
Doctoral Thesis

Supporting Smart Cities

Quality Evaluation Exploiting
Model-Driven Engineering

PhD Program in Computer Science: XXXIV cycle

Author:

Maria Teresa Rossi

mariateresa.rossi@gssi.it

Supervisor:

Dr. Ludovico Iovino

ludovico.iovino@gssi.it

Co-Supervisor:

Prof. Manuel Wimmer

manuel.wimmer@jku.at

March 20, 2023

GSSI Gran Sasso Science Institute

Viale Francesco Crispi, 7 - 67100 L’Aquila - Italy

mailto:mariateresa.rossi@gssi.it
mailto:ludovico.iovino@gssi.it
mailto:manuel.wimmer@jku.at
http://www.gssi.infn.it
https://goo.gl/maps/9Cj77

Declaration of Authorship

I, Maria Teresa Rossi, declare that this thesis titled, ’Supporting Smart Cities Quality

Evaluation Exploiting Model-Driven Engineering’ and the work presented in it are based

on co-authored papers published in Proceedings of International Conferences (ECSA,

ICSOC, MoSC@STAF, MULTI@MODELS) and in the International Journal on Software

and Systems Modeling (SoSyM).

I confirm that:

■ The content of Chapter 3 is based on a work co-authored by Martina De Sanctis,

Ludovico Iovino and Manuel Wimmer, which is under review to the International

Journal on Software and Systems Modeling (SoSyM) [1].

■ The content of Chapter 4 is based on a work co-authored by Martina De Sanctis,

Ludovico Iovino and Manuel Wimmer, which have been published in the Interna-

tional Journal on Software and Systems Modeling (SoSyM) [2].

■ The content of Chapter 5 is based on works co-authored by Francesco Basciani,

Martina De Sanctis, Ludovico Iovino and Manuel Wimmer, which have been pub-

lished in the International Journal on Software and Systems Modeling (SoSyM)

[2], in the Proceedings of the 14th European Conference on Software Architecture

(ECSA 2020) [3], in the Proceedings of the 1st International Workshop on Mod-

eling Smart Cities (MoSC@STAF 2020) [4] and in the Proceedings of the 19th

International Conference on Service-Oriented Computing (ICSOC 2021) [5].

■ The content of Chapter 6 is based on works co-authored by Martina De Sanctis, Lu-

dovico Iovino and Manuel Wimmer, which have been published in the International

Journal on Software and Systems Modeling (SoSyM) [2], in the Proceedings of the

14th European Conference on Software Architecture (ECSA 2020) [3], and in the

Proceedings of the 19th International Conference on Service-Oriented Computing

(ICSOC 2021) [5].

i

ii

■ The content of Chapter 7 is based on works co-authored by Martina De Sanc-

tis, Martina Dal Molin, Ludovico Iovino and Manuel Wimmer, which have been

published in the Proceedings of the 8th International Workshop on Multi-Level

Modelling (MULTI@MODELS 2021) [6].

Signed:

Date:

Abstract

The concept of Smart City was coined in 2011 to define an idealized city characterized by

automation and connection. As a consequence of the digital revolution, it further evolved

detailing the multiple aspects characterizing smart cities themselves (e.g., sustainable

mobility, environmental management, citizens inclusion). The European Commission

published an agenda containing several objectives, called Sustainable Development Goals

(SDGs), to reach in 2030 to face the crisis and promote smart, sustainable, and inclusive

growth of European cities. On top of the SDGs, international projects targeted the

definition of smart cities’ Key Performance Indicators (KPIs), along with their collection

methodology, to capture the performance of a city in multiple dimensions and to support

transparent monitoring and the comparability among smart cities. In this context, the

Smart Governance performed in smart cities is in charge of decision-making processes,

by exploiting KPIs assessment in order to have a complete vision of the cities in terms

of smartness and sustainability.

Overall, a framework for KPIs measurements in smart cities could be defined as a Quality

Evaluation System (QES) that performs the assessment of a subject, i.e., the candidate

smart city, w.r.t. some quality metrics, i.e., the selected interesting KPIs, as usually done

for software quality analysis. However, despite the growing interest in smart cities eval-

uation and the existing guidelines on KPIs, no standard tools, languages and models to

support systematic KPIs assessment processes do exist. This implies the lack of efficiency

in the process of smart city evaluation and comparison that, in turn, affects the growth

and improvement of smart cities. Moreover, this limitation hinders knowledge sharing

among the smart city stakeholders, thus negatively affecting the smart city decision-

making processes. These challenges are further exacerbated by the complex nature of

smart cities themselves. In fact, when speaking about smart cities, multiple dimensions

(e.g., mobility, economy, environment) come into play, together with their corresponding

stakeholders (e.g., private companies, public administrations, service providers). These

dimensions are very heterogeneous, making it difficult also the interconnection among

them. Furthermore, different cities can show diverse features and peculiarities (e.g., size,

economic growth), thus affecting the relevance that some KPIs might have in their specific

context. This entails that the relevant sets of KPIs might differ among different cities,

thus implying the need for KPIs customization. KPIs evolve over time, which means

that new KPIs can be defined or existing ones can be implemented in slightly different

manners. Unfortunately, the currently available frameworks (e.g., manual, spreadsheets-

based, Web-based platforms) for KPIs assessment are still far from being flexible enough.

To the contrary, they are tailored to a specific domain, or closed to customization, or

rely on manual and error-prone tasks.

Model-Driven Engineering (MDE) techniques are widely used to represent complex sys-

tems through abstract models. In this dissertation, we propose MIKADO– a Smart

City KPIs Assessment Modeling Framework. Our solution is an approach supporting

(i) the uniform modeling of both smart cities and KPIs, (ii) the automatic calcula-

tion of KPIs, and (iii) graphical visualization of assessed KPIs by means of dynamic

dashboards. MIKADO enables the continuous monitoring and evaluation of the KPIs’

input parameters, by weaving open services and runtime models. The resulting approach

provides a standard, but at the same time, a customizable process for smart cities gov-

ernance administrators. MIKADO is characterized by domain-independence, indeed we

demonstrate that it can be generalized into a QES for multiple domains, by exploiting

the Multilevel modeling paradigm. We evaluated the approach in terms of (i) under-

standability of the MIKADO Domain Specific Languages, (ii) performance measured as

execution time given variable models; and (iii) the latency.

Acknowledgements

I would like to express my deepest gratitude to my supervisor Ludovico Iovino for his

invaluable support, motivation and feedback. I also could not have undertaken this

journey without my co-supervisor Manuel Wimmer for providing me with his knowledge

and expertise.

I am deeply indebted to my tutor, co-author and friend Martina De Sanctis for her

editing help, long and precious feedback sessions and moral support. This thesis would

have not been possible without her supervision and inspiring energy.

This work was partially supported by the Centre for Urban Informatics and Modelling

(CUIM).

vi

Contents

Declaration of Authorship i

Abstract iv

Acknowledgements vi

List of Figures x

List of Tables xii

Abbreviations xiii

1 Introduction 1
1.1 Thesis Context . 1
1.2 Problem and Challenges . 2
1.3 Research Questions and Solution Overview 4
1.4 Research Activities and Publications . 5

1.4.1 Research Publications . 8
1.4.2 Other Publications . 9

1.5 Tools & Demo . 10
1.6 Thesis Outline . 11

2 Background 13
2.1 The Smart City Domain . 13

2.1.1 Smart Governance . 16
2.2 Quality Evaluation Systems . 17
2.3 Model-Driven Engineering . 18

2.3.1 Multi-level Modeling . 20
2.3.2 Models@Runtime . 21

2.4 Discussion . 22

3 State of the Art and Motivation 23
3.1 Smart Cities Evaluation through KPIs . 23

3.1.1 KPIs Assessment Frameworks . 25
Manual approaches. 25
Spreadsheets-based approaches. 26

vii

Contents viii

Web-based platforms. 27
3.1.1.1 Requirements Perspective 28
3.1.1.2 Process Perspective . 29

3.2 Quality Evaluation Systems . 30
3.3 Modeling Smart Cities . 33

3.3.1 Smart Cities Modeling Approaches Review: Main Findings 34
Problem Domain. 36
Solution Domain. 37
Scientific Community Domain. 38

3.4 Research Challenges . 40
3.5 Discussion . 43

4 MIKADO– a Smart City KPIs Assessment Modeling Framework 45
4.1 Motivating Scenario: Smart Decision-Making 45
4.2 The MIKADO Approach . 47

4.2.1 Smart Cities Metamodel . 48
4.2.2 Key Performance Indicators Metamodel 49
4.2.3 KPIs Assessment . 51
4.2.4 KPIs Reporting . 51

4.3 Supporting KPIs evolution . 52
4.4 Discussion . 54

5 Architecture and Implementation 55
5.1 MIKADO Flexible Architecture . 55
5.2 Standalone Deployment Implementation 59

5.2.1 Modeling Component . 60
5.2.2 Analysis Component . 63
5.2.3 Data Visualization Component . 65

5.3 Hybrid Deployment Implementation . 66
5.3.1 Weaving Open Services with Runtime Models for Continuous Smart

Cities KPIs Assessment . 67
5.3.2 Runtime Models Update by Continuous Monitoring 70

5.4 Online Deployment Specification . 73
5.5 Discussion . 76

6 Evaluation Results 78
6.1 Demonstration Case . 78

6.1.1 Selection of Real-World KPIs . 78
6.1.2 Modeling of KPIs Definitions . 80
6.1.3 Modeling of Smart Cities . 81
6.1.4 KPIs Assessment through the Evaluation Engine 82
6.1.5 KPIs Visualization through Dashboards Generation 83
6.1.6 Supporting Smart Cities Comparison 84
6.1.7 Supporting Smart Cities and KPIs Evolution 86

6.2 Understandability of MIKADO ’s DSLs . 87
6.2.1 Survey Setup and Execution . 87
6.2.2 Survey Results . 88

Contents ix

Threats to validity. 89
6.3 Performance of the MIKADO Framework 90

6.3.1 Scalability of the Evaluation Engine 91
Experiment Setup. 91
Experiment Results. 91

6.3.2 Empowering of the Evaluation Engine 92
Experiment Setup. 93
Experiment Results. 93

6.3.3 Threats to validity . 95
6.4 Latency Analysis of Service-based Continuous KPIs Assessment 95

Experiment Setup. 96
Results for RQ1. 97
Results for RQ2. 99
Threats to validity. 99

6.5 Discussion . 100

7 Generalizability of the Proposed Framework 101
7.1 Motivations . 101
7.2 Bringing MIKADO to Multilevel . 102

7.2.1 Leveraging Multi-Level Modeling for Multi-Domain Quality As-
sessment . 103

7.2.2 Running Examples . 104
Smart City KPIs evaluation. 104
Research Institute Social Impact. 105
Covid-19 Risk. 105

7.3 Subjects Definition . 106
7.4 Quality Metrics Definition . 108
7.5 QES engine . 110
7.6 Assessment Results Graphical Representation 112
7.7 Discussion . 114

8 Conclusions and Future Work 115
8.1 Future Work . 118

8.1.1 Leveraging Models@Runtime in a Digital Twin perspective 119
8.1.2 Supporting Ethics Risk Traceability in Quality Assessment 120

List of Figures

1.1 Research Plan performed during the PhD program. 6

2.1 Boyd Cohen Wheel. 15
2.2 Structure of the KPIs proposed in [7]. 17
2.3 Relationship between MDE, MDD and MDA concepts. 20
2.4 Comparison between traditional and multi-level modelling [8] 21

3.1 Basic process for the development of frameworks for the KPIs assessment. 30
3.2 Distribution of publications among the smart city dimensions. 36
3.3 Number of publications w.r.t. the type facets. 38
3.4 Boxplot with the TRL values w.r.t. the three facets. 39
3.5 Number of publications per year w.r.t. the publications type. 39

4.1 Overview of the MIKADO approach. 47
4.2 Smart City Metamodel. 48
4.3 KPIs Metamodel. 50
4.4 Example of gauge and range charts. 52

5.1 The Flexible Architecture for the KPIs Assessment in Smart Cities. 56
5.2 Standalone specification of the flexible architecture in Figure 5.1. 60
5.3 Textual representation of the model for the city of L’Aquila. 61
5.4 Graphical representation of the model for the city of L’Aquila. 62
5.5 Auto-completion feature. 63
5.6 Syntax error at modeling time. 63
5.7 Hybrid specification of the flexible architecture in Figure 5.1. 68
5.8 Sequence Diagram of the KPIs assessment process. 69
5.9 Publish-Subscribe pattern in our example 71
5.10 Our tool in action for the smart city L’Aquila. 73
5.11 Online specification of our architecture . 74

6.1 Graphical Representation of the Smart City Model for the city of L’Aquila. 82
6.2 Examples of the input and output models during the assessment process. . 83
6.3 KPIs Assessment Results over the Smart City of L’Aquila. 83
6.4 Overall View of the KPIs for the city of L’Aquila. 84
6.5 Detailed view of a single category of KPI. 85
6.6 Scenario 2 - Change KPIs type. 87
6.7 The boxplots report the votes given in the likert scales for each evaluated

KPI w.r.t. our DSL and the spreadsheet formulae. The dots indicate the
number of responses "I don’t know" given for each KPI description. 89

x

List of Figures xi

6.8 Users preferences between our DSL and spreadsheets when considering a
period of training of 1 week (left side) and 10 weeks (right side). 89

6.9 Users preferences w.r.t. the two proposed smart city’s representations,
graphical vs. tabular. 90

6.10 Exp1: increasing the number of evaluated smart cities. 92
6.11 Exp2: increasing the complexity in the calculation of each modeled KPI. 92
6.12 Exp3: make each KPI of type range. 92
6.13 Exp4: increasing the number of KPIs. 92
6.14 Execution times of the evaluation engine resulting from the experiments. . 94
6.15 Data retrieving, SC Model update and evaluation engine execution times.

Automated: 963 interactions. 97
6.16 Data retrieving, SC Model update and evaluation engine execution times.

Baseline: 18 interactions. 98
6.17 Latency contributed by the three phases. 99

7.1 Overview of the quality assessment approach. 102
7.2 Overview of the Multi-level Quality Assessment System. 103
7.3 Multi-level hierarchy for Subjects definition. 107
7.4 Multi-level hierarchy for Quality Metrics definition. 109
7.5 Excerpt of the Dashboard evaluating Smart City KPIs. 112
7.6 Excerpt of the Dashboard evaluating Social Impact. 113
7.7 Excerpt of the Dashboard evaluating COVID Risk. 113

8.1 KPIs assessment process and involved roles. 121

List of Tables

1.1 List of the resources related to the developed artifacts. 10

3.1 Evaluation of KPIs assessment frameworks. 29

5.1 Architecture flexibility in terms of required components and technologies. 75

6.1 Sources of the KPIs definition used in the experiment 79
6.2 Evaluation and comparison of the subject smart cities. 85
6.3 Scenario-based testing for the evaluation of the MIKADO ’s evolution sup-

port. 86
6.4 Increasingly complex scenarios for the scalability assessment. 93

xii

Abbreviations

AP Air Pollution

API Application Programming Interface

AQI Air Quality Index

BN Bicycle Network

DSL Domain-Specific Language

DT Digital Twin

EGL Epsilon Generation Language

EMF Eclipse Modeling Framework

EOL Epsilon Object Language

EVL Epsilon Validation Language

Exp Experiment

GA Green Areas

GMF Graphical Modeling Framework

GQM Goal-Question-Metric

GPL General-Purpose programming Languages

HEI Higher Education Institution

ICT Information and Communication Technology

IoT Internet of Things

ITU International Telecommunication Union

KPI Key Performance Indicator

LCDP Low-Code Development Platform

MA Mobile Applications

M2M Model-to-Model

M2T Model-to-Text

MDA Model-Driven Architecture

xiii

Abbreviations xiv

MDD Model-Driven Development

MDE Model-Driven Engineering

MLM Multi-Level Modeling

ms milliseconds

QES Quality Evaluation System

QM Quality Metric

RC Research Challenge

RQ Research Question

SC Smart City

SCS Smart City System

SD Sequence Diagram

SDG Sustainable Development Goal

SoC Separation of Concerns

SSC Smart Sustainable Cities

SV Sales Volume

TM Transport Monitoring

TRL Technology Readiness Level

UML Unified Modeling Language

UHI Urban Heat Island

Chapter 1

Introduction

In this Chapter, we give an exhaustive introduction of the work described in this dis-

sertation. In particular, we describe the context in which the thesis has been developed

in Section 1.1. Then, Section 1.2 explains the problem and research challenges that we

want to face with our work. Thus, in Section 1.3 we report the research questions that

guided the work and an overview of the developed solution is provided. Moreover, the

research activities performed and the produced publications making up this dissertation

are reported in Section 1.4. Further, in Section 1.5 we provide the references to the tools

and demos of the developed framework. The Chapter is closed by the thesis outline in

Section 1.6.

1.1 Thesis Context

The concept of Smart City (SC) was coined by the IBM’s brand in 2011 [9] to define an

idealized city characterized by automation and connection. It further evolved detailing

the multiple aspects characterizing smart cities themselves, which must be considered to

effectively make cities smarter, such as sustainable mobility, environmental management,

citizens inclusion, and so on. Consequently to the birth of the concept, cities started a

process of transition to become smarter. For this purpose, weaving Information and

Communication Technology (ICT) and cities can be exploited in order to promote their

sustainable development to improve human lives and preserve the environment. Conse-

quently, the concept of SC has been gaining more and more relevance both at European

and world-wide level. For instance, the European Commission published an agenda [10]

containing several objectives, called Sustainable Development Goals (SDGs)1, to reach in

2030 to face the crisis and promote a smart, sustainable and inclusive growth of European
1 https://sustainabledevelopment.un.org/sdgs

1

https://sustainabledevelopment.un.org/sdgs

Chapter 1. Introduction 2

cities. In particular, the smart growth is related with the development of an economy

based on knowledge and innovation. This type of economies aim to use technologies and

information systems for the sharing and spreading of knowledge. However, the smart

city domain brings a certain complexity. It covers different dimensions, such as mobil-

ity, environment, economy, governance, and so on. As a consequence, it is required a

centralized management and monitoring of the different dimensions, supporting also the

knowledge sharing among the involved actors and stakeholders, such as municipalities,

public and private companies. Ideally, the Smart Governance should play this role. It

is supposed to have a complete vision on the city in order to support decision-making

processes. However, the dimensions of the smart city are managed by different stake-

holders (e.g., public administrations, private institutions) that not always communicate

with each other. This makes it difficult to public administrations to have a complete

overview of the city. Moreover, the digital revolution [11] which is taking place in these

years is bringing out new issues and needs in the cities (e.g., the availability of several

big data sources). A support for the smart governance of smart cities is provided by Key

Performance Indicators (KPIs) [12], representing raw set of values that can provide some

information about relevant measures that are of interest for understanding the progress

of a smart city. To this aim, on top of the SDGs, the International Telecommunication

Union (ITU) drafted a list of all the KPIs for Smart Sustainable Cities (SSCs), along with

its collection methodology [7]. Other initiatives and international projects (e.g., [13, 14])

also targeted the definition of smart cities KPIs to capture the performance of a city

in multiple dimensions and to support a transparent monitoring and the comparability

among smart cities. The process of KPIs assessment over smart cities can be mapped

to a quality evaluation process usually used for software quality analysis [15]. Indeed, a

framework providing KPIs measurements over a smart city can be defined as a Quality

Evaluation System (QES) that performs the assessment of a subject, i.e., the candidate

smart city, w.r.t. some quality metrics, i.e., the selected interesting KPIs.

1.2 Problem and Challenges

Despite all this interest in the definition of KPIs assessement over smart cities, no stan-

dard tools, languages and models do exist and a myriad of fragmented, disconnected,

incompatible and heterogeneous solutions exists. This implies the lack of efficiency in the

process of smart cities evaluation and comparison that, in turn, affects the growth and

improvement of smart cities. This lack of a widely used approach for KPIs assessment,

given the spread of smart city and its relevance at European and world-wide level, makes

the smart cities KPIs assessment a process for its own sake, which does not expose its

potentiality, since it does not support the fruition of generated data, the comparison

Chapter 1. Introduction 3

among several smart cities (i.e., because of the incongruence of the different used tools

and technologies) which are, instead, of crucial importance. Moreover, this lack of com-

prehensiveness represents an obstacle in the management of smart cities. It makes the

knowledge sharing among smart cities stakeholders difficult and this, in turn, negatively

affects smart city decision-making processes. This is also due to the complex nature of

smart cities. In fact, multiple dimensions (e.g., mobility, economy, environment) come

into play, together with their corresponding stakeholders (e.g., private companies, public

administrations, service providers). These dimensions are very heterogeneous and this

makes it difficult also the interconnection among them. Moreover, the transition to smart

cities might also be affected by the growing (and uneven w.r.t. the different dimensions)

amount of investments in smart initiatives and the advent of new technologies.

As regards the nature of KPIs, these metrics reflect the degree of smartness and sus-

tainability of smart cities. However, different cities can show diverse features and pecu-

liarities (e.g., size, economic growth), thus affecting the relevance that some KPIs might

have in their specific context. The relevant (sub-)set of KPIs might differ among differ-

ent cities, thus implying the need for KPIs customization. Moreover, KPIs evolve over

time [16]. New KPIs can be defined or existing ones can be implemented in slightly dif-

ferent manners. However, the currently available frameworks (e.g., online spreadsheets,

Excel2, Web-based platforms [13]) for the KPIs calculation are still far from being flexi-

ble enough. On the contrary, KPIs definition models are embedded in these frameworks

allowing users to only get the results of their measurement. As a consequence, the KPIs

evolution management is difficult to handle and it represents an error-prone task [17].

Moreover, this lack of flexibility implies that when changing the smart city to evaluate

the whole framework or the great part of it has to be re-implemented from scratch. For

instance, in Excel-based frameworks, when changing the subject of the evaluation, also

the data given as input to the KPIs formulae, which are themselves defined in Excel, has

to change. Further, in this case, the configuration of external data sources (e.g., a MS

SQL database) hosting the required data requires re-configuration, by using advanced

features of Excel. These adjustments have to be performed by a user with an high ex-

pertise of the advanced features of Excel, which not always correspond to the final user

of the KPIs assessement framework. The same reasoning applies for QESs, since also

this type of systems have been often implemented for the domain-specific evaluation of

different subjects, also by means of spreadsheets.

These emergent requirements strongly affect the design and development of frameworks

devoted to KPIs assessment over smart cities. With these premises, we come out with

three main Research Challenges (RCs) that we intend to address with the work presented

in this dissertation, which are:
2 Key Performance Indicators in Power Pivot at https://bit.ly/37EFR9r

https://bit.ly/37EFR9r

Chapter 1. Introduction 4

RC1: Provide a uniform way of modeling smart cities and their complexity.

RC2: Provide a systematic methodology allowing smart cities to define, measure and

visualize the KPIs of interest in order to efficiently assisting the decision-making

processes by also supporting:

RC2.1: KPIs evolution over time w.r.t. the evolution of smart cities needs and con-

texts;

RC2.2: KPIs customization based on the specific smart city under evaluation in terms

of selection of appropriate KPIs to be calculated.

RC3: Make the systematic assessment methodology generalizable such that to be applied

in the quality assessment of subjects coming from different domains than the smart

cities.

1.3 Research Questions and Solution Overview

This section describes the research questions that drive our research work and further

gives an overview of the realized solution. In the literature, there exist examples showing

how ICT can help in managing different aspects of complex systems (e.g., [18]). In

particular, Model-Driven Engineering (MDE) [19] techniques are widely used to represent

complex systems through abstract models. Examples exist also in the smart city domain

(e.g., [20], [21]). With these premises, after an appropriate feasibility study we decided to

exploit MDE techniques to develop a smart city KPIs assessment modeling framework.

Based on the before-mentioned research challenges, we derived the following Research

Questions (RQs), which led the work behind this dissertation:

RQ1: How smart cities are modeled in the literature?

This RQ is based on RC1, and requires to investigate if there exist a standard to

describe smart cities that can be reusable, machine readable and understandable

also for users that have no expertise in programming. This is valuable to know,

before defining a new uniform way of modeling smart cities, as needed in our

envisioned solution.

RQ2: How can MDE help in the uniform modeling and automatic assessment of smart

cities?

This RQ is related to RC2 and requires the understanding of how to model smart

cities and KPIs in a systematic and uniform way, enabling the automatic calculation

of the defined KPIs over the candidate smart city. Moreover, this RQ also requires

Chapter 1. Introduction 5

to investigate how graphical representations of the results can be generated, starting

from the defined models. It includes two additional sub-questions:

RQ2.1: How can we efficiently monitor KPIs over time?

This RQ is connected to RC2.1 and requires the understanding of how KPIs

change over time and how to support these changes in the corresponding

model.

