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Abstract. The extensive use of social media in political campaigns has moti-
vated the recent study of election control problem in social networks. In an elec-
tion, we are given a set of voters, each having a preference list over a set of can-
didates, that are distributed on a social network. The winners of the election are
computed by aggregating the preference lists of voters according to a so-called
voting rule. We consider a scenario where voters may change their preference
lists as a consequence of the messages received by their neighbors in a social net-
work. Specifically, we consider a political campaign that spreads messages in a
social network in support or against a given candidate and the spreading follows
a dynamic model for information diffusion. When a message reaches a voter, this
latter changes its preference list according to an update rule. The election control
problem asks to find a bounded set of nodes to be the starter of a political cam-
paign in support (constructive problem) or against (destructive problem) a given
target candidate c, in such a way that the margin of victory of c w.r.t. its most
voted opponents is maximized. It has been shown that several variants of the
problem can be solved within a constant factor approximation of the optimum,
which shows that controlling elections by means of social networks is doable
and constitutes a real problem for modern democracies. Most of the literature,
however, focuses on the case of single-winner elections.
In this paper, we define the election control problem in social networks for multi-
winner elections with the aim of modeling parliamentarian elections. Differently
from the single-winner case, we show that the multi-winner election control prob-
lem is NP -hard to approximate within any factor in both constructive and de-
structive cases. We then study a relaxation of the problem where votes are ag-
gregated on the basis of parties (instead of single candidates), which is a varia-
tion of the so-called straight-party voting used in some real parliamentarian elec-
tions. We show that the latter problem remains NP -hard but can be approximated
within a constant factor.

1 Introduction

Nowadays, social media are extensively used and have become a crucial part of our
life. Generating information and spreading in social media is one of the cheapest and
most effective ways of advertising and sharing content and opinions. People feel free to
share their opinion, information, news, or also gain something by learning or teaching
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in social media; on the other hand, they also use social media to get the latest news and
information. Many people even prefer to check social media rather than news websites.

Social media are also exploited during election campaigns to support some party or
a specific candidate. Many political parties diffuse targeted messages in social media
with the aim of convincing users to vote for their candidates. Usually, these messages
are posted by influential users and diffused on the network following a cascade effect,
also called social influence. There are shreds of evidence of control election using the
effect of social influence by spreading some pieces of information, including fake news
or misinformation [21]. The presidential election of the United States of America is
a real example. It has been shown that on average, ninety-two percent of Americans
remembered pro-Trump false news, and twenty-three percent of them remembered the
pro-Clinton fake news [2]. There are more real-life examples that have been presented
in the literature [4,16,19,24].

This motivated the study of election control problems in social networks by using
dynamic models for influence diffusion. We are given a social network of voters, a set
of candidates, and a dynamic model for diffusion of information that models the spread
of messages produced by political campaigns. The problem asks to find a bounded set
of voters/nodes to be the starter of a political campaign in support of a given target can-
didate c, in such a way that the margin of victory of c w.r.t. its opponents is maximized.
Each voter has its own preference list over the candidates and the winner of an elec-
tion is determined by aggregating all preference lists according to some specific voting
rule. Voters are autonomous, however their opinions about the candidates, and hence
their preference lists, may change as a consequence of messages received by neighbors.
When a message generated by a political campaign reaches a node, this latter changes
its preference list according to some specific update rule. When the campaign aims to
make the target candidate win, we refer to the constructive problem, while when the aim
is to make c lose, we refer to the destructive problem. This problem recently received
some attention (see the next paragraph). Most of the works in the area, however, focus
on single-winner voting systems, while several scenarios require voting systems with
multiple winners, e.g., parliamentarian elections.

In this paper, we consider the problem of multi-winner election control via social
influence, where there are some parties, each with multiple candidates, and we want to
find at most B nodes to spread a piece of news in the social network in such a way
that a target party elects a large number of its candidates. In this model, more than one
candidate will be elected as the winner, and parties try to maximize some function of the
number of winners from their party. We considered this problem for some well-known
objective functions in both constructive and destructive cases.

Related Work. There is an extensive literature about manipulation or control of elec-
tions, we refer to the survey in [14] for relevant work on election control without the
use of social networks. In the following, we focus on election control problems where
the voters are the nodes of a social network, which recently received some attention.

Finding strategies to maximize the spread of influence in a network is one of the
main topics in network analysis. Given a network and a dynamic model for the diffu-
sion of influence, find a bounded set of nodes to be the starters of a dynamic process
of influence spread in such a way that the number of eventually influenced users is
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maximized. The problem, known as Influence Maximization (IM), has been introduced
by Domingos and Richardson [12,22] and formalized by Kempe et al., who gave a
(1 − 1/e)-approximation algorithm [18] for two of the most used dynamic models,
namely Independent Cascade Model (ICM) and Linear Threshold Model (LTM). We
point the reader to the book by Chen et al. [9] and to [18].

