-approximation

to the optimal solution, for any α ∈ (0, 1], even when having access to an oracle

that solves an NP-complete problem. We furthermore show that FIMAL remains

NP-hard for constant b or k (in the latter case even to be approximated).

We thus turn to study a second problem (Section 5.2) that is possibly practically

better motivated in the first place – the FIMg
AL problem: Here instead of assum-

ing that the efficiency oriented entity uses maximizing sets to spread information,

we assume it to employ the greedy algorithm. This is a quite realistic assumption

as the problem of finding a maximizing set is NP-hard, while the greedy algorithm

can be used in order to obtain a 1−1/e− ε-approximation for any ε ∈ (0, 1) with

high probability (w.h.p.) in poly(n, ε−1) time, i.e, polynomial time in n = |V |
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and ε−1. Even more, this approximation guarantee is essentially optimal [46].

Multiple implementations of the greedy algorithm for IM exist (e.g., [67, 68]) and

they have been shown to be extremely efficient in practice. We observe that,

in contrast to FIMAL, the FIMg
AL problem is polynomial time solvable when b

(size of non-edges) is a constant – exactly in the (unrealistic) case of determin-

istic instances and up to an arbitrarily small additive error in the probabilistic

case. While this highlights the difference between the two problems, the proposed

algorithm is essentially a brute-force algorithm and is thus not promising in prac-

tice. We complement the finding of this algorithm for the special case of constant

k (size of seed sets) with a lower bound showing that it is NP-hard to provide

any approximation algorithm. We then propose a set of algorithms for FIMg
AL

and evaluate them against each other in a first experiment in Section 5.3. We

then take the best performing algorithm for FIMg
AL and, in a second experiment,

compare the resulting fairness (i.e., fairness achieved by the greedy algorithm

after adding the proposed non-edges to the graph) with competitor algorithms

that choose seeds as to optimize fairness. We observe that already after adding

very few edges to graphs with thousands of nodes, the fairness achieved by our

algorithm outperforms the fairness achieved by the fairness-tailored algorithms.

Maybe surprisingly, this even holds for algorithms that optimize ex-ante fairness.

We summarize our theoretical results for FIMAL and FIMg
AL in Table 1.3.

general constant b constant k

FIMAL

Σp
2-hard

[Theorem 5.4]
Σp

2-hard to
α-approximate
[Theorem 5.5]

NP-hard
[Theorem 5.7]

NP-hard to
α-approximate
[Theorem 5.6]

FIMg
AL

NP-hard to
α-approximate
[Corollary 5.9]

- Polynomial time
(deterministic case)
[Observation 5.8]
- ε-approximate

(probabilistic case)
[Lemma 5.11]

NP-hard to
α-approximate
[Corollary 5.9]

Table 1.3: Summary of our complexity results in Chapter 5. The number α can be
any factor in (0, 1] and ε ∈ (0, 1).

• In Chapter 6, we conclude and present several directions as future work.
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1.2 A Survey of Related Works

In this section, we survey the previous works that have considered fairness issues in

the context of influence maximization. We also review the works on the problem of

recommending links in a social network.

1.2.1 Fairness Notions in Influence Maximization

The line of research that investigates the fairness of the diffusion process with respect

to the vertices (i.e., users) in the network is closest to our setting. Fish et al. [38], to the

best of our knowledge, are the first to study the maximin objective in order to maximize

the minimum probability of nodes to be reached by the information spread. They show

that this objective leads to an NP-hard optimization problem, and even more, is hard

to approximate to within any constant factor, unless P = NP. Even worse, the authors

show that various greedy strategies have asymptotically worst-possible approximation

ratios. In the work of Tsang et al. [71], the authors introduced the problem of maxi-

mizing the spread of a campaign while respecting a group fairness constraint. In their

setting, each user of the network belongs to one or several communities and several

criteria, including maximin, to guarantee that each community gets its fair share of

information are considered. For each of these criteria, maximizing influence while re-

specting the related fairness constraint can be solved via a multi-objective submodular

optimization problem. The authors design an algorithm to tackle such multi-objective

submodular optimization problems that provides an asymptotic approximation guar-

antee of 1 − 1/e. Their work cannot be directly extended to the case where fairness

is considered with respect to individuals instead of communities. Indeed, their result

requires that m = o(k log3(k)) where m is the number of communities and k is the seed

set cardinality constraint.

The above two works are the most closely related to our work in Chapter 3. Rahmattal-

abi et al. [62] further extend the group fairness approach of Tsang et al. [71] by following

a different path. From the expected fraction of vertices reached in each community,

the authors define a utility vector over the entire population of vertices, and then take

a welfare optimization approach by optimizing a decision criterion which is a function

of this utility vector. Stoica et al. [65] study how improving the diversity of nodes in

the seed set can influence efficiency and fairness of the information diffusion process.
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They consider a notion that is essentially equivalent to demographic parity. In a rather

specific setting, where the network is generated using a biased preferential attachment

model yielding two unequal communities, the authors experimentally show that, under

certain conditions, degree-based seeding strategies that take into account the diversity

of nodes in the seed set are more efficient and equitable. Ali et al. [4] address fairness of

the diffusion process with respect to different communities considering both the number

of people influenced and the time step at which they are influenced. After illustrating

that both, maximizing the expected number of nodes reached by choosing a seed set

of fixed cardinality, and minimizing the number of seeds required to influence a given

portion of the network may lead to unfair solutions, the authors propose an objective

function which balances two objectives: the expected number of nodes reached which

should be maximized, and the maximum disparity in influence between any two com-

munities which should be minimized. The authors consider fairness notions that are

similar to demographic parity, but instead of maintaining the fairness constraints, they

pass the group coverages through some monotone concave function and include it in the

objective. Farnadi et al. [36] review the different notions of group fairness criteria used

in the influence maximization literature and show how influence maximization prob-

lems under these fairness criteria can be expressed as mixed integer linear programs

(MILPs). Their framework includes also “equity” which coincides with demographic

parity. The authors provide numerical tests to measure the price of fairness of differ-

ent fairness criteria as well as the increase in fairness with respect to vanilla influence

maximization. As their approach requires solving a MILP, it is however unlikely to be

applicable to large real world instances. In fact, they restrict their experimental study

to the relatively small synthetic networks from the work of Wilder et al. [76]. Ger-

shtein et al. [41] introduce multi-objective influence maximization problem that aims

at maximizing the influence of each group in the network. The authors propose two

algorithms by splitting the budget (i.e., seed set size) between the groups to get the

desired influence and linear program of Maximum Coverage problem. Anwar et al. [5]

investigate that how existence of structural and influence diffusion homophily can affect

the influence among different groups on homophilic networks consisting of two groups

majority and minority. The authors defined the concept of balance that preserve ma-

jority vs. the minority group and proposed an objective function that maximizes the

total influence and balance of the reached nodes. They show that when the objective

function is monotone and submodular, then the problem can be approximated to within

a constant factor. Wang et al. [75] study the problem of information access equality
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in order to reach each group at similar rate. In their setting, networks consist of two

specific groups and are generated with different properties. The authors experimen-

tally measure the efficiency and equality of receiving information between groups under

different diffusion models. Khajehnejad et al. [47] study fair influence maximization

based on machine learning techniques. The authors use an adversarial graph embedding

approach to choose a seed set which both makes it possible to achieve high influence

propagation and fairness between different communities. In both the works of Lu et

al. [51] and Yu et al. [83], the authors investigated a two stage setting in which the host

first finds a set of seeds under a cardinality constraint (the sum of all budgets) which

approximately maximizes influence. Then the authors considered the task of splitting

this set to allocate the seeds to the different agents in a fair manner by either mini-

mizing the maximum amplification factor [51] or maximizing the ratio of the minimum

amplification factor over the maximum one. These two works differ by the diffusion

model they used. Indeed, while the first paper uses a variant of the linear threshold

model, the second one uses a variant of the independent cascade model.

In contrast to the previous work however, we define optimization problems in such a

way that permit randomized strategies in the seed selection process rather than only

deterministic ones. In one problem, we consider randomized strategy that pick nodes

as seeds independently. In contrast, in the other problem, we allow any probabilistic

strategies that choose seed sets of expected size k, i.e., not restricting to independent

distributions. Introducing randomization allows us to circumvent the inapproximabil-

ity result of the original deterministic maximin problem studied by Fish et al. [38],

and propose approximation algorithms that achieve a constant multiplicative factor of

1 − 1/e, see Chapter 3. To the best of our knowledge, this is the first work that uses

randomization in the context of influence maximization. It is easy to envision that such

randomized strategies provide certain advantages over deterministic ones. In fact, the

use of randomization is a longstanding idea in computational social choice, where it

often leads to more tractable results and more expressive solutions via for instance

time-sharing mechanisms [54]. It can also be used to incentivize participation [9] or

to workaround impossibility results [20]. Lastly and closer to our work, using random-

ization is frequently used to obtain fairer solutions [8, 16, 45]. Indeed, there may be

optimization problems for which any deterministic solution is unfair. This was famously

illustrated by Machina’s mom example in which a mother should decide which of her

two children will receive an indivisible treat [53]. In such cases, randomization may help

evening things out by considering fairness in expectation, i.e., ex-ante fairness rather
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than ex-post fairness. Randomization is both useful for one-shot and for repeated prob-

lems. In the former, it provides fairness over opportunities and in the latter it achieves

fairness in the long run in a natural way. Lastly, randomization can be used to satisfy

the fairness principle of equal treatment of equals [57]. Despite being an old research

topic, the study of randomized solutions is still a hot topic where many open problems

remain to be solved [7, 21].

1.2.2 Fairness through Recommending Links

There are several works in which the authors add links to the network taking into

account social influence and diffusion process, however they do so with a different

objective.

Castiglioni et al. [23] and Corò et al. [32] study the problem of adding edges to a graph

in order to maximize the influence from a given seed set in different models of diffu-

sion. Castiglioni et al. [23] prove that, for the IC model, it is NP-hard to approximate

the problem to within any constant factor. Corò et al. [32] considered the LT model

and proposed a constant approximation algorithm. The experimental study show that

adding edges to the network can increase the influence of a given seed set. D’Angelo

et al. [34] study the problem of adding a set of edges incident to a given seed set

with the same aim. In a setting, where the cost of adding each edge is 1, the authors

showed that it is NP-hard to approximate the problem to within a factor better than

1−1/(2e), and they proposed an algorithm with an approximation factor of 1−1/e for

the IC model. They extended the results to the general case where the cost of adding

each edge is in [0, 1]. Wu et al. [77] consider also different intervention actions than

just adding edges, e.g., increasing the weights of edges. The authors show that, for

the IC model, the problem of maximizing spread under these interventions is NP-hard

and the objective function is neither submodular nor supermodular. Khalil et al. [48]

study both the edge addition and deletion problems in order to maximize/minimize

influence in the linear threshold model. They showed that the objective functions of

both problems are supermodular and therefore there are algorithms for the problems

with provable approximation guarantees. Garimella et al. [40] address the problem

of recommending a set of edges to minimize the controversy score of the graph. In

their setting, the graph is partitioned into two disjoint sets and the controversy score

is defined as the difference of the probability that a random walk starting from one
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partition will end in the same partition and the probability that the random walk will

end in the different partition. The authors proposed an algorithm without providing

any approximation guarantee. Moreover, they do not consider any diffusion process

in the network. Tong et al. [69] transform the edge addition/deletion problem to the

problem of maximizing/minimizing the eigenvalue of the adjacency matrix and experi-

mentally show that their proposed method increases the dissemination of information.

Chaoji et al. [24] study the content maximization problem by adding at most k edges

per node. Under the Restricted Maximum Probability Path model, the authors show

that the objective function is submodular and the problem can be approximated to

within a constant factor. Yu et al. [84] propose a link recommendation method using

the algebraic connectivity of the network to maximize the spread of contents and suc-

cess rate of recommended links. The authors experimentally show that their method

improves the spread of content in the network. D’Angelo et al. [33] address the problem

of selecting a set of seed nodes and adding a set of edges incident to these seed nodes,

without exceeding a given budget, to maximize the expected number of reached nodes.

The authors consider two cases where the cost of adding each edge is at least a given

constant and any value in [0, 1], and all the seed nodes have the same cost. For both

cases, they propose algorithms with constant approximation guarantees. Ma et al. [52]

study the problem of individual influence maximization to maximize the influence of a

target node by adding k edges to this node. They consider LT model and find a set

of edges incident to the target node that minimizes the influence overlap between the

target node and other nodes.

The following two works are the most closely related to our work in Chapter 5. Swift et

al. [66] introduce a problem to suggest a set of edges that contains at most k edges inci-

dent to each node to maximize the expected number of reached nodes while satisfying a

fairness constraint (reaching each group in the network with the same probability, i.e.,

achieving demographic parity). The authors consider the Restricted Maximum Proba-

bility Path model and assume that they are given a set of candidate edges and a set of

seed nodes for propagating information. They show that the problem is NP-hard and

even is NP-hard to approximate to within any bounded factor, unless P = NP. Then,

by violating the fairness constraints, they propose an LP-based algorithm with a factor

of 1 − 1/e on the total spread and 2e/(1 − 1/e) on fairness. Our setting in Chapter 5

is different from the problem in [66] in terms of objective function, fairness notion, and

the diffusion model. Moreover, the set of seeds in their problem is fixed, known and

independent of the added edges. Our aim is to achieve fairness automatically, when
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an external agent selects an efficient seed set that may explicitly depend on the added

edges. The authors in [66] add more edges to the network, in fact k edges per node.

While our budget b that shows the number of added edges should be asymptotically

smaller than n (b ≤ 50 in our experiments).

Bashardoust et al. [12] study the maximin criterion by adding edges to the network un-

der IC model with a transaction probability α ∈ [0, 1]. In their setting, each node can

be the source of distinct and equally-important information and the goal is to add at

most k edges to the network to maximize the minimum probability that a node receives

information. After defining several notions, the authors propose heuristics without pro-

viding any approximation guarantee and experimentally show that adding edges to the

network can increase the minimum probability that nodes receive information. The

authors study only individual fairness and their work lacks theoretical results in terms

of computational complexity and approximation algorithms.

The main difference between our work and most of the previous works in link rec-

ommendation that take into account social influence is that they do not consider any

fairness criteria in the diffusion process. Moreover, most work that consider fairness,

e.g., [4, 38, 71], assume that the entity that is spreading the information, i.e., the agent

choosing seed set S, has an inherent interest in spreading the information fairly, oth-

erwise why would they want to use the developed fair algorithms? This assumption

may however be flawed in reality – the spreading entity may be, and probably mostly

are, purely efficiency-oriented and not particularly interested in choosing fair seeding

strategies.





Chapter 2

Background

In this chapter, we describe influence maximization, the most widely studied models

for propagating information, and some notions and basic results regarding the influence

maximization problem. We also describe the fairness notions that we will use in this

thesis.

2.1 Influence Maximization

We consider the classical influence maximization setting where we are given a directed

arc-weighted graph G = (V,E,w) with V being the set of n nodes, E the set of

arcs, and w : V × V → [0, 1] an arc-weight function. In addition, we are given an

information diffusion model. A broad variety of models can be used as information

diffusion model. Two of the most popular models are the Independent Cascade (IC)

and Linear Threshold (LT) models [46]. Each node in G is either active (influenced or

reached) or inactive. Whenever a node becomes active, it stays active throughout the

diffusion process. In both these models, given an initial node set S ⊆ V called seed

nodes, a spread of influence from the set S is defined as a randomly generated sequence

of node sets (St)t∈N, where S0 = S and St−1 ⊆ St. These sets represent active users,

i.e., we say that a node v is active at time step t if v ∈ St. The sequence converges as

soon as St∗ = St∗+1, for some time step t∗ ≥ 0 called the time of quiescence. For a

set S, we use the standard notation σ(S) = E[|St∗ |] to denote the expected number of

nodes activated at the time of quiescence when running the process with seed nodes S,

15
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here the expectation is over the random process of information diffusion that depends

on the weights w and moreover on the information diffusion model at hand.

2.1.1 Information Diffusion Models

A lot of diffusion models have been designed to model information propagation in a

social network. Next, we describe two of the most widely applied models, namely the

Independent Cascade and the Linear Threshold models. Furthermore, we describe the

Triggering Model that is a generalization of both the IC and LT models.

2.1.1.1 Independent Cascade Model

In the Independent Cascade (IC) model, the values we ∈ [0, 1] for e ∈ E are proba-

bilities. The sequence of node sets (St)t∈N, is randomly generated as follows. If u is

active at time step t ≥ 0 but was not active at time step t − 1, i.e., u ∈ St \ St−1

(with S−1 = ∅), node u tries to activate each of its neighbors v, independently, and

succeeds with probability wuv. In case of success, v becomes active at time step t+ 1,

i.e., v ∈ St+1. Once a node becomes active, it remains active for every succeeding time

step. The process continues until no new nodes can be activated. Note that the process

terminates after at most |V | time steps. Figure 2.1 shows an example of a diffusion

process under the IC model.

2.1.1.2 Linear Threshold Model

In the Linear Threshold (LT) model, the values we ∈ [0, 1] for e ∈ E are such that,

for each node v, it holds that
∑

(u,v)∈E wuv ≤ 1. The sequence of node sets (St)t∈N,

is randomly generated as follows. At time step t + 1, every inactive node v such that∑
(u,v)∈E,u∈St

wuv ≥ θv becomes active, i.e., v ∈ St+1, where the thresholds θv are

chosen independently and uniformly at random from the interval [0, 1] for all nodes

v ∈ V . The process continues until there is no new activated nodes. Figure 2.2 shows

an example of a diffusion process under the LT model.
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(d) t = 3

Figure 2.1: An example of the diffusion process of the IC model. Green nodes
denote active nodes.

2.1.1.3 Triggering Model

Both the IC and LT models can be generalized to what is known as the Triggering Model,

see [46, Proofs of Theorem 4.5 and 4.6]. For a node v ∈ V , let Nv denote all in-neighbors

of v. In the Triggering model, every node v ∈ V independently picks a triggering set

Tv ⊆ Nv according to some distribution over subsets of its in-neighbors. For a possible

outcome L = (Tv)v∈V of triggering sets for the nodes in V , let GL = (V,EL) denote the

sub-graph of G where EL = {(u, v)|v ∈ V, u ∈ Tv}. The graph GL is frequently referred

to as live-edge graph and the edges EL are referred to as live edges. We let ρL(S) be

the set of nodes reachable from S in GL. We denote with L the random variable that

describes this process of generating outcomes or live-edge graphs, and with L we mean

a possible outcome, i.e., value taken by L. Then σ(S) = EL[|ρL(S)|]. The IC model is

obtained from the Triggering model, if for each arc (u, v), node u is added to Tv with

probability wuv. Differently, the LT model is obtained if each node v picks at most one

of its in-neighbors to be in her triggering set, selecting a node u with probability wuv

and selecting no one with probability 1−
∑

u∈Nv
wuv.
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Figure 2.2: An example of the diffusion process of the LT model. Green nodes
denote active nodes.

2.1.2 Monotone and Submodular Set Functions

There are several definitions for submodular functions in the literature, but Nemhauser

et al. [58] proved that all of these definitions are equivalent. They also introduced some

properties of submodular set functions that used by Kempe et al. [46] to present an

approximation algorithm for IM problem.

Definition 2.1. (Submodularity) A set function f : 2V → R is submodular if for any

two sets S ⊆ T ⊆ V and any element x ∈ V \ T , the marginal gain from adding the

element x to S is at least as high as the marginal gain from adding the same element

to the superset T . Formally

f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T ).

Definition 2.2. (Monotonicity) A function f : 2V → R is monotone if for any subsets

S ⊆ T ⊆ V it holds that f(S) ≤ f(T ).
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The following theorem states that for any monotone and submodular set function f ,

there is a greedy algorithm that finds a set of elements of limited size that maximizes

the function f and provides a constant approximation factor.

Theorem 2.3 ([31, 58]). For a monotone and submodular set function f(·), the greedy

algorithm that in each of k iterations selects the element with the largest marginal

increase in f(·) produces a set Sg of size k such that f(Sg) ≥ (1− 1/e)max|S|=k f(S),

where e is the base of the natural logarithm.

2.1.3 Influence Maximization Problem

We now ready to formally define influence maximization problem.

Definition 2.4 (Influence Maximization). Given a graph G = (V,E,w), a diffusion

model, and a budget k, the objective is to find a seed set S with |S| ≤ k such that σ(S)

is maximized.

Kempe et al. [46] showed that the influence function σ(·) for the both IC and LT models

is monotone and submodular. Thus using the greedy algorithm in Algorithm 1, we get

an approximation algorithm with a factor of 1− 1/e. It is not feasible to evaluate the

influence function σ(·) in polynomial time. It has been proven that it is #P-hard to

compute σ(·) precisely both for the LT model [28] and the IC model [74]. However,

using the Chernoff–Hoeffding bounds, the function can be approximated by sampling

a sufficiently large number of live-edge graphs.

Algorithm 1 Greedy Hill Climbing
Input: Graph G = (V,E,w) and a budget k
Output: Set S ⊆ V with |S| ≤ k
S ← ∅
while |S| < k do
v ← argmaxu∈V \S{σ(S ∪ u)− σ(S)}
S ← S ∪ {v}

end while
return S

Proposition 2.5 (Proposition 4.1 in [46]). Let ε and δ be two small and real numbers.

For a given seed set S, if we sample at least Ω(n2/ε2 ln(1/δ)) live-edge graphs, with

probability at least 1−δ, the average number of activated nodes over the live-edge graphs

is a (1± ε)-approximation to σ(S).
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We now state the main theorem that shows the optimal solution for influence maxi-

mization can be approximated to within a constant factor.

Theorem 2.6 (Theorem 1.1 in [46]). For the IC and LT models, there is a polynomial-

time greedy algorithm that approximates the maximum influence to within a factor of

1− 1/e− ε, with probability at least 1− δ, where e is the base of the natural logarithm

and ε is any positive real number.

2.2 Fairness Notions

In the influence maximization problem, the objective is only concerned with the effi-

ciency of the diffusion process, it does not take into account any fairness criteria. In

order to underline the need of studying such fairness criteria in this scope, we start

with the following motivating example: Consider a simple random graph modeling a

network similar to a core-periphery structure [17]. The network consists of two com-

munities or groups (set of nodes), the core C and the periphery D. The probability

of intra-community edges are pC and pD respectively, while the probability of inter-

community edges is q. For concreteness, assume that |C| = 50, |D| = 150 and pC = 0.5,

pD = 0.1 and q = 0.1. I.e., we obtain a random network consisting of a well-connected

rather small core and worse connected larger part of the graph that we refer to as the

periphery of the network. Assume now that we use a state-of-the-art algorithm for

influence maximization, e.g., the TIM implementation of the greedy algorithm due to

Tang et al. [68], in order to compute a seed set of size k with large expected coverage

in the graph. As we can see in Figure 2.3 on the left, this can lead to a significant

discrepancy in the probability of nodes being reached in the two communities. For

concreteness, if k = 5, an average node in the core is reached with probability larger

than 0.25, while the average node in the periphery is reached only with a probability of

around 0.05. In the right plot in Figure 2.3, we observe that the algorithm selects most

of the seed nodes in the core. This is clearly because nodes in the core are better con-

nected and thus choosing such nodes as seeds results in better coverage. In summary,

we observe that maximizing expected spread without considering any fairness crite-

ria can lead to unfair coverage with respect to communities or groups in the network.

Such observations have motivated researchers more recently, to take fairness issues in

influence maximization into account.
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Figure 2.3: Results for the core-periphery model with a core of 50 nodes and a
periphery of 150 nodes. The budget k is increasing from 1 to 10.

We proceed by reviewing the definition of fairness notions that we use in this thesis.

There is not one specific definition of fairness. An intuitive criterion is the maximin

criterion which requires that the utility of the worst-off group should be maximized.

