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Abstract

In the context of incompressible fluids, the observation that turbulent singular
structures fail to be space filling is known as “intermittency”, and it has strong ex-
perimental foundations. Consequently, as first pointed out by Landau, real turbulent
flows do not satisfy the central assumptions of homogeneity and self-similarity in
the K41 theory, and the K41 prediction of structure function exponents ζp = p/3

might be inaccurate. In this work we prove that, in the inviscid case, energy dis-
sipation that is lower-dimensional in an appropriate sense implies deviations from
the K41 prediction in every p-th order structure function for p > 3. By exploiting
a Lagrangian-type Minkowski dimension that is very reminiscent of the Taylor’s
frozen turbulence hypothesis, our strongest upper bound on ζp coincides with theβ-
model proposed by Frisch, Sulem and Nelkin in the late 70s, adding some rigorous
analytical foundations to the model. More generally, we explore the relationship
between dimensionality assumptions on the dissipation support and restrictions on
the p-th order absolute structure functions. This approach differs from the current
mathematical works on intermittency by its focus on geometrical rather than purely
analytical assumptions. The proof is based on a new local variant of the celebrated
Constantin-E-Titi argument that features the use of a third order commutator esti-
mate, the special double regularity of the pressure, and mollification along the flow
of a vector field.

1. Introduction

In any spatial dimension d � 2 we will consider the incompressible Euler
equations

{
∂tv + div(v ⊗ v) + ∇ p = 0
divv = 0,

(1.1)
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on � × (0, T ), where the spatial set � is either the d-dimensional torus Td or the
whole space Rd .

A classical theorem of Constantin-E-Titi [14] following [27], which confirmed
an already quite rigorous prediction of Onsager [49], is that an Euler flow that fails
to conserve the kinetic energy

ev(t) := 1

2

∫
�

|v(x, t)|2 dx

cannot have “more than 1/3 of a derivative in L3”, or more precisely, it cannot belong
to a Besov class L3

t (B
θ
3,∞) for any θ > 1/3 (see Section3 for a definition of Besov

norms and [15] for a survey of related results).1 The resolution of the Onsager
conjecture over the past few decades has confirmed that the exponent 1/3 is sharp
[5,37,38]. The aim of this paper is to prove theorems of Constantin-E-Titi type that
connect to the phenomenon of intermittency and lower dimensional dissipation
in turbulent flows. We start by explaining the relevant background and giving a
rough statement of our strongest result (Theorem 1.1 below), while we postpone to
Section2 all the rigorous statements.

1.1. Theoretical Background and Main Physical Result.

Physically, theConstantin-E-Titi theoremhas the interpretation of a “singularity
theorem”. It implies that (L2 compact) sequences of Navier–Stokes solutions with
viscosity tending to zero must exhibit unbounded growth of the L3

t (B
θ
3,∞) norm for

every θ > 1/3 if the rate of kinetic energy dissipation remains bounded from below
[24]. Experimentally, there is considerable evidence for the persistence of energy
dissipation at low viscosity (which is known as the “0-th law of turbulence”, see [55]
for a recent review), and L2 compactness is a consequence of observed scaling of
the energy spectrum [7]. Persistence of energy dissipation in the vanishing viscosity
limit has also been recently shown to exist mathematically for the forced Navier–
Stokes equations [3] and the passive-scalar advection (scalar theory of turbulence)
[11]. Consequently, singular Euler flows that arise in the inviscid limit and dissipate
energy form natural objects to model the behavior that can occur in the vanishing
viscosity limit of fully developed turbulence. The critical exponent 1/3 that plays
a pivotal role in the Constantin-E-Titi singularity theorem is also the regularity
predicted by the K41 theory of turbulence [40] for a (dissipative) turbulent flow.

More precisely, K41 predicts the size of “absolute structure functions”, which
measure the average velocity fluctuations at scale |�| in the inertial range of length
scales (where viscosity presumably plays no role). The K41 prediction is a scaling
law

〈|v(x + �) − v(x)|p〉1/p ∼ |�|ζp/p,

1 See [28] for an extensive description of Onsager’s contributions to the modern theory
of fully developed turbulence.
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with ζp/p = 1/3 for all p � 1, where 〈·〉 is some relevant averaging procedure,
space, time or ensemble. When we interpret the averaging as a spatial average, this
scaling law translates to exact2 B

ζp/p
p,∞ = B

1/3
p,∞ regularity of the limiting Euler flows,

for which all small length scales lie in the inertial range. Remarkably, however,
this scaling law appears to be inconsistent with experiments (at least for d = 3),
indicating that the homogeneity and self-similarity assumption of the K41 theory
appears to be false for real turbulent flows. Shortly after the appearance of the K41
theory, the possibility that the scaling of structure functions could deviate fromK41
was first pointed out by Landau [30]*Section 6.4, leading Kolmogorov to revisit his
theory [41] in 1962 (see [31] for a historical account). Indeed, what appears to hold
is that for p noticeably larger than 3, the averages are larger than K41 predicts, so
that the exponent ζp/p < 1/3, while for p noticeably smaller than 3 the averages are
smaller than K41 predicts (ζp/p > 1/3). We refer to [34] for a very recent numerical
evidence of this fact. The exponent p = 3 has a special role in turbulence theory
relating to the Kolmogorov 4/5 law—an exact result relating the energy dissipation
of a solution to its third order (signed) structure function. Further reading on some
aspects of intermittency (or lack thereof) for p = 3 can be found in [23,26].

What the strongest main theorem of this article shows (Theorem 2.12) is the
following (informal) statement for Euler flows whose energy dissipation fails to
be spatially homogeneous. check Here we emphasize that the relevant regularity
threshold is strictly below 1/3 and that the relevant range of integrability exponents
is the range p > 3:

Theorem 1.1. (Rough inviscid statement) If the dissipation of energy of an Euler
flow on R

d or Td is nontrivial and supported on a lower dimensional set (in the
appropriate sense), then there is a linear upper bound on absolute structure function
exponents for all p > 3 that lies below the K41 prediction ζp/p = 1/3. More precisely,
let θp = 1/3− (d−γ )(p − 3)/3p, where γ ∈ [0, d) is an upper bound on the dimension
of the dissipation set in the sense of Theorem 2.12. Then, if θ ∈ (0, 1), the velocity
field cannot be of class L p

t (Bθ
p,∞) for any θ > θp.

In terms of the structure functions of an Euler flow, this theorem is a quantitative
upper bound of the form ζp/p < 1/3 for all exponents p > 3 under the assumption
of nontrivial, lower-dimensional energy dissipation. In particular, these absolute
structure functions become larger than K41 predicts. Note that θp > 0 for all
p � 3 if and only if γ ∈ [d − 1, d].

Beyond the statement of this theorem, our proof provides a machinery for
turning certain assumptions about lower-dimensionality of the dissipation measure
into conclusions about the Besov regularity of the solutions. The strongest versions
of this argument apply to the full range p > 3 as the above theorem states, but
weaker assumptions lead to weaker conclusions. Similarly to the Constantin-E-Titi
theorem, our result can equivalently be stated as criteria for the conservation of
energy (see indeed the rigorous statement given in Theorem 2.12 below): If the

2 Consequently, we interpret ζp/p mathematically to be the supremum of θ such that v ∈
Bθ
p,∞.
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dissipation is lower-dimensional in the appropriate sense and the regularity of the

solution is L p
t (B

θp+ε
p,∞ ), then the energy is conserved. However, our proof contains

some new ingredients compared to the Constantin-E-Titi argument and its known
generalizations that are related to the analysis of local energy dissipation (see (2.1)
below): One has to deal with trilinear commutators, the improved double regularity
of the pressure from [12,13,35] plays a crucial role, and the construction of a
specific cut-off is needed to test the local energy balance (2.1) since it can only be
interpreted in a distributional sense in our Besov class of solutions. The definition of
the cut-off is indeed the key point in order to handle different notions of dimension.

The statement of the above theorem (as well as our other main theorem, Theo-
rem 2.9) is strongly motivated by the phenomenon of “intermittency” in turbulence,
which is the property that turbulence empirically fails to be space-filling and can
even be concentrated on lower dimensional sets (see [2,32,46] and also [52] for
some numerical evidence). This “patchiness” of turbulence and how it relates to
anomalies in the exponents ζp (see for instance the discussion in [31]) still rep-
resents an important and challenging problem in mathematical physics. What our
main theorem establishes is a quantitative downward deviation from the K41 theory
for absolute structure functions of order greater than 3 that relates the dimension of
the dissipation to the structure function exponent ζp. For other interesting mathe-
matical works addressing intermittency we refer to [4,9,10,29,42,43,48,51]. The
latter works focus on a purely analytical approach to intermittency, while in this
note we are exploring a more geometrical one, which we hope gives some differ-
ent/new insights on the topic.

Our quantitative relationship between the upper bound on the dimension and
the upper bound on the structure functions exponents ζp turns out to be exactly the
one proposed by Frisch, Nelkin and Sulem in [33] in their “β-model”. The β-model
has been among the first simple attempts to correct the K41 theory by introducing
nonhomogeneity in modeling turbulence. Indeed, in the physically relevant three
dimensional case, they assume that at each stage of the the Richardson cascade
process, the total volume occupied by the eddies decreases by a fraction β < 1,
and they derive a prediction consistent with Theorem 1.1:

ζp = p

3
− (3 − Dβ)

p − 3

3
, (1.2)

where Dβ is what they call the “intermittency dimension” or “self-similarity di-
mension,” motivated by the nomenclature in the work of Mandelbrot [44]. The
parameter Dβ describes the fraction of the space in which an appreciable part of
the energetic excitation accumulates along the cascade process. As stated in [1] the
β-model (with Dβ 	 2.8) (1.2) fits experimental data rather well for not too large
values of p. We refer to [30, Chapter 8] for a more detailed discussion about the
different fractal and multifractal intermittency models that have been proposed to
correct K41.

While our proof provides a general machinery to analyze the link between lower
dimensional dissipation and Besov regularity of the solution, we limit ourselves to
two main theorems (Theorems 2.9 and 2.12), together with a corollary (see Corol-
lary 2.14), that concern spatial intermittency. These theorems use different notions
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of dimension and therefore lead to different conclusions. For futurework it is also of
interest to consider slightly different hypotheses and different notions of dimension
(for instance a Frostman or Hausdorff one). The “Lagrangian-type Minkowski di-
mension” thatwe use in Theorem2.12 (seeDefinition 2.11) is stronglymotivated by
Taylor’s frozen turbulence hypothesis [53] which asserts that “all turbulent eddies
are advected by the mean streamwise velocity, without changes in their properties”;
see [47,57] for more recent empirical tests of the Taylor hypothesis.

The two main theorems (Theorems 2.9 and 2.12) emphasize the role of inter-
mittency in space, as the dissipative set is allowed to (but does not have to) exist
for all times and concentrate on lower dimensional sets in space only. In addition to
these, we prove a result (Theorem 2.3, similar to [18, Lemma 2.1]) that addresses
the implications of intermittency in time. Physically, this result has the following
consequence: if one believes the K41 prediction for the third order structure func-
tion ζ3 = 1 to be exact in the inviscid limit, and also in the 0-th law that energy
dissipates independent of viscosity, then the time support of the limiting dissipation
must occupy the whole time interval of existence, leaving no gaps in time where
dissipation does not occur. This result gives further motivation to study the conse-
quences of dissipation that is lower dimensional in space but persists for all time,
which is allowed by the two main theorems, Theorems 2.9 and 2.12. More gener-
ally, the time intermittency result quantitatively links the gap between ζ3 and 1 with
the second order structure function ζ2 and the dimension of the set of dissipation
times.