Wilder and Vorobeychik [25] started the study of election control by means of IM.
They defined an optimization problem that combines IM and election control called
election control through influence maximization that is defined as follows. We are given
a set of candidates, a social network of voters, each having a preference list over the
candidates, a budget B, and a specific target candidate c?. The network allows the dif-
fusing influence of individuals according to ICM. When a node/voter v is influenced,
it changes its preference list in such a way that the rank of c? in the preference list of
v is promoted (constructive) or demoted (destructive) by one position. At the end of a
diffusion process, the voters elect a candidate according to the plurality rule [26]. The
problem asks to find a set of at most B nodes to start a diffusion process in such a way
that the chances for c? to win (constructive) or lose (destructive) at the end of the diffu-
sion are maximized. Wilder and Vorobeychik used the Margin of Victory (MoV) as an
objective function and showed that there exists a greedy algorithm that approximates
an optimal solution by a factor 1/3(1 − 1/e) for constructive and 1/2(1 − 1/e) for
the destructive case. The same problem has been extended to LTM and general scoring
rules [26] by Corò et al. [10,11]. They have shown that the problem can be approxi-
mated within the same bound. A similar problem has been studied in [13]. The authors
consider a network where each node is a set of voters with the same preference list,
and edges connect nodes whose preference lists differ by the ordering of a single pair
of adjacent candidates. They use a variant of LTM for influence diffusion and show
that the problem of making a specific candidate win is NP -hard and fixed-parameter
tractable w.r.t. the number of candidates. Bredereck and Elkind [6] considered the fol-
lowing election control problem. Given a network where the influence spread according
to a variant of LTM in which each node has a fixed threshold, and all edges have the
same weight, find an optimal way of bribing nodes or add/delete edges in order to
make the majority of nodes to vote for a target candidate. A different line of research
investigates a model in which each voter is associated with a preference list over the
candidates, and it updates its list according to the majority of opinions of its neighbors
in the network [3,5,7]. All the previous works on election control through IM consider
single-winner voting systems. Multi-winner voting systems raised recent and challeng-
ing research trends, we refer to a recent book chapter [15] and references therein.

Our results. We introduce the multi-winner election control problem via social influ-
ence and show that it is NP -hard to approximate within any factor α > 0, for two
common objective functions known as margin of victory and difference of winners us-
ing a general scoring rule. This is in contrast with the previous work on single-winner
election control through IM, in which it is possible to approximate the optimum within
a constant factor. The hardness results hold for both constructive and destructive cases.
Given the hardness result, we focus on a relaxed version of the problem, which is a
variation of straight-party voting. We show that this latter remains NP -hard but admits
a constant factor approximation algorithm for both constructive and destructive cases.
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2 Multi-winner Election Control

In this section, we introduce the multi-winner election control problem. We consider
elections with k winners and general scoring rule as a voting system, which includes
many well-known scoring rules, such as plurality, approval, Borda, and veto [26]. We
first introduce the models that we use for diffusion of influence and for updating the
preference list of voters. Then we introduce the objective functions for the election
control problem in both constructive and destructive cases.

Model for influence diffusion. We use the Independent Cascade Model (ICM) for in-
fluence diffusion [18]. In this model, we are given a directed graph G = (V,E), where
each edge (u, v) ∈ E has a weight buv ∈ [0, 1]. The influence starts with a set of seed
nodes S and keeps activating the nodes in at most |V | discrete steps. In the first step, all
the seed nodes S become active. In the next steps i > 1, all the nodes that were active
in step i− 1 remain active, moreover, each node u that became active at step i− 1 tries
to activate its outgoing neighbors at step i with probability buv , for each node v ∈ No

u .
An active node will try to activate its outgoing neighbors independently and only once.
The process stops when no new node becomes active. We denote byAS the set of nodes
that are eventually active by the diffusion started by the seeds S.

Model for multi-winner election control. We consider a multi-winner election in which
k candidates will be elected. LetG = (V,E) be a directed social graph, where the nodes
are the voters in the election, and the edges represent social relationships among users.
The voters influence each other the same as ICM. We consider t parties C1, C2, . . . , Ct,
each having k candidates, Ci = {ci1, ci2, . . . , cik}, 1 ≤ i ≤ t. Without loss of generality,
we assume that C1 is the target party. The set of all candidates is denoted by C, i.e.
C =

⋃t
i=1 Ci. Each voter v ∈ V has a preference list πv over the candidates. For each

c ∈ C, we denote by πv(c) ∈ {1, 2, . . . , tk} the rank (or position) of the candidate c in
the preference list of node v.

Given a budget B, we want to select a set of B seed nodes that maximizes the
number of candidates in C1 who win the election after a political campaign that spread
according to ICM starting from nodes S (see next section for a formal definition of the
objective functions). 1

After S, nodes in AS will change the positions of candidates in C1 in their prefer-
ences list. In contrast, nodes not in AS will maintain their original preference list. The
update rule for active nodes depends on the position of the target candidates and the
goal of the campaign, i.e., if it is a constructive or a destructive one. We denote the pref-
erence list of node v after the process by π̃v . If v 6∈ AS , then π̃v = πv . In the following,
we focus on nodes v ∈ AS .

In the constructive case, like in the model in [25], the position of the target candi-
dates in the list of active nodes will be decreased by one, if there is at least one opponent
candidate in a smaller rank. The candidates who are overtaken will be demoted by the
number of target candidates that were just after them. Formally, in the constructive case,

1 In the remainder of the paper, by after S, we mean after the diffusion process started from the
set of seed nodes S.
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the position of the candidates after the diffusion starting from seed S will change as fol-
lows. For each node v ∈ AS and for each target candidate c ∈ C1, the new position of
c in v is

π̃v(c)=

{
πv(c)− 1 if ∃ c′ ∈ C \ C1 s.t. πv(c′) < πv(c)
πv(c) otherwise,

while, for each opponent candidate c ∈ C \ C1, if there exists a candidate c′ ∈ C1 s.t.
πv(c

′) = πv(c) + 1 we have π̃v(c) = πv(c) + |{c′′ ∈ C1 | πv(c′′) > πv(c) ∧ (@ c̄ ∈
C \ C1 : πv(c) < πv(c̄) < πv(c

′′)})| , otherwise, we set π̃v(c) = πv(c).
In the destructive case, we want to reduce the number of winners in C1 and then

each node v ∈ AS increases their position by one, if it is possible. Formally, after S the
preferences list of the candidates will change as follows. For each node v ∈ AS and for
each target candidate c ∈ C1, the new position of c in v is

π̃v(c)=

{
πv(c) + 1 if ∃ c′ ∈ C \ C1 s.t. πv(c′) > πv(c)
πv(c) otherwise,

while for c ∈ C \C1, if there exists a candidate c′ ∈ C1 s.t. πv(c′) = πv(c)−1 we have
π̃v(c) = πv(c) − |{c′′ ∈ C1 | πv(c′′) < πv(c) ∧ (@ c̄ ∈ C \ C1 : πv(c

′′) < πv(c̄) <
πv(c)})| , otherwise, we set π̃v(c) = πv(c).