RQ2.2: How can we adequately monitor KPIs for different smart cities?

This RQ is connected to RC2.2 and requires the understanding of how KPIs

change from a city to another and how to make the corresponding model

customizable accordingly.

RQ3: To what extent does a model-based smart cities KPIs assessment approach can be

generalized to other subjects of evaluation belonging to different domains?

This RQ is based on RC3 and requires the investigation of the commonalities be-

tween KPIs assessment processes and more generic quality evaluation processes, in

order to understand if a model-driven KPIs assessment framework can be applicable

in different domains than smart cities.

To address the challenges defined in Section 1.2 and to further answer the RQs just de-

scribed above, we develop MIKADO– a Smart City KPIs Assessment Modeling Framework.

In particular, our framework provides as main functionalities (i) the uniform modeling of

both smart cities and the KPIs, (ii) the automatic calculation of KPIs, and (iii) graph-

ical visualization of assessed KPIs by means of dynamic dashboards. The resulting

approach provides a standard, but at the same time, customizable process for smart

cities governance administrators. In the development of the framework, we exploited

MDE techniques to provide Domain Specific Languages (DSLs) [22] as tools specifically

devoted to the domain experts for the modeling of smart cities and corresponding KPIs,

while delegating the KPIs measurement, with its complexity, to an evaluation engine

implementing the KPIs calculations. Moreover, by applying the Multilevel modeling

paradigm [23], we generalized the smart cities KPIs assessment framework transforming

it into a QES for multiple domains.

1.4 Research Activities and Publications

This section describes the performed research activities and the produced publications

making up this dissertation. An overview is reported in Figure 1.1. In particular, in

the first lane the RQs that conducted the research stages are reported. Thus, in the

second lane the research stages are shown in logical order. Lastly, in the third lane the

Chapter 1. Introduction 6

publications produced as output of the performed research stages are reported by their

titles and publication venues.

Legend

1) Domain Analysis 2) Framework
Implementation 4) Evaluation 5) Generalizability of

the framework

A Systematic
Mapping Study on

Smart Cities Modeling
Approaches
[SoSyM]*

A Flexible
Architecture for KPIs
Assessment in Smart

Cities
[ECSA2020]

Supporting Smart
Cities Modeling with

Graphical and Textual
Editors

[MoSC@STAF2020]

Leveraging Multi-Level
Modeling for Multi-

Domain Quality
Assessment

[MULTI@MODELS2021]

MIKADO - A Smart
City KPIs Assessment
Modeling Framework

[SoSyM2022]

RQ1 RQ2 RQ3
Research Question

Research Stage

Publication

Weaving Open Services
with Runtime Models for
Continuous Smart Cities

KPIs Assessment
[ICSOC2021]

Produced Artifact

Relates to

Stages Flow

*Under review.

Figure 1.1: Research Plan performed during the PhD program.

In details, we describe here the research activities conducted in four main stages w.r.t.

the RQs that motivate them and their produced publications, indicated with an identifier

in square brackets and listed in Section 1.4.1.

1. Domain Analysis. During this preliminary stage, we performed a Domain Anal-

ysis of the smart city domain. This led us to run a systematic mapping study

about smart cities modeling. The goal of this stage was to extract all the concepts

and requirements needed to design a DSL for smart cities. This preliminary study

concerns also the understanding of KPIs. In particular, the extraction of the logic

behind the calculations of the interesting KPIs, in such a way to create correspond-

ing models abstract enough to be used in different smart cities as well as easy to

modify to deal with the evolution of KPIs. This stage has been structured into two

sub-stages:

(a) the Study on Smart Cities, in which a mapping study on smart cities model-

ing [SoSyM]* to answer RQ1 was performed. The outcomes of this study

supported the design of a Smart City metamodel for the modeling of smart

cities with a particular focus on the data analytics context.

(b) the Understanding of KPIs during which multiple KPIs sources have been

inspected, namely, (i) ITU [7] and (ii) CITYkeys [13], which are two projects

specifically targeting the definition of smart cities KPIs to capture the per-

formance of a city in multiple dimensions; (iii) DigitalAQ [14], that is an

European project aiming to help cities achieve sustainable economic growth

through the integration of advanced technologies. It has been carried out in

Chapter 1. Introduction 7

the city of L’Aquila (Italy). The study of the mentioned KPIs sources pro-

duced the design of a KPIs metamodel for the modeling of different KPIs

definitions.

2. Framework Implementation. During this research stage, all the modeling artifacts

required for the KPIs assessment framework were designed and developed. In

particular, we can identify five sub-stages:

(a) The Definition of the Architecture supporting the planned model-driven KPIs

assessment approach has been defined in a flexible fashion allowing different

deployment style (e.g., standalone, online) [ECSA2020].

(b) The Modeling Tools Development on top of the metamodels defined during

the first stage. In particular, the implementation of a Smart City modeling

tool as a visual editor in which the user can design, under certain constraints,

the model of the city [MoSC@STAF2020]. Secondly, the KPIs modeling

tool to support the user in the selection and application of the relevant KPIs

for the referring city through the definition of a textual concrete syntax for

modeling KPIs.

(c) The Evaluation Engine Development as the core component of the approach

devoted to the interpretation of the modeled smart cities and KPIs, the cal-

culation of such indicators and the instantiation of the results in the model

containing the KPIs definition.

(d) The Reporting System development regarding a code generation process that

produces graphical dynamic dashboards has been implemented, enabling the

intuitive representation and visualization of the KPIs assessed over a city.

The outcome of the last three sub-stages (b,c,d) make the model-based KPIs

assessment framework [SoSyM2022].

(e) Lastly, the Development of an Extension of the Assessement Framework en-

abling KPIs Continuous Monitoring has been proposed. In particular, the

extension envisages the continuous monitoring of the KPIs’ input parame-

ters provided by open services, automating the data acquisition process and

the continuous evaluation of KPIs. Specifically, this feature will turn smart

cities models into digital twins, by weaving open services and runtime models

[ICSOC2021].

3. Evaluation. Performance evaluations of the overall approach have been incremen-

tally conducted for each framework releases. In particular, two aspects of the ap-

proach have been tested, namely, (i) the scalability of the evaluation engine in man-

aging models of increasing size and complex KPIs [ECSA2020,SoSyM2022], and

(ii) the usability and understandability of the presented approach, especially w.r.t.

Chapter 1. Introduction 8

spreadsheets-based approaches, through a survey study [SoSyM2022]. Moreover,

even the latency of the execution time of the framework extension was tested w.r.t.

the standalone baseline [ICSOC2021].

4. Abstraction of the framework. During this research activity, the application of the

presented framework on other two different domains (i.e., research institutes so-

cial impact, covid-19 risk) by abstracting the approach as a Multi-Domain Quality

Evaluation System have been proposed [MULTI@MODELS2021]. This appli-

cation was carried out by exploiting the Multilevel modeling paradigm [23] in the

development of a Quality Evaluation System that showed the domain-independence

of the approach.

1.4.1 Research Publications

In the following, the research publications supporting this dissertation are listed, by

also specifying the candidate’s level of contribution according to the Elsevier’s CRediT

(Contributor Roles Taxonomy) author statement3:

[SoSyM]* Rossi, M.T., De Sanctis, M., Iovino, L., Wimmer, M.: A Systematic Mapping

Study On Smart Cities Modeling Approaches. In: the International Journal on

Software and Systems Modeling (SoSyM) (2022) (Submitted). CRediT: Concep-

tualization; Methodology; Validation; Formal analysis; Investigation; Resources;

Data Curation; Writing; Visualization.

[MoSC@STAF2020] Basciani, F., Rossi, M.T., De Sanctis, M.: Supporting smart cities modeling with

graphical and textual editors. In: 1st International Workshop on Modeling Smart

Cities @STAF2020 (2020).

A workshop paper [4] in which the smart city modeling editor component, showing

both graphical and textual views, has been presented. CRediT: Conceptualization;

Methodology; Validation; Investigation; Data Curation; Writing; Visualization.

[ECSA2020] De Sanctis, M., Iovino, L., Rossi, M.T., Wimmer, M.: A flexible architecture

for the key performance indicators assessment in smart cities. In: Proceedings of

the 14th European Conference on Software Architecture - ECSA ’20 (2020).

A conference paper [3] in which we presented a flexible architecture, identifying

both required and optional components and functionalities needed to support the

automatic KPIs assessment approach. CRediT: Conceptualization; Methodology;

Software; Validation; Formal analysis; Investigation; Resources; Data Curation;

Writing; Visualization.
3 https://www.elsevier.com/authors/policies-and-guidelines/credit-author-statement

https://www.elsevier.com/authors/policies-and-guidelines/credit-author-statement

Chapter 1. Introduction 9

[SoSyM2022] De Sanctis, M., Iovino, L., Rossi, M.T., Wimmer, M.: MIKADO – A Smart City

KPIs Assessment Modeling Framework. In: the International Journal on Software

and Systems Modeling (SoSyM) (2021).

The paper [2] presents all the artifacts developed so far and composing the thesis

approach. It has been selected to be presented at the MODELS 2021 conference

as a Journal First paper. CRediT: Conceptualization; Methodology; Software;

Validation; Formal analysis; Investigation; Resources; Data Curation; Writing;

Visualization.

[ICSOC2021] De Sanctis, M., Iovino, L., Rossi, M.T., Wimmer, M.: Weaving Open Services

with Runtime Models for Continuous Smart Cities KPIs Assessment. In: The 19th

International Conference on Service-Oriented Computing, ICSOC 2021.

The paper [5] propose the extension of the framework that enables KPIs contin-

uous monitoring. CRediT: Conceptualization; Methodology; Validation; Formal

analysis; Investigation; Data Curation; Writing; Visualization.

[MULTI@MODELS2021] Rossi, M.T., Dal Molin, M., Iovino, L., De Sanctis, M., Wimmer, M.: Leverag-

ing Multi-Level Modeling for Multi-Domain Quality Assessment. In: MULTI 2021,

The 8th International Workshop on Multi-Level Modelling, MODELS 2021.

An inter-disciplinary workshop paper [6] presenting the abstraction of the assess-

ment approach as a Multi-domain quality evaluation system. CRediT: Conceptu-

alization; Methodology; Software; Validation; Formal analysis; Investigation; Re-

sources; Data Curation; Writing; Visualization.

1.4.2 Other Publications

During the PhD program also other activities external to the thesis research have been

conducted. These activities helped me in investigating the smart city domain from other

perspectives, and produced further papers:

1. Rossi, M. T., De Sanctis, M., Iovino, L., Rutle, A.: A Multilevel Modelling

Approach for Tourism Flows Detection. MULTI@MODELS 2019: 103-112. URL:

https://ieeexplore.ieee.org/document/8904730.

CRediT: Conceptualization; Methodology; Software; Validation; Formal analysis;

Investigation; Resources; Data Curation; Writing; Visualization.

2. Iovino, L., De Sanctis, M., Rossi, M. T.: Automated Code Generation for NFC-

based Access Control. MDE4IoT@MODELS 2019: 31-38. URL: http://ceur-ws.

org/Vol-2442/paper5.pdf. CRediT: Investigation; Writing; Visualization.

 https://ieeexplore.ieee.org/document/8904730
http://ceur-ws.org/Vol-2442/paper5.pdf
http://ceur-ws.org/Vol-2442/paper5.pdf

Chapter 1. Introduction 10

3. Rossi, M. T., Greca, R., Iovino, L., Giacinto, G., Bertolino, A. : Defensive

Programming for Smart Home Cybersecurity. In: Workshop on Software Attacks

and Defenses SAD (2020).

URL: https://ieeexplore.ieee.org/document/9229690. CRediT: Conceptualization;

Methodology; Formal analysis; Investigation; Writing; Visualization.

4. Tuyishime, A., Izquierdo, J.L.C., Rossi, M.T. De Sanctis, M.: Modeling Linked

Open Data (POSTER). In: International workshop on MDE for Smart IoT Sys-

tems (MeSS’22) (2022). URL: https://ceur-ws.org/Vol-3250/messpaper3.pdf.

CRediT: Investigation; Visualization.

5. De Sanctis, M., Di Salle, A., Iovino, L., Rossi, M.T.: A Technology Transfer

Journey to a Model Driven Access Control System. In: International Journal on

Software Tools for Technology Transfer (STTT) (2023). CRediT: Investigation;

Writing; Visualization.

1.5 Tools & Demo

In Table 1.1, we reported the references to the repositories where to find all the devel-

oped artifacts and some video demo showing specific functionalities of the developed

framework.

Tools and Resources Description URL

Smart City Modeling
GIT repository collecting
all the modeling artifacts
composing MIKADO.

https://github.com/gssi/SmartCityModeling

Runtime KPIs Assessment

GIT repository of the
MIKADO extension
enabling KPIs continuous
monitoring.

https://github.com/iovinoludovico/runtime-kpi-assessment

Smart City Modeling Editor
GIT repository of the
graphical/textual Smart City
modeling editor.

https://github.com/gssi/MoSC2020

Smart City Dashboards Generation
Video demo showing
the KPIs reporting
system development.

https://www.youtube.com/watch?v=B-B3_O4L6xc

Continuous Monitoring
Video demo showing
the continuous monitoring
feature.

https://www.youtube.com/watch?v=2pK-PzOLvv4

Runtime Monitoring

Video demo showing
the runtime assessment
of a KPIs example through
an IoT sensor.

https://www.youtube.com/watch?v=f8BFnUHSsQs

Table 1.1: List of the resources related to the developed artifacts.

In conclusion, this PhD thesis work has been developed in the context of the Centre for

Urban Informatics and Modelling (CUIM)4, a national Italian project.
4 https://www.gssi.it/research-area/research-projects/cuim-project

https://ieeexplore.ieee.org/document/9229690
https://ceur-ws.org/Vol-3250/messpaper3.pdf
https://www.gssi.it/research-area/research-projects/cuim-project

Chapter 1. Introduction 11

1.6 Thesis Outline

This thesis is organized in eight chapters. In Chapter 2 we give an overview of the back-

ground of the work described in this dissertation. Specifically, we start by describing the

smart city domain, with a particular focus on the smart governance dimension. Then,

quality evaluation systems are discussed. Lastly, we provide some background on MDE

concepts by including also the multi-level modeling and models@runtime paradigms.

Chapter 3 gives an overview of the current state of the art on smart cities assessment.

In particular, we start by analysing the existing KPIs assessment frameworks from the

perspectives of the process that they implement and the requirements they should ad-

dress. Moreover, we give an overview on quality evaluation systems, by highlighting

their limitations and potentialities. Then, we report the findings of an analysis about

approaches dealing with smart cities modeling, before summarizing the identified lim-

itations of the state of the art and deriving the research challenges that driven this

work. In Chapter 4 we describe the developed model-based smart cities KPIs assess-

ment approach, by first introducing the motivating scenario that justifies our work, i.e.,

smart decision-making in smart cities. Then, we start describing the proposed approach,

namely MIKADO, and its constituent artifacts. In particular, we report the metamodels

on top of which the approach relies, namely the smart city metamodel and the KPIs

metamodel. We further explain how the KPIs assessment phase and the KPIs reporting

process work, by also discussing how the presented approach supports KPIs evolution.

Chapter 5 describes the architecture behind the MIKADO approach. Here, we show the

architecture that we designed for KPIs assessment in smart cities in a flexible fashion,

thus allowing different deployment style. In particular, we report a standalone deploy-

ment and an hybrid deployment implementations, presenting also the prototype of an

extended MIKADO devoted to KPIs continuous monitoring. The online deployment

pattern is discussed through hints of alternative styles and technologies. Instead, in

Chapter 6 we show different types of evaluations performed incrementally while devel-

oping the MIKADO framework. Specifically, we show a demonstration case to prove

the feasibility of the KPIs assessment approach. Then, we report the results of a survey

collecting opinions about the understandability of the defined DSLs used to model smart

cities and KPIs and two sets of experiments testing the performance of the evaluation

engine’s execution time. Lastly, the latency analysis of the service-based extension of

the KPIs assessment approach is discussed. Chapter 7 proposes the abstraction of the

KPIs assessment approach presented in Chapter 4 for the automatic quality assessment

of subjects coming from different domains, further showing the domain-independence of

MIKADO. In particular, we start by giving some motivations to the need of abstracting

the assessment approach. Then, we provide an overview of the multi-level QES that we

propose, by presenting different domains in which it may be applied. Thus, we propose

Chapter 1. Introduction 12

two multi-level hierarchies of models for the definition of subjects and quality metrics,

respectively. Furthermore, we present a re-factoring of the evaluation engine artifact in

order to support multi-level navigation of models and we show how the code-generation

process devoted to graphical dashboards generation is also supported in the multi-level

framework. Finally, in Chapter 8 we summarized the work presented in this disserta-

tion, by highlighting how the developed model-based KPIs assessment approach answers

to the stated RQs. Eventually, some future works are discussed whereas two already

ongoing works are briefly presented.

Chapter 2

Background

In this Chapter, the background of the work described in this dissertation is provided.

Specifically, Section 2.1 gives an overview of the smart city domain with a particular focus

on the smart governance dimension. Then, quality evaluation systems are described in

Section 2.2. Lastly, Section 2.3 provides some background on MDE concepts by including

also the multi-level modeling and models@runtime paradigms.

2.1 The Smart City Domain

In the literature, we can find various definitions of smart cities [24]. Most of them are

related with the development of cities in terms of sustainable economy, society, and

environment. In this perspective, every initiative undertaken by the city has, as final

objective, the improvement of the quality of living for its citizens, through the provi-

sioning of sustainable and smart services, and the proactive participation of citizens (as

well as tourists, commuters and any other final users of given services) in the inclusive

smart cities initiatives. For this reason, one of the main goal of smart cities is to be

transparent and to leverage on all sources of data useful for the purpose. For instance,

one possibility is that of making use of an Internet of Things (IoT) sensor network in

the city, to collect multiple types of different data (e.g., traffic flows, air quality, use of

transportation means, tourists movements), in order to understand and even derive the

different behaviours and needs of different types of users (e.g., citizens, tourists). From

this knowledge, the implementation of initiatives aimed at improving the citizens quality

of life can be conducted through the exploitation of ICT solutions integrated in the city

as well as research activities and projects.

The smart city domain is characterized by its complex nature starting from the different

dimensions composing it (e.g., [25], [26]). In particular, we refer to the work of Boyd

13

Chapter 2. Background 14

Cohen [26] that formalised six distinct smart cities dimensions, that we describe as

follows:

• Smart Economy: it is characterized by the exploitation of ICT in economic activ-

ities. In other words, it refers to those activities aiming at creating an economic

value for the city. For instance, initiatives promoting smart tourism that have

economic implications [27].

• Smart Environment: it concerns the control and monitoring of environmental fac-

tors, such as pollution, planning of green areas, waste. Initiatives in this dimension

target an effective and efficient use of public natural resources means (e.g., alter-

native energy sources) to avoid fossil fuels, to reduce carbon footprint, etc.

• Smart Government: it concerns the use of technology to enable open, transparent

and participatory governments. The initiatives in this dimension are mainly focused

in supporting decision-making processes for cities governments.

• Smart Living: it concerns the improvement of the quality of people’s daily life

and lifestyle. For instance, many initiatives in this dimension involve smart build-

ings, i.e., systems with appliances and services connected in a building’s network

(e.g., homes, hospitals), with the aim of optimizing resources consumption and

management.

• Smart Mobility: it has the aim of improving local accessibility to mobility ser-

vices and a smart and sustainable mobility, while also supporting social inclusion,

reducing the environmental impact, etc. For this reasons, initiatives in this dimen-

sion mainly regard the development of sustainable, innovative and safe transport

systems and applications.

• Smart People: it deals with the promotion of creativity, open-mindedness and

participation in public life. This dimension includes initiatives about services for

citizens (e.g., e-learning platforms, public administration online services), invest-

ment on and preservation of the human capital, and privacy-related solutions (e.g.,

privacy protection systems) [28].

This distinction, reported in Figure 2.1, was made to support the rankings of smart

cities by framing their components in dimensions and sub-dimensions. In this way, the

numerous and heterogeneous stakeholders are able to accurately benchmark the smart

cities they are interested in at different depths and from different perspectives.

Moreover, the complexity and heterogeneity that clearly arise from the before-mentioned

dimensions, highlights the involvement of different stakeholders playing diverse roles. In

Chapter 2. Background 15

Figure 2.1: Boyd Cohen Wheel.

particular, in each dimension we can identify subjects, organized or not, that bear some

interest in the development of the city [29]. From a general view, one of the main actor

in the city is the public administration that has to face the limitations related to the

city’s sustainable growth, such as population growth, economic burdens, etc. The good

quality of life is also a responsibility for the companies in the public sector. Another

important role in the development of a healthier and more sustainable urban life is

played by academic researchers that are in charge of creating new innovative solutions

to face problems arising with globalization and climate change. Also private companies

are playing an important role in the smart transition of cities. In particular, they are

the main technology providers in the construction of infrastructures and smart solutions.

Another important stakeholder of the city are the citizens themselves, since from their

needs and problems, the whole smart transition process is guided. In this sense they play

both a passive and an active role, in the sense that it is people’s responsibility to make

their issues a matter of public concern. In this perspective, the other actor that we can

identify is the social and third sector which plays a community work in the interests of

citizens.

The transition process of smart cities, indeed, has gained attention worldwide, producing

an enormous amount of investments in innovative smart projects aimed at facing the ever-

growing urbanization together with the urgent climate change. The already mentioned

SDGs [10], are a clear demonstration of how much relevance the smartness process has

for European cities. In fact, the European commission presented this list of objectives

Chapter 2. Background 16

as an urgent call for action by all countries, developed and in development, in a global

partnership, to build smart strategies to improve health and education, reduce inequality

and poverty, with a particular attention to the preservation of the environment.

2.1.1 Smart Governance

In this thesis, we particularly focus on the Smart Governance dimension. It is devoted to

the development of initiatives whose aim is to make a government open, transparent and

participatory. Usually, these initiatives include policies that use ICT to improve the col-

laboration between institutions and the smart city stakeholders [30]. Furthermore, it is

important to distinguish between electronic governance and smart governance [31]. Elec-

tronic governance provides the application of technologies in the interaction between the

government and the different stakeholders (e.g., citizens, businesses). Instead, for smart

governance we mean the introduction of digital technologies in processing information

and decision-making. In the literature, we find that the main aspects of a smart govern-

ment should be transparent governance and open data [32]. These peculiarities should

have the goal to create an accountable, collaborative and participatory government [33].

In this context, the adoption of ICT can provide opportunities to govern the complex-

ity of urban systems in a more effective way by exploiting the availability of data, the

automation in performing required calculations and the creation of crowd-participation

platforms.

In the smart city domain, the smart governance exploits the assessment of Key Perfor-

mance Indicators (KPIs) to support decision-making processes. Specifically, KPIs define

raw set of values that can provide some information about relevant measures that are

of interest for understanding the progress of a smart city in terms of sustainability and

smartness. KPIs are elicited and defined by standardization bodies, such as the Interna-

tional Telecommunication Union [7], along with their collection methodology, standard

definitions and formulae. However, multiple KPIs sources exist (e.g., CITYkeys [13],

DigitalAQ [14], Minako et al. [34]). For instance, in Figure 2.2 we report an example

of KPI to show how the authors have formalized KPIs in a structured way in the ITU

documentation [7]. Since KPIs may be measured w.r.t. different granularities for dif-

ferent goals, they are defined on three levels, namely, dimensions, sub-dimensions and

categories. In the reported example in Figure 2.2, the KPI Green Areas is shown. It

measures the relation between green spaces and number of inhabitants. Specifically, this

KPI belongs to the category Public Space and Nature, which, in turn, pertains to the

sub-dimension Environment in the dimension Environment. In the reported documen-

tation, further attributes are given, namely (1) Definition and Rationale describing the

KPI meaning and how to interpret it; (2) Methodology giving hints on how to calculate

Chapter 2. Background 17

it; (3) Unit referring to the unit of measure to be used. Moreover, (4) the Data Sources

attribute gives recommendations about where to retrieve data, such as the input param-

eters needed to calculate the specific KPI. Lastly, (5) the SDGs Reference(s) attribute

points to specific SDGs to which the KPI may have impact.

Figure 2.2: Structure of the KPIs proposed in [7].

The different KPIs sources for sure share some commonalities in the way the KPIs

are hierarchically structured and which metrics they measure but relevant differences in

formats and denotations make them hard to combine and compare. For instance, Minako

et al. [34] organize KPIs in layers, instead of dimensions like in the reported example in

Figure 2.2. These documentations will be better discussed in Section 3.1.