We remark that adding an external force on the right hand side of the first
equation in (1.1) of the kind f ∈ Lq

x,t does not affect our spatial intermittency
analysis, and it can be easily incorporated in our estimates (see Remark 5.5 for
details). However, since this would have unnecessarily burdened the statements,
we prefer not mention it in our main theorems.

Before going into the precise definitions and statements of the results proved in
the current paper, let us see the implication of Theorem 1.1 for incompressible flows
in the infinite Reynolds number limit and how it fits in the existing mathematical
literature.

1.2. Interpretation in the Inifinite Reynolds Number Limit

Let us point out that, in the sameway that theConstantin-E-Titi theorem extends
to a singularity theorem for a vanishing viscosity limit of solutions toNavier–Stokes
(see for instance [24]), our result also implies a statement about the inviscid limit.

Theorem 1.2. (Rough vanishing viscosity statement) Let {vν}ν>0 be a smooth se-
quence of solutions to the incompressible Navier–Stokes equations on T

d or Rd

with ν → 0. Assume that vν → v in L2
x,t and that the dissipation ν|∇vν |2 accumu-

lates on a nontrivial lower dimensional set with dimension upper bound γ ∈ [0, d)

in the sense of Definition 2.11. Then for p > 3, by setting θp = 1/3−(d−γ )(p − 3)/3p,
and θ ∈ (0, 1), it must hold that

lim
ν→0

∥∥vν
∥∥
L p
t (Bθ

p,∞)
= +∞, ∀θ > θp.
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The previous theorem shows that, under the assumptions of L2
x,t compactness

(which is mild from the point of view of the observations in [7] but in general is

not rigorously justified), all the intermittent Besov norms L p
t (B

θp+ε
p,∞ ) must blowup

in the inviscid limit, if the limiting dissipation is nontrivial and lower dimensional.
Let us remark that in this context, nontrivial dissipation is usually stated as

lim inf
ν→0

ν

∫ T

0

∫
�

|∇vν |2 dxdt > 0, (1.3)

which indeed might be seen as a precise mathematical formulation of the 0-th law
of turbulence.

Leaving out for a moment whether or not this is plausible for real turbulent
flows, when γ = d − 1 Theorem 1.2 implies that no global fractional regularity
measured in the L∞

x scale can be retained in the infinite Reynolds number limit
if the dissipation is nontrivial and concentrated on a codimension−1 set. That is,
more precisely, θp = 1/p → 0 as p → ∞, which is equivalent to ζp = 1 for all
p. We refer to [34] for the most updated numerical simulations predicting actual
values of ζp, for p � 12, with plausible saturation ζp → const. for p → ∞.
Codimension−1 singularities also appear in shocks-types singularities for various
compressible models. Much of the authors work contained in this paper carry over
to this setting, with suitable additional assumptions, and it would show the authors’
conclusions are sharp for a certain class of solutions. We emphasise that truly
concave and bounded upper bounds on ζp, that is without imposing ζp = 1 for all
p, can be deduced by our analysis given in Theorem 2.9. This is again related to
codimension−1 singularities, but with a possibly weaker notion of dimensionality
(see Definition 2.5). Details are given in Remark 2.10.

In Theorem 2.17 we will give the rigorous counterpart of the previous result,
which relies on the Lagrangian notion of dimension.

1.3. Comparison with the existing literature.

Let us start by noticing that under the homogeneity assumption, that is when
γ = d, the critical threshold given in Theorem 1.1 (as well as all the results in
both space and time we prove in this paper) automatically coincides with the K41
(and thus Onsager) prediction θ = 1/3, thus providing an honest generalisation of
the energy conservation criterion of Constantin-E-Titi to the intermittent setting.
Moreover, our Theorem 1.1 also matches (modulo the definition of dimension)
with the energy conservation of d-dimensional Vortex Sheets proved in [50] by
R. Shvydkoy. See also the recent work [20] where the first named author together
with M. Inversi generalized such energy conservation, with no assumptions on the
structure of the singular set. Vortex Sheets are intermittent incompressible flows in
the class L∞ ∩ BV (which by interpolation belong to B

1/p
p,∞ for all p � 1) which

are smooth outside a regular enough codimension−1 surface (the sheet) across
which they have a jump discontinuity in the transversal direction. Indeed our result
proves that, when singularities form atmost a codimension−1 set, the threshold that
determines energy conservation is θp = 1/p, which is exactly the critical regularity
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of aVortex Sheet.We refer to Remark 2.15 for amore rigorous discussion. Note that
such a threshold θp = 1/p coincides also with codimension−1 Burgers shocks (that
formally corresponds to γ = 0 in 1d Burgers) which, contrary to Vortex–Sheets,
are also consistent with a nontrivial energy dissipation [30]*Pages 142-143.

A non-quantitative precursor to Theorem 1.1 was given in [37], where the sec-
ond author proved (by a rather different argument) that an energy-nonconserving
solution cannot be of class L p

t (B
1/3
p,∞) for any p > 3 if its dissipation is supported

on a set of space-time Lebesgue measure zero. Moreover, our result drastically
improves [19] (see also [6], which at the best of our knowledge has been the first
attempt to analytically/quantitatively analyze lower dimensional singularities) by
the first author and S. Haffter by removing any sort of hypothesis on the quanti-
tative smoothness of the velocity field v outside the singular set and moreover by
developing a machinery that requires only an assumption on the dimensionality of
the support of the dissipation. Notice that the set in which the dissipation is sup-
ported is clearly always contained the complement of the set in which the velocity
is C1. In contrast to our Theorem 1.1, note that the two main theorems of [6,19]
cannot really be thought as purely intermittency results: They both assume some
quantitative behaviour of v outside the singular set, which in turn implies that, if the
dimension of the singular set is small enough, v ∈ L3

t (B
1/3+
3,∞), thus always relying

on control of the third order exponent ζ3. Instead the results we provide in this
paper not only rule out the condition of quantitative smoothness outside a small
set, but directly restrict the p-th order structure functions for p > 3 under general
conditions while placing no restriction on ζ3 that implies energy conservation.

Regarding the complementary range p < 3, we note that convex integration
has been recently applied to produce energy-nonconserving Euler flows even be-
yond the ζp/p = 1/3 threshold in [4,48], supporting the expectation that dissipation
in the vanishing viscosity limit is consistent with structure functions exponents
larger than the ones predicted by Kolmogorov. Note that there is some heuristic
consistency between our result and the intermittent Onsager theorem proved in
[48]. They produce dissipative solutions of Euler belonging to L∞− ∩ H

1/2− which
by interpolation gives B

1/p−
p,∞ for every p � 2, or equivalently in terms of structure

functions exponents ζp = 1 (up to an ε) for all p � 2, and moreover their con-
struction indicates, at least heuristically, that spatial singularities are concentrated
on a 2-dimensional set [48, Remark 1.2]. This is indeed consistent with the upper
bound given by Theorem 1.1, which, modulo the specific notion of dimension, in
the case γ = 2 (in the three dimensional setting d = 3) forces ζp � 1 (at least for
all p � 3) in order to allow the Euler equations to support dissipation. Thus, our
result also shows that a 2-dimensional singular set is the smallest one that can be
achieved for the dissipative solutions constructed in [48]. Further discussions on
intermittency phenomena for p < 3 can be found in [30].

2. Precise Statements

Before giving the precise statements of all the intermittency results in both space
and time, we recall the energy balance for Euler which will allow us to rigorously
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define what we mean by dissipation, together with its lower dimensionality, in our
context.

2.1. Local energy balance and Duchon-Robert distribution.

From [25] we have the local energy balance

∂t

( |v|2
2

)
+ div

(( |v|2
2

+ p

)
v

)
= −Dv, (2.1)

for some distribution Dv ∈ D′(� × (0, T )), known as the Duchon-Robert distri-
bution, whenever v ∈ L3

loc(� × (0, T )). The distribution Dv measures the local
dissipation of energy of turbulent inviscid flows. When the solution arises as a limit
in L3

x,t of classical or more generally “dissipative” (see [25, Section 3] for the
definition of a dissipative solution) Navier–Stokes solutions vν , that is

{
∂tv

ν + div(vν ⊗ vν) + ∇ pν − ν�vν = 0
divvν = 0,

(2.2)

then Dv is necessarily a non-negative distribution, and thus by Riesz’s Theorem it
is a measure, that is equal to the weak limit of the local dissipation measures of the
Navier–Stokes flows if vν is regular enough; that is,

lim
ν→0

ν|∇vν |2 = Dv, in D′(� × (0, T )), (2.3)

as soon as vν → v in L3
x,t . For a general Euler flow in L3

x,t we have the formula

Dv = lim
ε→0

Rε : ∇vε in D′(� × (0, T )), (2.4)

where vε = v∗ρε is a standard regularisation in space and Rε := vε⊗vε−(v⊗v)ε is
the Reynolds-type stress tensor arising from averaging at scale ε the only nonlinear
term in the equation (see for instance (3.7) below). For further formulas of the
dissipation measure and its connection with some Lagrangian aspects of turbulence
we refer to [22].

It is known that Dv is the trivial distribution Dv ≡ 0 whenever v ∈ L3((0, T );
Bθ
3,∞(�)) for θ > 1/3 [8,14,25]. Technically the original proof of (2.1) from [25]

uses a slightly different approximation for Dv and the proof of the specific formula
(2.4) has been given by the second author in [37], which also shows that Sptx,t D

v

is contained in the singular support of v relative to the critical conservative space,
see [37, Theorem 4].

2.2. Time intermittency

We start with a couple of results whose goal is to investigate the case in which
singularities are not time-filling but they instead concentrate on a lower dimen-
sional set. In addition to their novelty in the current literature, they also serve as a
motivation to consider the spatial intermittency in which singularities can happen
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for every time as discussed at the end of this section. We analyse the singularities in
time in the spirit of [18, Theorem 1.1] in which the lower bound on the dimension
of singular times comes as a consequence of the Hölder regularity of the kinetic
energy (see for instance [12,35])

|ev(t) − ev(s)| � C |t − s| 2θ
1−θ (2.5)

for solutions v ∈ L∞((0, T ); Bθ
3,∞(�)). It is worth mentioning that from [21] the

energy regularity (2.5) is sharp. More precisely most of the solutions to Euler (in
the appropriate sense) do not posses any better regularity than (2.5), and fail to
have monotonic kinetic energy on every interval. In connection to intermittency in
turbulence, this result gave (at least partially) a positive answer to the conjecture
from [39], indicating that energy dissipation is highly unstable upon the slightest
departure from the 1/3 law (or more specifically the regularity B

1/3
3,∞).

The L∞-in time regularity assumption on v is essential to get the desired Hölder
regularity (2.5) of the kinetic energy, but, as already claimed in [16] while inves-
tigating the helicity regularity, a weaker integrability in time would still imply
a suitable Sobolev (or Besov) regularity of conserved quantities like the kinetic
energy or the helicity. Indeed, we have

Proposition 2.1. Let � be T
d or the whole space R

d , d � 2. Let θ, β ∈ (0, 1),
p � 3, and v ∈ L p((0, T ); Bθ

3,∞(�))∩ L
2p/3((0, T ); Bβ

2,∞(�)) be a weak solution
of Euler. Then

‖ev(· + h) − ev(·)‖L p/3
t

� C |h| 2β
1−3θ+2β ,

for all h �= 0 and for some constant C > 0, namely ev ∈ B
2β

1−3θ+2β
p/3,∞ ([0, T ]) and we

implicitly assumed that the time integral in the previous formula is computed for
all times t such that t, t + h ∈ (0, T ). In particular, as an L1([0, T ]) function, ev

is constant if θ > 1/3.

