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Abstract

We consider the evolution of a gas of N bosons in the three-dimensional Gross-
Pitaevskii regime (in which particles are initially trapped in a volume of order one
and interact through a repulsive potential with scattering length of the order 1/N).
We construct a quasi-free approximation of the many-body dynamics, whose dis-
tance to the solution of the Schrödinger equation converges to zero, as N → ∞, in
the L2(R3N )-norm. To achieve this goal, we let the Bose-Einstein condensate evolve
according to a time-dependent Gross-Pitaevskii equation. After factoring out the
microscopic correlation structure, the evolution of the orthogonal excitations of the
condensate is governed instead by a Bogoliubov dynamics, with a time-dependent
generator quadratic in creation and annihilation operators. As an application, we
show a central limit theorem for fluctuations of bounded observables around their
expectation with respect to the Gross-Pitaevskii dynamics.

1 Introduction

In the Gross-Pitaevskii regime, we consider systems of N bosons confined by an external
field in a volume of order one (after appropriate choice of the length unit) and inter-
acting through a repulsive potential with small effective range of the order 1/N . The
corresponding Hamilton operator is given by

Htrap
N =

N∑

j=1

[
−∆xj + Vext(xj)

]
+

N∑

i<j

N2V (N(xi − xj)) (1.1)

with Vext(x) → ∞ as |x| → ∞ and V ≥ 0 compactly supported. According to bosonic
statistics, Htrap

N acts as a self-adjoint operator on L2
s(R

3N ), the subspace of L2(R3N )
consisting of wave functions that are symmetric with respect to permutations of the N
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particles. In [48, 53] it was proven that, to leading order in N , the ground state energy
Etrap
N of (1.1) satisfies

lim
N→∞

Etrap
N

N
= min

ϕ∈L2(R3):‖ϕ‖2=1
EGP(ϕ) (1.2)

with the Gross-Pitaevskii energy functional

EGP(ϕ) =

∫ [
|∇ϕ|2 + Vext|ϕ|2 + 4πa|ϕ|4

]
dx . (1.3)

Here a > 0 denotes the scattering length of the interaction potential V , which is defined
through the solution of the zero-energy scattering equation

[
−∆+

1

2
V

]
f = 0

with the boundary condition f(x) → 1, as |x| → ∞, by requiring that f(x) = 1 − a/|x|
outside the support of V .

Let ϕGP ∈ L2(R3) denote the (unique, up to a phase) normalized minimizer of
(1.3). It turns out that the ground state vector of (1.1) and, in fact, every sequence
of approximate ground states, exhibit complete Bose-Einstein condensation in the one-
particle state ϕGP. In other words, let us consider a normalized sequence ψN ∈ L2

s(R
3N )

satisfying
1

N
〈ψN ,Htrap

N ψN 〉 → EGP(ϕGP)

as N → ∞ (ie. ψN is a sequence of approximate ground states). Let γN denote the one-
particle reduced density matrix associated with ψN , which is defined as the non-negative
operator on L2(R3) with the integral kernel

γN (x; y) =

∫
dx2 . . . dxN ψN (x, x2, . . . , xN )ψN (y, x2, . . . , xN ) ,

normalized so that tr γN = 1. Then, as first proven in [46, 47, 53],

lim
N→∞

〈ϕGP, γNϕGP〉 = 1 . (1.4)

The convergence (1.4) implies that, in the states ψN , the fraction of particles orthogonal
to ϕGP vanishes, in the limit N → ∞.

Recently, the estimates (1.2), (1.4) have been improved in [52, 18, 54, 19] for inte-
grable interaction potentials, through a rigorous version of Bogoliubov theory. In the
translation invariant setting, these improvements have been previously achieved in [8, 9].
This approach determines the ground state energy Etrap

N of (1.1), up to errors vanish-
ing as N → ∞. Moreover, it gives precise information on the low-energy excitation
spectrum of (1.1) and on the depletion of the Bose-Einstein condensate (in particular,
it shows that the rate of convergence in (1.4) is proportional to 1/N) and it provides
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a norm-approximation for the ground state vector. It is interesting to remark that, in
the Gross-Pitaevskii regime, such precise estimates on the spectrum of the Hamiltonian
cannot be obtained restricting the attention on quasi-free states. Instead, it is impor-
tant to take into account corrections that can be described by the action of a unitary
operator on the Fock space of excitations of the condensate, given by the exponential
of a cubic expression in creation and annihilation operators. For related recent results
concerning equilibrium properties of Bose gases in the (translation invariant) Gross-
Pitaevskii regime, beyond the Gross-Pitaevskii regime and in the thermodynamic limit,
see [41, 1, 15, 3, 4, 40, 12, 21, 22, 31, 32, 5].

Gross-Pitaevskii theory is not only useful to predict the ground state energy of Bose
gases described by the Hamilton operator (1.1). It can also be used to approximate their
time-evolution. From the point of view of physics, it is relevant to study the dynamics
of an equilibrium state of (1.1), after the external fields are switched off (so that the
system is no longer at equilibrium). At (or very close to) zero temperature, it is therefore
interesting to study the solution of the time-dependent Schrödinger equation

i∂tψN,t = HNψN,t (1.5)

with the translation invariant Hamiltonian (obtained after turning off the trap)

HN =

N∑

j=1

−∆xj +

N∑

i<j

N2V (N(xi − xj)) (1.6)

for initial data ψN,0 approximating the ground state of (1.1). In [26, 27, 28, 29], it was
first proven that the time-evolution ψN,t of an initial data ψN,0 exhibiting Bose-Einstein
condensate in a one-particle state ϕ ∈ L2(R3) still exhibits Bose-Einstein condensation,
in a new one-particle state ϕt, given by the solution of the nonlinear time-dependent
Gross-Pitaevskii equation

i∂tϕt = −∆ϕt + 8πa|ϕt|2ϕt (1.7)

with the initial data ϕt=0 = ϕ. More precisely, denoting by γN,t the one-particle reduced
density associated with the solution ψN,t ∈ L2

s(R
3N ) of the Schrödinger equation (1.5),

it turns out that
lim
N→∞

〈ϕt, γN,tϕt〉 = 1 (1.8)

for any fixed t ∈ R, if (1.8) holds true at time t = 0. Analogous stability results have
been later established in [55, 7]. In [17], the convergence (1.8) is shown to hold with
the optimal rate 1/N , for every fixed t ∈ R. It is easy to check that (1.8) implies the
convergence γN,t → |ϕt〉〈ϕt| in the trace-class topology (and also the convergence of the
k-particle reduced density matrix associated with ψN,t towards the product |ϕt〉〈ϕt|⊗k,
for every fixed k ∈ N). However, (1.8) does not provide an approximation for the
many-body wave function ψN,t in the strong L2(R3N ) topology. To obtain a norm-
approximation, it is not enough to approximate the evolution of the condensate. It is
instead crucial to take into account the evolution of its orthogonal excitations.
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Norm-approximations for many-body dynamics have been derived in the mean-field
setting, where particles are initially trapped in a volume of order one and interact weakly
through a potential whose range is comparable with the size of the trap (so that every
particle interacts effectively with all other particles in the system). In this case, as
shown in [42, 35, 58, 38, 39, 24, 44], the solution of the many-body Schrödinger equation
can be approximated, after removing the condensate wave function (whose evolution is
described here by the nonlinear Hartree equation, see also [59, 30, 2, 33, 34]), by a unitary
dynamics on the Fock space of excitations, with a generator quadratic in creation and
annihilation operators, acting as a family of time-dependent Bogoliubov transformations
(an approximation to arbitrary precision has been recently obtained in [14]). A similar
norm-approximation has been derived in [10, 16] for the many-body evolution generated
by Hamilton operators having the form

Hβ
N =

N∑

j=1

−∆xj +
1

N

N∑

i<j

N3βV (Nβ(xi − xj)) (1.9)

with β ∈ (0; 1), interpolating between the mean-field and the Gross-Pitaevskii scaling
(analogous results have been also obtained in [36, 37, 50] for β < 1/3, and in [43, 51],
for β < 1/2; higher order estimates have been derived, for sufficiently small β > 0,
in [13]). To achieve this goal, it was important to combine the unitary dynamics with
quadratic generator, describing the evolution of excitations on macroscopic scales, with
an additional Bogoliubov transformation generating the correct microscopic correlation
structure.

In the present paper, we prove a norm-approximation for the many-body dynamics
generated by the Hamilton operator (1.6), in the Gross-Pitaevskii regime (ie. with β = 1
in (1.9)). Compared with the techniques developed in [10, 16] for β < 1, there is an
important difference in the construction of the approximating wave function. In fact, as
already observed in [8, 54, 19] in the time-independent setting, for β = 1 microscopic
correlations cannot be precisely modelled only through a Bogoliubov transformation;
they require instead an additional unitary conjugation with a phase cubic in creation
and annihilation operators. This makes our analysis significantly more involved. While
the inclusion of the cubic phase is crucial to compare the generators of the full many-
body evolution and of the quadratic dynamics (and thus to establish convergence for
the corresponding evolutions), at the end it does not substantially change the L2(R3N )-
norm of the approximation and it can therefore be removed, providing a quasi-free
norm-approximation to the many-body evolution, similar to those obtained in [10, 16]
for β ∈ (0; 1).

Acknowledgment. We gratefully acknowledge partial support from the Swiss National
Science Foundation through the Grant “Dynamical and energetic properties of Bose-
Einstein condensates”, from the European Research Council through the ERC-AdG
CLaQS and from the NCCR SwissMAP. C.C. warmly acknowledges the GNFM Gruppo
Nazionale per la Fisica Matematica - INDAM.
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2 Setting and Main Results

We aim at approximating the solution ψN,t of the many-body Schrödinger equation (1.5),
for a class of initial data exhibiting complete Bose-Einstein condensation in a normalized
one-particle wave function ϕ ∈ L2(R3). In view of (1.4), from the point of view of physics
it is interesting to choose ϕ as the minimizer of a Gross-Pitaevskii functional of the form
(1.3). Here, we will keep the choice of ϕ open, requiring only sufficient regularity.

First of all, we need to approximate the evolution of the condensate. While (1.7)
provides a good approximation at the level of reduced density matrices, to derive a
norm-approximation it is more convenient to consider a slightly modified, N -dependent,
nonlinear equation. In the modified equation, the interaction potential appearing in the
Hamilton operator (1.6) is corrected, to take into account correlations among particles.
In order to describe correlations, we fix ℓ ∈ (0; 1/2) and we consider the ground state
solution of the Neumann problem

[
−∆+

1

2
V

]
fℓ = λℓfℓ (2.1)

on the ball |x| ≤ Nℓ (we omit here the N -dependence in the notation for fℓ and for
λℓ; notice that λℓ scales as N−3), with the normalization fℓ(x) = 1 for |x| = Nℓ. We
extend fℓ to R

3, setting fℓ(x) = 1 for all |x| > Nℓ and we also introduce the notation
wℓ(x) = 1−fℓ(x). To describe correlations created by the rescaled interaction appearing
in (1.1) and in (1.6), we will use the functions fN,ℓ(x) = fℓ(Nx), wN,ℓ(x) = wℓ(Nx) =
1− fN,ℓ(x). By scaling, we observe that

[
−∆+

N2

2
V (N ·)

]
fN,ℓ = N2λℓfN,ℓ (2.2)

on the ball |x| ≤ ℓ. Some important properties of λℓ, fℓ, wℓ are collected in Lemma A.1
in Appendix A.

With fN,ℓ, we can now define the condensate wave function at time t ∈ R as the
solution ϕ̃t of the modified Gross-Pitaevskii equation

i∂tϕ̃t = −∆ϕ̃t + (N3V (N ·)fℓ(N ·) ∗ |ϕ̃t|2)ϕ̃t , (2.3)

with initial data ϕ̃t=0 = ϕ. As discussed in Lemma A.1, we have

∣∣∣∣
∫
N3V (Nx)fℓ(Nx)dx− 8πa

∣∣∣∣ =
∣∣∣∣
∫
V (x)fℓ(x)dx− 8πa

∣∣∣∣ ≤
Ca2

ℓN
.

It is therefore easy to check that, as N → ∞, ϕ̃t converges to the solution of the limiting
Gross-Pitaevskii equation (1.7) (with the same initial data). This convergence is part
of the statement of Prop. A.2, in Appendix A, where we also collect some standard
properties of the solutions of (1.7) and of (2.3) which will be used throughout the paper.

As explained in the introduction, to obtain a norm-approximation for the time-
evolution it is not enough to approximate the evolution of the condensate; we also need
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to take into account its excitations. To this end, it is convenient to factor out the (time-
dependent) condensate wave function introducing, for every t ∈ R, the unitary map
UN,t : L

2
s(R

3N ) → F≤N
⊥ϕ̃t

into the Fock space of excitations

F≤N
⊥ϕ̃t

=
N⊕

n=0

L2
⊥ϕ̃t

(R3)⊗sn

over the orthogonal complement L2
⊥ϕ̃t

(R3) of ϕ̃t. The map UN,t is defined so that

UN,tψN,t = {α(0)
N,t, . . . , α

(N)
N,t }, corresponding to the unique decomposition

ψN,t =
N∑

n=0

α
(n)
N,t ⊗s ϕ̃

⊗(N−n)
t ,

where α
(n)
N,t ∈ L2

⊥ϕ̃t
(R3)⊗sn is symmetric with respect to permutation and orthogonal

to ϕ̃t in each coordinate. Denoting by a(f), a∗(g) the usual creation and annihilation
operators, the action of UN,t is characterized (see [45, 17]) by the rules

UN,t a
∗(ϕ̃t)a(ϕ̃t)U

∗
N,t = N −N

UN,t a
∗(f)a(ϕ̃t)U

∗
N,t = a∗(f)

√
N −N =:

√
Nb(f)∗

UN,t a
∗(ϕ̃t)a(g)U

∗
N,t =

√
N −N a(g) =:

√
Nb(g)

UN,t a
∗(f)a(g)U∗

N,t = a∗(f)a(g) ,

(2.4)

where N =
∫
a∗xax dx is the number of particles operator, and b∗(f), b(g) are modified

creation and annihilation operators satisfying the commutation relations

[b(f), b∗(g)] =
(
1− N

N

)
〈f, g〉 − 1

N
a∗(f)a(g), [b(f), b(g)] = [b∗(f), b∗(g)] = 0 , (2.5)

for all f, g ∈ L2
⊥ϕ̃t

(R3). Denoting by bx, b
∗
x, ax, a

∗
x the corresponding operator valued

distributions, we also find

[bx, b
∗
y] = δ(x− y)

(
1− N

N

)
− 1

N
a∗yax,

[bx, a
∗
yaz] = δ(x− y)bz, [b∗x, a

∗
yaz] = −δ(y − z)b∗x ,

(2.6)

for all x, y, z ∈ R
3.

After factoring out the condensate with the unitary operator UN,t, we need to ap-

proximate the evolution of its orthogonal excitations in F≤N
⊥ϕ̃t

. Here, we need to distin-
guish between microscopic excitations, varying on small length scales between 1/N and
ℓ (which is chosen of order one) and macroscopic excitations, varying on scales of order
one. Let us first worry about the microscopic excitations, characterising all low-energy
states. It is natural to include them on the initial data and to propagate them along the
time-evolution. These excitations only depend on time through the time-dependence of
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the condensate wave function ϕ̃t. We are going to describe them through a (generalized)
Bogoliubov transformation.

We define the integral kernel

kt(x, y) = −Nwℓ(N(x− y))ϕ̃t(x)ϕ̃t(y) . (2.7)

With Lemma A.1, we find kt ∈ L2(R3×R
3) (with bounded norm, uniform in N). Hence,

kt defines a Hilbert-Schmidt operator on L2(R3), which we will again denote by kt. To
obtain a Bogoliubov transformation acting on the Hilbert space F≤N

⊥ϕ̃t
, defined on the

orthogonal complement of the condensate wave function ϕ̃t, we set q̃t = 1− |ϕ̃t〉〈ϕ̃t| and

ηt = (q̃t ⊗ q̃t)kt . (2.8)

We also denote µt = ηt − kt. With ηt, we define the antisymmetric operator

Bt =
1

2

∫ [
ηt(x; y)b

∗
xb

∗
y − ηt(x; y)bxby

]
dxdy (2.9)

and we consider the unitary operator eBt on F≤N
⊥ϕ̃t

. An important consequence of the

bound ‖ηt‖2 ≤ ‖kt‖2 ≤ C, uniformly in N ∈ N and t ∈ R, is the fact that eBt does not
substantially change the number of excitations. The proof of the following lemma can
be found, for example, in [17, Lemma 3.1].

Lemma 2.1. Let Bt be the anti-symmetric operator defined in (2.9). Then for every
n ∈ Z there exists a constant C > 0 (that depends only on ‖ηt‖) such that

e−Bt(N + 1)neBt ≤ C(N + 1)n

as an operator inequality on F≤N .

On states with few excitations (on which the commutation relations (2.5) are almost
canonical), eBt approximately acts as a Bogoliubov transformation. In fact, we can write

eBtb(f)e−Bt = b(γt(f)) + b∗(σt(f̄)) + dt(f) (2.10)

where we introduced the notation

γt = cosh(ηt) =
∞∑

j=0

(ηtη̄t)
j

(2j)!
; σt = sinh(ηt) =

∞∑

j=0

(ηtη̄t)
jηt

(2j + 1)!
(2.11)

and where, from [9, Lemma 3.4], we have the bounds (denoting with dx, d
∗
x the operator
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valued distributions associated with the operators d, d∗)

‖(N + 1)kd♯t(f)ξ‖ ≤ C

N
‖f‖‖(N + 1)k+3/2ξ‖

‖(N + 1)n/2aydxξ‖ ≤ C

N

[
(‖ηt(x; ·)‖2‖ηt(·; y)‖2 + |ηt(x; y)|)‖(N + 1)(n+2)/2ξ‖

+ ‖ηt(·; y)‖2‖ax(N + 1)(n+1)/2ξ‖
+ ‖ηt(x; ·)‖2‖ay(N + 1)(n+3)/2ξ‖+ ‖axay(N + 1)(n+2)/2ξ‖

]

‖(N + 1)n/2dxdyξ‖ ≤ C

N2

[
(‖ηt(x; ·)‖2‖ηt(·; y)‖2 + |ηt(x; y)|)‖(N + 1)(n+4)/2ξ‖

+ ‖ηt(·; y)‖2‖ax(N + 1)(n+5)/2ξ‖
+ ‖ηt(x; ·)‖2‖ay(N + 1)(n+5)/2ξ‖+ ‖axay(N + 1)(n+4)/2ξ‖

]
,

(2.12)

for ♯ = ∗, ·, for all f ∈ L2(R3), x, y ∈ R
3 and n ∈ Z. Some bounds on the operators

ηt, µt, γt, σt are collected in Lemma A.3, in Appendix A.
We are interested in the time-evolution of initial data having the form

ψN = U∗
N,0e

B0ξN , (2.13)

under appropriate conditions on the excitation vector ξN ∈ F≤N
⊥ϕ (we will make assump-

tions on moments of number of particles and kinetic energy operators, in the state ξN ).
This allows us to consider initial data which are expected to describe the ground state
vector of trapped Hamiltonian like (1.1) (see the Remark after Theorem 2.2 for more
details).

We consider the many-body evolution ψN,t = e−iHN tψN of (2.13), generated by the
translation invariant Hamilton operator (1.6). At time t 6= 0, we expect ψN,t to have
again approximately the form (2.13), but now with ϕ replaced by the solution ϕ̃t of
(2.3). For this reason, we introduce the excitation vector ξN,t ∈ F≤N

⊥ϕ̃t
requiring that

e−iHN tψN = U∗
N,te

BtξN,t .

In other words, ξN,t = ŪN (t; 0)ξN , with the fluctuation dynamics

ŪN (t; s) = e−BtUN,te
−iHN (t−s)U∗

N,se
Bs . (2.14)

While eBt takes care of the microscopic excitations of the condensate, to derive
a norm approximation for e−iHN tψN we still need to take into account the evolution
of the macroscopic excitations. To reach this goal, we introduce a unitary dynamics
U2,N (t; 0), whose generator is quadratic in creation and annihilation operators (a time-
dependent Bogoliubov transformation), approximating the fluctuation dynamics ŪN (t; 0)
and providing therefore an approximation of ξN,t = ŪN (t; 0)ξN . To this end, let us
introduce the “projected” modified creation and annihilation operators

b̃∗x = b∗(q̃x) = b∗x − ϕ̃t(x)b
∗(ϕ̃t), b̃x = b(q̃x) = bx − ϕ̃t(x)b(ϕ̃t) (2.15)
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where qx(y) = qt(y, x) = δ(x−y)−ϕ̃t(x)ϕ̃t(y) is the kernel of the projection orthogonal to
the condensate wave function. Then, we define the time-dependent self-adjoint operator

J2,N(t) =JK
2,N (t) + J V

2,N (t)

+N3λℓ

∫
dxdy χℓ(x− y)ϕ̃t(x)ϕ̃t(y)b̃

∗
xb̃

∗
y + h.c.