In the context of influence maximization, the goal is to choose at most k seed nodes

to maximize the minimum probability of a user being reached. When generalized to

groups of users or communities, the goal becomes to maximize the minimum expected

fraction of users reached per community. The first problem, where the objective is

to maximize the minimum probability that nodes receive the information, has been

considered by Fish et al. [38], who showed that the problem is hard to approximate

to any constant approximation factor, unless P = NP. The second problem, where

the objective is to maximize the minimum probability that communities are reached,

has been considered by Tsang et al. [71]. The authors designed an algorithm with an

asymptotic approximation ratio of 1− 1/e provided that the number of communities is

not much larger than k. To better understand this notion, consider the example of hiring

with two groups male and female. The first problem aims to maximize the minimum

probability that an applicant is hired (independent of the group membership). However,

the second problem aims to maximize the minimum fraction of hired applicants per

group. Another fairness notion that is used in the literature, for example in the machine

learning community, see, e.g., Definition 1 in Chapter 2 in the book by Barocas et

al. [11], is demographic parity (also referred to as independence) that falls into the

category of group fairness and is actually defined as equality in probability of being

selected conditioned on group membership. This notion is also considered in the context

of influence maximization [4, 36, 65, 66]. In the hiring scenario, demographic parity

requires that the fraction of hired applicants should be equal among the two groups,

see Figure 2.2.
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Figure 2.4: The fraction of hired applicants in each group is 1/3. The vertical line
separates the groups and the dashed area shows the hired applicants.

Another fairness notions that we use in this thesis are equalized odds (also called sep-

aration), see, e.g., Definition 2 in Chapter 2 in the book by Barocas et al. [11] and

predictive parity (referred to as outcome test) [29, 73]. Equalized odds requires that

conditioned on target value (e.g., applicants with a good and bad resume), the prob-

ability of being selected should be the same among all communities (groups). In the

example of hiring, let T and T̄ be the sets of applicants with good and bad resume,

respectively. Equalized odds implies that the probability of an applicant with an ac-

tual good resume to be correctly hired and the probability of an applicant with an

actual bad resume to be incorrectly hired should both be the same for male and female

applicants, see Figure 2.2.

T

T̄

Figure 2.5: The fraction of hired applicants with good and bad resume out of all
applicants with good and bad resume in each group is 1/2 and 1/2, respectively. The
vertical line separates the groups and the dashed area shows the hired applicants.

Predictive parity requires that the fraction of selected targeted users (e.g., applicants

who are hired for a job and have good resume) out of all selected users should be

the same for each community. In the example of hiring, predictive parity implies that

for both male and female applicants, the probability of an applicant that is hired to

actually have a good resume should be the same, see Figure 2.2.

T

T̄

Figure 2.6: The fraction of hired applicants with good resume out of all hired
applicants in each group is 2/3. The vertical line separates the groups and the

dashed area shows the hired applicants.
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2.3 Further Notation

For a seed set S ⊆ V , we define σv(S) := PrL[v ∈ ρL(S)] as the probability that node

v ∈ V is reached from seed nodes S. Note that the expected spread is the sum over all

these probabilities, i.e., σ(S) = EL[|ρL(S)|] =
∑

v∈V PrL[v ∈ ρL(S)] =
∑

v∈V σv(S).

We extend this notation in a natural way, that is, for a set (or group) of nodes C ⊆ V ,

we denote by σC(S) =
1
|C| ·

∑
v∈C σv(S) the average probability of nodes being reached

in C or equivalently this is the expected group coverage of C, i.e., the expected fraction

of nodes from C that are reached.

We use 1 for the all-ones vector (of suitable dimension) and 1i for the i’th unit vector.

Furthermore, with a slight abuse of notation, we use 1P to be the indicator function

that equals 1 if P holds and 0 otherwise. We also say that an event holds with high

probability (w.h.p.), if it holds with probability at least 1− n−α for a constant α that

can be made arbitrarily large.

Approximation Algorithms. For N ∈ N, we use [N ] to denote the integers from 1

to N . We will consider maximization problems of the form max{F (x) : x ∈ R and ∃γ :

Ai(x) = γ for all i ∈ [m]}, where R is a feasibility region, the functions Ai : R→ R≥0,

for i ∈ [m], define a set of (additional) constraints that can possibly be violated or

hold only approximately, and F : R → R≥0 is an objective function. We consider

approximation algorithms (possibly) with constraint violation. Let α, β ∈ (0, 1] be real

values. Then, we say that x ∈ R is β-feasible if Ai(x) ≥ β ·Aj(x) for all pairs of i, j ∈
[m]. We say that x ∈ R is an (α, β)-approximation if x is β-feasible and F (x) ≥ α · opt,
where opt is the optimum value. We call an algorithm a (α, β)-approximation algorithm,

if it is a polynomial-time algorithm whose output solutions are (α, β)-approximations.

Similarly, for a given ε ∈ [0, 1), we say that x ∈ R is ε+-feasible if
∣∣Ai(x)−Aj(x)

∣∣ ≤ ε

for all i, j ∈ [m] and i ̸= j. For α ∈ (0, 1] and ε ∈ [0, 1), an (α, ε)+-approximation

algorithm produces an ε+-feasible x ∈ R such that σ(x) ⩾ α opt.





Chapter 3

Maximin Fairness through

Randomization

In this chapter, we study the problem of determining key seed nodes for influence

maximization in social networks in an efficient and fair manner. Similar to previous

works like Fish et al. [38] and Tsang et al. [71], we study the maximin criterion for

(group) fairness. We extend these works by studying the impact of randomization on

fairness.

3.1 Problem Definition

We start by introducing the problem that has been investigated by Fish et al. [38] and

Tsang et al. [71].

Maximin Optimization. The standard objective studied in influence maximization

is finding a set S maximizing σ(S) under a cardinality constraint |S| ≤ k for some

integer k. As this objective function does not take into account the fairness of the

diffusion process with respect to nodes or communities, Fish et al. [38] and Tsang et

al. [71], have investigated maximin variants of this objective that can be written as

max
S∈(Vk)

min
C∈C

σC(S),

24
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where C is a set of m ≥ 1 different communities ∅ ̸= C ⊆ V that may not be disjoint

and
(
V
k

)
denotes the set of subsets of V of size k. If each node is its own community, this

amounts to finding a set of k seed nodes maximizing the minimum probability that a

node is reached, which is the problem considered by Fish et al. [38]. We note that this is

actually one instance of a broader class of optimization problems that ask to maximize a

social welfare function, being the −∞-mean here. Fish et al. [38] considered the special

case where the diffusion model is the Independent Cascade model and in which all arcs

have the same probability of diffusion α. They proved that the problem of choosing

k seeds S such as to maximize minv∈V σv(S) is NP-hard to be approximated within a

factor better than O(α) and that minimizing the number of seeds to obtain the optimal

solution cannot be approximated within a factor O(lnn). Furthermore, they analysed

several natural heuristics which unfortunately exhibit worst-case approximation ratio

exponentially small in n.

3.1.1 Fairness via Randomization

We initiate studying the impact of randomization to increase fairness for influence

maximization. We start with a simple example of an influence maximization problem

to illustrate the impact of randomization. Let us assume that we are using the IC model.

Consider the graph in Figure 3.1 consisting of two nodes u, v, each forming their own

community, connected in both directions by edges (u, v), (v, u) with probabilities 1/2.

Assume that k = 1. Then (due to symmetry) the optimal deterministic strategy is to

choose any of the two nodes achieving a minimum probability of being reached of 1/2

for the non-chosen node. A probabilistic strategy however would be allowed to assign

probabilities 1/2 to both the sets {u} and {v}. For each of the two nodes, this strategy

achieves an expected probability of being reached of 1/2+1/4 = 3/4, the 1/2 being due

to the fact that the node is a seed himself with probability 1/2 and the 1/4 being due to

the probability of being reached (with probability 1/2) from the other node if she is a

seed (happens with probability 1/2). While the example seems simplistic and artificial,

it shows that the probabilistic strategy may in fact achieve a higher degree of fairness.

We consider two different ways of introducing randomness, either via distributions over

sets or via distributions over nodes.
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u v

0.5

0.5

Figure 3.1: Simple instance showing that randomization allows to increase fairness
in influence maximization.

Probabilistically Choosing Sets. We relax the maximin problem by allowing for

randomized strategies, i.e., feasible solutions in our set-based probabilistic maximin prob-

lem are not simply sets of size at most k, but rather distributions over sets. Let P be

the set of distributions over sets of expected size at most k, i.e., P := {p ∈ [0, 1]2
V
:

1T p = 1,
∑

S⊆V pS |S| ≤ k} and let S ∼ p denote the random process of sampling S

according to the distribution p. We now consider the optimization problem

optP(G, C, k) = max
p∈P

min
C∈C

ES∼p[σC(S)],

i.e., we are searching for the probability distribution that maximizes the minimum

expected probability of the m communities to be reached. This notion is frequently

referred to as ex-ante fairness in the literature [53].

We note that in the conference paper [14] we studied the set-based probabilistic max-

imin problem where the probability distributions are restricted to be over sets of size

exactly k. Here, we explicitly allow sets of size different from k, the only restriction on

the size is in expectation. This new problem constitutes a relaxation of the set-based

problem studied in the conference paper [14]. We emphasize that all of our results

hold for both versions of the problem. The main reason why we further relaxed the

studied set-based problem is that this allows us to obtain a clean relationship (see Sub-

section 3.1.2 in this section) between the set-based and the node-based problem that

we introduce next.

Probabilistically Choosing Nodes. An alternative intuitive way of introducing

randomness is obtained by considering a maximin problem where feasible solutions

are not distributions over sets, but are characterized by probability values for nodes.

In this setting, which we call the node-based probabilistic maximin problem, we let

X := {x ∈ [0, 1]n : 1Tx ≤ k} be the feasible set and consider the process of randomly

generating a set S from x, denoted by S ∼ x, by letting i be in S independently with
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probability xi. In this setting we are thus interested in finding x ∈ X that maximizes

the minimum expected coverage from S of any community, when S is generated from

x as described and the expectation is over this generation. We write this problem as

optX (G, C, k) = max
x∈X

min
C∈C

ES∼x[σC(S)].

Extending Set Functions to Vectors. In what follows, we extend set functions to

vectors in P and X in a straightforward way, i.e., for a set function f , for p ∈ P, we

let f(p) := ES∼p[f(S)] and, for x ∈ X , we let f(x) := ES∼x[f(S)].

3.1.2 Relationship between Problems

We first observe that, for x ∈ X , the vector px defined as pxS :=
∏

i∈S xi
∏

j∈V \S(1−xj),
for S ⊆ V , is in P and furthermore σC(x) = σC(p

x) for any C ∈ C. Hence, we obtain

the following lemma.

Lemma 3.1. For any G, C, and k, it holds that optX (G, C, k) ≤ optP(G, C, k).

We proceed by measuring the reverse relation. In fact, the concept of correlation gap

can be used in order to upper bound optP(G, C, k) in terms of optX (G, C, k) incurring

only a constant loss.

Lemma 3.2. For any G, C, and k, it holds that optP(G, C, k) ≤ e
e−1 · optX (G, C, k).

Proof. Let G, C, and k be arbitrary. For a distribution p ∈ P over 2V , define the

marginal probabilities yp w.r.t. p by ypi := PrS∼p[i ∈ S] =
∑

S⊆V :i∈S pS . The correlation

gap [2, 80] of f : 2V → R≥0 is defined as

γf := sup
p∈[0,1]2V

ES∼p[f(S)]

ES∼yp [f(S)]

and it is well-known that the correlation gap of a monotone submodular function is

bounded from above by e
e−1 , see Agrawal et al. [2, Corollary 1.2] or Yan [80, Theorem

2.1]. We may thus conclude that, for all C ∈ C, γσC ≤ e
e−1 . Now, let p ∈ P be an

optimal solution, i.e., optP(G, C, k) = minC∈C ES∼p[σC(S)]. We obtain

optP(G, C, k) = min
C∈C

ES∼p[σC(S)] ≤ min
C∈C

{ e

e− 1
· ES∼yp [σC(S)]

}
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=
e

e− 1
·min
C∈C

ES∼yp [σC(S)] ≤
e

e− 1
· optX (G, C, k),

where the last step uses that
∑

i∈V ypi =
∑

i∈V
∑

S⊆V :i∈S pS =
∑

S⊆V pS · |S| ≤ k and

thus yp ∈ X .

It remains to ask if the bound predicted by the above lemma is tight. We give the

following simple example.

Lemma 3.3. There exists a graph G, community structure C, and integer k, such that

optP(G, C, k) ≥ 5
4 · optX (G, C, k) when using the IC model.

Proof. Consider the graph G consisting of two nodes u and v connected back and forth

by two edges of weight 2/3. Let C be the singleton community structure, and k = 1,

i.e., the same instance as in Figure 3.1 with the difference that the edge weights are

2/3. Then the best node-based solution achieves a value of 2/3 (either by choosing one

of the two nodes with probability 1 or by choosing both with equal probability 1/2).

The optimal set-based solution that chooses the sets {u} and {v} both with probability

1/2 however achieves a value of 1/2 + 1/2 · 2/3 = 5/6.

We note that e/(e − 1) ≈ 1.58, while 5/4 = 1.25. We consider tightening this gap to

be an interesting open problem.

3.2 Price of Fairness and Hardness

3.2.1 Price of Group Fairness

The price of group fairness is a quantitative loss measuring the decrease in efficiency

that is incurred when we restrict ourselves to solutions respecting a group fairness

requirement. In the following, we denote the maximizing solutions to the node and

general set-based problems by

FX (G, C, k) = argmax
x∈X

min
C∈C

ES∼x[σC(S)] and FP(G, C, k) = argmax
p∈P

min
C∈C

ES∼p[σC(S)],
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respectively. Then, the respective prices of fairness PoFX (G, C, k) and PoFP(G, C, k)
incurred by restricting to strategies in FX (G, C, k) and FP(G, C, k) are given by

PoFX (G, C, k) =
maxS∈(Vk)

σ(S)

maxx∈FX (G,C,k) σ(x)
and PoFP(G, C, k) =

maxS∈(Vk)
σ(S)

maxp∈FP (G,C,k) σ(p)
.

We obtain that for both problems, the price of group fairness can be linear in the graph

size.

Lemma 3.4. For any even n > 0, there is a graph G with n nodes and a community

structure C such that PoFX (G, C, 1) = PoFP(G, C, 1) = (n + 2)/4, when using the IC

model.

Proof. Let G be composed of two disjoint sets J and I of n/2 vertices each. The only

edges present in G are the edges from one specific vertex w ∈ J to all other vertices in

J . Let the weight of these edges be 1 and let C be the community structure consisting

of singletons and k = 1. Note that for all nodes v ∈ I ∪ {w}, the probability of being

reached is equal to the probability of being a seed as these nodes have no incoming

edges. In other words, for any strategy x ∈ X , it holds that σv(x) = xv. Similarly,

for any p ∈ P, it holds that σv(p) = ypv , where ypv :=
∑

S:v∈S pS are the marginal

probabilities with respect to p. Hence, it follows that the probabilistic solutions that

maximize fairness split the budget 1 equally among the nodes in I∪{w}. More precisely,

when defining ρ := 1/(n2 +1), we get FX (G, C, 1) = {ρ ·1I∪{w}} and FP(G, C, 1) = {p ∈
P : ypv = ρ for all v ∈ I ∪ {w}} and in both cases the achieved objective value is

optX (G, C, 1) = optP(G, C, 1) = ρ. Furthermore

max
x∈FX (G,C,1)

σ(x) = max
p∈FP (G,C,1)

σ(p) = n · ρ.

The set S of size 1 that maximizes the expected number of reached nodes however,

selects the node w yielding maxS∈(V1)
σ(S) = n/2. Hence, we get a price of fairness

that is of linear order. More precisely, PoFX (G, C, 1) = PoFP(G, C, 1) = (n2 + 1)/2 =

(n+ 2)/4.

On the positive side we obtain that the price of group fairness is never larger than n/k.

Lemma 3.5. For any graph G, community structure C and number k, it holds that

PoFX (G, C, k) ≤ n/k and PoFP(G, C, k) ≤ n/k.
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Proof. Note that, for both problems, there exist some optimal solution x and p, such

that the expected size of the seed set is exactly k, i.e., 1Tx = k and
∑

S⊆V pS |S| = k.

Furthermore, the expected size of the spread (σ(x) and σ(p)) is at least as large as the

expected size of the seed set, i.e., for any x ∈ X and p ∈ P, it holds that σ(x) ≥ k

and σ(p) ≥ k. Thus, maxp∈FP (G,C,k) σ(p) ≥ k and maxx∈FX (G,C,k) σ(x) ≥ k. Together

with σ(S) ≤ n for any set S, we obtain an upper bound of n/k for the price of (group)

fairness.

Pessimistic Price of Fairness. A more pessimistic point of view leads to a different

definition of the price of fairness. Indeed, the reader might have wondered if it is

the correct choice to define PoFX and PoFP using the maximum spread over all fair

solutions in the denominator. In fact, if we just compute any fair solution, the loss in

terms of efficiency that we may incur could be as large as

PoFX (G, C, k) :=
maxS∈(Vk)

σ(S)

minx∈FX (G,C,k) σ(x)
and PoFP(G, C, k) :=

maxS∈(Vk)
σ(S)

minp∈FP (G,C,k) σ(p)
,

for the node-based problem and the set-based problem, respectively. We call this alter-

native definition the pessimistic price of fairness for a graph G, community structure C
and budget k. We note that clearly PoFX (G, C, k) ≥ PoFX (G, C, k) and PoFP(G, C, k) ≥
PoFP(G, C, k). Moreover, we note that Lemma 3.4 holds still for this alternative defini-

tion as σ(x) = σ(p) = n · ρ for all x ∈ FX (G, C, 1) and p ∈ FP(G, C, 1). In contrast, we

observe that Lemma 3.5 does not transfer to the pessimistic notion. In fact, we obtain

only the following weaker lemma.

Lemma 3.6. For any graph G, community structure C and number k, it holds that

PoFX (G, C, k) ≤ n and PoFP(G, C, k) ≤ n.

Proof. Recall that all communities are non-empty. Fix an arbitrary community C.

Now, consider σC(x) as a function of xv for a node v ∈ C. This function is strictly

monotonically increasing in [0, 1]. And thus all fair solutions x satisfy that the expected

size of the seed set is at least 1, i.e., 1Tx ≥ 1. Similarly, it can be seen that all fair so-

lutions p to the set-based problem satisfy
∑

S⊆V pS |S| ≥ 1. Furthermore, the expected

size of the spread σ(x) and σ(p) is larger than the expected size of the seed set, i.e., for

any fair x and p, it holds that σ(x) ≥ 1 and σ(p) ≥ 1. Thus minp∈FP (G,C,k) σ(p) ≥ 1
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and minx∈FX (G,C,k) σ(x) ≥ 1. Together with σ(S) ≤ n for any set S, we obtain an

upper bound of n for the price of (group) fairness.

It turns out that the above bound is tight. Consider the following example. The graph

G consists of one isolated node v and a (to v unconnected) clique of n− 1 nodes with

edge probabilities being 1. Assume furthermore that the community structure C is

such that the nodes in the clique do not participate in any community, while v forms

its own community. Furthermore, assume that the budget k is 2. The node-based

solution x that is zero everywhere but for xv = 1 and the set-based solution p that is

zero everywhere but for p{v} = 1 are optimal fair solutions as they achieve an objective

value of 1. The deterministic solution S = {u, v}, where u is an arbitrary node in the

clique however satisfies σ(S) = n and thus PoFX (G, C, 2) ≥ n and PoFP(G, C, 2) ≥ n.

Finally, we remark that the above example heavily depends on the fact that it is not

necessary to use the whole budget k in order to obtain an optimal fair node-based or

set-based solution.

3.2.2 Hardness

Fish et al. [38] show that the standard maximin problem as introduced in Section 3.1 is

NP-hard and even inapproximable. In this subsection, we provide hardness results for

our set-based and node-based probabilistic maximin problems that we introduced in

Subsection 3.1.1. In the first paragraph of this subsection, we prove that both problems

are NP-hard. In the second paragraph, we even show that the node-based probabilistic

maximin problem cannot be approximated to within 1− 1/e+ ε for any ε > 0, unless

P = NP. We note that, although it shows a stronger result, our reduction in the

second paragraph is significantly less involved than the NP-hardness result in the first

paragraph. The reader may thus wonder why we still present the more involved proof

of the weaker NP-hardness of the node-based problem. The reason for this choice is

that we think that the first reduction gives further insight into how the hardness is

implied from the fairness criteria. Note that the reduction in the second paragraph

uses a single community and thus, in a certain sense, the hardness of approximation is

inherent to maximizing influence spread rather than due to any fairness issue.

NP-Hardness. The main result of this paragraph is the following theorem.
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Theorem 3.7. For a directed arc-weighted graph G = (V,E,w) it is NP-hard to decide

if there is p ∈ P with minv∈V ES∼p[σv(S)] ≥ α (resp. x ∈ X with minv∈V ES∼x[σv(S)] ≥
α) for any α ∈ (0, 1) even when using the IC model.

The proof of the theorem is based on a reduction from the Vertex Cover problem.

In the vertex cover problem, we are given a graph G = (V,E) where V is a set of n

vertices and E is a set of m edges, and an integer k. The task is to determine if there

exists a set T = {vi1 , . . . , vik} of k vertices such that ∀e ∈ E, e ∩ T ̸= ∅. We proceed

by describing the reduction.

Let α ∈ (0, 1) be arbitrary. Given an instance of the vertex cover problem, we create

instances of the set-based and node-based probabilistic maximin problem defined as

follows, see Figure 3.2. Let us call the resulting directed graph G = (U,A) and let us

assume that the IC model is the underlying diffusion model and that we are considering

the singleton community structure. The node set U contains (1) one vertex uv for each

vertex v ∈ V , (2) one auxiliary vertex ua, (3) a vertex ue for each edge e ∈ E, (4) a

set Ie = {ue1 , . . . , ueλ} of λ := ⌈mk(k+1)
α(1−α)2

⌉ + 1 vertices for every edge e ∈ E. The

edge set A is defined as follows: (1) Each vertex uv has an outgoing edge towards ua

labelled with probability 1, while the vertex ua has an outgoing edge with probability

α towards each vertex uv. (2) There is an edge labelled with probability 1 from uv to

ue if v ∈ e. (3) There are edges from ue to all vertices uei for each edge e ∈ E labelled

with probability α. We set the budget for both set-based and node-based problems

equal to k. Our aim is now to show that there exists a vertex cover of size k in G if

v

w

e ua

uv

uw

ue

1

1

α

α

1

1

ue1

ue2

...

ueλ

α

α

α

Ie

Figure 3.2: Illustration of the reduction: Scheme in G that is obtained for one
edge e = {v, w} in G. Note that there is just one node ua in G, while there is a node

ue and a set of nodes Ie for each edge e ∈ E.
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and only if there exists p ∈ P (resp. x ∈ X ) such that minu∈U ES∼p[σu(S)] ≥ α (resp.

minu∈U ES∼x[σu(S)] ≥ α) in G. The following direction is immediate:

Lemma 3.8. If there exists a vertex cover {vi1 , . . . , vik} of size k in G, then there exists

p ∈ P (resp. x ∈ X ) such that minu∈U σu(p) ≥ α (resp. minu∈U σu(x) ≥ α) in G.

Proof. Consider the set-based solution p ∈ P such that pS = 1 for S = {uvi1 , . . . , uvik}
and the node-based solution x ∈ X such that xu = 1 if u ∈ {uvi1 , . . . , uvik}. Then,

clearly minu∈U ES∼p[σu(S)] ≥ α and minu∈U ES∼x[σu(S)] ≥ α.

It remains to argue the reverse direction. We first fix the following two observations.

Observation 3.9. 1. There exists an optimal solution p∗ (resp. x∗) such that, for

any set S ⊆ V with ({ua} ∪ {ue : e ∈ E}) ∩ S ̸= ∅, it holds that pS = 0 (resp.

px
∗

S = 0, where px
∗

S :=
∏

i∈S x∗i
∏

j∈V \S(1− x∗j )).

2. For an edge e = {v, w} ∈ E, let uei ∈ Ie be a corresponding vertex and let S ⊆ U .

Then (i) σuei
(S) = 1 if uei ∈ S, (ii) σuei

(S) = α if uei /∈ S and {uv, uw} ∩ S ̸= ∅,
and (iii) σuei

(S) ≤ α(1− (1− α)2) otherwise.