The previous proposition generalizes the Sobolev regularity ev ∈ W 1,p/3([0, T ])
obtained in [35, Theorem 1.6] when θ = 1/3. Moreover, we make a distinction
between the two spatial regularities (θ and β) of the velocity v when measured in
the two different integrability scales L3

x and L2
x , to allow the second order structure

function to have higher regularity exponents, which is expected from observable
turbulence. We remark that in the periodic case � = T

d the assumption v(t) ∈
Bβ
2,∞(�) is redundant whenever β � θ , and one gets

‖ev(· + h) − ev(·)‖L p/3
t

� C |h| 2θ
1−θ

by only assuming v ∈ L p((0, T ); Bθ
3,∞(�)). This is clearly not possible when

� = R
d , where a suitable spatial regularity v(t) ∈ Bβ

2,∞(Rd) is essential to estimate
the quadratic terms that always arise when splitting the energy increments with
respect to the energy evε of the averaged velocity vε (see the estimate (4.1) below).
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For sake of clarity let us define what wemean by conservative/non-conservative
solutions in this context inwhich the kinetic energy ev is not necessarily continuous.

Definition 2.2. (Conservative/non-conservative solutions) Let v ∈ L2((0, T )×�)

be a weak solution to Euler. We say that v is a conservative solution if e′
v ≡ 0 in

D′((0, T )), that is

〈e′
v, ϕ〉 = 0, ∀ϕ ∈ C∞

c ((0, T )). (2.6)

Consequently, we call non-conservative solutions the ones for which (2.6) fails.

Being a conservative solution according to the previous definition means that ev

is a constant in the sense of L1([0, T ]) functions, which coincides with the usual
definition ev(t) = ev(0) for all t ∈ [0, T ] as soon as v ∈ C0([0, T ]; L2(�)).
However, we have decided not to add any continuity assumption on the kinetic
energy in order to keep the results more general.

In what follows we will denote dimMST the upper Minkowski dimension of
the set ST ⊂ (0, T ) (see Section3 for the rigorous definition). Similarly to [18,
Lemma 2.1], we then get the following:

Theorem 2.3. Let � be Td or Rd , d � 2. Let p � 3, θ ∈ (0, 1/3), β ∈ (0, 1) and
v ∈ L p((0, T ); Bθ

3,∞(�)) ∩ L 2p/3((0, T ); Bβ
2,∞(�)) be a weak solution of Euler.

Suppose that there exists a closed set of times ST ⊂ (0, T ) with dimMST = γ < 1
such that v is conservative on ScT × �. Then v conserves the kinetic energy if

2β

1 − 3θ + 2β
> 1 − p − 3

p
(1 − γ ).

We note that by [8] a sufficient condition for being conservative outside ST is that
v is locally of class L3

t B
1/3
3,c0

on ScT × �.
The proof of the previous theorem will be given in Section4. As a corollary

we obtain the corresponding lower bound on the Minkowski dimension of singular
times of non-conservative weak solutions of Euler, which can be equivalently read
an upper bound on the regularity exponents θ, β.

Corollary 2.4. Let � be Td or Rd , d � 2. Let p � 3, θ ∈ (0, 1/3), β ∈ (0, 1) and
v ∈ L p((0, T ); Bθ

3,∞(�)) ∩ L 2p/3((0, T ); Bβ
2,∞(�)) be a non-conservative weak

solution of Euler. Suppose that there exists a closed set of times ST ⊂ (0, T ) with
dimMST = γ < 1 such that v is conservative on ScT × �. Then it must hold

2β

1 − 3θ + 2β
� 1 − p − 3

p
(1 − γ ). (2.7)

Note that, as soon as p > 3 and γ < 1, inequality (2.7) implies that dissipative
solutions must have their L3 regularity index θ < 1/3, no matter the value of β.
The gap between θ and 1/3 becomes larger when the L2 regularity index β is larger,
which means that higher values of ζ2 imply larger downwards deviations from K41
in the third order structure functions—that is unless, of course, the time support of
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the dissipation has dimension γ = 1. Since a gap where the L3 regularity index
θ lies below 1/3 may be regarded as unphysical, for example in its contrast to the
4/5-ths law, we are motivated to find conditions under which there are no gaps in
time having zero dissipation but nonetheless intermittency in the structure functions
can be observed. The main theorems that follow allow for this behavior.

2.3. Spatial intermittency

To state our main results concerning lower dimensional singularities in space
we will need different notions of Minkowski-type dimension of the dissipative set
S ⊂ � × (0, T ), that is the support of the Duchon-Robert distribution Dv from
(2.1), that is

S := Sptx,t D
v.

In the following wewill refer to the support of the distribution Dv as the dissipation
support and we will denote byHk the k-dimensional Hausdorff measure, k ∈ N.

Definition 2.5. (Eulerian time stable Minkowski dimension) Let � be R
d or Td .

Given a set S ⊂ � × (0, T ) we will say that S has Eulerian time stable Minkowski
dimension at most γ ∈ [0, d], with instability parameter β > 0, if, by letting
τ = δβ and defining

(S)δ,τ := {(x + h, t + s) : (x, t) ∈ S, |h| < δ, |s| < τ } ,

to be the space-time δ, τ -neighbourhood of the set S, it holds

Hd+1((S)δ,τ ∩ M) � δd−γ , (2.8)

for all δ > 0 sufficiently small and every bounded set M ⊂ � × (0, T ), where
the implicit constant in (2.8) might depend on d, β, γ and M , but it is otherwise
independent on δ.

The necessity of introducing the bounded set M in (2.8) is to cover the case � =
R
d and allowing the dissipation support to be unbounded (in space). However,

we remark that since we are willing to prove a local energy conservation result
according to (2.1), the local properties of the dissipation support are the only ones
that really matter. Clearly when � = T

d the set M does not play any role and it
can simply be removed.

The parameter β is called the “time instability parameter” because it quantifies
how long in time a covering by cylinders can remain a covering, and thus quantifies
how “rough” the motion of the set is in time. Moreover, by the previous definition
it readily follows that if a set S has Eulerian Minkowski dimension at most γ , with
time instability parameter β > 0, then the same Eulerian dimension upper bound
holds true for every other instability parameter β ′ > β. Similar to the standard
Minkowski one, our Eulerian notion of dimension can be reformulated in terms
of a box-counting one: The set S can be covered by at most τ−1δ−γ space-time
cylinders

{Cδ,τ
i

}
i of spatial radius δ and time length τ = δβ . Notice that all of such

cylinders have Hd+1
(Cδ,τ

i

) = τδd .
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Example 2.6. An easy example of a set that satisfies the definition above is the
Galilean transformation of a γ -dimensional set.

Example 2.7. More generally, consider the image of a γ -Minkowski dimensional
set S̃ ⊂ T

d through the flow of a Lipschitz vector field U ∈ L∞((0, T );Lip(�)).
More precisely if S̃ ⊂ T

d satisfies

Hd
((
S̃
)
δ

)
� δd−γ ,

then the space-time set

S =
{(

φU (x, t), t
)

: x ∈ S̃, t ∈ (0, T )
}

has Eulerian time stableMinkowski dimension at most γ with instability parameter
β = 1, where φU = φU (x, t) is the flow associated to the vector fieldU = U (x, t),
that is ⎧⎨

⎩
d
dt φ

U (x, t) = U
(
φU (x, t), t

)

φU (x, 0) = x .

Indeed, consider a covering of S̃ by O(δ−γ ) δ-balls. Evolving the covering, each
ball will evolve in a bounded time T to a (possibly distorted) ball of diameter at

most Cδ by the Grönwall inequality, where C ∼ e
T ‖∇U‖L∞

x,t . Thus any time t slice
of S can be covered by O(δ−γ ) δ-balls, and if we double the radii of these balls and
use the boundedness of U , such a covering at time t remains a covering for a time
interval of size ∼ δ. This observation combined with the equivalence observed in
the following remark shows that S has upper Minkowski dimension at most γ + 1
in space-time and therefore has Eulerian Minkowski dimension at most γ with
instability parameter β = 1.

Remark 2.8. (Standard Minkowski vs Definition 2.5) Notice that when the insta-
bility parameter β � 1 then it readily follows that the Eulerian Minkowski dimen-
sion from Definition 2.5 is implied by the more common space-time γ + 1 upper
Minkowski dimension (see Section3 for the definition), and they actually coincide
if β = 1, while for β < 1 the Eulerian–Minkowski dimension is strictly stronger.
Indeed, suppose that S ⊂ T

d × (0, T ) has upper Minkowski dimension at most
γ + 1. Then by (3.3), denoting by [S]δ the space-time tubular neighbourhood of
width δ of the set S, one has

Hd+1([S]δ) � δd+1−(γ+1) = δd−γ ,

which, together with (S)δ,δβ ⊂ [S]2δ for every β � 1, gives that S has Eulerian
time stable Minkowski dimension at most γ with instability parameter β � 1.

Theorem2.9 below can thus be stated purely in terms of the classicalMinkowski
dimension in space-time, while Eulerian–Minkowski dimension with β < 1 will
be used to formulate the Corollary 2.14 below, which has a stronger conclusion.
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Note also that the Euler equations have separate scaling symmetries in space and
time, so demanding a particular relationship between the two variables in defining
dimension may not be entirely natural. We therefore have introduced the general
notion of Eulerian time stable Minkowski dimension at this point to draw attention
to the importance of the concept of time stability (informally, how long do coverings
by balls remain coverings), in obtaining our conclusions.

We are now ready to state our first result about spatial intermittency.

Theorem 2.9. (Eulerian intermittency) Let � be Rd or Td , d � 2. Let γ ∈ [0, d],
p ∈ [3,∞], θ ∈ (0, 1) and v ∈ L p((0, T ); Bθ

p,∞(�)) be a weak solution of Euler.
Assume that the dissipation set S ⊂ �×(0, T ) has Eulerian time stable Minkowski
dimension at most γ with instability parameter β = 1 according to Definition 2.5
(or equivalently, in virtue of Remark 2.8, S has space-time Minkowski dimension
at most γ + 1), namely

Hd+1 (
(S)δ,δ ∩ M

)
� δd−γ , (2.9)

for all δ > 0 sufficiently small and some bounded set M ⊂ � × (0, T ). Then
Dv ≡ 0 if

2θ

1 − θ
> 1 − (d − γ )

p − 3

p
. (2.10)

Since 2θ/(1 − θ) < 1 ⇐⇒ θ < 1/3, it is clear that as soon as γ < d (and assuming
the dissipation to be nontrivial), the above theorem implies intermittency in every
structure function of order p > 3.3

Remark 2.10. In view of the previous theorem, together with the equivalence ob-
served inRemark2.8,when the space-timeMinkowski dimensionof the set inwhich
the nontrivial dissipation concentrates is at most d, then it must hold 2θ/(1 − θ) � 3/p,
which in terms of structure function exponents reads as

ζp � ζ ∗
p = 3p

3 + 2p
.

Coherently with what recent simulations show [34], the above expression of ζ ∗
p , as

a function of p � 3, is concave, bounded and gives ζ ∗
3 = 1. Even if our analysis is

limited to the range p � 3, the fact that

d

dp
ζ ∗
p

∣∣∣∣
p=3

= 1

9
<

1

3
,

also matches, assuming aC1 behaviour in p, with the empirical evidence of upward
deviations from K41 predictions for p < 3.

