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Abstract

Cluster policies aim at improving collaboration between co-located actors to address sys-

temic failures. As yet, cluster policy evaluations are mainly concerned with effects on firm

performance. Some recent studies move to the system level by assessing how the structure of

actor-based knowledge networks is affected by such policies. We continue in that direction

and analyze how technology-based regional knowledge spaces are shaped by the introduction

of a cluster policy. Taking the example of the German BioRegio contest, we examine how

such knowledge spaces in winning and non-winning regions evolved before, during and after

the policy. Using a difference-in-differences approach, we identify treatment effects of in-

creased knowledge space embeddedness of biotechnology only in the post-treatment period.

Our findings imply that cluster policies can have long-term structural effects typically not

accounted for in policy evaluations.

Keywords: BioRegio contest; network analysis; knowledge space; difference in differences;

patents

JEL Classification: O31; O38; R11

1 Introduction

Cluster policies are a popular instrument of regional innovation policy, often implemented to

deal with so-called systemic failures by establishing and fostering interaction between innova-

tive agents. Despite their systemic nature, most evaluation studies focus on policy effects on

individual firms, thereby treating them similar to other types of R&D subsidies. These studies

typically identify positive effects on R&D inputs while results on innovation-related outputs are

more mixed (Mar & Massard, 2021).

Since clusters are composed of a variety of actors and organizational types, including not

only firms but also universities, research centers and research services, a focus solely on the

effects on firms poses unjustifiable limitations to their analysis. In addition, policy effects on

the composition and structure of relations within a cluster are often overlooked and pose a

substantial challenge for cluster policy evaluation (Uyarra & Ramlogan, 2012). Because of the

variety of policy targets and complex interactions of different instruments within cluster policies,
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several scholars call for wider and more systemic evaluations (Mar & Massard, 2021; Rothgang

et al., 2021). A few recent studies tackle these shortcomings of the field and apply social network

analysis (SNA) to understand how policy affects the overall structure of relationships between

different actors (Giuliani et al., 2016; Töpfer et al., 2019; Graf & Broekel, 2020; N’Ghauran &

Autant-Bernard, 2020). While cohesive networks have been identified as drivers of innovation-

based economic development of regions (e.g. Breschi & Lenzi, 2016), these studies provide only

limited evidence for positive effects of cluster policies on network cohesion.

Another important structural feature of regions which has been associated with economic

development is the knowledge space (Kogler et al., 2013). The knowledge space is a network

of interrelated technologies that can help us understand the structures and characteristics of

regional knowledge capacities, i.e., it is a representation of the regional knowledge base. Its

structure is considered important for the regional creation and accumulation of knowledge and

has been used for comparing the technological structure and evolution of regional innovation

systems (RIS) (Kogler et al., 2013; Boschma et al., 2014; Balland et al., 2015). The knowledge

space and the related product space shape the direction of change in innovative activities. These

spaces set constraints by indicating if required competencies for the development of specific

technologies are present in a region, and they create technological opportunities by revealing

potential for new knowledge recombinations (Malmberg & Maskell, 1997; Sonn & Storper, 2008).

As such, they are considered important determinants of economic development and growth

(Hidalgo et al., 2007; Hausmann & Klinger, 2007). Given that many innovation-oriented cluster

policies have a technological focus, we expect that such policies are able to shape and redirect

the knowledge space of regions to open new technological pathways. However, to our knowledge,

this concept has not been used to understand the effects of a cluster policy.

Within the variety of cluster policies, we relate to the innovation-oriented cluster policy

which focuses its support on collaborative R&D activities within selected regions. The main

goal of such policies is to increase innovativeness and competitiveness of the supported clusters,

the regions where they are located or even of the national economy. The main instrument

to achieve this goal is to stimulate collaborative, innovation-related activities in more or less

precisely defined industries or technology fields. As such, the effects of such policies should

show in the structure of the knowledge space. Supported fields of activity should increase their

visibility and importance within the knowledge space by either creating or intensifying links

within the field itself (along existing trajectories) or by creating links with previously unrelated

fields (cross-fertilization). A greater impact on the whole economy or innovation system is to be

expected when technological relations with other fields are established and enforced, indicating

a broad diffusion of the technology and its applications.

In order to analyze how cluster policies shape the knowledge space, we focus on the Ger-

man BioRegio contest. This program was implemented when Germany was lagging behind the

United Kingdom and the United States in the development and commercialization of biotech-

nology (Cooke, 2001). The German federal government and local authorities started to develop

initiatives to try to close this gap; one of them was the BioRegio contest (Dohse, 2000). There

were 17 regions that applied for this program, and four of them won the contest. The program,

whose main aim was identifying and strengthening clusters that were already performing well

in biotechnology, started in 1997, and funding ended in 2005 (Dohse, 2000).
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Other goals of the BioRegio contest were to increase collaboration among existing actors,

to support entrepreneurial activities in the field of biotechnology and to combine biotech with

other, previously unrelated technologies (Dohse, 2000; Dohse & Staehler, 2008). The latter goal

is an important aspect for our analysis, since new combinations between different technological

fields enable cross-fertilization effects and change the shape of the knowledge space. We look at

these changes in order to evaluate the impact of the BioRegio contest on the regional knowledge

space.

We track the evolution of biotech in all 17 regions during and after the policy and expect

these technologies to become more central and more connected to other fields. Our results

show that the BioRegio contest contributed to an increase in the importance of biotechnology

in the four winning regions in terms of connectedness with other fields and importance in the

knowledge space. The effect is visible after the policy ceased its funding period. Also, we find

that in the post-treatment period, biotechnology in winning regions experienced higher growth

than biotechnology in the non-winning regions.

We proceed as follows. In Section 2, we review the literature on clusters, cluster policies and

knowledge spaces. We introduce the BioRegio contest in Section 3 and provide a descriptive

analysis of changes in regional knowledge space in Section 4. Section 5 presents the econometric

approach along with a description of the variables, in particular, betweenness centrality as our

measure of knowledge space embeddedness of a technology. Section 6 presents the main results

of the difference-in-differences approach and Section 7 concludes.

2 Literature Review

2.1 Clusters and knowledge diffusion

To understand why policy makers are so interested in clusters and why they decide to intervene

and support them, we should first define the benefits associated with agglomeration externalities

and the clustering concept. Marshall (1890) proposed three different types of agglomeration

externalities that arise in environments with specialized industries in the same location: the

accessibility to a market with high skilled workers, the availability of auxiliary and supporting

activities (technological and knowledge spillovers) and the presence of companies specialized in

different phases of the production chain (Martin & Sunley, 2003, 1996).

A revived interest in clusters followed Porter (1990), who proposed a neo-Marshallian cluster

concept in his work on international competitiveness. He argues that although the phenomenon

of globalization should reduce the importance of local agglomerations, this is not the case. On

the contrary, the competitive advantages of international markets are realized locally (Porter,

1998). This is where the proper milieu is formed, characterized by a concentration of elements

necessary for creating a competitive advantage (highly specialized knowledge, institutions, com-

petition, cooperation and customers with specific needs). Despite the popularity of Porter’s

view, there is no consensus on the definition of a cluster (Martin & Sunley, 2003; Duranton,

2011). As noted by Martin & Sunley (2003), the past decades saw economic geographers develop

many similar concepts, such as “industrial districts” (Markusen, 1996), “network regions” and

“learning regions,” which results in ambiguity around the concept of clusters.
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There is a broad discussion in the literature about the advantages of being located within a

cluster. Several studies point out how firms benefit from the unique mix of collaboration and

competition, as well as from complementary goods or technologies present in the region (Porter,

1998, 2000; Belleflamme et al., 2000). In their study on innovative activities in the UK, Baptista

& Swann (1998), show that firms located in clusters (high regional employment in own sector)

are more innovative. Beaudry & Breschi (2003) show that firms have tangible benefits only if

other companies in the same location are innovative themselves. Audretsch & Feldman (1996),

studying selected industries and states in the US, find that innovative activities tend to cluster,

especially in the early stages of the industry life cycle. They provide evidence of a dispersion

of innovative activities during later stages and argue that this is because of a lock-in situation

where new space is necessary to develop new ideas. Delgado et al. (2014) show how industries

thrive in strong clusters experiencing high employment and increasing in patenting activities.