+
1

2

∫
dxdy NwN,ℓ(x− y)[∆ϕ̃t(x)ϕ̃t(y) + ϕ̃t(x)∆ϕ̃t(y)]b̃

∗
xb̃

∗
y + h.c.

+

∫
dxdy N∇wN,ℓ(x− y)[∇ϕ̃t(x)ϕ̃t(y)− ϕ̃t(x)∇ϕ̃t(y)]b̃∗xb̃∗y + h.c.

−
∫ 1

0
ds

∫
dxdy η̇t(x, y)

[
b̃∗(γ(s)x )b̃∗(γ(s)y ) + b̃∗(γ(s)x )b̃(σ(s)y )

+ b̃(σ(s)x )b̃(σ(s)y ) + b̃∗(γ(s)y )b̃(σ(s)x )
]
+ h.c.

+

∫
dxN3(VNfN,ℓ) ∗ |ϕ̃t|2(x)(a∗xax − b̃∗xb̃x)

=: K +

∫
dxN3(VNfN,ℓ) ∗ |ϕ̃t|2(x)a∗xax

+

∫
dxdy

(
Gt(x, y)b̃

∗
xb̃y +Ht(x, y)b̃

∗
xb̃

∗
y +Ht(x, y)b̃xb̃y

)
,

(2.16)

where

JK
2,N (t) =K +

∫
dx

[
b̃∗(−∆xpx)b̃x +

1

2
b̃∗(∇xpx)b̃(∇xpx) + b̃∗xb̃

∗
(−∆xµx)

+ b̃∗(−∆xpx)b̃
∗(ηx) + b̃∗(px)b̃

∗(−∆xrx) + b̃∗xb̃
∗(−∆xrx)

+
1

2
b̃∗(∇xηx)b̃(∇xηx) + b̃∗(ηx)b̃(−∆xrx) +

1

2
b̃∗(∇xrx)b̃(∇xrx) + h.c.

]
(2.17)

and

J V
2,N(t) =

1

2

∫
dxdy N3(VNfN,ℓ)(x− y)ϕ̃t(x)ϕ̃t(y)

[
b̃∗(px)b̃

∗
y + b̃∗(γx)b̃

∗(py)
]
+ h.c.

+
1

2

∫
dxdy N3(VNfN,ℓ)(x− y)ϕ̃t(x)ϕ̃t(y)

[
b̃∗(γy)b̃(σx)

+ b̃∗(γx)b̃(σy) + b̃(σx)b̃(σy)
]
+ h.c.

+

∫
dx (N3(VNfN,ℓ) ∗ |ϕ̃t|2)(x)

(
b̃∗(γx)b̃(γx) + b̃(σx)b̃(γx)

+ b̃∗(γx)b̃
∗(σx) + b̃∗(σx)b̃(σx)

)

+

∫
dxdy N3(VNfN,ℓ)(x− y)ϕ̃t(x)ϕ̃t(y)

(
b̃∗(γx)b̃(γy) + b̃(σx)b̃(γy)

+ b̃∗(γx)b̃
∗(σy) + b̃∗(σy)b̃(σx)

)
.

(2.18)

Here we used the kernels ηt, µt, γt, σt introduced in (2.8), (2.11) and, additionally, we

defined pt = γt − 1 and rt = σt − ηt. Moreover, for s ∈ [0; 1], γ
(s)
t and σ

(s)
t are defined as
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γt, σt, but with ηt replaced by sηt. Furthermore, we used the notation fx(y) = ft(y, x)
for kernels of operators acting on L2(R3) (here we drop the label t, to keep the notation
as light as possible). Also, we set VN (x) = V (Nx) and we used the notation

K =

∫
dx∇xa

∗
x∇xax

for the kinetic energy operator. The self-adjoint operator J2,N (t) generates a two-
parameter family of unitary transformations U2,N , satisfying the equation

i∂t U2,N (t; s) = J2,N (t)U2,N (t; s) (2.19)

with U2,N (s; s) = 1 for all s ∈ R (the well-posedness of (2.19) is part of the statement of
the next theorem; it will be established in Prop. 4.3).

In our first main theorem, we show that the Bogoliubov dynamics U2,N can be used
to describe the evolution of macroscopic excitations of the condensate, providing a norm-
approximation for the solution of the many-body Schrödinger equation.

Theorem 2.2. Let V ∈ L3(R3) be non-negative, spherically symmetric and compactly
supported. Let ϕ ∈ H6(R3). Let ηt be defined as in (2.8), with parameter ℓ > 0 small
enough. Then (2.19) defines a unique 2-parameter strongly continuous unitary group
U2,N , with U2,N (t; s) : F≤N

⊥ϕ̃s
→ F≤N

⊥ϕ̃t
. Moreover, let Bt be defined as in (2.9) and

κN (t) =
N

2
〈ϕ̃t, [N3VN (1− 2fN,ℓ) ∗ |ϕ̃t|2]ϕ̃t〉 −

1

2
〈ϕ̃t, (N3VNfN,ℓ ∗ |ϕ̃2

t |)ϕ̃t〉

+
1

2

∫
dxdyN2VN (x− y)|〈γy, σx〉|2

+

∫
dx (N3VNfN,ℓ ∗ |ϕ̃t|2)(x)〈σx, σx〉

+

∫
dxdy N3VNfN,ℓ(x− y)ϕ̃t(x)ϕ̃t(y)〈σx, σy〉

+
1

2

∫
dxdy N3VN (x− y)ϕ̃t(x)ϕ̃t(y)

〈
σx, γy〉+ h.c. + ‖∇1σt‖2

−
∫ 1

0
ds

∫
dxdy η̇t(x, y)〈σ(s)x , γ(s)y 〉 + h.c.

(2.20)

Consider a sequence of normalized initial data ψN ∈ L2(R3)⊗sN , with excitation vectors

ξN = e−B0UN,0ψN (2.21)

satisfying
〈ξN , (K2 +N 6) ξN 〉 ≤ C , (2.22)

uniformly in N ∈ N. Then there exist constants C, c > 0 such that

‖e−iHN tψN − e−i
∫ t

0
κN (s)dsU∗

N,te
BtU2,N (t)ξN‖ ≤ Cece

c|t|
N−1/8 (2.23)

for any t ∈ R, and N ∈ N large enough.
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Remark. From (2.21), we have ψN = U∗
N,0e

B0ξN . Thus, (2.23) is equivalent to

‖ŪN (t; 0)ξN − e−i
∫ t

0
κN (s)ds U2,N (t; 0)ξN‖ ≤ Cece

c|t|
N−1/8 (2.24)

with the fluctuation dynamics (2.14). In other words, the proof of Theorem 2.2 reduces
to the comparison of the evolution ŪN with its quadratic approximation U2,N .

Remark. Observe that the choice ξN = eBΩ, with

B =
1

2

∫ [
τ(x; y)b∗xb

∗
y − τ(x; y)bxby

]
dxdy

and with a kernel τ ∈ (q0×q0)H2(R3×R
3) (with q0 = 1−|ϕ〉〈ϕ| projecting orthogonally

to the condensate wave function) is compatible with the condition (2.22). This allows
us to consider initial many-body wave functions of the form ψN = U∗

N,0e
B0eBΩ which

are expected to approximate (in the L2(R3N ) norm which is preserved over time) the
ground state vector of Hamilton operators of the form (1.1), describing trapped Bose
gases in the Gross-Pitaevskii regime. This fact has been proven in [8] in the translation
invariant setting, for a gas confined on the unit torus. Notice that, in [8, Eq. (6.7)],
the norm-approximation of the ground state vector includes also the unitary operator
eA, with A cubic in creation and annihilation operators; in fact, this cubic phase can be
removed, at the expense of another error of order smaller than N−1/4 (arguing similarly
as we do below, in the proof of Theorem 2.2, to show (4.13)). If the trapping potential is
sufficiently smooth, it is also easy to verify the condition ϕ ∈ H6(R3), with ϕ minimizing
the functional (1.3).

Remark. The double exponential in time on the r.h.s. of (2.23) is due to the fact
that we use estimates on high Sobolev norms for the solution of the modified Gross-
Pitaevskii equation (2.3) and we apply a Gronwall argument for the propagation of
many-body bounds. Assuming scattering for the solution of (2.3), the dependence on t
could be substantially improved.

Remark. Theorem 2.2 confirms a conjecture formulated in [37, Sect. 10], for a
different class of initial data (through the assumption (2.22), we impose a correlation
structure on the initial wave function, generated by eB0 , which is absent from the initial
data discussed in [37]; it is not clear to us whether a norm approximation similar to
(2.23) with an explicit rate can be obtained for “flat” data).

In (2.23), after factoring out the evolving Bose-Einstein condensate and the micro-
scopic correlation structure, we approximate the evolution of the macroscopic correla-
tions by the Bogoliubov dynamics U2,N (t), which still depends on N . It is thus natural to
ask whether U2,N (t) approaches a limiting, N -independent, quadratic evolution U2,∞(t),
as N tends to infinity. To answer this question, we start by defining the pointwise limit
of NwN,ℓ(x), setting

w∞,ℓ(x) =

{
a

[
1
|x| − 3

2ℓ +
x2

2ℓ3

]
|x| ≤ ℓ

0 otherwise
, (2.25)
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and the corresponding limiting integral kernel kt,∞ ∈ L2(R3 × R
3) by

kt,∞(x; y) = −w∞,ℓ(x− y)ϕt(x)ϕt(y) , (2.26)

where ϕt is the solution to the limiting (N -independent) Gross-Pitaevskii equation (1.7).
Similarly to (2.8), we define ηt,∞ = (qt ⊗ qt)kt,∞, projecting along qt = 1 − |ϕt〉〈ϕt|,
orthogonally to ϕt and µt,∞ = ηt,∞ − kt,∞. We also introduce the notation

γt,∞ = cosh(ηt,∞) = 1 + pt,∞ and σt,∞ = sinh(ηt,∞) = ηt,∞ + rt,∞. (2.27)

With this notation, we can introduce the generator of the limiting quadratic evolution,
setting

J2,∞(t) =JK
2,∞(t) + J V

2,∞(t)

+
3a

ℓ3

∫
dxdy χℓ(x− y)ϕt(x)ϕt(y)â

∗
xâ

∗
y + h.c.

+
1

2

∫
dxdy w∞,ℓ(x− y)[∆ϕt(x)ϕt(y) + ϕt(x)∆ϕt(y)]â

∗
xâ

∗
y + h.c.

+

∫
dxdy∇w∞,ℓ(x− y)[∇ϕt(x)ϕt(y)− ϕt(x)∇ϕt(y)]â∗xâ∗y + h.c.

−
∫ 1

0
ds

∫
dxdy η̇t,∞(x, y)

[
â∗(γ(s)∞,x)â

∗(γ(s)∞,y) + â∗(γ(s)∞,x)â(σ
(s)
∞,y)

+ â(σ(s)∞,x)â(σ
(s)
∞,y) + â∗(γ(s)∞,y)â(σ

(s)
∞,x)

]
+ h.c.

+ 8πa

∫
dx|ϕt(x)|2(a∗xax − â∗xâx)

=: K + 8πa

∫
dx|ϕt(x)|2a∗xax

+

∫
dxdy

(
Gt,∞(x, y)â∗xây +Ht,∞(x, y)â∗xâ

∗
y +Ht,∞(x, y)âxây

)

(2.28)

where â, â∗ denote annihilation and creation operators, projected on F⊥ϕt
and where

JK
2,∞(t) =K +

∫
dx

[
â∗(−∆xp∞,x)âx +

1

2
â∗(∇xp∞,x)â(∇xp∞,x) + â∗xâ

∗(−∆xµ∞,x)

+ â∗(−∆xp∞,x)â
∗(η∞,x) + â∗(p∞,x)â

∗(−∆xr∞,x) + â∗xâ
∗(−∆xr∞,x)

+
1

2
â∗(∇xη∞,x)â(∇xη∞,x) + â∗(η∞,x)â(−∆xr∞,x) +

1

2
â∗(∇xr∞,x)â(∇xr∞,x) + h.c.

]

and

J V
2,∞(t) = 4πa

∫
dxϕt(x)

2
[
â∗(p∞,x)â

∗
x + â∗(γ∞,x)â

∗(py)
]
+ h.c.

+ 4πa

∫
dxϕt(x)

2
[
2â∗(γ∞,x)â(σ∞,x) + â(σ∞,x)â(σ∞,x)

]
+ h.c.

+ 16πa

∫
dx |ϕt|2(x)

(
â∗(γ∞,x)â(γ∞,x) + â(σ∞,x)â(γ∞,x)

+ â∗(γ∞,x)â
∗(σ∞,x) + â∗(σ∞,x)â(σ∞,x)

)
.

(2.29)
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Here γ
(s)
t,∞, σ

(s)
t,∞ are defined like γt,∞, σt,∞, but with ηt,∞ replaced by sη∞,t. The two-

parameter unitary evolution generated by J2,∞(t) is denoted by U2,∞(t; s). It satisfies
the Schrödinger equation

i∂tU2,∞(t, s) = J2,∞(t)U2,∞(t, s) , (2.30)

with initial condition U2,∞(s, s) = 1 for all s ∈ R (the well-posedness of (2.30) is part of
the statement of next theorem). Notice that U2,∞(t; s) maps the Fock space F⊥ϕs

into
F⊥ϕt

; here, there is no truncation on the number of particles.

Theorem 2.3. Let V ∈ L3(R3) be non-negative, spherically symmetric and compactly
supported. Let ϕ ∈ H6(R3) and ηt,∞ be defined as after (2.26). Then, there is a unique
two-parameter strongly continuous unitary group U2,∞ satisfying (2.30), with U2,∞(t; s) :

F⊥ϕs
→ F⊥ϕt

. For normalized ξ ∈ F≤N
⊥ϕ satisfying

〈ξ, (K2 +N 2) ξ〉 <∞ , (2.31)

we find C, c > 0 (only depending on the expectation (2.31)) such that

‖U2,N (t; 0)ξ − U2,∞(t; 0)ξ‖ ≤ Cece
c|t|
N−1/4 (2.32)

for any t ∈ R, and N ∈ N large enough. In (2.32), both U2,N (t; 0)ξ and U2,∞(t; 0)ξ are
thought of as vectors in the full Fock space F , and ‖.‖ denotes the norm in this space.

Remark. Since here we compare two quadratic evolutions, the condition (2.31) is
milder than the corresponding assumption (2.22) in Theorem 2.2, where we compare the
full many-body dynamics with a quadratic approximation.

Because its generator is quadratic in creation and annihilation operators, the evo-
lution U2,∞ acts as time-dependent Bogoliubov transformations. Thus, its action on
annihilation and creation operators can be calculated explicitly.

Proposition 2.4. Under the same assumptions as in Theorem 2.2, let U2,∞ be the
limiting quadratic evolution defined in Eq. (2.30). For every t, s ∈ R there exists a
bounded linear map

Θ(t; s) : L2(R3)⊕ L2(R3) → L2(R3)⊕ L2(R3)

such that
U∗
2,∞(t; s)A(f, g)U2,∞(t; s) = A(Θ(t; s) (f, g))

for all f, g ∈ L2(R3). Here, A(f, g) = a(f) + a∗(g). The map Θ(t; s) satisfies

Θ(t; s)J = JΘ(t; s), S = Θ(t; s)∗SΘ(t; s),

where J =

(
0 J
J 0

)
with J denoting complex conjugation on L2(R3) and S =

(
1 0
0 −1

)
.

It can be written as

Θ(t; s) =

(
U(t, s) JV (t, s)J
V (t, s) JU(t, s)J

)
(2.33)
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for bounded linear maps U(t, s), V (t, s) : L2(R3) → L2(R3) satisfying

U∗(t, s)U(t, s)− V ∗(t, s)V (t, s) = 1, U∗(t, s)JV (t, s)J = V ∗(t, s)JU(t, s)J .

Remark. Differentiating the action of U2,∞ on A(f, g) yields the differential equation
−i∂tΘ(t, s) = Θ(t, s)A(t) with

A(t) =

(
−∆+ 8πa|ϕt|2 + qtGt,∞qt −J(2qtHt,∞qt)J

2qtHt,∞qt −J(−∆+ 8πa|ϕt|2 + qtGt,∞qt)J

)

This can be compared with [6, Eq. (2.22)], in the mean-field setting.
The proof follows from [6, Theorem 2.2] and [56, Prop.1.3]; using the notation intro-

duced in the last two lines of (2.28), the bounds ‖Gt,∞‖op , ‖Ht,∞‖2 < ∞, which are
assumed in [56] follow from the analysis in the proof of Prop. 5.2.

Using the approximation in terms of the Bogoliubov dynamics U2,∞, we can establish
a central limit theorem for the evolution of initial data approximating ground states of
the trapped Hamiltonian (1.1). Similar results have been obtained for the evolution
generated by the Hamilton operator (1.9) in [6, 20] (if β = 0) and in [56] (for 0 < β < 1).
In the time-independent setting, an analogous central limit theorem has been established
in [57], in the Gross-Pitaevskii regime.

Theorem 2.5. Under the same assumptions as in Theorem 2.2, consider initial wave
functions having the form

ψN = U∗
N,0e

B0eBΩ,

where B0 is defined as in (2.9), and

B =
1

2

∫ [
τ(x, y)b∗xb

∗
y − τ̄(x; y)bxby

]
dxdy (2.34)

with kernel τ ∈ (q0 ⊗ q0)H
2(R3 × R

3) (where q0 = 1 − |ϕ〉〈ϕ| projects orthogonally to
the condensate wave function ϕ used in U∗

N,0). For a bounded operator O on L2(R3) we
define

ON,t =
1√
N

N∑

j=1

(
O(j) − 〈ϕt, Oϕt〉

)
(2.35)

where O(j) = 1⊗ · · · ⊗O⊗ · · · ⊗ 1 is the operator O acting only on the j-th particle. We
set, with U, V indicating the linear maps introduced in (2.33),

h∞,t = cosh(ηt,∞)qϕtOϕt + sinh(ηt,∞)qϕtOϕt

nt = U(t, 0)h∞,t + V (t, 0)h∞,t

ft = cosh(τ)nt + sinh(τ)nt

Then there exists c > 0 and, for all −∞ < a < b < ∞, C > 0 such that, in the state
ψN,t = e−iHN tψN ,

|PψN,t
(ON,t ∈ [a, b]) − P(Gt ∈ [a, b])| ≤ Cece

c|t|
N−1/16 (2.36)

for all N large enough. Here Gt is a centered Gaussian with variance ‖ft‖2.
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Remark. The bound (2.36) follows through standard arguments (see [20, Proof of
Corollary 1.2]) from an estimate of the form

∣∣∣EψN,t
g(ON,t)−

1√
2π‖ft‖

∫
dx g(x)e

− x2

2‖ft‖
2

∣∣∣

≤ Cece
c|t|

∫
|ĝ(s)|(N−1/8 +N−1/2|s|3‖O‖3 +N−1|s|4‖O‖4)ds

(2.37)

for the expectation of the random variable g(ON,t), valid for any g ∈ L1(R), with
(1 + s4)ĝ(s) ∈ L1(R). The proof of (2.37), which is based on the approximation (2.23)
of the many body evolution, is given in Section 6. Similarly to [20, 56, 57], we could
also extend (2.37) to a multivariate central limit theorem, proving that expectations of
products of observables of the form (2.35) approach a Gaussian limit, as N → ∞.

3 Fluctuation Dynamics

While the wave function e−i
∫ t

0
κN (s)dsU∗

N,te
BtU2,N (t)ξN appearing in (2.23) provides a

good norm-approximation for the full evolution e−iHN tψN = e−iHN tU∗
N,0e

B0ξN , the dif-
ference of their energy does not converge to zero, as N → ∞. For this reason, it seems
difficult to show (2.23) directly. To circumvent this problem, we introduce an alternative
approximation for the many-body evolution, this time having the correct energy. At the
end, we will show that the two approximations are close in norm.