3 The assumption of L p
t can be replaced by L3t or Lqt with 3 � q � p without changing

the argument. The details are given in Remark 5.3.
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In view of Examples 1 and 2 of sets that satisfy Definition 2.5, we naturally ob-
tain the following dichotomy, which is in fact an intuitive interpretation of Theorem
2.9.
Dichotomy (Interpretation of Theorem 2.9). If the dissipation is nontrivial in an in-
compressible non-viscous flow and is supported on a (spatially) lower dimensional
set, then either the dissipation support is moving very rapidly in time (that is it
cannot be contained in the Lipschitz flow of a set with the same spatial dimension)
or there is intermittency in every p-th order structure function with p > 3.

The above dichotomy yields one reason to look for a (possibly stronger) notion
of dimension that will allow for a stronger result. That is, we may be interested in
dissipation sets that do move rapidly in time if they are indeed adapted to a low
regularity solution. Perhaps more importantly, Theorem 2.9 gives a result that is
weaker in terms of intermittency than the prediction of the β-model that we desire
(since 3θ > 2θ/(1 − θ)), and thus we look for a dimensional assumption that will yield
a stronger result.

Intuitively, based on the Taylor hypothesis, we expect the fine scale oscillations
of the velocity field, which in turn support the dissipation, to be carried along
the coarse scale flow. We will therefore put forth a definition of dimension that is
tailored to the flow map of a smooth approximation to our rough vector field.

In what follows we will denote by �V
s : � × (0, T ) → T

d × (0, T ) the flow
map associated to the vector field V : � × (0, T ) → R

d , namely

�V
s (x, t) :=

(
φV
s (x, t), t + s

)
, (2.11)

where φV
s (x, t) solves

⎧⎪⎨
⎪⎩

d
dsφ

V
s (x, t) = V

(
φV
s (x, t), t + s

)

φV
0 (x, t) = x .

By the classical Cauchy-Lipschitz theory such a flow is well defined whenever
V ∈ C0

t (Lipx ). We are now ready to introduce the following definition

Definition 2.11. (Lagrangian time stable Minkowski dimension) Let � be R
d or

T
d . Let S ⊂ � × (0, T ) and v ∈ Lq((0, T ); L p(�)) be a coarse incompressible

vector field, for some p, q ∈ [2,∞]. We will say that S has Lagrangian time stable
Minkowski dimension at most γ ∈ [0, d], with instability parameters β1, β2 > 0
relative to v, if (there exist implicit constants such that) for all sufficiently small
δ > 0 there exists an incompressible vector field V δ of uniformly Lipschitz class
V δ ∈ C0([0, T ];Lip(�)) such that

∥∥v − V δ
∥∥
Lq
t (L p

x )
� δβ1 , (2.12)

and, by defining the δ, τ -Lagrangian tubular neighbourhood

LV δ

(S)δ,τ :=
{
�V δ

s (x + h, t) : (x, t) ∈ S, |s| < τ, |h| < δ
}

, (2.13)
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it holds

Hd+1
(
M ∩ LV δ

(S)δ,τ

)
� δd−γ if τ = δβ2 , (2.14)

for every δ > 0 small enough and every bounded set M ⊂ � × (0, T ), where the
implicit constant in (2.14) might depend on d, β1, β2, γ and M , but it is otherwise
independent of δ.

As for Definition 2.5, also in this case there is a hierarchy of (in)stabilities.
Indeed, if a set has Lagrangian time stable Minkowski dimension at most γ with
instability parameters β1, β2, then it is also the case for every other couple of
parameters β ′

1 � β1 and β ′
2 � β2. Also, the Lagrangian dimension we gave can be

equivalently computed by counting cylinders: To cover the set S we need at most
τ−1δ−γ Lagrangian cylinders

{Lδ,τ
i

}
i , generated by a Lipschitz incompressible

vector field V δ which is δβ1 close to v in the Lq
t (L

p
x ) topology, with spatial radius

δ and time length τ = δβ2 . Notice that each such cylinder hasHd+1
(Lδ,τ

i

) = τδd .
Let us emphasize that there will always be at least one family V δ satisfying the

stability requirement (2.12) measured by the parameter β1 for the class of velocity
fields v ∈ L p

t (Bθ
p,∞), with p � 3, we will consider. Indeed, one can simply choose

V δ = v ∗ρδ to be the spatial mollification of v at scale δ, or even at a smaller length
scale δ′ < δ, and by standard mollification estimates (see (3.4) below) deduce
β1 � θ in (2.12), which is actually satisfactory for our main Theorem 2.12 below.
Moreover, since v is a solution to Euler, such a V δ solves distributionally

∂t (∇V δ) = −∇ (div(v ⊗ v) + ∇ p) ∗ ρδ

from which, since p � 3, one deduces that ∂t∇V δ ∈ L
p/2
t (L∞

x ) and consequently

V δ ∈ W 1,p/2
t (Lipx ) ⊂ C0

t (Lipx ).

Definition 2.11, however, has the desirable feature that it depends only on v and S,
and does not depend on a choice of mollifying kernel, while the additional stability
parameter has the advantage of allowing for weaker or stronger assumptions on v.

Definition 2.11 accords well with the Taylor hypothesis of frozen turbulence,
which claims that fine structures of a turbulent flow (in this case singularities or
more generally points in the dissipation support) are advected by an averaged ver-
sion of the velocity. Indeed, we use Lagrangian neighborhoods and we consider
regularizations of the velocity field including mollifications.

In terms of this notion of Lagrangian-type Minkowski dimension we have the
following theorem, which represents the precise counterpart of the rough Theo-
rem 1.1 stated above:

Theorem 2.12. (Lagrangian intermittency) Let � be Rd or Td . Let p ∈ [3,∞],
θ ∈ (0, 1), γ ∈ [0, d] and v ∈ L p((0, T ); Bθ

p,∞(�)) be a weak solution of
Euler. Assume that the dissipation set S ⊂ � × (0, T ) has time stable Lagrangian
Minkowski dimension at most γ , with instability parameters β1 = θ and β2 =
1 − θ + (d − γ )/p relative to v (according to Definition 2.11). Then Dv ≡ 0 if

θ >
1

3
− (d − γ )

p − 3

3p
.
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Note that, by reading the previous theorem in terms of structure function exponents
(remember ζp = θp), it gives the linear upper bound (1.2) when d = 3, which
is then precisely consistent with the β-model, for solutions of Euler that support
nontrivial dissipation, modulo of course the notion of dimension we used. Indeed
our theorem implies that, assuming dissipation to be γ dimensional in the above
sense, the β-model prediction is the largest possible choice of ζp which is consistent
with anomalous dissipation.Note also that in case of full codimension, that isγ = 0,

the β-model prediction coincides with the Sobolev embedding B
1/3
3,∞ ⊂ L

3d
d−1−ε: If

γ = 0 the β-model gives 3ζp = p(1−d)+3d, which intersects the p axes exactly

in p∗ = 3d
d−1 . In other words, assuming B

1/3
3,∞ to be exact in view of the 4/5-ths law,

velocities with dissipation of full codimension will always have finite p moments,
for all p < p∗. As for the Eulerian theorem, also Theorem 2.12 can be generalised
to v ∈ Lq

t (B
θ
p,∞), for any (possibly different) p, q � 3. See Remark 5.4. The

choice of β2 in the above theorem is the one giving the optimal conclusion; see but
for any given β2 � 0 our proof still gives a nontrivial quantitative relation between
θ and γ , with explicit dependence on β2. In terms of the Taylor hypothesis, it may
be reasonable to assume that β2 = 0, since the vector field V δ , which is purported
to carry the singularities of the flow, is allowed to be arbitrarily close to the solution
v. The dependence of β2 on the codimension d − γ might, at least heuristically, be
coherent with the following fact: The higher the codimension, larger the portion of
space in which the flow is “regular”, and thus themore time stability of singularities
is plausible.

The proof of the two above Eulerian and Lagrangian type of spatial intermit-
tency theorems will be given in Section5. Moreover, by putting together the two
theorems from above, one can sort of merge the two notions of dimension and
give the following, which can be thought as an intermediate definition between
Definitions 2.5 and 2.11:

Definition 2.13. (Eulerian–Lagrangian time stability) Let � beRd or Td . Let S ⊂
�× (0, T ) and v ∈ Lq((0, T ); L p(�)) be an incompressible vector field, for some
p, q ∈ [1,∞]. We will say that S is Eulerian–Lagrangian stable with parameters
β1, β2 > 0 relative to v if (there exist implicit constants such that) for all sufficiently
small δ > 0 there exists a (uniformly in time) Lipschitz incompressible vector field
V δ ∈ C0([0, T ];Lip(�)) such that

∥∥v − V δ
∥∥
Lq
t (L p

x )
� δβ1 , (2.15)

and, by letting τ = δβ2 , it holds

�V δ

s ((S)δ,τ ) ⊂ (S)2δ,2τ (2.16)

for every δ > 0 small enough and all |s| < τ .

Condition (2.16) guarantees that the set S does not move too rapidly under the
flow map of V δ . Under this condition we have that Eulerian time stability (as in
Definition 2.5) implies Lagrangian time stability (as in Definition 2.11), and we
can apply Theorem 2.12 to yield the following corollary.
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Corollary 2.14. (Eulerian–Lagrangian intermittency) Let � be R
d or T

d . Let
p ∈ [3,∞], θ ∈ (0, 1), γ ∈ [0, d] and v ∈ L p((0, T ); Bθ

p,∞(�)) be a weak
solution of Euler. Assume that the dissipation set S ⊂ � × (0, T ) has Eulerian
time stable dimension at most γ , with instability parameter β = 1 − θ + (d − γ )/p

(according to Definition 2.5) and moreover it is also Eulerian–Lagrangian stable
with parameters β1 = θ and β2 = β relative to v (according to Definition 2.13).
Then Dv ≡ 0 if

θ >
1

3
− (d − γ )

p − 3

3p
.

The main point in stating the corollary is to demonstrate that the sharp (in the
sense of the β-model) upper bound (1.2) can still be derived if one couples the
more standard Eulerian notion of Minkowski dimension from Definition 2.5 (in
which the neighbourhoods are the most common tubular ones) with the stability
requirement (2.16), which basically asks that the dissipation set is not moving too
rapidly in time. However, although the corollary is more elementary, in virtue of the
Taylor hypothesis one may view Theorem 2.12 as the main result (that is probably
also the most physically relevant) of this paper.

We conclude by the following remark:

Remark 2.15. (Vortex Sheets) When v is a Vortex Sheet it is clear that the instability
parameter β in Corollary 2.14 can be taken to be β = 1 (recall that Vortex Sheets
belong to L∞

x,t ∩ L∞
t (BVx ) ⊂ L∞

t (B
1/p
p,∞) and thus θ � 1/p for all values of p).

Moreover, by choosing V δ = v ∗ ρδ , the requirement (2.16) trivially holds with
τ � δ, since in a time interval of length ∼ τ points move at most by � τ when
subject to a flow of an L∞

x,t vector field. Thus Corollary 2.14 also shows that Vortex
Sheets lie in the critical (local) energy conservative class for a set that has Eulerian
stable Minkowski dimension at most d − 1 with instability parameter β = 1
(according to Definition 2.5), or analogously, in virtue of Remark 2.8, a space-time
set whose standard Minkowski dimension is at most d. We believe this statement
to represent a good complement to the energy conservation proved in [50].