Furthermore, they highlight how the initial endowment (in terms of occupation and patenting

activity) positively influences industry development within a region.

Research on clusters then moved beyond the Marshallian conceptualization of knowledge

spillovers. One of the strongest criticisms of this view is that it is not sufficient to be located

in the same geographical space to benefit from knowledge externalities for innovation. Firms

inside a cluster do not equally benefit from knowledge embedded in the region; knowledge is not

simply “in the air” (Giuliani & Bell, 2005). To acquire external knowledge, firms need specific

characteristics (e.g., the right cognitive distance) as well as the right connections (Boschma,

2005). Therefore, researchers shifted their attention to studying the relationships among the

actors within clusters to understand their innovative capacities and performance (Boschma &

ter Wal, 2007). Research on clusters and regional innovation has thus been complemented by

aspects of the structure and evolution of innovation networks (Koo, 2005; Cantner & Graf, 2006;

Giuliani & Bell, 2005, 2008). These ideas also entered the policy realm by an increased support

of collaborative activities in innovation policy (Broekel & Graf, 2012; Cantner & Vannuccini,

2018).

2.2 Cluster policies

Policy makers support clusters on national, regional and local levels (Kiese, 2019; Sternberg

et al., 2010). Frequently building on Porter’s cluster concept, these policies have an increase

in competitiveness of the region or nation as their ultimate goal. An intermediate goal to

achieve competitiveness is an increase in innovation by means of supporting R&D, collaboration

and network formation to facilitate knowledge spillovers. Such innovation-oriented cluster or

network policies are justified from different perspectives (see, e.g., Cantner & Vannuccini, 2018;

Graf & Broekel, 2020, for more detailed discussions). First, networks are known to drive the

economic and innovation performance of organizations and regions (Breschi & Lenzi, 2016;

Broekel, 2012; Fornahl et al., 2011). Second, funding of collaborative R&D to support network

formation is quite simple to implement in existing funding schemes (Broekel & Graf, 2012) and

has been shown to lead to behavioral additionality (Wanzenböck et al., 2013; Lucena-Piquero &

Vicente, 2019). Third, system or network failures reduce interorganizational knowledge access

and exchange because of intermediation, complementarity and reciprocity problems (Cantner

et al., 2011; Cantner & Vannuccini, 2018; Lucena-Piquero & Vicente, 2019).
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Cluster policies are rooted in a variety of policy fields, such as science and technology policy,

industrial policy and regional policy (Sternberg et al., 2010). Therefore, they come in various

forms and can show a wide set of design features (Hospers & Beugelsdijk, 2002, p. 382). Cluster

policies focus on actors when their goal is to provide support to specific groups of actors, such

as SMEs, start-ups or science industry relations. If the aim is to support specific industries

(industrial policy) or technologies with high potentials and expected impact (GPTs, climate

change mitigation), theme-related characteristics are of relatively greater importance. As with

innovation policy, we can distinguish between technology-specific and unspecific measures in

cluster policy. Take, for example, two prominent cluster policies in Germany. The BioRegio

contest was focused on promoting biotechnology (and was therefore technology-specific), whereas

the subsequent Leading-Edge Cluster Competition was open to all types of technologies and

industries (Rothgang et al., 2017; EFI, 2017). In both cases, clusters were selected by an

independent jury who took into account the capabilities and experience of actors, their past

and future interactions and the type of knowledge or technology to be created. Moreover, the

program directors and the jury valued or even expected interdisciplinary approaches and visions

regarding the cross-fertilization between related fields to open new technological pathways. For

example, Bioinstruments Jena was selected for its innovative coupling of organic chemistry and

microbiology with optics and instruments. Therefore, a combination of actors with diverse

capabilities and technological backgrounds with a “optimal” level of cognitive proximity could

be considered an asset.

The popularity of cluster policies attracts much research on their effects and consequences.

According to Mar & Massard (2021), there is ample evidence for positive effects on R&D inputs

while results on innovation-related outputs are mixed or inconclusive. Typically, such evalua-

tion studies focus on the economic and innovative effects on single firms (Nishimura & Okamuro,

2011; Broekel et al., 2015; Mar & Massard, 2021) or on regional aggregates (Engel et al., 2013).

However, a cluster consists not only of firms but of a variety of actors with different characteris-

tics, as well as the relations between them. In fact, the performance of a cluster is based on how

the different actors interact and not on how the single elements perform (Andersson & Karlsson,

2006). Recently, a number of studies tried to fill this gap by applying social network methods

within cluster policy evaluation (Giuliani et al., 2016; Töpfer et al., 2019; Graf & Broekel, 2020;

N’Ghauran & Autant-Bernard, 2020). Some of these studies indicate that there are short-term

intended effects of cluster policies on cohesion in actor networks, but they also point out limited

long-term effects and partly unintended structural effects, such as an increase in network cen-

tralization (Töpfer et al., 2019; Graf & Broekel, 2020). In contrast to the actor level, we know

very little about the cluster policy effects on the direction of technological development. Given

that technological innovations are one of the core goals of cluster policy and that politicians

strive to become more proactive in terms of the direction of innovation (Cantner & Vannuccini,

2018; Kattel & Mazzucato, 2018), we should also be more interested in effects on the technology

dimension.

2.3 Adding the knowledge space to cluster policy evaluation

One of the possible methods to measure knowledge generation over space and time (to map

the knowledge space) is to use the concept of relatedness. This method allows calculation of
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“proximities” between different technologies to give a sense of how knowledge in a particular

area (that could be a nation, a region or a city) is connected (Kogler et al., 2013). The concept

of relatedness is not new; in fact, it was already present in the innovation literature in the 1980s

and 1990s, where it was used to demonstrate the relevance of knowledge spillovers (Rosenberg

& Frischtak, 1983; Carlsson & Stankiewicz, 1991). In particular, Pavitt (1984) and Jaffe (1989)

argue that innovation is favored by connections between different fields of knowledge. Teece

et al. (1994) show how the knowledge base of a firm is linked to the portfolio of technologies it

owns. Breschi et al. (2003) use patent data to understand how firms diversification into related

technologies affects their performance.

Hidalgo et al. (2007) and Hausmann & Klinger (2007) were pioneers in studying the concept

of relatedness using international trade data to understand the “proximity” between exported

products among different countries. Their methods allow them to predict countries’ future

export specialization into related products based on its existing capabilities. Subsequent studies

followed this approach and adapted it to the regional level (Boschma et al., 2012; Neffke et al.,

2011; Quatraro, 2010; Kogler et al., 2013; Boschma et al., 2014; Balland et al., 2019). Kogler et al.