2.2 Quality Evaluation Systems

With the rise of software development, the study of software quality also began. Re-

search solutions to improve software quality are grown at the same rate with the demand

for software products with increasing quality. An acceptable way to support quality

management of software products have been the use of models [35]. Quality models

have been used in software evaluation for decades as tools for assessing the degree to

Chapter 2. Background 18

which a software product satisfies stated and implied needs [36]. A quality model is a

model expressing quality as a set of characteristics, also called attributes, establishing

relationships between them. A quality model relates to quality requirements and poses

the bases for assessing the quality of a subject. This type of models were first developed

by organisations and software industries because of their need to have specific quality

models capable of specialised evaluation on individual components. For this reason,

they are tailored to a particular application domain, and the importance of features can

vary from model to model. On top of these quality models, Quality Evaluation Sys-

tems (QESs) are built, which are basically software systems providing quality evaluation

results of given subjects. They perform subjects quality assessments w.r.t. evaluation

requests and quality requirements contained in the quality models that they receive as

inputs. QESs may carry out an evaluation process to accomplish their task, being imple-

mented as a part of a higher-level system, as well as independent systems [15]. Indeed,

the quality models given as inputs to such systems usually include quality definitions

and corresponding metrics. In other words, QESs are measurement tools making use of

evaluation techniques to produce quantitative evaluation of a subject as result.

2.3 Model-Driven Engineering

In many scientific contexts, methods of abstraction are used to represent complex aspects

of reality, by using simplified representations in such a way to better manage complexity.

These representations of reality are usually called models. In the context of software

development this type of abstraction based on modeling is known as Model-Driven Engi-

neering (MDE) [37]. Here, models are regarded as blueprints used to provide a complete

and detailed specification of a system. These blueprints models can be further refined to

create the system, through the use of code-generation techniques to minimize the coding

tasks. In software engineering, abstraction is usually implemented with a computing-

oriented focus, making it difficult to understand to people who have no language devel-

opment expertise. MDE also combines Domain-Specific modeling Languages (DSLs) and

transformation engines and generators [38]. In particular, the use of DSLs allows the

involvement of domain experts in the development. DSLs are computer languages built

with notations, constructs and abstractions peculiar to a particular application domain,

offering substantial gains in expressiveness and ease of use over General-Purpose pro-

gramming Languages (GPLs) for the domain in object, with corresponding benefits in

terms of productivity and reduced maintenance costs. Thanks to their expressiveness,

DSLs can be used also by users who have no expertise in programming and slightly low

knowledge of the domain under definition [39]. DSLs formalize the structure, behavior,

Chapter 2. Background 19

and requirements of particular domains’ applications. DSLs are defined by using meta-

models, which concretize how concepts are inter-related in the modeled domain. The

semantics and constraints associated with application domain concepts are also speci-

fied with metamodels. Transformations process models to produce other artifacts, e.g.,

other models, source code or other types of artifacts. Model transformations in combi-

nation with models (and consequently metamodels) define what is called minimal MDE

infrastructure, but the defined models can be processed via model management opera-

tions. Model interpretation, for instance, is a way to process models programmatically,

and trigger custom actions based on the model content. Model Validation instead, is the

activity used to precisely define constraints and rules that cannot be defined at the meta-

model level. All these model management operations can be chained or composed with

automated tools, e.g., ANT or programming languages, to create more complex tasks. In

order to automate these operations, at each step the produced model must be consumed

by the following automatism, and this is possible only when some pre-requirements are re-

spected. For instance, to compose model transformations, the output metamodel of each

step must be contained in the input metamodel of the next step [40, 41]. This is a sort of

compatibility check enabling the automated composition. Thus, model transformations

envisage automated processes that take one or more source models as input and produce

one or more target models as output according to a set of transformation rules. The

automatising of these processes are very useful in the development of reverse engineering

techniques, view generation, or refactoring [42]. Depending on the type and complexity

of the model transformation process it can be named model-to-model (M2M) trans-

formation, model-to-text (M2T) transformation, model merging, model linking, model

synthesis, model mapping or model-to-code transformation, i.e., code generation [43]. In

particular, code generation enables separation of concerns between application modeling

and technical code, supporting maintainability and portability of software programs to

different hardware and operating systems.

To sum up, a relevant feature of MDE approaches is that they enable the description

of very complex systems with simplified models. In this way, we can think of MDE

as a reduction approach because it allows systems to be described as an aggregation of

complementary models. To better understand what is intended with model, we have to

introduce the criterion of mapping. A model is something that maps with a real object

or phenomenon. The classification of different types of models is based on the level of

abstraction. In other words, we can have different models describing the same system at

different levels of abstraction.

In the model-driven context, besides MDE, we have other important concepts. One

of them is Model-Driven Development (MDD) that uses automation to generate code

starting from the models. The other one is Model-Driven Architecture (MDA) that is an

Chapter 2. Background 20

Figure 2.3: Relationship between MDE, MDD and MDA concepts.

approach for the execution of MDD using a set of standards. The relationship between

these concepts and MDE is depicted in Figure 2.3. As we can see, MDE contains the

other two concepts because it is utilised not only for development activities, but it also

covers other domain-specific processes (e.g., analysis process).

Eventually, model-centric approaches differs from others that are more code-centric thanks

to the concept of reuse of knowledge [44]. With a model-centric approach the business

knowledge can be reused and only its implementation has to be reworked. Instead, in a

code-centric approach the reuse implies that all the process has to be reiterated.

2.3.1 Multi-level Modeling

Traditional MDE approaches relying on two levels of modeling, envisage the description

of a domain only at the meta-model level exploiting the natively meta-modelling facil-

ities (e.g., type definition, type inheritance, data types, cardinalities). These facilities

can not be used at the level of the model, thus, implying their explicit definition at the

meta-model level anytime they are needed. To allow model elements to have a dual

type/instance facet, multi-level modelling was introduced as a mean to define deep lan-

guages that span more than two meta-levels [45]. Indeed, multi-level modelling allows

the definition of an unbounded number of levels of abstraction [23]. In this way model

elements have a dual type-instance dimension [46]. This, not only enables flexibility in

MDE when specific patterns arise in modeling approaches [45], but also supports the

reduction of the complexity of models in certain scenarios, especially when the typi-

cal type-object pattern occurs. Multi-level modeling approaches are characterised by

language support for expressing types and their instances. In particular, complex sys-

tems design can be widely supported by multi-level modelling thanks to features such

as deep instantiation, potency, linguistic extensions [47, 48]. We report Figure 2.4 com-

ing from [8] showing differences between traditional and multi-level modelling. In the

former, in the meta-meta-model level the provided meta-modeling facilities defining the

Chapter 2. Background 21

Figure 2.4: Comparison between traditional and multi-level modelling [8]

meta-modelling language are defined. This can be used only in the meta-model level.

As regards multi-level modeling, in Figure 2.4 it is described thanks to the distinction

between linguistic typing and ontological typing. Linguistic typing refers to the meta-

modelling primitive used to create an element (e.g., model, clabject, field). Ontological

typing refers to the classification of an element within a domain. It is worth noting

that all linguistic meta-modelling facilities are available in all meta-levels. Meanwhile,

the ontological typing is redefined and explicitly modelled in the linguistic meta-model,

allowing the definition of an arbitrary number of meta-levels.

2.3.2 Models@Runtime

Model@runtime is a model-driven paradigm in which models are causally connected to

the problem space. This concept emerged to face the problem related with software

evolution that envisages the generation of a new solution by stopping the running sys-

tem and replacing it with a new one. Further, runtime models can be used to observe

dynamic state of the system and control it during execution. The role of runtime models

in software evolution can be seen as a live development model that enables dynamic

evolution [49]. In this paradigm, the model has a causal connection with a ever-changing

system [50]. This principle assures that if the model is changed, the system will change

correspondingly and transparently.

Models@runtime provides a unique model-based representation of the applications for

both design- and run-time activities (i.e., for developers and operators) enabling an

architectural pattern for dynamic adaptive systems that leverage models as executable

artefacts supporting the execution of the system [51]. In this way, runtime models

give an abstract representation of the underlying running system, supporting reasoning,

simulation, and enactment of adaptation actions. Thus, the causal connection supporting

the continuous evolution of the system with no strict boundaries between design-time

and run-time activities, envisages that if there is a change in the running system this

Chapter 2. Background 22

will be automatically reflected in the model of the current system. Likewise, a change in

the model influences the running system.

2.4 Discussion

In this Chapter we presented the domain of this thesis by giving an overview of the

complex nature of smart cities with a particular focus on the smart governance dimension.

We further gave evidence of how abstract is the way in which KPIs are released by

standardization bodies. In particular, the reported KPI example in Figure 2.2 comes

with a textual description even of its calculation formula and the indicated data sources

for the needed input parameters to calculate it are not specific, but represent general

indications.

Moreover, after the description of the concept of KPIs that are used for the quality

assessment of smart cities, we introduce QESs that are commonly used to perform the

evaluation of quality metrics of different subjects, mainly in the software development

context. Here, we talked about quality models used to define quality metrics together

with their attributes. Staying on the topic of models, we described the main concepts of

MDE, by introducing also two specific paradigm, namely, MLM and models@runtime.

We presented these modeling concepts since they compose the technical space in which

the work presented in this thesis has been developed.

In the next Chapter we will discuss the state of the art about KPIs assessment in smart

cities, QESs development and smart cities modeling, by highlighting the limitations

identified in the literature.

Chapter 3

State of the Art and Motivation

In this Chapter, we investigate the current state of the art of smart cities assessment.

In particular, we start by analysing the existing KPIs assessment frameworks, in Section

3.1. Moreover, we give an overview on quality evaluation systems, by highlighting their

limitations and potentialities, in Section 3.2. Section 3.3 reports the findings of our

systematic analysis about approaches dealing with smart cities modeling. The Chapter

terminates with a summary of the identified limitations of the state of the art and the

identification of the research challenges that led the work presented in this dissertation.

3.1 Smart Cities Evaluation through KPIs

As discussed in the previous chapter, the SDGs [10] provided by the European Com-

mission as well as the KPIs defined on top of them by the ITU [7] and other entities,

highlight the fact that KPIs assessment is gaining worldwide attention. In a more con-

crete perspective, KPIs can be seen as visual measures of performance, where a specific

metric is calculated and graphically reported. A Microsoft research report [52] states

that “A KPI is then designed to help users quickly evaluate the current value and status

of a metric against a defined target”. To give a concrete example, the KPI Green Areas

(GA), also described in Section 2.1.1, measures the green area in the city per 100.000

inhabitants [7]. It is calculated as in (3.1), taking in input two parameters, i.e., the total

area of green space in the city, measured in hectares, and the city’s population.

GA =
TotalGreenArea

1
100000 × CityPopulation

(3.1)

This way, KPIs can be used as measurement to support the monitoring, prediction and

evaluation of the transition process of cities to smart cities. Moreover, the majority of

23

Chapter 3. State of the Art and Motivation 24

them (e.g., ITU KPIs [7], CITYkeys [13]) are potentially applicable to all cities, thus

essentially representing general guidelines such that smart cities managers can interpret

and adapt them to their managed smart cities.

One important aspect in the KPIs assessment process over smart cities is the selection

of the appropriate set of KPIs that can help in understanding the performance of the

city under analysis. Indeed, the set of useful KPIs may vary from city to city. To this

aim, the authors in [53] define some principles that can be taken into account in the

KPIs selection. These principles can be summarised in: comprehensiveness, compara-

bility, availability, independence, simplicity, timeliness. Furthermore, the selection of

the KPIs relevant for a smart city could be affected by different figures that may have

an interest in the city, namely city officials and municipal administration, city residents

and no-profit organizations, city services providers, and evaluation and ranking agencies

(e.g., academia), among many. Since KPIs support the measurement of smart cities

performances over time, they can be used in guiding policy assessments and enabling the

comparison between different cities. Another aspect to be considered is related to the

fact that KPIs for cities can change in time because of several causes, e.g., the evolution

of the smart cities needs, the evolution of KPIs measurement logic. In fact, the selection

of indicators is also driven by other aspects besides those listed in [53], that can change

in time (e.g., data availability) [11]. For instance, the sustainability agenda [12], whose

goal is to support the development of sustainable cities by providing a set of useful KPIs,

was released in a first version in 2015 and an update followed in 2018, to deal with major

changes impacting KPIs measurements and/or data restriction (e.g., GDPR, the new

European data protection law).

Moreover, smart cities are different from one to another, depending on their geographical

implications, stage of economic development, population growth, available services. In

particular, regarding the geographical implications, given that every country has different

conditions, KPIs relevance can vary depending on the spatial granularity (e.g., small,

medium and metropolitan cities). For instance, sustainable mobility is more developed in

metropolitan cities than in small and medium-sized cities1. Indeed, different smart cities

can be interested in specific KPIs. For this reason, when dealing with KPIs assessment

we face the need for KPIs customization, where, for customization we mean the smart

city-driven selection of appropriate KPIs to be evaluated on that given smart city. In

this perspective, the customization of KPIs must be driven by the smart city subject of

the assessment and its peculiarities, notwithstanding that KPIs definitions and formulae

constantly adhere to those provided by the standardization bodies.
1 Polis 4.0 - Smart City Index 2018 https://bit.ly/3xnyHEF

https://bit.ly/3xnyHEF

Chapter 3. State of the Art and Motivation 25

The complex nature of smart cities, which actually are systems of systems, makes the

smart decision-making and the KPIs assessment even more challenging tasks. Moreover,

as just mentioned, KPIs continuously evolve [16] w.r.t. the evolution of cities’ needs and

context resulting from the digital revolution [11], which is taking place in the last years.

For instance, the advent of electrical vehicles changed the urban scenario, by carrying out

new needs (e.g., finding the optimal positioning of car chargers). Another example may

be the advent of 5G that influenced the assessment of KPIs dealing with the network

coverage (e.g., Wireless Broadband Coverage KPI) and previously involving only 4G and

broadband connections.

In conclusion, despite the availability of different KPIs guidelines and the fact that, in

general, the KPIs are measured through not too complex calculations, several challenges

arise. Specifically, (i) the heterogeneity of the different guidelines providing diverse

KPIs classification, (ii) the need for costumizing KPIs over smart cities, and, (iii) the

dynamicity of KPIs evolving over time, highlight the challenges of developing a smart

cities KPIs assessment approach, dynamic enough to be applicable to any city, given any

type of KPIs, and able to manage their evolution over time.

3.1.1 KPIs Assessment Frameworks

In the literature, KPIs are used in the assessment of different subjects coming from

many heterogeneous domains (e.g., buildings renovation [54], manufacturing [55], logistic,

about how to monitor the supply chain [56]). To this aim, despite we are interested in

the assessment of smart cities, we also analysed the use of KPIs in other domains and

contexts, to identify the used approaches and frameworks. After our investigation, we

grouped the found frameworks devoted to KPIs assessment in three main categories,

namely, Manual approaches, Spreadsheets-based approaches and Web-based platforms.

Manual approaches. These type of approaches are used when the calculations to

be performed are few and very trivial. We are aware about them through our discus-

sions with experts of the domain. However, not much documentation is provided in the

literature for such approaches. This because, the KPIs are defined manually w.r.t. the

personal expertise of the user who is commissioning the assessment. Moreover, also the

collection of the input parameters needed for KPIs measurements is manually performed.

In the approaches performing manual assessment, the obtained results are filled into re-

ports to be shown and discussed with the other stakeholders. The format of these reports

is unique for the specific final purpose of the KPIs assessment and can represent an issue

for the comprehensibility of the analysis especially for non-experts stakeholders and for

the knowledge sharing among stakeholders. Of course, even if the manual process can

Chapter 3. State of the Art and Motivation 26

be precise, it is not scalable since it is not automated and when the data grows or the

calculations get more complex, the evaluation can suffer of procedural delays. Moreover,

such approaches are definitely error-prone due to their nature and present some usability

issues for non-domain experts.

Spreadsheets-based approaches. The approaches belonging to this category are

characterised by the collection of data delegated to an external data source (e.g., a MS

SQL database) and the calculation and visualization of KPIs performed on Excel spread-

sheets exploiting features as Power Pivot2. The contexts in which this type of approaches

are exploited are different. For instance, Abreu et al. [57] present a spreadsheets-based

approach in an industrial context exploited for decision-making purposes. Here, the

authors highlight the importance of having spreadsheets of high quality since decisions

taken upon wrong spreadsheets-based assumption may have serious economical impacts

on businesses. Also Jannach et al. [58] underline the problematic aspect of spreadsheets

quality by presenting an approach of Model-Based Diagnosis of faults in spreadsheets.

On the same trend, Luckey et al. [17] and Cunha et al. [59] propose approaches exploit-

ing object-oriented modeling and MDE techniques to generate and evolve spreadsheets

before using them, in order to reduce error-proneness in spreadsheets-based approaches.

Besides the benefits coming from the exploitation of common and open spreadsheets

(e.g., multiple functionalities supporting mathematical calculations and data analysis),

they show several limitations [60]. In particular, KPIs assessment frameworks relying on

the use of spreadsheets are strictly domain-dependent, thus negatively affecting reusabil-

ity. Another issue we observed is related to the fact that it is totally in charge of the user

composing the spreadsheets to keep separate the subject definition from the KPIs defi-

nition and formulae. This may raise a lack of separation of concerns (SoC) which could

represent a problem if the spreadsheet is not well structured. In particular, changing

the subject of the evaluation can lead to copy and paste activities, with all the related

problems. Moreover, even the definition and calculation of KPIs are highly coupled,

therefore KPIs experts are forced to be aware of the specific language underlying the

framework (e.g., macros and procedures in Excel). They must learn and be trained to

compose formulae in Excel (or to build programs), which can be a tedious and time

consuming task, if we consider that Excel formulae can be verbose and complex. We

may have usability issues even when a connected external source, such as a database, is

used for injecting the data needed to calculate the KPIs about the subject. In this case,

also the database should offer a user-friendly UI to fill in the data. This might mean to

spend other resources to build applications for data-entry, with the result of having two

separate systems, with all the related issues of possible inconsistencies [61]. For instance,

if the database schema of the connected source changes, new inconsistencies can impact
2 https://bit.ly/3dT1zwV

https://bit.ly/3dT1zwV

Chapter 3. State of the Art and Motivation 27

the formulae in the spreadsheet. It is worth noting that thanks to spreadsheets’ good

degree of openness, if KPIs formulae need to be changed or customized, or evolve over

time, they can support that. These types of operations have to take into account the

limitation on the number of records that can be stored without degrading. This limita-

tion can affect the scalability of the framework when applied over multiple and complex

smart cities in order to measure hundreds of KPIs. Moreover, with spreadsheets of big

dimensions, also the readability is compromised.

Web-based platforms. In this category we can find approaches for KPIs assess-

ment provided as online platforms. For instance, among Web-based framework, Bosch et

al. [13] provide an online framework allowing users to insert the already calculated KPIs

values, given a predefined set of smart cities KPIs, and to visualize them with graphi-

cal representations. However, the tool does neither envisage automatic calculation nor

retrieving of data. Another example is proposed by Moustaka et al. [62] which present

a framework to evaluate smart cities in terms of maturity by exploiting international

standards for KPIs [63] and urban data. However, to execute the KPIs assessment the

injection of urban data is still performed manually. One major limitation of Cloud or

Web-based platforms is that, usually, they are not released as open. Moreover, being

often conceived as multi-tenant platforms, they hardly support customization. Indeed,

Web-based platforms tend to be abstract in order to accommodate multiple clients be-

cause the customization for a single-user is not convenient in terms of costs and strategies.

On the contrary, as regards graphical visualizations, Web-based platforms usually offer

very powerful tools showing the results of the KPIs evaluation, although they are not

open to choose different types of graphical representations. Indeed, the lack of openness

can be a problem, since usually there is no active engagement of domain experts involved

in designing, operating, and controlling activities. In this way, KPIs definitions are em-

bedded in the frameworks and the users can only get the results of their measurement

in the pre-choosen graphical representations and export formats. Indeed, most of the

found KPIs assessment frameworks offer pre-packaged KPIs definitions, that the user

can select in order to get the results for the subject. The highlighted lack of openness

raises the fact that this type of platforms are not flexible enough to support evolution or

customization. Eventually, in contrast with the previous two categories of KPIs assess-

ment framework, Web-based platforms clearly show a better degree of scalability with

the novel front-end development technologies and libraries, from one side, and back-end

and persistence engines technologies, from the other side.

The analysis of the state of the art about frameworks for KPIs assessment supported us

in drawing the fundamental requirements that these frameworks should meet, discussed

in Section 3.1.1.1. Further, we derived the overall abstract development process that we

Chapter 3. State of the Art and Motivation 28

think should be followed to realize a KPIs evaluation framework, presented in Section

3.1.1.2.

3.1.1.1 Requirements Perspective

Looking at the drawbacks and limitations of the identified KPIs assessment frameworks

categories, we derived the following requirements that these frameworks should meet, in

order to overcome thee limitations of existing approaches described above. Specifically,

they are:

• Automation in the calculation of KPIs, in order to be able to perform complex

evaluations with a lot of data and with multiple output formats (e.g., textual files,

CSV).

• Separation of Concerns (SoC) as regard the distinction between the modeling of the

subject under evaluation and the KPIs definition and formulae. We refer here also

to the SoC between the competences of the concepts related to the KPIs definition

and application.

• Domain-Specificity of the language used to define KPIs for domain experts and

stakeholders.

• Usability of the KPIs assessment framework with user-friendly UI or languages to

specify required data and KPIs formulae.

• Openness of KPIs formulae to inspection and modification in order to manage the

KPIs evolution and customization.

• Graphical visualization of KPIs evaluated over a given subject in a comprehensible

way for non-experts stakeholders and for knowledge sharing among them.

• Flexibility of the features provided by the framework, e.g., in the KPI formula

definition, in choosing a different type of graphical representation of the results, in

the export format of the results.

• Scalability of the framework w.r.t. the number of subjects under evaluation and/or

KPIs involved in the assessment.

In Table 3.1 we report whether the three main categories of KPIs assessment frameworks

support (✓), partially support (∼) or not support (-) the extracted requirements.

Chapter 3. State of the Art and Motivation 29

Table 3.1: Evaluation of KPIs assessment frameworks.

Requirements

Approach Automation SoC Domain-Specificity Usability Openness Graphical Flexibility Scalability

Manual - ✓ - - - ✓ ∼ -

Spreadsheets ✓ ∼ - - ✓ ✓ ∼ -

Web platforms ✓ ✓ ✓ ✓ - ✓ - ✓

In conclusion, we highlight here that none of the detected category provides a way of

performing automatic KPIs assessment and, at the same time, of modeling both sub-

jects and KPIs in an uniform and customizable way. In particular, as regard manual

approaches, their main limitation stands in the fact that they are performed accurately

on a subject and this make them not scalable both in terms of applicability on different

subjects and performance with a lot of calculations and data. Moreover, performing

such calculations manually increases the error-proneness of the approach. Instead, what

resulted from the analysis of spreadsheets-based approaches is the of lack of SoC between

the subjects modeling and the KPIs definition and formulae. Indeed, having the defini-

tion and calculation of KPIs highly coupled makes it hard for KPIs experts the change

of the subject of the evaluation and also the modification of KPIs formulas, due to the

specific language underlying the framework (e.g., macros and procedures in Excel). In

this case, we can have also usability issues due to the lack of an user-friendly UI for

certain operations (e.g., connect an external database to inject the data needed to cal-

culate the KPIs about the subject). While, the main limitation of web-based platforms

is the fact that they are not open and they do not provide customization features for

KPIs formulas. Often, these platforms provide forms in which the user can insert the

input parameter for a pre-packaged set of KPIs in order to get the report of the results.

Although, they offer powerful tools of data visualization they do not support flexibility

for evolution or customization.

3.1.1.2 Process Perspective

Given the requirements for KPIs evaluation frameworks arising from the limitations

of existing approaches, we further derived the abstract development process that we

envisage should be followed to realize these frameworks. In Figure 3.1 we report the

abstract development process that we derived from our analysis.

We distinguished the phases of the process in two stages, i.e., Development stage and

Operation stage. In particular, for the development stage we identified the analysis phase,

during which the activities of identifying and defining the KPIs are performed. During

this preliminary phase, domain experts are involved in order to select the right set of

indicators and coordinate the corresponding data collection. This phase is conducted in

Chapter 3. State of the Art and Motivation 30

Identify and define
KPIs of interest

Provide input data
for the subject

Run evaluation and
collect results for the

subject

Development stage Operation stage

Select target platform
and develop

evaluation framework

Analysis phase Implementation phase Preparation phase Execution phase

Visualize evaluation
results in an

accessible way

Visualization phase

Figure 3.1: Basic process for the development of frameworks for the KPIs assessment.

such a way to be as transparent as possible and allow the application of the framework

over multiple subjects of the same type. This could be possible if the framework would

allow the possibility of customizing the KPIs definition for the different subjects. After

the identification and definition of the KPIs we have the second phase of the development

stage, namely the implementation phase. During this phase the development of the KPIs

assessment framework starts w.r.t. the requirements defined in the previous phase. Then,

we enter in the Operation stage, that, in turn, begins with a preparation phase. In this

phase, the user has to retrieve and prepare the input data needed to use the framework.