Proof. 1. Assume that pS > 0 (resp. pxS > 0) for some set S ⊆ V with ({ua} ∪ {ue :
e ∈ E})∩S ̸= ∅. Let u be a node in the intersection and let S′ be the set S with u

replaced by one of its in-neighbors, call it u′. Then, clearly p′ := p−pS1S+pS1S′

(resp. x′ := x − xu1u + xu1u′) satisfies σu(p
′) ≥ σu(p) (resp. σu(x

′) ≥ σu(x))

for all vertices u ∈ U . It follows that p (resp. x) can be transformed into a

distribution (resp. vector) satisfying pS = 0 (resp. px
∗

S = 0) for all S ⊆ V with

({ua} ∪ {ue : e ∈ E}) ∩ S ̸= ∅.

2. The first two cases are trivially true. For the third case, note that in that case uei

can be reached at most via ua. The probability that at least one of uv, uw gets

reached from ua is at most 1− (1− α)2 and thus σuei
(S) ≤ α(1− (1− α)2).

We are now ready to prove the lemma showing the reverse direction.

Lemma 3.10. If there exists no vertex cover {vi1 , . . . , vik} of size k in G, then for all

optimal solutions p∗ ∈ P and x∗ ∈ X it holds that minu∈U σu(x
∗) ≤ minu∈U σu(p

∗) < α

in G.
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Proof. Following Observation 3.9, let p∗ be such that, for any set S ⊆ V with ({ua} ∪
{ue : e ∈ E}) ∩ S ̸= ∅, it holds that p∗S = 0. Our goal is to show that there exists one

vertex u ∈ U such that σu(p
∗) < α. Let e = {v, w} ∈ E be arbitrary and recall that

Ie is of size λ. Thus, there exists i ∈ [λ] such that PrS∼p∗ [uei ∈ S] ≤ k/λ as otherwise

ES∼p∗ [|S|] > k. W.l.o.g. let us assume that i = 1 for all edges e ∈ E. Observe that

then, for all e ∈ E, it holds that

σue1
(p∗) = Pr

S∼p∗
[ue1 ∈ S] + ES∼p∗ [σue1

(S) | ue1 /∈ S] · Pr
S∼p∗

[ue1 /∈ S]

≤ k

λ
+ ES∼p∗ [σue1

(S) | ue1 /∈ S].

(3.1)

In order to upper bound the above expectation, we define ρe := PrS∼p∗ [S ∩{uv, uw} =
∅]. Using Observation 3.9, we get

ES∼p∗ [σue1
(S) | uei /∈ S] ≤ α(1− (1− α)2) · ρe + α · (1− ρe) = α− ρe · α(1− α)2.

(3.2)

In order to complete the proof it thus remains to find e ∈ E for which ρe can be

bounded from below. We deduce this bound from a lower bound on the sum of all ρe’s.

We have

∑
e∈E

ρe ≥
∑

e=(v,w)∈E

ES∼p∗ [1S∩{uv ,uw}=∅ | |S| ≤ k] · Pr
S∼p∗

[|S| ≤ k]

≥
ES∼p∗ [

∑
e∈E 1S∩{uv ,uw}=∅ | |S| ≤ k]

k + 1

using that ES∼p∗ [|S|] ≤ k and hence using Markov’s inequality

Pr
S∼p∗

[|S| ≤ k] = 1− Pr
S∼p∗

[|S| ≥ k + 1] ≥ 1− k

k + 1
=

1

k + 1
.

We now use that there exists no vertex cover of size k in G and thus for each S with |S| ≤
k, there exists e ∈ E such that S ∩ {uv, uw} = ∅. Hence, we get

∑
e∈E ρe ≥ 1/(k + 1).

This also implies that there exists one edge ē ∈ E for which ρē ≥ 1/(m(k+1)). Plugging

this into (3.2) and this again into (3.1) gives

σuē1
(p∗) ≤ k

λ
+ α− α(1− α)2

m(k + 1)
< α,

using that λ > mk(k+1)
α(1−α)2

by definition.
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The above two lemmata directly prove Theorem 3.7.

Hardness of Approximation for Node-based Problem. We continue by proving

an even stronger result for the node-based probabilistic maximin problem.

Theorem 3.11. For any ε > 0, the node-based probabilistic maximin problem, cannot

be approximated to within a factor 1− 1/e+ ε, unless P = NP.

Proof. The proof is by reduction from the Max-Coverage problem. An instance of

Max-Coverage is given by an integer κ and a collection of subsets D = {S1, . . . , Sµ}
of a universe of elements U = {e1, . . . , eν}. The task is to find a subset T of at most κ

subsets from D such that the number of elements in their union |
⋃

S∈T S| is maximized.

Recall that, for any ε > 0, Max-Coverage cannot be approximated to within 1 −
1/e+ ε, unless P = NP [37, Theorem 5.3].

We construct the following instance of the node-based probabilistic maximin problem.

The graph G = (V,E) has an nodeset V that consists of two sets of nodes, the first being

L := {u1, . . . , uµ} and the second being R := {v1, . . . , vν}. There is an edge from node

ui to node vj , if and only if ej ∈ Si. The weight of all these edges is 1. The community

structure C consists of a single community C that is equal to R. Now, w.l.o.g., we can

assume that any node-based solution x satisfies xv = 0 for all nodes v ∈ R. Suppose

otherwise, then transferring xv to any of v’s ingoing neighbors can only increase the

value of σC(x). There is a one-to-one correspondence between the feasible sets to Max-

Coverage and the integral solutions to the node-based probabilistic maximin problem

as follows. A feasible set T in Max-Coverage that covers ℓ elements implies an

integral solution to the node-based probabilistic maximin problem with xui = 1 for all

Si in T and 0 otherwise that achieves a value of σC(x) = ℓ/ν. The other direction holds

as well.

Now, let ε > 0 and assume that there exists an algorithm with approximation ratio

1−1/e+ε for the node-based probabilistic maximin problem. Let x ∈ X be the output

of that algorithm for the instance constructed above. Notice that the objective function

in the node-based probabilistic maximin problem is equal to

f(x) =
1

ν

∑
v∈R

σv(x) =
1

ν

∑
v∈R

(
1−

∏
u∈δin(v)

(1− xu)
)
,
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where δin(v) denote all the ingoing neighbors of node v. It is clear that f is ε-convex

in the sense of Ageev and Sviridenko [1] and thus Pipage rounding [1] can be used

in order to compute a vector 1T from x such that f(1T ) ≥ f(x). Denoting with x∗

and T ∗ an optimal solution to the node-based probabilistic maximin problem and the

Max-Coverage problem, respectively, this implies∣∣⋃
S∈T S

∣∣
ν

= f(1T ) ≥ f(x) ≥
(
1− 1

e
+ ε

)
· f(x∗) ≥

(
1− 1

e
+ ε

)
· f(1T ∗)

=
(
1− 1

e
+ ε

)
·
∣∣⋃

S∈T ∗ S
∣∣

ν
.

Hence, we obtain an algorithm for Max-Coverage with approximation ratio 1−1/e+ε

which is impossible unless P = NP. This completes the proof.

3.3 Approximation Algorithms

In this section, we show that there are algorithms with constant approximation factors

to both the node-based and the set-based probabilistic maximin problems. We start

with a standard step that allows us to approximate the functions σC(p) and σC(x) to

within an additive error of ε for any ε > 0.

3.3.1 Approximation via Hoeffding’s bound

The functions σC(p) and σC(x) involved in the optimization problems at hand are not

computable exactly in polynomial time (even for a vector p of polynomial support).

Even worse, they cannot be multiplicatively approximated using Chernoff bounds as

there is no straightforward absolute lower bound on σC(S) for sets S of size k and

communities C ∈ C. Here, we will show that the functions can be absolutely approxi-

mated by functions σ̃C(p) and σ̃C(x) that are obtained by sampling a sufficiently large

number of live-edge graphs. Optimal solutions to the resulting maximin problems in-

volving the approximate functions can thus be shown to be additive ε-approximations

to optP(G, C, k) and optX (G, C, k), respectively.

Formally, for T ∈ Z≥0, we let L1, . . . , LT denote a set of T live-edge graphs sampled

according to the Triggering model (that entails both the IC and LT model). Then, for
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v ∈ V and S ∈ 2V , we define

σ̃v(S) :=
1

T

T∑
t=1

1v∈ρLt (S)
.

Lemma 3.12. Let δ ∈ (0, 1/2) and ε ∈ (0, 1). If T ≥ ε−2 · [n+ log n+ log δ−1], then,

with probability at least 1− δ, we have that |σ̃v(S)− σv(S)| ⩽ ε holds for all v ∈ V and

S ∈ 2V .

Proof. We use Hoeffding’s Bound, see for example Theorem 4.12 in the book by Mitzen-

macher and Upfal [56]. Fix a node v ∈ V and a set S ∈ 2V . Note that the graphs

L1, . . . , LT are sampled independently and that 1v∈ρLt (S)
∈ [0, 1]. Hence, Pr[|σ̃v(S) −

σv(S)| ⩾ ε] ≤ 2e−2Tε2 ≤ δ · 2−n/n by the choice of T and assuming that n ≥ 2.

Using a union bound over all 2n sets S ∈ 2V and all n nodes v ∈ V , we obtain that

with probability at least 1 − δ, we have |σ̃v(S) − σv(S)| ⩽ ε for all v ∈ V and for all

S ∈ 2V .

We now observe that the absolute ε-approximations σ̃v(S) for all nodes v ∈ V and

sets S ∈ 2V imply also that σ̃v(p) = ES∼p[σ̃v(S)] is an absolute ε-approximation of

σv(p) := ES∼p[σv(S)] for any p ∈ P. The same holds true for σ̃v(x) = ES∼x[σ̃v(S)] for

any x ∈ X .

Furthermore, we get the same result for σ̃C(p) := 1
|C|

∑
v∈C σ̃v(p) for any p ∈ P and

C ∈ C and for σ̃C(x) := 1
|C|

∑
v∈C σ̃v(x) for any x ∈ X and C ∈ C as these functions are

again just averages over other absolute ε-approximations. Hence we get the following

lemma.

Lemma 3.13. Let δ ∈ (0, 1/2) and ε ∈ (0, 1). Assume that T ≥ 4ε−2 · [n + log n +

log δ−1] and that σ̃C(·) is as above. Let ˜optP(G, C, k) = maxp∈P minC∈C σ̃C(p) and
˜optX (G, C, k) = maxx∈X minC∈C σ̃C(x) and p ∈ P and x ∈ X be solutions such that

minC∈C σ̃C(p) ≥ α · ˜optP(G, C, k)−β and minC∈C σ̃C(x) ≥ α · ˜optX (G, C, k)−β, respec-

tively. Then p and x are solutions such that minC∈C σC(p) ≥ α · optP(G, C, k)− (β+ ε)

and minC∈C σC(x) ≥ α·optX (G, C, k)−(β+ε) with probability at least 1−δ, respectively.

Proof. For any q ∈ P, define m(q) := minC∈C σC(q) and m̃(q) := minC∈C σ̃C(q). Then,

according to Lemma 3.12 and the comments preceding this lemma, with probability at
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least 1− δ, it holds that m̃(q) ∈ [m(q)− ε/2,m(q)+ ε/2]. Let p∗ and p̃∗ be maximizing

solutions for m and m̃, respectively. Then

m(p) ≥ m̃(p)− ε

2
≥ α · m̃(p̃∗)− β − ε

2
≥ α · m̃(p∗)−

(
β +

ε

2

)
≥ α ·m(p∗)− (β + ε).

The proof for the node-based problem is completely analogous.

3.3.2 Probabilistically Choosing Nodes

We start with the node-based problem. It entails to solve the optimization problem

optX (G, C, k) := maxx∈X minC∈C σC(x), where σC(x) = ES∼x[σC(S)] for C ∈ C and

x ∈ X := {x ∈ [0, 1]n : 1Tx ≤ k}. Recall that S ∼ x denotes the random process of

independently letting i ∈ V be in S with probability xi. We use Lemma 3.13 in order

to approximate σC(·) and thus, in what follows, we focus on finding an approximation

algorithm for the problem maxx∈X minC∈C σ̃C(x). We note that Theorem II.5 from

Chekuri et al. [25] in combination with a binary search on a threshold can be used in

order to get a 1− 1/e-approximation for this problem. In what follows we give a more

direct derivation of such an approximation.

Node-based Problem via LP. Note that the optimization problem at hand is not

linear as, for given x, the probability to sample S ∈ 2V is equal to
∏

i∈S xi
∏

i/∈S(1−xi).
We will now argue however that the problem can be constantly approximated by an

LP.

For a live-edge graph L and a node v ∈ V , what is the probability of sampling a set S

that can reach v in L, i.e., what is qv(L, x) := PrS∼x[v ∈ ρL(S)]? It is the opposite event

of not sampling any node that can reach v in L, hence qv(L, x) = 1−
∏

i∈V :v∈ρL(i)(1−xi)
and this is approximated by the function pv(L, x) := min{1,

∑
i∈V :v∈ρL(i) xi} as shown

in the following lemma.

Lemma 3.14. For any live-edge graph L, node v ∈ V , and x ∈ X , it holds that

qv(L, x) ∈ [(1− 1
e ) · pv(L, x), pv(L, x)].

Proof. We start with the lower bound. For simplicity, we let {i ∈ V : v ∈ ρL(i)} =:

{1, . . . , r} = R, i.e., R is the set of nodes that can reach node v in L. Using the
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geometric-arithmetic mean inequality, we get

qv(L, x) = 1−
∏
i∈R

(1− xi) ≥ 1−
(1
r

∑
i∈R

(1− xi)
)r

= 1−
(
1− 1

r

∑
i∈R

xi

)r

≥
(
1−

(
1− 1

r

)r)
·min

{
1,
∑
i∈R

xi

}
≥

(
1− 1

e

)
· pv(L, x),

where the second to last inequality uses that f(x) = 1 − (1 − x/r)r is concave on the

interval [0, 1].

We prove the upper bound by induction on r. Clearly if r = 1, by the definition of

X , we have that pv(L, x) = min{1, x1} = x1 = qv(L, x). Let us show the statement

for r, assuming that it holds for r − 1. If pv(L, x) = 1, the statement is obvious as

qv(L, x) ≤ 1. If pv(L, x) < 1, we get

qv(L, x) = 1−
r−1∏
i=1

(1− xi) + xr ·
r−1∏
i=1

(1− xi) ≤
r−1∑
i=1

xi + xr ·
r−1∏
i=1

(1− xi)

≤
r∑

i=1

xi = pv(L, x),

where the first inequality uses the induction hypothesis and min{1,
∑r−1

i=1 xi} =
∑r−1

i=1 xi

as pv(L, x) < 1, while the second inequality uses that
∏r−1

i=1 (1− xi) ≤ 1.

We now define λv(x) := 1
T

∑T
t=1 pv(Lt, x) and analogously λC(x) := 1

|C|
∑

v∈C λv(x).

As pv(L, x) provides an approximation for qv(L, x), we can show that the node-based

maximin problem can be approximated by a solution to a maximin problem involving

the functions λC(x).

Lemma 3.15. Let x ∈ X be an optimal solution to maxx∈X minC∈C λC(x), then x is

a 1− 1/e-approximation to maxx∈X minC∈C σ̃C(x).

Proof. Note that σ̃C(x) = ES∼x[σ̃C(S)] =
1
|C|

∑
v∈C σ̃v(x) for any x ∈ X and that

furthermore σ̃v(x) =
1
T

∑T
t=1 qv(Lt, x). Hence the definition of λC(x) and Lemma 3.14

yield the result.

Together with Lemma 3.13 and the fact that maxx∈X minC∈C λC(x) can be written

as a linear program by introducing a threshold variable for the minimum, we get the

following result.
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Theorem 3.16. Let δ ∈ (0, 1/2) and ε ∈ (0, 1). There is a polynomial time algorithm

that, with probability at least 1 − δ, computes x ∈ X such that minC∈C σC(x) ≥ (1 −
1
e ) optX (G, C, k)− ε.

Proof. It remains to observe that an optimal solution to maxx∈X minC∈C λC(x) can be

obtained by solving the following linear program of polynomial size:

max
{
τ :

n∑
i=1

xi ≤ k, yv,Lt ⩽
∑

i:v∈ρLt (i)

xi ∀v ∈ V, t ∈ [T ],

∑
t∈[T ]

∑
v∈C

yv,Lt ⩾ T |C| · τ ∀C ∈ C,

x ∈ [0, 1]n, yv,Lt ∈ [0, 1] ∀v ∈ V, t ∈ [T ]
}
.

By combining Lemma 3.15 and Lemma 3.13, we get that, with probability at least

1 − δ, the optimal solution to the above LP is a multiplicative 1 − 1/e-approximation

plus the additive −ε term to optX (G, C, k).

3.3.3 Probabilistically Choosing Sets

Recall that the set-based probabilistic maximin problem is defind as optP(G, C, k) :=
maxp∈P minC∈C σC(p), where σC(p) = ES∼p[σC(S)] for C ∈ C and p ∈ P := {p ∈
[0, 1]2

V
: 1T p = 1,

∑
S⊆V pS |S| ≤ k}. In the light of Lemma 3.13, we focus on finding

approximate solutions to maxp∈P minC∈C σ̃C(p).

The original problem, i.e., the problem of choosing a set maximizing the approximate

minimum probability, can be written as an integer linear program using a variable

to model a threshold to be maximized. However, the problem is NP-hard. Allowing

for distributions over sets rather than nodes turns the optimization problem at hand,

maxp∈P minC∈C σ̃C(p), into a problem that can be written as a linear program. Hence,

from an algorithmic point of view, one may think that this makes the problem poly-

nomial time solvable. The caveat is of course that the dimension of P is large, namely

Θ(2n), which turns the dimension of the corresponding linear program exponential.

In this subsection, we show that, nevertheless, the problem can be approximated to

within a constant factor using a specific kind of linear programming algorithm. The

essential observation is that the linear program at hand actually is a covering linear

program. We will use a result due to Young [82] that shows that such linear programs
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can be solved efficiently independent of their dimension under the condition that a

certain oracle problem can be solved efficiently. We proceed by introducing the result

of Young.

Young’s Algorithm. Young [82] gives algorithms for solving packing and covering

linear programs. A covering problem in the sense of Young is of the following form:

Let P ⊆ Rν be a convex set and let f : P → Rµ be a µ-dimensional linear function

over P . Assume that 0 ≤ fj(x) ≤ ω for all j ∈ [µ] and x ∈ P , where ω is the width of

P w.r.t. f . The covering problem consists of computing λ∗ := maxx∈P minj∈[µ] fj(x),

when fj(x) ≥ 0 for all x ∈ P .

Theorem 3.17 (Young [82]). Let η ∈ (0, 1) and assume that there is an oracle that,

given a non-negative vector z ∈ Rµ returns x ∈ P and f(x) satisfying
∑

j∈[m] zjfj(x) ≥
α ·maxx∈P {

∑
j∈[m] zjfj(x)} for some constant α ≤ 1, then there is an algorithm that

computes x ∈ P with minj∈[µ] fj(x) ≥ α(1 − η) · λ∗ in O(ωη−2 logµ/λ∗) iterations in

each of which it does O(µ) work and calls the oracle once. The output x is the arithmetic

mean of the vectors returned by the oracle.

Set-based Problem via Young’s Algorithm. Clearly σ̃C is a linear function

in p, namely σ̃C(p) =
∑

S⊆V pS σ̃C(S) and thus the problem maxp∈P minC∈C σ̃C(p)

takes exactly the form of a covering problem in the sense of Young with ν = 2n,

µ = m = |C|, P = P, and ω = 1. Hence, we can compute an α-approximation for

maxp∈P minC∈C σ̃C(p), if we provide an oracle with multiplicative approximation α.

Hence, let us take a closer look at the requirements of Theorem 3.17 in terms of the

oracle problem. Given a non-negative vector z ∈ Rm, the oracle is required to return

p ∈ P and σ̃C(p) for C ∈ C such that
∑

C∈C zC σ̃C(p) ≥ α · maxp∈P{
∑

C∈C zC σ̃C(p)}
for some α ≤ 1. Note that, by linearity of expectation

∑
C∈C

zC σ̃C(p) = ES∼p

[∑
C∈C

zC ·
1

|C|
∑
v∈C

σ̃v(S)
]
= ES∼p

[∑
v∈V

ωv · σ̃v(S)
]
,

where ωv :=
∑

C∈C:v∈C zC/|C|. Hence the oracle problem that the Young’s algorithm

has to solve takes the form

optO(G, C, k, ω) := max
p∈P

σ̃ω(p). (3.3)
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We obtain the following lemma that shows that there is always an optimal solution of

linear support.

Lemma 3.18. It holds that optO(G, C, k, ω) = optQ(G, C, k, ω) with

optQ(G, C, k, ω) := max
q∈Q

n∑
i=1

qiσ̃
ω(S∗

i ), (3.4)

where Q := {q ∈ [0, 1]n : 1T q = 1,
∑n

i=1 i · qi ≤ k} and S∗
i ∈ argmax{σω(S) : S ∈

(
V
i

)
}

for i ∈ [n].

Proof. Let q∗ be an optimal solution to (3.4). Define p ∈ P as pS = q∗i if S = S∗
i

and 0 otherwise. Then, p is a feasible solution to (3.3) and thus optO(G, C, k, ω) ≥
optQ(G, C, k, ω). It remains to prove that optO(G, C, k, ω) ≤ optQ(G, C, k, ω). For this

sake let p∗ ∈ P be an optimal solution to (3.3). Assume p∗S > 0 for some set S of

cardinality i, but S ̸= S∗
i . Consider the solution p′ := p − pS1S + pS1S∗

i
. Clearly,

σ̃ω(p) ≤ σ̃ω(p′) as S∗
i by definition is a maximizing set of size i. This modification can

be repeated until we obtain a solution p̄ with p̄S = 0 for all sets S but the sets S∗
1 , . . . S

∗
n.

Clearly p̄ is an optimal solution to (3.3) as each modification did not decrease the value

of σ̃ω(·). Now consider the vector q defined by qi = p̄S∗
i

for i ∈ [n]. Then, q is a feasible

solution to (3.4) and thus optO(G, C, k, ω) ≤ optQ(G, C, k, ω).

In other words, among the vectors that attain the optimum optO(G, C, k, ω), there

is also one that assigns a positive value to at most n sets. Namely, to one set S∗
i ∈(

V
i

)
for each i ∈ [n]. We now observe that σ̃ω(·) is a submodular and monotone set

function. Hence, for each i ∈ [n], the greedy hill climbing algorithm computes 1 −
1/e-approximations to max{σ̃ω(S) : S ⊆ V, |S| ≤ i}. Let S1, . . . , Sn denote these

approximate solutions. Note that we can assume S1 ⊆ S2 ⊆ . . . ⊆ Sn as we can

compute all the sets via one run of the greedy algorithm with budget n. Now consider

the optimization problem

optgrQ(G, C, k, ω) := max
q∈Q

n∑
i=1

qiσ̃
ω(Si) (3.5)

that is identical to (3.4) up to the replacement of S∗
i by Si. We obtain the following

lemma.
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Lemma 3.19. The vector 1k is an optimal solution to the problem in (3.5). Conse-

quently, σ̃ω(Sk) = optgrQ(G, C, k, ω) ≥ (1− 1/e) · optO(G, C, k, ω).

Proof. Let q ∈ Q be arbitrary. For i ∈ [n], define αi :=
∑n

j=i qj and ∆i := σω(Si) −
σω(Si−1) with S0 = ∅. Recall that Q := {q ∈ [0, 1]n : 1T q = 1,

∑n
i=1 i · qi ≤ k}

and notice that the last constraint implies
∑n

i=1 αi =
∑n

i=1 i · qi ≤ k. Now, consider

the optimization problem maxβ∈[0,1]n{
∑n

i=1 βi∆i :
∑n

i=1 βi ≤ k}. Note that, by sub-

modularity, ∆1 ≥ ∆2 ≥ . . . ≥ ∆n and thus the optimum is
∑k

i=1∆i. This implies

that
n∑

i=1

qiσ̃
ω(Si) =

n∑
i=1

αi∆i ≤ σ̃ω(Sk).