(2013) analyzed the knowledge space of the US and identified systematic differences between

cities in terms of knowledge space structure and evolution. For example, relatedness in small

cities is higher than in large cities, and higher levels of relatedness indicate higher growth in

knowledge production. Boschma et al. (2014) look into the drivers of technological evolution in

US cities and find that entry of a new technology in a city is more likely if it is related to existing

technologies, while the exit probability declines with increasing relatedness. However, cities with

a diverse knowledge space that is proximate to technologies outside their fields of comparative

advantage seems to have benefits in terms of higher resilience in phases of technological downturn

or crisis (Balland et al., 2015). From these studies, it follows that an expansion of the knowledge

space is easier to accomplish if it includes technological fields that are related to the region’s

existing competencies, thus strengthening its performance.

Despite this evidence on the relevance of the knowledge space for regional development,

we know little about policy effects on the knowledge space. In particular, cluster policies,

with their focus on actors with specific technological competencies, should affect the structure

of the knowledge space. We expect that supported fields of activity increase their visibility

and become more important within the knowledge space by either creating and/or intensifying

links within the field itself (along existing trajectories) or by creating links with previously

unrelated fields (cross-fertilization). In the case of BioRegio, one of the aims was to create

bridges between biotech and other technologies (Dohse, 2000; Staehler et al., 2007). Thereby,

regions should increase their capabilities to create new applications and a wider diffusion of the

technology. Against this background, we assess whether the policy met these expectations, and

more importantly, we provide a framework that might be used for other cluster policies.

3 The BioRegio Contest

To analyze if cluster policies have the ability to reshape the knowledge space and change its

technological trajectory, we focus on the German BioRegio contest. In the 1990s, Germany was

said to be lagging behind other leading countries (such as the US or the UK) in the development
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of a biotechnology industry (Cooke, 2001). There were some institutional barriers that prevented

the formation of a biotechnology industry in Germany. In particular, there was a low number

of companies that were performing biotechnology research, a weakly developed venture capital

market and governmental barriers connected to the regional support of biotechnology (Krauss &

Stahlecker, 2001). Therefore, the German federal government started to develop initiatives to try

to reduce the gap, with the BioRegio contest being one of them (Dohse, 2000; Kaiser & Prange,

2004; Dohse & Staehler, 2008). The main aims of this and subsequent policies was to stimulate

the development of life science clusters, increase the number of biotech start-ups, enhance the

performance of existing biotech firms, support the supply of venture capital and improve the

acceptance of biotechnology in the population (Eickelpasch & Fritsch, 2005; Champenois, 2012).

Another focal objective was to combine biotechnology with other technologies in novel ways

(Dohse, 2000; Dohse & Staehler, 2008). In fact, this last aspect is an important motivation for

our analysis, since the creation of new combinations between different technological fields is a

driver of knowledge space evolution.

BioRegio was a competitive program, encouraging proposals from different local authorities

that could meet these objectives. Submissions should highlight the core characteristics of the

respective region and how the network structure could support the achievement of the set objec-

tives (Müller, 2002; Dohse, 2000; Dohse & Staehler, 2008). The evaluation of the projects was

performed by an international jury of scientists, representatives of labor unions and industry.

The selection criteria for project assessment were the following (Dohse, 2000; Staehler et al.,

2007):

• number and size of firms oriented to biotechnology already present in the region;

• number, characteristics and productivity of research facilities and universities in the region;

• ways in which different biotech research branches interact in the region (networking char-

acteristics);

• supporting services (patent offices, information networks and consultancy);

• explanation of the possible strategies to convert biotechnology know-how present in the

region into new products, processes and services;

• offer of help on a regional level to support biotechnology start-up activities;

• provision of financial resources through banks and public equity to economically support

biotechnology firms;

• cooperation among clinical hospitals and biotech research institutes regionally;

• approval of new experiments and new facilities by the regional authorities through a smooth

process.

The regional boundaries were not predefined by the application call (there was no exact

indication about the composition of the consortium). Instead, local authorities could decide

autonomously which regions to include in their applications (Champenois, 2012). Neverthe-

less, geographic proximity played a substantial role, and the core actors were all located in
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close vicinity (Engel et al., 2013). The regions that participated are very different in terms of

population. For example, the most populated region (Berlin-Brandeburg) has a population of

6 million inhabitants, while the smallest one (Jena) has only slightly more than one hundred

thousand. Some applicants are single cities, while others are larger areas which include several

cities (Dohse, 2000).

Overall, 17 regions submitted proposals and three of them won the contest: Munich, Rhine-

land (Cologne, Aachen, Düsseldorf and Wuppertal) and the Rhine-Neckar triangle (Heidelberg,

Mannheim and Ludwigshafen). A special vote was given to Jena because of its specialization

in Bioinstruments and as the best proposal from an East German region (Dohse, 2000; Graf

& Broekel, 2020). Funding was provided from 1997 to 2005 (Staehler et al., 2007). The three

winning regions received support from the BMBF with 25 million EUR each and Jena was

supported with 15 million EUR in public funds (Engel et al., 2013). Due to its success, this

innovative approach towards clusters inspired other BMBF policy initiatives, such as: InnoRe-

gio, BioProfile, Leading Edge Cluster Competition and InnoProfile (Dohse & Staehler, 2008;

Eickelpasch & Fritsch, 2005; EFI, 2017).

Several studies evaluate the BioRegio contest and identify, in general, positive developments

according to various indicators, such as short-term R&D activity, venture capital funding, firm

births, employment growth and reputation effects (Staehler et al., 2007; Dohse & Staehler,

2008; Engel et al., 2013; Graf & Broekel, 2020). In contrast, Engel & Heneric (2008) find

that BioRegio participant regions which were not successful in the contest outperform winning

regions in terms of changes in the number of newly founded biotech firms during the funding

phase. The few studies that test for long-term effects of BioRegio on innovation activity or

innovation networks find mixed or inconclusive evidence (Engel et al., 2013; Graf & Broekel,

2020). One of the reasons for the difficulty of identifying long-term effects is that subsequent

biotech-related programs, such as BioProfile on the national level, or funding by the EU and

regional governments, had effects on a broader set of regions, which might be included in the

control groups of the respective studies. Given that we do not have access to funding data for all

levels of government, the present study suffers from the same limitation. However, if untreated

regions benefit from such unobserved policies, that should lead to an underestimation of the

observed policy effects.

4 Biotechnology in Regional Knowledge Spaces

4.1 Patents and regions

We use PATSTAT (Autumn 2017) as our primary source to detect innovative activities. The

International Patent Classification (IPC) on the 4 digit level (IPC4) is used to distinguish

between the different technologies. We adopt the OECD standard classification of biotechnology

(Van Beuzekom & Arundel, 2009) to identify IPC4 classes as biotechnology1.

Since patents are associated with different technological domains, they have proven to be a

valuable source of information in capability-based research (Breschi et al., 2003; Kogler et al.,

2013; Boschma et al., 2014; Balland et al., 2019; Whittle & Kogler, 2019). Their documentation

1At the IPC 4 digit level, these are A01H, A61K, C02F, C07G, C07K, C12M, C12N, C12P, C12Q, C12S and
G01N.
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is highly standardized so that they allow for dynamic analyses over long periods on various

levels of aggregation. However, patents also have several well-known limitations (see Griliches,

1990, for an overview). Patent analyses are limited to inventions that can be patented so that

they miss many non-patentable inventions, in particular in industries with a lower propensity

to patent, such as software or services. Besides, our analysis relies on the patent classification

system, and we assume that patents in the same IPC class are similar to each other but different

from those in other classes. Since this classification is done by the patent offices for other reasons

than this type of analysis, this might not hold true.