This input data will be used as the parameters of the assessment of the subject, thus they

can be historical or hypothetical data. After finding the data to use for the evaluation, the

execution phase can begin. The result of this phase will be the calculated KPIs values

for the subject under analysis that can be reported through graphical representations

during the next visualization phase.

It is worth mentioning in this context Low-code development platforms (LCDPs) [64, 65]

as a possible solution to build a KPIs assessment framework devoted to users coming

from different backgrounds. Indeed, LCDPs are characterized by easy-to-use visual envi-

ronments that would allow smart cities’ stakeholders with no coding skills to contribute

in the process formalised in Figure 3.1. However, since these types of platforms are

mainly used for specific types of applications, mostly in industry, they are usually built

and provided as static black boxes, whose languages and behaviours are not customizable

or open. The risk with LCDPs is similar to the one related with web-based platforms,

namely, fostering usability by penalising flexibility and openness.

3.2 Quality Evaluation Systems

In the literature, we found several specialized tools devoted to the quality assessment

of different subjects, e.g., software systems [66], modeling artifacts [67–69], software ar-

chitectures [70]. Specifically, as introduced in Chapter 2, Quality Evaluation Systems

(QESs) are basically software systems providing quality evaluation results of given sub-

jects. They perform subjects quality assessments w.r.t. evaluation requests and quality

Chapter 3. State of the Art and Motivation 31

requirements contained in the quality models that they receive as inputs. QESs may

carry out an evaluation process to accomplish their task, being implemented as a part

of a higher-level system, as well as independent systems [15]. Indeed, the quality models

given as inputs to such systems usually include quality definitions and corresponding

metrics. QESs have been often implemented for the domain-specific evaluation of differ-

ent subjects. Overall, the different QESs share some commonalities, namely the overall

objective of assessing a given subject passed as input, where the assessment is executed

on top of a quality definition, required by the user. Despite these commonalities, QESs

are strongly domain-dependent, implying that they are typically re-implemented from

scratch from a domain to another, by using existing tools, e.g., spreadsheets, or developed

as independent systems, e.g., Web or standalone applications.

An example of measurement mechanism for evaluation in software development is given

by the Goal-Question-Metric (GQM) approach by Van Solingen et al. [71]. It represents

a top-down approach based on goals and models applied to all phases of the software

development process to evaluate the quality of both processes and products. Specifi-

cally, the GQM approach starts from the definition, by the organization exploiting the

approach, of the goals for itself and its projects. Then, the defined goals must be traced

to the data that operationally define those goals. Lastly, it provides a framework for

interpreting the data with respect to the stated goals. Thus the resulting measurement

model is organised as a hierarchy made by three levels, namely conceptual (i.e., goal),

operational (i.e., question) and quantitative (i.e., metric). Still in the software develop-

ment context, García-Munoz et al. [66] present a platform devoted to the assessment of

the quality of software projects to estimate their quality, performance, management and

costs. The authors state that in software development projects it is needed to merge

quality metrics from different sources in such a way to have a wider range of monitor-

ing for possible faults. For this reason they implemented their platform in such a way

to allow integration of different analysis tools. Instead, Cardarelli et al. [70], present

an approach for the evaluation of micro-services architectures w.r.t. a defined set of

software quality attributes. Here, the authors decided to keep the definition of qual-

ity metrics in an independent dedicated ecosystem. In particular, both the modeling

language used for defining the architecture and the quality attributes computed on the

model, are independent from one another thanks to MDE techniques. As regards MDE

technical space, Basciani et al. [67] propose an approach devoted to the definition of

quality models supporting the quality assessment of modeling artifacts. The authors

want to overcome typical limitations in this context, such as limited extensibility, arti-

fact specificity, and manual assessment, which might lead to informal, subjective, and

non-reproducible assessment processes. Meanwhile, van Amstel et al. [68] present a set

of metrics for assessing the internal quality of ATL model transformations artifacts. The

Chapter 3. State of the Art and Motivation 32

authors highlight the fact that metrics alone are not enough for assessing quality and in

the assessment process of the same collection of model transformations, it is needed the

opinion of ATL experts. Lastly, Ambrus et al. [69] show a tool to measure the complexity

of UML models (i.e., state charts) by proposing transformations to reduce the complex-

ity. Here, it is highlighted how quality metrics are able to increase the quality of the

system and save development costs as they might find faults earlier in the development

process.

As seen in Cardarelli et al. [70], the use of DSLs in the abstraction of the definition process

of both quality characteristics and evaluation subjects may support the robustness of

the results of the process. Moreover, implementing a model-driven approach implies the

reduction of the time to market, and the facilitation of the definition of the artifacts

involved in the entire process. In this perspective, DSLs are often devoted to users

which are not programmers and therefore they offer advantages similar to the usage of

programming languages, but for domain experts. Indeed, every time a QES is required in

a specific domain, all the involved modeling artifacts, related to the subject of evaluation

and quality definition, with consequent engine for interpreting these models, must be re-

developed.

It is worth highlighting, how quality assessment of smart cities can be re-conducted

to quality assessment in software engineering. The quality of a software is important

since it may affect several aspects, such as human life and financial loss. These two

aspects, in particular, are relevant also in the smart cities domain because a correct

evaluation of KPIs for a city can affect its improvement. As regards the quality evaluation

applied in software engineering (e.g., [72]), we can find several quality models that present

a hierarchical structure, as seen in the KPIs documentation. Lastly, Deissenboeck et

al. [73] highlights one of the main issues in software quality assessment, i.e., the lack

of standardization in modeling software quality metrics. The motivation relies in the

variety of application scenarios. Similarly, a lack of standardization in the modeling of

KPIs and their calculation for different cities can be observed.

Similarly to the smart cities assessment scenario, we can identify other scenarios in which

quality assessment represent a not trivial task. For instance, a similar scenario is the

social impact assessment. Activities and initiatives may generate positive impacts on the

society and the subject under evaluation itself (e.g., public administration institution,

private companies), thus, affecting human life and financial loss as happening for QES

in the software development scenario. Moreover, depending on the nature of the subject

under evaluation, the metrics to be used to assess the social impact have to be customized

consequently. Also in this context of social impact assessment we have a variety of

heterogeneous application scenarios (e.g., Higher Education Institutions (HEIs) [74–76],

Chapter 3. State of the Art and Motivation 33

finance [77]) that make the standardization of the assessment process complex. Related

to the impact on human life, another scenario in which the quality assessment is directly

affecting it is the Covid-19 risk assessment over geographical areas. During the pandemic

period we have seen how the different nations of the world managed the monitoring of

the spreading of the virus. Specifically, every subject defined a list of indicators and

thresholds to map the level of risk w.r.t. different geographical areas. In this scenario, the

different policies applied by every nation made it difficult to standardize the assessment

process.

3.3 Modeling Smart Cities

We have already said that the smart city domain is made by different dimensions and

involves diverse stakeholders. These are some of the aspects that contribute to make it

so complex to handle. To reduce this complexity in the management of smart cities that

clearly involves different processes given the different contexts and aspects, exploiting

an high level of abstraction to generalize these processes might be helpful for the smart

cities managers. Indeed this would support reuse and optimization. As discussed, MDE

may result helpful in the abstraction of the different aspects of smart cities, and it has

already been used in this context. For instance, DSLs have been exploited. To give a

few examples, Rosique et al. [20] present a DSL to model Smart City Systems (SCSs).

The authors face with the high heterogeneity of devices and protocols of communication

that can help in creating a SCS. In this work, it is demonstrated how a DSL with

concepts of the domain can be understandable also by experts with no knowledge in

software engineering. Instead, Matar [21] exploits MDE to afford the issue involving the

collaboration between the different stakeholders in the smart city domain. The use of

DSLs in such contexts helps in terms of understandability and analysis in a more easy

way w.r.t. General-purpose Programming Languages (GPLs) source code patterns that

are more complex or usually not well defined [78]. The risk of using a GPL is to be too

abstract and to struggle in the development phase.

As discussed, the main objective of this thesis, consists in realizing a KPIs assessment

framework for smart cities that implements a systematic, reusable and customizable way

for evaluating smart cities. In general terms, it can be seen as a QES, thus it relies on

two main inputs artifacts, such as the subject of the evaluation and the quality model

with the metrics to evaluate it. In order to use MDE techniques and approaches, thus to

exploit all their benefits due to abstraction, model transformations and code generation,

as a first step modeling artifacts for both smart cities and KPIs would be required. As

regards KPIs, although a uniform way to model them does not exist, from our state

Chapter 3. State of the Art and Motivation 34

of the art analysis in Section 3.1 we found out that, according to the majority of the

existing guidelines, they follow a common hierarchical structure, are already defined in

an abstract way, and are measured according to basic operations. These aspects lead us

to think that it should be feasible to provide a standard way to model them in order to

be used as input for a QES. To the contrary, w.r.t. a smart city, it is more difficult to

embed all its complexity in a modeling artifact to be used as input for a QES, that is

the subject to evaluate. With these premises, we deeply investigated the literature to

better understand the research status about smart cities modeling approaches, both as

a whole or by considering their multiple dimensions, in an MDE perspective. This work

eventually led to the realisation of a systematic mapping study on smart cities modeling

[1]. For sake of space, in the following section we report only the main findings of our

analysis, which of course have been used as a driver for the realization of the model-based

framework presented in this dissertation, in the following chapters.

3.3.1 Smart Cities Modeling Approaches Review: Main Findings

To better understand the research status about smart cities modeling approaches, we

decided to perform an analysis of the existing literature about the topic. Specifically,

we performed our research investigation by following the process for systematic mapping

studies in software engineering proposed by Petersen et al. [79]. The process we followed

for accomplishing our analysis started with the definition of research questions delineat-

ing our review scope and focusing on the modeling of smart cities. In particular, we

formulated the following six RQs belonging to three different domains, namely problem,

solution and scientific community domains:

— Problem Domain:

RQ1 Which Smart City dimensions have been modeled the most?

RQ2 Which application fields in the Smart City domain have been modeled the

most?

— Solution Domain:

RQ3 Which modeling approaches have been used to represent Smart Cities?

RQ4 What is the maturity status of smart cities modeling approaches?

— Scientific Community Domain:

RQ5 When did the contributions on modeling Smart Cities occur?

RQ6 Where have the contributions been published?

Chapter 3. State of the Art and Motivation 35

Starting from these RQs, we derived the search query used to conduct a literature search

on different digital libraries. In particular, we composed the search query by combining

the keywords smart city and model and their synonyms (e.g., smart cities, modelling,

modeling) that identify the domain of the study and the investigated approaches. The

automated searches were performed in four digital libraries3 to guarantee a certain level

of coverage and quality of relevant papers. After this search phase we obtained a first

set of publications related to the topic, namely 1325 papers. This set then underwent a

screening during which all the duplicates were removed and the defined inclusion/exclu-

sion criteria were applied, aiming at identifying the publications not relevant to answer

the research questions. After the screening of publications we get a set of 575 unique

papers. On this set of publications, we performed a keywording phase using abstracts.

From one hand, it allowed to detect further out of scope papers, by means of a title

analysis focused on title, abstract, and keywords. From the other hand, it supported

the classification of publications w.r.t. different aspects. In particular, the classifications

performed on the selected set of publications aimed at finding out the maturity level of

the detected studies. Specifically, we categorized the relevant publications according to

the so-called research type facets, introduced by Petersen et al. [79], namely experience,

opinion, philosophical, solution, validation, and evaluation. Furthermore, we categorized

publications also according to (i) the Technology Readiness Level (TRL) scale4, (ii) the

smart city dimensions, based on the Boyd Cohen Wheel standard [26], (iii) the modelling

approaches exploited or proposed as contribution in the publications, (iv) the presence of

a specific implemented tool based on the presented contribution (e.g., web applications,

prototype, services), and (v) the application field of the contribution in the reference

domain. Consequently, as output of the classification step we obtained a set of 106

relevant papers. The list of the analysed publications is available here.

We analysed this final set of relevant papers to better understand how smart cities have

been modeled from the perspective of the different research communities and in the

context of diverse application fields. The goal of our analysis is that of collecting the

existing SC modeling approaches in order to provide an overview about the state of the

art on smart cities modeling. In particular, we aim to identify possibly emerging SC di-

mensions, application fields, modeling approaches, publication venues, and to determine

existing trends, if any, and potential future directions that SCs modeling should take.

Furthermore, we want to give an overview on the maturity level of the analyzed works

to understand to which extent the provided solutions are technically sound and robust.

In the following paragraphs, we summarize the main findings of our systematic mapping

study on modeling approaches for smart cities. The findings are grouped according to
3 The used digital libraries are: IEEE Xplore, Scopus, Association for Computing Machinery (ACM),
dblp computer science bibliography 4 https://enspire.science/trl-scale-horizon-europe-erc-explained/

https://docs.google.com/spreadsheets/d/1ymbuKuGCQDe8xC7OUu_mFcmIcWUc_AU5hCpZDMYeckY/edit?usp=sharing
https://enspire.science/trl-scale-horizon-europe-erc-explained/

Chapter 3. State of the Art and Motivation 36

the three research questions’ domains. Of course, major details on both the setting of

this studies and all the results are available in [1].

Problem Domain. In the problem domain, to answer RQ1, we were interested in

which SC challenges are addressed and in which SC dimensions, thus to understand which

are the ones that attracted more the interest of the research communities. It is worth

noting that besides the dimensions coming from the Boyd Cohen wheel [26], we consid-

ered a further dimension specifically for Smart Things to keep track of those publications

whose contribution lies mainly in the IoT world. In Figure 3.2, we reported the results

for this analysis. In particular, we found out that the smart city dimensions that elicited

mostly the research interest from the modeling perspective in the last decade are the

smart governance, smart environment and smart people ones. For the other dimension

we observed a quite uniform distribution. The main finding of this analysis is that, in the

literature, there is an uneven coverage of the smart city’s dimensions, from a modeling

perspective. In particular, it highlighted a limited coverage for the smart economy, smart

mobility, smart living and smart things dimensions. Considering the multi-dimensional

nature of smart cities, this current weak coverage of some SC dimensions might highlight

different interest of researchers and practitioners in the diverse dimensions of the smart

city domain, considering that some of them received quite more attention.

Figure 3.2: Distribution of publications among the smart city dimensions.

To answer RQ2, we also extracted the application fields from the publications set, and we

derived a taxonomy of these application fields organized in different hierarchical levels.

The classes used to classify the publications emerged during the keywording phase, thus

the taxonomy arose in a bottom up fashion. We refer to [1] for the detailed taxonomy,

while we report a summary here. From our analysis it resulted that smart city modeling

has been largely exploited in the Smart City Domain field (50 publications), made by

Chapter 3. State of the Art and Motivation 37

Smart City Design, Smart City Management and Smart City Administration sub-fields.

The application fields ICT and Quality closely follow with 36 and 25 publications,

respectively, while the Stakeholders field closes the ranking with 16 publications. Indeed,

from the obtained results about the application fields of SC modeling approaches we

observed that the Stakeholders field, including Participation and Communication sub-

fields, is still an unexplored area. This very marginal subset not only highlights a lack

of research works dealing with inclusion, participation, communication and knowledge

sharing devoted to smart city stakeholders, but also confirms another aspect that makes

the smart city domain so complex, namely the actors who bear some interest in the city

are many and heterogeneous.

Solution Domain. The inspection of the solution domain concerned the investiga-

tion of the modeling approaches currently used to design smart cities, in order to answer

RQ3. In particular, we extracted the modeling kinds and techniques used in every pub-

lication to model the covered SC domain or subdomains. From our analysis, it emerged

that business, architecture and ontology modeling are the most prominent detected ap-

proaches, with 15, 14 and 12 publications, respectively. However, the distributions of

publications among the detected model kinds is quite uniform. Thus, a prominent mod-

eling approach is not emerged. This might be due to the complex nature of the smart city

domain. Since most of the publications focus only on specific aspects and dimensions,

then, the choice of the most appropriate modeling approach is driven by specific research

goals.

During the inspection of the solution domain, we also investigated the status of the re-

search works dealing with smart city modeling. Thus, to answer RQ4, we performed

multiple analysis. First, we classified publications according to the research type facets

[79], which are used to distinguish between empirical and non-empirical papers and to

categorize them based on the proposed solution and level of validation. As reported in

Figure 3.3, this analysis turned out that the majority of the publications (i.e., around

54%) belongs to the Philosophical and Solution types. These papers propose a new way

of looking at existing things by structuring the field in form of a taxonomy or concep-

tual framework or by proposing a novel solution for a problem. Meanwhile, only 24% of

contributions are validated through experiments in laboratory environment (Validation)

and 19% of them performed an evaluation research through the solution implementation

and its evaluation (Evaluation). Furthermore, to understand the technological maturity

of the contributions coming from the investigated publications, we calculated their Tech-

nology Readiness Level (TRL)5 that is a metric used into the EU funded projects arena

that, in turn, was defined by NASA in the 1990’s as a means for measuring the maturity
5 https://enspire.science/trl-scale-horizon-europe-erc-explained/

https://enspire.science/trl-scale-horizon-europe-erc-explained/

Chapter 3. State of the Art and Motivation 38

Figure 3.3: Number of publications w.r.t. the type facets.

of a given technology. We performed this analysis only on those publications classified

as Solution, Validation and Evaluation. In particular, we measured the maturity level

of the used technology, development and design. Specifically, the maturity level is mea-

sured according to a scale ranging from 0 to 9. The results of our analysis are shown

in Figure 3.4 where we reported the distribution of the calculated TRL values for the

three considered research facets. It emerged that for the solution facet we have mostly

TRL values that go from 1 to 2, with the exception of a very few works showing a TRL

equals to 1 and 3. For the validation facet, the TRL goes mostly from 3 to 8, with the

median equals to 5. Lastly, the evaluation facet has TRL values mostly of 7 and 8. From

the results, we can notice here that no contribution shows a TRL value of 9, namely

presenting an actual system proven in operational environment, meaning that we have

not found mature and stable systems or framework. Moreover, we investigated deeper

the contributions and we observed that only 15 publications over 106 contribute with a

developed tool, of both type open-source or proprietary.

Looking at the results of these two analysis, we can state that around the 96% of publica-

tions, present a contribution mostly in the form of a solution to a given problem, not yet

evaluated (i.e., Solution facet), or a taxonomy or a conceptual model (i.e., Philosophical

facet). In addition, the TRL measurement has shown that no work presents an actual

system proven in operational environment, namely with a TRL of value 9. This is further

proven by the very low percentage of papers (i.e., 15 over 106) contributing with a tool,

where the majority of them have not yet been distributed in the real world but only

tested in a sub-set of conditions and environments.

Scientific Community Domain. During the inspection of the scientific community

domain, we analysed the distribution of publications over the years in order to answer

Chapter 3. State of the Art and Motivation 39

Figure 3.4: Boxplot with the TRL values w.r.t. the three facets.

RQ5. In this way we were able to observe the advent of the first contributions on

the topic and the trend of publications over the years. In Figure 3.5, we reported the

distribution of publications per year w.r.t. their type, i.e., Articles in scientific journals

and inProceedings publications to scientific conferences. From the analysis it emerged

that research about modeling smart cities started in 2011, simultaneously with the advent

of the concept pointing out the smartness of cities [9]. From the publications type

perspective, the results show that InProceedings publications appeared in 2013, and

from 2014 the they started to be increasingly much more than articles. Noteworthy, in

2018 we can observe a significant decrease for both publications types, while in 2020 a

change in the trends of the two series can be seen, i.e., InProceedings publications started

decreasing while articles started increasing.

40

66

Figure 3.5: Number of publications per year w.r.t. the publications type.

Concerning the scientific community domain, to answer RQ6, we also inspected the

Chapter 3. State of the Art and Motivation 40

most prominent venues of both types of publications, i.e., inProceedings and articles.

Specifically, for each publication we analysed its venue and also the information about

the corresponding Scientific Area6. The analysis of inProceedings publications’ venues

resulted in more than 53 different conference venues. The four most prominent con-

ference venues are: (i) the IEEE International Smart Cities Conference (ISC2) with 4

publications belonging to the Computer Science and Social Sciences scientific areas; (ii)

the Smart Cities Symposium (SCSP) with 3 publications from the Computer Science and

Decision Sciences scientific areas; (iii) the International Conference on Smart Cities and

Green ICT Systems (SMARTGREENS) with 3 publications belonging to the Computer

Science scientific area; (iv) the Winter Simulation Conference (WSC) in the scientific

areas of Computer Science, Engineering, and Mathematics. The remaining venues show

also multidisciplinary scientific areas. The articles contributions, instead, span over 32

different journals. For this publication type we inspected also the Quartile assigned

to each journal, i.e., the journal impact index measuring the quality of scientific jour-

nals, ranging from Q1 (the highest ranked journals) to Q4 (the lowest ranked journals).

The most prominent venues are ISPRS International Journal of Geo-Information and

IEEE Access with 3 publications each, fitting into the Q1 quartile. The first belongs to

the Earth and Planetary and Social Sciences scientific areas. Instead, the second one

to Computer Science, Engineering, and Material Sciences scientific areas. Thus, both

papers’ type refer to interdisciplinary communities, in line with the multi-disciplinary

nature of smart cities, with a prevalence of Computer Science, Engineering and Social

Sciences.

Our main finding in the scientific community domain is that it emerged a wide distri-

bution of different conferences and journal venues where contributions on modeling SCs

have been published. Moreover, also considering the contributions in the different scien-

tific areas, separately, it does not emerge a reference venue/community. This observed

multi-disciplinarity highlights again the complex nature of the smart city domain which

is studied and modeled from different perspectives and by an heterogeneous group of

researchers.

3.4 Research Challenges

In this Section, we extracted the Research Challenges (RCs) emerged from the limitations

identified in the state of the art. These are the RCs we faced in developing a model-based

framework devoted to KPIs assessment over smart cities. Indeed, our objective was to

provide a comprehensive methodology supporting (i) systematic and uniform modeling
6 We retrieved the scientific area from Scimago https://www.scimagojr.com/, i.e., a publicly available
portal that provides journals and conferences rankings.

https://www.scimagojr.com/

Chapter 3. State of the Art and Motivation 41

of smart cities and KPIs, (ii) automatic KPIs measurement, and (iii) intuitive reporting

of assessed KPIs. Furthermore, we envisaged the need for an evaluation framework made

in such a way that it can be reusable also for the assessment of subjects coming from

different domains than smart cities.

Having an abstraction of the smart city would enable the smart governance to have a

constant picture of the city itself. Moreover, such abstraction of the smart city could also

easily support its performance monitoring that, in turn, would support the collaboration

among the stakeholders involved in the decision-making processes. With these premises,

and considering that one of our objectives was the systematic and uniform modeling of

smart cities and KPIs, we first started from the inspection of the state of the art about

existing smart cities modeling approaches, to then move to a deeper analysis on the KPIs

side. In particular, we analysed the literature on smart cities modeling approaches w.r.t.

different aspects. First, from the obtained results we observed an uneven coverage of

the SC dimensions. As regards the application fields of the investigated publications,

the stakeholders field, including participation and communication sub-fields, emerged as

a quite unexplored research area. Looking deeper at the contributions reported in the

analysed publications, we further observed that a prominent modeling approach of smart

cities does not exist. Furthermore, looking at the maturity level of the contributions,

the majority of publications present solutions to a given problem, not yet evaluated, or

a taxonomy or a conceptual model. We also observed that no work presents an actual

system proven in operational environment, meaning that we have not found mature and

stable systems or framework. This is further proven by the very low percentage of papers

contributing with a tool, where the majority of them have not yet been distributed in the

real world but only tested in a sub-set of conditions and environments. Lastly, looking at

the scientific community to which the analysed publications belong, we observed multi-

disciplinary venues in-line with the complex nature of the smart city domain which is

studied and modeled from different perspectives and by an heterogeneous researchers

communities.

Considering the drawbacks emerged from our systematic mapping study on smart cities

modeling approaches, and in view of the need of a smart cities model on top of which a

KPIs assessment can be performed, we extracted the following research challenge (RC):

RC1: Provide a uniform way of modeling smart cities and their complexity.

After the investigation of the smart city domain in terms of modeling approaches, we

performed an analysis of the state of the art about existing KPIs assessment frameworks,

in order to detect possible re-usable and automatic frameworks. During this review, we

analysed generic KPIs assessment frameworks that we categorized in manual approaches,

Chapter 3. State of the Art and Motivation 42

spreadsheets-based approaches and Web-based platforms. As regards manual approaches

in which data retrieving and KPIs definition are performed manually, even if they can

be precise, they suffer from lack of scalability. This is due to the fact that they are not

automated and when the data grows or the calculations get more complex, the evaluation

can suffer of procedural delays. Moreover, such approaches are definitely error-prone due

to their nature and present some usability issues for non-domain experts. Instead, in

the category of spreadsheets-based approaches we classified those frameworks for which

the collection of data is delegated to an external data source and the calculation and

visualization of KPIs performed on Excel spreadsheets. This type of frameworks benefit

from a good degree of openness but suffer from relevant limitations. One of them is

the lack of separation of concerns since the definition and calculation of KPIs are highly

coupled. This implies that users must learn and be trained to compose formulae in Excel.