We showed that the set Sk obtained by greedily maximizing σ̃ω(·) subject to a budget

of k yields a 1− 1/e-approximation to the oracle problem. Hence we get the following

theorem.

Theorem 3.20. Let δ ∈ (0, 12) and ε ∈ (0, 1). There is a polynomial time algo-

rithm that, with probability at least 1 − δ, computes p ∈ P s.t. minC∈C σC(p) ≥
(1 − 1

e ) optP(G, C, k) − ε. The algorithm calls an oracle for weighted IM in each of

its O(ε−2n logm/k) iterations and the support of the output p is O(ε−2n logm/k).

Proof. We have argued that, for z ∈ Rm, the greedy hill climbing algorithm can be

used on σ̃ω(·), where ω is such that ωv :=
∑

C∈C:v∈C
zC
|C| for v ∈ V , for obtaining a set

S of cardinality k that is a 1− 1/e-approximate solution to the problem of maximizing∑
C∈C zC σ̃C(p) over P. Thus, we described an oracle with multiplicative approximation

1 − 1/e. Applying Theorem 3.17 with η = ε/2 thus implies that Young’s algorithm

returns a solution p ∈ P with minC∈C σ̃C(p) ≥ α · (1 − ε
2)maxp∈P minC∈C σ̃C(p) ≥

α · maxp∈P minC∈C σ̃C(p) − ε
2 after O(ε−2 logm/λ∗) iterations. Observe that for any

p ∈ P and v ∈ V , it holds that σv(p) ≥ PrS∼p[v ∈ S]. Hence, σv(p) ≥ k/n for all

v ∈ V and λ∗ ≥ k/n. Thus the number of iterations is bounded by O(ε−2n logm/k).

As the oracle returns a single set in every iteration it follows that the support of p is

upper bounded in this way as well. Applying Lemma 3.13 with ε/2 leads that we get

a multiplicative 1 − 1/e-approximation minus an additive ε term to optP(G, C, k) in

polynomial time with probability at least 1− δ.

We now state the multiplicative-weight routine for the set-based problem, see Algo-

rithm 2. We assume a routine Greedy(σ̃ω(·), k) that performs k iterations of the
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greedy hill climbing algorithm on σ̃ω(·) and returns a 1 − 1/e-approximation to the

oracle problem.

Algorithm 2 MultiplicativeWeight(G, C, k, ε, δ, η)
Sample T ≥ 4ε−2 · [n+ log n+ log δ−1] live-edge graphs
p← 0, i← 1, Π← −∞, ∆←∞, zC ← 1 and sC ← 0 for C ∈ C
while Π ≥ (1− η) ·∆ do
ωv ←

∑
C∈C:v∈C

zC
|C| for all v ∈ V

S ← Greedy(σ̃ω(·), k)
p← p+ 1S
sC ← i−1

i · sC + 1
i · σ̃C(S) and zC ← zC · (1− η · σ̃C(S)), for all C ∈ C

Π← minC{sC} and ∆← min
{
∆, σ̃

ω(S)
1T z

}
i← i+ 1

end while
return p/i

3.4 Experiments

We report on an experimental study on the two probabilistic maximin problems. In

fact, we provide implementations of multiplicative-weight routines for both the set-

based and the node-based problems. The routine for the set-based problem is the one

described in Subsection 3.3.3. We refer to this algorithm as set_based in what fol-

lows. For the node-based problem, an implementation of the LP-based algorithm from

Subsection 3.3.2 does not seem promising as it requires solving a large LP. Instead,

we propose a heuristic approach that is again based on a multiplicative-weight rou-

tine. The essential observation is that the optimization problem maxx∈X minC∈C λC(x)

from Lemma 3.15 is again a covering LP and thus can be solved using a similar

multiplicative-weight routine. In this case however, the oracle problem turns out to

be the LP-relaxation of the standard influence maximization problem and thus we are

again faced with a linear program of a similar form. This is where our approach be-

comes heuristic, we propose to again use a greedy algorithm for influence maximization

in order to obtain feasible solutions for this LP. While this comes without any guarantee

on approximation ratio, it turns out to be very efficient in practice. We refer to this al-

gorithm as node_based in the remainder of this section. In our study we use random,

artificial, as well as real world instances. On these instances, we compare our methods,

both in terms of fairness and efficiency (i.e., total spread) with a standard implementa-

tion of the greedy algorithm for influence maximization and the (very straightforward)
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methods proposed by Fish et al. [38] as well as the more involved method due to Tsang

et al. [71]. We continue by describing the experimental setting in detail.

3.4.1 Experimental Setting

Competitors. The methods of Fish et al. [38] are simple heuristics. First, they

propose to use the greedy algorithm that iteratively picks k seeds such as to maximize

the minimum probability of any node to be reached (note that this is not the same

as the greedy algorithm for influence maximization). In our implementation of this

algorithm, in order to break ties, we use the node of maximum degree. We also consider

this method in a case that there is a set of community in the network. We refer to this

algorithm as grdy_maximin. Second, Fish et al. propose a routine called myopic

that after choosing the node of maximum degree, iteratively chooses the node that

has the minimum probability of being reached as a seed node for k − 1 times. As a

third heuristic, called naive-myopic, they propose to choose the k− 1 nodes of smallest

probability all at once instead of in k−1 iterations. We omit the results of naive-myopic

as they are much worse than the ones of myopic.

The algorithm of Tsang et al. [71] is much more involved. They phrase the problem as

a multi-objective submodular optimization problem and design an algorithm to tackle

such multi-objective submodular optimization problems that provides an asymptotic

approximation guarantee of 1 − 1/e. Their algorithm, that improves over previous

work by Chekuri et al. [25] and Udwani [72], is a Frank-Wolfe style algorithm that

simultaneously optimizes the multilinear extensions of the submodular functions that

describe the coverage of the respective communities. We stress that their setting is less

general than ours as the algorithm only satisfies an approximation guarantee in the

case where the number of communities is o(k log3(k)). We use their python implemen-

tation as provided while choosing gurobi as solver since the other alternative md (their

implementation of a mirror-descent) is much less efficient on the instances tested. We

refer to the algorithm by Tsang et al as moso.

We also compare our algorithm to the standard greedy algorithm for influence maxi-

mization. We use the slightly more involved and very efficient TIM implementation [68].

While there exist even more efficient alternatives to TIM in terms of run-time, the ef-

ficiency of TIM is completely sufficient for our purposes. We refer to this method as

grdy_im in our evaluation.
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We also compare our algorithms to the ultimate baseline for randomized strategies that

is given by the uniform node-based solution, i.e., every node v is chosen as a seed with

probability xv = k/n. We refer to this method as uniform.

Implementation Details. We implement the multiplicative-weight routines for both

the set-based and the node-based problems in C++ and the routines from Fish et al. in

Python using networkx [44] for graph related computations. We used the TIM algorithm

for influence maximization in order to solve the oracle problems for both multiplicative

weight routines. We choose the η parameter of the multiplicative weight routine (see

Theorem 3.17) to be 0.1.

We use the IC model as diffusion model in all our experiments. For the methods due

to Fish et al. [38] and Tsang et al. [71] (as also proposed by them), we use a constant

number of 100 live-edge graphs for simulating the information spread instead of the

number that guarantees (1 − ε)-approximations with probability 1 − δ. As suggested

by the confidence intervals in all our plots, this leads to sufficiently small variance on

the instances tested.

All experiments were executed on a compute server running Ubuntu 16.04.5 LTS with

24 Intel(R) Xeon(R) CPU E5-2643 3.40GHz cores and a total of 128 GB RAM. The

code was executed with python version 3.7.6 and C++ implementations were compiled

with g++ 7.5.0. For the random generation of the graphs and the random choices of the

live-edge graphs, we do not explicitly set the random seeds used by the random number

generator. This does not prevent reproducibility of our results as all the reported results

are averages that are robust and independent of the random seeds chosen as indicated

by the confidence intervals reported.

Evaluation Details. For random and synthetic instances, each datapoint in our plots

is the result of averaging over 25 experiments, 5 runs on each of 5 graphs generated

according to the respective graph model. For real world instances each datapoint is the

result of averaging over 5 runs on each graph. Error-bars in our plots indicate 95-%

confidence intervals. For the evaluation of σv(x) we choose to approximate the value

using a Chernoff bound in a way to obtain an additive ε-approximation of the values

with probability 1 − δ and in the reported experiments we choose both parameters as

0.1.
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We report both ex-ante and ex-post fairness values for our methods (for short, we use

ea and ep as suffices). These have the following precise meaning. After computing

probabilistic strategies p or x for the set-based and node-based problems, the ex-ante

fairness values correspond to the objective values minC∈C ES∼p[σC(S)] for the set-based

and minC∈C ES∼x[σC(S)] for the node-based problem. The ex-post values on the other

hand are obtained by sampling a single set S according to the probabilistic strategy p or

x and then reporting the value minC∈C σC(S). We report also both ex-ante and ex-post

values for the method of Tsang et al. [71], since, at the core, their algorithm works with

the multilinear extension and thus also computes a continuous solution x ∈ Rn, i.e., a

feasible solution to the node-based problem. Hence for their method we report both

the value minC∈C ES∼x[σC(S)] as ex-ante value and a value minC∈C σC(S) as ex-post

value, where S is computed by swap rounding from x as described in their paper.

Instances. We evaluate the different algorithms on a vast set of instances. We pro-

ceed by describing the networks and the community structures that we use in our

study.

Networks. We use the following networks: (1) Random instances generated accord-

ing to the Barabási-Albert model [3] that yields scale-free networks – a property fre-

quently observed in social networks. We use the parameter modeling the preferential

attachment to be 2, i.e., every newly introduced node is connected to two previously ex-

isting nodes. (2) Random instances generated according to the block-stochastic model

that is a natural choice in our setting as the instances come along with a community

structure. (3) The publicly available synthetic instances from the work of Tsang et

al. [71]. (4) Real world instances from the SNAP database [50] and a paper by Guimerà

et al. [42], some of which were used also by Fish et al. We describe the real world

instances in detail below in the corresponding paragraph. The number of nodes and

edges as well as the information whether the networks are directed or undirected are

summarized in Table 3.1. For most of our experiments and unless stated differently, we

choose edge weights uniformly at random in the interval [0, 0.4] for random instances

and the synthetic instances of Tsang et al., and in the interval [0, 0.2] for the real world

instances.
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Dataset Nodes Edges Direction

Barabási-Albert 40− 200 152− 792 Directed
Block-stochastic (q = 0.1, p increasing) 200 1920− 3456 Directed
Block-stochastic (p = 0.1, q increasing) 200 139− 2059 Directed

Synthetic networks 500 1576− 1697 Directed
Arenas 1133 5451 Directed

email-Eu-core 1005 25571 Directed
ca-GrQc 5242 14496 Undirected

ca-HepTh 9877 25998 Undirected
Facebook 4039 88234 Undirected

Irvine 1899 20296 Directed
com-Youtube 3000 29077 Undirected

Table 3.1: Properties of random, synthetic and real world networks

Community Structure. Regarding the community structure, in the case of some

networks such as the block-stochastic networks, the synthetic networks due to Tsang

et al., and some real world graphs the community structures are given. On all other

networks we use some of the following different ways of constructing the community

structure: (1) Singleton communities: every node is his own community. (2) BFS com-

munity structure: for a predefined number of communities m, we iteratively grow

communities of size n/m by breadth first search from a random source node (once

there are no more reachable nodes but the community is still not of size n/m, we pick

a new random source, until every node is in one of the m communities). (3) Random

imbalanced community structure: we randomly assign nodes to one of m communities

of fixed sizes. We use different values for the sizes and specify them for each of the

experiments.

We note that the BFS community structure results in a rather connected community

structure which is realistic for some applications. On the other hand, the random im-

balanced community structure, is rather unconnected. Also this setting is realistic for

some applications as for example if the groups indicate gender or ethnicity and we

assume that people connect independently of these attributes.
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3.4.2 Results

Barabási-Albert Graphs. For the Barabási-Albert graphs, we explore singleton

communities, the BFS community structure with m = k,1 and random imbalanced

community structures of sizes 4n/10, 3n/10, 2n/10, n/10. The results are reported in

Figure 3.3. In the left plots in Figure 3.3, we can see that the ex-ante values of our

methods set_based and node_based dominate over all other ex-ante and ex-post

values. Furthermore, we can see that particularly in the last plot, where the community

structure is less simplistic, even the ex-post values of our methods dominate over the

ones of all competitors. In the right plots, where we show the expected spread, we can

see that grdy_im outperforms other methods for all values of n. We note however

that the advantage in efficiency of grdy_im is not too pronounced, particularly in

comparison to the disadvantage it yields in terms of fairness, see for example the plot

on the top left.
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Figure 3.3: Results for Barabási-Albert instances: k = 20, n increasing from 40 to
200 in steps of 20. The minimum community probability is shown on the left, while

expected spread is shown on the right. From top to bottom, we see (1) singleton
community structure, (2) BFS community structure, and (3) random imbalanced

community structure.

1We note that in this case the algorithm of Tsang et al. satisfies its approximation guarantee.
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Figure 3.4: Results for block stochastic graphs: edge weights constant 0.05, k = 8,
n = 200. The minimum community probability is shown on the left, while expected

spread is shown on the right. From top to bottom, we see (1) q = 0.1 and p
increasing from q to 1 in steps of 0.1, (2) p = 0.1 and q increasing from 0 to p in

steps of 0.01.

Block-Stochastic Graphs. In order to further explore how the connectivity of the

community structure influences the performance of the different approaches, we gener-

ate Block Stochastic graphs as follows. We fix the number of nodes to 200, the number

of communities to 16 with 6 communities of size n/40, 4 communities of size 2n/40,

4 communities of size 4n/40 and 2 communities of size 5n/40. We then choose two

parameters p and q, and create a sequence of instances where the probability of an

edge within a community is p and between communities q. The larger choices of p and

q yield very dense graphs and thus instances become trivial. We choose edge weights

to be 0.05 in this experiment as for the larger choice the instances become trivial as

the minimum community probability becomes very large. The results are reported in

Figure 3.4. In the left plots we can see that again the ex-ante values of set_based and

node_based dominate over all other values. Clearly, by increasing p and q in both

experiments, the values of all algorithms are increased. In the second experiment, for

smaller q, when communities are better connected within each other than between each

other, there is a bigger advantage for ex-ante values over ex-post values. In the right

column, for smaller p and q, all algorithms are close to each other. Again grdy_im

dominates over the other algorithms in terms of expected spread, while also the other

algorithms – and in particular set_based and node_based – perform well.
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Figure 3.5: Results for the instances of Tsang et al. [71]: k increasing from 5 to 50
in steps of 5. The minimum community probability is shown on the left, while

expected spread is shown on the right. From top to bottom, we see (1) community
structure induced by attribute gender, (2) community structure induced by

attributes region, gender and ethnicity.

Instances of Tsang et al. Next we evaluate the algorithms on the instances used

by Tsang et al. [71]. These are synthetic networks introduced by Wilder et al. [76] in

order to analyze the effects of health interventions. Each of the 500 nodes in these

networks has some attributes (region, ethnicity, age, gender, status) and more similar

nodes are more likely to share an edge. The attributes induce communities and we test,

as proposed by Tsang et al. [71], all algorithms w.r.t. group fairness of the communities

induced by some of those attributes. The results are reported in Figure 3.5. Again the

ex-ante fairness values of our methods dominate over all other algorithms as can be seen

in the left column. In the first experiment (communities induced by gender), the ex-

post values of set_based, node_based, moso, and uniform are all almost identical

to their respective ex-ante values. In the second experiment (communities induced

by three attributes, namely region, gender, and ethnicity) we obtain a much more

complex community structure. Here, our algorithms set_based and node_based

perform best not only in the ex-ante values, but also in terms of ex-post values for

most values of k. Even more, in the right plots, we can see that the achieved values in

expected spread by grdy_im and our methods are very close to each other.

Real World Instances. We proceed by describing the used real world instances.
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Figure 3.6: Results for the instances used by Fish et al. for k = 100. BFS
community structure with (top left) 10 communities, (top right) n/10 communities,

(bottom left) n/2 communities. (bottom right) Random imbalanced community
structure with 16 communities.

Arenas [42] This dataset represents an email communication network at the University

Rovira i Virgili (Spain). Each user is represented by a node and there is a directed

edge from a node u to a node v if u sent at least one email to v.

email-Eu-core [49] Also this dataset is an email network, this time from a large Eu-

ropean research institution. Each member of the research institution belongs to

one of 42 departments, which predefines a community structure. Nodes and edges

have the same interpretation as in Arenas.

ca-GrQc and ca-HepTh [49] These datasets are co-authorship networks for two dif-

ferent categories of arXiv (General Relativity and Quantum Cosmology and High

Energy Physics - Theory). The nodes in the networks correspond to authors and

there is an undirected edge between two nodes if the authors co-authored at least

one arXiv paper in this category.

Facebook [55] This dataset represents a part of the Facebook network, where nodes

are users and edges indicate friendships.

Irvine [59] This dataset is a network created from an online community at the Univer-

sity of California, Irvine. Nodes here represent students and each directed edge

represents that at least one online message was sent among the students.
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com-Youtube [81] This dataset consists of a snapshot of the social network included

in Youtube. The network has 1134890 nodes and 2987624 edges. Nodes corre-

spond to users, edges to friendships between users. Also this network contains a

predefined community structure that is given by the so-called Youtube groups.

On Youtube, users can open groups that others can join. As the complete network

is very large, we use a connected sub-network. We first remove all nodes that do

not belong to any community. We then obtain the sub-network as the induced

graph among the first 3000 nodes that are seen by a BFS from a random source

node while removing singleton communities. The resulting network contains 3000

nodes (some may not belong to any community), 29077 edges. The number of

communities is 1575.

If networks are undirected, we interpret the edges as existent in both directions. In order

to obtain non-trivial results, i.e., achieve non-zero minimum probabilities in the exper-

iments (especially for the ex-post values), for each network (other than com-Youtube)

we considered the largest weakly connected component. We exclude grdy_maximin

and the method of Tsang et al. from the further experiments as they are not efficient

enough to deal with instances of this size. We also restrict to the set-based method

from our two methods as the results of our two methods are very similar. The results

are reported in the following.
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Figure 3.7: Results for the Arenas network for increasing k = 5, 10, 20, 50, 100. The
minimum community probability is shown on the left, while expected spread is

shown on the right. BFS community structure with (1) 10 communities, (2) n/10
communities.
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Figure 3.8: Results for email-Eu-core network for increasing k = 5, 10, 20, 50, 100.
The minimum community probability is shown on the left, while expected spread is
shown on the right. (1) BFS community structure with 10 communities, (2) BFS
community structure with n/10 communities, (3) community structure induced by

departments.

Evaluation on Networks used by Fish et al. We start with the networks that

were also used in the study of Fish et al. [38]. We experiment with different community

structures, both the BFS community structures with different community sizes and the

random imbalanced community structure. The results can be found in Figure 3.6. We

omit the results for the BFS community structure with only 2 communities as they are

very similar to the case of 10 communities. We observe that in all cases the ex-ante value

of our algorithm is dominating over all other values. In some cases, the values achieved

by grdy_im are comparable but these are instances where all algorithms perform very

close to each other and the minimum community probabilities are rather high anyways.

Furthermore, on several instances, e.g., in the case of 10 BFS communities, the ex-post

values of our algorithm are significantly better than the ex-post values of all other

methods.

Fairness vs. Efficiency on Email-Networks. We proceed by focusing on the email

networks Arenas and email-Eu-core and comparing the fairness achieved by the different
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algorithms with the efficiency, i.e., expected spread, see Figures 3.7 and 3.8. We again

use the BFS community structures with different community sizes. In the case of the

email-Eu-core dataset, we evaluate the different algorithms on the community structure

induced by the departments as well. We evaluate the algorithms for increasing values

of k = 5, 10, 20, 50, 100. We observe that set_based performs best in terms of fairness

among all ex-ante as well as ex-post values both on the Arenas dataset as well as

on the email-Eu-core dataset. In terms of efficiency, we observe that on the Arenas

dataset, grdy_im and set_based perform similarly good and much better than the

other competitors. For the email-Eu-core dataset, we see that in terms of efficiency all

algorithms (even uniform for small values of k) perform almost identical.
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Figure 3.9: Results for co-authorship networks for increasing k = 5, 10, 20, 50, 100.
The minimum community probability is shown on the left, while expected spread is
shown on the right. BFS community structure (1) ca-GrQc with 10 communities, (2)
ca-GrQc with n/10 communities, (3) ca-HepTh with 10 communities (4) ca-HepTh

with n/10 communities.
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Fairness vs. Efficiency on Co-Authorship Networks. We turn to the two co-

authorship datasets ca-GrQc and ca-HepTh and evaluate the fairness and efficiency

achieved by the different algorithms. The results are depicted in Figure 3.9. Focusing

on the fairness values first, we observe that in a setting with n/10 communities, no

algorithm achieves a positive ex-post value. Instead the two randomized algorithms

set_based and uniform do achieve a significantly non-zero ex-ante value, the results

of set_based being more than twice as high compared to the values of uniform. For

10 communities, we again end up in a setting where both the ex-ante and ex-post values

of set_based dominate over all other algorithms. The discrepancy between the ex-

post value achieved by set_based and the other algorithms appears to become more

and more pronounced with increasing values of k. In terms of efficiency, we observe that

again grdy_im and set_based perform the best, while there is a bigger advantage

for grdy_im in this case than with most other instances tested. Note however that

set_based does achieve significantly better fairness values as compared to grdy_im

in all settings where it falls behind grdy_im in terms of efficiency.

Fairness vs. Efficiency on com-Youtube Network. We conclude with the com-

Youtube network and evaluate the different algorithms in terms of fairness and efficiency,

see Figure 3.10. In this network we choose edge weights uniformly at random in the

interval [0, 0.1]. In the left plot, we observe that the ex-ante fairness values achieved by

set_based are significantly better than the values of all other algorithms, especially

with increasing values of k. The ex-post values of all algorithms are much smaller and

close to each other. In terms of efficiency, we observe that the results of all algorithm

are very similar. Note that set_based performs almost the same as grdy_im in the

expected spread while being significantly better than grdy_im in terms of fairness.
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Figure 3.10: Results for the com-Youtube network for increasing
k = 5, 10, 20, 50, 100. The minimum community probability is shown on the left,

while expected spread is shown on the right.





Chapter 4

Demographic Parity through

Randomization

In this chapter, we investigate optimization problems using various notions of (group)

fairness that aim at maximizing the total spread or spread over specific set of users

while satisfying fairness constraints.

As access to information via social networks may have a big impact on our life, see,

e.g. [10], researchers have taken also fairness issues with respect to information spread

into account, see related works in Section 1.2 of Chapter 1. Here, an essential ques-

tion arises, namely: What do we mean by fair? There is a large variety of fairness

notions [11] and in fact different notions have been investigated also in this scope, with

the most common one being the maximin criterion [15, 38, 71]. What all three pre-

viously mentioned works, have in common however is that they consider fairness as a

measure to be optimized, namely via maximizing the minimum coverage.

This raises, however, a conceptual question. When maximizing the minimum coverage,

we may still end up in a situation where the values of two groups differ a lot. More

precisely, consider an example with two groups, say C and D. All the three mentioned

approaches would prefer an outcome where C gets a coverage of 0.5 while D gets a

coverage of 1 over an outcome where both receive a coverage of 0.499. Now, while

fairness is a debatable concept, the second outcome may be considered more fair by

many. In fact, if we take a closer look at demographic parity, e.g., [11, Definition 2

in Chapter 2], we observe that, demographic parity is actually defined as equality in

57
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probability of being selected conditioned on group membership. In the above example,

this is satisfied in the second outcome, but far from being satisfied in the first. More

fundamentally, the following question arises. In all of these works fairness is considered

as a notion to be optimized. But is this the right way of considering fairness? Is fairness

not instead something that we want algorithms to guarantee, i.e., do not we want to

restrict algorithms to satisfy certain levels of fairness independent of their objective?