For the geographical boundaries of knowledge spaces, we assign each patent to a region if at

least one inventor resides in that area (Cantner & Graf, 2006; Toth et al., 2020). The inventor-

based approach is used because large companies or research institutes with many locations tend

to file patents at their headquarters, which is not necessarily where the invention originates

(Graf, 2017).

We consider Labor Market Regions (LMRs) for the regional boundaries. LMRs are aggre-

gates of NUTS3 regions which are designed to account for commuting patterns. By choosing

LMRs rather than NUTS3 regions, we better capture patents by inventors who reside in suburbs

or rural areas and commute to their workplace in larger cities. There are 141 LMRs in Germany

which comprise of cities with their surrounding areas. Our unit of observation are those LMRs

where at least one city that won the BioRegio contest is located.

Figure 1 shows a map of Germany with the 17 regions that participated in the BioRegio

contest. We distinguish between the four “winner” regions that were successful and received

grants and 13 “non-winners” that did not proceed to the funding stage (Dohse, 2000). Since

some applications were from networks of cities, LMRs do not always correspond to the areas

affected by BioRegio. In those cases, we aggregated smaller LMRs into larger areas.

4.2 Mapping the knowledge space

To map the knowledge space, we consider patent applications from 1986 to 2014 in the winning

and non-winning regions. This permits us to have enough time before and after the policy

was running to assess its impact. To account for fluctuations of patent applications, we follow

Boschma et al. (2014) and use five-year moving windows. For example, 1990 refers to the

five-year period 1986 until 1990 and includes all patent applications filed during those years.

This choice is motivated by the turbulence observed when using shorter periods, e.g., one year,

especially in smaller regions. The nodes of the network are the IPC4 classes, while the edges

based on the co-occurrence of IPC4 classes on patent applications, weighted according to their

relatedness.

For measuring relatedness (the “proximities” among the different technologies present in the

same space at the same time), we follow Basilico & Graf (2020) who use a two-step approach.

In the first step, we calculate a co-occurrence matrix and assume that the more patents are

assigned to two classes, the higher is their relatedness. To take into account that co-occurrences

between highly frequented patent classes are more likely, we standardize co-occurrences and

calculate relatedness between all pairs of IPC classes by using the Otsuka-Ochiai coefficient Cij

(Ochiai, 1957):
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Not Participating

Participant

Winner

Figure 1: BioRegio Participants and Winners

Cij =
cij√
ci · cj

(1)

Where cij is the simple number of co-occurrences between two technologies (i and j), the

square root of ci and cj represents the geometric mean of the size of the two technologies

(occurrence of i multiplied by the occurrence of j). The index can vary between 0 (no overlap)

and 1 (i and j always appear together).

In the second step, we compare these relatedness measures for each region (Cr
ij during one

period) with the world (Cw
ij world for the same period).The world relatedness helps us to under-

stand the degree to which the regional relatedness follows global trends. Thereby, we implicitly

assume that if two IPC classes are combined frequently in the world, the likelihood that they

are associated within any region increases.

The differences between the region (Cr
ij) and the world (Cw

ij) are used to map the knowledge

spaces, i.e., they are the edges in the regional knowledge spaces for each period. In the case of a

positive difference (Cr
ij −Cw

ij > 0), the region combines the classes i and j more frequently than

expected from observing the world relatedness.

4.3 Relational embeddedness of biotechnology

To illustrate the evolution of the knowledge space in a BioRegio winner region, figure 2 shows

the main components of Jena before, during and after the funding period. The black nodes

are IPC4 classes identified as biotechnologies by the OECD. In general, the knowledge space of

Jena increased in size over time, incorporating new technological sources. Biotechnology classes
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(a) 1993 (b) 2004

(c) 2010

Figure 2: Main components of the Jena knowledge space before, during and after the BioRegio program.
Node size is proportional to degree centrality with biotechnology IPC4 classes in black.

became central and well-embedded during the funding period. Afterwards, they maintained

some connections with other classes of the knowledge space.

In the following, we provide descriptive statistics on the development of the number of

connections in the regions that won the BioRegio contest. The most simple and straightforward

way to measure embeddedness of biotech classes in the knowledge space is to take a purely

relational view by calculating degree centrality2. Degree centrality of technology i is calculated

by taking the sum of its relations with other technologies in the knowledge space of a specific

region r in one period j (Freeman, 1978; Graf, 2017). We expect the biotech classes to interact

more intensely and with other technologies in the knowledge space during and after the funding

period.

To give a first impression, figure 3 shows the aggregate degree centrality for biotech classes

2Structural embeddedness, as measured by betweenness centrality, is addressed in section 5.
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Figure 3: Aggregated degree centrality for biotech IPC4 classes in winning regions

in the four winning regions over time. To aggregate, we take the sum of the degree centralities

calculated for each IPC4 class in biotech. The number of interactions with other classes increases

during the funding period (1997-2005) and reaches its peak by the end of it in all winning

regions. After funding ceases, there is a sharp decline of interactions, reaching levels below the

end of the pre-funding period. While this supports our expectation of biotechnological classes

becoming more embedded in the knowledge space of winning regions during the funding period,

it contradicts our expectations for the post-funding phase.

For a more fine-grained analysis, we take a closer look at the newly formed linkages in

the knowledge space. In order to aggregate not only the IPC4 classes belonging to the field

of biotechnology but also all other fields, we use the classification by Schmoch (2008). In this

classification, the IPC classes are grouped into 35 more broadly defined technology fields. In this

way, we can count the number of IPC4 links established (or dissolved) between biotechnology

and other fields. Figure 4 shows the number of new connections between biotech and the

respective fields for each region during and post-funding (the technologies are ordered according

to decreasing new connections during the funding period). New combinations are co-occurences

between IPC4 classes that have not been combined previously in the respective region. The

combinations with biotechnology classes in the pre-funding period are taken as reference to

calculate the new edges created during the funding period. Regarding the post-funding period,

both previous periods are taken together as a reference.

In line with our previous observation (figure 3), in all winning regions, most new combinations

are established during the funding period. The variety of the technological classes combined with

biotechnology in the four winning regions is wide. In Jena during the funding period, biotech-

nology establishes new connections mostly with Organic fine chemistry (14), Medical technology

(13) and Chemical engineering (23). To observe Medical technology to be increasingly related

with biotechnology is consistent with the focus of the projects in Jena on “Bioinstruments”.

After funding, the classes with most new combinations with biotechnology in Jena are Medical

technology (13), Chemical engineering (23), Basic Materials, chemistry (19) and Audio-visual

technology (2).

In Munich, during the funding period, biotechnology is mostly combined with Basic Ma-
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Figure 4: Number and type of new combinations with biotechnological classes created during and after
BioRegio

terials, chemistry (19), Food chemistry (18) and Other special machines (29). While in the

post-funding period the classes mostly combined with biotechnology are Basic Materials, chem-

istry (19), Food chemistry (18) and Thermal processes and apparatus (30).

The region Rhein Neckar during the funding period creates the highest number of edges with

biotechnology in Basic Materials, chemistry (19), Food chemistry (18) and Chemical engineering

(23). Whereas in the post-funding period, biotechnology is combined mostly with Textile and

paper machines (28), Machine tools (26) and Basic Materials, chemistry (19).

Rhineland combines biotechnology in the period during the funding mostly with Other special

machines (29), Basic Materials, chemistry (19) and Textile and paper machines (28). In the

post-funding period the classes are Basic Materials, chemistry (19), Textile and paper machines

(28), Electrical machinery, apparatus, energy (1), Engines, pumps, turbines (27) and Materials,

metallurgy (20).