Moreover, the verbose syntax and complex expert features (e.g., external data source

configuration) of Excel can raise also usability issues. Another important limitation

regards the number of records that can be stored without degrading. This limitation can

affect the scalability of the framework when applied over multiple and complex smart

cities in order to measure hundreds of KPIs. Meanwhile, Web-based platforms, in which

the KPIs calculation is performed as a functionality of an online platform, clearly show a

better degree of scalability with the novel front-end development technologies and back-

end and persistence engines technologies. Indeed, they usually offer very powerful tools

to represent the results of the KPIs evaluation in graphical dashboards. But one major

limitation is that, usually, they are not released as open. Moreover, these platforms

tend to be as abstract as possible to be used by a wide range of customers and this

hardly affects customization. Due to the fact that KPIs definitions are embedded in the

frameworks, the users can only get the results of their measurement in the pre-choosen

graphical representations and export formats. This makes Web platforms not flexible

enough to support evolution or customization of the KPIs definitions.

From the limitations just discussed, arisen from the analysed KPIs assessment frame-

works, and considering the core objective of this work, we extracted the following RCs,

which driven us in the development of our KPIs assessment framework:

RC2: Provide a systematic methodology allowing smart cities to define, measure

and visualize the KPIs of interest in order to efficiently assisting the decision-making

processes by also supporting:

RC2.1: KPIs evolution over time w.r.t. the evolution of smart cities needs and

contexts;

RC2.2: KPIs customization based on the specific smart city under evaluation in

terms of selection of appropriate KPIs to be calculated.

Chapter 3. State of the Art and Motivation 43

Eventually, since one of our objectives was that of applying the model-based KPIs assess-

ment framework also in the assessment of subjects from different domains, we inspected

the state of the art about Quality Evaluation Systems in the literature, in order to ex-

tract both potentialities and limitations of these tools. First, we observed that QES

are developed for the assessment of different types of subjects coming from different do-

mains. Then, we highlighted how quality assessment of smart cities can be re-conducted

to a typical QES process, namely, they share the overall objective of assessing a given

subject, which could be a smart city, passed as input, where the assessment is executed

on top of a quality definition, such as a set of KPIs. Looking at the literature about

QES in different domains, we oserved that, despite the commonalities, QESs are strongly

domain-dependent, implying that they are typically re-implemented from scratch from a

domain to another, by using existing tools, e.g., spreadsheets, or developed as indepen-

dent systems, e.g., Web or standalone applications. Indeed, every time a QES is required

in a specific domain, all the involved modeling artifacts, related to the subject of evalu-

ation and quality definition, with consequent engine for interpreting these models, must

be re-developed.

Considering the limitations of typical QESs, which are not generalizable enough, thus

not easily reusable in different domains, we extracted the following RC:

RC3: Make the systematic assessment methodology generalizable such that to be

applied in the quality assessment of subjects coming from different domains than

the smart cities.

3.5 Discussion

In this Chapter we presented the actual state of the art of smart cities assessment. First,

we introduced smart cities evaluation through KPIs by giving a definition and an exam-

ple of this type of metric. Then, three categories of typical KPIs assessment frameworks

are described, namely, manual approaches, spreadsheets-based approaches and web plat-

forms. In particular, we highlighted, for each category, benefits and limitations and we

concluded that none of the detected category provides a way of performing automatic

KPIs assessment and, at the same time, of modeling both smart cities and KPIs in an

uniform and customizable way. Looking at these drawbacks we derived a set of require-

ments that KPIs assessment frameworks should meet and we formalised the abstract

development process that we envisage should be followed to realize these frameworks.

Secondly, we investigated the literature about QESs development to identify the com-

monalities between the different domains in which this type of tools are exploited. Lastly,

we reported the results of an analysis of the literature to better understand the research

Chapter 3. State of the Art and Motivation 44

status about smart cities modeling approaches, both as a whole or by considering their

multiple dimensions, in an MDE perspective.

According to the limitations identified in the state of the art we derived the research

challenges that guided the research work reported in this dissertation. In particular, in

the next Chapter we give an overview of the smart cities KPIs assessment approach that

we developed in order to support smart cities and KPIs modeling, automatic assessment

and real-time graphical representations generation.

Chapter 4

MIKADO– a Smart City KPIs

Assessment Modeling Framework

In this Chapter we describe the developed model-based smart cities KPIs assessment

approach by first introducing, in Section 4.1, the motivating scenario that justifies our

work, i.e., smart decision-making. Then, Section 4.2 gives a general overview of the

proposed approach, namely MIKADO. In Sections 4.2.1 and 4.2.2 the metamodels on

top of which the approach relies are reported, namely the smart city metamodel and the

KPIs metamodel. The KPIs assessment phase is reported in Section 4.2.3. Furthermore,

the KPIs reporting process is explained in Section 4.2.4, by also expliciting how the

presented approach supports KPIs evolution in sub-section 4.3. The Chapter ends with

some discussions in Section 4.4.

4.1 Motivating Scenario: Smart Decision-Making

Smart governance managers monitor the performance of smart cities by means of the

assessment of KPIs [12]. Measuring the sustainability and smartness of a city w.r.t.

predefined objectives supports smart city decision-making processes. An example of the

importance of monitoring smart cities goals stands even in the aforementioned SDGs [10].

Indeed, entities releasing lists of KPIs also highlight to which SDG each indicator con-

tributes. In this way, a city can monitor its performance w.r.t. to the SDGs and imple-

ment actions to adjust or maintain its trend. For this reason, KPIs are build as visual

measures of cities’ aspects performances that support the evaluation and understanding

of the current status and trend of a metric w.r.t. specific targets [52]. Understanding the

performance of cities is of great relevance also for those cities that are involved in their

transition to become smart cities. In this case, the measurement of KPIs supports the

45

Chapter 4. MIKADO 46

prediction and evaluation of the transition process. It is worth noting that most of the

standard lists of KPIs are defined in such a way to be applicable to all cities, enabling in

this way benchmarking and rankings of cities. These features can be very helpful for the

sharing of knowledge between different smart cities, for instance in the implementation

of common smart projects for the resolution of similar problems.

The KPIs assessment and the consequently smart decision-making are not trivial tasks

in smart cities that are characterized by a high level of complexity, whereby they can

actually be thought as systems of systems. The crucial aspects that have to be taken

into consideration in the context of KPIs assessment are several. First of all, we cannot

ignore the fact that smart cities, together with their resources and needs, are continuously

evolving. We also highlighted that certain cities may be in the beginning or in the middle

of their smart transition. Indeed, following the behaviour of cities also KPIs continuously

evolve [16]. Moreover, also the selection of the KPIs of interest for a city is influenced

by factors that can change in time (e.g., data availability), in particular in these years

during which the digital revolution [11] is taking place. For instance, in the last few years

the advent of electrical vehicles changed the urban scenario, by carrying out new needs

(e.g., finding the optimal positioning of car chargers). Also the advent of 5G changed

the way how the Wireless Broadband Coverage is calculated in a city.

A second crucial aspect in the KPIs assessment regards the heterogeneity of smart cities.

Indeed, they can differ not only for their dimensions (e.g., small, medium and metropoli-

tan cities) but also for other aspects related to their stage of economic development,

population growth, available services. However, the geographical implications can have

a great influence on the selection of the set of KPIs of interest. Even in smart cities’

rankings, the comparisons of cities as the results of KPIs assessment, are reported by

differentiating among metropolitan cities, small and medium-sized cities1. Furthermore,

different smart cities can be interested in specific KPIs. Thus, although all smart cities

use KPIs definitions and formulae provided by the standardization bodies, they should

have the possibility of selecting only the KPIs appropriate for their evaluation. Con-

sequently, we highlight the need for KPIs customization claiming that the selection of

KPIs must be driven by the subject smart city and its peculiarities.

We can conclude by saying that smart decision-making processes may be supported

by smart cities benchmarking tools providing automatic KPIs assessment over different

cities, thus implying a certain degree of customizability. Not disregarding an easy and

intuitive usability both in the usage and in the visualization of cities’ reports, in order to

support the understanding of their performances and trends w.r.t. their goals and other

similar cities.
1 Polis 4.0 - Smart City Index 2018 https://bit.ly/3xnyHEF

https://bit.ly/3xnyHEF

Chapter 4. MIKADO 47

4.2 The MIKADO Approach

Looking at the limitations of the smart decision-making scenario, at the drawbacks of

existing KPIs assessment frameworks, as seen in Section 3.1.1, and at the consequent

challenges highlighted in Section 1.2, we decided to exploit the benefits coming from the

use of MDE techniques to develop a model-based approach devoted to the smart cities

assessment. We reported in Figure 4.1 the main phases of our approach. Starting from

KPIs definition modelSmart City Model

Smart City Modeling

Smart City
Metamodel

KPIs Modeling

KPIs Metamodel

Evaluated
KPIs model

Evaluation Engine

KPIs dashboard

log

Pretty
printer

Modeling

Computation

Reporting

reads writes

conformsTo

conformsTo produces

produces

Smart City Candidate

reflects

Smart Governance
Systems

manages Helps decision making

reads

conformsTo

reads

refersTo

refersTo

Figure 4.1: Overview of the MIKADO approach.

the Modeling box, here we find all the modeling artifacts devoted to design tasks. In

particular, here we have modeling tools for the smart cities (Smart City Modeling) and

for the definition of KPIs (KPIs Modeling). The Smart City Metamodel is the output

of a study over the smart city domain, its concepts and the relation among them. Also

the KPIs Metamodel comes from an investigation of the guidelines about how KPIs can

be measured, to understand what type of calculations and data they require. After this

analysis, we designed the KPIs metamodel in such a way that it allows the definition of a

unique KPIs Definition Model, valid for different smart cities that can change over time

in terms of nature and number of KPIs, to answer to both evolution and customization

of these metrics.

Shifting the focus on the Computation box, we have the Evaluation Engine component

that takes in input the Smart City Model of the Smart City Candidate and the KPIs

Definition Model, both models conforming to the corresponding metamodels. This com-

ponent interprets and calculates the modeled KPIs for the candidate city from the input

Chapter 4. MIKADO 48

models and produces, via in-line transformations, the Evaluated KPIs Model, with the

concrete values for the KPIs identified in the KPIs Definition Model.

The produced model is, in turn, the input for the Reporting box in charge of its transfor-

mation into a graphical dashboard through a code generation process, implemented via

a Pretty Printer component, which produces also a detailed log of the evaluation. The

generated dashboards will represent a relevant instrument to guide the Decision-Making

process performed by Smart Governance Systems for the candidate smart city. For in-

stance, it supports the smart governance managers in looking for causes of smart cities

problems highlighted by the KPIs.

4.2.1 Smart Cities Metamodel

As seen in Section 3.3, during the analysis of the state of the art about smart cities model-

ing, a uniform way serving our scope did not emerged. To this aim, we decided to develop

a DSL to describe smart cities in terms of data and their sources. In particular, we re-

ported the defined Smart City Metamodel in Figure 4.2. Indeed, this metamodel has a

Figure 4.2: Smart City Metamodel.

particular focus on the data analytics context in order to support smart decision-making,

in this way, the model instances of the smart city not only contain the data values useful

for the KPIs assessments, but it also keep trace of the sources and relationships of the

information collected in the city. In particular, the SubjectUnderEvaluationModel is spec-

ified as a composition of multiple SmartCity entities, to allow the modeling of different

Chapter 4. MIKADO 49

smart cities. Each SmartCity can be, in turn, composed by several entities, which have

been organized in three packages, namely Infrastructure, DataAnalytics, and Stakeholder.

In the data analytics package, we find concepts like Source that can be specialized into

three different data sources, namely ProvidedData, OpenData, SocialMedia. From this

sources may be generated the generic concept of Data, as part of a DataPackage, that is

further specialized in different types of values (i.e., StringValue, RealValue, IntegerValue,

BoolValue). Moreover, to allow the description of IoT systems, we defined, in the in-

frastructure package, another type of source, called MonitoringInfrastructure that can be

composed of several IoTDevices instantiatable in Sensors and Actuators. This type of

infrastructure is a specialization of the InfrastructureComponent composing the PublicIn-

frastructureLayer that can be developed in a city. Lastly, in the Stakeholder package we

defined the Stakeholder concept to model every type of smart cities stakeholders (e.g.,

private and public institutions, companies), which can act or not as data providers.

4.2.2 Key Performance Indicators Metamodel

After the study on KPIs guidelines and documentations defined by standardization bod-

ies, we defined a DSL to describe KPIs structures and calculation formulae coming from

different sources. Specifically, we report the defined KPIs Metamodel for the KPIs def-

inition in Figure 4.3. In this metamodel we defined the concepts resulted from the

investigation that we did on KPIs documentations. Thus, data types, data sources and

operators correspond to those envisaged by the standardization bodies that provide these

KPIs lists. The fact that we used a specific metamodel does not imply that it cannot

evolve with more complex concepts (e.g., vectors, matrixes, non-standard operators).

According to the KPIs documentation taken into account (e.g., [7, 13, 14]), we modeled

the KpiModel as a composition of multiple Dimensions containing themselves different

sub-dimensions and Category entities. KPIs are associated with only one category and

each category is composed by multiple Parameters. Each KPI has a Value that, in turn,

is associated to a ValueType that can be specialized into two main different types, i.e.,

RangedValue and CalculatedValue. The former is required to model those KPIs whose

calculation result has to be compared against a Range of values to get the final KPI mea-

sure. The latter, is used for those KPIs that only need to perform a calculation. This

can be made over different SingleValues of different types (i.e., StaticRealValue, BoolValue,

RealValue, IntegerValue, StringValue). Every single value is associated to a Parameter.

Moreover, calculations can be made also on AggregatedValues of different types (i.e., Ag-

gregatedBoolValue, AggregatedRealValue, AggregatedIntegerValue, AggregatedStringValue,

AggregatedRangedValue). In every aggregated value has to be defined an attribute op-

eration whose type is specified by the enumeration Operation, which defines the typical

Chapter 4. MIKADO 50

Figure 4.3: KPIs Metamodel.

operations that can be used to calculate KPIs (e.g., MAX, AVG). In some of the types

of SingleValue and AggregatedRealValue the targetvalue attribute can be instantiated with

the desired value for the defined KPI.

Once defined the input models of the KPIs assessment process by following the rules

coming from the two metamodels just described, the computation phase devoted to the

calculation of the defined KPIs over the smart city under assessment can begin, as we

will see in the next Section.

Chapter 4. MIKADO 51

4.2.3 KPIs Assessment

As shown in Figure 4.1, the Evaluation Engine is the computation component in charge

of the calculations in the proposed KPIs assessment process. This component takes in

input the KPIs definition model and the Smart City model of the candidate subject under

analysis. The output of the execution of the engine is the Evaluated KPIs Model for

the subject in which the KPIs values are actualized with the calculated ones via in-line

transformations. The engine prints also a report of the KPIs assessment for the candidate

city as a textual log, summarizing the results of the calculations for all the defined KPIs

it assessed, by exploiting the required parameters in the smart city model. Indeed, the

engine reads the KPIs definitions where all the parameters needed for the calculations

are declared and search them into the smart city model by name-based references. If the

engine does not find all the needed parameters for the calculation of a KPI, it does not

execute the specific calculation.

The evaluation engine performs all the calculations thanks to the operations declared in

the KPIs definitions. It translates the operations that it reads in the declared Aggregat-

edValues into the language implementing the engine. The engine has been implemented

in such a way that it would be easy to add new operations types. It is only a matter of

adding a line of code to the evaluation engine script in which we implement the trans-

lation from the enumeration Operation element to the actual mathematical operation.

For instance, looking at several KPIs guidelines we found that KPIs are often calculated

w.r.t. one 100.000th of the city population; for this reason we defined a CEN operation

that performs the division of the number of city inhabitants per 100.000.

4.2.4 KPIs Reporting

Besides the reporting of the results of the KPIs assessment as a textual log by the evalu-

ation engine, the Pretty Printer component shown in Figure 4.1 produces also graphical

dashboards to report the results. The generation of dashboards relies on model-to-text

(M2T) transformations that we implemented in order to have a graphical visualization of

the Evaluated KPIs model. In particular, we defined templates with rule-based model-

to-text transformations that converts the models into SVG/HTML files.

We implemented the transformations in such a way that the generated dashboards are

organized in views. These reflect three concepts, i.e., the overall KPIs model, dimensions

and categories. For every view we implemented a M2T template, namely, for the general

view of all the KPIs declared in the model, for the view of each dimension, and for each

category. In this way the user can navigate the generated graphical dashboard at different

Chapter 4. MIKADO 52

Figure 4.4: Example of gauge and range charts.

KPIs granularity. In the templates we defined some rules to generate different graphical

charts depending on both the KPIs value types and the actualized values returned by

the assessment. Essentially, we implemented four types of charts:

• gauges (left hand side of Figure 4.4) representing the KPIs calculated with an

aggregation of real numbers (e.g., MIN, MAX, AVG);

• ranges (right hand side of Figure 4.4) representing the KPIs whose value belongs

to a given range. The corresponding chart shows a label for each range options,

where the one resulting from the assessment is highlighted;

• progress bars representing KPIs of type integer (see Figure 6.4);

• two buttons representing boolean KPIs with the one resulting from the assessment

selected (see Figure 6.4).

It is worth noting that for those KPIs represented by a gauge it is important to have

a target value defined, since the percentage reported are calculated w.r.t. this value.

This type of representation is very useful to understand the performance of the KPIs

w.r.t. the pre-defined goals that a city may have. Also this artifact may be customized

in order to generate other types of representations. For instance, radar charts can be

implemented to represent multiple KPIs results to give a global overview of a specific

KPIs dimension or category.

4.3 Supporting KPIs evolution

The evolution of KPIs may concern the update of input parameters or their sources,

either their calculation. When this evolution process is about the data taken as input

from the KPI, the smart city model has to be updated. This type of change might need

Chapter 4. MIKADO 53

more than one modeling step in the smart city model to be implemented and this can

affect also the KPIs definition model. We grouped the changes that can be performed

on the smart cities models into three categories [80, 81]:

• Additive changes: when we add new modeling concepts related to smart cities

(e.g., new stakeholders). This type of changes do not impact existing KPIs defi-

nition models. For instance, the addition of new data providers that in the KPIs

definition will be available as parameters.

• Subtractive changes: when we remove one or more modeling concepts from

the smart city model. This changes can impact the KPIs definition models. For

instance, if we remove a data provider to which a parameter in the KPIs definition

model is referring.

• Structural changes: regarding changes affecting the structural functioning of

the assessment process. For instance, if we change the name of a data value in the

smart city model then it should change also in the KPIs definition model.

Meanwhile, when there is a change in the structure or in the calculation of the KPI, it is

only the KPIs definition model that has to change. Also in this case, we can implement

the changes in few modeling steps on the KPIs definition model with the same categories

of changes as explained before for the smart city models:

• Additive changes: when there is the advent of a new dimension, category, pa-

rameter or KPI for a city. For instance, if we are in the case of a new KPI two

situations may happen, i.e., the new KPI belongs to an existing dimension and

category or the new KPI takes with it a new dimension and/or category. In the

first case, designers have to model the KPI calculation in the corresponding dimen-

sion and category. In the second case, besides the KPI calculation, designers have

to model the new dimension and/or category. Both situations require modeling

operations only in the KPIs definition model.

• Subtractive changes: when a KPI or a parameter become obsolete. In this case,

it is only required to delete the KPI calculation or the parameter in the KPIs

definition model.

• Structural changes: when we have to change the calculation logic of an existing

KPI.

All the mentioned changes will be immediately reflected in the evaluation process [82]

with the proposed approach, since they regard only the models given as input to the

Chapter 4. MIKADO 54

evaluation engine and not the deployment of the framework. This aspect confirms the

separation of concerns requirement that we extracted as one of the requirements that

KPIs assessment frameworks should hold (see Section 3.1.1.1).

4.4 Discussion

In this Chapter we gave an overview of the model-based KPIs assessment approach over

smart cities that we developed in order to support smart decision-making processes. In

particular, the tool supporting our approach provides automatic KPIs calculations and

intuitive reporting features, and is customizable on different cities.

Specifically, we described the two metamodels, i.e., the Smart City Metamodel and the

KPIs Metamodel, designed to allow smart city designers and KPIs experts to model the

desired assessment scenario. Moreover, we showed how they support customization of

both smart cities and KPIs, and eventually, they can be extended with further con-

cepts, if required by the domain experts. Furthermore, we reported how, on top of this

metamodels, we developed the components devoted to KPIs calculations and reporting.

In the next Chapter, we will give more details about the implementation and the flexible

architecture on top of which we developed MIKADO. In particular, we will provide

alternative deployment patterns, to prove the flexibility and the technology-independence

of the designed architecture.

Chapter 5

Architecture and Implementation

The architecture behind the MIKADO approach is described in this Chapter. In Section

5.1 we show the architecture that we designed for KPIs assessment in smart cities in a

flexible fashion allowing different deployment style, namely standalone, hybrid and online.

In particular, the standalone deployment implementation is reported in Section 5.2. A

hybrid deployment style is described in Section 5.3, presenting also the prototype of an

extended MIKADO devoted to KPIs continuous monitoring. Moreover, in Section 5.4 is

specified the online deployment pattern and further technologies with which the different

architectural components may be developed are proposed. Lastly, some discussions are

reported in Section 5.5.

5.1 MIKADO Flexible Architecture

In Figure 5.1 we report the flexible architecture devoted for KPIs assessment in smart

cities. We sketched the main functionalities by six macro-components that in the figure

are represented with grey boxes. We also depicted the control- and data-flow between

them via solid and dashed arrows, respectively. Specifically, data-flows concern the

exchange of both models and raw data, usually persisted via XML or customization of

an interchange format called XMI. Moreover, on the top of the figure we reported a

white box in which we put the Stakeholders interested in the use of the realized solutions

compliant with the architecture, e.g., Municipalities, Smart Governance Team, Ranking

Agencies, Researchers. We put in the bottom-right side of the figure another group of

stakeholders devoted to the design and implementation of the main software components

and modeling artifacts, i.e., the Developers Team and the KPIs Experts. With the

term developers we mean also modelers, DSL engineers and possibly software architects.

55

Chapter 5. Architecture and Implementation 56

Every type of stakeholder can have different granting access, i.e., read, write, execute,

depending on their profile.

Smart City
Modeling Editor

KPIs Fragment
Selection / Customization

Editor
Data Visualization

SC RankingDashboard
6

6.a 6.b

KPIs
model

Persistence
Manager

Fragments
Generator

Models
Manager

Models
Repository

Evaluation
Engine Users

Repository

Persistence

Metamodeling

Modeling

Analysis

evaluated
KPIs model

Smartcity Metamodel KPIs Metamodel

KPIs
Modeling Editor

query

2

3

4

5

2.a 2.b

3.a 3.b 3.c

4.a 4.b

5.a

5.b

5.c

5.d

5.e

store /
query
retrieve forward

request

Stakeholders

ResearchersRanking AgenciesSmart Governance
TeamMunicipalities

Authentication

Manager

Requests
Manager

Requests Management

create user session

11.a 1.b

forward evaluation requests

st
or

e
/ q

ue
ry

 /
re

tri
ev

e

KPIs assessment/
query / store / retrieve

model
SC model

forward
visualization

requests

SC
 /

KP
Is

 m
od

el
 &

 u
se

r d
at

a
evaluation results

implement

design

model KPIs

send requests

evaluation
results

Results
Exporter

Legend
control-flow
data-flow

KPIs experts

Developers
team

Figure 5.1: The Flexible Architecture for the KPIs Assessment in Smart Cities.

In Figure 5.1, the six main components, i.e., Requests Management, Modeling, Metamodel-

ing, Analysis, Persistence, and Data Visualization, are labeled from (1) to (6), respectively.

In the following we describe in detail each component and their responsibilities.