2.4. Intermittency in the vanishing viscosity limit

Here we give the precise statements for vanishing viscosity sequences whose
dissipation accumulates on lower-dimensional sets. To this end, for any viscosity
ν > 0, we let vν to be a smooth solution to the incompressible Navier–Stokes
system (2.2) on � × (0, T ).

Since we wish to deduce properties of the limit vν → v (as ν → 0) by means
of our inviscid intermittency results stated in the section above, we need to rephrase
the anomalous dissipation definition (1.3) as an interior dissipation condition

lim inf
ν→0

ν

∫ T−δ

δ

∫
BR

|∇vν |2 dxdt > 0, for some δ, R > 0. (2.17)

This latter technical reformulation of the 0-th law ensures that not all the dissipation
is being pushed towards the time boundary, or is escaping to infinity when� = R

d ,
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which seems to be a physically reasonable assumption. The use of this assumption
in our context is that both Theorems 2.9 and 2.12 conclude intermittency by means
of Dv �≡ 0, and Dv , being a distribution, does not see masses at boundaries or at
infinity.4 Note that, when � = T

d , condition (2.17) is equivalent to the usual 0-th
law (1.3) as soon as {vν}ν>0 is a compact C0

t (L
2
x ) sequence (as can be seen from

(2.19) below), and compactness in C0
t (L

2
x ) itself follows from a uniform bound in

L∞
t (Bθ

2,∞), for some θ > 0, by the Aubin-Lions-Simon Lemma.
In what follows we denote by M+(� × [0, T ]) the space of finite positive

space-times measures, that is the dual of C0
b (�×[0, T ]), where the pedex b stands

for bounded. Thus we will adopt the usual notion of convergence in measure by
duality with continuous functions. We start by stating the first result, which uses
the Eulerian time stable Minkowski dimension of Definition 2.5 with β = 1, which
then is equivalent to the standard space-time Minkowski dimension γ + 1 in virtue
of Remark 2.8.

Theorem 2.16. (Eulerian vanishing viscosity intermittency) Let � be T
d or Rd .

Let {vν}ν>0 be a sequence of smooth solutions to (2.2) enjoying (2.17), such that
ν|∇vν |2 ⇀ μ inM+(�×[0, T ]). Suppose that the set S := Sptx,tμ it has space-
timeMinkowski dimension at most γ +1. Then, for p ∈ [3,∞], by letting θ ∈ (0, 1)
be any positive number such that

2θ

1 − θ
> 1 − p − 3

p
(d − γ ),

it must hold that

lim
ν→0

∥∥vν
∥∥
L p
t (Bθ

p,∞)
= +∞. (2.18)

The assumption ν|∇vν |2 ⇀ μ as measures is not restrictive since, as soon as
the initial data vν

0 belong to a compact subset of L2(�), then the global energy
balance

1

2

∫
�

|vν(x, t)|2 dx + ν

∫ t

0

∫
�

|∇vν(x, s)|2 dxds = 1

2

∫
�

|vν
0 (x)|2 dx, ∀t � 0,

(2.19)

implies that the sequence {ν|∇vν |2}ν>0 is bounded in L1(� × (0, T )), and thus
it converges to a non-negative and finite measure μ, up to taking a subsequence.
Thus the only true assumption in the previous theorem is the existence of a lower-
dimensional accumulation point (in the space of non-negative finite measures) in
the sequence of dissipations. The previous global energy equality is obtained by
integrating in space, and then in time, its (stronger) local version

∂t

( |vν |2
2

)
+ div

(( |vν |2
2

+ pν

)
vν

)
− ν�

( |vν |2
2

)
+ ν|∇vν |2 = 0,

4 Note that in the recent constructions [3,11] the dissipation, in the limit, pushes all the
mass towards T .
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which, for smooth solutions vν , is obtained as usual by scalar multiply the first
equation in (2.2) by vν itself and using Leibniz rule, together with the incompress-
ibility divvν = 0. We emphasize that the assumption (2.17) implies that at least a
portion of the support of μ is strictly inside � × (0, T ).

The Lagrangian version of the previous theorem, which is indeed the rigorous
counterpart of Theorem 1.2, reads as follows:

Theorem 2.17. (Lagrangian vanishing viscosity intermittency) Let� be Td orRd .
Let {vν}ν>0 be a sequence of smooth solutions to (2.2) enjoying (2.17), such that
vν → v in L2(� × (0, T )) and ν|∇vν |2 ⇀ μ in M+(� × [0, T ]) in the inviscid
limit. Let θ ∈ (0, 1), p ∈ [3,∞] and assume v ∈ L p(� × (0, T )) and that the
set S := Sptx,tμ has time stable Lagrangian Minkowski dimension at most γ , with
instability parameters β1 = θ and β2 = 1− θ + (d − γ )/p relative to v (according to
Definition 2.11). Then, if θ > 1/3 − (d − γ )(p − 3)/3p, it must hold that

lim
ν→0

∥∥vν
∥∥
L p
t (Bθ

p,∞)
= +∞. (2.20)

Note that, differently from Theorem 2.16, in Theorem 2.17 we had to assume
L2
x,t compactness of the sequence {vν}ν>0 and knowledge of a limiting velocity

field. This is indeed a drawback of the LagrangianMinkowski notion of dimension,
while the Eulerian Minkowski one, being purely geometrical, has the nice feature
that it does not require any reference vector field in order to be defined. However,
in principle, if one knows the rate of convergence in Theorem 2.17, then either
vν itself or regularizations of the vν provide a good candidate for the family of
approximations V δ required in Definition 2.11. Similarly to Theorem 2.12, the
use of the Lagrangian Minkowski dimension in the previous theorem can be seen
as a theoretical instance of the Taylor’s hypothesis for which coarse structures of
large Reynolds number incompressible flows follow an averaged velocity field. The
proofs of Theorem 2.16 and Theorem 2.17 will be given in Section6. Let us point
out again that, for the interest of possible empirical testing, the precise assumptions
inTheorem2.17 are designed to optimize the exponent, and thatweaker conclusions
can be obtained if weaker assumptions are satisfied.

3. Notations and main tools

Here we list some useful tools that will be used throughout rest of the paper.

3.1. Minkowski dimension

Westart by recalling the basics on the notion ofMinkowski dimension,while for
a more detailed account we refer to [45, Chapter 5]. For any bounded set S ⊂ R

d ,
d � 1, we define

dimMS := inf
{
s � 0 : Ms

(S) = 0
}

, (3.1)
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whereMs
denotes the upperMinkowski content, obtained by computing the shrink-

ing rate (in volume) of the δ-neighbourhoods (S)δ := {x ∈ R
d : dist(x, S) � δ}.

More explicitly,

Ms
(S) := lim sup

δ→0+

Hd ((S)δ)

δd−s
. (3.2)

Clearly dimMS ∈ [0, d]. The boundedness of the set S is necessary in (3.2) since
otherwise one could haveHd((S)δ) = +∞ for every δ > 0.When S is unbounded,
one can define the local version of (3.1) with the usual straightforward modifica-
tions. Note that by (3.2), letting γ = dimMS, then if γ̃ > γ one has the asymptotic

Hd((S)δ) � δd−γ̃ , (3.3)

for all 0 < δ � 1 sufficiently small and for some implicit constant which might
depend on d, γ, γ̃ , but it is otherwise independent on δ. For simplicity, in view
of (3.3) where γ̃ can be chosen arbitrarily close to γ , we will say that S has
upper Minkowski dimension at most γ if Hd((S)δ) � δd−γ , thus slightly abusing
terminology. In particular, that terminology has been used in Remark 2.8.

It readily follows from the definition that this gives a (strictly) stronger notion of
dimension with respect to the Hausdorff one, that is dimMS � dimHS for any set
S. Indeed, every dense set automatically has full upper Minkowski dimension (that
is dimMS = d), while the Hausdorff one could even be 0 (see [45] for examples).
Thus, in terms of dimensional lower bounds and in view of possible accumulation
of energy dissipation on dense sets, it might be desirable to relax the notion of
dimension used in this work to Hausdorff. We refer to [17] for a recent result
relating dimH of the dissipation set to the L p integrability of quite general fluid
models by means of measure theoretic tools, thus quite different than the approach
we used here. An equivalent way of formulating the upper Minkowski dimension
is in terms of counting boxes: At most δ−γ cubes of size δ are needed to cover the
set S, in the limit as δ → 0 (see for instance [45]*Chapter 5).

Notice that both the Minkowski-type notions of dimension we introduced in
Definitions 2.5 and 2.11 could have been rephrased more rigorously in terms of an
appropriate upperMinkowski content, but since this would have not added anything
substantial to the results,we avoid this technicality anddirectly define the dimension
by looking at the shrinking rates (2.8) and (2.14).

3.2. Besov spaces

Let � be the whole space R
d or the d-dimensional torus Td . For every p ∈

[1,∞], k ∈ N we will denote by L p(�) the usual Lebesgue space of measurable
p-integrable functions and by Wk,p(�) the Sobolev space of functions whose k-th
order derivatives belong to L p(�).

Moreover recall the definition of the Besov space for any θ ∈ (0, 1)

Bθ
p,∞(�) =

{
f ∈ L p(�) : [ f ]Bθ

p,∞(�) < ∞
}

,
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where

[ f ]Bθ
p,∞(�) = sup

h �=0

‖ f (· + h) − f (·)‖L p(�)

|h|θ .

Then the full Besov norm will be given by ‖ f ‖Bθ
p,∞(�) = ‖ f ‖L p(�) + [ f ]Bθ

p,∞(�).

3.3. Mollification estimates and commutators

For every function f : � → R and ε > 0 we will write fε = f ∗ ρε to denote
the regularisation of f , where ρε is a standard Friedrichs’ mollifier. We start by
recalling the following standard mollification estimates

‖ f − fε‖L p � εθ [ f ]Bθ
p,∞ (3.4)

‖ fε‖Wk+1,p � εθ−k−1[ f ]Bθ
p,∞ (3.5)

for every k ∈ N0, p ∈ [1,∞] and θ ∈ (0, 1).
Moreover, we also have the following Constantin-E-Titi type commutator esti-

mate

‖( f g)ε − fεgε‖Wk,p � εθ+β−k[ f ]Bθ
rp,∞[g]

Bβ

r ′ p,∞
, (3.6)

for every k ∈ N0, p, r ∈ [1,∞], θ, β ∈ (0, 1), where 1
r + 1

r ′ = 1 and rp, r ′ p � 1.
The latter quadratic commutator estimate (in its particular case k = 0) is the key
observation which led to the proof of the positive part of the Onsager’s conjecture
in [14], namely the total kinetic energy conservation for solutions v ∈ L3

t (B
1/3+
3,∞)∩

C0
t (L

2
x ).

Indeed, letting Rε := vε ⊗ vε − (v ⊗ v)ε, the spatial regularisation vε := v ∗ρε

solves the Euler–Reynolds system

∂tvε + div(vε ⊗ vε) + ∇ pε = divRε,

from which, by scalar multiplying by vε itself and using the incompressiblity
divvε = 0, we get the local (approximate) energy balance

∂t

( |vε|2
2

)
+ div

(( |vε|2
2

+ pε

)
vε

)
= vε · divRε = div(Rεvε) − Rε : ∇vε.