4.1 Problem Definition

To address fairness in influence maximization, here we focus on defining optimization

problems using various notions of group fairness. In the classical influence maximization

problem, given a graph G and an integer k, the objective is to find a set of k seeds that

maximizes the expected spread, i.e., maxS∈S{σ(S)}, where S := {S ⊆ V : |S| ≤ k}
is the set of subsets of nodes of size at most k. We refer to the optimal value of

this optimization problem as opt(G, k). Motivated by real world applications such as

marketing, let T ⊆ V and T̄ = V \T be the sets of targeted (e.g., a set of users who likes

the product that a company is promoting) and non-targeted nodes (e.g., a set of users

who hates the product that a company is promoting) in G, respectively. In addition to

G and k, we are given a community structure C. The communities C = {C1, . . . , Cm}
is a partition if and only if Ci ∩ Cj = ∅ for all i ̸= j and

⋃
i∈[m]Ci = V . We also

use νA(S) = EL[|ρL(S) ∩A|] to denote the expected number of nodes reached in a set

A ⊆ V from seed set S.

Requiring Equalized Odds. We are now ready to formally define our first opti-

mization problem, we refer to it as IMeo, standing for influence maximization under

equalized odds:

max
S∈S
{νT (S) : ∃t, t̄ s.t. σC∩T (S) = t and σC∩T̄ (S) = t̄ for all C ∈ C}. (IMeo)

The goal is to find a set S of size at most k that maximizes the expected number of

reached targeted nodes while the fraction of reached targeted and non-targeted nodes

in each community is the same among all communities. For an instance, consisting of a

graph G, communities C, and an integer k, we call opteoS (G, C, k) the optimum of IMeo.
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Observation 4.1. Assume that C is a partition of the node set V . Let S be a set of

at most k seed nodes that satisfies σC∩T (S) = t and σC∩T̄ (S) = t̄ for all C ∈ C, then

νT (S) = t · |T |.

Proof. Using that C is a partition, we get

νT (S) = EL[|ρL(S) ∩ T |] =
∑
v∈V

EL[1v∈ρL(S)∧v∈T ] =
∑
v∈T

EL[1v∈ρL(S)]

=
∑
C∈C

∑
v∈C∩T

EL[1v∈ρL(S)] =
∑
C∈C

∑
v∈C

EL[1v∈ρL(S)∧v∈T ] =
∑
C∈C

EL[|ρL(S) ∩ (C ∩ T )|]

=
∑
C∈C

νC∩T (S) =
∑
C∈C

t · |C ∩ T | = t · |T |,

where in the second to last step we used that S is the set that satisfies σC∩T (S) =
νC∩T (S)
|C∩T | = t for every C ∈ C.

Requiring Demographic Parity. This notion is the special case of the equalized

odds notion where T = V . Under the demographic parity, our goal is to find a set S of

size at most k that maximizes the total spread while the fraction of reached nodes in

each community is equal among all communities. We define the following optimization

problem, we refer to it as IMdp, standing for influence maximization under demographic

parity:

max
S∈S

{
σ(S) : ∃γ s.t. σC(S) = γ for all C ∈ C

}
. (IMdp)

For an instance G, C, and k, we call optdpS (G, C, k) the optimum of IMdp.

Observation 4.2. Assume that C is a partition of the node set V . Let S be a seed set

of size at most k with σC(S) = γ (for some γ) for all C ∈ C, then σ(S) = γ · |V |.

Proof. Using that C is a partition and S is the set that satisfies σC(S) =
νC(S)
|C| = γ for

every C ∈ C, we get

σ(S) = EL[|ρL(S)|] =
∑
v∈V

EL[1v∈ρL(S)] =
∑
C∈C

∑
v∈C

EL[1v∈ρL(S)] =
∑
C∈C

EL[|ρL(S) ∩ C|]

=
∑
C∈C

νC(S) =
∑
C∈C

γ · |C| = γ · |V |.
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v

u1 u2 uN. . .

Figure 4.1: Instance used in the proof of Lemma 4.3 illustrating the contrast
between the maximin criterion and demographic parity. The edge probabilities are

set to (1 + ε)/N and the IC model is used as diffusion model.

Requiring Predictive Parity. We consider the following optimization problem un-

der predictive parity, we denote it by IMpp, standing for influence maximization under

predictive parity:

max
S∈S
{νT (S) : ∃s s.t.

νC∩T (S)

νC(S)
= s for all C ∈ C}. (IMpp)

Here the objective is to find a seed set S of size at most k that maximizes the cov-

erage of targeted nodes while the ratio of the expected number of reached targeted

nodes to the expected number of reached nodes in each community is the same among

all communities. For an instance G, C, and k, we denote the optimum of IMpp with

optppS (G, C, k).

4.1.1 Demographic Parity vs. Maximin

We proceed by giving an example that illustrates that considering the maximin cri-

terion as done in Chapter 3 and demographic parity in our strict sense can lead to

drastically different outcomes. More precisely, we construct an instance where the op-

timal maximin solution suffers linear multiplicative violation in demographic parity,

while achieving an expected coverage that is only around twice as good as a solution

that achieves perfect demographic parity. This is formalized below.

Lemma 4.3. Let ε > 0. There is an instance G, C, k with n nodes, in which the

optimal maximin strategy achieves an overall expected coverage of 2 + ε, but suffers

a violation in demographic parity of (n − 1)/(1 + ε) = Θ(n). On the other hand, the

expected total coverage achieved by optimal demographic parity strategy is opt(G, C, k) =
(n+ 1)/(n− ε) = 1 + Θ(1/n).

Proof. Consider the graph G in Figure 4.1 consisting of n = N +1 nodes v, u1, . . . , uN .

Let C be the community structure consisting of all singleton communities, i.e. C =
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{{v}, {u1}, . . . , {uN}}. There is an edge (v, ui), for each i ∈ [N ] with probability (1 +

ε)/N . Furthermore, we assume that the IC model is used and set k = 1. Note that by

the choice of the edge probability, the optimal maximin strategy q will assign probability

1 to the set {v}. This results in σ(q) = 2+ε and σui(q) = (1+ε)/N for each i ∈ [N ]. As

σv(q) = 1, this leads to a multiplicative violation in demographic parity of N/(1+ ε) =

Θ(n). On the other hand, consider the probabilistic strategy p that assigns 1/(N − ε)

to the set {v} and (1 − 1/(N − ε))/N to each set {ui}, for i ∈ [N ]. It is clear that

σv(p) = 1/(N − ε) and furthermore σui(p) = (1− 1/(N − ε))/N + (1 + ε)/(N(N − ε))

for i ∈ [N ], which equals 1/(N − ε). Hence, the expected group coverage is identical

for all groups. Furthermore, the overall spread is (N +1)/(N − ε) = 1+Θ(1/n), which

is a lower bound on opt(G, C, k).

4.2 Hardness Results

In this section, we give several hardness of approximation results for IMeo, IMdp, and

IMpp. We show that it is NP-hard to approximate IMeo, IMdp, and IMpp to within any

bounded factor. Indeed, we prove two stronger and more general statements: One can-

not find in polynomial time a solution that approximates the optimums of IMeo, IMdp,

and IMpp, even if we allow the fairness constraints to be violated by a multiplicative

or an additive term, unless P = NP.

4.2.1 Hardness of IMeo and IMdp

Note that IMdp is the special case of IMeo, thus all the hardness results for IMdp also

hold for IMeo. We start with the multiplicative case.

Theorem 4.4. For any α ∈ (0, 1], β ∈ (0, 1], there is no (α, β)-approximation algo-

rithm for IMdp, unless P = NP.

Proof. Let β′ be the largest β′ ≤ β such that 1/
√
β′ is integer. We show the stronger

statement for β′ instead of β. We reduce from Set Cover, where we are given a ground

set U = {U1, . . . , Uν}, a collection of subsets D = {D1, . . . , Dµ} over U , and an integer

κ, and we aim to determine whether there exists a subset D′ ⊆ D of size κ whose union

is U . Given an instance of Set Cover, we define an instance of IMdp. W.l.o.g. we can
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Figure 4.2: Construction of G from an instance of Set Cover.

assume the instance to be large enough, that is µ > 1/
√
β′. Furthermore, we assume

that information spread follows the IC model. The graph G = (V,E,w) in the IMdp

instance is constructed as illustrated in Figure 4.2. We define an integer λ := 1/
√
β′

that depends on β′ and influences the size of G. The node set V consists of two disjoint

and disconnected communities C = {C1, C2}. The first community C1 consists of (1)

one node vj for each Dj ∈ D, (2) one node ui for each Ui ∈ U , and (3) a set of

N = (µ · λ− 1) · (µ+ ν) (isolated) nodes Y . The only edges in C1 are those defined by

the Set Cover instance, i.e., there is an edge from vj to ui, whenever Ui ∈ Dj . The

second community C2 consists of (1) a bidirected clique X of L = λ · (κ + ν) nodes,

and (2) a set Z of M = µ · (µ+ ν)−λ · (κ+ ν) nodes. Besides, the edges in X, there is

one edge from each node z ∈ Z to one specific node x ∈ X. The edge probabilities of

all edges are 1. We set k := κ+ 1 and note that M = µ · (µ+ ν)− 1/
√
β′ · (κ+ ν) > 0

by the definition of λ and the assumptions that µ > 1/
√
β′.

We now show that there exists a set cover D′ of size κ if and only if there is a β′-

feasible solution of size k with strictly positive spread. For brevity, let us denote

B := (κ+ ν)/(µ(µ+ ν)). (i) First assume that there is a set cover D′ of size κ. Setting

S to be the set of nodes corresponding to D′ plus the node x achieves a spread of

σ(S) = (κ+ν)(λ+1) > 0. To verify that S is β′-feasible we observe that σC1(S) = B/λ

and σC2(S) = λB and thus σC2(S) ≥ σC1(S) ≥ β′σC2(S). (ii) We now show the

opposite direction: If there is a β′-feasible seed set S that has positive spread, it has to

hold that |S| ≥ 1. Then, by the fairness constraints and the fact that the communities

are disconnected, the set S has to contain at least one node from C2. This implies that

σC2(S) ≥ λT . By the β′-feasibility, we have that σC1(S) ≥ β′σC2(S) ≥ β′λB = B/λ.

This implies that there is a set of size at most k − 1 = κ that covers at least κ + ν

nodes in community C1 and thus there is a set cover of size at most κ.

Now, assume that there exists a polynomial-time (α, β′)-approximation algorithm A
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for IMdp. Then, if there exists a set cover of size κ, A will output a solution S such

that σ(S) ≥ α · optdpS (G, C, k) > 0. Otherwise, A must return the only β′-feasible seed

set S = ∅ with σ(S) = 0. Therefore, by using A we can decide in polynomial time

whether or not there exists a set cover of size κ, and so no such algorithm can exist

unless P = NP.

We now consider the case where the fairness constraints are violated by an additive

term. Using a similar reduction we show the following theorem.

Theorem 4.5. For α ∈ (0, 1], ε ∈ [0, 1), there is no (α, ε)+-approximation algorithm

for IMdp, unless P = NP.

Proof. The proof is based on a reduction from the Set Cover problem similar to

the one used in Theorem 4.4. Let ε′ be the smallest value such that ε < ε′ < 1 and

ε′ · (µ2 + ν) is integer. We prove the stronger statement for ε′ instead of ε. W.l.o.g.

we assume that µ > 4/(1 − ε′) and that ν ≥ κ. Moreover, we assume that µ ≥ ν/2

since Set Cover remains NP-hard in this case (see, e.g., [39, Theorem 3.3]). We

assume the IC model as underlying diffusion model. Consider the graph G = (V,E,w)

in Figure 4.2, where N = µ · (µ − 1), L = |X| = ε′ · (µ2 + ν) + ν + k, and M =

(1 − ε′) · (µ2 + ν) − ν − k. In addition, for every node v ∈ C1, there is an edge from

v to the specific node x in X with probability one. We also set k = κ. Note that

M = (1−ε′) · (µ2+ν)−ν−k > 0 by the assumptions that µ > 4/(1−ε′) and µ ≥ ν/2.

In fact, (1− ε′) · (µ2 + ν) ≥ (1− ε′) · µ2 > (1− ε′) · 4µ
1−ε′ > 2ν > ν + k

We show that there exists a set cover D′ of size κ if and only if there exists an (ε′)+-

feasible solution S such that σ(S) > 0. For brevity, let B := (k + ν)/(µ2 + ν). (i) If

there exists a set cover D′ of size κ = k. Then, we can construct an (ε′)+-feasible seed

set S of size k by selecting the nodes corresponding to the subsets in D′ and obtain

σ(S) = ε′ · (µ2 + ν) + 2 · (ν + k) > 0. The set S is (ε′)+-feasible since σC1(S) = B

and σC2(S) = (ε′ · (µ2 + ν) + ν + k)/(µ2 + ν) = σC1(S) + ε′. (ii) If there exists an

(ε′)+-feasible seed set S such that σ(S) > 0, then we must have that |S| > 1. Since all

the nodes in G reach the node x ∈ X with probability 1 and from node x all nodes in X

are reached with probability 1, we have that σC2(S) ≥ B + ε′. By the (ε′)+-feasibility

of S, this bound on σC2(S) implies that σC1(S) ≥ B. Hence, there exists a set of seed

nodes of size at most k = κ in community C1 that reaches at least k + ν nodes, thus

there is a set cover of size at most κ.
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Figure 4.3: Construction of graph G in the instance of IMpp from an instance of
Set Cover.

Let us assume that there exists polynomial-time (α, ε′)+-approximation algorithm A

for IMdp. If there exists a set cover of size κ, then A outputs an (ε′)+-feasible set S

such that σ(S) ≥ α · optdpS (G, C, k) > 0. Otherwise, A outputs S = ∅ with σ(S) = 0.

Hence, A can be used to solve the set cover problem in polynomial time, a contradiction

to P ̸= NP.

4.2.2 Hardness of IMpp

We now show that it is NP-hard to approximate IMpp to within any bounded factor,

even if the fairness constraint are violated by a multiplicative or an additive term. We

first show the result for the multiplicative case.

Theorem 4.6. For any α ∈ (0, 1], β ∈ (0, 1], there exists no (α, β)-approximation

algorithm for IMpp, unless P = NP.

Proof. We use Set Cover problem, where we are given a collection of subsets D =

{D1, . . . , Dµ} over a ground set U = {U1, . . . , Uν} and an integer κ, and we are asked

whether there exists a collection D′ of κ subsets that covers U .

Let β′ be the largest β′ ≤ β such that 1/
√
β′ is integer. We show the stronger statement

for β′ instead of β. Given an instance of Set Cover, we define an instance of problem

IMpp. The graph G = (V,E,w) in the instance of problem IMpp is shown in Figure 4.3.

W.l.o.g. we can assume that µ > 1/
√
β′, and assume that we are using the IC model.

Let λ := 1/
√
β′ be an integer that influences the size of G. Let C be the community

structure consisting of two disjoint and disconnected communities C1 and C2. The first

community C1 consists of (1) one node vj for each Dj ∈ D, (2) one node ui for each Ui ∈
U , and (3) a set F of µ+ν cliques of size N = λ·µ−1, i.e., F = {I1, . . . , Iµ, R1, . . . , Rν}.
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There is an edge from vj to ui, whenever Ui ∈ Dj . For each vj and ui, there is an edge

from vj and ui to one of the nodes in the cliques Ij and Ri, respectively. The second

community C2 consists of (1) a clique X of L = λ · ν + κ nodes, and (2) a set of nodes

Z of size M = µ · (κ+ ν)− (λ · ν + κ). There is an edge from one specific node x ∈ X

to each node z ∈ Z. The edge probabilities of all edges are 1. Note that the set of

nodes u1, . . . , uν in C1 and λ · ν nodes in X are targeted nodes and other nodes are

non-targeted ones. We set k := κ+1 and note that M = µ ·(κ+ν)−(1/
√
β′ ·ν+κ) > 0

by the definition of λ and the assumption that µ > 1/
√
β′.

We now show that there exists a set cover D′ of size κ if and only if there is a β′-

feasible set S such that νT (S) > 0. For brevity, let B := ν/(µ(κ + ν)). (i) Assume

that there is a set cover D′ of size κ. Then, by selecting the nodes corresponding to

the subsets in D′ plus the node x we can construct a seed set S of size k = κ+ 1 that

achieves a spread of νT (S) = (λ + 1)ν > 0. To verify that S is β′-feasible we observe

that σT
C1
(S) =

νC1∩T (S)

νC1
(S) = B/λ and σT

C2
(S) =

νC2∩T (S)

νC2
(S) = λB and thus σT

C2
(S) ≥

σT
C1
(S) ≥ β′σT

C2
(S). (ii) Now assume that if there is a β′-feasible seed set S that satisfies

νT (S) > 0, then we should have that |S| ≥ 1. Since the communities are disjoint and

disconnected, in order to satisfy the fairness constraints the set S has to contain at

least one node from X. This implies that σT
C2
(S) ≥ λB. By the β′-feasibility, we have

that σT
C1
(S) ≥ β′σT

C2
(S) ≥ β′λB = B/λ. This implies that there is a set of size at most

k − 1 = κ that covers all targeted nodes u1, . . . , uν in community C1 and thus there is

a set cover of size at most κ.

Now assume that there is a polynomial-time (α, β′)-approximation algorithm A for

our problem. If there is a set cover of size κ, A will output a solution S such that

νT (S) ≥ α ·optppS (G, C, k) > 0. Otherwise, A returns the only β′-feasible seed set S = ∅
with νT (S) = 0. Hence, A can be used to decide in polynomial time whether or not

there exists a set cover of size κ, and so no such algorithm can exist unless P = NP.

We proceed by proving the result for the additive case.

Theorem 4.7. For any α ∈ (0, 1], ε ∈ [0, 1), there exists no (α, ε)+-approximation

algorithm for IMpp, unless P = NP.

Proof. The proof is based on a reduction from the Set Cover problem, where we are

given a ground set U = {U1, . . . , Uν}, a collection of subsets D = {D1, . . . , Dµ} over U ,

and an integer κ, and we aim to determine whether there exists a subset D′ ⊆ D of size
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Figure 4.4: Construction of G from a Set Cover instance.

κ whose union is U . Let ε′ be the smallest value such that ε < ε′ < 1 and ε′ · (κ+ µ)

is integer. We prove the stronger statement for ε′ instead of ε. Given an instance of

Set Cover problem, we create an IMpp instance G, C, k as follows. W.l.o.g. we can

assume that ν ≥ 1/ε′. Consider the graph G = (V,E,w) in Figure 4.4, where there are

two disjoint communities C = {C1, C2}. Community C1 consists of (1) one node vj for

each Dj ∈ D, (2) a clique Ri of N = (1− ε′) · (κ+ µ) nodes for each Ui ∈ U , and (3) a

clique I of M = ε′ · ν(κ+ µ)− κ nodes. For each Ui ∈ Dj , there is an edge from vj to

the specific node ri in Ri. There is also an edge from each node vj to the specific node

w ∈ I. Community C2 consists of a clique X of L = ν(κ + µ) nodes. For each node

v ∈ C1, there is an edge from v to the specific node x ∈ X. The edge probabilities of

all edges are 1. We assume the IC model be the underlying diffusion model and set

k = κ. Note that all nodes in R1, . . . , Rν and all nodes in C2 are targeted nodes, and

other nodes are non-targeted ones. Also note that M = ε′ · ν(κ + µ) − κ ≥ µ > 0, by

the choice of ν ≥ 1/ε′.

We show that there exists a set cover D′ of size κ if and only if there exists an (ε′)+-

feasible solution S such that νT (S) > 0. (i) Assume that there exists a set cover D′

of size κ = k. Then, by selecting the nodes corresponding to the subsets in D′ we

can construct a seed set S of size k and obtain νT (S) = ν(2 − ε′)(κ + µ) > 0. To

show that the set S is (ε′)+-feasible, we observe that σT
C1
(S) =

νC1∩T (S)

νC1
(S) = 1 − ε′ and

σT
C2
(S) =

νC2∩T (S)

νC2
(S) = 1 = σT

C1
(S) + ε′. (ii) Now assume that there exists an (ε′)+-

feasible seed set S that satisfies νT (S) > 0, then we must have that |S| > 1. Note that

all the nodes in G can reach the node x ∈ X and node x can reach all nodes in X.

Since the probability on all edges is 1, then by selecting any node in G as a seed all

nodes in X will be reached with probability 1. Thus, we have that σT
C2
(S) = 1. By the

(ε′)+-feasibility of S, this bound on σT
C2
(S) implies that σT

C1
(S) ≥ σT

C2
(S)− ε′ = 1− ε′.
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Hence, there exists a set of seed nodes of size at most k = κ in community C1 that

reaches all targeted nodes in R1, . . . , Rν , thus there is a set cover of size at most κ.

Let us assume that there exists a polynomial-time (α, ε′)+-approximation algorithm A

for our problem. If there exists a set cover of size κ, then A outputs a set S such that

νT (S) ≥ α · optppS (G, C, k) > 0. Otherwise, A outputs S = ∅ with νT (S) = 0. Hence, A

would be able to decide in polynomial time, whether there exists a set cover of size κ,

a contradiction to P ̸= NP.

4.3 Fairness via Randomization

The above results imply that it is NP-hard to approximate IMeo, IMdp, and IMpp to

within any bounded factor. In this section, we consider demographic parity notion and

in addition to IMdp, we define optimization problems that permit randomized strategies

in the seed selection process rather than only deterministic ones, in an analogous way

to what we did in Chapter 3 for the maximin criterion. We introduce two different

probabilistic settings, a general one and one that chooses seed nodes independently.

In the first problem, pIMdp, standing for probabilistic influence maximization under

demographic parity, feasible solutions are distributions over node sets. Formally, we let

P := {p ∈ [0, 1]2
V
: 1T p = 1,

∑
S⊆V pS |S| ≤ k} be the set of distributions over node

sets of expected size at most k and denote by S ∼ p the random process of sampling

S according to p ∈ P. Now, the goal in pIMdp is to find the distribution p ∈ P
that maximizes the expected number of reached nodes, while ensuring that perfect

demographic parity is satisfied in expectation, i.e., that the expected probability to be

reached is the same among all communities. Formally, pIMdp is defined as

max
p∈P
{σ(p) : ∃γ s.t. σC(p) = γ for all C ∈ C}, (pIMdp)

where we extend set functions to vectors in a straightforward way, i.e., for a set function

f , we let f(p) := ES∼p[f(S)]. For an instance G, C, k, we use optP(G, C, k) to show the

optimum of pIMdp.

In the second probabilistic variant of IMdp, we restrict to independent probability

distributions, that is, in a feasible solution each node is selected as a seed independently

with some probability in such a way that the expected size of the seed set is at most
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k. Formally, we let X := {x ∈ [0, 1]n : 1Tx ≤ k} and, for x ∈ X , we denote with

S ∼ x the process of randomly generating a set S from x, where each i is included in S

independently with probability xi. We then obtain independent probabilistic influence

maximization under demographic parity problem iIMdp as:

max
x∈X
{σ(x) : ∃γ s.t. σC(x) = γ for all C ∈ C}, (iIMdp)

where again for a set function f and a vector x ∈ X , we let f(x) := ES∼x[f(S)]. Again,

for an instance G, C, k, we denote with optX (G, C, k) the optimum of iIMdp.

4.3.1 Relationship between IMdp, pIMdp, and iIMdp

We first observe that clearly every feasible solution of IMdp corresponds to a feasible

solution of iIMdp and pIMdp, respectively. Furthermore, every feasible solution of iIMdp

directly corresponds to a feasible solution of pIMdp via the following transformation:

For x ∈ X define the vector px as pxS :=
∏

i∈S xi
∏

j∈V \S(1 − xj), for S ⊆ V . Then,

observe that σ(x) = σ(px), px ∈ P, and σC(x) = σC(p
x), for any C ∈ C. Hence, we

obtain the following lemma. In the rest of this chapter, we use optS(G, C, k) (other

than optdpS (G, C, k)) to show the optimum of IMdp.

Lemma 4.8. For every instance G, C, k, it holds that

optS(G, C, k) ≤ optX (G, C, k) ≤ optP(G, C, k).