As an example, if there are two parties with three candidates each, and the initial
preferences list of a node is (c21, c

1
1, c

1
2, c

2
2, c

1
3, c

2
3), then if the node becomes active its

preferences list in the constructive case will be (c11, c
1
2, c

2
1, c

1
3, c

2
2, c

2
3), i.e., all of the

candidates c1i will promote, and all the overtaken candidates will demote; while in the
destructive case, it will be (c21, c

2
2, c

1
1, c

1
2, c

2
3, c

1
3), and all of the candidates in our target

party demote, and all the overtaken candidates will promote.
The above rule for updating the preference lists is commonly used in the litera-

ture [10,25]. In this model, we consider just one message, which contains some posi-
tive/negative information about the target party that will affect all the target candidates.

We consider a non-increasing scoring function f(i), 1 ≤ i ≤ |C|, such that for
all j > i > 0 we have f(j) ≤ f(i). A candidate c ∈ C gets f(πv(c)) and f(π̃v(c))
points from voter v before and after a diffusion, respectively. In other words, each voter
will reveal his preferences list, and each candidate will get some score according to his
position in the list and the scoring function. Also, we assume w.l.o.g. that there exist
1 ≤ i < j ≤ |C| such that f(i) > f(j), i.e., the function does not return a fixed number
for all ranks. The score of a candidate c is the sum of the scores received by all voters.
The k candidates with the highest score will be elected.

We denote by F(c, S) the expected overall score received by candidate c after S,
formally, F(c, S) = EAS

[∑
v∈V f(π̃v(c))

]
and F(c, ∅) =

∑
v∈V f(πv(c)).

Objective Functions. The objective function for the constructive election control prob-
lem in the single-winner case is maximizing the margin of victory (MoV) defined
in [25]. Let us consider the difference between the votes for the target candidate and
those for the most voted opponent candidate. MoV is the change of this value after S.
Note that the most voted opponent before and after S might change. The notion of MoV
captures the goal of a candidate to have the largest margin in terms of votes w.r.t. any
other candidate. We extend the above definition of MoV in the case of multi-winner
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election control. Since the main goal is to elect more candidates from the target party,
then we define the objective function in terms of the number of winning candidates in
our target party before and after S.

Given a set AS of nodes that are active at the end of a diffusion process started
from S, we denote by FAS

(c) the score that a candidate c ∈ C receives if the activated
nodes are AS , and by YAS

(c) the number of candidates that have less score than the
candidate c. As a tie-breaking rule, we assume that cji has priority over cj

′

i′ if j < j′,
or j = j′ and i < i′. In particular, the target candidates have priority over opponents
when they have the same score. Then, for each cji ∈ C, i ∈ {1, . . . , k}, j ∈ {1, . . . , t},
YAS

(cji , S) is defined as YAS
(cji ) =

∣∣∣{cj′i′ ∈ C | FAS
(cji ) > FAS

(cj
′

i′ ) ∨ (FAS
(cji ) =

FAS
(cj
′

i′ ) ∧ (j < j′ ∨ (j = j′ ∧ i < i′))}
∣∣∣.

For a party Ci, we define F(Ci, S) as the expected number of candidates in Ci that
win the election after S; formally,

F(Ci, S) = EAS

[∑
c∈Ci

1YAS
(c)≥(t−1)k

]
. (1)

We denote by CB and CSA the opponent party with the highest number of winners
before and after S, respectively. For the constructive case, the margin of victory (MoVc)
for party C1, w.r.t. seeds S, is defined as follows:

MoVc(C1, S) = F(C1, S)−F(CSA , S)−
(
F(C1, ∅)−F(CB, ∅)

)
,

while for the destructive case, it is defined as:

MoVd(C1, S) = F(C1, ∅)−F(CB, ∅)−
(
F(C1, S)−F(CSA , S)

)
.

The Constructive (Destructive, resp.) Multi-winner Election Control problem (CMEC
(DMEC, resp.)) asks to find a set S of B seed nodes that maximizes MoVc(C1, S)
(MoVd(C1, S), resp), where B ∈ N is a given budget.

In some scenarios, it is enough to maximize the difference between the number of
our target candidates who win the election before and after S; we call this objective
function the difference of winners (DoW), and for the constructive case we define it as
follows:

DoWc(C1, S) = F(C1, S)−F(C1, ∅).

While for the destructive model it is defined as:

DoWd(C1, S) = F(C1, ∅)−F(C1, S).

The problems of finding a set of at mostB seed nodes that maximize DoWc and DoWd,
for a given integer B, are called Constructive Difference of Winners (CDW) and De-
structive Difference of Winners (DDW), respectively.
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3 Hardness Results

In this section, we show the hardness of approximation results for the problems defined
in the previous section. We first focus on the constructive case and prove that CMEC
and CDW are NP -hard to approximate within any approximation factor α > 0. Then,
we show that the same results hold for DMEC and DDW. All the results hold even
when the instance is deterministic (i.e. buv = 1, for each (u, v) ∈ E) and when t = 3
and k = 2. Note that for t = 1 the problem is trivial and for k = 1 the problem reduces
to the single-winner case.