(3.7)

Then (3.5) and (3.6) imply the estimate

‖Rε : ∇vε‖L p/3
x,t

� ‖∇vε‖L p
x,t

‖Rε‖L p/2
x,t

� ε3θ−1‖v‖3
L p
t (Bθ

p,∞)
, (3.8)

whenever v ∈ L p
t (Bθ

p,∞), for p � 3 and θ ∈ (0, 1), which in particular proves the
local (and thus global) energy conservation if θ > 1/3.
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Since in our case we are interested in the local energy balance (2.1), we will
also need to handle a third order commutator that naturally arises when averaging
the left hand side of (2.1), see Lemma 5.1 below. For this purpose we define

K f,g
ε (x) :=

∫
�

| f (x − h) − fε(x)|2(g(x − h) − gε(x))ρε(h) dh.

By its trilinear structure, the previous commutator will enjoy a suitable cubic es-
timate for which we give a proof for the reader’s convenience. The purely cubic
commutator that arises here is a special instance of a third order cumulant; see [26]
for a discussion of general cumulant expansions.

Proposition 3.1. Let � = R
d ,Td . For every k ∈ N0, θ ∈ (0, 1), p � 3 and any

regular enough f, g : � → R, we have

‖K f,g
ε ‖Wk,p/3 � ε3θ−k[ f ]2

Bθ
p,∞

[g]Bθ
p,∞ . (3.9)

Proof. We will only give the proof for k = 0, 1, since then the case k � 2 can be
done by iterating the very same computations. Actually, in this manuscript we will
only make use of the estimate (3.9) when k = 1.

Since ρε dh is a probability measure on �, we have

|K f,g
ε (x)| p

3 �
∫

�

| f (x − h) − fε(x)| 2p3 |g(x − h) − gε(x)| p
3 ρε(h) dh.

Thus, by Hölder’s inequality

‖K f,g
ε ‖

p
3
L p/3 �

∫
�

‖ f (· − h) − fε(·)‖
2p
3
L p‖g(· − h) − gε(·)‖

p
3
L pρε(h) dh. (3.10)

By using (3.4), together with the definition of the Besov norms, we can estimate

‖ f (· − h) − fε(·)‖L p � ‖ f (· − h) − f (·)‖L p + ‖ f − fε‖L p �
(|h|θ + εθ

) [ f ]Bθ
p,∞

(3.11)

Thus (3.10) gets to

‖K f,g
ε ‖

p
3
L p/3 � [ f ]

2p
3

Bθ
p,∞

[g]
p
3

Bθ
p,∞

∫
�

(|h|θ + εθ
)p

ρε(h) dh � εθp[ f ]
2p
3

Bθ
p,∞

[g]
p
3

Bθ
p,∞

,

(3.12)

where in the last inequality we have also used that the kernel ρε is supported in the
ball Bε(0). It is clear that (3.12) gives (3.9) for k = 0.

In the case k = 1, we need to estimate a derivative of K f,g
ε . To do so, let ∂K f,g

ε

be any partial derivative of the cubic commutator. It is clear that the derivative can
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hit fε, gε or ρε. More precisely we will need to estimate the following three kind
of terms

K1(x) =
∫

�

∂ fε(x)( f (x − h) − fε(x))(g(x − h) − gε(x))ρε(h) dh

K2(x) =
∫

�

| f (x − h) − fε(x)|2∂gε(x)ρε(h) dh

K3(x) =
∫

�

| f (x − h) − fε(x)|2(g(x − h) − gε(x))∂ρε(h) dh.

By using (3.5) and (3.11) we can bound

‖K1‖
p
3
L p/3 � ‖∂ fε‖

p
3
L p

∫
�

‖ f (· − h) − fε(·)‖
p
3
L p‖g(· − h) − gε(·)|

p
3
L pρε(h) dh

� ε(θ−1) p
3 [ f ]

2p
3

Bθ
p,∞

[g]
p
3

Bθ
p,∞

∫
�

(|h|θ + εθ
)p

ρε(h) dh

� ε(3θ−1) p
3 [ f ]

2p
3

Bθ
p,∞

[g]
p
3

Bθ
p,∞

. (3.13)

Similarly, we also get

‖K2‖
p
3
L p/3 � ε(3θ−1) p

3 [ f ]
2p
3

Bθ
p,∞

[g]
p
3

Bθ
p,∞

. (3.14)

To estimate K3 we notice that a derivative on the kernel ρε will only bring and ε−1

more to the estimate (3.12) that we already proved. More precisely, since ε∂ρε has
bounded L1 norm, we have

|K3(x)| p
3 � ε1−

p
3

∫
�

| f (x − h) − fε(x)| 2p3 |g(x − h) − gε(x)| p
3 |∂ρε(h)| dh,

from which

‖K3‖
p
3
L p/3 � ε1−

p
3 [ f ]

2p
3

Bθ
p,∞

[g]
p
3

Bθ
p,∞

∫
�

(|h|θ + εθ
)p |∂ρε(h)| dh � εθp− p

3 [ f ]
2p
3

Bθ
p,∞

[g]
p
3

Bθ
p,∞

,

(3.15)

where to obtain the last inequality we have also used
∫ |∂ρε| � ε−1. Inequalities

(3.13), (3.14) and (3.15) give (3.9) for k = 1. ��

3.4. Double pressure regularity

We conclude this section by recalling the double regularity of the pressure from
[13]

‖p(t)‖B2θ
p/2,∞

� ‖v(t)‖2
Bθ
p,∞

, (3.16)

for every θ ∈ (0, 1/2), p ∈ (2,∞). The case p = ∞ can be found in [12,37]. The
double regularity estimate (3.16)will play a crucial role in the proof of Theorems 2.9
and2.12 since, togetherwith (3.6),will allowus to estimate the pressure commutator
Pε = (pv)ε − pεvε and deduce that it also behaves cubically in θ .
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4. Intermittency from lower dimensional time dissipation

In this section we prove the results concerning lower dimensional singularities
in time as claimed in Section2.2.

4.1. Proof of Proposition 2.1

The proof is very similar to the case p = ∞ proved in [12,35], but here we
take the integral in time instead of the supremum and apply Young’s inequality.

Thus assume p < ∞ and fix h > 0. Mollify v in space at scale ε > 0 to obtain
the smooth velocity vε. We will chose the regularization length scale ε = ε(h) at
the very end in order to balance the terms. Split

‖ev(· + h) − ev(·)‖L p/3
t

� ‖ev(· + h) − evε (· + h)‖
L

p/3
t

+ ‖evε (· + h) − evε (·)‖L p/3
t

+ ‖evε (·) − ev(·)‖L p/3
t

= (I ) + (I I ) + (I I I ).

The two terms (I ), (I I I ) enjoy a very similar estimate. Indeed, since the mollifi-
cation is average preserving, by using (3.6) for every fixed time slice, we have∣∣∣∣
∫

�

|v(x, t)|2 − |vε(x, t)|2 dx
∣∣∣∣ =

∣∣∣∣
∫

�

|v(x, t)|2ε − |vε(x, t)|2 dx
∣∣∣∣ � ε2β [v(t)]2

Bβ
2,∞

,

from which, by also integrating in time on the interval (0, T ), we get

(I ), (I I I ) � ε2β [v]2
L

2p/3
t

(
Bβ
2,∞

). (4.1)

Moreover, by integrating on � the Euler–Reynolds local energy balance (3.7) we
get

d

dt
evε = 1

2

d

dt

(∫
�

|vε|2 dx
)

= −
∫

�

Rε : ∇vε dx .

Thus to estimate (I I ) we use the usual Constantin-E-Titi quadratic estimate
(3.6) together with (3.5)

∣∣evε (t + h) − evε (t)
∣∣ �

∫ t+h

t

∣∣e′
vε

(s)
∣∣ ds �

∫ t+h

t

∫
�

|Rε : ∇vε| dxds

� ε3θ−1
∫ T

0
[v(s)]3

Bθ
3,∞

1(t,t+h)(s) ds.

Thus, by Young’s inequality

‖evε (· + h) − evε (·)‖L p/3
t

� ε(3θ−1)
(∫ T

0
[v(s)]p

Bθ
3,∞

ds

)3/p

‖1(−h,0)(s)‖L1

� ε(3θ−1)h[v]3
L p
t

(
Bθ
3,∞

). (4.2)

Collecting (4.1) and (4.2) we obtain

‖ev(· + h) − ev(·)‖L p/3
t

� ε2β + ε3θ−1h,

from which by choosing ε = h
1

1−3θ+2β we conclude the proof. ��
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4.2. Proof of Theorem 2.3

Fix any ε > 0. By Proposition 2.1 we have

ev ∈ B
2β

1−3θ+2β
p/3,∞ ([0, T ]) ⊂ W

2β
1−3θ+2β −ε,p/3

([0, T ]),
from which

e′
v ∈ W

2β
1−3θ+2β −ε−1,p/3

([0, T ]) =
(
W 1+ε− 2β

1−3θ+2β ,(p/3)′
([0, T ])

)∗
,

being (p/3)′ = p
p−3 the Hölder conjugate of p/3 and X∗ the usual dual vector space

of X .
Let δ > 0, (ST )δ a δ-neighbourhood of the set ST and ηδ ∈ C∞([0, T ]) be such

that

ηδ

∣∣
(ST )δ

≡ 1, ηδ

∣∣[0,T ]\(ST )2δ
≡ 0.

Then for every α ∈ (0, 1), q ∈ (1,∞), γ̃ > γ , we can estimate by (3.3)

‖ηδ‖Wα,q � ‖ηδ‖1−α
Lq ‖η′

δ‖α
Lq � δ

(1−γ̃ ) 1q −α
. (4.3)

Let ϕ ∈ C∞
c ((0, T )). Since the distribution e′

v is supported on ST , we have

|〈e′
v, ϕ〉| = |〈e′

v, ηδϕ〉| � ‖ηδϕ‖
W

1+ε− 2β
1−3θ+2β ,(p/3)′ � δ

(1−γ̃ )
p−3
p + 2β

1−3θ+2β −1−ε
,

(4.4)

where in the last inequality we used (4.3). Thus if

2β

1 − 3θ + 2β
> 1 − p − 3

p
(1 − γ ).

we can chose ε > 0 sufficiently small and γ̃ sufficiently close to γ , such that
the exponent of δ in the right hand side of (4.4) is strictly positive. The proof is
concluded by letting δ → 0. ��

5. Intermittency from lower dimensional spatial dissipation

In this section we will prove our main intermittency-type results when the dis-
sipation support is not space filling. To avoid tedious technicalities that arise when
considering the whole space R

d (for instance the need to introduce the bounded
set M in the definition of the Minkowski dimensions in (2.8) and (2.14)), we will
give the full proofs when � = T

d . Then the case � = R
d can be reconstructed by

straightforward modifications. The general strategy in the proofs of Theorem 2.9
and Theorem 2.12 is the same, but since the two differs in some important technical
details (like the definition of the cut-off function and the way the transport error
is handled) we have provided the full details for each of them separately for the
convenience of the reader at the risk of some redundancy.

Before proving our main theorems we start with the following lemma which
plays a crucial role in the averaging process of the local energy balance (2.1), with
emphasis on the cubic term |v|2v.
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Lemma 5.1. (Higher-order averaging) By denoting fε to be the spatial mollifica-
tion of f at scale ε, we have(

|v|2v
)

ε
= K v

ε − 2Rεvε − vεTrRε + |vε|2vε,

where Rε = vε ⊗ vε − (v ⊗ v)ε is the quadratic Constantin-E-Titi commutator,
Rεvε is the usual notation for the (d × d)-matrix Rε applied to the vector vε and

K v
ε (x) :=

∫
|v(x − h) − vε(x)|2(v(x − h) − vε(x))ρε(h) dh.