Figure 5 shows the technological classes that lost connections with biotechnology in the

winning regions. Since there are 11 IPC4 classes in biotechnology according to the OECD

classification, it might happen that some biotech classes show new combinations while others

are less connected compared to the previous period.

In general, as already confirmed by figures 3 and 4, the number of interactions decreases in

the post-funding period. Therefore, we observe an increase in combinations that do not exist

anymore in the knowledge space of all winning regions. Another interesting result is that the

technological classes that scored high in figure 4 during funding also score high in the period

after funding, meaning that most of the new combinations created during BioRegio were not

maintained after funding. This suggests that the effect on the structure of the regional knowledge

space is limited to a short time span (at least in terms of the number of interactions with other

technologies).

Figure 6 shows the number of classes in each technological field which were connected with
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Figure 5: Number and type of combinations with biotechnological classes dissolved during and after
BioRegio

a biotech class during the funding period but not anymore afterwards. It is interesting to

observe that the classes with the highest numbers here are also the ones that established the

highest number of connections in the considered regions (figure 4). As such, most of the edges

established during the funding period disappeared afterwards. Apparently, these connections

were not maintained over time and in terms of creating new interactions in the knowledge space

so that BioRegio had only a short term effect.

For example, in Jena the classes Organic Fine Chemistry (14), Chemical Engineering (23)

and Macromolecular chemistry, polymers (17) were among the classes with the highest number

of new interactions with biotech classes during the funding period but lost many of these in the

post funding period. Similar patterns can be observed in the other regions as well. For Munich

it involves the classes Basic materials chemistry (19), Electrical machinery, apparatus, energy

(1), Medical Technology (13), Food chemistry (18) and Other special machines (29). For Rhein

Neckar it involves the classes 18, 19, Materials, metallurgy (20), 23, Textile and paper machines

(28) and 29. Finally, for Rhineland it involves classes 18, 19, 23, 28 and 29. However, there

are also exceptions, such as Medical technology (13) in Jena, which lost almost none of its new

combinations. Since this is a fundamental class to be combined with biotech classes in Jena’s

proposal on “Bioinstruments”, this suggests that the program had lasting effects in selected

areas of the knowledge space.

5 Econometric Approach

5.1 Structural embeddedness: betweenness centrality

Complementing the descriptive analysis of the previous section, we assess the impact of BioRegio

on the embeddedness of biotechnology in the knowledge spaces of regions with an econometric
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Figure 6: Number and type of combinations with biotechnological classes that are abandoned after the
time when BioRegio was running

approach. We measure embeddedness with the betweenness centrality (BC) of each IPC4 class

in the regional knowledge space. In contrast to degree centrality, which only considers the

direct linkages, this network based statistic captures the bridging function of a technology by

considering node positions in relation to all other nodes (Basilico & Graf, 2020). Because of

its ability to capture the structural embeddedness, we use it as the dependent variable in the

subsequently discussed difference in differences (DiD) approach.

Betweenness centrality measures the number of times that a node is in the shortest path

between two other nodes in the knowledge space. Thereby, it captures the importance of a node

for the overall connectedness of the network. A node with a high intensity relation to only one

other node could score high on degree centrality even though it is unconnected to the rest of the

network (Basilico & Graf, 2020). Betweenness centrality takes all indirect relations into account

and if a node with high betweenness disappears, the knowledge space would be less connected.

We therefore consider it more meaningful in the context of this analysis. Betweenness centrality

of node i is defined by:

BC
i =

∑
j<k

gjik
gjk

,∀i 6= j, k (2)

With i, j, k as distinct nodes, gjk is the number of geodesics between j and k and gjik is the

number of geodesics between j and k passing through i (Wassermann & Faust, 1994)3. We use a

weighted version of betweenness so that edges with high relatedness are shorter than edges with

low relatedness (Basilico & Graf, 2020). Since we are interested in nodes that are important for

the regional knowledge space, we only included the ones that have at least a score of 1, meaning

that they are at least once on the shortest path between two other nodes.

3We calculate the node betweenness centrality with the igraph package for R (R Core Team, 2018; Csardi &
Nepusz, 2006).
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For the econometric analysis, we take the logarithm of betweenness centrality since the raw

measure is highly skewed to the right (meaning there are many nodes with low betweenness and

few with high so that the mean is shifted to the right of the distribution).

5.2 Estimation strategy

The difference-in-differences (DiD) approach is widely used in the literature to assess the impact

of the introduction of a policy on some performance indicators. Our approach is based on two

different regression models. In the first one, we assume that biotech was treated by the policy

while other technologies have not, i.e., we assess if biotechnology became more embedded in

the knowledge space of the winning regions relative to other fields. In this case, we compare

betweenness among the biotech IPC4 classes with all non-biotech IPC4 classes. This analysis is

performed only among the winning regions. The linear model is the following (the time index

is dropped for readability):

logBC
i,r∈W = β0 + β1Time+ β2Bioi,r + β3(Time×Bioi,r) + γi + δr + µ (3)

where logBC
i,r∈W is the natural logarithm of betweenness centrality calculated for each IPC4

class (i) in all winning regions (r ∈ W ), Time is a dummy variable that takes value zero in

the pre-treatment period (1990-1996) and value 1 in the post-treatment period (two different

regressions for the time during and after BioRegio), Bio takes the value zero if the IPC4 class is

not identified as biotechnology while it takes value one if it is, γ and δ are the control variables

on the technology and regional level and µ represents the residuals.

In the second model, we assume that the policy treatment took place on the level of the

region. Therefore, we compare betweenness of biotechnology classes within winning regions

with betweenness in non-winning regions. With this regression, it is possible to understand if

any trend of increased embeddedness of biotechnology identified by the model 1 is also present

in other regions. If this should be the case, BioRegio would not have affected the transformation

of the knowledge space of the winning regions, but there is rather a more general trend of higher

bridging of biotechnology. The second model is the following:

logBC
i∈B,r = β0 + β1Time+ β2Winningi,r + β3(Time×Winningi,r) + γi + δr + µ (4)

where logBC
i∈B,r is the natural logarithm of betweeennes centrality calculated only on the

IPC4 classes identified as biotechnology (i ∈ B) in all regions (r), Time is a dummy variable that

distinguishes between the pre-treatment period (before BioRegio) and the post-treatment period

(for the time during and after BioRegio was running), Winning is a dummy variable which is

zero IPC4 classes in the non-winning regions and one for those that won the competition, γ and

δ are controls and µ are the residuals.

In both models, a treatment effect is observed by the coefficient of the interaction term. By

differentiating between policy effects during and after funding, we capture four different effects:

biotech compared to non-biotech within winning regions and biotech in winning as compared

to non-winning regions, each in the short and in the long run. As noted above, our dependent
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variable is calculated on a knowledge space based on patent applications during a five-year

period. By using moving windows for smoothing, our approach might not be best suited to

identify immediate policy effects. However, given the nature of the knowledge space and the

policy, we think that this a more conservative and therefore appropriate approach.

Using patent data as described in section 4.1, we generate several variables for the whole

period (1990-2014) at the level of the single IPC4 class in each region. Table 1 contains all

variables used for the regressions along with short descriptions. Tables 2 and 3 present descriptive

statistics of the subsets of these variables used in the respective regressions. Correlations are

presented in tables 8 and 9 in appendix A.