Constructive Election Control. We first give an intuition of the hardness of approxima-
tion proof, which is formally given in Theorem 1. Consider an instance of the construc-
tive case in which t = k = 2, C1 = {c11, c12}, C2 = {c21, c22}, and C = C1 ∪ C2. The
weight of all edges are equal to 1, that is, the diffusion is a deterministic process. Also,
assume the scoring rule is plurality, i.e., f(1) = 1, f(2) = f(3) = f(4) = 0. Moreover,
the nodes are partitioned into two sets of equal size, V1 and V2. In the preferences lists
of all nodes in V1, candidate c21 is in the first position and c11 is in the second position,
while in the preferences lists of nodes in V2, candidate c22 is in first position and c12 is in
second position. In this instance, initially party C1 does not have any elected candidate,
that is, F(c11, ∅) = F(c12, ∅) = 0, F(c21, ∅) = |V1|, F(c22, ∅) = |V2|, F(C1, ∅) = 0, and
F(C2, ∅) = 2.

Consider a diffusion process starting from seeds S that activate nodes AS (note
that, since the weights are all equal to 1, AS is a deterministic set for any fixed S).
The number of candidates that receives fewer votes than a target candidate c1i after the

diffusion process is YAS
(c1i ) =

∣∣∣{cj′i′ ∈ C | FAS
(c1i ) > FAS

(cj
′

i′ ) ∨ (FAS
(c1i ) =

FAS
(cj
′

i′ ) ∧ (j′ = 2 ∨ i < i′))}
∣∣∣.

Let us consider the case i = 1 and analyze the conditions that a seed set S must
satisfy in order to include a candidate in the above set, i.e., make c11 win. We analyze
the three other candidates cj

′

i′ separately.

– If j′ = 2 and i′ = 1, then we must haveFAS
(c11) ≥ FAS

(c21). Since the preferences
list of each active nodes in V1 is updated in a way that c11 moves to the first position
and c21 moves to the second position, and the active nodes in V2 do not affect the
rankings of c11 and c21, we have thatFAS

(c11) = |AS∩V1| andFAS
(c21) = |V1\AS |.

Therefore, FAS
(c11) ≥ FAS

(c21) if and only if |AS ∩ V1| ≥ |V1 \ AS | = |V1| −
|V1 ∩AS |, which means that |AS ∩ V1| ≥ |V1|/2.

– If j′ = 2 and i′ = 2, then we must have FAS
(c11) ≥ FAS

(c22). In this case, we
still have FAS

(c11) = |AS ∩ V1|, and, since c22 is moved down by one position for
each active node in V2, then FAS

(c22) = |V2 \ AS |. This implies that FAS
(c11) ≥

FAS
(c22) if and only if |AS ∩ V1| ≥ |V2 \ AS | = |V2| − |V2 ∩ AS |, which means

|AS ∩ V1|+ |AS ∩ V2| ≥ |V2|.
– If j′ = 1 and i′ = 2, then we must have FAS

(c11) ≥ FAS
(c12). We again have

FAS
(c11) = |AS ∩ V1|, and, since c12 is moved by one position up for each active

node in V2, then FAS
(c12) = |AS∩V2|. Therefore, FAS

(c11) ≥ FAS
(c12) if and only

if |AS ∩ V1| ≥ |AS ∩ V2|.
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Similar conditions hold for i = 2.
In order to elect candidate c11 we should have YAS

(c11) ≥ (t − 1)k = 2, which
means, we should find a seed set that satisfies at least two of the above conditions (or
the corresponding conditions to elect c12). Note that finding a seed set S of size at most
B that satisfies any pair of the above conditions is a NP -hard problem since it requires
to solve the IM problem, which is NP -hard even when the weight of all edges is 1 [18].
Let us assume that an optimal solution is able to elect both candidates in C1 (e.g. by
influencing |V1|/2 nodes from V1, and |V2|/2 nodes from V2), then the optimal MoVc
and DoWc are equal to 4 and 2, respectively. Moreover, in this case CSA = CB = C2,
then MoVc(C1, S) = F(C1, S)−F(C1, ∅)+F(C2, ∅)−F(C2, S). Since F(C2, ∅)−
F(C2, S) = F(C1, S)− F(C1, ∅), i.e., for each candidate lost by C2 there is a candi-
date gained by C1, then MoVc(C1, S) = 2(F(C1, S) − F(C1, ∅)) = 2DoWc(C1, S).
Since F(C1, ∅) = 0, any approximation algorithm for CDW or CMEC must find a
seed set S s.t. F(C1, S) > 0 and this requires to elect at least one candidate in C1 (see
Equation (1)), which is NP -hard. It follows that it is NP -hard to approximate CMEC
and CDW within any factor, as formally shown in the next theorem.

Theorem 1 It is NP -hard to approximate CMEC and CDW within any factor α > 0.

Proof. We reduce the decision version of the deterministic IM problem, to CMEC
and CDW, where deterministic refers to the weight of the edges in the graph, i.e., the
weight of all edges is equal to 1. Let us define the decision version of the IM problem
as follows: Given a directed graph G = (V,E) and budget B ≤ |V |. Is there a set of
seed nodes S ⊆ V such that |S| ≤ B and AS = V ?

Let I(G,B) be a deterministic instance of the decision IM problem (then, using a
given seed set S, we can find the exact number of activated nodes in polynomial time).
We create an instance I ′(G′, B) of CMEC and CDW, where G′ = (V ∪ V ′, E ∪E′).
We use the same budget B for both problems. We first investigate the case where t =
3, k = 2, and consider two different cases as follows.

C1. If f(1) = f(2) = f(3) = a, f(4) = f(5) = f(6) = b for a, b ∈ R ∧ a > b ≥ 0,
we call this case exceptional, and do as follows.
For each v ∈ V we add one more node in V ′ and it has just one incoming edge
from v, i.e., ∀v ∈ V : v1 ∈ V ′, (v, v1) ∈ E′.
We set the preferences of all nodes v ∈ V and its new outgoing neighbor as follows:
v = (c21 � c22 � c31 � c11 � c12 � c32), v1 = (c31 � c32 � c21 � c12 � c11 � c22) where
a � b means a is preferred to b.