To define the new approximation of the many-body evolution, we will use a cubic
phase. First, we define, as in [54], a cutoff Θ: N → R in the number of particles, setting

Θ(n) =





1 n ≤ M
2 + 10

1
2

(
4n−3M
40−M + 1

)
M
2 + 10 ≤ n ≤M − 10

0 n ≥M − 10

for M = N ε ≥ 50 where ε < 1. Throughout this paper we always assume that N is
sufficiently large so that this last condition holds true. Next we define the kernel

νt(x, y) = −Nwm(N(x− y))ϕ̃t(y) (3.1)

with m = N−α and we introduce the antisymmetric operator

At =
Θ(N )√
N

∫
νt(x, y)b̃

∗
xb̃

∗
y[b̃(γx) + b̃∗(σx)]dxdy − h.c. (3.2)

where we recall the definition (2.15) of the projected operators b̃x = b(q̃x) = bx −
ϕ̃t(x)b(ϕ̃t). Notice that, in contrast with the quadratic kernel (2.7), we cut off (3.1) on
a length scale m = N−α, vanishing as N → ∞. This makes sure that, as discussed in
Lemma A.5, ‖ν‖2 ≤ C

√
m ≤ CN−1/4 is small and therefore it allows us to compute the
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action of the phase eAt , which will be used in combination with the generalized Bogoli-
ubov transformation eBt to generate the microscopic correlation structure, expanding the
exponential to first and second order (all higher order contributions will be negligible).
In the following, we will choose α = ε = 1/2.

An important observation is that conjugation with eAt does not substantially change
the number of excitations and their energy. The proof of the next lemma is deferred to
Section 7.

Lemma 3.1. Let At be the anti-symmetric operator defined in (3.2). For every k ∈ N

there exists a constant C > 0 such that

e−At(N + 1)keAt ≤ Cec|t|(N + 1)k . (3.3)

Let HN = K + VN , with

K =

∫
∇xa

∗
x∇xax, VN =

1

2

∫
N2V (N(x− y))a∗xa

∗
yaxay (3.4)

Then, for every k ∈ N, there is C > 0 such that

e−At(HN +N + 1)(N + 1)keAt ≤ Cec|t|(HN +N + 1)(N + 1)k (3.5)

holds true as an operator inequality on F≤N
⊥ϕ̃t

.

Remark. In (3.5) it is crucial that the exponent k is the same on both sides of the
inequality. In fact, this is the reason for the introduction of the cutoff Θ(N ) in (3.2).
For cubic phases without cutoff, as the one used in the time-independent setting in [19],
an estimate similar to (3.5) holds true, but only with an additional term (N + 1)k+2 on
the r.h.s. of the equation; see [19, Lemma 5.8].

With the cubic phase, we define a new fluctuation dynamics UN , setting

UN (t; s) = e−AtŪN (t; s)eAs = e−Ate−BtUN,te
−iHN (t−s)U∗

N,se
BseAs . (3.6)

To prove Theorem 2.2, we will first show that the difference between ŪN (t; 0)ξN and
UN (t; 0)ξN is small in norm, in the limit N → ∞. Afterwards, we will prove (2.24), but
with ŪN replaced by UN . To this end, we will need some properties of the cubically
renormalized fluctuation dynamics UN , which we establish in the rest of this section.

First of all, we need to control the growth of the number of particles and of the energy
along the evolution UN . The proof of the next proposition is based on the estimates in
[17, Prop. 6.1] for the dynamics ŪN .

Proposition 3.2. Under the same assumptions as in Theorem 2.2, let UN be defined as
in (3.6). Then there exists C, c > 0 such that

〈UN (t; 0)ξ, (HN +N )UN (t; 0)ξ〉 ≤ C exp(c exp(c|t|))〈ξ, (HN +N + 1)ξ〉 ,

for all ξ ∈ F≤N
⊥ϕ and all t ∈ R.
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Proof. From Lemma 3.1 (with k = 0), we find

〈UN (t; 0)ξ, (HN +N )UN (t; 0)ξ〉 = 〈ŪN (t; 0)eA0ξ, eAt(HN +N ) e−AtŪN (t; 0)eA0ξ〉
≤ Cec|t|〈ŪN (t; 0)eA0ξ, (HN +N + 1) ŪN (t; 0)eA0ξ〉 .

From [17, Prop. 6.1 and following remark] and applying again Lemma 3.1, we conclude

〈UN (t; 0)ξ, (HN +N )UN (t; 0)ξ〉 ≤ Cec|t|〈eA0ξ, (HN +N + 1)eA0ξ〉
≤ Cec|t|〈ξ, (HN +N + 1)ξ〉 .

While controlling the growth of the expectation of N ,HN with respect to the fluctu-
ation dynamics UN is enough to establish convergence of the reduced density, to obtain
a norm approximation for the dynamics UN we need more precise information on its
generator. To this end, we remark that (3.6) satisfies the Schrödinger type equation

i∂t UN (t; s) = JN (t)UN (t; s)

with the time-dependent generator JN (t) given by

JN (t) = [i∂te
−At ]eAt + e−At

[
(i∂te

−Bt)eBt + e−Bt
[
(i∂tUN,t)U

∗
N,t + UN,tHNU

∗
N,t

]
eBt

]
eAt .

(3.7)

In the next proposition, we compute JN(t) up to errors vanishing in the limit N → ∞.
The proof of this proposition is deferred to Section 8.

Proposition 3.3. Under the same assumptions as in Theorem 2.2, let JN (t) be the
generator of the fluctuation dynamics UN , as defined in (3.7). Then we have, as a
quadratic form on F≤N

⊥ϕ̃t
×F≤N

⊥ϕ̃t
,

JN (t) = κN (t) + J2,N (t) + VN + EJN
(t),

where κN (t) and J2,N (t) are defined as in (2.20), (2.16) and where the error term EJN
(t)

satisfies

|〈ξ1, EJN
(t)ξ2〉| ≤Cec|t|N−1/4‖(HN +N + 1)1/2ξ1‖‖(HN +N 3 + 1)1/2(N + 1)ξ2‖

for any ξ1, ξ2 ∈ F≤N
⊥ϕ̃t

.

4 Quadratic evolution and proof of Theorem 2.2

In this section, we study the quadratic evolution defined in (2.19). First of all, we
establish important properties of the time-dependent generator J2,N .
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Proposition 4.1. Let J2,N be defined as in Eq. (2.16). Under the same assumptions
as in Theorem 2.2, there exist constant C, c > 0 such that

±(J2,N (t)−K) ≤ Cec|t|(N + 1), (4.1)

(J2,N (t)−K)2 ≤ Cec|t|(N + 1)2, (4.2)

±J̇2,N(t) ≤ Cec|t|(N + 1) (4.3)

J̇ 2
2,N (t) ≤ Cec|t|(N + 1)2 (4.4)

|〈ξ1, [N ,J2,N (t)]ξ2〉| ≤ Cec|t|‖(N + 1)(1+j)/2ξ1‖‖(N + 1)(1−j)/2ξ2‖ (4.5)

for j ∈ Z and ξ1, ξ2 ∈ F≤N .

To show Prop. 4.1 (and some of the other bounds discussed in this section), the
following lemma will be useful. Its proof is a straighforward adaptation of [10, Lemma
3.4, 3.6].

Lemma 4.2. Let F be a bounded operator and J1, J2 two Hilbert-Schmidt operators on
L2(R3). We also denote by F, J1, J2 the integral kernels of the three operators (J1, J2 ∈
L2(R3 × R

3), while F is in general a distribution). Let

A1 =

∫
dx b#(J1,x)b

#(J2,x) , A2 =

∫
dx b#(J1,x)bx , A3 =

∫
dxdy F (x, y)b∗xby

(4.6)

where # = ∗, ·. Then, we have

|〈ξ1, A1ξ2〉| ≤ C‖J1‖2‖(N + 1)(1+p)/2ξ1‖‖(N + 1)(1−p)/2ξ2‖
|〈ξ1, A2ξ2〉| ≤ C‖J1‖2‖J2‖2‖(N + 1)(1+p)/2ξ1‖‖(N + 1)(1−p)/2ξ2‖
|〈ξ1, A3ξ2〉| ≤ C‖F‖op‖(N + 1)(1+p)/2ξ1‖‖(N + 1)(1−p)/2ξ2‖

(4.7)

for all p ∈ Z and ξ1, ξ2 ∈ F≤N . Moreover,

A∗
1A1 +A1A

∗
1 ≤ C‖J1‖22(N + 1)2

A∗
2A2 +A2A

∗
2 ≤ C‖J1‖22‖J2‖22(N + 1)2

A2
3 ≤ C‖F‖2

op
(N + 1)2 .

(4.8)

Remark. The bounds in Lemma 4.2 continue to hold true if we replace the operator
b, b∗ (or the corresponding operator-valued distributions) with the projected operators
b̃, b̃∗, introduced in (2.15) and used in (2.16) to define the generator J2,N (t). In fact, it
is easy to see that switching from b, b∗ to b̃, b̃∗ corresponds to multiplying the operators
J1, J2, F with the orthogonal projection q̃t = 1−|ϕ̃t〉〈ϕ̃t| on the right and/or on the left;
this does not increase the norms ‖J1‖2, ‖J2‖2, ‖F‖op appearing on the r.h.s. of (4.7),

(4.8). Furthermore, (4.7), (4.8) (and their proof) hold true also for operators Ã1, Ã2, Ã3

on the full Fock space F (without truncation to N ≤ N), defined like A1, A2, A3, but
with b, b∗ replaced by the standard creation and annihilation operators a, a∗ or by their
projected version â, â∗, used in the definition of the limiting generator (2.28).
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Proof of Prop. 4.1. With the notation introduced in the last two lines on the r.h.s. of
(2.16), we claim that ‖Gt‖op, ‖Ht‖2 ≤ Cec|t|. For most terms this follows easily from
Lemma A.1, Prop. A.2 and Lemma A.3. In fact, all contributions (to Gt and to Ht)
arising from the kinetic part (2.17) that involve derivatives of p, r or µ have L2-norm
(and therefore also operator norm) less than Cec|t|. Also the term

∫
dx b̃∗(∇xηx)b̃(∇xηx) =

∫
dzdw

[∫
dx∇xηt(z;x)∇xηt(x,w)

]
b̃∗z b̃w

=:

∫
dzdw ut(z, w)b̃

∗
z b̃w

can be bounded with Lemma 4.2, since ‖ut‖op ≤ ‖ut‖2 ≤ Cec|t| by Lemma A.3. To han-
dle contributions arising from the potential part (2.18), we observe that N3(VNfN,ℓ)(x−
y) = N3V (N(x − y))fℓ(N(x − y)) is the integral kernel of the differential operator

V̂ fℓ(i∇/N) on L2(R3) (with operator norm bounded by V̂ (0)), that γt, pt and σt are
also bounded operators on L2(R3) and that all off-diagonal terms (contributing to H)
involve at least one factor of pt or σt (with bounded Hilbert-Schmidt norm, uniformly
in N). Finally, let us consider the contributions from the other terms on the r.h.s. of
(2.16) (line 2 to line 7). Most of them can be handled as above, with the estimates from
Lemma A.1, Prop. A.2 and Lemma A.3 (notice, in particular, that N3λℓ ≤ C). Some
more attention is needed for the term involving ∇wN,ℓ. Using Lemma A.1, we bound

|N∇wN,ℓ(x− y)[∇ϕ̃t(x)ϕ̃t(y)− ϕ̃t(x)∇ϕ̃t(y)]|

≤ Cχ(|x− y| ≤ ℓ)

|x− y|2 (|∇ϕ̃t(x)||ϕ̃t(y)− ϕ̃t(x)| + |ϕ̃t(x)||∇ϕ̃t(x)−∇ϕ̃t(y)|)

≤ C‖ϕ̃t‖H4χ(|x− y| ≤ ℓ)

|x− y| (|∇ϕ̃t(x)|+ |ϕ̃t(x)|) .

(4.9)

Thus, the L2-norm of the l.h.s. is bounded, uniformly in N . This concludes the proof
of the bounds ‖Gt‖op, ‖Ht‖2 ≤ Cec|t|. From Lemma 4.2 (and from the remark after the
lemma) we arrive at (4.1) and, using (4.8), to (4.2) (the second term on the r.h.s. of
(2.16), the one proportional to a∗xax, can be handled in the same way). Since

[N ,J2,N (t)] =

∫
dxdy

[
2Ht(x, y)b̃

∗
xb̃

∗
y − 2Ht(x, y)b̃xb̃y

]

we also conclude (4.5).
As for (4.3) and (4.4), we observe that contributions to the time-derivative J̇2,N (t)

have the same form as contributions to J2,N(t), either with a factor ϕ̃t replaced by ˙̃ϕt,
or with one of the kernel ηt, γt, σt, pt, rt replaced by η̇t, γ̇t, σ̇t, ṗt, ṙt, or with one operator
b̃, b̃∗ replaced by its time-derivative (the projection depends on time). Using

∂tb̃
∗
x = − ˙̃ϕt(x)b

∗(ϕ̃t)− ϕ̃t(x)b
∗( ˙̃ϕt),
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the similar formula for ∂tb̃x and the bounds in Lemma A.1, Prop. A.2 and Lemma A.3,
we conclude that J̇2,N(t) can be written as the sum of terms of the form (4.6)1 (with
two projected operators b̃♯ or with one b̃♯ and one b♯). For this reason, Lemma 4.2 also
implies (4.3) and (4.4) (again, the term proportional to a∗xax on the r.h.s. of (2.16) can
be handled similarly).

With the help of Prop. 4.1, we obtain well-posedness of the equation (2.19) (existence
and uniqueness of the unitary quadratic evolution U2,N ) and control on the growth of
kinetic energy and number of particles. Compared with the bounds obtained in Prop.
3.2 for the full fluctuation dynamics, here we can derive stronger estimates, controlling
arbitrary moments of the number of particles operator N and the second moment of the
kinetic energy operator K. These improvements (which we can only show for U2,N and
not for the full fluctuation dynamics UN ) will play a crucial role in the proof of Theorem
2.2.

Proposition 4.3. Under the same assumptions as in Theorem 2.2, let J2,N be defined
as in Eq. (2.16). Then, J2,N (t) generates a unique strongly continuous two-parameter
group U2,N of unitary transformations satisfying the Schrödinger equation (2.19). For

every t, s ∈ R, U2,N (t; s) : F≤N
⊥ϕ̃s

→ F≤N
⊥ϕ̃t

. Moreover, for every k ∈ N there exists C, c > 0
such that

〈U2,N (t; 0)ξ, (N + 1)k U2,N (t; 0)ξ〉 ≤ C exp(c exp(c|t|))〈ξ, (N + 1)kξ〉
〈U2,N (t; 0)ξ,K2 U2,N (t; 0)ξ〉 ≤ C exp(c exp(c|t|))〈ξ, (K2 +N 2 + 1)ξ〉 .

(4.10)

Remark. From [10, Lemma 3.10] (extended trivially to the case β = 1), we have

VN ≤ C

N

(
K2 +N 2

)
, (4.11)

which also implies HN ≤ C(K2 +N 2) and

(HN +N + 1)(N + 1) ≤ C(K2 + (N + 1)2).

Proof. To prove the well-posedness, we proceed as in [44, Theorem 7]. Note that (4.1),
(4.3) and (4.5) are precisely the inequalities shown in [44, Lemma 9] and needed to apply
the abstract result in [44, Theorem 8].

To show that U2,N (t; s) maps F≤N
⊥ϕ̃s

into F≤N
⊥ϕ̃t

, let us consider ξ ∈ F≤N
⊥ϕ̃s

, which implies
that a(ϕ̃s)ξ = 0. We compute

d

dt
‖a(ϕ̃t)U2,N (t; s)ξ‖2 = 2Re〈a(ϕ̃t)U2,N (t; s)ξ,

d

dt
(a(ϕ̃t)U2,N (t; s)ξ)〉

= 2Im〈a(ϕ̃t)U2,N (t; s)ξ, (−a(i ˙̃ϕt) + a(ϕ̃t)J2,N (t))U2,N (t; s)ξ〉
= − 2Im〈 U2,N (t; s)ξ, a

∗(ϕ̃t)a(i ˙̃ϕt)U2,N (t; s)ξ〉
− i〈 U2,N (t; s) ξ, [a

∗(ϕ̃t)a(ϕ̃t),J2,N (t)]U2,N (t; s)ξ〉 = 0

1In fact, from (4.9) we find a contribution proportional to ‖ ˙̃ϕt‖H4 ; this is the only term where control
of the H6-norm of ϕ̃t is needed.
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where we used that [a∗(ϕ̃t)a(ϕ̃t), b̃
∗
x] = 0 and [a(ϕ̃t),K +

∫
dxN3(VNfN,ℓ) ∗ |ϕ̃t|2a∗xax] =

a(i ˙̃ϕt).
Let us now show (4.10). From (4.5), we find

∣∣∣ d
dt
〈U2,N (t; 0)ξ, (N + 1)kU2,N (t; 0)ξ〉

∣∣∣ =
∣∣〈U2,N (t; 0)ξ, i[(N + 1)k,J2,N (t)]U2,N (t; 0)ξ〉

∣∣

≤ Cec|t|〈U2,N (t; 0)ξ, (N + 1)kU2,N (t; 0)ξ〉 .

The first estimate in (4.10) follows from Grönwall’s Lemma.
As for the second bound in (4.10), we first apply (4.2) to estimate

〈U2,N (t; 0)ξ,K2U2,N (t; 0)ξ〉
≤ 2〈U2,N (t; 0)ξ,J 2

2,N (t)U2,N (t; 0)ξ〉 + 2〈U2,N (t; 0)ξ, (J2,N (t)−K)2U2,N (t; 0)ξ〉
≤ 2〈U2,N (t; 0)ξ,J 2

2,N (t)U2,N (t; 0)ξ〉 + Cec|t|〈U2,N (t; 0)ξ, (N + 1)2U2,N (t; 0)ξ〉
≤ 2〈U2,N (t; 0)ξ,J 2

2,N (t)U2,N (t; 0)ξ〉 + Cece
c|t|〈ξ, (N + 1)2ξ〉

(4.12)

where, in the last inequality, we applied the first bound in (4.10). To control the first
term on the r.h.s. of the last equation, we observe that

d

dt
〈U2,N (t; 0)ξ,J 2

2,N (t)U2,N (t; 0)ξ〉

=
〈
U2,N (t; 0)ξ,

[
J2,N (t)J̇2,N (t) + J̇2,N(t)J2,N (t)

]
U2,N (t; 0)ξ

〉

≤
〈
U2,N (t; 0)ξ,J 2

2,N (t)U2,N (t; 0)ξ
〉
+

〈
U2,N (t; 0)ξ, J̇ 2

2,N (t)U2,N (t; 0)ξ
〉
.

With (4.4) and with the first bound in (4.10), we conclude that

d

dt
〈U2,N (t; 0)ξ,J 2

2,N (t)U2,N (t; 0)ξ〉

≤
〈
U2,N (t; 0)ξ,J 2

2,N (t)U2,N (t; 0)ξ
〉
+ Cec|t|

〈
U2,N (t; 0)ξ, (N + 1)2U2,N (t; 0)ξ

〉

≤
〈
U2,N (t; 0)ξ,J 2

2,N (t)U2,N (t; 0)ξ
〉
+ Cece

c|t|〈
ξ, (N + 1)2ξ

〉
.

Applying Grönwall’s Lemma, we conclude that

〈U2,N (t; 0)ξ,J 2
2,N (t)U2,N (t; 0)ξ〉 ≤ Cece

c|t|〈ξ, (J 2
2,N (0) +N 2 + 1)ξ〉 .

With (4.2) (at time t = 0), we find therefore

〈U2,N (t; 0)ξ,J 2
2,N (t)U2,N (t; 0)ξ〉 ≤ Cece

c|t|〈ξ, (K2 +N 2 + 1)ξ〉 .

Inserting in (4.12), we obtain the desired bound.

Combining Prop. 3.2, Prop. 3.3 and Prop. 4.3, we can now proceed with the proof
of our first main theorem.
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Proof of Theorem 2.2. As observed in the remark after Theorem 2.2, we have

‖e−iHN tψN−e−i
∫ t

0
κN (s)dsU∗

N,te
BtU2,N (t; 0)ξN‖ = ‖ŪN (t; 0)ξN−e−i

∫ t

0
κN (s)dsU2,N (t; 0)ξN‖ .