Requests Management component is the interface among the stakeholders and all

the other components of the architecture. It is in charge of handling the users requests

through its two sub-components, the Requests Manager (1.a) and the Authentication

Manager (1.b). The latter is devoted to the requests concerning users registration,

authentication and authorization. Every time there is the need to create users sessions

it sends the request to the Requests Manager together with the information about the

users access grants. This type of components are usually optional. In this case it depends

on the deployment style. For instance, in standalone specifications of the architecture

it is not necessary to deploy it. In online deployments it is good practice to have such

component. Concerning the Requests Manager, it handles the requests from the users

and the architecture’s components and among components. The requests handled by

this component are basically of three types:

Chapter 5. Architecture and Implementation 57

1. model requests from the users that have the proper permissions to model the smart

cities and to select/customize the KPIs to the Modeling component, containing the

devoted modeling editors;

2. store/query/retrieve requests from the users that want to store/gather models con-

cerning some previous interactions between them and the system or from users

with read only permissions who want to get the available open data to the Models

Manager in the Persistence component;

3. forward visualization requests coming from the system after the assessment or

from the users that want to consult evaluation results to the Data Visualization

component for the graphical visualization and interpretation of the evaluated KPIs.

Moreover, the model requests to the Modeling component can, in turn, give raise to

further interactions: when the user is interacting with the modeling editors, she can

decide to send a query/store/retrieve request from the Modeling component to the Mod-

els Repository via the Requests Manager, both to query/retrieve existing models and to

store the produced models. Indeed, the Requests Manager is responsible for dispatching

the users’ KPIs assessment requests to the Evaluation Engine via the forward evaluation

requests interaction.

Metamodeling component holds the two core metamodels of the model-based ap-

proach for the KPIs assessment, i.e., the Smartcity Metamodel (2.a) and the KPIs Meta-

model (2.b), and the corresponding tools used to model them. Thanks to this component

the Developers Team and KPIs Experts manage and keep trace of the evolution of the

two metamodels design. Notwithstanding, this is the first component to be developed

and freezed in order to enable the whole KPIs assessment process, the metamodels have

to be adapted accordingly to the evolving nature of both smart cities and KPIs. Con-

sequently to evolution scenarios, coupled-evolution of the already modeled cities and/or

KPIs definitions have to be performed in order to be compliant to the new metamod-

els [83].

Modeling component manages the implemented modeling editors devoted to granted

users who need to model smart cities and model or select and customize KPIs. In

particular, the Smart City Modeling Editor (3.a) provides both textual and diagrammatic

concrete syntax to allow experienced and non-expert MDE developers to model a smart

city. Indeed, it provides a graphical editor implemented in such a way that it can be used

in a user-friendly manner also from smart governance managers, for instance. Instead, the

KPIs Modeling Editor (3.b) has been implemented as a textual editor dedicated to KPIs

Experts. They can use it, not only for the initial definition of the KPIs, but also to update

them w.r.t. the evolving KPIs documentation and collection methodology provided at

Chapter 5. Architecture and Implementation 58

European level. Moreover, besides the modeling of KPIs (model KPIs), smart cities

managers might be interested in diverse KPIs, for instance, due to the smart cities needs

and context, which are based on their stage of economic development, population growth,

available services, etc. For this reason, in the modeling component we have the KPIs

Fragment Selection/Customization Editor (3.c) that implements KPIs selection features

in such a way to enable the customization of the KPIs set interesting for a city. This

allows users to “query" the KPIs model in the KPIs Modeling Editor to select the KPIs of

interest and further generate the so-called model fragments that can be seen as interesting

object structures [84]. Indeed, the interaction of stakeholders with the modeling editors

Smart City Modeling Editor and the KPIs Fragment Selection/Customization Editor produces

the Smart City model and KPIs model, both conforming to the domain models in the

Metamodeling component.

Analysis component manages the proper automatic KPIs assessment over smart cities.

Here, we find the Evaluation Engine (4.a) in charge of the interpretation and calculation

of the modeled KPIs for one or more candidate smart cities. It receives KPIs evaluation

requests forwarded by the Requests Manager (forward evaluation requests) together with

the SC model and KPIs model that, in turn, the Requests Manager receives from the Smart

City Modeling Editor and the KPIs Fragment Selection/Customization Editor. As output,

after executing the evaluation, it produces the evaluated KPIs model. This model is then

sent to the Results Exporter (4.b), that exports the results in different formats (e.g.,

.csv, .xml or JSON files), w.r.t. the stakeholders’ needs (e.g., graphical visualization,

textual interpretation, further elaborations) and the tool which might be used for their

visualization and interpretation. Moreover, the evaluation results are also sent to the

Requests Manager which forwards them to the user who submitted the KPIs evaluation

request and/or to the Data Visualization component.

Persistence component takes care of the persistence of all the artifacts involved in the

process of KPIs assessment, together with the stakeholders related data, such as their

profiles, access grants and authentication data. In particular, it contains five components.

First, the Models Manager (5.a) is the main interface of the Persistence component. All

the store/query/retrieve requests coming from the Requests Manager, together with the

accompanying data (e.g., the SC/KPIs models & user data) pass through this compo-

nent who is also in charge of sending the corresponding replies back. The Fragments

Generator (5.b) interacts with the Models Manager when there come specific requests of

modeling artifacts and/or there is the need of generating model fragments from them.

Then, the request for the artifact is forwarded to the Persistence Manager (5.c). This

component is in charge of storing, querying or retrieving data from the appropriate repos-

itory, such as Models Repository (5.d) and Users Repository (5.e) after it receives requests

and relative data arrive. In the Models Repository the artifacts are stored together with

Chapter 5. Architecture and Implementation 59

the metadata about the users holding their ownership, meanwhile, in the Users Repository

are collected the information about users profiles and granting access.

Data Visualization component in charge of the visualization and interpretation of the

evaluated KPIs model via Dashboard (6.a) and SC Ranking (6.b) components. The dash-

board implements the graphical transformations devoted to the generation of appropriate

and easy to understand charts from the KPIs assessment results. Instead, the sc ranking

component handles the comparisons among several cities whose models are made avail-

able and retrieved from the Models Repository, by showing graphical rankings between

them. Indeed, the Data Visualization component receives the evaluation results from the

Analysis component from the Requests Manager via forward visualization requests.

It is interesting to note that all the described components and their functionalities, apart

from the Data Visualization component, are mandatory to allow architecture specifications

to accomplish the quality evaluation process. On the contrary, to implement its function-

alities, a component might not always require all its sub-components. Indeed, a subset

of the sub-components may implement part of a functionality or several functionalities.

The presented architecture can be specified by using a combination of various technologies

and deployment patterns. In Section 5.2, we present the standalone specification, where

the architecture is entirely implemented as a standalone platform. In Section 5.3 we

present the hybrid specification, where part of the architectural components are deployed

online and part of them reside locally on the user’s machine. In Section 5.4, instead, we

give hints about the online specification that represent a further deployment enabled by

our flexible architecture, where all the components can be completely deployed online.

5.2 Standalone Deployment Implementation

In this section, we present the deployment pattern that we specified to develop our

framework prototype. We call this deployment pattern standalone specification because

the architecture is completely implemented as a standalone platform relying on Eclipse,

since it used as a standard platform in MDE because of its pre-packaged bundles for

specific development paradigms. In particular, we used as target platform the Eclipse

Modeling Framework (EMF)1 supporting the engineering of DSLs [85]. The EMF core

provides a metamodeling language, called Ecore, used for describing domain models,

and runtime support for the models including change notification, persistence support

with default serialization, and reflective APIs for manipulating objects in the models.

In Figure 5.2, we reported all the components of the standalone specification of our
1 https://www.eclipse.org/modeling/emf/

https://www.eclipse.org/modeling/emf/

Chapter 5. Architecture and Implementation 60

evaluation
results

Smart City
Modeling Editor

KPIs
Modeling Editor

File System
Workspace

Eclipse
Plugin

Persistence Metamodeling

Modeling

Analysis

Requests
Management

Stakeholders

Smartcity Metamodel KPIs Metamodel

Eclipse Modeling Framework

Console
Output

Smart Governance
Team

Ranking Agency

Researchers

SC model
1

1.a

5

5.a

2

2.a 2.b

3

3.a 3.b

4.a

4

KPIs Fragment
Selection / Customization

Editor

query

KPIs model

3.c

Model KPIs

se
nd

 re
qu

es
ts

forward evaluation requests

store / query
retrieve

SC / KPIs model
& user data

model

KPIs assessment /
query / store / retrieve

implement

EOL
Script

Municipalities

Developers
team

KPIs experts

design

Dashboard

Data Visualization 6

6.a

forward
visualization

Legend
control-flow data-flow

log

Figure 5.2: Standalone specification of the flexible architecture in Figure 5.1.

architecture. Starting from the Request component (1), the Requests Manager (1.a) is

implemented as an Eclipse plugin organized with the extension point mechanism. It can

be activated by file saving operations or even directly by menu entries in the editors.

As regard the Metamodeling component (2), it has been defined on top of the EMF

bundle, and collects the two main domain models ((2.a) and (2.b)). By means of the

model generation feature, the Ecore metamodels produce the Java code for managing

base editors and model manipulation operations.

5.2.1 Modeling Component

On top of the metamodeling layer, two editors have been implemented ((3.a) and (3.b))2

supporting the definition of the involved models by providing operations allowing the

editing of models with the possibility of filling them with their inherent model elements.

The DSLs used in the editors implementation can be graphical or textual [86]. The for-

mer provide an intuitive GUI for modelers, the latter a support tool to define models as

textual specification, which is better transposed by developers since textual DSLs resem-

ble code development (see Figure 5.3). To allow both experienced and non-expert users

(e.g., smart cities stakeholders) to use the editors for editing or creating new models, the

modeling editors in the component (3) have been implemented with two different tech-

nologies. The Smart City Modeling Editor (3.a), besides providing a textual editor, has

been also developed as a graphical modeling workbench for modeling smart cities to sup-

port non-expert smart cities stakeholders. The graphical editor relies on Sirius3, which
2 https://github.com/gssi/MoSC2020 3 https://www.obeodesigner.com/en/product/sirius

https://github.com/gssi/MoSC2020
https://www.obeodesigner.com/en/product/sirius

Chapter 5. Architecture and Implementation 61

Figure 5.3: Textual representation of the model for the city of L’Aquila.

is an Eclipse project supporting the development of graphical modeling workbenches by

leveraging the Eclipse Modeling technologies, including EMF and the Graphical Model-

ing Framework (GMF). Sirius allows the development of workbenches together with a

set of Eclipse editors (diagrams, tables, and trees), to support the users in the creation,

editing and visualization of graphical representations of EMF models. The editors are

implemented on top of a metamodel, from which all the editing and navigation tools de-

pend. Indeed, the graphical editor provides a palette containing tools allowing users to

create new model elements (see Figure 5.4) coming from the metamodel. In particular,

it supports the creation of Entity elements, Attribute within entities, and relationships

between entities (Relation). In this case, the implemented SC modeling editor has a

dedicated palette with specific tools w.r.t. the concepts defined in the smart cities meta-

model. From the Property view envisaged from the Eclipse IDE, it is possible to give a

value to the attributes of each modeled element. Relying on the metamodel, the graph-

ical editor prevents problems of inconsistency because it does not allow the creation of

elements that are not those expected from the language metamodel.

Since the use of the KPIs Modeling Editor (3.b) is envisaged for modelers supporting KPIs

experts to specify KPIs and relative calculation formulas, it has been implemented with a

textual concrete syntax by means of Xtext4, an Eclipse project for developing DSLs [87].

Thanks to the KPIs Modeling Editor, users may declare how KPIs are calculated in detail

in an expressive and agile way. Moreover, the use of a DSL for KPIs definition enables

the reuse and share of it. Using Xtext allows the implementation of a textual modeling
4 https://www.eclipse.org/Xtext/

https://www.eclipse.org/Xtext/

Chapter 5. Architecture and Implementation 62

Figure 5.4: Graphical representation of the model for the city of L’Aquila.

editor with useful modeling feature such as syntax highlighting, code completion (see

Figure 5.5), and outlines.

In addition to the basic checking features provided by the analysis tools coming from

the modeling editors that monitor the structural correctness of the models w.r.t. the

provided metamodels, it is possible to extend the system by specifying additional checks

that modelers might want to add for the particular models at hand. In the development

of our modeling editors we exploited the Xtend5 programming language in the textual

editor and the Acceleo Query Language (AQL)6 in the graphical editor for the specifi-

cation of further custom validation rules. Moreover, for the specification and evaluation

of constraints on models of arbitrary metamodels and modeling technologies we used

the Epsilon suite, and specifically Epsilon Object Language (EOL)7 and the Epsilon

Validation Language (EVL)8. With EVL it is also possible to manage interdependencies

between constraints (e.g., if constraint A fails, the constraint B cannot be evaluated), to

customize error messages to be displayed to the user, and to specify fixes (in EOL) that

can repair inconsistencies (see an example in Figure 5.6).
5 https://www.eclipse.org/xtend/ 6 https://www.eclipse.org/acceleo/documentation/
7 https://www.eclipse.org/epsilon/doc/eol/ 8 https://www.eclipse.org/epsilon/doc/evl/

https://www.eclipse.org/xtend/
https://www.eclipse.org/acceleo/documentation/
https://www.eclipse.org/epsilon/doc/eol/
https://www.eclipse.org/epsilon/doc/evl/

Chapter 5. Architecture and Implementation 63

Figure 5.5: Auto-completion
feature.

Figure 5.6: Syntax error at modeling time.

5.2.2 Analysis Component

After the definition of the SC model and KPIs model, the Analysis component (4) is

invoked to trigger the KPIs evaluation phase. This process is managed by the Requests

Manager (1.a) that is implemented as an Eclipse plugin organized with the extension

point mechanism. It can be activated by file saving operations or even directly by

menu entries in the editors. By selecting a SC model and a KPIs model (with specific

extensions), a menu entry is enabled and the EOL script implementing the Evaluation

Engine (4.a) is triggered. Thanks to EOL and the Epsilon framework [88] it is possible to

create, query and modify models built on top of EMF. Basically, the EOL script is a file

in the workspace of the project that will be invoked by the plugin which can be activated

by selecting the right models, based on the file extension. In particular, the evaluation

engine is executed via a Java main method, whose code is reported in Listing 5.1. In the

main method of this class, the input models, i.e., Smart City Model and KPIs Definition

model are loaded and passed as parameters (lines 3–6). At line 11, the EOL script

devoted to KPIs calculations is executed.

1 pub l i c L i s t<IModel> getModels (S t r ing smartc i ty , S t r ing kpimodel) throws
Exception {

2 List<IModel> models = new ArrayList<IModel >() ;
3 models . add (createEmfModel (" smartc i ty " , smartc i ty ,
4 " smart_city . e co re " , true , f a l s e)) ;
5 models . add (createEmfModel (" kpi " , kpimodel ,
6 " kpi . e co re " , true , f a l s e)) ;
7 r e turn models ;
8 }
9 @Override

10 pub l i c S t r ing getSource () throws Exception {
11 r e turn " ep s i l o n / eva luat ion - eng ine . e o l " ;
12 }

Listing 5.1: Snippet of the Java Evaluation Engine.

We report in Listing 5.2 an excerpt of the invoked EOL script. This takes as input the

smart city model and, for each defined city (line 3), it calculates all the KPIs defined in

the KPIs model (lines 5–9). In the console, it prints the description of the KPIs (line 6)

and the result of the evaluation (line 7).

Chapter 5. Architecture and Implementation 64

1 import "kpi - p rov ide r s . e o l " ;
2

3 for (smartc in smartc i ty ! SmartCity . a l l) {
4 ("===KPI model c a l c u l a t i o n app l i ed on "+ smartc . c i t y+"==") . p r i n t l n () ;
5 for (mykpi in kpi ! Kpi . a l l) {
6 mykpi . d e s c r i p t i o n . p r i n t l n () ;
7 (smartc . c o l l e c t (sc | sc . get (mykpi)) . f i r s t+" "+ mykpi . un i t) . p r i n t l n () ;
8 "===============================" . p r i n t l n () ;
9 }

10 }

Listing 5.2: Snippet of the Main EOL Script.

All the KPIs computations are in charge of the fundamental operation get() at line

7 invoked on every KPI. We defined this operation in another EOL script (i.e., kpi-

providers.eol), imported at line 1 and reported in Listing 5.3. Here, we defined the

operation get() for each ValueType. At lines 5–10, the operation for the SingleValue is

reported, where the calculated value is stored in the actualizedValue of the KPIs model.

Before performing the calculation the engine searches for the needed parameters through

name-based references between the KPIs definition model and the smart city model

(lines 6–7). If the parameter indicated in the KPIs model is not defined in the smart

city one, the operation will not be performed. As concerns AggregatedValues, for these

types the result is recursively calculated until reaching the nested single values. The

operations defined in the KPIs model (e.g., SUM, AVG) are translated into the language

implementing the engine at lines 30–40. In case the rise of a new operation happens, it

is only needed to add another case in this switch statement.

1 operation smartc i ty ! SmartCity get (kpi : kpi ! Kpi) : Any{
2 return kpi . va lue . va luetype . get (s e l f) ;
3 }
4

5 operation kpi ! S ing leValue get (c i t y : smartc i ty ! SmartCity) : Any{
6 s e l f . a c t ua l i z edva l u e=c i t y . data . c o l l e c t (dat | dat . data) . f l a t t e n ()
7 . s e l e c t (d | d . name==s e l f . parameter . name) . va lue . f i r s t ;
8 return c i t y . data . c o l l e c t (dat | dat . data) . f l a t t e n ()
9 . s e l e c t (d | d . name==s e l f . parameter . name) . va lue . f i r s t ;

10 }
11

12 operation kpi ! Stat i cRea lVa lue get (c i t y : smartc i ty ! SmartCity) : Any{
13 return se l f . s t a t i c v a l u e ;
14 }
15

16 operation kpi ! AggregatedValue get (c i t y : smartc i ty ! SmartCity) : Any{
17 s e l f . a c t ua l i z edva l u e=s e l f . va lue s . get (c i ty , s e l f . oper) ;
18 return se l f . va lue s . get (c i ty , s e l f . oper) ;
19 }
20

21 operation kpi ! AggregatedRangedValue get (c i t y : smartc i ty ! SmartCity) : Any{

Chapter 5. Architecture and Implementation 65

22 s e l f . a c t ua l i z edva l u e=s e l f . ranges . s e l e c t (r | r . min <= s e l f . va lue s . get (c i ty ,
s e l f . oper) . f i r s t and se l f . va lue s . get (c i ty , s e l f . oper) . f i r s t <=
r .max) . rangeName . f i r s t ;

23 return se l f . ranges . s e l e c t (r | r . min <= s e l f . va lue s . get (c i ty , s e l f . oper) . f i r s t
and se l f . va lue s . get (c i ty , s e l f . oper) . f i r s t <= r .max) . rangeName . f i r s t ;

24 }
25

26 operation OrderedSet<kpi ! ValueType> get (c i t y : smartc i ty ! SmartCity , oper :
kpi ! EEnumLiteral) : Any{

27 return se l f . c o l l e c t (s | s . get (c i t y)) . getop (oper) ;
28 }
29

30 operation Any getop (op : kpi ! EEnumLiteral) : Any{
31 switch (op) {
32 case kpi ! Operation#GET: return se l f ;
33 case kpi ! Operation#SUM: return se l f . sum() ;
34 case kpi ! Operation#AVG: return se l f . sum() / s e l f . s i z e () ;
35 case kpi ! Operation#MIN: return se l f . min () ;
36 case kpi ! Operation#MAX: return se l f .max() ;
37 case kpi ! Operation#DIV : return se l f . get (0) / s e l f . get (1) ;
38 case kpi ! Operation#MULT: return se l f . get (0) * s e l f . get (1) ;
39 case kpi ! Operation#CEN: i f (s e l f . get (0) >= 100000) return se l f . get (0) /

100000; else return 1 ;
40 de f au l t : "No opera t i on provided " . p r i n t l n () ; }
41 }

Listing 5.3: Snippet of the EOL KPI provider.

5.2.3 Data Visualization Component

The component devoted to Data Visualization (6) has been built on top of Picto [89], an

Eclipse view for visualising models via model-to-text (M2T) transformation to SVG/HTML.

Picto supports rule-based model-to-text transformations with the Epsilon Generation

Language (EGL) [90], a M2T transformation language, used to transform models into

hierarchically-organised read-only graphical views. The generated views belong to a

range of formats (e.g., SVG, HTML, PlantUML, Graphviz) that are rendered in an em-

bedded Web browser. To implement the generation of our graphical Dashboard (6a)

we implemented three EGL templates, i.e., KPIModel2Picto, Dimensions2Picto, Cate-

gories2Picto. These three templates exploit the library Chart.js9 to generate HTML/-

Javascript code to render the charts representing indicators results. In Listing 5.4 we

show a snippet of the code generator for creating a gauge chart. This type of chart is

generated for each KPI whose return value is a real and has a target value defined (as

specified in the KPIs metamodel in Figure 4.3). At lines 12-19 both the target value,

e.g., the 100% value w.r.t. the KPI definition, and the value for the gauge indicator in

percentage w.r.t. the target value are set. Lines 4-10 initializes the gauge graphs, with
9 https://www.chartjs.org/

Chapter 5. Architecture and Implementation 66

the options defined in lines 12-19. We can see at lines 21-22 the code generation for

other types of KPIs.

1 . . .
2 [%
3 var i =0;
4 for (kpi in category . kpi . f l a t t e n ()) { %]
5 [% i f (kpi . va lue . getValue () . isTypeOf (Real) and

kpi . va lue . getTargetValue () . i sDe f i n ed ()) {%]
6 i f ($(’#chart_gauge_[%=i %] ’) . l ength) {
7 var chart_gauge_[%=i %]_elem =

document . getElementById (’ chart_gauge_[%=i %] ’) ;
8 var chart_gauge_[%=i %] = new Gauge (chart_gauge_[%=i %]_elem) .
9 setOpt ions (chart_gauge_sett ings) ;

10 }
11

12 i f ($(’#gauge - text -[%= i %] ’) . l ength) {
13 chart_gauge_[%=i %].maxValue = 100 ;
14 chart_gauge_[%=i %]. animationSpeed = 32 ;
15 chart_gauge_[%=i %]. s e t ([%=kpi . va lue .
16 getValue () *100/ kpi . va lue . getTargetValue () %]) ;
17 chart_gauge_[%=i %]. s e tTextF i e ld (document .
18 getElementById (’ gauge - text -[%= i %] ’)) ;
19 }
20 [%}
21 else i f (kpi . va lue . va luetype . isTypeOf (AggregatedRangedValue)) { . . . }
22 else i f (kpi . va lue . va luetype . isTypeOf (BoolValue)) { . . . }
23 i++;
24 }
25 %]

Listing 5.4: Snippet of the EGL script for generating gauge chart.

5.3 Hybrid Deployment Implementation

The presented architecture in Figure 5.1 can be specified by using a combination of

various technologies and deployment patterns. In this Section, we discuss an alternative

deployment pattern that we used to develop a prototype of the extended KPIs assessment

framework enabling continuous monitoring. In particular, we performed a refactoring

of the standalone deployment that we define hybrid because part of the architectural

components are deployed online and part of them reside locally on the user’s machine.

In this type of deployment we have an Internet layer that is in between the remote and

the local components.

Indeed, some of the components are the same as in the standalone specification, such

as components (2) and (3). The Requests Manager (1.a) presents both a local and a

remote instances. The local one is in charge of activating the editors and triggering the

Chapter 5. Architecture and Implementation 67

remote KPIs evaluation by sending a request, via the internet, to the remote one that

will forward the request and the received models to the Evaluation Engine (4.a). Even

the Models Repository (5.d) that are managed by the Persistence Manager (5.c) remain

the same as the standalone specification together with the Evaluation Engine (4.a) and

Data Visualization (6) components. We will discuss the proposed hybrid deployments in

details in the next sub-sections.

5.3.1 Weaving Open Services with Runtime Models for Continuous
Smart Cities KPIs Assessment

In Figure 5.7 we reported the hybrid deployment pattern that we used to implement the

KPIs assessment framework enabling continuous monitoring of smart cities.

In particular, we refactored and extended the standalone architecture by adding a message-

oriented middleware connected to heterogeneous data sources and partially reusing the

already implemented standalone specification. In this way, we evolved the framework in

an automatic and service-oriented perspective in order to enable continuous monitoring

of KPIs data sources and runtime update of models in the KPIs assessment for SCs.

In Figure 5.7 we reported the service-oriented architecture for the continuous KPIs as-

sessment of SCs where the arrows shape the data-flow among components. We depicted

in white and blurred grey the components coming from the standalone deployment,

where the blurred grey ones required modifications to integrate the new architectural

components. Meanwhile, the newly integrated components are colored in grey.

For a better understanding, in Figure 5.8 we depict the KPIs assessment process with

a UML sequence diagram (SD). The diagram shows the high-level behaviour of archi-

tectural components, and the interactions among them. The highlighted part shows the

newly integrated components and their tasks, while in grey, are reported the lifelines

of the newly implemented components managing the continuous monitoring and model

injection features. Lastly, the circled numbers 1 – 17 labeling the process steps in the

SD are used in the following text to map those steps with the architectural components

involved in their execution.