5.3 Control variables

We control for several variables that might affect the position of a technology within the knowl-

edge space. The first one is the log of the number of patents in an IPC4 class in one region in a

specific period (Log patents). This variable is used to control for potentially disturbing effects of

IPC4 classes with high patenting activity on the betweenness measure. Since there is a positive

correlation between betweenness and the number of patents (0.59 in table 8 and 0.47 in table 9),

the possibility that a node with more patents is central in the knowledge space is higher, but

we are interested in the structural embeddedness induced by the policy beyond the size effect.

Avg Team Size measures the average number of inventors in each IPC4 class. For each

patent, we calculate the number of inventors and take the average for each IPC4 class. There

is a constant, general increase in the division of labor, which shows in more and larger teams in

science and research (Wuchty et al., 2007). This trend might affect the number of interactions

between different technologies since, with increasing the team size, there is more interaction

among people with potentially different backgrounds. This could impact the structure of the

knowledge space, with an increased number of interactions between different technological fields

due only to a physiological increase in the team size and not due to the BioRegio program itself.

The third control variable is a dummy variable that distinguishes between regions located

in East and West Germany (East). It takes value 1 for all observations from the East and

0 otherwise. This is important since, especially in the period after reunification, there was a

big difference between patenting activities in the Eastern and Western part of Germany. West

Germany had a higher research intensity and patented more than the East, and even though

there are some high-patenting regions in the East, the process of catching-up is still ongoing.

Since we cover the period right after reunification (1990-1996) as our pre-treatment period, we

have to control for these structural differences.

The Neighbour dummy is one for all observations from non-winning regions that are neighbors

of regions that won the contest. The regions that won the contest could have influenced indirectly

other neighboring areas in their biotech patent production. Because of such spillovers, we should

consider the possibility that an increasing betweenness centrality in one of the non-winning

regions is due to funding in a neighboring area. In the literature, there is evidence that when

a cluster is supported by a policy, then automatically the neighbors also indirectly increase the

number of their relationships within the cluster (Delgado et al., 2014). This is mainly evidenced

in the inventor/applicant clusters, but if there are more relationships and more patents on this

level, then the technological space might also be influenced. For the nature of this variable, it
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Table 1: Variables used in the regressions

Variable Name Description Regressions
Dependent Variable

Log Betweenness Centrality Betweenness centrality logarithm measured on each
node in the regional technological space

Both

Independent Variables
Time During BioRegio Dummy variable that takes value one when the year

is between 1997 and 2005
Both

Time After BioRegio Dummy variable that takes value one when the year
is between 2006 and 2014

Both

BioTech Dummy variable that takes value one when the IPC
class is a biotechnology according to OECD classi-
fication

First

Winning region Dummy variable that takes value one when the
node is from a winning region

Second

Interaction Term During BioRegio Interaction term used for the DiD approach, takes
value one only for the treatment group in the period
between 1997 and 2005

Both

Interaction Term After BioRegio Interaction term used for the DiD approach, takes
value one only for the treatment group in the period
between 2006 and 2015

Both

Control Variables
Log Number of Patents Logarithm of the number of patents for each IPC

class
Both

Avg Team Size Average team size calculated for each IPC class Both
East Dummy variable that takes value one when the

node is from a region in the former German Demo-
cratic Republic (GDR)

Both

Neighbor Dummy variable that takes value one when the
node is from a region sharing a common border
with a winning cluster

Second

Table 2: Descriptive statistics for model 1 (table 5)

Variable Name N Mean SD Min Max

Dependent Variable

Log Betweenness Centrality 28302 5.226 1.728 0.000 9.292

Independent Variables

Time During BioRegio 28302 0.378 0.485 0.000 1.000
Time After BioRegio 28302 0.374 0.484 0.000 1.000
BioTech 28302 0.028 0.164 0.000 1.000

Control Variables

Log Number of Patents 28302 2.810 1.284 0.000 7.336
East 28302 0.055 0.227 0.000 1.000
Avg Team Size 28302 1.693 0.617 1.000 9.167

is only used in model 2 where non-winning regions are present.

6 Results

6.1 Biotechnology compared to other technologies in winning regions

Figure 7 shows the total number of patents in the winner regions for each of the two groups

considered as treatment (biotech IPC4 classes) and control (non-biotech IPC4 classes) groups in

model 1 (table 5). It becomes apparent that both groups experienced an increase in the number

of patents during the period when BioRegio was running. In the period after BioRegio, the

number of filed patents declined for both groups. However, as pointed out above, to assess the

policy effects on the knowledge space it is not sufficient to simply count the number of patents.

It is not the amount of the innovative activity that determines the quality of a system. Instead,

18



Table 3: Descriptive statistics for model 2 (table 7)

Variable.Name N Mean SD Min Max

Dependent Variable

Log Betweenness Centrality 2872 5.765 2.020 0.000 9.292

Independent Variables

Time During BioRegio 2872 0.380 0.485 0.000 1.000
Time After BioRegio 2872 0.365 0.482 0.000 1.000
Winning region 2872 0.273 0.446 0.000 1.000

Control Variables

Log Number of Patents 2872 3.698 1.510 0.000 7.602
East 2872 0.210 0.407 0.000 1.000
Neighbor 2872 0.191 0.393 0.000 1.000
Avg Team Size 2872 1.894 0.551 1.000 5.200
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Figure 7: Number of patents (model 1 (table 5) for Biotech (treatment) and non-biotech (control) IPC4
classes)

it is the number and the quality of interactions among the elements of this network. Therefore,

it is necessary to use measures able to evaluate the changes on the structure of the knowledge

space over time.

Table 4 shows a mean comparison of the log betweenness centrality for the two considered

groups. In addition to the means of both groups, their difference, the significance and the

standard errors are shown for each considered year. It is important to note that the hypothesis of

parallel trends in the pre-treatment period (fundamental condition for the DiD approach) cannot

be rejected. The difference between both groups in the period before funding is marginal and not

significant. However, a difference between the two groups starts to develop while BioRegio was

running. The gap widens by the end of the considered period when it also becomes statistically

significant.

Figure 8 shows the predicted values of log betweenness for treatment and control groups

from the base-line model (considering only logBC
i,r∈W and β2Bioi,r) for model 1. The graph adds

support to the hypothesis of parallel trends in the pre-treatment period observed in table 4. The

visual representation helps us to understand how the predicted values change over time, and we

observe an increasing difference between the dashed (treatment group) and the solid (control

group) lines. This indicates that BioRegio had a positive influence on the embeddedness of

biotechnological classes in the knowledge spaces of the winning regions. In the post-treatment

period, both curves show an increase in betweenness centrality. Since this might be related
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Table 4: Mean comparison of log betweenness centrality. Treatment and control groups as in model 1
(table 5)

Year Non-Biotech Mean Biotech Mean Difference SE
Pre-Treatment

1990 5.344 5.341 -0.003 0.443
1991 5.277 5.253 -0.025 0.444
1992 5.293 5.252 -0.042 0.404
1993 5.281 5.394 0.114 0.415
1994 5.299 5.291 -0.008 0.424
1995 5.347 5.393 0.046 0.429
1996 5.320 5.081 -0.239 0.479

During-Treatment
1997 5.263 5.330 0.067 0.442
1998 5.248 5.453 0.205 0.340
1999 5.253 5.406 0.153 0.344
2000 5.104 5.528 0.424 0.325
2001 5.092 5.447 0.355 0.376
2002 5.047 5.378 0.331 0.382
2003 5.030 5.383 0.353 0.400
2004 5.053 5.531 0.478 0.406
2005 5.084 5.412 0.328 0.390

Post-Treatment
2006 5.179 5.718 0.54 0.368
2007 5.229 5.697 0.468 0.425
2008 5.227 5.822 0.595 0.415
2009 5.269 5.988 0.719. 0.379
2010 5.289 5.931 0.642. 0.377
2011 5.259 5.991 0.732* 0.328
2012 5.269 5.871 0.601. 0.330
2013 5.218 6.174 0.955** 0.348
2014 5.277 6.229 0.952* 0.381
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Figure 8: Fitted trends comparison for model 1

to the simultaneous decrease in the total number of patents, it is necessary to control for the

number of patents in the subsequent regressions.