Next, we introduce cubic phases to pass from ŪN to the new fluctuation dynamics UN .
To this end, we estimate

‖e−iHN tψN − e−i
∫ t

0
κN (s)dsU∗

N,te
BtU2,N (t; 0)ξN‖
≤ ‖ŪN (t; 0)eA0ξN − e−i

∫ t

0
κN (s)dseAtU2,N (t; 0)ξN‖

+ ‖eA0ξN − ξN‖+ ‖eAtU2,N (t; 0)ξN − U2,N (t; 0)ξN‖ .
Writing

‖eA0ξN − ξN‖2 = 2− 2Re 〈ξN , e−A0ξN 〉 = Re

∫ 1

0
ds 〈ξN , A0e

−sA0ξN 〉

and estimating (recalling the definition (3.2))
∣∣〈ξ1, A0ξ2〉

∣∣

≤ CN−1/2

∫
|ν0(x, y)| ‖axayξ1‖

[
‖axξ2‖+ ‖(N + 1)1/2ξ2‖

]
dxdy

+ CN−1/2

∫
|ν0(x, y)| ‖axay(N + 1)−1/2ξ2‖

[
‖ax(N + 1)1/2ξ1‖+ ‖(N + 1)ξ1‖

]
dxdy

≤ CN−1/2
[
sup
x

‖ν0,x‖2 + ‖ν0‖2
]
‖N ξ1‖‖(N + 1)1/2ξ2‖

we obtain, using the estimates supx ‖ν0,x‖2, ‖ν0‖2 ≤ C
√
m ≤ CN−1/4 from Lemma A.5,

‖eA0ξN − ξN‖2 ≤ CN−3/4

∫ 1

0
ds‖(N + 1)ξN‖‖(N + 1)1/2e−sA0ξN‖ .

With Lemma 3.1, we arrive at

‖eA0ξN − ξN‖2 ≤ CN−3/4‖(N + 1)ξN‖‖(N + 1)1/2ξN‖ . (4.13)

Similarly, using also Prop. 4.3, we find

‖e−A0U2,N (t; 0)ξN − U2,N (t; 0)ξN‖2 ≤ Cece
c|t|
N−3/4‖(N + 1)ξN‖‖(N + 1)1/2ξN‖ .

Hence, we conclude that

‖e−iHN tψN − e−i
∫ t

0
κN (s)dsU∗

N,te
BtU2,N (t; 0)ξN‖

≤ ‖UN (t; 0)ξN − e−i
∫ t

0
κN (s)dsU2,N (t; 0)ξN‖+ Cece

c|t|
N−3/8 .

(4.14)

We now compute

d

dt

∥∥∥UN (t; 0)ξN−e−i
∫ t

0
dsκN (s)U2,N (t; 0)ξN

∥∥∥
2

= 2Im 〈UN (t)ξN ,
(
JN (t)− J2,N (t)− κN (t)

)
e−i

∫ t

0
dsκN (s)U2,N (t)ξN 〉 .
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With Prop. 3.3 and with the bound (4.11), we obtain

d

dt

∥∥∥UN (t; 0)ξN − e−i
∫ t

0
dsκN (s)U2,N (t; 0)ξN

∥∥∥
2

≤
∣∣〈UN (t; 0)ξN , EJN

(t)U2,N (t; 0)ξN 〉
∣∣+ ‖V1/2

N UN (t; 0)ξN‖‖V1/2
N U2,N (t; 0)ξN‖

≤
∣∣〈UN (t; 0)ξN , EJN

(t)U2,N (t; 0)ξN 〉
∣∣+ 1√

N
‖V1/2

N UN (t; 0)ξN‖‖(K +N )U2,N (t; 0)ξN‖ .

From Prop. 3.3, we conclude that

d

dt

∥∥∥UN (t; 0)ξN − e−i
∫ t

0
κN (s)dsU2,N (t; 0)ξN

∥∥∥
2

≤ Cec|t|

N1/4
‖(HN +N + 1)1/2UN (t; 0)ξN‖‖(HN +N 3 + 1)1/2(N + 1)U2,N (t; 0)ξN‖

+
1√
N

‖V1/2
N UN (t; 0)ξN‖‖(K +N )U2,N (t; 0)ξN‖ .

Using VN ≤ CKN (which follows from Sobolev inequality, since ‖N2V (N.)‖3/2 ≤
‖V ‖3/2 <∞), we arrive at

d

dt

∥∥∥UN (t; 0)ξN − e−i
∫ t

0
dsκN (s)U2,N (t; 0)ξN

∥∥∥
2

≤ Cec|t|

N1/4
〈UN (t; 0)ξN , (HN +N + 1)UN (t; 0)ξN 〉

+
Cec|t|

N1/4
〈U2,N (t; 0)ξN , (K2 +N 6 + 1)U2,N (t; 0)ξN 〉 .

With Prop. 3.2 and Prop. 4.3, we obtain

d

dt

∥∥∥UN (t; 0)ξN − e−i
∫ t

0
κN (s)dsU2,N (t; 0)ξN

∥∥∥
2
≤ Cece

c|t|

N1/4
〈ξN , (K2 +N 6 + 1)ξN 〉 .

Integrating over t, using the assumption (2.22) and combining with (4.14), we find
(2.23).

5 Limiting quadratic evolution and proof of Theorem 2.3

In this section we show the well-posedness of the limiting Schrödinger equation (2.30),
we control the growth of the number of particles w.r.t. the limiting quadratic evolution
U2,∞ and we show the convergence of U2,N to U2,∞ in the limit N → ∞, as stated in
Theorem 2.3.

Proposition 5.1. Under the same assumptions as in Theorem 2.2, let J2,∞ be de-
fined as in (2.28). Then, J2,∞(t) generates a unique strongly continuous two-parameter
group U2,∞ of unitary transformations satisfying (2.30). For every t, s ∈ R, U2,∞(t; s) :
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F⊥ϕs
→ F⊥ϕt

, where ϕt denotes the solution of the limiting Gross-Pitaevskii equation
(1.7). Moreover, for every k ∈ N there exists C, c > 0 such that

〈U2,∞(t; 0)ξ, (N + 1)k U2,∞(t; 0)ξ〉 ≤ C exp(c exp(c|t|))〈ξ, (N + 1)kξ〉 (5.1)

for all ξ ∈ F⊥ϕ.

Proof. The proof is very similar to the proof of Prop. 4.3. Combining Lemma 4.2 (and
the remark after it) with the estimates in Lemma A.4, one can prove that the limiting
generator J2,∞(t) satisfies bounds analogous to (4.1), (4.3), (4.5) in Prop. 4.1. The
well-posedness of (2.30), the fact that U2,∞(t; s) maps F⊥ϕs

into F⊥ϕt
and the bound

(5.1) can then be shown arguing exactly as in the proof of Prop. 4.3.

To prove the convergence of U2,N towards U2,∞, we bound the difference of the two
generators. Since J2,N (t) is only defined on the truncated Fock space F≤N , our estimate
is restricted to this space.

Proposition 5.2. Under the assumptions of Theorem 2.2, we have, for every ξ1, ξ2 ∈
F≤N and for every t ∈ R,

∣∣∣
〈
ξ1,

(
J2,N(t; 0) − J2,∞(t; 0)

)
ξ2
〉∣∣∣

≤ Cece
c|t|

√
N

[
‖(N + 1)ξ1‖‖(N + 1)ξ2‖+ ‖(N + 1)1/2ξ1‖‖K1/2ξ2‖

]
.

Proof. From (2.16) and (2.28), we write

J2,N(t) = K +

∫
dxN3(VNfN,ℓ ∗ |ϕ̃t|2)(x)a∗xax

+

∫
dxdy N3(VNfN,ℓ)(x− y)ϕ̃t(x)ϕ̃t(y)b̃

∗
xb̃y

+

∫
dxdy

(
G′
t(x, y)b̃

∗
xb̃y +Ht(x, y)b̃

∗
xb̃

∗
y +Ht(x, y)b̃xb̃y

)
,

J2,∞(t) = K + 8πa

∫
dx |ϕt(x)|2a∗xax + 8πa

∫
dx |ϕt(x)|2â∗xâx

+

∫
dxdy

(
G′
t,∞(x, y) â∗xây +Ht,∞(x, y) â∗xâ

∗
y +Ht,∞(x, y) âxây

)
.

Observe that, with respect to (2.16), we extracted the operator on the second line from
the b̃∗(γx)b̃(γy)-contribution in the last summand in (2.18), denoting by G′

t the difference
between Gt (as appearing in the last line of (2.16)) and this term (we isolate this term
because it will require some additional care). In the expansion for J2,∞, we extracted
the corresponding term, proportional to â∗xâx, from Gt,∞. Thus, we have

J2,N(t)− J2,∞(t) = I + II + III + IV
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where

I =

∫
dx

[
N3(VNfN,ℓ ∗ |ϕ̃t|2)(x)− 8πa|ϕt(x)|2

]
a∗xax

II =

∫
dxdy

[
q̃tG

′
t q̃t − qtG

′
t,∞ qt

]
(x, y)a∗xay −

∫
dxdy

[
q̃tG

′
t q̃t

]
(x, y) a∗x

N
N
ay

III =

∫
dxdy

[
q̃t Pt q̃t − qt Pt,∞ qt

]
(x, y)a∗xay −

∫
dxdy

[
q̃t Pt q̃t

]
(x, y)a∗x

N
N
ay

IV =

∫
dxdy

[
(q̃t ⊗ q̃t)Ht − (qt ⊗ qt)Ht,∞

]
(x, y)a∗xa

∗
y

+

∫
dxdy

[
(q̃t ⊗ q̃t)Ht

]
(x, y) a∗xa

∗
y

[√
1− (N + 1)/N

√
1−N/N − 1

]
+ h.c.

where we recall that q̃t = 1− |ϕ̃t〉〈ϕ̃t| and qt = 1− |ϕt〉〈ϕt| and where we introduced the
notation Pt, Pt,∞ for the operators with the integral kernels Pt(x, y) = N3(VNfN,ℓ)(x−
y)ϕ̃t(x)ϕ̃t(y), Pt,∞(x, y) = 8πa|ϕt(x)|2 δ(x − y). By Lemma 4.2, we can bound

|〈ξ1, I ξ2〉| ≤ C‖N3(VNfN,ℓ ∗ |ϕ̃t|2)− 8πa|ϕt|2‖∞ ‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖ .

For any x ∈ R
3, we have

∣∣∣N3(VNfN,ℓ ∗ |ϕ̃t|2)(x)− 8πa|ϕt(x)|2
∣∣∣

≤
∫
dz V (z)fℓ(z)

∣∣∣|ϕ̃t(x+ z/N)|2 − |ϕ̃t(x)|2
∣∣∣

+
∣∣∣
∫
dz V (z)fℓ(z)− 8πa

∣∣∣|ϕ̃t(x)|2 + 8πa
∣∣∣|ϕ̃t(x)|2 − |ϕt(x)|2

∣∣∣ .

Estimating

∣∣∣|ϕ̃t(x+ z/N)|2 − |ϕ̃t(x)|2
∣∣∣ =

∣∣∣
∫ 1

0
ds

d

ds
|ϕ̃t(x+ sz/N)|2

∣∣∣ ≤ 2|z|‖∇ϕ̃t‖∞‖ϕ̃t‖∞/N

and observing that ||ϕ̃t(x)|2−|ϕt(x)|2| ≤ (‖ϕ̃t‖∞+‖ϕt‖∞) ‖ϕ̃t−ϕt‖∞ we conclude with
Prop. A.2 and with Eq. (A.2) from Lemma A.1 that

|〈ξ1, I ξ2〉| ≤
Cece

c|t|

N
‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖ .

Let us now consider the term II. Again with Lemma 4.2, we can estimate

|〈ξ1, II ξ2〉| ≤ C‖q̃tG′
t q̃t − qtG

′
t,∞qt‖op‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖

+
C

N
‖q̃tG′

t q̃t‖op‖(N + 1)ξ1‖‖(N + 1)ξ2‖ .

Since ‖q̃t − qt‖op ≤ 2‖ϕt − ϕ̃t‖2, we obtain, with Prop. A.2,

‖q̃tG′
t q̃t − qtG

′
t,∞qt‖op ≤ Cece

c|t|

N
‖G′

t‖op + ‖G′
t −G′

t,∞‖op .
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Going through the several contributions to G′
t, G

′
t,∞ in (2.16) and (2.28) (all diagonal

terms) and applying the bounds in Prop. A.2 (part iv)), Lemma A.3 and Lemma A.4,
we find that ‖G′

t‖op ≤ Cec|t| (as already discussed in the proof of Prop. 4.3) and that

‖G′
t −G′

t,∞‖op ≤ Cece
c|t|

√
N

. (5.2)

In fact, to compare contributions from (2.18) with the corresponding contributions in
(2.29), we often need to control the convergence of N3V (N(x− y))fℓ(N(x− y)) towards
8πa δ(x−y). Here, it is important to observe that, in all terms contributing to G′

t (which
are compared with terms in G′

t,∞), the factor N3V (N(x − y))fℓ(N(x − y)) appears in
convolution with a kernel σx, σy, px, py (this is not the case for III; that’s why this term
has to be handled separately). To further illustrate this point, consider for example the
difference Dt −Dt,∞ contributing to G′

t −G′
t,∞, with

Dt(y, z) =

∫
dxN3V (N(x− y))fℓ(N(x− y))ϕ̃2

t (y)σt(x, z),

Dt,∞(y, z) = 8πa ϕ̃2
t (y)σt(y, z)

(this difference arises from the term proportional to b̃∗(γy)b̃(σx) in the second summand
in (2.18)). With (A.2), we can bound

|Dt(y,z)−Dt,∞(y, z)|

=
∣∣∣
∫
dwV (w)fℓ(w)ϕ̃

2
t (y)σt(y + w/N, z) − 8πa ϕ̃2

t (y)σt(y, z)
∣∣∣

≤ Cec|t|
∫
dwV (w)fℓ(w)

∣∣σt(y + w/N, z) − σt(y, z)
∣∣+ Cec|t|

N
|σt(y, z)|

≤ Cec|t|

N

∫
dw

∫ 1

0
ds V (w)fℓ(w)|w||∇1σt(y + sw/N, z)| + Cec|t|

N
|σt(y, z)|

(5.3)

which leads to

‖Dt −Dt,∞‖op ≤ ‖Dt −Dt,∞‖2 ≤
Cec|t|

N

[
‖∇1σt‖2 + ‖σt‖2

]
≤ Cec|t|√

N
.

With (5.2), we obtain

|〈ξ1, II ξ2〉| ≤
Cece

c|t|

√
N

‖(N + 1)ξ1‖‖(N + 1)ξ2‖ .

Similarly, we can also estimate

|〈ξ1, III ξ2〉| ≤
Cece

c|t|

√
N

‖(N + 1)ξ1‖‖(N + 1)ξ2‖

+
∣∣∣
∫
dzdxV (z)fℓ(z)|ϕt(x)|2 〈axξ1,

(
ax − ax+z/N

)
ξ2〉

∣∣∣ .
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To bound the last term, we proceed as in [10, Lemma 5.2]. We find

∣∣∣
∫
dzdxV (z)fℓ(z)|ϕt(x)|2 〈axξ1,

(
ax − ax+z/N

)
ξ2〉

∣∣∣

=
∣∣∣
∫
dzdx

∫ 1

0
ds V (z)fℓ(z)|ϕt(x)|2

d

ds
〈axξ1, ax+sz/Nξ2〉

∣∣∣

≤ 1

N

∫
dzdx

∫ 1

0
ds V (z)fℓ(z)|z||ϕt(x)|2 ‖axξ1‖‖∇xax+sz/Nξ2‖

≤ Cec|t|

N
‖(N + 1)1/2ξ1‖‖K1/2ξ2‖ .

This is the only contribution where the kinetic energy is needed (exactly because, in
contrast with contributions in G′

t, here the difference N3V (N(x − y))fℓ(N(x − y)) −
8πaδ(x − y) acts directly on the operators a∗xay, without convolution; therefore, some
regularity of ξ1, ξ2 is needed).

Finally, to control the term IV, we bound

|〈ξ1, IVξ2〉| ≤ C‖(q̃t ⊗ q̃t)Ht − (qt ⊗ qt)Ht,∞‖2‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖
+ C‖(q̃t ⊗ q̃t)Ht‖2‖(N + 1)ξ1‖‖

[√
1− (N + 1)/N

√
1−N/N − 1

]
ξ2‖ .

Using that ‖q̃t − qt‖op ≤ Cece
c|t|
/N , that

‖
[√

1− (N + 1)/N
√

1−N/N − 1
]
ξ2‖ ≤ C

N
‖(N + 1)ξ2‖

and that, going through the several contributions to Ht,Ht,∞ (the off-diagonal terms)
in (2.16) and (2.28) and applying the bounds in Prop. A.2 (part iv)), Lemma A.3 and

Lemma A.4, ‖Ht‖2 ≤ Cec|t|, ‖Ht −Ht,∞‖2 ≤ Cece
c|t|
/
√
N , we find that

|〈ξ1, IV ξ2〉| ≤
Cece

c|t|

√
N

‖(N + 1)ξ1‖‖(N + 1)ξ2‖

which concludes the proof of the proposition.

We can now proceed with the proof of Theorem 2.3.

Proof of Theorem 2.3. First of all, we observe that

‖U2,N (t; 0)ξ − U2,∞(t; 0)ξ‖2 = 2− 2Re 〈U2,∞(t; 0)ξ,U2,N (t; 0)ξ〉
= 2− 2Re 〈U2,∞(t; 0)ξ,1(N ≤ N)U2,N (t; 0)ξ〉

(5.4)

because U2,N (t; 0)ξ = 1(N ≤ N)U2,N (t; 0)ξ. We compute

−i d
dt
〈U2,∞(t; 0)ξ,1(N ≤ N)U2,N (t; 0)ξ〉

= 〈U2,∞(t; 0)ξ,
[
J2,∞(t)1(N ≤ N)− 1(N ≤ N)J2,N (t)

]
U2,N (t; 0)ξ〉 .
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While we cannot move J2,N(t) to the left of the projection 1(N ≤ N), we can move
J2,∞(t) to its right, generating a commutator. Thus

−i d
dt
〈U2,∞(t; 0)ξ,1(N ≤N)U2,N (t; 0)ξ〉

= 〈U2,∞(t; 0)ξ,1(N ≤ N)
(
J2,∞(t)− J2,N (t)

)
U2,N (t; 0)ξ〉

+ 〈U2,∞(t; 0)ξ,
[
J2,∞(t),1(N ≤ N)

]
U2,N (t; 0)ξ〉 .

With Prop. 5.2 and recalling the expression in the last two lines of (2.28) for the limiting
generator J2,∞(t), we find

∣∣∣ d
dt
〈U2,∞(t; 0)ξ,1(N ≤ N)U2,N (t; 0)ξ〉

∣∣∣

≤ Cece
c|t|

√
N

‖(N + 1)U2,∞(t; 0)ξ‖‖(K +N 2 + 1)1/2U2,N (t; 0)ξ‖

+
∣∣∣
∫
dxdyH∞(x, y)|〈U2,∞(t; 0)ξ,1(N − 2 ≤ N ≤ N) âxâyU2,N (t; 0)ξ〉

∣∣∣

+
∣∣∣
∫
dxdy H∞(x, y)〈U2,N (t; 0)ξ, â∗xâ

∗
y1(N ≤ N ≤ N + 2)U2,∞(t; 0)ξ〉

∣∣∣ .

In the last two terms, we estimate 1(N ≥ N − 2),1(N ≥ N) ≤ CN/N and we use
Lemma 4.2 in combination with ‖H∞‖2 ≤ Cec|t|. We obtain

∣∣∣ d
dt
〈U2,∞(t; 0)ξ,1(N ≤ N)U2,N (t; 0)ξ〉

∣∣∣

≤ Cece
c|t|

√
N

‖(N + 1)U2,∞(t; 0)ξ‖‖(K +N 2 + 1)1/2U2,N (t; 0)ξ‖ .

From Prop. 4.3 and Prop. 5.1, we conclude that

∣∣∣ d
dt
〈U2,∞(t; 0)ξ,1(N ≤ N)U2,N (t; 0)ξ〉

∣∣∣ ≤ Cece
c|t|

√
N

‖(N + 1)ξ‖‖(K +N 2 + 1)1/2ξ‖ .

Integrating over t and with the assumption (2.31), we arrive at

∣∣∣1− 〈U2,∞(t; 0)ξ,1(N ≤ N)U2,N (t; 0)ξ〉
∣∣∣ ≤ Cece

c|t|

√
N

.

Inserting on the r.h.s. of (5.4) proves the desired estimate.

6 Central Limit Theorem: Proof of Theorem 2.5

Following the remark after Theorem 2.5, in this section we aim at proving that

∣∣∣EψN,t
g(ON,t)−

1√
2π‖ft‖

∫
dx g(x)e

− x2

2‖ft‖
2

∣∣∣

≤ Cece
c|t|

∫
ds |ĝ(s)| (N−1/8 +N−1/2|s|3‖O‖3 +N−1s4‖O‖4)

(6.1)
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for every g ∈ L1(R) with ĝ ∈ L1(R, (1 + s4)ds).
For the initial wave function ψN = U∗

N,0e
B0eBΩ with B0 defined as in (2.9) and with

B given by (2.34), with τ ∈ (q0 ⊗ q0)H
2(R3 × R

3), we find that (2.22) is satisfied, with
ξN = eBΩ. Thus, Theorem 2.2 provides the norm approximation

‖e−iHN tψN − U∗
N,te

BtU2,N (t)e
BΩ‖ ≤ Cece

c|t|
N−1/8 .