In the front-end, we have the KPIs Modeling Editor (implemented with Xtext [87]10)

devoted to the selection and definition of the relevant KPIs for the SC under evalua-

tion, through custom textual DSLs. The Smart City Modeling Editor (implemented with

Sirius [91]11), instead, helps users to model the SC under evaluation through the ex-

ploitation of graphical functionalities. Lastly, the graphical Dashboard, obtained through
10 https://www.eclipse.org/Xtext/ 11 https://www.eclipse.org/sirius/

https://www.eclipse.org/Xtext/
https://www.eclipse.org/sirius/

Chapter 5. Architecture and Implementation 68

Message-oriented Middleware

Dashboard
Synchronizer

Models
Manager

KPIs Models
Repository

SC Models
Repository

Smart City
Modeling
Editor

KPIs Modeling
Editor

Settings
Interface

Front-endBack-end

D
at

a
So

ur
ce

s
Open Data Services Social Media ServicesIoT Infrastructure /

IoT Services

Users

Evaluation
Engine

Publisher

Requests
Manager

Dashboard

Runtime
Model
Injector

Topics

SubscriberPublisher
Publisher

Figure 5.7: Hybrid specification of the flexible architecture in Figure 5.1.

model to code transformations (and visualized with Picto12) 7 allows the interpretation

of the KPIs assessment results. The Dashboard Synchronizer converts the KPIs model

instantiated after the assessment in an .html file 6 , which is in sync with source files of

the graphical Dashboard (modeled with Picto13) 7 . This component has its own listener

that every time the model changes the html file is reloaded, updating the views.

In the back-end, the Requests Manager is in charge of managing: (i) KPIs assessment

requests 1 to the Evaluation Engine (modeled with the EOL [88]14) that is responsible

for performing the SC evaluation 3 ; (ii) visualization requests from the Evaluation Engine

to the Dashboard component 5 . In particular, the Dashboard Synchronizer converts the

KPIs model instantiated after the assessment in an .html file 6 , which is in sync with

source files of the Dashboard. The synchronizer has its own listener that every time the

model changes the html file is reloaded, updating the views. The Requests Manager also

handles requests to the Models Manager to gather 2 or store 4 the models needed in
12 https://www.eclipse.org/epsilon/doc/picto/ 13 https://www.eclipse.org/epsilon/doc/picto/
14 https://www.eclipse.org/epsilon/

https://www.eclipse.org/epsilon/doc/picto/
https://www.eclipse.org/epsilon/doc/picto/
https://www.eclipse.org/epsilon/

Chapter 5. Architecture and Implementation 69

the KPIs assessment process. The models manager handles the persistence of models in

the SC Models Repository and the KPIs Models Repository.

We now describe the new components and the message-oriented middleware for the con-

tinuous monitoring. The Publishers and the Subscriber implement the classic publish/-

subscribe communication pattern based on Topics (publish and subscribe to messages).

The type of topics are the types of parameters the SC can handle in the evaluation,

e.g., pollutants, weather, and so on. Specifically, the Publisher components can be mul-

tiple, considering the multiple data sources. They send calls to data sources, e.g., open

services, to gather the input parameters needed for the KPIs calculations 12 . Each

par

opt [data changed]

Modeling
Editors Dashboard Settings

Interface
Evaluation

Engine
Requests
Manager

Models
Manager Subscriber Publisher Topic

Server
 KPIsAssessmentRequest()

 RetrieveModels()
SCEvaluation()

 StoreModels()
 VisualizeEvaluatedKPIsModel()

M2T_Trafo()

VisualizeDashboard()

 ActivateSubscriber()
 Subscribe()

ActivatePublisher()

 GatherData()

 PrepareData()
 PublishData()

SendNewData()

 KPIsAssessmentRequest()

2

1

3

45

6

7

9
10

11

12

13
14

15
16

17

Runtime
Model Injector

SynchronizeData()

 SetContinuousMonitoringFeatures()8

Figure 5.8: Sequence Diagram of the KPIs assessment process.

publisher cleans, prepares and aggregates the data 13 , before publishing changed pa-

rameters on the assigned topic 14 . These components are interfaces implemented, in

turn, by specific Java classes. The topics are published as MQTT [92] messages with a

specific structure, as in (5.1), allowing multi-city evaluation.

lat/{latitude}/long/{longitude}/parameter (5.1)

Latitude and longitude are the GPS coordinates of the smart city under evaluation.

This way we can provide multiple publishers as types of data gatherer for different cities,

by matching the coordinates specified in the SC model. Then, the subscriber is able

to distinguish which data intercept, by using the latitude and longitude of the smart

city under evaluation. The Subscriber is devoted to the synchronization of the models

with the data sources. It receives changed parameters through the subscription to the

corresponding topic 10 and actions can be triggered, as specified in the following. The

Runtime Model Injector is invoked by the Subscriber, when it receives new data from the

Chapter 5. Architecture and Implementation 70

topics 15 , and devoted to the retrieving of the SC models that need to be synchronised.

It checks if the input parameters in the models are in line with the ones received by

the Subscriber 16 by querying the model. It is also in charge of SC models update,

that is the operation of filling the models with the received up-to-date data, through

EOL [88] queries. The EOL scripts, basically, first query the SC model to get the

needed parameters. Then, cross the parameters needed in the evaluation with the ones

retrieved by the subscriber. For each retrieved parameter, the model injector checks if

the corresponding value is still in line with the value of the subscribed topic. If this does

not apply, then it injects the new parameter retrieved by the subscriber (an example of

log is reported in Figure 5.10). Furthermore, the Runtime Model Injector interacts with

the Requests Manager to trigger the KPIs assessment process 17 due to changed input

parameters, requesting the last saved SC models 2 . The overall monitoring process is

enabled by the user that is responsible for setting up the continuous monitoring features,

only for the dynamic parameters with the runtime attribute set to true 8 in the SC

model, through the Settings Interface. It is used for defining the topics to which the

Subscriber has to subscribe 9 , and configure the APIs and the frequency with which

they must be called in the Publishers 11 . This setting is provided through a name-based

convention, so if the parameters declared in the SC model are included in the topics,

then the Runtime Model Injector will consider them in the process. The format required

to publish KPIs parameters on the assigned topic has also to be defined.

5.3.2 Runtime Models Update by Continuous Monitoring

In this section, we demonstrate the evolved approach through a running example whose

overview is shown in Figure 5.9. We applied the extended evaluation framework over a

real smart city, i.e., L’Aquila. However, the framework can evaluate multiple SCs at a

time. As dynamic KPIs we consider: Humidity, i.e., the percentage of the detected hu-

midity level, Air Pollution (see formula (6.2)), PM2.5, NO2, measuring the PM2.5 and

NO2 pollutants levels in the air, Urban Heat Island (UHI), i.e., the difference in air tem-

perature between the city and its surroundings (provided by two different sources), and

Green Area (GA) as a less dynamic KPI measuring the green area hectares per 100.000

inhabitants. Four Publishers are considered as data sources for the input parameters of

these KPIs. BreezoMeter15 is a website offering open API exposing environmental data

and insights to third-party applications. It can be queried via a specific url taking the

latitude and longitude of a city as parameters, and it replies with JSON data provid-

ing values for different pollutants and other interesting info. ISTAT 16 is the national

statistics institute providing Web services exposing statistics about, e.g., the census of
15 https://www.breezometer.com/ 16 http://dati.istat.it

https://www.breezometer.com/
http://dati.istat.it

Chapter 5. Architecture and Implementation 71

City Statistics

Air monitoring

laquila/co2

Breezometer
API

laquila/pm10

bz/pm25

bz/o3

laquila/o3

laquila/totalGreenArea

bz/totalGreenArea

...

Topics

Subscriber

ISTAT WS

Publisher Subscriber

TinkerForge
Sensors laquila/humidity

AQ.sc

BZ.sc

Model
Injector ...

...

...

Evaluation
Engine

Evaluated
Kpi Model

Dashboards

Modeling layer UI

sync

subject

Figure 5.9: Publish-Subscribe pattern in our example

population, economic censuses. OpenWeather map17 provides information about weather

forecasts, air temperature, etc. for any coordinates via an open API. Lastly, an IoT in-

frastructure based on Tinkerforge18 sensors that publishes data from a Tinkerforge Air

Quality Bricklet19. Tinkerforge is a system of building blocks, based on pluggable mod-

ules and APIs, available for many programming languages. Using this board we have

assembled a smart environment sensor in our department measuring multiple air quality

parameters, e.g., humidity and temperature20.

The first three publishers collect different parameters values (e.g., PM2.5, totalGreenArea)

through APIs calls and create topics for all of them. Anytime these values change, the

publishers will send a new MQTT message. The Tinkerforge publisher, instead, con-

tinuously monitors specific parameters, i.e., humidity and temperature, for which a new

message is published when the measured values change.

A snippet of the Java Tinkerforge publisher running on our board is reported in List-

ing 5.5. First, the connection with the sensor is established (line 2), then the smart

city model is loaded (line 5) to get the lat and long (line 7) used to format the MQTT

message. From line 10 a listener to monitor humidity changes is declared and the call-

back is set at line 35. The listener checks the humidity every 10 seconds and in case of
17 https://openweathermap.org 18 https://www.tinkerforge.com/en/ 19 https://bit.ly/3xngllU
20 A picture of the assembled board is available at https://bit.ly/3Y7HhVw

https://openweathermap.org
https://www.tinkerforge.com/en/
https://bit.ly/3xngllU
https://bit.ly/3Y7HhVw

Chapter 5. Architecture and Implementation 72

changes, a new MQTT message is created and published (lines 21 and 29). The message

is both published and read in JSON. It is worth noting that the message string of the

topic contains lat and long of the smart city. This is the distinguishing factor used by

the subscriber to understand which SC Model must be updated. Similarly, the other

publishers query the open APIs URLs to get the parameters values they relate to.

1 pub l i c void run () {
2 IPConnection ipcon = new IPConnection () ; // Create IP connect ion
3 Br i ck l e tA i rQua l i t y aq = new Br i ck l e tA i rQua l i t y (UID, ipcon) ;
4 . . .
5 SCModelLoader scmodel = new SCModelLoader (c i t y) ;
6 t ry {
7 EolMap l a t l o n g = scmodel . getSmartCityLatLong () ;
8 ipcon . connect (HOST, PORT) ;
9

10 aq . addHumidityListener (new Br i ck l e tA i rQua l i t y . HumidityListener () {
11

12 @Override
13 pub l i c void humidity (i n t humidity) {
14 double humidityvalue = humidity /100 . 0 ;
15

16 t ry {
17 MqttClient c l i e n t = new MqttClient (" tcp :// l o c a l h o s t :1883 " ,

MqttClient . g ene ra t eC l i en t Id ()) ;
18 MqttConnectOptions opt ion = new MqttConnectOptions () ;
19 opt ion . s e tKeepAl i v e In t e rva l (30) ;
20 c l i e n t . connect (opt ion) ;
21 MqttMessage message = new MqttMessage () ;
22

23 Double va lue = humidityvalue ;
24 St r ing messageJson="{\"Humidity \" :\" "+value+"\"}" ;
25 message . setPayload (messageJson . getBytes ()) ;
26 St r ing top i c = " l a t /"+l a t l o n g . get (" l a t i t u d e ") . t oS t r i ng ()+
27 "/ long /"+l a t l o n g . get (" l ong i tude ") . t oS t r i ng ()+"/Humidity" ;
28

29 c l i e n t . pub l i sh (t op i c . toLowerCase () , message) ;
30

31 } catch (Tinker forgeExcept ion | MqttException e) { . . . }
32 }
33 }) ;
34 // Set per iod f o r a l l va lue s c a l l b a ck to 1 s (1000ms)
35 aq . setHumid i tyCal lbackConf igurat ion (10000 , true , ’ x ’ , 0 , 0) ;
36 . . .
37 }
38 ipcon . d i s connec t () ;
39 }

Listing 5.5: Snippet of the Java Tinkerforge Publisher.

In the screen shown in Figure 5.10, the runtime logs of the BreezoMeter publisher and the

subscriber are shown. The defined KPIs Model (top-left side) contains the KPIs we in-

tend to evaluate on the subject city that are constantly synchronized with the dashboards

Chapter 5. Architecture and Implementation 73

a)

b)

Publisher log Subscriber log

Evaluate + Sync

R
untim

e U
pdate

Figure 5.10: Our tool in action for the smart city L’Aquila.

(bottom side). Multiple publishers can be run at the same time, since every publisher

is executed by a dedicated thread. The publisher log shows that new parameters for

pollutants have been detected. As long as the publisher sends new retrieved values (it

publishes on topics), the subscriber (subscribed to all topics) will receive the message,

as shown by the subscriber runtime log. This message will be forwarded to the Runtime

Model Injector that will inspect the retrieved values by comparing them with the ones in

the SC Model under evaluation. In case they are misaligned, the model will be updated.

Every time this happens, the evaluation phase is triggered (see the triggered evaluation

in the subscriber log). The updated Evaluated KPIs Model after the evaluation is auto-

matically synchronized with the dashboards, as can be seen from the bottom side of the

screen, where gauges and other diagrams report the selected KPIs indicators evolution,

at a given instant of time. For lack of space we report only a partial view of the entire

dashboard. We can observe as the dashboard evolved from a) to b) highlighting that the

UHI KPI decreased from 47% to 23%, the AP KPI improved from Bad to Excellent,

and the Humidity decreased from 47% to 42%. These updates are instantaneous and

transparent to the user that has to simply run the framework. A demo video showing

the described running example is available at https://youtu.be/2pK-PzOLvv4.

5.4 Online Deployment Specification

We now describe an additional deployment pattern of our architecture, namely online.

This deployment is currently under development, although it relies on a partial reuse

https://youtu.be/2pK-PzOLvv4

Chapter 5. Architecture and Implementation 74

of the implemented standalone specification, thus we focus on the differences w.r.t. it.

Figure 5.11 depicts how we plan to realize it and how the architectural components will

be implemented. Being everything online, the main instrument to use the platform will

Fragments
Generator

Eugenia Live
Smart City

Modeling Editor

KPIs Fragment
Selection / Customization

Editor

Metamodeling

Modeling

Analysis

Smartcity Metamodel KPIs Metamodel

KPIs
Modeling Editor

query

Eclipse IDE running in the Browser

2

3

4

MDEForge
Persistence

Manager

Models
Manager

Models
Repository

Users
Repository

Persistence
5

5.a

5.b

5.c

5.d

5.e

store /
query
retrieve

forward
request

Authentication

Manager

Requests
Manager

KPIs assessment /
query / store / retrieve

Requests Management

create user
session

1
1.a 1.b

Evaluation
Engine

2.b2.a

3.a 3.b 3.c

Resulting
KPIs Model

evaluated
KPIs model

4.a

Internet

Stakeholders

Municipalities

Smart Governance
Team

Ranking Agency

Researchers

Eclipse Server

Acceleo
Results

Exporter

4.b

Dashboard

Analytics 6

6.a

6.b SC Ranking

send
requests

forward visualization
requests

SC model KPIs model

fo
rw

ar
d

ev
al

ua
tio

n
re

qu
es

ts

SC / KPIs model
& user data

store / query /
retrieve

evaluation
results

model

result2XLS

send
requests

implement

KPIs experts

design Developers
team

model KPIs

Figure 5.11: Online specification of our architecture

be the browser, that will provide access to a web application including the different com-

ponents. More specifically, the Modeling component (3) and their editors are distributed

online, thus executable through the web browser. For their implementation, the two can-

didate technologies allowing for running modeling editors in web browsers are Eugenia

Live [93] and Xtext. From one side, Eugenia Live further supports on-the-fly model edit-

ing, that is why it represents the best candidate for the Smart City Modeling Editor (3.a).

From the other side, since version 2.9, Xtext offers an interface for the integration of

text editors in third-party web applications. For this reason, it will be again used for the

KPIs Modeling Editor (3.b). The text editors will be implemented in JavaScript, and the

language-related services will be implemented through HTTP requests to a server-side

component. The modeling artefacts will not be stored locally but every time the modeler

starts a new modeling phase the Persistence Manager will store the models in the proper

repository, always via the Requests Manager. If the modeler has to resume a modeling

work, the Authentication Manager is in charge of authenticate the user and retrieve the

models with respect to the user’s rights. The Persistence component (5) will be delegated

Chapter 5. Architecture and Implementation 75

to MDEForge, and the Analysis component (4) will rely on the Java and Acceleo tech-

nologies. The evaluation results will be exposed by a dedicated API, that will feed the

Data Visualization (6) view in the web browser. The advantage of an online environment

is that it supports one of the main problems that slows down the path of MDE towards a

standard: the reluctance in installing different tools, most of them academic, with all the

related issues linked to safety and reliability. These aspects cannot be neglected in an

industrial scenario. Moreover, collaborative repositories have been extensively proposed

and investigated in MDE [94], highlighting multiple challenges. Among these, visibility

of the repositories stored artifacts seem to be one of the hot topic in industry. Multiple

resolutions have been proposed to tone down the reluctance in employing these tools,

and extended visibility management seems to be needed [95] to assure that only arti-

facts intentionally shared will be visible to the community and not the models including

intellectual property rights.

Besides the definition of different deployment patterns, we sketched a list of alternative

technologies to use in the implementation of the various architectural components, to

further support our claim that the proposed flexible architecture enables the discussed

deployment alternatives. This type of analysis proves the technology-independent nature

of the architectural components, enabling the use of diverse technologies, also w.r.t. the

chosen deployment style. Indeed, in Table 5.1 we report some of the valid technologi-

cal alternatives to implement the different architectural components w.r.t. the chosen

deployment style.

Table 5.1: Architecture flexibility in terms of required components and technologies.

Components Mandatory Candidate Technologies
Requests Manager ✓ Eclipse plugin, Java
Authentication Manager ≈ Java
Smartcity Metamodel ✓ Ecore, Kermeta[96], UML
KPIs Metamodel ✓ Ecore, Kermeta, UML
Smart City Modeling Editor ✓ Sirius, Eugenia Live, Eugenia
KPIs Modeling Editor ✓ Xtext, EMFText[97]
KPIs Fragment Editor ✓ Xtext, OCL10, EMF-Fragments11

Evaluation Engine ✓ Java, EOL Script, ATL12, ETL13

Results Exporter ≈ Acceleo, JET14, EGL15, Xtend22

Models Manager ≈ Java, MDEForge
Fragments Generator ≈ EMF + Java + OCL
Persistence Manager ✓ MDEForge, Neo4EMF16, Relational DB, EMFJson17

Models Repository ✓ MDEForge, EMFStore18

Users Repository ≈ NoSql[98], Mysql19, MSSql20

Dashboard ≈ Spring21, other J2EE or JS-based frameworks
SC Ranking ≈ Spring, other J2EE or JS-based frameworks

Chapter 5. Architecture and Implementation 76

In the table we indicated the level of binding of each architectural component. In partic-

ular, in the column Mandatory, the ✓symbol denotes that the corresponding component

is mandatory, independently of the used deployment style, while ≈ denotes that the com-

ponent may be missing, e.g., because its offered functionality may be omitted without

compromising the functioning of the approach (e.g., the Data Visualization) or because it

is not required for the used deployment (e.g., the Authentication Manager in a standalone

instance).

5.5 Discussion

In this Chapter, we show the architecture on top of which the MIKADO framework

has been developed. In particular, we proposed different alternative deployment patterns

that can be used to distribute systems implementing the proposed architecture, giving

evidence of the flexibility of our architecture. Specifically, we described the standalone

deployment pattern, by further giving details about the implementation of every com-

ponent. Furthermore, we reported a hybrid deployment implementation describing a

service-oriented architecture that enables smart cities continuous monitoring and run-

time models update. In this perspective, the implemented KPIs assessment approach can

be seen as a models@runtime evaluation. This model-driven emerging paradigm [49, 50]

in which models are causally connected to the problem space may be very useful in the

smart cities KPIs assessment. In particular, when changes are required in the KPIs

specifications, the changes must be reflected on the results of the evaluation, thus, on

the running system. In the case of MIKADO, the KPIs assessment approach may ben-

efit from exploiting runtime models, since the KPIs definitions express the semantics

of the generated dashboards. Being able to update KPIs models at every smart city

assessment change enables the runtime update of graphical dashboards with no need for

re-deployment, as in traditional web-based urban dashboards. In this way, the user has a

constantly updated snapshot of the smart city she is monitoring. Lastly, the implemen-

tation of the architecture in a service-oriented fashion facilitates the integration of new
10 https://bit.ly/3cGvJAC 11 https://bit.ly/2z6pF5A 12 https://www.eclipse.org/atl/ 13 https:
//bit.ly/2WZcYl6 14 https://bit.ly/3eQQef6 15 https://bit.ly/2Z9bzuR 16 https://github.com/
neo4emf/Neo4EMF 17 https://emfjson.github.io/ 18 https://www.eclipse.org/emfstore/ 19 https:
//www.mysql.com/20 https://bit.ly/353KD0P21 https://spring.io/22 https://www.eclipse.org/xtend/

https://bit.ly/3cGvJAC
https://bit.ly/2z6pF5A
https://www.eclipse.org/atl/
https://bit.ly/2WZcYl6
https://bit.ly/2WZcYl6
https://bit.ly/3eQQef6
https://bit.ly/2Z9bzuR
https://github.com/neo4emf/Neo4EMF
https://github.com/neo4emf/Neo4EMF
https://emfjson.github.io/
https://www.eclipse.org/emfstore/
https://www.mysql.com/
https://www.mysql.com/
https://bit.ly/353KD0P
https://spring.io/
https://www.eclipse.org/xtend/

Chapter 5. Architecture and Implementation 77

input parameters in the SC Model when the assessment of new KPIs are required. In this

case, after the modeling of the new KPI in the KPIs model, we can add a publisher for

every input parameter required by the new KPI definition. Then, we have to connect the

new publishers with the parameters names in the SC Model. Eventually, we proposed

an online alternative deployment pattern to overcome the limitations of a standalone

framework. We further provided alternative technologies to implement the architectural

components to confirm the technology-independence of the defined architecture.

While developing the overall MIKADO framework, we incrementally performed several

types of evaluations on different components and of different aspects, from various points

of view. The results of evaluations are shown in the following Chapter.

Chapter 6

Evaluation Results

In this Chapter, we show different types of evaluations performed incrementally while de-

veloping the MIKADO framework. Specifically, in Section 6.1 we show a demonstration

case to prove the feasibility of the KPIs assessment approach. Section 6.2 reports the

results of a survey collecting opinions about the understandability of the defined DSLs

used to model smart cities and KPIs. Instead, Section 6.3 reports two sets of experiments

testing the performance of the evaluation engine’s execution time, while in Section 6.4

the latency analysis of the service-based extension of the KPIs assessment approach is

discussed. Section 6.5 closes the Chapter with some discussions.

6.1 Demonstration Case

We report in this section, a demonstration case in which we show an example of insta-

tiation of the whole smart cities KPIs assessment process to prove the feasibility and

expressiveness of the whole methodology.

6.1.1 Selection of Real-World KPIs

The preliminary step in the KPIs assessment process concerns the selection of a set of

KPIs interesting for the candidate city. We report in Table 6.1 a list of KPIs coming

from multiple sources. In particular, ITU [7] provides a list of indicators for smart cities

to capture the performance of a city in multiple dimensions. Meanwhile, CITYkeys [13]

defines KPIs and data collection procedures for common and transparent monitoring

of smart city solutions across European cities. DigitalAQ [14], instead, describes a set

of indicators supporting the sustainable economic growth through the integration of

advanced technologies, in particular for the city of L’Aquila (Italy).

78

Chapter 6. Evaluation Results 79

We listed in Table 6.1, the KPIs that we selected for our demonstration case. As already

discussed in Section 3.1, every KPIs source has a different ways of organising the KPIs.

For instance, ITU and DigitalAQ, classify the KPIs in a hierarchical structure with

dimensions (e.g., Economy, Environment, and Society and Culture) and sub-dimensions.

ITU further structures sub-dimensions in multiple categories. Meanwhile, CITYkeys

organizes KPIs in themes and sub-themes.

Table 6.1: Sources of the KPIs definition used in the experiment

KPI ITU [7] CITYkeys[13] DigitalAQ[14]

Green Areas ✓ ✓

Bicycle Network ✓ ✓

Air Pollution ✓

NO2 Emissions ✓

PM2.5 Emissions ✓

Real-time Transport Monitoring ✓

of Mobile Applications ✓

Among the KPIs listed in Table 6.1, we report the definition together with the dimension

and calculation formula for the KPI Air Pollution (AP). Following, the ITU [7] documen-

tation, it measures the air quality based on the values reported for specific pollutants.