C2. For any non-increasing scoring function except the exceptional ones, we call it
general and do as follows.
For each v ∈ V we add three more nodes in V ′ and each of them has just one
incoming edge from v, i.e., ∀v ∈ V : v1, v2, v3 ∈ V ′, (v, v1), (v, v2), (v, v3) ∈ E′.
We set the preferences of all nodes v ∈ V and its new outgoing neighbors as
follows: v = (c21 � c11 � c31 � c22 � c12 � c32), v1 = (c22 � c12 � c32 � c21 � c11 �
c31), v2 = (c21 � c31 � c11 � c22 � c32 � c12), v3 = (c22 � c32 � c12 � c21 � c31 � c11).

In both cases, the weight of all edges is 1, i.e., buv = 1 for all (u, v) ∈ E ∪ E′.
The score of candidates before any diffusion is as follows.
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C1. F(c11, ∅) = F(c12, ∅) = |V |(f(4) + f(5)) = 2b|V |, F(c21, ∅) = F(c31, ∅) =
|V |(f(1)+f(3)) = 2a|V |,F(c22, ∅) = F(c32, ∅) = |V |(f(2)+f(6)) = (a+b)|V |.
Since a > b ≥ 0, it yields that F(C2, ∅) = F(C3, ∅) = 1, F(C1, ∅) = 0, and none
of our target candidates win the election.

C2. F(c11, ∅) = F(c12, ∅) = |V |(f(2) + f(3) + f(5) + f(6)), F(c21, ∅) = F(c22, ∅) =
|V |(2f(1) + 2f(4)), F(c31, ∅) = F(c32, ∅) = |V |(f(2) + f(3) + f(5) + f(6)).
Since f(·) is a non-increasing function, it yields F(C2, ∅) = 2 and F(C1, ∅) =
F(C3, ∅) = 0 and none of our target candidates win the election.

In I ′(G′, B), in both cases, all of the nodes v ∈ V ∪V ′ become active if and only if
all of the nodes v ∈ V become active. Indeed, by definition, if V ⊆ AS , then for each
node u ∈ V ′ there exists an incoming neighbor v ∈ V s.t. (v, u) ∈ E′ and bvu = 1,
then if v is active, also u becomes active.

Suppose there exists an α−approximation algorithm called α-appAlg for CDW
(resp. CMEC) and it returns S ⊆ V ∪V ′ as a solution. We show that, by using the seed
nodes S returned by the algorithm α-appAlg, we can find the answer for the decision
IM problem. We will show that DoWc(C1, S) > 0 (resp. MoVc(C1, S) > 0) if and
only if S activates all of the nodes, i.e., AS = V ∪V ′. That is DoWc(C1, S) > 0 (resp.
MoVc(C1, S) > 0) if and only if the answer to the decision IM problem is YES.

W.l.o.g., we assume S ⊆ V , because if there exists a node u ∈ S ∩ V ′, we can
replace it with the node v ∈ V s.t. (v, u) ∈ E′. Since buv = 1, this does not decrease
the value of DoWc(C1, S) or MoVc(C1, S).

We now show that if DoWc(C1, S) > 0 (resp. MoVc(C1, S) > 0), then AS =
V ∪ V ′. By contradiction, assume that S will not activate all of the nodes, i.e., there
exists a node v in V \AS . Then, the score of the candidates will be as follows.

C1. F(c11, S) = F(c12, S) ≤ (a + b)(|V | − 1) + 2b, F(c21, S) = F(c31, S) ≥ (a +
b)(|V | − 1) + 2a, F(c22, S) = F(c32, S) = |V |(f(2) + f(6)) = (a + b)|V |.
Since a > b ≥ 0, then none of the target candidates will be among the win-
ners, i.e., F(C2, S) = F(C3, S) = 1 and F(C1, S) = 0 and DoWc(C1, S) =
MoVc(C1, S) = 0.

C2. F(c11, S) = F(c12, S) ≤ (|V | − 1)(f(1) + f(2) + f(4) + f(5)) + (f(2) + f(3) +
f(5) + f(6)), F(c21, S) = F(c22, S) ≥ (|V | − 1)(f(1) + f(2) + f(4) + f(5)) +
(2f(1)+2f(4)),F(c31, S) = F(c32, S) ≥ (|V |−1)(f(3)+f(4)+2f(6))+(f(2)+
f(3) + f(5) + f(6)). Since f(·) is a non-increasing function, then F(C1, S) =
F(C3, S) = 0 and F(C2, S) = 2. Therefore DoWc(C1, S) = MoVc(C1, S) = 0.

In both cases we have a contradiction. To show the other direction, if all of the nodes
become active, then the score of candidates will be as follows.

C1. For each 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3, F(cji , S) = (a+b)|V |. Due to the tie-breaking
rule it follows that both of our target candidates will be among the winners, i.e.,
F(C1, S) = 2 and F(C2, S) = F(C3, S) = 0.

C2. F(c11, S) = F(c12, S) = F(c21, S) = F(c22, S) = |V |(f(1)+f(2)+f(4)+f(5)),
F(c31, S) = F(c32, S) = |V |(f(3) + f(4) + 2f(6)). Then, F(C1, S) = 2 and
F(C2, S) = F(C3, S) = 0.

Therefore we have DoWc(C1, S) > 0 (resp. MoVc(C1, S) > 0), and it concludes
the proof. The proof can be generalized for any t, k > 2, see [1]. ut
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Destructive Election Control. The following theorem shows the hardness of approx-
imation of the destructive case. The proof is similar to that of Theorem 1, and hence
it is omitted. Note that if we consider maximizing DoWd, the destructive case can be
reduced to the constructive model. We cannot apply the same reduction to the problem
of maximizing MoVd as the opponent party with the highest number of winners (i.e.,
CB, C

S
A ) may be different from that of the constructive case.