Writing

EψN,t
[g(ON,t)] = 〈ψN,t, g(ON,t)ψN,t〉 =

∫
ds ĝ(s)〈ψN,t, eisON,tψN,t〉 ,

setting

ÕN,t =
1√
N

N∑

p=1

(
O(p) − 〈ϕ̃t, Oϕ̃t〉

)

and observing that, by Prop. A.2, ‖ON,t − ÕN,t‖op ≤ Cece
c|t|
/
√
N , we can therefore

estimate
∣∣∣EψN,t

[g(ON,t)]−
∫
ds ĝ(s)〈U∗

N,te
BtU2,N (t)e

BΩ, eisÕN,tU∗
N,te

BtU2,N (t)e
BΩ〉

∣∣∣

≤ Cece
c|t|

∫
|ĝ(s)|(N−1/8 +N−1/2|s|‖O‖)ds .

(6.2)

Next, we conjugate the observable eisÕN,t with the unitary operators defining the
norm approximation. With the rules (2.4), we find

UN,tÕN,tU
∗
N,t =

1√
N
dΓ(q̃tO

′q̃t) + φ(q̃tOϕ̃t) (6.3)

with O′ = O − 〈ϕ̃t, Oϕ̃t〉. Here we set φ(f) = b∗(f) + b(f), while dΓ(R) denotes the
second quantization of the one-particle operator R and q̃t = 1− |ϕ̃t〉〈ϕ̃t|.

When inserting in (6.2), the contribution of the first term on the r.h.s. of (6.3) is
small. Proceeding as in [57, Step 1 in Proof of Theorem 1.1], we arrive at

∣∣∣EψN,t
[g(ON,t)]−

∫
ds ĝ(s)〈eBtU2,N (t)e

BΩ, eisφ(q̃tOϕ̃t)eBtU2,N (t)e
BΩ〉

∣∣∣

≤ Cece
c|t|

∫
|ĝ(s)|(N−1/8 +N−1/2|s|3‖O‖3)ds .

(6.4)

This bound relies on the control of the growth of the number of particles operator, which
follows from Lemma 2.1, Lemma 3.1, Prop. 4.3 and from the estimate

〈ξ, e−iφ(f)
(
N + α

)k
eiφ(f)ξ〉 ≤ C〈ξ,

(
N + α+ ‖f‖2

)k
ξ〉 (6.5)

for the action of the modified Weyl operator eiφ(f). From (2.10) and (2.12), the action
of eBt is given by

e−Btφ(q̃tOϕ̃t)e
Bt =φ(ht) +D
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with ht = γt(q̃tOϕ̃t) + σt(q̃tOϕ̃t) and with an error D satisfying

‖Dξ‖ ≤ C

N
‖(N + 1)3/2ξ‖ .

Proceeding as in [57, Step 2 in Proof of Theorem 1.1], from (6.4) we therefore arrive at

∣∣∣EψN,t
[g(ON,t)]−

∫
ds ĝ(s)〈U2,N (t)e

BΩ, eisφ(ht)U2,N (t)e
BΩ〉

∣∣∣

≤ Cece
c|t|

∫
|ĝ(s)|(N−1/8 +N−1/2|s|3‖O‖3 +N−1|s|4‖O‖4)ds .

(6.6)

Before proceeding with the last two unitary conjugations, we replace now the field
φ(ht) = b∗(ht) + b(ht) with φa(ht) = a∗(ht) + a(ht). To this end, we observe that

|〈ξ1, (φ(f)− φa(f))ξ2〉| ≤
C‖f‖
N

‖(N + 1)1/2ξ1‖‖(N + 1)ξ2‖ (6.7)

for all ξ1, ξ2 ∈ F≤N (the operators b, b∗ are only defined on the truncated Fock space).
Thus, for ξ ∈ F≤N , we have, with the notation 1

≤N = 1(N ≤ N),
∣∣∣〈ξ,eisφ(ht)ξ〉 − 〈ξ, eisφa(ht)ξ〉

∣∣∣

=
∣∣∣
∫ s

0
dλ

d

dλ
〈ξ, eiλφ(ht)1≤Nei(s−λ)φa(ht)ξ〉

∣∣∣

=
∣∣∣
∫ s

0
dλ 〈ξ, eiλφ(ht)

{
(φ(ht)− φa(ht))1

≤N +
[
1

≤N , φa(ht)
]}
ei(s−λ)φa(ht)ξ〉

∣∣∣ .

Writing [1≤N , a(ht)] = a(ht)1(N ≤ N ≤ N + 1), [1≤N , a∗(ht)] = −1(N ≤ N ≤ N +
1)a∗(ht), estimating 1(N ≤ N ≤ N + 1) ≤ N/N and applying (6.7) and (6.5) (and the
analogous bound for the action of eiφa(f)), we conclude that

∣∣∣〈ξ, eisφ(ht)ξ〉 − 〈ξ, eisφa(ht)ξ〉
∣∣∣ ≤ C|s|‖ht‖

N
‖(N + s2‖ht‖2)1/2ξ1‖‖(N + s2‖ht‖2)ξ2‖ .

Inserting in (6.6) we find, with Lemma 2.1 and Prop. 4.3,

∣∣∣EψN,t
[g(ON,t)]−

∫
ds ĝ(s)〈U2,N (t)e

BΩ, eisφa(ht)U2,N (t)e
BΩ〉

∣∣∣

≤ Cece
c|t|

∫
|ĝ(s)|(N−1/8 +N−1/2|s|3‖O‖3 +N−1|s|4‖O‖4)ds .

(6.8)

Next, we apply Theorem 2.3 to replace the quadratic evolution U2,N with its limit
U2,∞. Moreover, we replace ht with

h∞,t = γt,∞(qtOϕt) + σt,∞(qtOϕt)

where γt,∞, σt,∞ are defined as in (2.27) and qt = 1 − |ϕt〉〈ϕt|. From Prop. A.2 and
Lemma A.4, we find

‖ht − h∞,t‖2 ≤ Cece
c|t|‖O‖/

√
N .
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From (6.8), we therefore obtain

∣∣∣EψN,t
[g(ON,t)]−

∫
ds ĝ(s)〈U2,∞(t; 0)eBΩ, eisφa(h∞,t)U2,∞(t; 0)eBΩ〉

∣∣∣

≤ Cece
c|t|

∫
|ĝ(s)|(N−1/8 +N−1/2|s|3‖O‖3 +N−1|s|4‖O‖4)ds .

The action of U2,∞(t; 0) on the operators a, a∗ appearing in φa is explicit and de-

scribed by Prop. 2.4. Setting nt = U(t; 0)h∞,t + V (t; 0)h∞,t, we find

∣∣∣EψN,t
[g(ON,t)]−

∫
ds ĝ(s)〈eBΩ, eisφa(nt)eBΩ〉

∣∣∣

≤ Cece
c|t|

∫
|ĝ(s)|(N−1/8 +N−1/2|s|3‖O‖3 +N−1|s|4‖O‖4)ds .

(6.9)

Finally, we need to compute the action of eB . To this end, we first replace the operator
B in (2.34) with

Ba =
1

2

∫
dxdy

[
τ(x; y)a∗xa

∗
y − h.c.

]
,

proceeding as we did above to replace φ(ht) with φa(ht) to show that ‖eBΩ − eBaΩ‖ ≤
C/

√
N . Then we use the explicit formula for the action of the Bogoliubov transformation

eBa , which implies, setting ft = cosh(τ)nt + sinh(τ)nt, that

〈eBaΩ, eisφa(gt)eBaΩ〉 = 〈Ω, eisφa(ft)Ω〉 = 〈Ω, e−s2‖ft‖2/2eisa∗(ft)eisa(ft)Ω〉 = e−s
2‖ft‖2/2 .

From (6.9), we obtain

∣∣∣EψN,t
[g(ON,t)]−

∫
ds ĝ(s)e−s

2‖ft‖2/2
∣∣∣

≤ Cece
c|t|

∫
|ĝ(s)|(N−1/8 +N−1/2|s|3‖O‖3 +N−1|s|4‖O‖4)ds

which immediately implies (6.1). The statement of Theorem 2.5 now follows by standard
arguments (see, for example, [20, Corollary 1.2]).

7 Control of action of At and proof of Lemma 3.1

In this section, we consider the action of the cubic phase eAt on number and energy of
excitations. To this end, we compute commutators of At with the Hamilton operator
HN = K + VN .
Lemma 7.1. Recall the definition of At in (3.2), with parameter M = m−1 = N1/2, and
recall the notation HN = K+VN , with K, VN the kinetic and potential energy operators
on F≤N

⊥ϕ̃t
. On F≤N

⊥ϕ̃t
×F≤N

⊥ϕ̃t
, we have

[HN , At] = −
∫
dxdyN5/2VN (x− y)ϕ̃t(y)b

∗
xb

∗
y[b(γx) + b∗(σx)] + h.c. + E[H,At] (7.1)
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where

|〈ξ1, E[H,At]ξ2〉| ≤ Cec|t|N−1/4‖(HN +N + 1)1/2ξ1‖‖(HN +N + 1)1/2(N + 1)1/2ξ2‖ .
Furthermore,

|〈ξ1, [HN , At]ξ2〉|
≤ Cec|t|‖(HN +N + 1)1/2(N + 1)n/2ξ1‖‖(HN +N + 1)1/2(N + 1)−n/2ξ2‖

(7.2)

for all n ∈ Z.

Remark. To apply Lemma 7.1 in the proof of Lemma 3.1, it is important that the
total exponent of HN+N on the r.h.s. of (7.2) is one (so that (3.5) follows by Grönwall’s
Lemma). To reach this goal, we inserted the cutoff Θ(N ) in the definition (3.2) of At,
similarly as done in [54] (in [19, Lemma 5.7], where the cubic phase does not have a
cutoff, the exponent of N increases).

Proof. We proceed similarly as in the proof of [19, Lemma 5.7]. We define A1
t as At in

(3.2), but with b̃, b̃∗ replaced by b, b∗. Using [K, a∗x] = −∆xa
∗
x and that K commutes with

N , we have

[K, At] =
Θ(N )√
N

∫
dxdy(−∆x −∆y)νt(x, y)b

∗
xb

∗
y[b(γx) + b∗(σx)] + h.c.

− Θ(N )√
N

∫
dxdy∇xνt(x, y)b

∗
xb

∗
y[2∇xbx + 2b(∇xpx) + b∗(∇xσx)] + h.c.

+
Θ(N )√
N

∫
dxdyνt(x, y)b

∗
xb

∗
y[b(−∆xpx) + b(∆px)] + h.c.

+
Θ(N )√
N

∫
dxdyνt(x, y)∇xb

∗
xb

∗
yb

∗(∇xσx) + h.c.

+
Θ(N )√
N

∫
dxdydzνt(x, y)b

∗
xb

∗
y∇zb

∗
z∇zσ(z, x))] + h.c.

+ [K, At −A1
t ] =:

5∑

i=1

Mi + h.c. + [K, At −A1
t ] .

With Lemma A.3 and Lemma A.5, we find

|〈ξ1,M3ξ2〉| ≤ Cec|t|
√
m

N
(‖∆1p‖+ ‖∆2p‖) ‖(N + 1)1/2ξ1‖‖(N + 1)ξ2‖

≤ Cec|t|N−3/4‖(N + 1)1/2ξ1‖‖(N + 1)ξ2‖ .
Writing ∇xνt(x, y) = −N∇ywN,m(x− y)ϕ̃t(y) and integrating by parts, we can bound

|〈ξ1,M2ξ2〉| ≤ Cec|t|
√
m

N
‖(HN +N + 1)1/2ξ1‖

×
(
‖K1/2(N + 1)1/2ξ2‖+ (‖∇2p‖+ ‖∇2σ‖) ‖(N + 1)ξ2‖

)

≤ Cec|t|N−1/4‖(HN +N + 1)1/2ξ1‖‖(HN +N + 1)1/2(N + 1)1/2ξ2‖ .
(7.3)
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M4 can be controlled analogously. Also M5 satisfies the same bound, since ‖∇1σ‖ ≤
Cec|t|

√
N by Lemma A.3. As for M1, the scattering equation (2.2) yields

(−∆x −∆y)νt(x, y) =−N3VN (x− y)fN,m(x− y)ϕ̃t(y) +N3λmfN,m(x− y)χm(x− y)

− 2N∇wN,m(x− y)∇ϕ̃t(y) +NwN,m(x− y)∆ϕ̃t(y).

Let us denote the four contributions to M1 corresponding to the four terms in the last
identity by M11, . . . ,M14. Then M14 is bounded similarly to M3; M13 satisfies the same
bound as M2 after integration by parts (as usual, we use Prop. A.2 to bound norms of
ϕt and of its derivatives). Since N3λm ≤ Cm−3 by (A.1) and 0 ≤ fN,m(x − y) ≤ 1 we
can bound

|〈ξ1,M12ξ2〉| ≤ Cec|t|
1√
Nm3

(∫
dxdy

m2

|x− y|2 ‖axay(N + 1)−1/2ξ1‖2
)1/2

×
(∫

dxdyχm(x− y)‖(N + 1)1/2[b(γx) + b∗(σx)]ξ2‖2
)1/2

≤ Cec|t|N−1/4‖(HN +N + 1)1/2ξ1‖‖(HN +N + 1)1/2(N + 1)1/2ξ2‖

where we used Hardy’s inequality in the first integral and the choice m = N−1/2. As for
M11, with Θ = 1 + (Θ− 1) we write

M11 = −Θ(N )N5/2

∫
dxdyVN (x− y)fN,m(x− y)ϕ̃t(y)b

∗
xb

∗
y[b(γx) + b∗(σx)]

= −N5/2

∫
dxdyVN (x− y)fN,m(x− y)ϕ̃t(y)b

∗
xb

∗
y[b(γx) + b∗(σx)] + E

(7.4)

where, using Θ(N )− 1 ≤ 1(N ≥M/2) and Markov’s inequality, we can estimate

|〈ξ1, Eξ2〉| ≤ Cec|t|‖V1/2
N 1(N ≥M/2)ξ1‖‖(N + 1)1/21(N ≥M/2)ξ2‖

≤ Cec|t|

N1/4
‖(VN +N + 1)1/2ξ1‖‖(VN +N + 1)1/2(N + 1)1/2ξ2‖.

Finally, we have to control the term arising from the difference At−A1
t . We observe

that, on F≤N ×F≤N ,

b∗xb
∗
y[b(γx) + b∗(σx)]− b̃∗xb̃

∗
y[b̃(γx) + b̃∗(σx)]

= b∗xb
∗
yϕ̃t(x)b(ϕ̃t) + b∗(ϕ̃t)ϕ̃t(y)b

∗
x[b̃(γx) + b̃∗(σx)] + b∗(ϕ̃t)ϕ̃t(x)b̃

∗
y[b̃(γx) + b̃∗(σx)].

(7.5)

Here we used the fact that, because of the projection in the kernel ηt(x, y) and the
definition of pt and σt in (2.11), we have 〈ϕ̃t, σx〉 = 0 = 〈ϕ̃t, px〉. Note that as quadratic
forms on F≤N

⊥ϕ̃t
×F≤N

⊥ϕ̃t
, we have, for any operator D, with the shorthand notation Bx =

b(γx) + b∗(σx) and B̃x = b̃(γx) + b̃∗(σx),

[D, b∗xb
∗
yBx−b̃∗xb̃∗yB̃x] = b∗xb

∗
yϕ̃t(x)[D, b(ϕ̃t)]+[D, b∗(ϕ̃t)]ϕ̃t(y)b

∗
xB̃x+[D, b∗(ϕ̃t)]ϕ̃t(x)b̃

∗
yB̃x.
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Applying this with D = K, contributions arising from the commutator of this difference
with K can be controlled as before, using the bounds of Prop. A.2 for ϕ̃t and its
derivatives. We conclude that

|〈ξ1, [K, At −A1
t ]ξ2〉| ≤ Cec|t|N−3/4‖(N + 1)1/2ξ1‖‖(N + 1)ξ2‖.

Let us now consider [VN , At]. With [VN , b∗x] =
∫
dsN2VN (x− s)b∗xa

∗
sas we can write

[VN , At] =−Θ(N )N5/2

∫
dxdyVN (x− y)wN,m(x− y)ϕ̃t(y)b

∗
xb

∗
y[b(γx) + b∗(σx)] + h.c.

+
Θ(N )√
N

∫
dxdydsνt(x, y)N

2VN (x− s)b∗xb
∗
ya

∗
sas[b(γx) + b∗(σx)] + h.c.

+
Θ(N )√
N

∫
dxdydsνt(x, y)N

2VN (y − s)b∗xb
∗
ya

∗
sas[b(γx) + b∗(σx)] + h.c.

− Θ(N )√
N

∫
dxdydsνt(x, y)N

2VN (x− s)b∗xb
∗
ya

∗
sasbx + h.c.

− Θ(N )√
N

∫
dxdydzdsνt(x, y)N

2VN (z − s)p(z, x) b∗xb
∗
ya

∗
sasbz + h.c.

+
Θ(N )√
N

∫
dxdydzdsνt(x, y)N

2VN (z − s)σ(z, x) b∗xb
∗
yb

∗
za

∗
sas + h.c.

+ [VN , At −A1
t ]

=:
6∑

i=1

Ni + h.c. + [VN , At −A1
t ] .

Proceeding as in (7.4) to replace the cutoff Θ(N ) by 1, we find

N1 = −N5/2

∫
dxdyVN (x− y)wN,m(x− y)ϕ̃t(y)b

∗
xb

∗
yBx + E ′ (7.6)

where

|〈ξ1, E ′ ξ2〉| ≤
Cec|t|

N1/4
‖(VN +N + 1)1/2ξ1‖‖(VN +N + 1)1/2(N + 1)1/2ξ2‖.

Noticing that [a∗sas, b
∗(σx)] = σt(x; s) b

∗
s, and applying Lemma A.3 to prove that |σt(x; s)| ≤

CN , we find

|〈ξ1, N2ξ2〉| ≤ Cec|t|N−1/4‖(HN +N + 1)1/2ξ1‖‖(HN +N + 1)1/2(N + 1)1/2ξ2‖. (7.7)

The term N3, N4 can be bounded similarly. As for N5, N6, they can be estimated by
Cauchy-Schwarz, using Lemma A.3 to show that supz ‖pz‖, supz ‖σz‖ ≤ Cec|t|. We find

|〈ξ1, (N5 +N6)ξ2〉| ≤ Cec|t|
√
mM

N
‖(HN +N + 1)1/2ξ1‖‖(HN +N + 1)1/2(N + 1)1/2ξ2‖

≤ Cec|t|N−1‖(HN +N + 1)1/2ξ1‖‖(HN +N + 1)1/2(N + 1)1/2ξ2‖ .
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To bound [VN , At − A1
t ] we argue as we did above to handle [K, At − A1

t ], using the
identity (7.5). Combining all the estimates above, we obtain (7.1) (in particular, the
large term on the r.h.s. of (7.1) emerges summing the r.h.s. of (7.4) and the r.h.s. of
(7.6).

The second claim in the Lemma follows analogously, noticing that powers of (N +1)
can be moved freely from one norm to the other, that in the bounds (7.3), (7.7) we can
use the cutoff to remove the operator (N + 1)1/2 applied to ξ2, at the expense of an
additional factor M1/2 ≤ CN1/4 and that also the main terms on the r.h.s. of (7.4) and
(7.6) can be controlled (with Cauchy-Schwarz) by the r.h.s. of (7.2).

Now we are ready to show Lemma 3.1.

Proof of Lemma 3.1. The proof is similar to the proof of [19, Lemma 5.8]. To show
(3.3), we observe that, since N preserves the space F≤N

⊥ϕ̃t
,

[N , At] = [N , A1
t ] = A1,γ

t + 3A1,σ
t + h.c. (7.8)

where, as above, A1
t is defined as At, but with b̃, b̃

∗
replaced by b, b∗ and where

A1,γ
t =

Θ(N )√
N

∫
dxdyνt(x, y)b

∗
xb

∗
yb(γx), A1,σ

t =
Θ(N )√
N

∫
dxdyνt(x, y)b

∗
xb

∗
yb

∗(σx) .