To test the influence of BioRegio on biotechnology embeddedness, we performed a classical

DiD regression, i.e., a simple OLS with clustered standard errors over time with regional fixed

effects (table 5). The first column (model 1a) shows the results for the period in which the

policy was running. Here, the interaction term is negative and significant. This indicates that

the policy in this time frame was not effective in better connecting biotechnology with other

classes in the winning regions. As such, it did not contribute to an increased connectedness

and density in the knowledge spaces beyond its positive impact on the number of patents in

biotechnology.

In model 1b, we test if there are effects in the period after BioRegio funding. Here, the

interaction term becomes positive and significant. This means that the biotechnology classes

become more important and more connected in the knowledge space of the winning regions

compared to other technologies in the post-treatment period4. One possible interpretation of

these results is that during the initial stages of the program, research was focused on incremental

and refined what was already known. Later in the funding period, research shifted and started

to connect biotechnology with other, distant fields. Due to the time lag between funding and

patentable output, which might also differ between incremental and more radical innovations, an

exact attribution of these changes is difficult. Nevertheless, our findings indicate that BioRegio

was a trigger to allow exploration of different capabilities that were not accessible inside the

regions before.

6.2 Biotechnology in winner and non-winner regions

Figure 9 shows the evolution of the average number of biotechnology patents in the treatment

(winner regions) and control (non-winner regions) groups for model 2. Since in this case we

4As explained by Basilico & Graf (2020) the usage of a different methodology to map the knowledge space
can change the results when calculating centrality measures. Using a simple co-occurrence matrix instead of a
relatedness matrix, the results on the calculated betweenness centrality do not vary.
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Table 5: Comparing structural embeddedness between biotech and non-biotech classes in winning regions
(DiD regression, robust standard errors and regional fixed effects)

Dependent variable:

Log Betweenness Centrality
Model during funding Model after funding

(1a) (1b)

Time During BioRegio −0.453∗∗∗

(0.060)

Time After BioRegio −0.172∗∗∗

(0.057)

BioTech −0.778∗∗∗ −0.997∗∗∗

(0.077) (0.082)

Interaction Term During BioRegio −0.243∗

(0.128)

Interaction Term After BioRegio 0.352∗∗∗

(0.121)

Log Number of Patents 0.879∗∗∗ 0.878∗∗∗

(0.007) (0.007)

East 0.630∗∗∗ 0.629∗∗∗

(0.042) (0.042)

Avg Team Size −0.232∗∗∗ −0.231∗∗∗

(0.011) (0.011)

Observations 28,304 28,304
R2 0.382 0.382
Adjusted R2 0.382 0.382
Residual Std. Error (df = 28274) 1.359 1.359
F Statistic (df = 29; 28274) 603.578∗∗∗ 603.912∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 9: Number of patents over time (model 2 (table 7) treatment and control groups)

use the same number of classes (only from biotechnology) among different knowledge spaces,

it is possible to compare them by their averages. We observe that both curves have a similar

development. Biotech classes both in winning and non-winning regions have a rather low average

number of patents in the period before the funding, while in the period during funding, there is

the peak for both groups and then finally a decrease in the period when funding ceased. This

means that even if the curve for the winners is higher, there is no big difference in relative

changes in patenting activity when comparing biotechnological classes in winning and non-

winning regions. Nevertheless, as stated above, the number of patents it is not sufficient to

assess if there was an increased interaction among the nodes in the knowledge space.

Table 6 shows the means of log betweenness, their differences and standard errors for con-

trol and treatment groups in model 2 for each year. The control group is mainly above the

treatment group in terms of betweenness centrality. This situation changes only in the post-

treatment period. In fact, here the gap is lower, and in some years, the treatment group is above

the control group. This result gives already some insights on what to expect from the DiD re-

gressions. Moreover, the difference in means in the pre-funding period is never significant. So,

the assumption of parallel trends, which is important for the DiD approach, cannot be rejected.

Figure 10 represents the DiD approach for model 2 using a base-line model without controls.

Here, the result shown in table 6 become even clearer. Betweenness centrality increases steadily

in both groups after the start of BioRegio. Before and during treatment, biotechnology in the

control group (solid line) is structurally more embedded than in the treatment group. However,

in the post-treatment period, biotechnology embeddedness in the two groups becomes more

similar. The relatively lower embeddedness in the winning regions can be explained by their

strength in several other fields so that initial embeddedness of biotech was lower despite absolute

strength in terms of the number of patents. The sharper increase, in particular after funding,

indicates long term changes in the knowledge space which might be induced by the policy.

To test this, in table 7, we present the results for models 2a and b. Model 2a evaluates if

BioRegio had a significant impact on biotechnology embeddedness in the period when the policy

was running, while model 2b evaluates the significance for the post-treatment period. For both

models, it holds that winning regions show a significantly lower betweenness centrality than the
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Table 6: Mean comparison of log betweenness centrality. Treatment and control groups as in model 2
(table 7)

Year Participating Mean Winning Mean Difference SE
(Control group) (Treatment group)

Pre-Treatment

1990 5.755 5.341 -0.413 0.494
1991 5.789 5.253 -0.536 0.495
1992 6.082 5.252 0.444
1993 5.877 5.394 -0.483 0.467
1994 5.725 5.291 -0.434 0.481
1995 5.696 5.393 -0.303 0.477
1996 5.720 5.081 -0.639 0.515

During-Treatment

1997 5.822 5.330 -0.492 0.481
1998 5.561 5.453 -0.108 0.400
1999 5.664 5.406 -0.259 0.405
2000 5.702 5.528 -0.174 0.390
2001 5.752 5.447 -0.305 0.427
2002 5.806 5.378 -0.427 0.434
2003 5.694 5.383 -0.311 0.454
2004 5.606 5.531 -0.075 0.464
2005 5.636 5.412 -0.225 0.456

Post-Treatment

2006 5.686 5.718 0.032 0.441
2007 5.932 5.697 -0.235 0.475
2008 5.768 5.822 0.054 0.471
2009 6.035 5.988 -0.047 0.430
2010 6.139 5.931 -0.208 0.418
2011 6.142 5.991 -0.151 0.378
2012 6.073 5.871 -0.202 0.380
2013 6.130 6.174 0.044 0.398
2014 6.202 6.229 0.026 0.418
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Figure 10: Fitted trends comparison for model 2

control regions. With respect to period differences, the first model (2a) shows that betweenness

centrality in the time during BioRegio is significantly lower than in the other periods. The

second model (2b) delivers that for the time after BioRegio, there is no significant difference

in betweenness centrality to the periods before. The interaction of time during BioRegio and

winning region is positive but not significant. However, in the post-treatment period, the in-

teraction term turns out positive and significant. This means that the biotech classes in the

winning regions become more important than their corresponding classes in the non-winning

regions. This result is quite important because it shows that when comparing biotech classes

among regions (some affected by the policy and some not), the positive effect on betweenness

is larger in the regions that won the contest. As such, winning regions have a knowledge space

with better embedded biotechnological classes by the end of the considered period5.