Theorem 2 It is NP -hard to approximate DMEC and DDW within any factor α > 0.

4 Straight-Party Voting

Since all the variants of the multi-winner election control problems considered so far
are NP -hard to be approximated within any factor, we now consider a relaxation of
the problem in which, instead of focusing on the number of elected target candidates,
we focus on the overall number of votes obtained by the target party. The rationale is
that, even if a party is not able to (approximately) maximize the number of its winning
candidates because it is computationally unattainable, it may want to maximize the
overall number of votes, in the hope that these are not too spread among the candidates
and still leads to a large number of seats in the parliament.

Moreover, the voting system that we obtain by the relaxation is used in some real
parliamentary elections [23], and is called of Straight-party voting (SPV) or straight-
ticket voting [8,20]. SPV was used very much until around the 1960s and 1970s in
the United States. After that, the United States has declined SPV among the general
voting; nevertheless, strong partisans are still voting according to SPV. Interestingly,
the first time that every state voting for a Democrat for Senate also voted Democratic for
president (and the same stability for Republicans) was the 2016 elections of the United
states [17].

Note that in this model, if we consider that the controller targets a single candidate
instead of a party and the preference lists are over candidates, then we can easily re-
duce the problem to the single-winner case. The same holds if the controller targets a
party and the preference lists are over parties. Therefore, we assume that voters have
preference lists over the candidates, but since the voting system is SPV and voters have
to vote for a party, then they will cast a vote for each party based on the position of
the candidates of the party in their preferences list, e.g., if the preferences list of a node
v ∈ V is c11 � c21 � c22 � c12, then the scores of v for party C1 will be f(1) + f(4), and
f(2) + f(3) for party C2.

Let us define Fspv(Ci, ∅) and Fspv(Ci, S) as sum of the scores obtained by party
Ci in SPV before and after S, respectively, as follows.

Fspv(Ci, ∅) =
∑
v∈V

∑
c∈Ci

f(πv(c)), Fspv(Ci, S) = EAS

[∑
v∈V

∑
c∈Ci

f(π̃v(c))
]
.

As in the previous case, we denote by CB and CSA the most voted opponents of C1

before and after S, respectively. We define MoVc and MoVd for SPV as

MoVspvc (C1, S) = Fspv(C1, S)−Fspv(CSA , S)− (Fspv(C1, ∅)−Fspv(CB, ∅)) ,
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MoVspvd (C1, S) = Fspv(C1, ∅)−Fspv(CB, ∅)−
(
Fspv(C1, S)−Fspv(CSA , S)

)
.

Also, we define difference of votes for constructive (DoVc) and destructive (DoVd) as

DoVspvc (C1, S) = Fspv(C1, S)−Fspv(C1, ∅),
DoVspvd (C1, S) = Fspv(C1, ∅)−Fspv(C1, S).

Theorem 3 Maximizing MoV and DoV in the constructive and destructive SPV prob-
lems is NP -hard.

Proof. As in Theorem 1, we use the decision version of the deterministic IM problem.
Let I(G,B) be a deterministic instance of the decision IM problem. We create an in-
stance I ′(G′, B) of SPV , where G′ = G and B is the same budget for both problems.
Assume t = k = 2, and we are using a non-increasing scoring function. Consider the
minimum j such that 1 ≤ i < j ≤ |C| and f(i) > f(j), i.e., j is the minimum rank
that has less score than rank i = j − 1. Note that 2 ≤ j ≤ 4. We set the preferences list
of each voter v ∈ V in graph G′ as follows.

C1. If j = 2. v : c21 � c11 � c12 � c22. In this case, Fspv(C1, ∅) = (f(2) + f(3))|V |.
C2. If j = 3. v : c21 � c22 � c11 � c12. In this case, Fspv(C1, ∅) = (f(3) + f(4))|V |.
C3. If j = 4. v : c11 � c21 � c22 � c12. In this case, Fspv(C1, ∅) = (f(1) + f(4))|V |.

By this preferences assignment, if all of the nodes become active after S, then the score
and DoVspvc for party C1 will be as following.

C1. Fspv(C1, S) = (f(1) + f(2))|V |,

DoVspvc (C1, S) = (f(1) + f(2))|V | − (f(2) + f(3))|V | = (f(1)− f(3))|V |;

and, if at least one node is not active DoVspvc (C1, S) < (f(1)− f(3))|V |.
C2. Fspv(C1, S) = (f(2) + f(3))|V |,

DoVspvc (C1, S) = (f(2) + f(3))|V | − (f(3) + f(4))|V | = (f(2)− f(4))|V |;

also, if at least one node is not active DoVspvc (C1, S) < (f(2)− f(4))|V |.
C3. Fspv(C1, S) = (f(1) + f(3))|V |,

DoVspvc (C1, S) = (f(1) + f(3))|V | − (f(1) + f(4))|V | = (f(3)− f(4))|V |;

moreover, if at least one node is not active DoVspvc (C1, S) < (f(3)− f(4))|V |.

Then by this reduction, we can distinguish between the case that all of the nodes become
active or not, which is the answer of IM problem. In this case, since there are just two
parties, whatever C2 looses will go for C1. Then, MoVspvc (C1, S) = 2DoVspvc (C1, S),
which means we also can answer to IM problem by maximizing MoVspvc . The general-
ized version of this proof, t, k > 0, is available in the extended version [1].

Regarding the destructive case, the reduction is similar to the constructive one, ex-
cept that we set the preferences of the voters s.t. at least one of the candidates c ∈ C1

can decrease the score of C1. The same approach gets the NP -hardness result. ut
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We now give an approximation algorithm for the problems of maximizing DoVspvc
and DoVspvd that is based on a reduction to the node-weighted version of the IM prob-
lem. We construct an instance of this problem where the weight to each node v ∈ V ,
which is equal to the increase in the score of C1 when v becomes active. The node-
weighted IM problem can be approximated by a factor of 1− 1

e − ε, for any ε > 0, by
using the standard greedy algorithm [18].