From (7.8), it is easy to check that ±[N , At] ≤ Cec|t|(N + 1). With Grönwall’s Lemma,
we obtain (3.3) (first with k = 1 but then, using [N k, At] =

∑k−1
j=1 N j[N , At]N k−j−1,

also for arbitrary k ∈ N).
Let us now consider (3.5). For ξ ∈ F≤N

⊥ϕ̃t
and s ∈ [0, 1] we define

fξ(s) = 〈ξ, e−sAtHN (N + 1)kesAtξ〉.

We have

f ′ξ(s) =
〈
ξ, e−sAt

(
[HN , At](N + 1)k +HN [(N + 1)k, At]

)
esAtξ

〉
. (7.9)

For k = 0, Lemma 7.1 implies, together with (3.3), that

|f ′ξ(s)| ≤ Cec|t|
(
fξ(s) + 〈ξ, (N + 1)ξ〉

)
. (7.10)

The desired bound follows therefore from Grönwall’s Lemma.
For k ≥ 1, the contribution of the term proportional to [HN , A] is bounded similarly;

using (7.2), with ξ1 = esAtξ, ξ2 = (N + 1)kesAtξ and n = k, we find

〈ξ, e−sAt [HN , At](N + 1)kesAtξ〉 ≤ Cec|t|〈esAtξ, (HN +N + 1)(N + 1)kesAtξ〉
= Cec|t|

(
fξ(s) + 〈ξ, (N + 1)k+1ξ〉

)
.

To handle the second contribution on the r.h.s. of (7.9), we use (7.8). For k = 1, we
write

HN [N , At] = [HN , A
1,γ
t +3A1,σ

t ]+
(
(A1,γ

t + 3A1,σ
t )HN + h.c.

)
+HN [N , At−A1

t ] . (7.11)
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Contributions arising from the commutator [HN , A
1,γ
t + 3A1,σ

t ] have been already
estimated in the proof of Lemma 7.1. Thus

|〈ξ, e−sAt [HN , A
1,γ
t + 3A1,σ

t ]esAtξ〉| ≤ Cec|t|fξ(s).

Contributions to the second term on the r.h.s. of (7.11) have the form

A1,γ
t K =

Θ(N )√
N

∫
dxdyνt(x, y)b

∗
xb

∗
y

∫
dz∇za

∗
z∇zazb(γx)

+
Θ(N )√
N

∫
dxdyνt(x, y)b

∗
xb

∗
y(−∆xbx + b(−∆px)),

A1,σ
t K =

Θ(N )√
N

∫
dxdyνt(x, y)b

∗
xb

∗
yb

∗(σx)

∫
dz∇za

∗
z(N + 1)−1(N + 1)∇zaz,

A1,γ
t VN =

Θ(N )

2
√
N

∫
dxdyνt(x, y)b

∗
xb

∗
y

∫
drdzN2VN (r − z)a∗ra

∗
zarazb(γx)

+
Θ(N )√
N

∫
dxdyνt(x, y)b

∗
xb

∗
y

∫
drdzN2VN (r − z)a∗rarbzγ(z, x),

A1,σ
t VN =

Θ(N )√
N

∫
dxdyνt(x, y)b

∗
xb

∗
yb

∗(σx)

∫
drdzN2VN (r − z)a∗ra

∗
zaraz.

(7.12)

The two commutators contributing to A1,γ
t K, A1,γ

t VN can be bounded similarly to the
terms M2,M3 and, respectively, N4, N5 in the proof of Lemma 7.1. All other terms can
be bounded directly with Cauchy-Schwarz; for instance

∣∣∣
〈
esAtξ,

Θ(N )√
N

∫
dxdyνt(x, y) b

∗
xb

∗
y

∫
dz∇za

∗
z∇zazb(γx)e

sAtξ
〉∣∣∣

≤ Cec|t|√
N

(∫
dxdydz‖axay∇zazΘ(N )esAtξ‖2

)1/2

×
(∫

dxdydzN2wN,m(x− y)2‖a(γx)∇zaze
sAtξ‖2

)1/2

≤ Cec|t|‖(HN + 1)1/2(N + 1)1/2esAtξ‖2.
The hermitian conjugates of the terms in (7.12) satisfy similar estimates. We handle
the last term on the r.h.s. of (7.11) analogously as we handled the terms proportional
to At − A1

t in the proof of Lemma 7.1, using the identity (7.5). Observe here that on
F≤N
⊥ϕ̃t

×F≤N
⊥ϕ̃t

we have HNb
∗(ϕt) = [HN , b

∗(ϕt)] allowing to recover a commutator which
has been estimated before. Thus, we find that (7.10) also holds true for k = 1. For
k ≥ 2, we write

HN [(N + 1)k, At] =

k∑

j=1

(N + 1)jHN [N , At](N + 1)k−j−1

and we argue similarly as we did for k = 1, after appropriately pulling factors of (N+1)1/2

through the commutator [N , At]. We obtain again the estimate (7.10). The desired
bounds follows by Grönwall’s Lemma.
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8 Generator of fluctuation dynamics: proof of Prop. 3.3

In this section, we study the properties of the generator JN (t) of the full fluctuation
dynamics (3.6). We start from the expression (3.7). A first step in the proof of Prop.
3.3 consists in applying the rules (2.4) to compute the generator

LN (t) = (i∂tUN,t)U
∗
N,t + UN,tHNU

∗
N,t .

We find LN (t) =
∑4

j=0L
(j)
N,t where as quadratic forms on F≤N

⊥ϕ̃t
×F≤N

⊥ϕ̃t

L(0)
N,t =

1

2
〈ϕ̃t, [N3VN (1− 2fN,ℓ) ∗ |ϕ̃t|2]ϕ̃t〉(N −N )

− 1

2
〈ϕ̃t, [N3VN ∗ |ϕ̃t|2]ϕ̃t〉(N + 1)

(N −N )

N

L(1)
N,t =

√
Nb([N3VNwN,ℓ ∗ |ϕ̃t|2]ϕ̃t)−

N + 1√
N

b([N3VN ∗ |ϕ̃t|2]ϕ̃t) + h.c.

L(2)
N,t = K +

∫
dxdy N3VN (x− y)|ϕ̃t(y)|2

(
b∗xbx −

1

N
a∗xax

)

+

∫
dxdy N3VN (x− y)ϕ̃t(x)¯̃ϕt(y)

(
b∗xby −

1

N
a∗xay

)

+
1

2

[∫
dxdy N3VN (x− y)ϕ̃t(x)ϕ̃t(y)

(
b∗xb

∗
y + h.c.

)]

L(3)
N,t =

∫
dxdyN5/2VN (x− y)ϕ̃t(y)b

∗
xa

∗
yax + h.c.

L(4)
N,t = VN ,

(8.1)

where we recall that K and VN are the kinetic and the potential energy operators, as
defined on F≤N

⊥ϕ̃t
in (3.4).

Next, we have to consider the effect of the quadratic conjugation with the generalized
Bogoliubov transformation eBt . We define the renormalized generator

GN (t) = (i∂te
−Bt)eBt + e−BtLN (t)eBt . (8.2)

In order to describe the operator GN (t), we define

κG(t) =
N

2
〈ϕ̃t, [N3VN (1− 2fN,ℓ) ∗ |ϕ̃t|2]ϕ̃t〉 −

1

2
〈ϕ̃t, (N3VNfN,ℓ ∗ |ϕ̃2

t |)ϕ̃t〉

+
1

2

∫
dxdyN2VN (x− y)|〈γy, σx〉|2

+

∫
dx (N3VN ∗ |ϕ̃t|2)(x)〈σx, σx〉

+

∫
dxdy N3VN (x− y)ϕ̃t(x)ϕ̃t(y)〈σx, σy〉

+
1

2

∫
dxdy N3VN (x− y)ϕ̃t(x)ϕ̃t(y)

〈
σx, γy〉+ h.c. + ‖∇1σt‖2

−
∫ 1

0
ds

∫
dxdy η̇t(x, y)〈σ(s)x , γ(s)y 〉+ h.c.

(8.3)
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and the quadratic operator

G2,N (t) =GK2,N (t) + GV2,N (t)

+N3λℓ

∫
dxdy χℓ(x− y)ϕ̃t(x)ϕ̃t(y)b

∗
xb

∗
y + h.c.

+
1

2

∫
dxdy NwN,ℓ(x− y)[∆ϕ̃t(x)ϕ̃t(y) + ϕ̃t(x)∆ϕ̃t(y)]b

∗
xb

∗
y + h.c.

+

∫
dxdy N∇wN,ℓ(x− y)[∇ϕ̃t(x)ϕ̃t(y)− ϕ̃t(x)∇ϕ̃t(y)]b∗xb∗y + h.c.

−
∫ 1

0
ds

∫
dxdy η̇t(x, y)

×
[
b∗(γ(s)x )b∗(γ(s)y ) + b∗(γ(s)x )b(σ(s)y ) + b(σ(s)x )b(σ(s)y ) + b∗(γ(s)y )b(σ(s)x )

]
+ h.c.

(8.4)

where

GK2,N (t) =K +

∫
dx

[
b∗(−∆xpx)bx +

1

2
b∗(∇xpx)b(∇xpx) + b∗xb

∗(−∆xµx)

+ b∗(−∆xpx)b
∗(ηx) + b∗(px)b

∗(−∆xrx) + b∗xb
∗(−∆xrx)

+
1

2
b∗(∇xηx)b(∇xηx) + b∗(ηx)b(−∆xrx) +

1

2
b∗(∇xrx)b(∇xrx) + h.c.

]
(8.5)

and

GV2,N (t) =
1

2

∫
dxdy N3(VNfN,ℓ)(x− y)ϕ̃t(x)ϕ̃t(y)

[
b∗(px)b

∗
y + b∗(γx)b

∗(py)
]
+ h.c.

+
1

2

∫
dxdy N3(VNfN,ℓ)(x− y)ϕ̃t(x)ϕ̃t(y)

×
[
b∗(γy)b(σx) + b∗(γx)b(σy) + b(σx)b(σy)

]
+ h.c.

+

∫
dx (N3VN ∗ |ϕ̃t|2)(x)

×
(
b∗(γx)b(γx) + b(σx)b(γx) + b∗(γx)b

∗(σx) + b∗(σx)b(σx)
)

+

∫
dxdy N3VN (x− y)ϕ̃t(x)ϕ̃t(y)

×
(
b∗(γx)b(γy) + b(σx)b(γy) + b∗(γx)b

∗(σy) + b∗(σy)b(σx)
)
.

(8.6)

The following proposition establishes, up to negligible errors, the form of GN (t), in
terms of (8.3), (8.5), (8.6).

Proposition 8.1. Let V ∈ L3(R3) non-negative, spherically symmetric, and compactly
supported. Let GN (t) be defined as in Eq. (8.2). Assume ℓ in (2.7) is small enough but
of order one in N . Let

CN,t =
∫
dxdyN5/2VN (x− y)ϕ̃t(y)b

∗
xb

∗
y[b(γx) + b∗(σx)] + h.c. (8.7)
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Then on F≤N
⊥ϕ̃t

×F≤N
⊥ϕ̃t

GN (t) = κG(t) + G2,N (t) + CN,t + VN + EGN
(t), (8.8)

where the phase κG(t), G2,N (t) and VN are given in Eq. (8.3),(8.4), (8.1) respectively,
and the error term EGN

(t) satisfies

|〈ξ1, EGN
(t)ξ2〉| ≤

Cec|t|√
N

‖(HN +N + 1)1/2ξ1‖‖(HN +N 3 + 1)1/2(N + 1)ξ2‖ (8.9)

for any ξ1, ξ2 ∈ F≤N
⊥ϕ̃t

.

Prop. 8.1 is analogous to [19, Prop. 2.5, part b] in the time-independent setting,
where the solution of the Gross-Pitaevskii equation (2.3) (entering the definition of LN (t)
and GN (t)) is replaced by the minimizer of the Gross-Pitaevskii energy functional 2. The
main difference is the fact that Prop. 8.1 provides bounds for general matrix elements,
while [19, Prop. 2.5, part b] only deals with expectations. Since the two proofs are very
similar, we only sketch the main steps in the proof of Prop. 8.1, referring to [19] for all
details (we give some more details for the term (i∂te

−Bt)eBt , which is absent in [19]).

Sketch of proof of Prop. 8.1. We write GN (t) = (i∂te
−Bt)eBt+

∑4
j=0 G

(j)
N (t), with G(j)

N (t) =

e−BtL(j)
N (t)eBt , for j = 0, . . . , 4. We have

G(0)
N,t =

N

2
〈ϕ̃t, [N3VN (1− 2fN,ℓ) ∗ |ϕ̃t|2]ϕ̃t〉 −

1

2
〈ϕ̃t, [N3VN ∗ |ϕ̃t|2]ϕ̃t〉

− 〈ϕ̃t, [N3VNwN,ℓ ∗ |ϕ̃t|2]ϕ̃t〉

×
(∫

dx[b∗(γx)b(γx) + b∗(σx)b(σx) + b∗(γx)b
∗(σx) + b(γx)b(σx)] + ‖σt‖2

)
+ E(0)

N,t

(8.10)

where

|〈ξ1, E(0)
N,t ξ2〉| ≤

C√
N

‖(N + 1)1/2ξ1‖‖(N + 1)ξ2‖

for all ξ1, ξ2 ∈ F≤N
⊥ϕ̃t

and all t ∈ R. Details can be found in [19, Cor. 4.3].
Proceeding as in [19, Lemma 4.4], we find

G(1)
N,t =

√
N
[
b(γ(hN,t)) + b∗(σ(h̄N,t)) + h.c.

]
+ E(1)

N,t . (8.11)

2Notice that the energy functional used in [19] was the limiting Gross-Pitaevskii functional, defined
in terms of the scattering length a. In the present paper, on the other hand, we find it more convenient
to work with the modified N-dependent Gross-Pitaevskii equation (2.3); as a consequence, some of
the expressions emerging in the computation of GN (t) are slightly different from the corresponding
expressions in [19])

39



with hN,t = (N3VNwN,ℓ ∗ |ϕ̃t|2)ϕ̃t and

|〈ξ1, E(1)
N,t ξ2〉| ≤

C√
N

‖(N + 1)1/2ξ1‖‖(N + 1)ξ2‖ .

We decompose G(2)
N (t) = e−BtKeBt +G(2,V )

N (t). Following [19, Lemma 4.6], we obtain

G(2,V )
N,t =

∫
dx (N3VN ∗ |ϕ̃t|2)(x)

×
(
b∗(γx)b(γx) + b(σx)b(γx) + b∗(γx)b

∗(σx) + b∗(σx)b(σx) + 〈σx, σx〉
)

+

∫
dxdy N3VN (x− y)ϕ̃t(x)¯̃ϕt(y)

×
(
b∗(γx)b(γy) + b(σx)b(γy) + b∗(γx)b

∗(σy) + b∗(σy)b(σx) + 〈σx, σy〉
)

+
1

2

∫
dxdy N3VN (x− y)ϕ̃t(x)ϕ̃t(y)

×
[
b∗(γy)b

∗(γx) + b∗(γy)b(σx) + b∗(γx)b(σy) + b(σx)b(σy) + 〈σx, γy〉(1−N/N)

+ d∗x
(
b∗(γy) + b(σy)

)
+

(
b∗(γx) + b(σx)

)
d∗y + h.c.

]
+ E(2,V )

N,t

(8.12)

with

|〈ξ1, E(2,V )
N,t ξ2〉| ≤

C

N1/2
ec|t|‖(VN +N + 1)1/2ξ1‖‖(VN +N + 1)1/2(N + 1)1/2ξ2‖

where dx, d
∗
x are the operator valued distributions associated with the fields dt defined

in (2.10). On the other hand, analogously to [19, Lemma 4.8], we conclude that

G(K)
N,t =K +

∫
dxdy (−∆xηt)(x, y) b

∗
xb

∗
y +

∫
dxdy(−∆xηt)(x, y) bxby

+

∫
dx

[
b∗(−∆xpx)bx + b∗xb(−∆xpx) +∇xb

∗(px)∇xb(px)

+ b∗(−∆xpx)b
∗(ηx) + b∗(px)b

∗(−∆xrx) + b∗xb
∗(−∆xrx)

+ b(−∆xrx)bx + b(−∆xrx)b(px) + b(ηx)b(−∆xpx)

+∇xb
∗(ηx)∇xb(ηx) + b∗(σx)b(−∆xrx) + b∗(−∆xrx)b(ηx)

]

+

∫
dx

[
b(∇xηx)∇xdx +∇xd

∗
x b

∗(∇xηx)
]
+ ‖∇1σt‖2(1−N/N) +

1

N
‖∇1ηt‖2

+
‖∇1ηt‖2

N

( ∫
dx

[
b∗(γx)b(γx) + b∗(σx)b(σx) + b∗(γx)b

∗(σx) + b(γx)b(σx)
])

+
‖∇1ηt‖2

N
‖σt‖2 + E(K)

N,t ,

(8.13)
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with

|〈ξ1, E(K)
N,t ξ2〉| ≤

C

N1/2
ec|t|‖(K +N + 1)1/2ξ1‖‖(K +N 3 + 1)1/2(N + 1)ξ2‖ .

As for the cubic term, we find

G(3)
N,t =

∫
dxdyN5/2VN (x− y)ϕ̃t(y)b

∗
xb

∗
y[b(γx) + b∗(σx)]

−
√
N
(
b(γ(hN,t)) + b∗(σ(hN,t))

)
+ h.c. + E(3)

N,t,

(8.14)

with

|〈ξ1, E(3)
N,t ξ2〉| ≤ Cec|t|√

N
‖(HN +N + 1)1/2ξ1‖‖(HN +N + 1)1/2(N + 1)ξ1‖ .

The proof of (8.14) is very similar to the proof of [19, Lemma 4.9].
Furthermore, following the strategy used in [19, Lemma 4.10], we obtain

G(4)
N,t =VN +

1

2

∫
dxdyN2VN (x− y)|〈γy, σx〉|2

(
1 +

1

N
− 2N

N

)

+
1

2

∫
dxdyN2VN (x− y)[b∗(γx)b

∗(γy) + b∗(γx)b(σy) + b∗(γy)b(σx)

+ b(σx)b(σy)]kt(x, y) + h.c.

+
1

2

∫
dxdyN2VN (x− y)[d∗x(b

∗(γy) + b(σy)) + (b∗(γx) + b(σx))d
∗
y]kt(x, y) + h.c.

+

∫
dxdyN3(VNw

2
N,ℓ)(x− y)|ϕ̃t(x)|2|ϕ̃t(y)|2

×
(∫

du[b∗(γu)b(γu) + b∗(σu)b(σu) + b∗(γu)b
∗(σu) + b(γu)b(σu)] + ‖σ‖2

)

+ E(4)
N,t .

(8.15)

with

|〈ξ1, E(4)
N,t ξ2〉| ≤

Cec|t|√
N

‖(HN +N + 1)1/2ξ1‖‖(HN +N + 1)1/2(N + 1)ξ1‖ .

Finally, we claim that

(i∂te
−Bt)eBt = −

∫ 1

0
ds

∫
dxdy η̇t(x, y)

[
b∗(γ(s)x )b∗(γ(s)y )+b∗(γ(s)x )b(σ(s)y )+b(σ(s)x )b(σ(s)y )

+ b∗(γ(s)y )b(σ(s)x ) + 〈σ(s)x , γ(s)y 〉
]
+ h.c. + E∂t , (8.16)

where E∂t satisfies

|〈ξ1, E∂tξ2〉| ≤
C

N
ec|t|‖(N + 1)1/2ξ1‖‖(N + 1)3/2ξ2‖ , (8.17)
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for any ξ1, ξ2 ∈ F≤N
⊥ϕ̃t

, t ∈ R, and N ∈ N large enough.
To prove (8.16), we use (2.10) to expand

(i∂te
−Bt)eBt =

∫ 1

0
ds e−sBt

(
i∂tBt

)
esBt

= −
∫ 1

0
ds

∫
dxdy η̇t(x, y)

[
b∗(γ(s)x )b∗(γ(s)y ) + b∗(γ(s)x )b(σ(s)y ) + b(σ(s)x )b(σ(s)y )

+ b∗(γ(s)y )b(σ(s)x ) + 〈σ(s)x , γ(s)y 〉
]
+ h.c. + E∂t

where the superscript s denotes that we consider cosh and sinh of sηt instead of ηt. Here,
E∂t is given by

E∂t = −
∫ 1

0
ds

∫
dxdy η̇t(x, y)

×
[
d∗x,s(b

∗(γ(s)y ) + b(σ(s)y )) + (b∗(γ(s)x ) + b(σ(s)x ))d∗y,s + d∗x,sd
∗
y,s − 〈σ(s)x , γ(s)y 〉N/N

]

+ h.c.

where dx,s, d
∗
x,s are the operator valued distributions associated with operators d

(s)
t , which

are defined as dt in (2.10), but with ηt replaced by sηt. With (2.12) and with the bounds
from Lemma A.3, we have

|〈ξ1, E∂tξ2〉| ≤
Cec|t|

N

∫
dxdy |η̇t(x, y)|‖(N + 1)1/2ξ1‖

×
[
(1 + |ηt(x, y)|)‖(N + 1)3/2ξ2‖+ ‖ax(N + 1)ξ2‖+ ‖axay(N + 1)1/2ξ2‖

]

≤Ce
c|t|

N
‖(N + 1)1/2ξ1‖‖(N + 1)3/2ξ2‖

which concludes the proof of (8.17).
Collecting the contributions on the r.h.s. of (8.12), (8.13) and (8.15) containing the

operators d, d∗, we define

DN,t =

∫
dx

[
b(∇xηx)∇xdx + h.c.