A natural question is then whether a similar relation holds also in the other direction.

We observe that this is not the case, optX (G, C, k) cannot be upper bounded in terms of

optS(G, C, k) multiplicatively and optP(G, C, k) not in terms of optX (G, C, k). Formally:

Lemma 4.9. Assume information spread to follow the IC model. There exist instances

G, C, k s.t.

(i)
optS(G, C, k)
optX (G, C, k)

= 0, and (ii)
optX (G, C, k)
optP(G, C, k)

= 0

as well as (iii) optP(G, C, k)− optX (G, C, k) = Ω(n).

Proof. In order to prove (i), consider the graph on the left in Figure 4.5 consisting of

two nodes a and b that are connected by an edge with probability 3/4. Let C be the

singleton community structure and k = 1. It is clear that a deterministic solution that
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Figure 4.5: Instance showing that the optimum of pIMdp cannot be upper
bounded in terms of iIMdp.

chooses any seed cannot achieve demographic parity and thus optS(G, C, k) = 0. On the

other hand, consider the solution x ∈ X for iIMdp defined by xa = 2/3 and xb = 1/3.

It satisfies the demographic parity constraints, since σa(x) = σb(x) = 2/3, and achieves

an overall expected coverage σ(x) of 2 · 2/3 = 4/3 > 0 and thus optX (G, C, k) > 0.

For (ii) consider the graph G in Figure 4.5 on the right consisting of two nodes {u1, u2}
and a set of N nodes I = {v1, . . . , vN}. For each node ui, there is an edge to all nodes

in I with edge probability 1. Let C be the singleton community structure and k = 1.

We first observe that a feasible solution for pIMdp is obtained by a distribution p that

selects the set {u1, u2} and the empty set both with probability 1/2, this solution p

achieves an expected spread σ(p) of N/2+1, thus optP(G, C, k) ≥ N/2+1 > 0. Instead,

we show that the only feasible solution x ∈ X for iIMdp is the zero solution, i.e., the

solution x0 with x0v = 0 for all v ∈ {u1, u2, v1, . . . , vn} and thus optX (G, C, k) = 0.

In order to show this, we first observe that u1 and u2 have no incoming edges and

thus σuj (x) = xuj for any x ∈ X and j ∈ [2]. Moreover, due to the demographic

parity constraints, we must have xu1 = xu2 . Let us call this value ρ and observe that

ρ ≤ 1/2 as k = 1. Now assume for the purpose of contradiction that ρ > 0. Then,

for any v ∈ I, σv(x) = xv + (1 − xv)(1 − (1 − ρ)2) which is at least 1 − (1 − ρ)2 =

ρ(2 − ρ) > ρ. As ρ = σu1(x), this contradicts the demographic parity constraints

and thus ρ = 0. As a consequence xvi = 0 for all i ∈ [N ] due to the demographic

parity constraints and thus optX (G, C, k) = 0. This shows the first statement. Finally,

optP(G, C, k)− optX (G, C, k) ≥ N/2 + 1 = Ω(n).

4.3.2 Price of Fairness

The price of (group) fairness is a measure of loss in efficiency due to fairness. More

precisely, for X ∈ {S,X ,P}, we define PoFX(G, C, k) as the ratio of the maximum

coverage in the absence of fairness constraints, i.e., opt(G, k) to the optima of the cor-

responding problem involving demographic parity fairness constraints, in other words,
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PoFX(G, C, k) := opt(G, k)/ optX(G, C, k). Due to Lemma 4.8, we have the following

relation PoFS(G, C, k) ≥ PoFX (G, C, k) ≥ PoFP(G, C, k). We proceed by showing that

the PoF can be unbounded for pIMdp and thus in all three cases.

Lemma 4.10. Assume that information spread follows the IC model. For any even

n > 0, there is an instance G, C, k s.t. PoFX(G, C, k) = Ω(n) for X ∈ {S,X ,P}.

Proof. In the light of the comment above it suffices to show the claim for PoFP . Con-

sider the graph G consisting of two disjoint sets I and J , each of size n/2. For one

specific node w ∈ J , there is an edge from w to each node in I with probability 1. Let C
be the singleton community structure and k = 1. Let us call p an optimal solution p for

pIMdp. Since nodes in J have no incoming edges, it holds that σv(p) = PrS∼p[v ∈ S]

for all v ∈ J . Let us call this value ρ. By the fairness constraints, it must also hold

that σv(p) = ρ for the nodes v ∈ I. As a result σ(p) = nρ. Furthermore,

n

2
· ρ =

∑
v∈J

Pr
S∼p

[v ∈ S] =
∑
v∈J

∑
S:v∈S

pS =
∑
S⊆V

pS |S| ≤ 1,

where the inequality holds because p ∈ P. Hence, ρ ≤ 2/n and optP(G, C, k) = nρ ≤ 2.

On the other hand, opt(G, k) ≥ σ({w}) = n/2 + 1 and thus PoFP(G, C, k) ≥ (n/2 +

1)/2 = Ω(n).

4.3.3 Hardness of pIMdp and iIMdp

In the following, we show that the pIMdp problem is NP-hard and for the iIMdp problem

we prove that it cannot be approximated to within a factor better than 1− 1/e.

Theorem 4.11. The pIMdp problem is NP-hard.

Proof. We reduce from the Set Cover problem, where we are given a collection of

subsets D = {D1, . . . , Dµ} over a ground set U = {U1, . . . , Uν} and an integer κ, and

we are asked whether there exists a collection of κ subsets covering U . We can assume

w.l.o.g. that every element from U appears in at least one subset from D as otherwise

the instance is trivially false.

Given a Set Cover instance, we create a pIMdp instance G, C, k as follows. The graph

G = (V,E) has a node set V = A ∪ B, where A = {v1, . . . , vµ}, B = {u1, . . . , uν} and
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there is a directed edge from vj to ui whenever Ui ∈ Dj with probability 1. For an

illustration see the construction of the bipartite graph on the left in Figure 4.2. The

community structure C consists of only one community C = V , we set k = κ, and use

the IC model. We proceed by showing that there exists a set cover of size κ if and only

if there exists a fair solution p ∈ P with σ(p) = k + ν. We note that the demographic

parity fairness constraint is always fulfilled as there is a single community. (i) First,

assume that there exists a set cover D′ of size κ. Then we can construct a probability

distribution p ∈ P by setting pS = 1 for S = {vi : Di ∈ D′} and 0 elsewhere. Clearly,

σ(p) = k + ν. (ii) Now assume that there is p ∈ P with σ(p) = k + ν. Note that the

expected spread restricted to A is no more than k as nodes in A have no incoming edges,

formally
∑

v∈A σv(p) =
∑

v∈A
∑

S⊆V :v∈S pS =
∑

S⊆V |S ∩ A|pS ≤
∑

S⊆V |S|pS ≤ k.

Hence, from σ(p) = k+ν, we conclude that σu(p) = 1 for all u ∈ B. Note however that

σu(p) =
∑

S⊆V :Ru∩S ̸=∅ pS , where Ru = {u} ∪Nu. As
∑

S⊆V pS = 1, we conclude that

pS = 0 for all sets S ⊆ V whenever Ru ∩ S = ∅ for some u ∈ B. The contrapositive

of the latter statement is that pS > 0 implies Ru ∩ S ̸= ∅ for all u ∈ B. Since∑
S⊆V pS · |S| ≤ k, there is at least one set S ⊆ V , such that |S| ≤ k and pS > 0.

Hence, there is S ⊆ V such that |S| ≤ k such that Ru ∩ S ̸= ∅ for all u ∈ B. If S

contains a node from B, we can replace it with an arbitrary in-neighbor from A that

has to exist by our assumption on the Set Cover instance. We obtain a set S′ ⊆ A

of size at most k that reaches all nodes in B and the set D′ := {Di ∈ D : vi ∈ S′} is

thus a set cover of size at most κ.

For iIMdp we show an ever stronger result via a reduction from Max-Coverage: It

cannot be approximated better than within 1− 1/e, unless P = NP.

Theorem 4.12. There is no (α, 0)-approximation algorithm for iIMdp for a constant

α > 1− 1/e, unless P = NP.

Proof. We reduce from the Max-Coverage problem, where given a collection of sub-

sets D = {D1, . . . , Dµ} over a ground set U = {U1, . . . , Uν} and an integer κ, the goal

is to find a subset D′ ⊆ D of size at most κ that maximizes |
⋃

S∈D′ S|, the number of

covered elements in U . We can assume w.l.o.g. that every element from U appears in

at least one subset from D as otherwise also the optimum solution cannot cover it.

Given a Max-Coverage instance, we define an iIMdp instance G, C, k as follows.

The directed graph G = (V,E) consists of a node set A = {v1, . . . , vµ} and a node set
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B = ∪i∈[ν]Bi, where Bi = {u1i , . . . , ukνi }. There is an edge from vj to uℓi , for all ℓ ∈ [κν],

whenever Ui ∈ Dj . The construction is similar to the one in Theorem 4.11 with the

difference that every node in the set B is copied κν times. We adopt the IC model and

set the probabilities of all edges to 1. The community structure C consists of only one

community C = V and we set k = κ. We proceed by showing the following claim: If

there is a fair solution x ∈ X , we can in polynomial time construct a set S ⊆ A of size

at most k with σ(S) ≥ σ(x) and furthermore σ(S) = k+ z · kν for some z ∈ {0, . . . , ν}.
We note that we can write σ(x) =

∑
v∈V σv(x) =

∑
v∈V (1 −

∏
w∈Rv

(1 − xw)), where

Rv = {v} ∪ Nv. We now note that, for any ε > 0, the function σ satisfies the ε-

convexity condition from Ageev and Sviridenko [1] and thus Pipage rounding can be

used in order to, in polynomial time, construct a set S ⊆ V of size at most k such that

σ(S) ≥ σ(x). If S contains a node from B, we can replace it with an in-neighbor from

A only increasing the overall coverage of S. Hence we get a set S ⊆ A of size at most

k with σ(S) ≥ σ(x) and clearly S reaches itself plus some z · kν nodes from B, thus

σ(S) = k + z · kν.

Now assume that we have an α-approximation algorithm for iIMdp with some α >

1− 1/e. For the given Max-Coverage instance, we then solve the constructed iIMdp

instance, obtaining a fair solution x ∈ X such that σ(x) ≥ α·optX (G, C, k). We can now,

using the above claim, in polynomial time, construct a set S ⊆ A with σ(S) = k+z·kν ≥
σ(x) ≥ α · optX (G, C, k) with some z ∈ {0, . . . , ν}. Let now D∗ be an optimal solution

of size at most κ = k of the Max-Coverage instance and let S∗ = {vi ∈ A : Di ∈ D∗}
be the corresponding node set in A. Then, optX (G, C, k) ≥ σ(S∗) = k+opt ·kν, where

opt is the coverage of D∗. It follows that z ≥ α · opt−(1−α)/ν ≥ (α− 1/ν) · opt, since

opt ≥ 1 ≥ 1−α. Recalling that α > 1−1/e, for large enough ν also α−1/ν > 1−1/e and

thus we obtain an approximation algorithm for Max-Coverage with approximation

factor bigger than 1− 1/e, which is impossible unless P = NP [37].

4.4 Algorithms for pIMdp and iIMdp

We proceed with algorithms for pIMdp and iIMdp. First note that it is not feasible to

evaluate the functions σ and σC involved in the optimization problems exactly [74]. It

is however well understood that the functions can be approximated by the functions

σ̃C and σ̃ that are obtained by sampling a polynomial number of live-edge graphs, see,

e.g., Lemma 3.12 in Chapter 3 and Proposition 2.5 in Chapter 2.
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4.4.1 Approximation Algorithm for iIMdp

We start by giving an approximation algorithm for iIMdp. Given the above discussion,

we consider σ̃ and σ̃C instead of σ and σC :

max
x∈X
{σ̃(x) : ∃γ s.t. σ̃C(x) = γ for all C ∈ C}. (apx-ipIMdp)

As discussed above, an (α, β)-approximation x for an instance (G, C, k) of apx-ipIMdp

approximates iIMdp by adding a multiplicative error in the objective and an additive

error in the fairness violation, that is it satisfies σ(x) ≥ (α − ε) optX (G, C, k) and

σC(x) ≥ βσC′(x) − ε, for any arbitrary small ε > 0. We can thus focus on giving an

approximation algorithm for apx-ipIMdp. Formally, we prove the following theorem.

Theorem 4.13. There exists a (1−1/e, 1−1/e)-approximation algorithm for apx-ipIMdp.

We first note that the objective function of apx-ipIMdp is not linear, since the probabil-

ity of sampling a seed set S from a distribution x ∈ X is
∏

i∈S xi
∏

i/∈S(1−xi). Our ap-

proach here is to approximate apx-ipIMdp by a linear program (LP) of polynomial size.

For a live-edge graph L and a node v ∈ V , we let qv(L, x) be the probability of sampling

a set S that can reach v in live-edge graph L, that is qv(L, x) = PrS∼x[v ∈ ρL(S)]. We

can write qv(L, x) = 1−
∏

i∈V :v∈ρL(i)(1−xi). It is easy to observe, see, e.g., Lemma 3.14

in Chapter 3, that qv(L, x) can be approximated within a constant factor by a function

pv(L, x) := min{1,
∑

i∈V :v∈ρL(i) xi}. More precisely,

qv(L, x) ∈ [(1− 1/e) · pv(L, x), pv(L, x)]. (4.1)

By defining λv(x) := 1
T

∑T
t=1 pv(Lt, x), λ(x) :=

∑
v∈V λv(x), as well as λC(x) :=

1
|C|

∑
v∈C λv(x) we obtain linear functions. Recalling that σ̃v(x) = 1

T

∑T
t=1 qv(Lt, x)

together with the relation between pv and qv directly implies that λv, λ, and λC ap-

proximate σv, σ, and σC for all nodes v ∈ V and communities C ∈ C, respectively.

Thus, we consider the following optimization problem

max
x∈X
{λ(x) : ∃γ s.t. λC(x) = γ for all C ∈ C}. (ppλ)

We then get the following lemma.

Lemma 4.14. Let x ∈ X be an optimal solution to ppλ, then x is a (1− 1/e, 1− 1/e)-

approximation to apx-ipIMdp.
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Proof. Let x∗ be optimal for apx-ipIMdp. Then

σ̃v(x) =
1

T

T∑
t=1

qv(Lt, x) ≥
(
1− 1

e

)
· 1
T

T∑
t=1

pv(Lt, x)

≥
(
1− 1

e

)
· 1
T

T∑
t=1

pv(Lt, x
∗) ≥

(
1− 1

e

)
· 1
T

T∑
t=1

qv(Lt, x
∗) = (1− 1

e
) · σ̃v(x∗),

where we used two times observation 4.1, and the optimality of x. We recall that

σ̃(x) =
∑

v∈V σ̃v(x) for any x, thus, this shows the approximation on the objective

function. For C,C ′ ∈ C, we have

σ̃C(x) ≥
(
1− 1

e

)
· λC(x) =

(
1− 1

e

)
· λC′(x) ≥

(
1− 1

e

)
· σ̃C′(x)

again, using observation (4.1) twice as well as the feasibility of x. Similarly,

σ̃C(x) ≤ λC(x) = λC′(x) ≤ e

e− 1
· σ̃C′(x),

and thus x is (1− 1/e)-feasible for apx-ipIMdp.

Note that the optimization problem maxx∈X {λ(x) : ∃γ s.t. λC(x) = γ for all C ∈ C}
can be modeled as a linear program of polynomial size. The idea is to model the

minimum in the definition of pv(L, x) by a variable yv,Lt , for every t ∈ [T ].

Lemma 4.15. The problem ppλ can be solved in polynomial time using linear program-

ming.

Proof. The problem can be formulated as the following polynomial size linear program

max
∑
v∈V

∑
t∈[T ]

yv,Lt

s.t.
1

|C|
∑
v∈C

1

T

∑
t∈[T ]

yv,Lt = γ ∀C ∈ C

∑
i:v∈ρLt (i)

xi = yv,Lt ∀v ∈ V, t ∈ [T ] (4.2)

x ∈ X , γ ∈ [0, 1], yv,Lt ∈ [0, 1] ∀v ∈ V, t ∈ [T ].
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Lemmata 4.15 and 4.14 directly imply that there is a polynomial time (1 − 1/e, 1 −
1/e)-approximation for apx-ipIMdp and thus also establishes Theorem 4.13. In our

experimental study we refer to the described algorithm as ind_lp.

4.4.2 Algorithms for pIMdp

In this subsection, we present algorithms for pIMdp that are based on greedy strategies

and solving a (comparatively) small linear program. We again focus on algorithms for

the problem with the approximate functions σ̃ and σ̃C , formally

max
p∈P
{σ̃(p) : ∃γ s.t. σ̃C(p) = γ for all C ∈ C}. (apx-pIMdp)

Differently from the node-based problem, the objective function of apx-pIMdp is linear

and hence it can be formulated as a linear program by introducing a variable for each

seed set S ⊆ 2V . However, the size of such a linear program would be Θ(2n), the

dimension of P. Our approach here is to restrict to a subset Q ⊆ P in such a way that

the linear program at hand becomes more tractable. More precisely, the two heuristics

that we propose are based on solving the following linear program for two different

choices of Q
max
p∈Q
{σ̃(p) : ∃γ s.t. σ̃C(p) = γ for all C ∈ C}. (ppQ)

In the first heuristic, that we call grdy_grp+lp, we choose Q by restricting the set

of non-zero variables to sets that either (1) have a large coverage with respect to a

certain community, or (2) have a large overall coverage. Formally, we let Q := {p ∈ P :

pS = 0 for all S /∈ S1 ∪ S2}, where S1 = {Si : i ∈ [m]} with Si = argmaxS∈V {σ̃Ci(S) :

|S| ≤ k}, S2 := {Ti : i ∈ {0} ∪ [2k]} with Ti := argmaxS∈S{σ̃(S) : |S| ≤ i}. Here the

choice of 2k in the definition of S2 is more or less arbitrary, the rationale being that

due to submodularity of σ it is unlikely that choosing a set of size twice the allowed

expectation leads to a profitable gain in overall spread. Clearly, the idea behind this

choice of Q is to provide the LP with sufficiently many degrees of freedom to both

achieve a high overall coverage and a good coverage for each community.

In the second heuristic, that we refer to as maximin+lp, we define Q := {p ∈ P : p =

λ0 ·1∅+
∑

i∈[m] λi1Si +λm+1q}, where 1S is the 2n-dimensional vector that is 1 at posi-

tion S ⊆ V and zero elsewhere, and q ∈ P is the distribution computed by the set-based
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algorithm in Chapter 3 for the maximin criterion. In other words, we restrict to prob-

ability distributions in P that are linear combinations of (1) a distribution computed

for the maximin criterion and (2) the degenerate distributions of the empty set and the

sets maximizing the respective community coverage. The rationale of this choice of Q
is to profit from the efficiency of the maximin solution but enabling the LP solver to

improve the incurred violation in demographic parity by putting additional probability

on the deterministic distributions corresponding to under-represented communities.

4.5 Experiments

In this section, we report on a detailed experimental study. We evaluate a diverse

set of algorithms for influence maximization in terms of their efficiency (both overall

coverage and run-time) and demographic parity fairness. In our evaluation, we use

random, synthetic, and real data sets.

Algorithms. In addition to ind_lp, grdy_grp+lp, and maximin+lp, our

study includes the following competitors: grdy_im the greedy algorithm for IM,

grdy_maximin the algorithm that greedily maximizes the minimum community cov-

erage, grdy_prop a simple heuristic that greedily maximizes σCi for i ∈ [m] using

k|Ci|/n seeds, milp the MILP of Farnadi et al. [36], moso an algorithm based on

multi-objective submodular optimization due to Tsang et al. [71], set_based the mul-

tiplicative weights routine for the set-based problem proposed in Chapter 3, myopic a

simple heuristic by Fish et al. [38], and uniform the uniform solution to iIMdp.

We proceed with a note on the milp algorithm by Farnadi et al. [36] that we use under

their equity fairness notion (equivalent to demographic parity) relaxed by an additive

0.1 as they propose, we would like to remark the following. The mixed-integer linear

program (MILP) that the authors solve is very similar to the LP that we propose in the

proof of Lemma 4.15 with the main differences that the authors restrict the x-variables

to be binary and require the constraint in (4.2) to hold with ≥ rather than equality. We

stress that the y-variables in their MILP (called α in their paper) are not decision vari-

ables that indicate whether a node is covered anymore. More precisely, as a consequence

of the fairness constraints, these variables may take any value between 0 and 1. As a

result the seed set computed by milp may not satisfy the relaxed fairness constraints
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at all. We note that grdy_maximin, set_based, moso, and myopic were designed

for the maximin criterion. We emphasize that set_based, ind_lp, grdy_grp+lp,

maximin+lp, and uniform compute distributions and are thus designed for achieving

ex-ante guarantees, while the other algorithms compute deterministic seed sets. For our

algorithms from the previous section we relax the strict demographic parity constraints

for some parameter η ∈ [0, 1) as follows.

For grdy_grp+lp and maximin+lp, we simply replace γ in the demographic parity

constraints in ppQ by γ±η. We then choose η ∈ {0, x/16, x/8, x/4}, where x is the viola-

tion in demographic parity that the output of grdy_im suffers for grdy_grp+lp and

maximin+lp. For the algorithm ind_lp, we substitute the constraints in (4.2) with

yv,Lt ∈ [
∑

i:v∈ρL(i) xi−η,
∑

i:v∈ρL(i) xi] for each v, t ∈ [T ] and choose η ∈ {0, 1/4, 1/3, 1/2}.

Instances. We use random, synthetic and real world graphs. We refer to Table 3.1

in Chapter 3 for further details on the instances. We use the IC model with uniformly

random weights in [0, 0.4] for the random and synthetic networks and [0, 0.2] for real

world instances.

We consider the following different community structures. (1) Singleton communities.

(2) Random communities: each node is assigned uniformly at random to a community.

(3) BFS communities. (4) Random-overlap communities: for a given m, a node is, each

with probability 1/(m + 2), (i) in community Ci for i ∈ [m], (ii) in no community, or

(iii) in all m communities. (5) Leidenalg communities: communities detected by a com-

mon algorithm for community detection [70]. (6) Given communities for the synthetic

networks and for some of the real world instances.

Experimental Setting. As all evaluated algorithms are randomized, we repeat each

run 10 times per graph, for random and synthetic graphs, we in addition average over 5

graphs, thus resulting in 50 runs per algorithm. In all our 2-dimensional plots, we also

show averages of the projections onto each dimension together with 95% confidence

intervals. For algorithms that output distributions rather than sets, i.e., giving ex-

ante guarantees, we evaluate both their overall coverage and their demographic parity

violation in expectation. We ran experiments with a large variety of parameter settings

and, here we only report on a subset of the experiments performed. In our plots the

overall (expected) coverage (as ratio of overall nodes) is on the vertical axis while
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the violation in demographic parity is on the horizontal axis. We see the averages

and confidence intervals for overall coverage and violation in demographic parity as

projected onto the right and top of the plot, respectively. We note that a perfect

algorithm would achieve maximum overall coverage, while suffering zero violation in

demographic parity, thus ending up in the top left of the plots.

For grdy_im, we use the TIM implementation by Tang et al. [68]. We implement

ind_lp, grdy_grp+lp, and maximin+lp in C++, use the TIM implementation in

order to compute the sets S1 and S2 and gurobi 9.5.0 [43] for solving the LPs. For

moso we also choose gurobi as solver. For grdy_prop, if the resulting seed set is of

size less than k (because of overlaps or due to rounding) the seed set is extended with

nodes that maximize the total spread.