Theorem 4 There exists an algorithm that approximates DoVspvc and DoVspvd within a
factor (1− 1

e )− ε from the optimum, for any ε > 0.

Proof. We first consider the constructive case, i.e., DoVspvc . Let us define C̄v1 ⊆ C1

as a set of candidates in our target party whose rank is decreased if v become active;
in other words, C̄v1 = {c ∈ C1 : ∃c′ ∈ C \ C1, πv(c

′) < πv(c)}. In this case, a
node v ∈ V can increase the score of C1 by

∑
c∈C̄v

1
f(πv(c)− 1)− f(πv(c)).2 Given

an instance of I(G,B) of the DoVspvc maximization problem, we define an instance
I ′(G,B,w) of the node-weighted IM problem, where w is a node-weight function
defined as w(v) =

∑
c∈C̄v

1
(f(πv(c)− 1)− f(πv(c))) , for all v ∈ V . Given a set S of

nodes, we denote by σ(S) the expected weight of active nodes in G, when the diffusion
starts from S. We will show that DoVspvc (C1, S) = σ(S) for any set S ⊆ V , since
the standard greedy algorithm guarantees an approximation factor of 1− 1

e − ε, for the
node-weight IM problem, for any ε > 0, this shows the statement.

Given a set S, σ(S) can be computed as follows:

σ(S) = EAS

[ ∑
v∈AS

w(v)

]
=
∑
AS⊆V

∑
v∈AS

w(v)P(AS),

where P(AS) is the probability that AS ⊆ V is the set of nodes activated by S.
By definition DoVspvc (C1, S) = Fspv(C1, S)−Fspv(C1, ∅), where Fspv(C1, ∅) =∑
v∈V

∑
c∈C1

f(πv(c)) and

Fspv(C1, S) = EAS

[∑
v∈V

∑
c∈C1

f(π̃v(c))

]
=
∑
v∈V

∑
c∈C1

EAS
[f(π̃v(c))]

=
∑
v∈V

∑
c∈C̄v

1

EAS
[f(π̃v(c))] +

∑
c∈C1\C̄v

1

f(πv(c))

 ,

where the last equality is due to the fact that, a node v doesn’t change the positions of
candidates in C1 \ C̄v1 . Let us focus on the first term of the above formula,∑
v∈V

∑
c∈C̄v

1

EAS
[f(π̃v(c))]

2 We assume function f(·) is defined in such away that f(i− 1)− f(i), for i = 2, . . . ,m, does
not depend exponentially on the graph size (e.g. it is a constant). The influence maximization
problem with arbitrary node-weights is still an open problem [18].
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=
∑
v∈V

∑
c∈C̄v

1

∑
AS⊆V

(f(πv(c)− 1)1v∈As + f(πv(c))1v 6∈As)P(AS)

=
∑
AS⊆V

∑
v∈AS

∑
c∈C̄v

1

f(πv(c)− 1) +
∑
v 6∈AS

∑
c∈C̄v

1

f(πv(c))

P(AS).

It follows that

DoVspvc (C1, S) =
∑
v∈V

∑
c∈C̄v

1

EAS
[f(π̃v(c))− f(πv(c))]

∑
AS⊆V

∑
v∈AS

∑
c∈C̄v

1

(f(πv(c)− 1)− f(πv(c)))P(AS) = σ(S),

since the term related to candidates in C1 \ C̄v1 and to nodes not in AS are canceled out.
The destructive case is similar to the constructive one except that a node v ∈ V

can decrease the score of C1 by
∑
c∈C1:∃c′∈C\C1,πv(c′)>πv(c) f(πv(c))−f(πv(c)+1).

Therefore the same approach, where the weights are set to the above value, yields the
same approximation factor for DoVspvd . ut

In the following theorems, we show that using Theorem 4, we get a constant ap-
proximation factor for the problem of maximizing MoV. Specifically, we show that
by maximizing DoVspvc we get an extra 1/3 approximation factor for the problem of
maximizing MoVspvc . For the destructive case, the extra approximation factor is 1/2. It
follows that, by using the greedy algorithm for maximizing DoVspvc and DoVspvd , we
obtain approximation factors of 1

3 (1 − 1
e ) − ε and 1

2 (1 − 1
e ) − ε, for any ε > 0, of the

maximum MoVspvc and MoVspvd , respectively.

Theorem 5 There exists an algorithm that approximates MoVspvc within a factor 1
3 (1−

1
e )− ε from the optimum, for any ε > 0.

Proof. Let S and S∗ be the solution returned by the greedy algorithm for DoVspvc max-
imization and a solution that maximizes MoVspvc , respectively. For each partyCi 6= C1,
we denote by DoV−c (Ci, S) the score lost by Ci after S, that is DoV−c (Ci, S) =
F(Ci, ∅) − F(Ci, S) ≥ 0. Let αε := (1 − 1

e ) − ε. Since S is a factor αε from the
optimum DoVspvc , the following holds.