]

+
1

2

∫
dxdy N3(VNfN,ℓ)(x− y)ϕ̃t(x)ϕ̃t(y)

×
[
d∗x(b

∗(γy) + b(σy)) + (b(γx) + b∗(σx))d
∗
y + h.c.

]

Proceeding as in [19, Section 4.5], we obtain

DN,t =
1

2

∫
dxdyN3(VNfN,ℓwN,ℓ)(x− y)|ϕ̃t(x)|2|ϕ̃t(y)|2

×
∫
dv

[
b∗(σv)b

∗(γv) + b(σv)b(γv) + 2b∗(σv)b(σv)
]

+
1

2

∫
dxdyN3(VNwN,ℓfN,ℓ)(x− y)|ϕ̃t(x)|2|ϕ̃t(y)|2‖σ‖2 + E(D)

N,t

(8.18)
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with the error

|〈ξ1, E(D)
N,t ξ2〉| ≤

C

N
ec|t|‖(N + 1)1/2ξ1‖‖(VN +N 2 + 1)1/2(N + 1)1/2ξ2‖ .

To obtain the constant term (8.3), we first recombine the following terms, appearing in
(8.10), (8.13) and (8.15):

1

N
‖∇1ηt‖2 +

1

2N

∫
dxdyN2VN (x− y)|〈γy, σx〉|2 −

1

2
〈ϕ̃t, [N3VN ∗ |ϕ̃t|2]ϕ̃t〉 .

Using the scattering equation (2.2) and the estimate |〈σx, γy〉−kt(x, y)| ≤ C|ϕ̃t(x)||ϕ̃t(y)|,
we end up with the second summand on the r.h.s. of (8.3) (up to an error of order 1/N).
Moreover, observing that

∣∣∣1
2

∫
dxdyN3(VNwN,ℓfN,ℓ)(x− y)|ϕ̃t(x)|2|ϕ̃t(y)|2 +

1

N
‖∇1ηt‖2

+

∫
dxdyN3(VNw

2
N,ℓ)(x− y)|ϕ̃t(x)|2|ϕ̃t(y)|2 − 〈ϕ̃t, N3VNwN,ℓ ∗ |ϕ̃t|2ϕ̃t〉

∣∣∣ ≤ C

N
,

(8.19)

we conclude that the contributions proportional to ‖σt‖2 from Eq. (8.10), (8.13), (8.15)
and (8.18) cancel (again, up to an error of the order 1/N); this leads to (8.3).

To derive (8.4), we use again (8.19) to show that the sum of all terms proportional
to N and all terms proportional to

∫
du

[
b∗(γu)b(γu) + b∗(σu)b(σu) + b∗(γu)b

∗(σu) + b(γu)b(σu)
]

appearing on the r.h.s. of (8.10), (8.12), (8.13), (8.15), (8.18) produces a small error,
which can be absorbed in EGN

(in (8.18), we first decompose 2σtσ̄t = γ2t + σtσ̄t − 1).
Furthermore, in the terms on the first line on the r.h.s. of (8.13), we split ηt = µt + kt
and we combine the contribution associated with kt with the contributions

1

2

∫
dxdyN3VN (x− y)ϕ̃t(x)ϕ̃t(y)b

∗
xb

∗
y ,

1

2

∫
dxdy N2VN (x− y)kt(x; y)b

∗
xb

∗
y

extracted from the third summands on the r.h.s. of (8.12) and on the r.h.s. of (8.15)
(expanding γt = 1+ pt). Observing that

N
(
∆x +∆y

)
wN,ℓ(x− y)ϕ̃t(x)ϕ̃t(y) +N3(VNfN,ℓ)(x− y)ϕ̃t(x)ϕ̃t(y)

= N [2∆wN,ℓ(x− y) +N2(VNfN,ℓ)(x− y)]ϕ̃t(x)ϕ̃t(y)

+NwN,ℓ(x− y)[∆ϕ̃t(x)ϕ̃t(y) + ϕ̃t(x)∆ϕ̃t(y)]

+ 2N∇wN,ℓ(x− y)[∇ϕ̃t(x)ϕ̃t(y)− ϕ̃t(x)∇ϕ̃t(y)]

and that, from the scattering equation (2.2),

N [2∆wN,ℓ(x− y) +N2(VNfN,ℓ)(x− y)]ϕ̃t(x)ϕ̃t(y) = 2N3λℓfN,ℓχℓ(x− y)ϕ̃t(x)ϕ̃t(y)
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we conclude that
∫
dxdy

[1
2
(−∆x −∆y)ηt(x; y) +

1

2
N3VN (x− y)ϕ̃t(x)ϕ̃t(y) +

1

2
N2VN (x− y)kt(x; y)

]
b∗xb

∗
y

=

∫
dxdy (−∆µt)(x; y)b

∗
xb

∗
y +N3λℓ

∫
dxdy χℓ(x− y) fN,ℓ(x− y)ϕ̃t(x)ϕ̃t(y)b

∗
xb

∗
y

+
1

2

∫
dxdyNwN,ℓ(x− y)

[
∆ϕ̃t(x)ϕ̃t(y) + ϕ̃t(x)∆ϕ̃t(y)

]
b∗xb

∗
y

+

∫
N∇wN,ℓ(x− y)

[
∇ϕ̃t(x)ϕ̃t(y)− ϕ̃t(x)∇ϕ̃t(y)

]
b∗xb

∗
y .

(8.20)

In the second term on the r.h.s. we can write fN,ℓ = 1 − wN,ℓ and check that the
contribution of wN,ℓ can be absorbed in the small error. Thus, combining (8.10), (8.11),
(8.12), (8.13), (8.14), (8.15) and (8.16) with (8.18) and (8.20) and comparing with the
definitions (8.3), (8.4), (8.7), we obtain the claim of Prop. 8.1.

With (8.2), we can rewrite the generator JN (t) defined in (2.14) as

JN (t) = (i∂te
−At)eAt + e−AtGN (t)eAt (8.21)

To conclude the proof of Prop. 3.3, we need therefore to control the action of At on the
terms on the r.h.s. of (8.8). We already have some information about the action of At
on the Hamilton operator HN = K + VN , thanks to Lemma 7.1. The action of At on
the quadratic terms in G2,N (t) (excluding the kinetic energy operator K) is determined
by the next lemma.

Lemma 8.2. Let At be defined as in (3.2). Let F : R3×R
3 → C. For any ξ1, ξ2 ∈ F≤N

⊥ϕ̃t

we have
∣∣∣
∫
drdsF (r, s)

〈
ξ1,

[
b∗rb

∗
s, At

]
ξ2
〉 ∣∣∣,

∣∣∣
∫
drdsF̄ (r, s)

〈
ξ1,

[
brbs, At

]
ξ2
〉 ∣∣∣

≤ Cec|t|‖F‖2N−3/4‖(N + 1)1/2ξ1‖‖(N + 1)ξ2‖ .
(8.22)

Moreover, assuming additionally that F (r, s) = F (s, r), we also have

∣∣∣
∫
drdsF (r, s) 〈ξ1, [b∗rbs, At]ξ2〉

∣∣∣

≤ Cec|t|N−3/4 min
(
‖F‖2, sup

s

∫
dr|F (r, s)|

)
‖(N + 1)1/2ξ1‖‖(N + 1)ξ2‖.

(8.23)

Lemma 8.2 is very similar to [19, Lemma 5.2]. The main differences are the presence
of the cutoff Θ(N ) in the definition (3.2) of At (which plays no role in the proof) and
the fact that bounds in [19, Lemma 5.2] only control commutators in expectation, while
(8.22), (8.23) control all matrix elements. However, the proof only requires straightfor-
ward adaptations. We skip the details.

Finally, we need to control the action of At on the cubic operator CN,t on the r.h.s.
of (8.8). This is the aim of the next lemma.
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Lemma 8.3. Let At be defined as in (3.2), with parameters M = m−1 =
√
N and CN,t

as in (8.7). Furthermore, let

Ξ1 =− 2

∫
dxdyN3VN (x− y)wN,m(x− y)ϕ̃t(x)ϕ̃t(y)

× (b∗(γy)b(γx) + b∗(γy)b
∗(σx) + b(γx)b(σy) + b∗(σx)b(σy) + 〈σy, σx〉)

Ξ2 =− 2

∫
dx

(
(N3VNwN,m) ∗ |ϕ̃t|2

)
(x)

×
(
b∗(γx)b(γx) + b∗(γx)b

∗(σx) + b(γx)b(σx) + b∗(σx)b(σx) + ‖σx‖2
)
.

(8.24)

Then, on F≤N
⊥ϕ̃t

×F≤N
⊥ϕ̃t

, we have

[CN,t, At] = Ξ1 + Ξ2 + E[CN ,At]

where E[CN ,At] is such that

|〈ξ1, E[CN ,At]ξ2〉| ≤ Cec|t|N−1/4‖(HN +N + 1)1/2ξ1‖‖(HN +N + 1)1/2(N + 1)1/2ξ2‖ .
(8.25)

Proof. We write CN,t = C̃N + C̃∗
N , with

C̃N = N5/2

∫
dxdyVN (x− y)ϕ̃t(y) b

∗
xb

∗
y[b(γx) + b∗(σx)] .

We will also use the short-hand notation Bx = b(γx) + b∗(σx). We have

[CN,t, At] =
Θ(N )√
N

∫
dxdyνt(x, y)[C̃N , b∗xb∗yBx] +

Θ(N )√
N

∫
dxdyνt(x, y)[C̃N

∗
, b∗xb

∗
yBx]

+ [C̃N + C̃N
∗
,Θ(N )]

1√
N

∫
dxdyνt(x, y)b

∗
xb

∗
yBx + h.c. + [CN,t, At −A1

t ] .

(8.26)

With the notation W = 1 − N/N and W̃ = W − 1/N = 1 − (N + 1)/N and with the
commutation relations (2.6), we find

[bz, b
∗
xb

∗
yBx] =Wb∗xδ(z − y)Bx +Wb∗yδ(z − x)Bx −

2

N
b∗xa

∗
yazBx

+ b∗xb
∗
yWσt(z, x) −

1

N
b∗xb

∗
ya

∗(σx)az

[b∗z, b
∗
xb

∗
yBx] = − b∗xb

∗
yWγt(z, x) +

1

N
b∗xb

∗
ya

∗
za(γx)

[Br, b
∗
xb

∗
yBx] =Wb∗yγt(x, r)Bx +Wb∗xγt(y, r)Bx −

2

N
b∗ya

∗
xa(γr)Bx

+ b∗xb
∗
yW (〈pr, σx〉 − 〈px, σr〉) +

1

N
b∗xb

∗
ya

∗(σr)a(γx)−
1

N
b∗xb

∗
ya

∗(σx)a(γr)

[B∗
r , b

∗
xb

∗
yBx] =Wσt(x, r)b

∗
yBx +Wσt(y, r)b

∗
xBx −

2

N
b∗xa

∗
ya(σr)Bx − b∗xb

∗
yWδ(r − x)

− b∗xb
∗
yW

(
pt(x, r) + pt(r, x) + 〈px, pr〉 − 〈σr, σx〉

)

+
1

N
b∗xb

∗
ya

∗(γr)a(γx)−
1

N
b∗xb

∗
ya

∗(σx)a(σr).
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A lengthy but straightforward computation leads to

[b∗rb
∗
sBr, b

∗
xb

∗
yBx]

= −b∗xb∗yb∗spt(r, x)W̃Br − b∗rb
∗
xb

∗
yW̃ δ(s − x)Br − b∗rb

∗
xb

∗
yW̃pt(s, x)Br +

2

N
b∗rb

∗
xb

∗
ya

∗
sa(γx)Br

+ b∗rb
∗
sb

∗
yW̃pt(x, r)Bx + b∗rb

∗
sb

∗
xW̃ δ(y − r)Bx + b∗rb

∗
sb

∗
xW̃pt(y, r)Bx −

2

N
b∗rb

∗
sb

∗
ya

∗
xa(γr)Bx

+ b∗rb
∗
sb

∗
xb

∗
yW (〈pr, σx〉 − 〈px, σr〉) +

1

N
b∗rb

∗
sb

∗
xb

∗
ya

∗(σr)a(γx)−
1

N
b∗rb

∗
sb

∗
xb

∗
ya

∗(σx)a(γr) .

(8.27)

Let us label by R1, . . . , R11 the contributions to [CN,t, At] associated with the terms in
(8.27). We claim that these terms can all be included into the error E[CN ,At]. Let us
consider first terms with 6 creation and annihilation operators. As an example, using
Prop. A.2, Lemma A.3 and the cutoff N ≤M , we bound

|〈ξ1, R4ξ2〉| ≤
Cec|t|

N3/2
‖V1/2

N (N + 1)1≤M ξ1‖

×
(∫

dxdydrdsN3VN (r − s)N2wN,m(x− y)2‖a(γx)Br1≤Mξ2‖2
)1/2

≤ Cec|t|
√
m
M2

N3
‖(HN +N + 1)1/2ξ1‖‖(HN +N + 1)1/2(N + 1)1/2ξ2‖ .

Here we used that a(γx)b
∗(σr) = (1−N/N)1/2a∗(σx)ay+(1−N/N)σt(x, r) and the fact

that ‖σt‖2 ≤ C. The other terms with 6 creation and annihilation operators, namely
R8, R10 and R11, can be bounded in the same way. Next, we consider terms with a
contraction, quartic in creation and annihilation operators. Let us start with

|〈ξ1, R1ξ2〉| ≤
Cec|t|

N
‖(N + 1)1≤Mξ1‖

×
(∫

dxdydrdsN3VN (r − s)N2wN,m(x− y)2|pt(r, x)|2‖(N + 1)1/2Brξ2‖2
)1/2

≤ Cec|t|
√
m
M

N2
‖(N + 1)1/2ξ1‖‖(N + 1)ξ2‖

where we used Lemma A.3 to bound supr ‖pr‖2 ≤ Cec|t|. The term R3 is estimated in
exactly the same way. Furthermore,

|〈ξ1, R5ξ2〉| ≤
Cec|t|

N1/2

(∫
dxdydrdsN2VN (r − s)|pt(r, x)|2‖(N + 1)−1/2ayaras1

≤Mξ1‖2
)1/2

×
(∫

dxdydrdsN3VN (r − s)|νt(x, y)|2‖(N + 1)1/2Brξ2‖2
)1/2

≤ Cec|t|
√
m

N
‖(HN +N + 1)1/2ξ1‖‖(HN +N + 1)1/2(N + 1)1/2ξ2‖ ,
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andR7 can be bounded analogously. AlsoR9 satisfies the same estimate, since |〈pr, σx〉| ≤
‖pr‖‖σx‖. Finally, we control

|〈ξ1, R2ξ2〉| ≤
Cec|t|

N1/2

(∫
dxdydrN2VN (r − x)‖(N + 1)−1/2ayarax1

≤Mξ1‖2
)1/2

×
(∫

dxdydrN3VN (r − x)N2wN,m(x− y)2‖(N + 1)1/2Brξ2‖2
)1/2

≤ Cec|t|
√
m

N
‖(HN +N + 1)1/2ξ1‖‖(HN +N + 1)1/2(N + 1)1/2ξ2‖ ,

and we observe that R6 is essentially the same as R2, after renaming variables.
Let us now consider the second term on the r.h.s. of (8.26). Here, we have to com-

pute the commutator [B∗
r bsbr, b

∗
xb

∗
yBx]. The computations are more involved than in

(8.27), because now there can be multiple contractions, leading to contributions that
are quadratic or even constant in creation and annihilation operators. The main con-
tributions are those where bs and br are contracted with b∗x, b

∗
y. There are two such

contributions. Assuming that b, b∗ satisfy canonical commutation relations (it is easy to
check that the corrections are negligible), they are given by

−Θ(N )

∫
dxdyN3VN (x− y)wN,m(x− y)ϕ̃t(x)ϕ̃(y)B

∗
yBx

−Θ(N )

∫
dx(N3VNwN,m ∗ |ϕ̃t|2)(x)B∗

xBx + h.c.

= Ξ1 + Ξ2 + E
with the error

|〈ξ1, Eξ2〉| ≤ Cec|t|N−1/4‖(N + 1)1/2ξ1‖‖(N + 1)ξ2‖ ,
needed to remove the cutoff Θ(N ) (arguing similarly as in (7.4), with the choice M =
N1/2). Terms involving contractions between br, bs and Bx (or between B∗

r and b∗x, b
∗
y)

are smaller, because they produce factors of σt(r, x) or σt(s, x), which are in L2. As
an example, consider the term δ(s − x)σt(r, x)B

∗
r b

∗
y (where we contracted bs with b∗x

and br with Bx (ignoring again corrections to the canonical commutation relations). It
produces a contribution S to (8.26), which can be bounded by

|〈ξ1, Sξ2〉| ≤ Cec|t|
(∫

dxdydrN3VN (r − x)‖(N + 1)−1/2ayBrξ1‖2
)1/2

×
(∫

dxdydrN3VN (r − x)|νt(x, y)|2
)1/2

‖(N + 1)1/2ξ2‖

≤ Cec|t|N−1/4‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖
where we used |σt(r, x)| ≤ CN |ϕ̃t(r)ϕ̃t(x)| from Lemma A.3 and ‖νt‖ ≤ C

√
m from

Lemma A.5 (and the choice m = N−1/2). Terms arising from [B∗
r bsbr, b

∗
xb

∗
yBx] contain-

ing 6 or 4 creation and annihilation operators can be bounded as we did above with
R1, . . . , R11.
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The next term in (8.26) has the form

[C̃N + C̃N
∗
,Θ(N )]

1√
N

∫
dxdyνt(x, y)b

∗
xb

∗
yBx + h.c.

=

∫
drdsN2VN (r − s)ϕ̃t(s)(Θ(N − 1)−Θ(N ))b∗rb

∗
sb(γr)

∫
dxdyνt(x, y)b

∗
xb

∗
yBx

+

∫
drdsN2VN (r − s)ϕ̃t(s)(Θ(N − 3)−Θ(N ))b∗rb

∗
sb

∗(σx)

∫
dxdyνt(x, y)b

∗
xb

∗
yBx

+

∫
drdsN2VN (r − s)ϕ̃t(s)(Θ(N + 1))−Θ(N )b∗(γr)bsbr

∫
dxdyνt(x, y)b

∗
xb

∗
yBx

+

∫
drdsN2VN (r − s)ϕ̃t(s)(Θ(N + 3))−Θ(N )b(σr)bsbr

∫
dxdyνt(x, y)b

∗
xb

∗
yBx + h.c.

=

4∑

i=1

Ti + h.c.

(8.28)

The contribution T2 is already normally ordered. It can simply be bounded by Cauchy-
Schwarz. We find

|〈ξ1, T2ξ2〉| ≤
∫
dxdydrdsN2VN (r − s)|ϕ̃t(s)||νt(x, y)|

× ‖brbsb(σx)bxby(N + 1)−3/2ξ1‖‖Bx(N + 1)3/21(N ≤M)ξ2‖

≤ Cec|t|
√
m

N
‖V1/2

N ξ1‖‖(N + 1)21(N ≤M)ξ1‖

≤ Cec|t|N−1/4‖V1/2
N ξ1‖‖(N + 1)ξ2‖

where we used supx ‖σx‖2 ≤ Cec|t| from Lemma A.3 and supx ‖νx‖2 ≤ C
√
mec|t| from

Lemma A.5 (with m = N−1/2). All other normally ordered term emerging from (8.28)
can be treated analogously. On the other hand, terms involving commutators (produced
through normal ordering) are closely related with the contributions discussed above
from the first two terms on the r.h.s. of (8.26). Due to the presence of the differences
Θ(N + 1) − Θ(N ) (or similar), also the contributions where bs, br are contracted with
b∗xb

∗
y (arising from T3 and T4) are negligible, here (since ‖(Θ(N + 1) − Θ(N ))ξ‖ ≤

C/M‖1(M/2 ≤ N ≤M)ξ‖, we can gain a factor M−1, arguing similarly as in (7.4)).
Finally, we deal with the commutator [CN,t, At − A1

t ] using the identity (7.5). The
resulting terms can be treated analogously as we did with the contributions to [CN,t, A1

t ]
(but these terms are less singular and thus simpler to handle). They all satisfy the
estimate (8.25). We skip the details.