The tested algorithms are implemented in two different programming languages:

ind_lp, grdy_grp+lp, maximin+lp, grdy_im, grdy_prop, set_based are im-

plemented in C++ (compiled with g++ 7.5.0), while the algorithms grdy_maximin,

milp, moso, myopic, uniform are implemented in Python (version 3.7.6). For con-

sistency, the final evaluation of the computed solutions of all algorithms is still done

in the same language (Python). For this final evaluation, we use a constant number of

100 live-edge graphs for simulating the diffusion process. We note that using a constant

number of live-edge graphs is a frequent choice [36, 38], still, our algorithm’s output

is actually based on a larger number of live-edge graphs, 1000 in the case of ind_lp,

and an even larger number for grdy_grp+lp and maximin+lp, namely as many

as generated by the TIM implementation when computing S1 and S2. For the final

evaluation of σv(x) for x ∈ X , we generate a number of sets S ∼ x sufficient to get an

additive ε-approximation with probability at least 1− δ, we use δ = ε = 0.1.

4.5.1 Results

Running Times. We measure the running times of all algorithms on the random

instances for increasing values of n = 50, 100, 200, see Table 4.1. We exclude uniform

as it takes constant time and milp for n > 50 as it does not terminate in less than 30

mins. We observe that grdy_im, ind_lp, and myopic are fastest. As we will see,

unfortunately, the fairness achieved by grdy_im and myopic is very poor. From the

competitor algorithms, grdy_maximin, milp and moso perform the worst in terms of

running times and as their fairness values are not too good either, we exclude them from
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Algorithm n = 50 n = 100 n = 200

grdy_grp+lp 3.20± 0.13 16.57± 0.61 116.64± 05.72
maximin+lp 6.54± 0.35 39.78± 1.02 232.90± 10.43

ind_lp 0.62± 0.04 1.05± 0.06 1.90± 00.07
grdy_im 0.07± 0.01 0.21± 0.01 0.74± 00.04

grdy_maximin 9.33± 0.26 54.80± 1.97 150.30± 09.03
grdy_prop 2.44± 0.09 16.08± 0.59 115.15± 05.45

milp 70.32± 4.61 – –
moso 87.25± 3.81 138.77± 7.30 194.16± 12.59

set_based 3.35± 0.26 20.15± 0.48 97.23± 03.63
myopic 2.04± 0.13 4.12± 0.47 4.77± 00.74

Table 4.1: Running times on random instances (k = 25, singleton community
structure) with 95% confidence intervals.

further experiments. We also exclude ind_lp as it is not performing too well in terms

of fairness and coverage in comparison to our other two algorithms grdy_grp+lp and

maximin+lp.
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Figure 4.6: (left) Random instances (k = 25, n = 200, singleton communities),
(right) synthetic instances (k = 25, n = 500, communities induced by gender and

region).

Random and Synthetic Networks. We start with the random networks, see the

left plot of Figure 4.6. We exclude milp from this and all further experiment as it

does not solve a single instance in less than 30 mins. All competitor algorithms suffer

a fairness violation of more than 0.75 and achieve a coverage between 0.35 and 0.45.

In the case of grdy_im, there is a fairness violation of almost 1. Next, note that our

algorithms that are restricted to find perfectly fair solutions, i.e., grdy_grp+lp_0,

maximin+lp_0, and ind_lp_0 obtain zero overall coverage. As we are in the setting

of singleton communities, perfect demographic parity is a very strong requirement. In-

stead, if we use grdy_grp+lp_x/4 (maximin+lp_x/4), where x is the violation of
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grdy_im (here ≈ 1), we still achieve 75% (67%) of grdy_im’s coverage while suffer-

ing a fairness violation of only 0.5. More generally, grdy_grp+lp and maximin+lp

allow for a trade-off between coverage and fairness. If the user is for example willing

to tolerate only a fairness violation of around 0.25, he can use grdy_grp+lp_x/8

(or maximin+lp_x/8) and would still achieve 41% (or 35%) of grdy_im’s cover-

age. Note that the algorithm ind_lp performs worse than grdy_grp+lp and max-

imin+lp in terms of coverage with similar fairness values.

For the synthetic data sets of Wilder et al. [76], see the right plot in Figure 4.6, we

show results for the community structure induced by the attributes gender and region

consisting of 15 communities of largely varying sizes. The best competitor algorithm in

terms of fairness violation is uniform with a fairness violation of around 0.07, on the

other hand it achieves a coverage of only around 0.13. The moso algorithm of Tsang et

al. [71] achieves a fairness violation of around 0.13 while achieving a coverage of around

0.18. The grdy_im algorithm achieves the biggest coverage of around 0.21, but suf-

fers a huge fairness violation of around 0.5. Here, our algorithms grdy_grp+lp and

maximin+lp even achieve a decent overall coverage of 55% and 60% of grdy_im’s

(comparable to, e.g., moso) when we restrict to no fairness violation at all (note that

there is still a tiny violation in fairness as the final evaluation is done with an inde-

pendent sample of live-edge graphs). Furthermore, when we allow a fairness violation

of x/16, where x is the violation of grdy_im, our algorithms grdy_grp+lp_x/16

and maximin+lp_x/16 achieve a fairness violation of 0.08 and 0.07 with an overall

coverage of 81% and 85% of grdy_im’s, respectively – thus strictly dominating over

grdy_maximin, moso and myopic, while beating competitors in terms of fairness.

We exclude ind_lp as it is not performing too well in terms of fairness and coverage

in comparison to grdy_grp+lp and maximin+lp for further experiments.

Real World Instances. We turn to the real world instances.

Email Networks. We start with Arenas and email-Eu-core networks. We report on

the results for Arenas network with different community structures: random, BFS,

random-overlap, and leidenalg community structure. For the email-Eu-core network, we

consider the community structure induced by the departments. See Figures 4.7 and 4.8

for some results on these networks. Our algorithms grdy_grp+lp and maximin+lp

achieve the best demographic parity values by far. On the Arenas network, for example
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the plot in the bottom left of Figure 4.7, we achieve a violation in demographic parity of

only 0.008, while getting more than 88% of grdy_im’s coverage that in turn suffers an

around 5 times higher fairness violation. On the email-Eu-core network, our algorithm

maximin+lp_x/8 achieves a fairness violation around 0.2 (a quarter of grdy_im),

while still achieving essentially the same coverage. We also note that all algorithms

but grdy_grp+lp, maximin+lp, and set_based perform comparable to uniform

in terms of both coverage and fairness on email-Eu-core.
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Figure 4.7: Arenas: (top left) Random communities, m = 10, k = 100. (top right)
BFS communities, m = 10, k = 50. (bottom left) Random-overlap communities,

m = 10, k = 100. (bottom right) Leidenalg communities, k = 100.
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Figure 4.8: email-Eu-core with real communities, k = 100.

Irvine Network. For the results on Irvine network, see Figure 4.9. Again the de-

mographic parity values achieved by grdy_grp+lp and maximin+lp are the best
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among all algorithms. Our grdy_grp+lp_x/4 and maximin+lp_x/4 reach al-

most the same coverage as grdy_im’s coverage on three of the plots (top left, bottom

left, and bottom right plot). We note that all algorithms but grdy_grp+lp, max-

imin+lp perform comparable to grdy_im in terms of coverage. We also note that the

simple heuristic grdy_prop and set_based perform even worse in terms of fairness

than grdy_im in the plot on the top right and the plots on the top left and bottom

left, respectively.
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Figure 4.9: Irvine: (top left) Random communities, m = 10, k = 50. (top right)
BFS communities, m = 10, k = 50. (bottom left) Random-overlap communities,

m = 10, k = 100. (bottom right) Leidenalg communities, k = 100.

Co-Authorship Networks. For the co-authorship networks ca-GrQc and ca-HepTh,

we report the results with different community structures in Figures 4.10 and 4.11. Due

to running times we further restrict the evaluated algorithms by excluding also max-

imin+lp and set_based. Again grdy_grp+lp achieves the best fairness values by

far. We again see a trade-off between fairness violation and overall coverage, i.e., in

some cases no algorithm achieves low fairness violation while maintaining high cov-

erage. Still in some other cases our algorithms achieve exactly that. On the ca-GrQc

network with BFS community structure (the plot on the top right of Figure 4.10), for

example, grdy_grp+lp_0 has a fairness violation very close to 0, while getting more

than 80% of grdy_im’s coverage.
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Figure 4.10: ca-GrQc: (top left) Random communities, m = 10, k = 100. (top
right) BFS communities, m = 2, k = 100. (bottom left) Random-overlap

communities, m = 10, k = 100. (bottom right) Leidenalg communities, k = 100.
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Figure 4.11: ca-HepTh: (top left) Random communities, m = n/10, k = 100. (top
right) BFS communities, m = n/10, k = 50. (bottom left) Random-overlap

communities, m = 20, k = 50. (bottom right) Leidenalg communities, k = 100.

Facebook Network. Lastly, we report on the results for the Facebook network.

Again we observe that our grdy_grp+lp algorithm achieve the best fairness val-

ues. In the plot on the top right, for example, grdy_grp+lp_x/16 obtains 55%

of grdy_im’s coverage with only 7% of its fairness violation. Maybe even better,

grdy_grp+lp_x/8 obtains 99% of grdy_im’s coverage with only 23% of its fair-

ness violation. We note that the fairness values and coverage achieved by algorithms

other than grdy_grp+lp are comparable to each other.
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Figure 4.12: Facebook: (top left) Random communities, m = 10, k = 100. (top
right) BFS communities, m = 2, k = 50. (bottom left) Random-overlap

communities, m = 20, k = 100. (bottom right) Leidenalg communities, k = 100.





Chapter 5

Maximin Fairness by Adding Links

In this chapter, we investigate optimization problems with the goal of adding links to

a social network to maximize the minimum community coverage when information is

spread using a purely efficiency oriented seeding strategy.

Most works in the context of fairness in influence maximization study the question

of how to find seeding strategies (deterministic or probabilistic) such that nodes or

communities in the network get their fair share of coverage. In this chapter we take

a different approach to fairness. We do not rely on the good will of the information

spreading entity, but instead modify the underlying social network in such a way as

to make efficiency-oriented information spreading automatically fair. The modification

of the network may be done by the network owner or any other entity interested in

guaranteeing fairness. While different ways of modifying the network are perceivable,

we choose the possibly most natural one – we improve the network’s connectivity by

adding links. Here, we take the rather realistic approach to assume the information

spreading entity to be indifferent rather than adversarial towards fairness.

5.1 The FIMAL Problem: Making Spread Maximizers Fair

5.1.1 Problem Definition

Consider a directed weighted graph G = (V,E,w), two integers k and b, and a com-

munity structure C. We use the Independent Cascade model for describing the random

85
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process of information diffusion. We let Ē := (V × V ) \ E denote the set of non-edges

in G. For a set of non-edges F ⊆ Ē and a set of seed nodes S ⊆ V , we define σ(S, F )

as the expected number of nodes reached from S in the graph G′ = (V,E ∪ F ) that

results from adding F to G. Similarly, for a node v ∈ V , σv(S, F ) is the probability

that v is reached from S in G′ and, for a community C ⊆ V , we define σC(S, F ) to

be the average probability of nodes in C being reached from S in G′. Moreover, we

defineM(F, k) := argmaxS⊆V {σ(S, F ) : |S| ≤ k} to be the set of size k maximizers to

σ(·, F ). We are now ready to formally define the FIMAL problem:

max
F⊆Ē:|F |≤b

{
τ : min

C∈C
σC(S, F ) ≥ τ, ∀S ∈M(F, k)

}
.

We denote with optAL(G, C, b, k) the optimum of FIMAL. Clearly, our goal in FIMAL

is to find a set of at most b non-edges F ⊆ Ē, that, when added to G, maximizes

the minimum community coverage when information is spread in a purely “efficiency-

oriented” way, i.e., from a set of at most k seed nodes that is chosen such that the

set function σ(·, F ) is maximized. The motivation behind studying FIMAL is to, e.g.,

as the network owner, change the structure of a social network in such a way that an

efficiency-oriented entity that wants to spread information in G automatically spreads

information in a more fair way.

In what follows, we give several NP-hardness and hardness of approximation results for

FIMAL. We start by showing that the decision version of the general FIMAL problem is

Σp
2-hard. We even show that it is unlikely that FIMAL can be approximated to within

any factor. We then turn to special cases of FIMAL where either b = 1 or k = 1 and

show that the problem remains NP-hard also in these special cases – for k = 1 even

hard to approximate to within any factor.

For better comprehensibility, we first note that in the the decision version of FIMAL,

in addition to the graph G = (V,E), the communities C, and the integers b, k, we are

given a threshold t and the task is to decide if there exists F ⊆ Ē with |F | ≤ b such

that for all S ∈M(F, k): minC∈C σC(S, F ) ≥ t.

Note that when the edge probabilities belong to {0, 1}, we refer to the instance as the

deterministic case, in this case σ(S) is the (deterministic) number of nodes reachable

from seeds S in G.
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5.1.2 Σp
2-Hardness

We start by recalling the definition of the complexity class Σp
2.

Definition 5.1 (Definition 5.1 in [6]). The class Σp
2 is defined to be the set of all lan-

guages L for which there exists a polynomial-time Turing machine M and a polynomial

q such that x ∈ L if and only if ∃u ∈ {0, 1}q(|x|) : ∀v ∈ {0, 1}q(|x|) : M(x, u, v) = 1.1

We next introduce the Σ2 SAT problem which is Σp
2-complete, see, e.g., Exercise 1 in

Chapter 5 of the book by Arora and Barak [6].

Definition 5.2 (Example 5.6 in [6]). Given a boolean expression ϕ(X,Y ) in 3-CNF

with variables X = (x1, . . . , xν) and Y = (yν+1, . . . , yµ), the Σ2 SAT problem entails to

decide if ∃x∀y : ϕ(x, y) = ⊤, where x : X → {0, 1} and y : Y → {0, 1} are assignments

to the variables X and Y , respectively.

For ease of presentation, we assume the indices of Y to start at ν+1, such that indices

of X and Y are disjoint. Our goal now is to show that the decision version of FIMAL is

Σp
2-hard. We will describe a reduction from Σ2 SAT to the decision version of FIMAL.

We assume that ϕ(X,Y ) contains m clauses ϕ1, . . . , ϕm and for a clause ϕr we call

r(s), s ∈ [3], the indices of the three variables corresponding to ϕr’s three literals (in

arbitrary fixed order).

Given an instance of Σ2 SAT, we create an instance (G, C, b, k, t) of the decision version

of FIMAL as follows, see Figure 5.1 for an illustration. Fix a constant M := µ + ν +

6m+ 1. The node set V of G consists of

• U = {q, P}, where P = p1, . . . , pM−1,

• V ∃ = {vi, v̄i : i ∈ [ν]} and V ∀ = {vj , v̄j , Lj : j ∈ [µ] \ [ν]}, where Lj =

lj,1, . . . , lj,M−2, and

• W = {wr
1, w

r
1̄
, wr

2, w
r
2̄
, wr

3, w
r
3̄
: r ∈ [m]}.

The edge set E consists of
1Equivalently, see, e.g., Theorem 5.12 and Remark 5.16 in the same book, Σp

2 can be defined as
the set of all languages that can be decided by a non-deterministic Turing machine with access to an
oracle that solves some NP-complete problem.
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• Evar := {(vr(s), wr
s), (v̄r(s), w

r
s̄) : s ∈ [3], r ∈ [m]},

• EL that consists of all edges from the nodes vj , v̄j to all nodes v ∈ Lj , for

j ∈ [µ] \ [ν],

• EP that consists of edges from q to all nodes in P , and

• Z := V 2 \ (Evar ∪ EL ∪ EP ∪ E(q, V ∃)), where E(q, V ∃) := {(q, v) : v ∈ V ∃}.

We note that as a result Ē = E(q, V ∃). The edge weight function is defined as we = 0

for all edges e ∈ Z and we = 1 otherwise. The community structure C consists of: (1)

communities C1, . . . , Cm, where each Cr is of cardinality 3 and for s ∈ [3], wr
s ∈ Cr if

xr(s) ∈ ϕr (or yr(s) ∈ ϕr) and wr
s̄ ∈ Cr if x̄r(s) ∈ ϕr (or ȳr(s) ∈ ϕr); and (2) communities

Cm+1, . . . , Cm+ν , with Cm+i = {vi, v̄i} for each i ∈ [ν]. We set k = µ + 1, b = ν and

t = 1/3.

q

P

U

v1

vν

v̄1

v̄ν

...

Cm+1

Cm+ν

V ∃

vν+1 v̄ν+1

Lν+1

vµ v̄µ

Lµ

...

V ∀

w1
1 w1

2̄ w1
3 w1

1̄ w1
2 w1

3̄

wm
1 wm

2 wm
3̄

wm
1̄

wm
2̄ wm

3

C1

Cm

W

...

Figure 5.1: Construction of G from a Σ2 SAT instance. Only the edges to the
nodes corresponding to the first clause ϕ1 are drawn. All drawn edges have weight 1.

The only edges that are not in G are the ones from q to V ∃.

Our goal is now to show that the Σ2 SAT instance is a yes-instance if and only if the

constructed FIMAL instance is. We first need the following lemma.

Lemma 5.3. Let F ⊆ Ē = E(q, V ∃) with |F | ≤ ν. It holds that S ∈ M(F, µ + 1) if

and only if q ∈ S and S ∩ {vj , v̄j} ≠ ∅ for all j ∈ [µ] \ [ν].
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Proof. Fix a set F as in the statement of the lemma and let us call P (S) for the property

that q ∈ S and S ∩ {vj , v̄j} ≠ ∅ for all j ∈ [µ] \ [ν]. (⇒) First note that any set S that

satisfies P (S), achieves σ(S, F ) ≥M + (M − 1)(µ− ν) and that a set T that does not

satisfy P (T ) achieves σ(T, F ) ≤ n−M . Now, notice that n = M+2ν+(µ−ν)M+6m

and thus σ(T, F ) ≤ 2ν + (µ− ν)M + 6m. Using that M = µ+ ν + 6m+ 1, shows that

σ(S, F ) > σ(T, F ). This shows that T cannot be in M(F, k) and thus this completes

the proof of this direction. (⇐) It is enough to show that all sets that satisfy property

P (S) achieve the same value σ(S, F ). From the construction of Evar it follows that the

set W can be partitioned into W ∀ and W ∃ in a way that the nodes in W ∀ have an

in-edge from a node in V ∀, while the nodes in W ∃ have an in-edge from V ∃. Now, let

S be an arbitrary set satisfying property P (S). It then follows that

σ(S, F ) = σ({q}, F ) +
|W ∀|
2

+ (M − 1)(µ− ν).

As the latter does not depend on S the proof is complete.

We are now ready to prove the theorem.

Theorem 5.4. The decision version of FIMAL is Σp
2-hard even in the deterministic

case.

Proof. We show that the Σ2 SAT instance is a yes-instance if and only if the constructed

FIMAL instance is.

(⇒) Assume that the Σ2 SAT instance is a yes-instance, i.e, there exists an assignments

x to the variables X such that for all assignment y to the variables Y , it holds that

ϕ(x, y) = ⊤. We will now show that there exists F ⊆ Ē with |F | ≤ ν such that for

all S ∈ M(F, µ + 1), it holds that minC∈C σC(S, F ) ≥ 1/3. Let F ⊆ Ē = E(q, V ∃)

be equal to the set of edges from q to V ∃ that correspond to the assignment x. Now,

let S ∈ M(F, µ + 1) be arbitrary. It then follows using Lemma 5.3 that S = {q} ∪ Ṡ,

where Ṡ corresponds to an assignment y of Y . As ϕ(x, y) = ⊤ it follows that, for every

clause ϕr at least one literal is true, thus for every community Cr with r ∈ [m], at

least one node w ∈ Cr is reached and hence σCr(S, F ) ≥ 1/3. For communities Ci with

i ∈ [m+1,m+ ν], we obtain that σCi(S, F ) ≥ 1/2, as F corresponds to an assignment

and S contains q according to Lemma 5.3.
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(⇐) Now, assume that the FIMAL instance admits a solution F ⊆ Ē with |F | ≤ ν

such that for all S ∈ M(F, µ + 1), it holds that minC∈C σC(S, F ) > 0. Notice that

σC(S, F ) > 0 for every S ∈ M(F, µ + 1) together with Lemma 5.3 implies that F

consists of a set of edges to V ∃ that corresponds to an assignment. Let now y be an

arbitrary assignment to Y and let S be the set containing q and all nodes from V ∀ that

correspond to the assignment y. Again using Lemma 5.3 it follows that S ∈M(F, µ+1)

and thus σCr(S, F ) > 0 for all r ∈ [m]. This means that at least one node in every

community Ci is reached or equivalently at least one literal in every clause ϕr is true

in the assignments x and y. It follows that ϕ(x, y) = ⊤.

From the same reduction, we can even conclude that it is unlikely to find an arbitrary

approximation to FIMAL as shown in the next theorem. The class ∆p
2 is the class of all

languages decided by polynomial-time Turing Machines that have access to an oracle

for some NP-complete problem. It is widely believed that Σp
2 and ∆p

2 are distinct (see

Section 17.2 in [60]).

Theorem 5.5. Let α ∈ (0, 1]. If computing an α-approximation to FIMAL is in ∆p
2,

then Σp
2 = ∆p

2.

Proof. Note that we have shown above that the Σ2 SAT instance is a yes-instance if

and only if the constructed FIMAL instance admits a solution F ⊆ Ē with |F | ≤ ν

such that for all S ∈ M(F, µ + 1), it holds that minC∈C σC(S, F ) > 0. Note also that

the FIMAL instance there is deterministic.

Now, let α ∈ (0, 1] and assume that we have an algorithm computing an α-approximation

to FIMAL that runs in polynomial time when given access to an oracle for some NP-

complete problem, i.e., computing an α-approximate solution to FIMAL is in ∆p
2 = PNP.

Given a Σ2 SAT instance, we can then build the FIMAL instance as described and com-

pute an α-approximation to it. We then get a set F ⊆ Ē with |F | ≤ ν such that for all

S ∈M(F, µ+ 1), it holds that minC∈C σC(S, F ) ≥ α · optAL(G, C, b, k). Therefore, the

original Σ2 SAT instance is a yes-instance if and only if minC∈C σC(S, F ) > 0, for all

S ∈M(F, µ+ 1), and, if we can check this last condition, then we can decide whether

the Σ2 SAT instance is a yes-instance. We now show how to check this condition by

using a polynomial number of calls to an oracle for some NP-complete problem.

We equivalently show how to check whether there exists a solution S ∈ M(F, µ + 1)

such that minC∈C σC(S, F ) = 0. In deterministic instances, it is NP-complete to check
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whether there exists a seed set S such that σ(S, F ) ≥ τ , for some parameter τ . We can

then, using a polynomial number of calls to the oracle, find an S ∈ M(F, µ + 1). In

fact, since the instance is deterministic, it is enough to guess all τ ∈ [|V |]. Let now τ∗ =

σ(S, F ). Then we again use an oracle to solve the NP-complete problem of checking

whether there exists a seed set S such that σ(S, F ) = τ∗ and minC∈C σC(S, F ) = 0.

As the above algorithm overall requires a polynomial number of calls to the oracle, the

proof is complete.

5.1.3 Still Hard Special Cases

While we have shown above that the general problem is Σp
2-hard, we will now show

that not even in the apparently simple case where k = 1, we can hope to find any

approximation, unless P = NP.

Theorem 5.6. For any, α ∈ (0, 1], it is NP-hard to approximate FIMAL to within a

factor of α, even in the deterministic case and if k = 1.

Proof. We reduce from Set Cover, where we are given a collection of sets D =

{D1, . . . , Dµ} over a ground set U = {U1, . . . , Uν} and an integer κ, and the task is to

decide whether there exists a set cover of size at most κ, i.e., a collection S ⊆ D with

|S| ≤ κ such that
⋃

D∈S D = U .

Given a Set Cover instance, we create an instance (G, C, b, 1) of FIMAL as follows.

The graph G = (V,E,w) has node set V := A ∪B ∪ {q}, where A := {v1, . . . , vµ} and

B := {u1, . . . , uν} and edge set E := Esc ∪ Z, where Esc := {(vj , ui) : Ui ∈ Dj} and

Z := V 2 \ (Esc ∪Eq,A), where Eq,A := {q} ×A. The edge-weight function w is defined

as we = 1 for e ∈ Esc ∪Eq,A and we = 0 otherwise, i.e., for e ∈ Z. The communities C
consist of ν + 1 singletons Cq = {q} and Ci = {ui} for i ∈ [ν]. We set b = κ.