MoVspvc (C1, S) = Fspv(C1, S)−Fspv(CSA , S)−
(
Fspv(C1, ∅)−Fspv(CB, ∅)

)
= DoVspvc (C1, S) + DoV−c (CSA , S)−Fspv(CSA , ∅) + Fspv(CB, ∅)
≥ αεDoVspvc (C1, S

∗)−Fspv(CSA , ∅) + Fspv(CB, ∅)
(a)

≥ 1

3
αε

[
DoVspvc (C1, S

∗) + DoV−c (CS
∗

A , S∗) + DoV−c (CSA , S
∗)
]

−Fspv(CSA , ∅) + Fspv(CB, ∅)
(b)

≥ 1

3
αε

[
DoVspvc (C1, S

∗) + DoV−c (CS
∗

A , S∗) + DoV−c (CSA , S
∗)
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−Fspv(CSA , ∅) + Fspv(CB, ∅) + Fspv(CS
∗

A , ∅)−Fspv(CS
∗

A , ∅)
]

=
1

3
αε

[
MoVspvc (C1, S

∗) + DoV−c (CSA , S
∗) + Fspv(CS

∗

A , ∅)−Fspv(CSA , ∅)
]

(c)

≥ 1

3
αεMoVspvc (C1, S

∗) ≥
(

1

3

(
1− 1

e

)
− ε
)

MoVspvc (C1, S
∗),

for any ε > 0. Inequality (a) holds because, by definition, the score lost by CSA and
CS
∗

A will be added to the score of C1. Inequality (b) holds since, by definition of CB,
Fspv(CB, ∅) ≥ Fspv(CSA , ∅) and then −Fspv(CSA , ∅) +Fspv(CB, ∅) ≥ 0. Inequality (c)
holds because

DoV−c (CS
∗

A , S∗)− DoV−c (CSA , S
∗)

= Fspv(CS
∗

A , ∅)−Fspv(CS
∗

A , S∗)−Fspv(CSA , ∅) + Fspv(CSA , S∗)
(d)

≤ Fspv(CS
∗

A , ∅)−Fspv(CSA , ∅),

which implies that

DoV−c (CSA , S
∗) + Fspv(CS

∗

A , ∅)−Fspv(CSA , ∅) ≥ DoV−c (CS
∗

A , S∗) ≥ 0.

Inequality (d) holds since, by definition of CS
∗

A , F(CSA , S
∗) ≤ F(CS

∗

A , S∗). ut

Theorem 6 There exists an algorithm that approximates MoVspvd within a factor 1
2 (1−

1
e )− ε from the optimum, for any ε > 0.

Proof. Let S and S∗ be the solution returned by the greedy algorithm for DoVspvd maxi-
mization and a solution that maximizes MoVspvd , respectively. For each party Ci 6= C1,
we denote by DoV+

c (Ci, S) the score gained by Ci after S, that is DoV+
c (Ci, S) =

F(Ci, S) − F(Ci, ∅) ≥ 0. Let αε := (1 − 1
e ) − ε. Since S is a factor αε from the

optimum DoVspvc , the following holds.

MoVspvd (C1, S) = Fspv(C1, ∅)−Fspv(CB, ∅)−
(
Fspv(C1, S)−Fspv(CSA , S)

)
= DoVspvd (C1, S) + DoV+

c (CSA , S) + Fspv(CSA , ∅)−Fspv(CB, ∅)
≥ αεDoVspvd (C1, S

∗) + DoV+
c (CSA , S) + Fspv(CSA , ∅)−Fspv(CB, ∅)

(a)

≥ 1

2
αε

[
DoVspvd (C1, S

∗) + DoV+
c (CS

∗

A , S∗)
]

+ DoV+
c (CSA , S)+

Fspv(CSA , ∅)−Fspv(CB, ∅)
(b)

≥ 1

2
αε

[
DoVspvd (C1, S

∗) + DoV+
c (CS

∗

A , S∗) + DoV+
c (CSA , S)+

Fspv(CSA , ∅)−Fspv(CB, ∅) + Fspv(CS
∗

A , ∅)−Fspv(CS
∗

A , ∅)
]

=
1

2
αε

[
MoVd(C1, S

∗) + DoV+
c (CSA , S)−Fspv(CS

∗

A , ∅) + Fspv(CSA , ∅)
]

(c)

≥ 1

2
αεMoVd(C1, S

∗) ≥
(

1

2

(
1− 1

e

)
− ε
)

MoVd(C1, S
∗),
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for any ε > 0. Inequality (a) holds because CS
∗

A can gain at most all of the scores lost
by C1. Inequality (b) holds since we have

DoV+
c (CSA , S) + Fspv(CSA , ∅)−Fspv(CB, ∅)
= Fspv(CSA , S)−Fspv(CSA , ∅) + Fspv(CSA , ∅)−Fspv(CB, ∅)
= Fspv(CSA , S)−Fspv(CB, ∅),

and, by definition of CSA , Fspv(CSA , S) ≥ Fspv(CB, S) ≥ Fspv(CB, ∅). Inequality (c)
holds because

DoV+
c (CSA , S)−Fspv(CS

∗

A , ∅) + Fspv(CSA , ∅)
= Fspv(CSA , S)−Fspv(CSA , ∅)−Fspv(CS

∗

A , ∅) + Fspv(CSA , ∅)
= Fspv(CSA , S)−Fspv(CS

∗

A , ∅)

and, by definition of CSA , Fspv(CSA , S) ≥ Fspv(CS
∗

A , S) ≥ Fspv(CS
∗

A , ∅). ut

5 Conclusions and Future Work

Controlling elections through social networks is a significant issue in modern society.
Political campaigns are using social networks as effective tools to influence voters in
real-life elections. In this paper, we formalized the multi-winner election control prob-
lem through social influence. We proved that finding an approximation to the maximum
margin of victory or difference of winners, for both constructive and destructive cases,
is NP -hard for any approximation factor. We relaxed the problem to a variation of
straight-party voting and showed that this case is approximable within a constant factor
in both constructive and destructive cases. To our knowledge, these are the first results
on multi-winner election control via social influence.

The results in this paper open several research directions. We plan to study the prob-
lem in which the adversary can spread a different (constructive/destructive) message for
each candidate, using different seed nodes. In these cases, a good strategy could be that
of sending a message regarding a third party (different from the target one and the most
voted opponent), and our results cannot be easily extended.
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