Proof. Fix x ∈ �. By thinking of the mollification (·)ε as an average with respect
to the probability measure ρε(x − y) dy and vε(x) as a constant, we have(

v − vε(x)
)
ε

= 0.

Thus we can expand(
|v|2v

)
ε

=
(
|v|2(v − vε(x))

)
ε

+ |v|2εvε =
(
|v − vε(x) + vε(x)|2(v − vε(x))

)
ε

+ |v|2εvε

=
(
|v − vε(x)|2(v − vε(x))

)
ε

+ |vε(x)|2
(
v − vε(x)

)
ε

+ 2
(
(v − vε(x)) · vε(x)(v − vε(x))

)
ε

+ |v|2εvε .

Moreover(
(v − vε(x)) · vε(x)(v − vε(x))

)
ε

= (
v · vε(x)(v − vε(x))

)
ε
− |vε(x)|2

(
v − vε(x)

)
ε

= (
v · vε(x)v

)
ε
− |vε|2vε = −Rεvε ,

from which we get(
|v|2v

)
ε

=
(
|v − vε(x)|2(v − vε(x))

)
ε
− 2Rεvε + |v|2εvε

=
(
|v − vε(x)|2(v − vε(x))

)
ε
− 2Rεvε +

(
|v|2ε − |vε|2

)
vε + |vε|2vε .

��
The following lemma is standard:

Lemma 5.2. Define (S)δ,δ = {(x + Bδ(0), t + Bδ(0)) : (x, t) ∈ S} to be the space-
time δ, δ-neighbourhood of the set S which enjoys (2.9) and let q � 1. There exists
χδ ∈ C∞([0, T ] × T

d) such that χδ

∣∣
(S)δ,δ

≡ 1, χδ

∣∣
((S)4δ,4δ)

c ≡ 0 and

‖χδ‖Lq
x,t

� δ
(d−γ ) 1q (5.1)

‖∂tχδ‖Lq
x,t

+ ‖∇χδ‖Lq
x,t

� δ
(d−γ ) 1q −1

. (5.2)

Proof. Let 1(S)2δ,2δ (x, t) be the indicator function of the set (S)2δ,2δ . Then the
space-time mollification at scale δ, χδ = 1(S)2δ,2δ ∗x,t ρδ satisfies all the claimed
properties, where

ρδ(x, t) := 1

δd+1 ρ

(
x

δ
,
t

δ

)

for some ρ ∈ C∞
c , with

∫
R

∫
Rd ρ dxdt = 1. ��
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5.1. Proof of Theorem 2.9

Let Dv
ε = Rε : ∇vε be the approximation of the Duchon-Robert distribution,

as in (2.4). Let ϕ ∈ C∞
c (Td × (0, T )) be a test function. We want to show that

〈Dv
ε , ϕ〉 → 0 as ε → 0. Let χδ be the cut-off function given by Lemma 5.2. We

split the action of Dv as

〈Dv
ε , ϕ〉 = 〈Dv

ε , ϕχδ〉 + 〈Dv
ε , ϕ(1 − χδ)〉. (5.3)

The first term is easy to estimate by using (5.1) together with (3.8)

∣∣〈Dv
ε , ϕχδ〉

∣∣ � ‖Dv
ε‖

L
p/3
x,t

‖ϕχδ‖L(p/3)′
x,t

� ε3θ−1δ
(d−γ )

p−3
p ‖v‖3

L p
t (Bθ

p,∞)
. (5.4)

Consider now Dv ∗ ρε to be the spatial mollification of the Duchon-Robert distri-
bution. We have

SptDv ∗ ρε ⊂ {(x + Bε(0), t) : (x, t) ∈ S} ⊂ (S)ε,ε,

from which we deduce

〈Dv ∗ ρε, ϕ(1 − χδ)〉 = 0 if ε � δ

2
. (5.5)

Thus we can rewrite the second term in the right hand side of (5.3) as

〈Dv
ε , ϕ(1 − χδ)〉 = 〈Dv

ε − Dv ∗ ρε, ϕ(1 − χδ)〉
= 〈Dv

ε − Dv ∗ ρε, ϕ〉 − 〈Dv
ε − Dv ∗ ρε, ϕχδ〉.

Clearly, 〈Dv
ε − Dv ∗ ρε, ϕ〉 → 0; thus we are left to estimate the term 〈Dv

ε − Dv ∗
ρε, ϕχδ〉. Notice that by mollifying (2.1) we get

∂t

( |v|2ε
2

)
+ div

(( |v|2
2

+ p

)
v

)
ε

= −Dv ∗ ρε. (5.6)

Then by (3.7) and (5.6) we can write

〈Dv
ε − Dv ∗ ρε, ϕχδ〉 =

〈
∂t

( |v|2ε − |vε|2
2

)
, ϕχδ

〉
+

∫
div ((pv)ε − pεvε) ϕχδ

+
∫ (

div(Rεvε) + 1

2
div

((
|v|2v

)
ε
− |vε|2vε

))
ϕχδ.

(5.7)

By Lemma 5.1 expand

(|v|2v)ε = K v
ε − 2Rεvε + (|v|2ε − |vε|2)vε + |vε|2vε, (5.8)

where the vector K v
ε is the trilinear commutator

K v
ε =

∫
|v(x − h) − vε(x)|2(v(x − h) − vε(x))ρε(h) dh.
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By plugging (5.8) into (5.7) we get, by also denoting Pε = (pv)ε − pεvε the
pressure–velocity commutator and by Dt,vε = ∂t + vε · ∇ the advective derivative
with respect to vε,

〈Dv
ε − Dv ∗ ρε, ϕχδ〉 =

〈
∂t

( |v|2ε − |vε|2
2

)
, ϕχδ

〉
+

∫
ϕχδdivPε

+
∫

ϕχδdivK
v
ε +

∫
ϕχδdiv

( |v|2ε − |vε|2
2

vε

)

= −
〈
Dt,vε

TrRε

2
, ϕχδ

〉
+

∫
ϕχδdivPε +

∫
ϕχδdivK

v
ε

= Etr + Epr + ERe.

Thus we have three types of errors to estimate: The transport error Etr , the pressure
error Epr and the Reynolds error ERe, the most delicate being Etr . Indeed, the
different assumptions we made on the time (Lagrangian/Eulerian) stability of the
dissipation set are specifically designed to handle that term.

By using (3.6), together with the double regularity of the pressure (3.16), we
have

|Epr | � ‖(pv)ε − pεvε‖L p/3
t (W 1,p/3

x )
‖ϕχδ‖L(p/3)′

x,t
� ε3θ−1δ

(d−γ )
p−3
p ‖v‖3

L p
t (Bθ

p,∞)
.

(5.9)

Moreover, by Proposition 3.1, we also have

|ERe| � ‖divK v
ε ‖

L
p/3
x,t

‖ϕχδ‖L(p/3)′
x,t

� ε3θ−1δ
(d−γ )

p−3
p ‖v‖3

L p
t (Bθ

p,∞)
. (5.10)

To estimate Etr we will need to integrate by parts. Since ϕ is smooth and inde-
pendent of δ, then the only problematic terms are the ones in which the derivatives
hit χδ . More precisely we can write

Etr 	
∫

(TrRε)ϕ∂tχδ +
∫

ϕ(TrRε)vε · ∇χδ = I + I I,

where we used the symbol 	 to denote the behaviour of the leading order terms as
δ → 0. By (3.6) and (5.2)

|I | � ‖TrRε‖L p/3
x,t

‖ϕ∂tχδ‖L(p/3)′
x,t

� ε2θ‖v‖2
L

2p/3
t (Bθ

2p/3,∞)
δ
(d−γ )

p−3
p −1

and

|I I | � ‖vεTrRε‖L p/3
x,t

‖ϕ∇χδ‖L(p/3)′
x,t

� ε2θ‖v‖3
L p
t (Bθ

p,∞)
δ
(d−γ )

p−3
p −1

,

from which we deduce

|Etr | � ε2θ δ
(d−γ )

p−3
p −1

(
‖v‖3

L p
t (Bθ

p,∞)
+ ‖v‖2

L p
t (Bθ

p,∞)

)
. (5.11)
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By combining now (5.4), (5.9), (5.10) and (5.11) we conclude

∣∣〈Dv
ε , ϕ〉∣∣ � ε3θ−1δ

(d−γ )
p−3
p + ε2θ δ

(d−γ )
p−3
p −1

. (5.12)

By choosing δ = εα and optimizing in α we obtain α = 1 − θ . Notice that this
choice is consistent with the condition ε � δ in (5.5). Thus inserting δ = ε1−θ in
(5.12) we obtain

∣∣〈Dv
ε , ϕ〉∣∣ � ε

(
2θ
1−θ

−1+(d−γ )
p−3
p

)
(1−θ)

, (5.13)

which concludes the proof by letting ε → 0. ��
Remark 5.3. (Eulerian theorem with v ∈ Lq

t (B
θ
p,∞)) Following exactly the same

lines of the previous proof, it is not difficult to see that the bound (5.13), and
thus the very same conclusion of Theorem 2.9, can be achieved by assuming v ∈
Lq
t (B

θ
p,∞), for any two (possibly different) p, q ∈ [3,∞] and slightly strengthening

the assumption (2.9) by asking

Hd(M ∩ (S)δ,δ(t)
)

� g(t)δd−γ , for some g ∈ Lr ([0, T ]), with r = p − 3

p

q

q − 3
,

(5.14)

where we denoted by

(S)δ,δ(t) := {
x ∈ � : (x, t) ∈ (S)δ,δ

}
the t-time slice of the set (S)δ,δ ⊂ �× (0, T ). Note that since we are on a bounded
interval (0, T ) we can always suppose, without loosing in generality, that q � p,
so that r � 1. It readily follows that in general (5.14) is stronger than (2.9), while
by Fubini’s theorem the two coincide if q = p, since in this case g ∈ L1([0, T ]),
thus recovering the same assumptions used in Theorem 2.9. For q = 3—that
is, for solutions v ∈ L3

t (B
θ
p,∞)—we must have g ∈ L∞([0, T ]). In this case the

requirement (5.14) reads as a (quite strong) uniform in time spatial upperMinkowski
dimension at most γ : This is equivalent to ask that when covering S with space-time
cubes of size δ, then every t-time slice of that covered set sees at most δ−γ of such
cubes.

5.2. Proof of Theorem 2.12

We now prove Theorem 2.12. The main difference in the proof is how the
transport term is handled in order to obtain a better exponent. This requires a
more accurate definition of the cut-off function used to localise the Duchon-Robert
distribution on the dissipative set S.

Let δ > 0, and τ � δ1−θ+(d − γ )/p. Pick a smooth cut-off function χ̃δ,τ ∈
C∞
c

(
LV δ

(S)4δ,4τ

)
such that

χ̃δ,τ

∣∣LV δ
(S)2δ,2τ

≡ 1, (5.15)
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where LV δ
(S)2δ,2τ is the Lagrangian tubular neighbourhood defined in (2.13).

Define χδ,τ by mollifying χ̃δ,τ along the flow map �V δ
(defined in (2.11)), that is

χδ,τ (x, t) =
∫

χ̃δ,τ

(
�V δ

s (x, t)
)

ητ (s) ds,

where the kernel ητ is a standard 1-dimensional Friedrichs mollifier with support
in |s| < τ . We remark that this mollification technique also plays a role in convex
integration [36] and second derivative estimates for suitable weak solutions to
Navier–Stokes [54,56], but the present use appears to be the first application in the
context of Onsager singularity theorems.