We now show that there exists a set cover S of size at most κ if and only if there

exists a set of non-edges F ⊆ Ē with |F | ≤ b, such that minC∈C σC(S, F ) ≥ 1 for all

S ∈M(F, k): (“⇒”) Assume that there exists a set cover S of size at most κ. Consider

the set F = {(q, vj) : Dj ∈ S} that is of cardinality at most b = κ. We now observe

thatM(F, k) = {{q}} and thus minC∈C σC(S, F ) ≥ 1 for all S ∈M(F, k) by the choice

of F . (“⇐”) Now assume that there exists a set F ⊆ Ē with |F | ≤ b = κ such that

minC∈C σC(S, F ) ≥ 1 for all S ∈ M(F, k). Note that F ⊆ Ē = Eq,A and thus again
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M(F, k) = {{q}} and σ(S, F ) = ν + κ+ 1 for all S ∈ M(F, k). Hence, it follows that

{Dj : (q, vj) ∈ F} is a set cover of size at most κ.

Now, let α ∈ (0, 1] and assume that there exists a polynomial time α-approximation

algorithm A for FIMAL. If there is a set cover of size κ, then optAL(G, C, b, k) = 1 and

A outputs a set F such that minC∈C σC(S, F ) ≥ α · optAL(G, C, b, k) > 0 for all sets

S ∈ M(F, k). If however there is no set cover of size κ, then optAL(G, C, b, k) < 1 and

as the instance is deterministic this means that optAL(G, C, b, k) = 0. Thus A must

return a solution F such that σC(S, F ) = 0 for some community C ∈ C and some set

S ∈ M(F, k). Therefore, by using A we can decide in polynomial time whether or

not there exists a set cover of size κ by running A and then checking if there exists a

community C ∈ C and a set S ∈ M(F, k) such that σC(S, F ) = 0. Note that we can

compute M(F, k) in polynomial time by evaluation of all different n choices – recall

that k = 1. It follows that it is NP-hard to approximate FIMAL to within a factor of

α.

A natural next question is whether the problem remains hard also if b = 1. We show

that this is the case:

Theorem 5.7. The decision version of FIMAL is NP-hard even in the deterministic

case and if b = 1.

Proof. We reduce from Set Cover, where we are given a collection of sets D =

{D1, . . . , Dµ} over a ground set U = {U1, . . . , Uν} and an integer κ, and the task is to

decide whether there exists a set cover of size at most κ, i.e., a collection S ⊆ D with

|S| ≤ κ such that
⋃

D∈S D = U . W.l.o.g., we can assume that every Ui appears in at

least one set Dj as otherwise the instance is trivially a no-instance.

Given a Set Cover instance, we create an instance (G, C, 1, k, t) of the decision version

of FIMAL as follows (here t denotes the threshold to be reached). The graph G =

(V,E,w) has node set V := A∪B∪{q}, where A := {v1, . . . , vµ} and B := {u1, . . . , uν}
and edge set E := Esc∪Z, where Esc := {(vj , ui) : Ui ∈ Dj} and Z = V 2 \ (Esc∪EB,q)

with EB,q := B×{q}. The edge-weight function w is defined as we = 1 for e ∈ Esc∪EB,q

and we = 0 otherwise, i.e., for e ∈ Z. The community structure C consists of ν + 1

singleton communities Cq = {q} and Ci = {ui} for every i ∈ [ν]. We set k = κ and

t = 1.
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We now show that the set cover instance is a yes-instance if and only if the FIMAL

instance is, i.e., if there exists a set of non-edges F ⊆ Ē with |F | ≤ b, such that

minC∈C σC(S, F ) ≥ 1 for all S ∈ M(F, k): (“⇒”) Assume that there is a set cover S
of size at most κ. Let F = {(u, q)} for some arbitrary node u ∈ B. Then S = {vj :

Dj ∈ S} achieves σ(S, F ) = ν + κ + 1. Note that nodes in A have no ingoing edges

with positive probability and thus no set that is not a subset of A can achieve a higher

coverage than S thusM(F, k) = {S}. As a consequence minC∈C σC(SF,k, F ) ≥ 1 for all

S ∈M(F, k). (“⇐”) Now assume that there exists a set F ⊆ Ē with |F | ≤ b = 1, such

that minC∈C σC(S, F ) ≥ 1 for all S ∈M(F, k). Note that F ⊆ Ē = EB,q and thus from

minC∈C σC(S, F ) ≥ 1, it follows that σC(S, ∅) ≥ 1 for every C = {ui} and S ∈M(F, k).

By the assumption on the Set Cover instance, the set S can be transformed into a

subset S′ of A such that still σC(S′, ∅) ≥ 1 for every C = {ui}. We can thus conclude

that {Di : vi ∈ S′} is a set cover of size at most κ.

5.2 The FIMg
AL Problem: Towards Fairness in Practice

5.2.1 Problem Definition

We have seen a lot of evidence above that FIMAL is intractable. We thus continue by

proposing an alternative problem that not only turns out to be more computationally

tractable, but also is possibly practically better motivated in the first place in the

following sense: The problem of finding a set of at most k nodes that maximizes σ(·, F )

is however an NP-hard optimization problem and thus it is unrealistic to assume the

entity to spread information using a maximizing set. Instead what is frequently used

in practice for the computation of an efficient seed set is the greedy algorithm. In fact,

the choice of the greedy algorithm is also well-founded in theory, as, for a fixed set

of non-edges F , the set function σ(·, F ) is monotone and submodular and thus one is

guaranteed to achieve an essentially optimal approximation factor of 1 − 1/e − ε for

any ε > 0, see Theorem 2.6 in Chapter 2. Hence, an optimization problem that is

practically better motivated than FIMAL, assumes that the efficiency-oriented entity,

in order to spread information, uses the greedy algorithm for computing the seed set.

The greedy algorithm for σ(·, F ) is however a randomized algorithm, as it relies on

simulating information spread using a polynomial number of live-edge graphs (or reverse

reachable (RR) sets, depending on the implementation). It becomes thus necessary that
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we consider the output of the algorithm to be a distribution over seed sets of size k,

rather than just a single set. For a set of non-edges F ⊆ Ē and an integer k, let us

denote this distribution with p(F, k). We then define the FIMg
AL problem as:

max
F⊆Ē:|F |≤b

{
τ : ES∼p(F,k)[σC(S, F )] ≥ τ ∀C ∈ C

}
.

Intuitively, our goal in the optimization problem FIMg
AL is to find a set of at most b non-

edges F ⊆ Ē, that, when added to G, maximizes the minimum community coverage (in

expectation) when information is spread using the greedy algorithm – a quite realistic

assumption.

Here, we do not assume to have access to p(F, k), not even for one set F , as it would

generally require exponential space to be encoded. Instead, we assume to have access to

the greedy algorithm in an oracle fashion, i.e., for a given set F , we can call the greedy

algorithm on σ(·, F ) with budget k and get a set S. One can then show using an easy

Hoeffding bound argument, see below, that ES∼p(F,k)[σC(S, F )] can be approximated

arbitrarily well w.h.p. for every F .

It is also worth mentioning that our approach can be extended to a setting where

we want to be fair w.r.t. multiple implementations of the greedy algorithm or even

more generally to multiple implementations of multiple algorithms (different from the

greedy algorithm). This can be achieved as follows. Assume that (pi)i∈[N ] are a priori-

likelihoods of using one of N different algorithms and assume pi(F, k) to reflect the

probability distribution of seed sets corresponding to algorithm i. Then the distribution

with pS(F, k) :=
∑

i pi · piS(F, k) for S ⊆ V reflects the distribution over seed sets

resulting from using all N algorithms. The only condition here, for our algorithmic

results below to keep working, is that the algorithms are polynomial time.

5.2.2 Polynomiality of Deterministic Case with Constant b

We now first observe that in the deterministic case with constant b, it is simple to

solve the problem exactly in polynomial time, simply by going through all at most(
n2−m

b

)
≤ n2b possible sets of non-edges F , computing the deterministic set SF that the

greedy algorithm outputs for maximizing σ(·, F ), and checking what is the value τF =

minC∈C σC(SF , F ). Then return the set F that achieves the maximum τF . Although

this seems trivial, we notice that such an approach cannot work for FIMAL, for which
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we showed that the problem remains NP-hard in the deterministic case even if b = 1,

see Theorem 5.7.

Observation 5.8. There is a polynomial time algorithm to compute an optimal solution

to FIMg
AL in the deterministic case when b is constant.

5.2.3 Hardness

In the language of parameterized complexity, Observation 5.8 shows that the deter-

ministic FIMg
AL problem belongs to the class XP when parameterized by b. A natural

question is therefore whether there exists an FPT algorithm that solves or approximates

FIMg
AL in deterministic instances. In fact, already Theorem 5.6 answers negatively to

this question as the proof shows a polynomial-time reduction from the Set Cover

problem to the deterministic case of FIMg
AL in which b is equal to the size of a set cover

κ. As Set Cover is W[2]-hard w.r.t. κ, FIMg
AL does not admit an FPT algorithm

w.r.t. b, even in the deterministic case, unless W[2] = FPT. Moreover, under the same

condition, no parameterized α-approximation algorithm exists since the optimum of a

FIMg
AL instance is strictly positive if and only if there exists a set cover of size κ.

A natural next question is what happens for general b, but with k = 1. The problem

remains hard in this case. Consider the instance constructed in the reduction in The-

orem 5.6. As k = 1 and as the instance is deterministic, it is clear that the greedy

algorithm, for any set F ⊆ Ē of non-edges, simply computes a maximizing set of cardi-

nality 1. Hence the following statement can be shown in the same way as in the proof

of Theorem 5.6: there exists a set cover S of size at most κ if and only if there exists a

set of non-edges F ⊆ Ē with |F | ≤ b, such that minC∈C ES∼p(F,k)σC(S, F )] ≥ 1. This

yields the following corollary to Theorem 5.6.

Corollary 5.9. For any α ∈ (0, 1], it is NP-hard to approximate the FIMg
AL problem

to within a factor of α, even in the deterministic case and if k = 1.

As mentioned above, we will see below that FIMg
AL for general constant b turns out to

be arbitrarily well approximable. To prove this, we first turn back to the question of

approximating ES∼p(F,k)[σC(S, F )] for a fixed F .
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5.2.4 Approximating p(F, k)

As mentioned above, we do not assume access to p(F, k), instead we show that, using

the greedy algorithm in an oracle fashion, we can approximate ES∼p(F,k)[σC(S, F )]

arbitrarily well using a Hoeffding bound. We first recall that already σC cannot be

evaluated exactly but has to be approximated using poly(n, ε−1) many samples of live-

edge graphs.

Lemma 5.10. Given an instance (G, C, b, k) of FIMg
AL with constant b, one can in

poly(n,m, ε−1) time, compute functions fC such that, |fC(F )−ES∼p(F,k)[σC(S, F )]| ≤ ε

for all C ∈ C and F ⊆ Ē with |F | ≤ b w.h.p. Here m = |C|.

Proof. We assume to have access to approximations σ̃C of σC for all C ∈ C such

that, w.h.p., |σC(S, F ) − σ̃C(S, F )| ≤ ε/2 for all C ∈ C, S ⊆ V , and F ⊆ Ē with

|F | ≤ b. Such approximations can, e.g., be computed as in Lemma 3.12 of Chap-

ter 3. Concluding from the bound on T there, this can be done in poly(n,m, ε−1)

time. We can now, for every F ⊆ Ē with |F | ≤ b, call the greedy algorithm N =

Ω(ε−2 log(nm)) times and obtain sets S1, . . . , SN of size k. For every C ∈ C, define

fC(F ) := 1
N

∑N
i=1 σ̃C(Si, F ) and f̄C(F ) := 1

N

∑N
i=1 σC(Si, F ). Then using a Hoeffding

bound, see, e.g., Theorem 4.12 in the book by Mitzenmacher and Upfal [56], it holds

that Pr[|f̄C(F ) − ES∼p(F,k)[σC(S, F )]| ≥ ε/2] ≤ (nm)−Ω(1). After applying a union

bound, we obtain that w.h.p., we have |f̄C(F ) − ES∼p(F,k)[σC(S, F )]| ≤ ε/2 for all

C ∈ C and F ⊆ Ē with |F | ≤ b. Hence, w.h.p.,

∣∣fC(F )− ES∼p(F,k)[σC(S, F )]
∣∣ ≤ ∣∣f̄C(F )− ES∼p(F,k)[σC(S, F )]

∣∣
+
∣∣fC(F )− f̄C(F )

∣∣ ≤ ε.

5.2.5 General Approximation for Constant b

The above lemma enables us to provide a polynomial time algorithm for FIMg
AL when b

is constant that finds a set F ⊆ Ē that is ε-close to optimal (in an additive sense) w.h.p.

After proving the above lemma, the idea is simple and similar to the deterministic

case: Again, go through all at most n2b possible sets of non-edges F , compute ε/2-

approximations (fC(F ))C∈C as in Lemma 5.10, and return the set with maximum value

τF = minC∈C fC(F ). This set is an additive ε-approximation of the maximizing set F ∗

(using the approximation guarantee once for F and once for F ∗).
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Lemma 5.11. Let ε ∈ (0, 1), there is a polynomial time algorithm to compute an

additive ε-approximation to the optimal solution of FIMg
AL when b is constant.

5.2.6 Practical Algorithms

For the case with general budget b, recall that the problem is inapproximable, unless

P = NP according to Corolllary 5.9. We still propose several algorithms in this subsec-

tion that perform well in practice as we will show later on. All our algorithms are of

a greedy flavour and based on restricting to the evaluation of increments of non-edges

that seem promising to improve fairness. In the following, we describe the proposed

methods.

grdy_al. The algorithm that, starting with F = ∅, in b iterations, chooses the non-

edge e into F that maximizes the increment minC ES∼p(F,k)[σ(S, F ∪ {e})] −
minC ES∼p(F,k)[σ(S, F )]. For efficiency we restrict to evaluate only non-edges that

are (1) incident to Sp, the union over all sets with positive support in p(F, k),

and (2) are inter-community edges. Note that at the beginning of each iteration,

we recompute p(F, k) as F changes.

to_minC_infl. The algorithm that, starting from the empty set F = ∅, adds the

non-edge e = (u, v) ∈ Ē \ F to F that connects a node from Sp with a node that

maximizes f(e) := PrS∼p(F,k)[u ∈ S] · we · ES∼p(F,k)[σC̄(S ∪ {v}, F )], where C̄ is

the community of minimum coverage. We refer the reader to the pseudo-code in

Algorithm 4. The rationale being to choose the non-edge that connects a seed

node with a node that has large influence in the community C̄ taking into account

both the probability that u is a seed and the edge weight we.

to_minC_min. The algorithm that, starting from the empty set, adds a non-edge

to the node v̄ with minimum probability of being reached in the community that

currently suffers the smallest community coverage. Among all these non-edges

we choose the non-edge (u, v̄) that maximizes the product PrS∼q[u ∈ S] · w(u,v̄).

The pseudo-code is given in Algorithm 5.

We highlight two techniques that we use speed up our implementations: (1) a pruning

technique for grdy_al: Let δ denote the best increment of an edge that we have seen

so far. Before evaluating the exact increment of a non-edge e = (u, v) ∈ A \ F , we
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compute an upper bound on the increment achievable by e via evaluating the expected

community coverages ES∼p(F,k)[σC({v}, F )] that would be achieved by choosing v as a

seed. We refer the reader to the pseudo-code in Algorithm 3 for further details. (2) A

way to update RR sets rather than recompute them from scratch after adding edges:

In all our algorithms, we change the graph by adding edges to it. As a consequence

the functions σ and σC need to be approximated based on different simulations or,

here, based on different RR sets. We observe however that after adding one edge, say

e = (u, v) to the graph, we do not need to entirely resample the RR sets, but, instead,

can update and reuse them as follows. For every RR set R that contains the node v,

we update R by re-starting the RR set construction from u with probability w(u,v) and

adding the resulting nodes to R.

Algorithm 3 grdy_al

Require: instance I = (G, C, b, k)
Ensure: set F ⊆ Ē with |F | ≤ b
F ← ∅
while |F | < b do

q ← p(F, k)
δ ← −∞
A← {(u, v) ∈ Ē : u ∈ S for some S : qS > 0 and v /∈ S for all S : qS > 0}
for (u, v) = e ∈ A \ F do
τC(v)← ES∼q[σC(S, F )] + ES∼q[σC({v}, F )], for all C ∈ C
if minC∈C{τC(v)} > δ then
λ← minC∈C{ES∼q[σC(S, F ∪ {e})]}
if λ > δ then
δ ← λ
ē← e

end if
end if

end for
F ← F ∪ {ē}

end while
return F

5.3 Experiments

In this section, we report on two experiments involving the FIMg
AL problem. In the first

experiment, we compare the algorithms presented above in terms of quality and running

time. In a second experiment, we evaluate the best performing algorithm against other
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Algorithm 4 to_minC_infl

Require: instance I = (G, C, b, k)
Ensure: set F ⊆ Ē with |F | ≤ b
F ← ∅
while |F | < b do

q ← p(F, k)
C̄ ← argminC∈C{ES∼q[σC(S, F )]}
ē← argmax(u,v)∈Ē\F {PrS∼q[u ∈ S] · w(u,v) · ES∼q[σC̄(S ∪ {v}, F )]}
F ← F ∪ {ē}

end while
return F

Algorithm 5 to_minC_min

Require: instance I = (G, C, b, k)
Ensure: set F ⊆ Ē with |F | ≤ b
F ← ∅
while |F | < b do

q ← p(F, k)
C̄ ← argminC∈C{ES∼q[σC(S, F )]}
v̄ ← argminv∈C̄{ES∼q[σv(S, F )]}
ē← argmax(u,v̄)∈Ē\F {PrS∼q[u ∈ S] · w(u,v̄)}
F ← F ∪ {ē}

end while
return F

fairness-tailored seeding algorithms. We show, for several settings, that already adding

just a few edges can lead to a situation where purely efficiency-oriented information

spreading becomes automatically fair. We proceed by describing the experimental setup.

Experimental Setting. In our experiments we use random, synthetic and real world

instances. Properties of synthetic and real world instances are given in Table 3.1 in

Chapter 3. We choose the non-edge weights uniformly at random from the interval [0, 1].

The algorithms grdy_al, to_minC_infl, and to_minC_min are implemented in

C++ and were compiled with g++ 7.5.0.

Experiment 1. In addition to the three algorithms described in Section 5.2, we

evaluate the following two base lines: random: the algorithm that chooses b non-edges

uniformly at random, and max_weight: the algorithm that chooses the b non-edges

of maximal weight. The results can be found in Figure 5.2 for the random and synthetic
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instances. We observe that, despite the pruning approach described above, grdy_al’s

running time is the worst. Furthermore, the fairness that it achieves is worse than the

one of to_minC_infl. We thus exclude grdy_al from further experiments. random

and max_weight are fastest but the fairness achieved by them is very poor.

In Figure 5.3, we can see the results for the real world instances Arenas, ca-GrQc and

email-Eu-core. We observe that the running times of both algorithms to_minC_infl

and to_minC_min are comparable, while to_minC_infl achieves better values of

fairness. We thus choose to_minC_infl as the best performing algorithm as a result

of this experiment.
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Figure 5.2: Results Experiment 1: (1) Random instances (k = 25, n = 200,
singleton communities), (2) synthetic instances (k = 25, n = 500, communities

induced by gender and region). The running time is on the logarithmic vertical axis,
while the minimum community coverage is on the horizontal axis.

Experiment 2. The goal of the second experiment is to analyze how many links we

need to add in order to make the standard greedy algorithm for IM satisfy similar or bet-

ter fairness guarantees than fairness-tailored algorithms. To this end, we compare our

method to_minC_infl with the following competitors: grdy_im, grdy_maximin,
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myopic, set_based, and moso. We refer to Subsections 3.3.3 and 3.4.1 in Chapter 3

for further details on the methods.

We note that the algorithms set_based and moso are designed to compute distribu-

tions over seed sets and nodes, respectively, and thus they can be used to obtain both

ex-ante and ex-post fairness guarantees. Hence, for these two algorithms we include

both there ex-post and ex-ante values in our evaluations. It is worth pointing out that

is much easier (especially in settings with many communities) to achieve good values

ex-ante rather than ex-post.

We show the results for the random and synthetic instances in Figure 5.4. Already for

small values of b, i.e., after adding just a few edges, our algorithm surpass all ex-post

fairness values of the competitors. Even better and maybe surprisingly, our algorithm

also achieves ex-post values higher than the ex-ante values of set_based and moso.

We exclude the algorithms grdy_maximin and moso from experiments with the real

world instance as they perform the worst in terms of running time. We turn to the

real world instances, see Figure 5.5, on which we evaluate our algorithm for three fixed

values of b = 10, 20, 50. We observe that by adding only 10 edges, the fairness values

obtained by our algorithm dominate over the ex-post fairness values achieved by the

competitors. We also observe that after adding only 50 edges, the fairness values of

our method are larger than (or comparable to) the ex-ante fairness values achieved by

set_based, on all instances.
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Figure 5.3: Results Experiment 1: (1) Arenas with BFS communities (m = 10),
k = 20, (2) ca-GrQc with BFS communities (m = 10), k = 20, (3) email-Eu-core with

real communities, k = 20. Again, the running time is on the logarithmic vertical
axis, while the minimum community coverage is on the horizontal axis.
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Figure 5.4: Results Experiment 2: (1) Random instances (k = 25, n = 200,
singleton communities), (2) synthetic instances (k = 25, n = 500, communities

induced by gender and region), minimum community coverage on the vertical, b on
the horizontal axis.
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Figure 5.5: Results Experiment 2: Real world graphs with BFS communities
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email-Eu-core and com-Youtube, k = 20, minimum community coverage on the
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Chapter 6

Conclusion and Future Work

In this thesis, we investigated different optimization problems under various notions of

group fairness. Under the maximin criterion, we studied the problem of determining

key seed nodes to maximize the minimum expected probability that communities are

reached, and designed approximation algorithms achieving a constant multiplicative

factor. Using other notions of fairness, e.g., equalized odds, demographic parity, and

predictive parity notion, we proposed several optimization problems that aim at maxi-

mizing the overall spread or spread over some specific users while satisfying fairness via

constraints (either ex-post or ex-ante). After studying the complexity of the proposed

optimization problems, for one of the probabilistic problems we designed an algorithm

with both constant approximation factor and fairness violation as well as heuristics for

the other one. We achieved our algorithmic result by using randomized strategies, thus

enlarging the solution set and enabling us to find fairer solutions ex-ante. Our detailed

experimental study confirms the increase in ex-ante fairness achieved over previous

methods, indicating that randomness as source of fairness in influence maximization is

very promissing to be further explored. We also observed that our probabilistic algo-

rithms give good results in terms of ex-post fairness values. We then studied optimiza-

tion problems with the goal to modify the network structure by adding links in such a

way that efficiency-oriented information spreading becomes automatically fair.

Several directions are conceivable as future work. Improving our approximation guar-

antees for the set-based problem or providing a matching approximation hardness result

seems a challenging direction of exploration. One possible way of showing the hard-

ness of approximation for the set-based problem can be that, one needs to design a

104
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rounding technique (like Pipage rounding in [1]) in order to compute a deterministic

solution S from a probabilistic strategy p. Tightening the result on the gap between the

node-based and set-based problem and solving the set-based problem using different

approaches, e.g., the row or column-generation approach, are another open questions.

A more interesting and challenging direction of work would be to design an approx-

imation algorithm for the pIMdp problem. Also improving the fairness violation or

achieving exact demographic parity for the iIMdp problem seems an interesting prob-

lem.

Moreover, studying the FIMAL and FIMg
AL problems under different intervention ac-

tions, e.g., increasing the weights of edges, is another research direction. We believe that

one can use similar approaches to what we did in Chapter 5 and give the NP-hardness

and hardness of approximation results for the problems.

We believe that the idea of using randomization to increase the fairness of solutions

for influence maximization may be used for other fairness criteria as, e.g., the group

rational criterion of Tsang et al. [71].

Lastly, studying the parameterized complexity of the proposed problems is actually an

interesting direction of work.
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