We are now ready to proceed with the proof of Prop. 3.3.

Proof of Prop. 3.3. Recall from (8.21) that

JN (t) = (i∂te
−At)eAt + e−AtGN (t)eAt (8.29)
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where, by Prop. 8.1,

GN (t) = κG(t) + G2,N (t) + CN,t + VN + EGN
(t),

with the eror EN (t) satisfying the bound (8.9). From Lemma 3.1, we find

|〈ξ1, e−AtEGN
(t)eAtξ2〉| ≤

Cec|t|√
N

‖(HN +N + 1)1/2ξ1‖‖(HN +N 3 + 1)1/2(N + 1)ξ2‖ .

With Lemma 7.1, Lemma 8.3 and Lemma 8.2, we claim that

e−At(G2,N (t) + CN,t + VN )eAt = G2,N (t) +
1

2
Ξ1 +

1

2
Ξ2 + VN + E (8.30)

where Ξ1,Ξ2 are defined in Eq. (8.24) and

|〈ξ1, Eξ2〉| ≤ Cec|t|N−1/4‖(HN +N + 1)1/2ξ1‖‖(HN +N + 1)1/2(N + 1)1/2ξ2‖ .

To prove (8.30), we start by observing that

e−At(G2,N (t)−K)eAt = (G2,N (t)−K) +

∫ 1

0
ds e−sAt

[
(G2,N (t)−K), At

]
esAt

Going through the terms in G2,N (t) − K in (8.4), we can check with Prop. A.2 and
Lemma A.3 that they all have one of the forms considered in Lemma 8.2. It follows that

e−At(G2,N (t)−K)eAt = (G2,N (t)−K) + E ′

where, applying also Lemma 3.1,

|〈ξ1, E ′ξ2〉| = Cec|t|N−3/4

∫ 1

0
ds ‖(N + 1)1/2esAtξ1‖‖(N + 1)esAtξ2‖

≤ Cec|t|N−3/4‖(N + 1)1/2ξ1‖‖(N + 1)ξ2‖ .
On the other hand, with Duhamel’s formula, we can write

e−AtHNe
At = HN +

∫ 1

0
dse−sAt [HN , At]e

sAt

= HN +

∫ 1

0
dse−sAt(−CN,t + E[HN ,At])e

sAt

= HN − CN,t +
∫ 1

0
dse−sAtE[HN ,At]e

sAt

+

∫ 1

0
ds

∫ s

0
dre−rAt(−Ξ1 − Ξ2 + E[CN ,At])e

rAt

= HN − CN,t −
1

2
(Ξ1 + Ξ2)

+

∫ 1

0
dse−sAtE[HN ,At]e

sAt +

∫ 1

0
ds

∫ s

0
dre−rAtE[CN ,At]e

rAt

−
∫ 1

0
ds

∫ s

0
dr

∫ r

0
dτ e−τAt

[
Ξ1 + Ξ2, At

]
eτAt .
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Similarly,

e−AtCN,teAt = CN,t +
∫ 1

0
dse−sAt [CN,t, At]esAt

= CN,t +
∫ 1

0
dse−sAt

(
Ξ1 + Ξ2 + E[CN ,At]

)
esAt

= CN,t + Ξ1 + Ξ2

+

∫ 1

0
dse−sAtE[CN ,At]e

sAt +

∫ 1

0
ds

∫ s

0
dr e−rAt

[
Ξ1 + Ξ2, At

]
erAt .

Applying Lemma 7.1, Lemma 8.3 and Lemma 8.2 (noticing that the commutator of the
quadratic operators Ξ1,Ξ2 with At is a sum of terms that can be bounded with (8.22),
(8.23)) and propagating the estimates through the cubic phase with Lemma 3.1, we
arrive at (8.30).

As for the first term on the r.h.s. of (8.29), we observe that, since supx ‖ν̇t,x‖ ≤
Cec|t|N−1/4 from Lemma A.5,

|〈ξ1, (i∂te−At)eAtξ2〉| ≤
∫ 1

0
ds|〈esAtξ1, [i∂tAt]e

sAtξ2〉|

≤ Cec|t|N−3/4‖(N + 1)1/2ξ1‖‖(N + 1)ξ2‖.

We conclude that

JN (t) = κG(t) + G2,N (t) +
1

2
Ξ1 +

1

2
Ξ2 + E ′

where

|〈ξ1, E ′ξ2〉| ≤ Cec|t|N−1/4‖(HN +N + 1)1/2ξ1‖‖(HN +N 3 + 1)1/2(N + 1)ξ2‖ . (8.31)

Next, we observe that in the terms Ξ1,Ξ2, as defined in (8.24), we can replace the
parameter m = N−1/2 with the fixed, N -independent, parameter ℓ ∈ (0; 1), at the
expense of small error. In fact, setting

Ξ′
1 =− 2

∫
dxdyN3VN (x− y)wN,ℓ(x− y)ϕ̃t(x)ϕ̃t(y)

× (b∗(γy)b(γx) + b∗(γy)b
∗(σx) + b(γx)b(σy) + b∗(σx)b(σy) + 〈σy, σx〉)

Ξ′
2 =− 2

∫
dx

(
(N3VNwN,ℓ) ∗ |ϕ̃t|2

)
(x)

×
(
b∗(γx)b(γx) + b∗(γx)b

∗(σx) + b(γx)b(σx) + b∗(σx)b(σx) + ‖σx‖2
)

(8.32)

we find

|〈ξ1, (Ξj − Ξ′
j)ξ2〉| ≤

Cec|t|√
N

‖(N + 1)1/2ξ1‖‖(K +N + 1)1/2ξ2‖ (8.33)

for j = 1, 2. To show (8.33), we argue as we do in the proof of Prop. 5.2 to control
the terms I, II, III (in that Proposition, we control convergence of N3VNfN,ℓ towards

50



a δ-distribution, but the same argument implies convergence of N3VNfN,m towards a
δ-distribution and therefore allows us to control the difference N3VN (fN,ℓ − fN,m) =
N3VN (wN,m−wN,ℓ); note that, to handleN3VNfN,m we need to use (A.2) with ℓ replaced
by m = N−1/2, which makes some of the estimates, like the one for the second term on
the r.h.s. of (5.3), worse).

Combining the operator G2,N (t), as defined in (8.4), with the terms Ξ′
1,Ξ

′
2 from (8.32)

we obtain, as quadratic form on F≤N
⊥ϕ̃t

(so that the “projected” operators b̃, b̃
∗
are the

same as b, b∗), the operator J2,N (t) in (2.16), up to a small error due to the term on the
seventh line of (2.16), whose matrix elements can be bounded by

∣∣∣
∫
dxN3(VNfN,ℓ∗|ϕ̃t|2)(x)〈ξ1, (a∗xax−b∗xbx)ξ2〉

∣∣∣ ≤ CN−1‖(N +1)1/2ξ1‖‖(N +1)3/2ξ2‖ .
(8.34)

Remark that, despite its smallness on F≤N
⊥ϕ̃t

, we inserted this term in the definition

(2.16) to make sure that U2,N (t; s) maps F≤N
⊥ϕ̃s

into F≤N
⊥ϕ̃t

. Absorbing (8.34), together
with (8.31), into the error term EJN

(t), we conclude the proof of Prop. 3.3.

A Properties of fℓ, ϕt, ϕ̃t, ηt, η∞,t, νt

In this appendix, we collect some analytic properties of functions and kernels that are
used throughout the paper to construct the approximation of the many-body dynamics.

In the first lemma, whose proof can be found in [17, 9, 25], we consider the ground
state solution of the Neumann problem (2.1) on the ball |x| ≤ Nℓ, with the normalization
fℓ(x) = 1 for |x| = Nℓ.

Lemma A.1. Let V ∈ L3(R3) be non-negative, compactly supported and spherically
symmetric. Fix ℓ > 0 and let fℓ denote the solution of (2.1). For N large enough the
following properties hold true.

i) We have

λℓ =
3a

(ℓN)3
(
1 +O

(
a/ℓN

))
. (A.1)

ii) We have 0 ≤ fℓ, wℓ ≤ 1. Moreover there exists a constant C > 0 such that

∣∣∣∣
∫
V (x)fℓ(x)dx− 8πa

∣∣∣∣ ≤
Ca2

ℓN
(A.2)

for all ℓ ∈ (0; 1/2) and N ∈ N.

iii) There exists a constant C > 0 such that

wℓ(x) ≤
C

|x|+ 1
and |∇wℓ(x)| ≤

C

x2 + 1
(A.3)

for all x ∈ R
3, ℓ ∈ (0; 1/2) and all N ∈ N large enough.
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Next, we consider solutions of the Gross-Pitaevskii equation (1.7) and of the modified
N -dependent Gross-Pitaevskii equation (2.3). The proof of Prop. A.2 is essentially
contained (up to straightforward changes) in [7, Theorem 3.1], [17, Prop. 4.2] and [10,
Prop. B.1].

Proposition A.2. Let V ∈ L3(R3) be a non-negative, spherically symmetric, compactly
supported potential. Let ϕ ∈ L2(R3) with ‖ϕ‖ = 1. Recall the scattering solution (2.2)
which enters the modified Gross-Pitaevskii equation (2.3); assume ℓ ∈ (0, 1/2).

i) For ϕ ∈ H1(R3), there exist unique global solutions t → ϕt and t → ϕ̃t in
C(R,H1(R3)) of the Gross-Pitaevskii equation (1.7) and, respectively, of the modi-
fied Gross-Pitaevskii equation (2.3) with initial datum ϕ. We have ‖ϕt‖ = ‖ϕ̃t‖ = 1
for all t ∈ R. Furthermore, there exists a constant C > 0 such that

‖ϕt‖H1 , ‖ϕ̃t‖H1 ≤ C .

ii) If ϕ ∈ Hm(R3) for some m ≥ 2, then ϕt, ϕ̃t ∈ Hm(R3) for every t ∈ R. Moreover
there exist constants C depending on m and on ‖ϕ‖Hm , and c > 0 depending on
m and on ‖ϕ‖H1 such that for all t ∈ R

‖ϕt‖Hm , ‖ϕ̃t‖Hm ≤ Cec|t| .

iii) Suppose ϕ ∈ H4(R3). Then there exist constants C > 0 depending on ‖ϕ‖H4 , and
c > 0 depending on ‖ϕ‖H1 such that for all t ∈ R

‖ ˙̃ϕt‖H2 , ‖ ¨̃ϕt‖H2 ≤ Cec|t| .

Furthermore, if ϕ ∈ H6(R3) there exist constants C > 0 depending on ‖ϕ‖H6 , and
c > 0 depending on ‖ϕ‖H1 such that for all t ∈ R

‖ϕ̇t‖H4 , ‖ ˙̃ϕt‖H4 ≤ Cec|t|.

iv) Suppose ϕ ∈ H2(R3). Then there exist constants C, c1, c2 > 0 such that for all
t ∈ R

‖ϕt − ϕ̃t‖ ≤ CN−1 exp(c1 exp(c2|t|)) .
For ϕ ∈ H6(R3) there are constants C, c > 0 such that

‖ϕt − ϕ̃t‖H4 ≤ CN−1ece
c|t|

and
‖ϕ̇t − ˙̃ϕt‖H2 ≤ CN−1ece

c|t|
.

Recall now the definition (2.8), depending on the parameters N, ℓ, of the kernel
ηt appearing in the generalized Bogoliubov transformation eBt and the notation γt =
cosh ηt, σt = sinh ηt. Furthermore, we set pt = γt−1, rt = σt−ηt and µt = ηt−kt (recall
(2.7)). Several bounds for the operators ηt, γt, σt, pt, rt (for their integral kernels) and for
their time-derivatives are established in the next lemma, whose proof is a straightforward
adaptation of [7, Lemma 3.3 and 3.4], [17, Lemma 4.3], [10, Appendix C].
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Lemma A.3. Let ϕ̃t be the solution of (2.3) with initial datum ϕ ∈ H4(R). Let wℓ =
1−fℓ with fℓ the ground state solution of the Neumann problem (2.1) and let ℓ ∈ (0; 1/2).
Let kt, ηt, µt be defined as in (2.7),(2.8). Then there exist constants C, c > 0 depending
only on ‖ϕ‖H4 (or lower Sobolev norms of ϕ) and on V such that the following bounds
hold uniformly in ℓ, for all t ∈ R.

i) We have
‖ηt‖ ≤ Cℓ1/2

and also
‖∇jηt‖ ≤ C

√
N, ‖∇jµt‖ ≤ C

for j = 1, 2. With ∇1ηt and ∇2ηt we indicate the kernels ∇xηt(x; y) and ∇yηt(x; y),
similar definitions hold for ∆jηt, for j = 1, 2. Let σt, pt, rt be defined as in (2.11)
and after (2.18), we obtain

‖σt‖, ‖pt‖, ‖rt‖, ‖∇jpt‖, ‖∇jrt‖ ≤ C ,

‖∆jpt‖, ‖∆jrt‖, ‖∆jµt‖ ≤ Cec|t|, ‖∇jσt‖ ≤ Cec|t|
√
N .

ii) for a.e. x, y ∈ R
3, n ∈ N, n ≥ 2, we have the pointwise bounds

|ηt(x; y)| ≤
C

|x− y|+N−1
|ϕ̃t(x)|||ϕ̃t(y)|

|µt(x; y)|, |pt(x; y)|, |rt(x; y)| ≤ C|ϕ̃t(x)|||ϕ̃t(y)|

|∇xηt(x, y)| ≤ C
(
|∇ϕ̃t(x) + |ϕ̃t(x)|

)
|ϕ̃t(y)|

(χ(|x− y| ≤ ℓ)

|x− y|2 + 1
)
.

iii) Moreover we have

sup
x

‖ηx‖2, sup
x

‖kt,x‖2, sup
x

‖µt,x‖2 ≤ C‖ϕ̃t‖H2 ≤ Cec|t|

where we indicate with supx ‖ηx‖2 = supx
∫
|ηt(x; y)|2dy and

‖σt,x‖, ‖pt,x‖, ‖rt,x‖ ≤ Cec|t| .

iv) For j = 1, 2 we have the following bounds for the time derivatives

‖∂tηt‖, ‖∂2t ηt‖ ≤ Cec|t| ,

and also
‖∂t∇jηt‖ ≤ C

√
Nec|t|, ‖∂t∇jµt‖ ≤ Cec|t|.

Furthermore

‖∂tσt‖, ‖∂trt‖, ‖∂tpt‖, ‖∇j∂tpt‖, ‖∇j∂trt‖, ‖∆j∂tpt‖, ‖∆j∂trt‖, ‖∆j∂tµt‖ ≤ Cec|t| .
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v) For a.e. x, y ∈ R
3 we have the pointwise bounds

|∂tηt(x; y)| ≤ C
[
1+

1

|x− y|+N−1

][
| ˙̃ϕt(x)||ϕ̃t(y)|+ |ϕ̃t(x)|| ˙̃ϕt(y)|+ |ϕ̃t(x)||ϕ̃t(y)|

]
,

and

|∂tµt(x; y)|, |∂trt(x; y)|, |∂tpt(x; y)|
≤ Cec|t|

[
| ˙̃ϕt(x)||ϕ̃t(y)|+ |ϕ̃t(x)|| ˙̃ϕt(y)|+ |ϕ̃t(x)||ϕ̃t(y)|

]
.

vi) Finally, we have
‖∂tηx‖, ‖∂tkt,x‖, ‖∂tµt,x‖ ≤ Cec|t|

and
‖∂tσt,x‖, ‖∂tpt,x‖, ‖∂trt,x‖ ≤ Cec|t| .

While the kernels ηt, γt, σt, pt, rt considered in the last lemma are used in the defini-
tion of the fluctuation dynamics UN and of its quadratic approximation U2,N , the limiting
quadratic evolution U2,∞ is defined in (2.30) in terms of limiting kernels η∞,t, γ∞,t, σ∞,t,
p∞,t, r∞,t. To show the well-posedness of U2,∞ and to compare it with U2,N , we need
some bound on these limiting objects.

Lemma A.4. Let w∞,ℓ, η∞,t, γ∞,t, σ∞,t, p∞,t, r∞,t be defined as in (2.25)-(2.27).

i) The limiting kernels satisfy

‖ηt,∞‖, ‖σ∞‖, ‖p∞‖, ‖r∞‖ ≤ C

‖∆jp∞‖, ‖∆jr∞‖, ‖∆jµt,∞‖ ≤ Cec|t|

‖η̇t,∞‖, ‖σ̇∞‖, ‖ṗ∞‖, ‖ṙ∞‖ ≤ Cec|t|

‖∆j ṗ∞‖, ‖∆j ṙ∞‖, ‖∆j µ̇t,∞‖ ≤ Cec|t|

‖η̈t,∞‖ ≤ Cec|t|

for almost all x ∈ R
3 and j = 1, 2.

ii) Let R > 0 such that V (x) = 0 for |x| > R. Then, we have

|NwN,ℓ(x)− w∞,ℓ(x)| ≤





C
|x| 0 ≤ |x| ≤ R/N
C
N |x| R/N ≤ |x| ≤ ℓ

0 ℓ ≤ |x|

|N∇wN,ℓ(x)−∇w∞,ℓ(x)| ≤





C
|x|2 0 ≤ |x| ≤ R/N
C

N |x|2 R/N ≤ |x| ≤ ℓ

0 ℓ ≤ |x|

(A.4)
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iii) We have

‖ηt − ηt,∞‖, ‖η̇t − η̇t,∞‖, ‖σ − σ∞‖, ‖p − p∞‖, ‖r − r∞‖ ≤ Cece
c|t|

√
N

‖∆2p−∆2p∞‖, ‖∆2r −∆2r∞‖, ‖∆2µt −∆2µt,∞‖ ≤ Cece
c|t|

√
N

.

Proof. The bounds in i) follow from (2.25), which implies that |w∞,ℓ(x)| ≤ C/|x|,
|∇w∞,ℓ(x)| ≤ C/|x|2 and ∆w∞,ℓ(x) = 4πaδ(x) + 3aχ(|x| ≤ ℓ)/ℓ3.

The bounds (A.4) are trivial for |x| > ℓ. In the region |x| < R/N , they follow by
combining the estimates for w∞,ℓ,∇w∞,ℓ with (A.3). In the region R/N < |x| < ℓ, we
apply the identity (see [8, 9])

wN,ℓ(x) = 1− sin(
√
λN,ℓ (|x| − ℓ))√
λN,ℓ |x|

− ℓ

|x| cos(
√
λN,ℓ (|x| − ℓ))

and the corresponding expression for ∇wN,ℓ. Using λN,ℓℓ
2 ≃ 1/(Nℓ) ≪ 1 and Taylor

expanding sin and cos, we obtain (A.4).
The bounds in iii) follow from ii) and from (A.2) (because the limiting kernels

ηt,∞, η̇t,∞, σ∞, p∞, r∞, µt,∞ are defined like ηt, η̇t, σ, p, r, µt, with NwN,ℓ and ϕ̃t replaced
by w∞,ℓ and ϕt. We leave the details to the reader.

Finally, in the next lemma we collect some estimates for the kernel νt introduced in
(3.1) entering the definition of the cubic phase At in (3.2). The proof is a straightforward
adaptation of the proof of Lemma A.3 above (with the parameter ℓ replaced now by m).

Lemma A.5. Under the same conditions as in Lemma A.3, the kernel νt defined as in
Eq. (3.1) satisfies the following bounds:

‖νt‖ ≤ C
√
m, sup

x
‖νt,x‖ ≤ Cec|t|

√
m, ‖νt,y‖ ≤ C|ϕ̃t(y)|

√
m,

and the pointwise bound

|νt(x, y)| ≤
C|ϕ̃t(y)|

|x− y|+N−1
.

Furthermore, the time derivative satisfies similar estimates:

‖ν̇t‖ ≤ Cec|t|
√
m, sup

x
‖ν̇t,x‖ ≤ Cec|t|

√
m, ‖ν̇t,y‖ ≤ C| ˙̃ϕt(y)|

√
m.
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