Let Dv
ε = Rε : ∇vε be the approximation of the Duchon-Robert distribution

from (2.4). Let ϕ ∈ C∞
c (Td × (0, T )) be a test function. We want to show that

〈Dv
ε , ϕ〉 → 0 as ε → 0. We split it as

〈Dv
ε , ϕ〉 = 〈Dv

ε , ϕχδ,τ 〉 + 〈Dv
ε , ϕ(1 − χδ,τ )〉. (5.16)

We remark that, although ϕχδ,τ is not (at least in the time variable) a smooth test
function, we need only linearity and for each term to be well-defined to justify the
decomposition (5.16). The subsequent computations show indeed that both of the
terms make sense, and thus they a posteriori provide a proof to the validity of such
a splitting.

The first term we bound using (3.8) and (2.14) together with the fact that �V δ

is volume preserving
∣∣〈Dv

ε , ϕχδ,τ 〉
∣∣ � ‖Dv

ε ‖
L

p/3
x,t

‖ϕχδ,τ‖L(p/3)′
x,t

� ε3θ−1δ
(d−γ )

p−3
p ‖v‖3

L p
t (Bθ

p,∞)
.

Now consider Dv ∗ ρε, the space mollification of the Duchon-Robert distribution.
It is supported in a spatial neighborhood of the dissipation support:

SptDv ∗ ρε ⊂ {(x + Bε(0), t) : (x, t) ∈ S} =: (S)ε.

By the definition of the cut-off χδ,τ and (5.15) we have

χδ,τ ≡ 1 in a neighborhood of (S)ε if ε � δ,

which implies that

〈Dv ∗ ρε, ϕ(1 − χδ,τ )〉 = 0 if ε � δ. (5.17)

Thus we can rewrite the second term in the right hand side of (5.16) as

〈Dv
ε , ϕ(1 − χδ,τ )〉 = 〈Dv

ε − Dv ∗ ρε, ϕ(1 − χδ,τ )〉
= 〈Dv

ε − Dv ∗ ρε, ϕ〉 − 〈Dv
ε − Dv ∗ ρε, ϕχδ,τ 〉.

Clearly 〈Dv
ε − Dv ∗ ρε, ϕ〉 → 0, thus we are left to estimate the second term. By

using (3.7), (5.6) and Lemma 5.1 as in the proof of Theorem 2.9 given above, we
can write

〈Dv
ε − Dv ∗ ρε, ϕχδ,τ 〉 = −1

2

〈
Dt,vεTrRε, ϕχδ,τ

〉 +
∫

ϕχδ,τdivPε +
∫

ϕχδ,τdivKε

= Etr + Epr + ERe.
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where Pε = (pv)ε − pεvε is the pressure–velocity commutator, K v
ε is the cubic

commutator fromLemma5.1 andDt,vε = ∂t+vε·∇ denotes the advective derivative
with respect to vε.

By (3.9) and since �V δ
is volume preserving, we have

|ERe| � ‖divK v
ε ‖

L
p/3
x,t

‖ϕχδ,τ‖
L

p
p−3
x,t

� ε3θ−1δ
(d−γ )

p−3
p , (5.18)

and similarly, by using the double regularity of the pressure (3.16) together with
(3.6), we also get

|Epr | � ‖divPε‖L p/3
x,t

‖ϕχδ,τ‖
L

p
p−3
x,t

� ε3θ−1δ
(d−γ )

p−3
p . (5.19)

We are now only left to estimate Etr . We split it as

− Etr = 1

2

〈
Dt,V δTrRε, ϕχδ,τ

〉 + 1

2

∫
ϕχδ,τ

(
vε − V δ

) · ∇ (TrRε) = I + I I.

(5.20)

By using (3.4), (3.6) and (2.12), we estimate

|I I | � ‖vε − V δ‖L p
x,t

‖∇(TrRε)‖L p/2
x,t

‖ϕχδ,τ‖
L

p
p−3
x,t

�
(
‖vε − v‖L p

x,t
+ ‖v − V δ‖L p

x,t

)
ε2θ−1δ

(d−γ )
p−3
p ‖v‖2

L p
t (Bθ

p,∞)

�
(
εθ + δθ

)
ε2θ−1δ

(d−γ )
p−3
p . (5.21)

To estimate I in (5.20) we will need to integrate it by parts. Since ϕ is smooth
independently on δ, the only terms that need to be estimated are the ones in which
the derivatives hit χδ,τ . More precisely we can write

I 	
∫

ϕTrRεDt,V δχδ,τ ,

where we used the symbol 	 to denote the leading order term as δ → 0.
We now compute the advective derivative of the cutoff χδ,τ using the basic

property of mollification along the flow. Because Dt,V δ commutes with its own
flow map we have

Dt,V δχδ,τ = d

dσ
χδ,τ

(
φV δ

σ (x, t), t + σ
) ∣∣∣∣

σ=0

= d

dσ

∫
χ̃δ,τ

(
φV δ

s

(
φV δ

σ (x, t), t + σ
)

, t + σ + s
)

ητ (s) ds

∣∣∣∣
σ=0

= d

dσ

∫
χ̃δ,τ

(
φV δ

s+σ (x, t), t + σ + s
)

ητ (s) ds

∣∣∣∣
σ=0

= d

dσ

∫
χ̃δ,τ

(
φV δ

s (x, t), t + s
)

ητ (s − σ) ds

∣∣∣∣
σ=0

= −
∫

χ̃δ,τ

(
�V δ

s (x, t)
)

η′
τ (s) ds, (5.22)
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Using the fact that �V δ
is volume preserving we now obtain

∥∥Dt,V δχδ,τ

∥∥
Lq
x,t

� τ−1
∥∥χ̃δ,τ

∥∥
Lq
x,t

� τ−1δ
(d−γ ) 1q .

Thus, by the usual quadratic commutator estimate (3.6), we get

|I | � ‖TrRε‖L p/2
x,t

∥∥Dt,V δχδ,τ

∥∥
L

p
p−2
x,t

� τ−1ε2θ δ
(d−γ )

p−2
p . (5.23)

Thus by putting (5.18), (5.19), (5.21) and (5.23) all together we achieve

|〈Dv
ε − Dv ∗ ρε, ϕχδ,τ 〉| �

(
ε3θ−1 + ε2θ−1δθ + τ−1ε2θ δ

(d − γ )/p
)

δ
(d−γ )

p−3
p ,

from which by first choosing δ = ε and then τ = δ1−θ+(d − γ )/p, we deduce

|〈Dv
ε − Dv ∗ ρε, ϕχδ,τ 〉| � ε

3θ−1+(d−γ )
p−3
p .

Note that the choice of δ is consistent with the support condition (5.17) above,
which played a crucial role for our computations. Finally, what we have proved is
that

|〈Dv
ε , ϕ〉| � ε

3θ−1+(d−γ )
p−3
p , (5.24)

which concludes the proof by letting ε → 0. ��
Remark 5.4. (Lagrangian theorem with v ∈ Lq

t (B
θ
p,∞)) Similarly to what we have

discussed in Remark 5.3 about the Eulerian theorem, also in the latter Lagrangian
proof the bound (5.24), and thus the very same conclusion of Theorem 2.12, can be
equivalently achieved by assuming v ∈ Lq

t (B
θ
p,∞), for any two (possibly different)

p, q ∈ [3,∞], and by slightly strengthening the assumption (2.14) with

Hd
(
M ∩ LV δ

(S)δ,τ (t)
)

� g(t)δd−γ , for some g ∈ Lr ([0, T ]),

being r = p − 3

p

q

q − 3
, (5.25)

where

LV δ

(S)δ,τ (t) :=
{
x ∈ � : (x, t) ∈ LV δ

(S)δ,τ

}

is the t-time slice of the set LV δ
(S)δ,τ ⊂ �× (0, T ). Without loosing in generality

assume q � p, so that r � 1. In general (5.25) is stronger than (2.14), while by
Fubini’s theorem the two coincide if q = p, since in this case g ∈ L1([0, T ]),
thus providing back the same assumptions used in Theorem 2.12. For q = 3—
that is, for solutions v ∈ L3

t (B
θ
p,∞)—we must have g ∈ L∞([0, T ]). In this case

the requirement (5.25) reads as a (quite strong) uniform in time spatial Lagrangian
upperMinkowski dimension at most γ : This is equivalent to ask that when covering
S with Lagrangian space-time cylinders of spatial radius δ, and the corresponding
time length τ = δ1−θ+(d − γ )/p, then every t-time slice of that covered set sees at most
δ−γ of such cylinders.
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Remark 5.5. (External force) From the two previous proofs it is easy to see that the

presence of an external force of the kind f ∈ L p′
x,t , being p′ = p/(p − 1) the Hölder

conjugate of p, does not affect the analysis, and thus one can reach the very same
conclusions of Theorems 2.9 and 2.12. Indeed the forced version of the local energy
balance (2.1) reads as

∂t

( |v|2
2

)
+ div

(( |v|2
2

+ p

)
v

)
= f · v − Dv.

Since v ∈ L p
x,t and f ∈ L p′

x,t , then f · v ∈ L1
x,t and thus automatically defines

a distribution. Moreover, in the two previous proofs this extra term will generate
errors of the kind

E f :=
∫

( fε · vε − ( f · v)ε) ϕχδ,

where χδ is the space-time cutoff localised around the dissipation sets. More pre-
cisely, in the proof of Theorem 2.9 is the cutoff given by Lemma 5.2, while in the
proof of Theorem 2.12 is the cutoff obtained by mollifying along the flow of V δ

for a time interval of length τ = δ1−θ+(d − γ )/p. In both cases, since |χδ| � 1, we can
estimate

|E f | � ‖ fε · vε − ( f · v)ε‖L1
x,t

→ 0,

as ε → 0, uniformly in δ > 0.

6. Vanishing viscosity

The two proofs of Theorems 2.16 and 2.17 are a (very similar) standard con-
tradiction argument but we prefer to give the full details of both of them for the
reader’s convenience.

6.1. Proof of Theorem 2.16

By contradiction assume that (2.18) does not hold. Thus we can find a (non-
relabelled) subsequence {vν}ν>0 such that∥∥vν

∥∥
L p
t (Bθ

p,∞)
� C.

In particular, since θ > 0, by the Aubin-Lions-Simon Lemma we can extract a
further subsequence such that vν → v in L p

x,t and moreover v ∈ L p
t (Bθ

p,∞). Thus
v is a weak solution of incompressible Euler which, since p � 3, by (2.3) has
dissipation measure Dv = μ, where μ is the limit in measure of the dissipation
ν|∇vν |2 as in the assumptions. By (2.17) we get that Dv is nontrivial, which then
contradicts the fact that Dv ≡ 0 by Theorem 2.9, since by assumption

2θ

1 − θ
> 1 − p − 3

p
(d − γ ).

��
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6.2. Proof of Theorem 2.17

By contradiction assume that (2.20) does not hold. Thus we can find a (non-
relabelled) subsequence {vν}ν>0 such that

∥∥vν
∥∥
L p
t (Bθ

p,∞)
� C. (6.1)

In particular the L2
x,t limit v of the sequence {vν}ν>0 belongs to L p

t (Bθ
p,∞). More-

over, since θ > 0, the Aubin-Lions-Simon Lemma improves the L2
x,t convergence

to the L p
x,t one of the whole subsequence which satisfies (6.1). Clearly v solves Eu-

ler and by (2.3), since p � 3, we also have Dv = μ. Thus by (2.17) we deduce that
Dv has to be nontrivial, which then contradicts Theorem 2.12, since we assumed

θ >
1

3
− p − 3

3p
(d − γ ).

��
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