7 Conclusion

Innovation oriented cluster policies, such as the German BioRegio contest, have the potential

to change the behavior of actors in terms of increased innovation activities and interaction

(Engel et al., 2013; Graf & Broekel, 2020). Such effects, measured on the individual (firm)

level, find substantial support in the literature (Nishimura & Okamuro, 2011; Mar & Massard,

2021). In that respect, they do not differ much from other types of innovation policies, such

as general R&D subsidies. However, the ambition of cluster policies goes beyond increased

innovation and interaction, and it also aims at more ample structural effects in terms of specific

technologies pursued and links to other technologies intensified or newly created. For the purpose

of evaluation of such policy targets, there is a need to identify respective policy impacts in

a causal way. Since targeted structural effects might not show up in the short term, such

evaluation studies need to focus, in particular, on long term effects. Complementing research on

5These results are robust to the selection of regions. We performed the same analyses with a more homogeneous
subsample of regions. For each winning region, we manually select the most similar non-winning region in terms
of the number of biotechnology patents during the pre-funding period and ran models 2a and b. Since the results
do not change much (slightly higher model fit), we refrain from presenting them here. Tables are available upon
request.
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Table 7: Comparing structural embeddedness of biotech classes between winning and non-winning
regions (DiD regression, robust standard errors and regional fixed effects)

Dependent variable:

Log Betweenness Centrality
Model during funding Model after funding

(2a) (2b)

Time During BioRegio −0.496∗∗

(0.245)

Time After BioRegio 0.263
(0.225)

Winning region −0.820∗∗∗ −0.899∗∗∗

(0.093) (0.100)

Interaction Term During BioRegio 0.022
(0.152)

Interaction Term After BioRegio 0.241∗

(0.144)

Log Number of Patents 0.727∗∗∗ 0.727∗∗∗

(0.020) (0.020)

East 0.043 0.042
(0.085) (0.085)

Neighbour −0.033 −0.033
(0.083) (0.083)

Avg Team Size −0.252∗∗∗ −0.249∗∗∗

(0.048) (0.048)

Observations 2,872 2,872
R2 0.278 0.279
Adjusted R2 0.271 0.271
Residual Std. Error (df = 2841) 1.726 1.725
F Statistic (df = 30; 2841) 36.507∗∗∗ 36.623∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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policy effects on the structure of actor networks (Graf & Broekel, 2020; N’Ghauran & Autant-

Bernard, 2020), we investigated their impact on the regional knowledge space. As an interesting

case, we took biotechnology and the BioRegio program in Germany. We studied changes in

the embeddedness of biotechnology in regional knowledge spaces and how this was affected by

BioRegio.

We argue that supported fields of activity, in our case biotechnology, should increase their

visibility and importance within the knowledge space by either creating and/or intensifying links

within the field itself (along existing trajectories) or by creating links with previously unrelated

fields (cross-fertilization). Our descriptive analysis shows that in the four winning regions,

biotechnology was connected with many other fields in the knowledge space during funding.

However, we also observed a decrease in those inter-technological linkages in the periods after

the funding. In connecting biotechnology with other fields, all four winner regions showed

distinct patterns of specialization. In Jena, for example, many links were established with

medical technology, while in Rhineland, novel combinations with textiles and paper machines

were developed. In general, many of the new combinations were with classes in the broader field

of chemistry.

We complemented this dyad-based analysis with an econometric approach to assess the

policy impact on the embeddedness of biotechnology within the knowledge space of supported

regions. To measure embeddedness, we used betweenness centrality of IPC4 classes in the

regional knowledge spaces and implemented it as the dependent variable in two sets of diff-in-

diff estimations. In the first set, we compared biotech with non-biotech IPC4 classes in winning

regions and find a positive effect of the policy on the embeddedness of the biotech classes only

after the funding period. By focusing only on winning regions, this setting did not allow us to

unambiguously identify policy effects, since increasing biotechnology embeddedness could also

have been a result of a general technological trend. Therefore, in a second set of regressions,

we compared biotechnology in winning and non-winning regions. Again, our results indicate a

positive policy effect on the knowledge space integration of biotechnology only after the funding

period. Given that patent applications increase substantially during the funding period but

drop afterwards, this finding is somewhat startling. One reasonable interpretation would be

that research during initial stages of BioRegio was concerned with incremental progress along

the lines of existing research, while public funding via the BioRegio program allowed for research

that was more risky and connected biotechnology with more distant technological fields. That

type of research takes more time to develop, which might explain why such a transformative

effect of the policy shows up only after the funding period.

Compared with other evaluations of the BioRegio program, our research implies that long

term effects of cluster policies can be manifold. While neither Engel et al. (2013) nor Graf

& Broekel (2020) find evidence for long term effects on innovation outputs or actor network

structures, our findings show that the direction of the search process was shaped by the policy.

We have to acknowledge, though, that our research approach did not allow for a comparison

with other, simultaneous policy measures.

A generalization of our findings has limitations due to the nature of the analysis. First, like

several other studies on the knowledge space, we rely on patents which limits our analyses to

inventions that can be patented. As such, we miss many non-patentable inventions like advances
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in software and services. Second, our analysis relies on the patent classification system which

implies that the patents classified within each class are assumed to be similar but substantially

different from others. Since this classification is done by the patent offices for other reasons

than this type of analysis, this might not hold true. Third, measuring treatment effects with

moving windows is also subject to limitations. Immediate policy effects might be blurred since

periods overlap. Fourth, since we do not control for other policies that support biotechnology,

we cannot exclude that they had effects on the knowledge space as well. Generalizing the results

to other cluster policies seems challenging, as each policy has its own objectives, characteristics

and design features.

Future research should focus on the effects of these induced changes in the structure of the

knowledge space on regional innovative and economic performance. This is fundamental, since

the usage of performance indicators can really capture if a policy had an effect on the innovative

activity of a region, whereas, the creation of new technological combinations cannot be directly

translated to an increase in more and better innovations in the region.
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A Correlation Tables

Table 8: Correlation table for models 1a and b (table 5)

(1) (2) (3) (4) (5) (6) (7)

(1) Log Betweenness Centrality - -0.04*** 0.02*** 0.03*** 0.59*** -0.07*** 0.03***
(2) Time During BioRegio - -0.60*** 0.00 0.02*** 0.01*** 0.02***
(3) Time After BioRegio - -0.01 0.05*** 0.06*** -0.01***
(4) BioTech - 0.20*** 0.09*** 0.11***
(5) Log Number of Patents - -0.16*** 0.29***
(6) East - 0.13***
(7) Avg Team Size -

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Table 9: Correlation table for models 2a and b (table 7)

(1) (2) (3) (4) (5) (6) (7) (8)

(1) Log Betweenness Centrality - -0.06*** 0.08*** -0.06*** 0.47*** -0.09*** 0.02 0.02
(2) Time During BioRegio - -0.59*** 0.01 0.08*** 0.02 -0.01 0.03
(3) Time After BioRegio - -0.01 0.08*** 0.02 0.01 -0.08***
(4) Winning region - 0.24*** -0.05*** -0.30*** 0.23***
(5) Log Number of Patents - -0.15*** -0.04*** 0.41***
(6) East - 0.16*** 0.19***
(7) Neighbour - 0.07***
(8) Avg Team Size -

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
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