It belongs to the dimension Environment, sub-dimension Environment and category Air

Quality. The calculation of this KPI relies on the Air Quality Index (AQI) for specific

pollutants (i.e., Particulate Matter (PM), Nitrogen Dioxide (NO2), Sulphur Dioxide

(SO2), Ozone (O3)). The calculation formula for the AQI is reported in (6.1), where p

refers to the pollutant whereas the legal limit is established by the law1:

AQIp =
measured concentrationp

legal limit
× 100 (6.1)

The worst AQIp determines the Air Pollution KPI, as in formula (6.2):

AP = max(AQIPM2.5, AQIPM10, AQINO2 , AQISO2 , AQIO3) (6.2)
1 http://apollon-project.it/2019/12/10/indice-di-qualita-dellaria-iqa/

http://apollon-project.it/2019/12/10/indice-di-qualita-dellaria-iqa/

Chapter 6. Evaluation Results 80

Both AQIp and AP are measured as µg/m3 and evaluated w.r.t. five evaluation classes

defined by the thresholds in (6.3).

Index evaluation class =

Excellent if Index < 30

Good if Index ≥ 30 ∧ Index < 66

Discrete if Index ≥ 66 ∧ Index < 99

Bad if Index ≥ 99 ∧ Index < 150

Terrible if Index ≥ 150

(6.3)

6.1.2 Modeling of KPIs Definitions

After the KPIs selection, we passed to the modeling phase. First, we defined the KPIs

Model based on the definitions and formulae of the identified KPIs. In Listing 6.1, we

reported the textual annotation that is part of the produced KPIs model describing the

AP KPI. At lines 3 and 4, we defined the structure of the KPI, i.e., Dimension and

Category, thanks to the DSL defined in the KPIs Metamodel in Figure 4.3. Lines 5–50,

translate the AP KPI formula (6.2), which in turn depends on the formula (6.1). In

particular, the percentages of pollutants concentration in the air w.r.t. their legal limits

is calculated, as for instance done in lines 8-14 for the PM2.5 pollutant. Thus, given the

pollutant measured concentration (line 11), it is divided (DIV operator at line 10) by its

legal limit (modeled as StaticRealValue at line 12) and the resulting value is multiplied

(MULT operator at line 8) for the StaticRealValue of 100. Then, the maximum percentage

is selected, by the MAX operator (line 7). Eventually, the AP KPI is evaluated against

a ranged value modeled at lines 44–48 and corresponding to those in formula 6.3. The

reported operators (e.g., GET, MULT, DIV, MAX in the Listing) are those defined by

the enumeration Operation of the KPIs Metamodel in Figure 4.3.

1 KPIModel mykpi ;
2

3 Dimension Environment{
4 Category AirQual i ty {
5 KPI AP{
6 values : AggregatedRangedValue : GET{
7 values : AggregatedRealValue : MAX{
8 AggregatedRealValue : MULT{
9 Stat i cRea lVa lue : 100 .0

10 AggregatedRealValue : DIV{
11 RealValue : PM2. 5 ,
12 Stat i cRea lVa lue : 25 .0
13 }
14 }
15 AggregatedRealValue : MULT{
16 Stat i cRea lVa lue : 100 .0
17 AggregatedRealValue : DIV{

Chapter 6. Evaluation Results 81

18 RealValue : PM10,
19 Stat i cRea lVa lue : 50 .0
20 }
21 }
22 AggregatedRealValue : MULT{
23 Stat i cRea lVa lue : 100 .0
24 AggregatedRealValue : DIV{
25 RealValue : NO2,
26 Stat i cRea lVa lue : 200 .0
27 }
28 }
29 AggregatedRealValue : MULT{
30 Stat i cRea lVa lue : 100 .0
31 AggregatedRealValue : DIV{
32 RealValue : O3 ,
33 Stat i cRea lVa lue : 180 .0
34 }
35 }
36 AggregatedRealValue : MULT{
37 Stat i cRea lVa lue : 100 .0
38 AggregatedRealValue : DIV{
39 RealValue : SO2
40 Stat i cRea lVa lue : 350 .0
41 }
42 }
43 }
44 Range " Exce l l en t " min : [0 . 0 max :] 3 0 . 0 ,
45 Range "Good" min : [3 0 . 0 max :] 6 6 . 0 ,
46 Range " D i s c r e t e " min : [6 6 . 0 max :] 9 9 . 0 ,
47 Range "Bad" min : [9 9 . 0 max :] 1 5 0 . 0 ,
48 Range " Te r r i b l e " min : [1 5 0 . 0 0
49 }
50 }
51 }
52 }

Listing 6.1: Air Quality KPI definition model shown in textual concrete syntax.

6.1.3 Modeling of Smart Cities

During the modeling phase, also the SmartCityModel is defined. In Figure 6.1, we report

a portion of the graphical representation of the model of the city of L’Aquila. Here, we

modeled the DataPackages collecting the data required to calculate the KPIs and the

corresponding providers. For instance, BreezoMeter2 is a Web service providing live air

pollution, pollen, and fires information of a selected geographical area. In the model, it

is the provider of the real data composing the AirMonitoring data package (i.e., PM2.5,

PM10, O3, NO2, SO2, CO2).
2 https://breezometer.com/

https://breezometer.com/

Chapter 6. Evaluation Results 82

Figure 6.1: Graphical Representation of the Smart City Model for the city of L’Aquila.

6.1.4 KPIs Assessment through the Evaluation Engine

After the definition of the two modeling artifacts describing the candidate smart city

and the KPIs to be calculated on it, the assessment phase can be triggered. Indeed,

the SmartCityModel and the KPIModel are given as input for the KPIs evaluation engine

(Figure 4.1). In Figure 6.2, we report the three view of the considered models for this

demonstration case, highlighting the mapping between the data values defined in the

SC model and the parameters in the KPIs one. In particular, on the left side, there

is the representation of the smart city of L’Aquila with the values collected in the air

monitoring data package. On the central panel, the KPIs Model reflecting the AP KPI

definition. Every element in the models tree owns its corresponding properties as shown

in the property view displayed in the top-right panel. When the evaluation engine is

executed, the aggregated value defined in the KPIs Model (corresponding to line 6 of

Listing 6.1) and measuring the AP KPI is actualized with the calculated value, as shown

in the bottom-right side panel, which shows the property view after the execution. In

the console in Figure 6.3, we reported the results of the KPIs assessment for the city of

L’Aquila.

Chapter 6. Evaluation Results 83

Figure 6.2: Examples of the input and output models during the assessment process.

Figure 6.3: KPIs Assessment Results over the Smart City of L’Aquila.

6.1.5 KPIs Visualization through Dashboards Generation

Besides the visualization of the KPIs assessment via the console log and the actualized

quality model, we provide another component (see Section 5.2.3) supporting the visual-

ization and understanding of KPIs assessments results. This component is devoted to

the production of a set of views for the KPIs model under inspection. For instance, in

Figure 6.4 we reported the KPIs dashboard generated for the KPIs model elaborated for

Chapter 6. Evaluation Results 84

a

b

c

Figure 6.4: Overall View of the KPIs for the city of L’Aquila.

the city of L’Aquila, evaluated w.r.t. our demonstration case. In Figure 6.4, we show

the correlation between the KPIs model a and the view on the bottom c automati-

cally populated with multiple views. This one shows all the KPIs assessed for the city

under evaluation and the results w.r.t. a target value set in the model. Indeed, in the

KPIs model we declared KPIs in different dimensions and categories. On the left side

of Figure 6.4, a navigator view b is generated by Picto, showing all the dimensions,

sub-dimensions and categories of the KPIs model. By selecting one of them, a dedicated

view populated with the contained KPIs and corresponding results is shown. For in-

stance, in Figure 6.5 are reported the two KPIs belonging to the dimension Planet and

category Pollution and Waste, namely NO2 (Nitrogen Dioxide) and PM2.5 (Particulate

Matter) emissions with their corresponding values reported as percentage w.r.t. their

target values specified in the KPIs model and corresponding to 100% in the gauges dash-

boards. These indicators are also quantified with units, specified in the KPI model (see

Figure 4.3).

6.1.6 Supporting Smart Cities Comparison

Another important aspect in smart cities KPIs assessment is the ability of making com-

parisons among multiple cities. For doing this, KPIs have to be general enough to be

applicable to different cities. It is worth specifying that these types of comparisons would

be significant when comparing similar cities, e.g., cities with the same dimension in terms

of number of inhabitants. For instance, we modeled three Italian medium-sized cities,

namely L’Aquila, Bolzano and Matera. In Table 6.2, we report the results of the KPIs

Chapter 6. Evaluation Results 85

Figure 6.5: Detailed view of a single category of KPI.

assessments for the three selected cities that we performed with our framework. Looking

at the results reported in the table we can make different reasoning about the candidate

cities. For example, for the KPI Green Areas (GA), Matera surpasses the other cities

by far because of the presence of wide historical areas. Also the results for the Bicycle

Network (BN) KPI we can observe that the cities of L’Aquila and Matera obtained re-

sults much lower than the one obtained by Bolzano. Meanwhile, for the Air Pollution

(AP) KPI, all the three smart cities have been evaluated with the class Good. For NO2

emissions and PM2.5 emissions, Bolzano has the lowest values. Eventually, all the cities

result to have a Real-time Transport Monitoring (TM) system while, as it concerns the

number of Mobile Applications (MA), Bolzano shows the highest number.

Table 6.2: Evaluation and comparison of the subject smart cities.

Subject Cities
KPI L′Aquila Bolzano Matera

GA 48.72 ha/100.000 inh. 176.26 ha/100.000 inh. 982.74 ha/100.000 inh.
BN 86.0 km/100.000 inh. 307.15 km/100.000 inh. 66.0 km/100.000 inh.
AP Good Good Good
NO2 0.00008 µg/m3 0.00002 µg/m3 0.00004 µg/m3

PM2.5 0.00016 µg/m3 0.00014 µg/m3 0.00023 µg/m3

TM YES YES YES
MA 13 34 21

Chapter 6. Evaluation Results 86

6.1.7 Supporting Smart Cities and KPIs Evolution

In this subsection we sketched a slightly modified scenario-based testing [99] in which we

identify a sample of scenarios and we check whether the implemented running system

supports smart cities and KPIs models evolution and assessment with few modeling steps.

For each scenario, an expected result is also identified and confirmed or not, as compared

to the observed result. The scenarios and expected results are listed in Table 6.3, where

we also categorized the scenarios with the three categories of changes reported in Section

4.3, namely subtractive, additive, and structural.

Table 6.3: Scenario-based testing for the evaluation of the MIKADO ’s evolution
support.

ID Category Scenario Expected result Observed result
S1 Subtractive Remove KPIs The KPI must be removed from

the KPIs model and the gener-
ated dashboard.

After deleting a KPI from the
KPIs model, it is not included
anymore in the generated dash-
board without affecting the as-
sessment process.

S2 Structural Change KPIs
type

The KPI’s type must be changed
in the KPIs model and the gener-
ated charts must change accord-
ingly, in the shape and resulting
value.

The value of the updated KPI
changed from a Real to a
Boolean type in the KPIs model
and the generated chart changed
representation from donuts to
multi-options.

S3 Structural Change KPIs
target value

The target value of a numeric
KPI must be changed in the
KPIs model and the generated
chart must adapt the scale.

By increasing / decreasing the
target value of a numeric KPI in
the model, the generated chart
updates the limits.

S4 Structural Change KPIs
unit measure

The unit declared for the KPIs
must be updated in the gener-
ated charts.

By updating the unit for a KPI’s
definition, the generated chart
includes the unit after the result-
ing actualized value.

S5 Additive Add a data
source

The new data source must be de-
fined in the smart city model.

The definition of the new data
source in the smart city model
did not affect the KPIs definition
and assessment process.

S6 Structural Change a static
value with no
parameter

The static value must be changed
manually in the KPIs model.

The value of the KPIs using the
changed static value have been
updated correspondingly after
its manual change in the KPIs
model.

S7 Additive Add new data The new data must be defined
in the smart city model and con-
nected to an existing or new de-
fined data source. Also in the
KPIs definition the parameter to
be used must be updated.

After the definition of the new
data in the smart city model, a
new parameter is declared in the
KPIs model with the same name
of the new data and connected to
the KPIs that use it in thei cal-
culation.

For instance, we applied the scenario (S2) in our demonstration case. Specifically, we

changed the type of the GA KPI from a real to a boolean type, assuming that the

indicator’s aim is to verify whether in the city there are green areas or not. In Figure

6.6, we reported how the KPIs model and the generated dashboard appeared after the

KPIs evolution.

All the listed scenarios in Table 6.3 envisage the re-iteration of the last two phases of the

KPIs assessment process flow (see Figure 3.1), namely, the Execution phase involving

Chapter 6. Evaluation Results 87

Figure 6.6: Scenario 2 - Change KPIs type.

the re-execution of the evaluation engine and collection of the assessment results and the

Visualization phase with the re-generation of the graphical dashboards.

6.2 Understandability of MIKADO’s DSLs

In this section we reported an evaluation concerning the main modeling artifacts of the

MIKADO approach, that is the Smart Cities and KPIs definition DSLs. We inspected

the perceived understandability of the DSLs through an expert survey which is described

in the following. All the artifacts used in the survey together with the anonymous results

are available online3.

6.2.1 Survey Setup and Execution

To measure the understandability of our DSLs, we drew up an online survey 4 and sent

it to different smart cities stakeholders. Since we consider spreadsheets as a common

approach used in the KPIs evaluation domain, we structured the survey by proposing

different KPIs expressed within spreadsheets as well as with our DSL. In particular, for

each KPI, we compare the DSL definition with the spreadsheet formula, by asking an

opinion for each definition with an open answer question, and to rank, with a likert scale

(from 1 to 10), the understandability of the current definition. Moreover, we asked to

the user, by means of multiple-choice questions, which of the two approaches may be

more usable for her for modifying or defining new KPIs, considering a period of training

of 1 week or a training period of 10 weeks. Eventually, we asked to the user, again
3 https://bit.ly/3kXIJ8x 4 The survey is available at this link

https://bit.ly/3kXIJ8x
https://forms.gle/dxidpC3z6XkvRpUo7

Chapter 6. Evaluation Results 88

via multiple-choice questions, to express her preference between the smart city graphical

representation (as in Figure 6.1) and the spreadsheets tabular definition.

The survey has been submitted to 10 smart cities and/or KPIs experts. We decided to

involve an heterogeneous group of participants with different perspectives and expertise

about smart cities and their evaluation. In particular, the experts came from: (i) com-

panies, such as employees of ITU; (ii) academia, via two mailing lists of people involved

in smart city projects, e.g., the mailing list of the Smart City Looks Like Summer School

2019 edition5; (iii) the smart city committee of the city of L’Aquila6, nominated by the

major and made by smart cities experts. It is worth specifying that the participants

have not been trained about the DSL before receiving the survey, but they just had a

brief introduction. However, we cannot exclude that they had background on the use of

spreadsheets, given their diffusion and popularity.

6.2.2 Survey Results

In Figure 6.7, we reported the votes given in the likert scales for each evaluated KPI

(on the x-axis) w.r.t. the understandability of the two different formulae definitions.

The results show that our DSL received better votes for all KPIs apart from the Mobile

Applications (MA) one. This indicator is easily calculated by summing up the number

of available mobile applications in the city, thus, in spreadsheets it does not require

complex formulae, as in our DSL. On the contrary, all the other KPIs characterized by

more complex calculations, resulted to be more comprehensible with our DSL. In Figure

6.7, we reported also the information about the number of responses of the type "I don’t

know" to the question that was asking to describe what the defined formula compute,

through coloured dots in the chart. For the spreadsheet formulae we collected at least one

"I don’t know" for every KPI definition. Also for the Transport Monitoring (TM) KPI

that is simply measured with a boolean value, the users found it easier to understand

the spreadsheet formula.

As concerns the users preferences about using our DSL or the formulae in the spreadsheet,

or even none of them, in Figure 6.8 we reported the collected results. When considering

a period of training of 1 week (Figure 6.8 left side), 40% of the users affirmed that they

would be in favor of using our DSL, and only a 20% of users expressed preferences to

spreadsheets. Meanwhile, 30% of the users would like to use both of them, indistinctly.

Meanwhile, when considering a period of training of 10 weeks (Figure 6.8 right side),

50% of the users would use both the DSL and the spreadsheets, indistinctly. For the

remaining 50% of the users, 30% would prefer our DSL and 20% the spreadsheets.
5 https://cs.gssi.it/summerschool/ 6 https://bit.ly/3xqKLFd

https://cs.gssi.it/summerschool/
https://cs.gssi.it/summerschool/
https://bit.ly/3xqKLFd

Chapter 6. Evaluation Results 89

Figure 6.7: The boxplots report the votes given in the likert scales for each evaluated
KPI w.r.t. our DSL and the spreadsheet formulae. The dots indicate the number of

responses "I don’t know" given for each KPI description.

Figure 6.8: Users preferences between our DSL and spreadsheets when considering a
period of training of 1 week (left side) and 10 weeks (right side).

Eventually, in Figure 6.9 we reported the users preferences w.r.t. the graphical smart

cities representation used in our approach and the tabular one in the spreadsheets. It is

shown that 40% of the users liked both representations, indistinctly.

The collected opinions tell us that our DSL is perceived more comprehensible w.r.t.

spreadsheets-based solutions particularly when considering KPIs models showing more

complex calculations. Moreover, as regards the smart city model, it is easily comprehen-

sible also when represented in a spreadsheet. From the results, we can also argue that

with a short training period the users would be more confident in using our DSL w.r.t.

spreadsheets.

Threats to validity. A first threat to validity of this type of experimentation is

related with the bias that the experts who participated in the survey may had by our

Chapter 6. Evaluation Results 90

Figure 6.9: Users preferences w.r.t. the two proposed smart city’s representations,
graphical vs. tabular.

expectations that may unintentionally leak from the questions. However, to overcome

this problem we previously submitted the survey to senior colleagues in order to assess

it in terms of independence from our expectations.

Instead, the limited number of participants to the survey may be a threat to the ex-

ternal validity. We tried to mitigate the shortage of participants by selecting potential

participants with heterogeneous perspectives, i.e., business, academic, and smart city

experts. This, in turn, may represent another threat to the external validity, since the

non-homogeneity of the selected groups of participants, with different backgrounds, may

be hard to compare. However, we observed quite concise and homogeneous answers,

despite the diverse backgrounds of participants.

6.3 Performance of the MIKADO Framework

In this Section, we report an incremental evaluation of the scalability of the MIKADO ap-

proach w.r.t. the increasing size of smart city models and number of KPIs. Specifically,

we performed two experiments measuring the execution time of the evaluation engine. In

Section 6.3.1 we evaluate the approach as an EOL configuration, whereas in Section 6.3.2

we evaluate the approach extended with an automatic Java launcher. Both experiments

fall in the area of performance evaluation of MDE artifacts [100], since the evaluation en-

gine devoted to KPIs’ calculation can be seen as an interpreter of the proposed modeling

language. Indeed, we focused on the measurement of the execution time of the evaluation

phase only, without considering the modeling phase. For this reason, both input models

used in the experiments have been automatically or manually filled without distinction,

since we did not consider the execution time of the modeling phase. The goal of our

experiments is that of checking the evaluation engine execution time (in milliseconds)

w.r.t. the size of the input models, i.e., the number of elements in the models. All the

Chapter 6. Evaluation Results 91

experiments were executed by running the standalone version of MIKADO, using a 6

core CPU running at 2.2GHz, with 16Gb memory. We run the evaluation engine on a

machine with Windows 10, inside an Eclipse IDE of version 2020-06 (4.16) with Java 8,

while the Epsilon version used was the 2.1.0.202006301809.

6.3.1 Scalability of the Evaluation Engine

Experiment Setup. We performed a preliminary evaluation for which we designed

a smart city model, containing the instantiation of every concept of the metamodel, and

a KPIs model initially made by one dimension with one category of 8 KPIs, thus to

cover all the calculations defined in the KPIs metamodel (e.g. SUM , AV G). For this

evaluation, we conducted four experiments each of them performing 10 execution runs of

the evaluation engine. In the next paragraph, we incrementally describe each experiment

and the obtained results.

Experiment Results. The results of the first experiment, Exp1, are reported in

Figure 6.10. As mentioned in the experiment setup, during this experiment, for each

run, we increment the complexity of the SC model by changing the number of modeled

smart cities from 1 to 10. On this model, we measure the 8 KPIs in the KPIs model

in each run. With these settings, the models size goes from 200 to 632 elements and

the execution time goes from 16 ms to 79 ms. For the second experiment, Exp2, the

results are reported in Figure 6.11. During this experiment the SC model is fixed and

contains the definition of 10 smart cities. Instead, the KPIs model at every run increases

the complexity of the KPIs calculations, by adding new nested operations, one KPI at a

time. For this experiment, the size of the models goes from 638 to 676 and the execution

time goes from 82 ms to 198 ms. Interestingly, despite the models size does not increase

significantly, the execution time particularly increases in the last run. This is due to the

fact that this run involves a KPI whose calculation combines the range operation, i.e., the

most time-consuming one, with a basic operation (e.g., AV G). From this observation, we

designed the third experiment, Exp3, such that, at every run, we add a range calculation

in the definition of each KPI, one KPI at a time. In Figure 6.12, we reported the results

of this experiment. Here, the size of models slightly increases from 692 to 803 elements

(only 127 elements more than the last run in Exp2) while the execution time ranges from

306 ms to 1279 ms, by showing a considerable increase, thus confirming our prediction

about the time consuming of calculations including the range operation. However, the

overall execution time is still reasonable for the given models size. Eventually, in the

fourth experiment, Exp4, at every run we increment by one the number of dimensions

in the KPIs model, where each dimension includes 8 KPIs with complex calculations.

Chapter 6. Evaluation Results 92

Consequently, the number of evaluated KPIs goes from 16 in the first run to 80 in the

last one, always assessed on top of the 10 smart cities in the SC model. This means

that in the last execution we assessed 80 KPIs over 10 smart cities, i.e., 800 KPIs in the

same run. In Figure 6.13, we can see that the size of the models goes from 1124 to 3692

elements and the execution time ranges from 2426 ms to 12892 ms.

Figure 6.10: Exp1: increasing the
number of evaluated smart cities.

Figure 6.11: Exp2: increasing the
complexity in the calculation of each mod-

eled KPI.

Figure 6.12: Exp3: make each KPI of
type range.

Figure 6.13: Exp4: increasing the
number of KPIs.

In summary, this first set of experiments points out two main findings: (i) the efficiency

in terms of the evaluation engine’s execution time, i.e., the core component of our ap-

proach, since all the experiments show a linear or polynomial (of degree 2) increase of

the execution time w.r.t. the increasing models size; (ii) promising scalability results

showed by Exp4, indicating that the system takes 12.9 seconds for assessing 800 KPIs

over 10 smart cities.

6.3.2 Empowering of the Evaluation Engine

As introduced above, in this section we evaluate the execution time of the evaluation

engine after it has been extended with an automatic Java launcher. This means that

the user has not to manually load the input models to the engine before running the

evaluation, neither to store the evaluated KPIs model after the assessment.

Chapter 6. Evaluation Results 93

Experiment Setup. For this second evaluation, we designed 4 increasingly complex

scenarios, whose settings are reported in Table 6.4 and are similar from those of the pre-

vious evaluation. In particular, we performed also here 4 experiments with 10 execution

runs of the evaluation engine. In each experiment, the SC model increases the number

of modeled cities in every run. Meanwhile, the KPIs model increases its complexity from

an experiment to another and remains fixed in every run.

Scenario SCs SC elements KPIs KPIs elements Specific Computation
EXP1 1-10 49-481 8 151 Single calculations
EXP2 1-10 49-481 8 195 Nested calculations
EXP3 1-10 49-481 8 322 Range calculations
EXP4 1-10 49-481 80 3211 Multiple KPIs dimensions

Table 6.4: Increasingly complex scenarios for the scalability assessment.

Differently from the previous set of experiments, the evaluation engine is launched multi-

ple times from a Java program that loads and passes the input models to the engine and

stores the evaluated KPIs model after the assessment. The execution time of the evalu-

ation engine, reported in milliseconds (ms), is measured from when it receives the input

models to when it returns the evaluated KPIs model (including the model persistence

operation). In particular, for each of the 4 experiments described above, we performed

10 execution run, where each run has been repeated 11 times.

Experiment Results. We reported the results of the 4 experiments in terms of

execution time in Figure 6.14. For each run of the experiments, the chart reports the

average among the times of the 11 executions. The complete measured execution times

are available online7 and they show that, apart for the first run when the input models

are initially loaded, there have been only minimal differences between the runs. This is

also supported by the caching feature of Epsilon. In particular, in Figure 6.14 the blue

line represents the results of the first experiment, Exp1, where the models size goes from

200 (49 SC elements plus 151 KPIs elements in Table 6.4) to 632 (481 SC elements plus

151 KPIs elements in Table 6.4) elements and the execution time goes from 72 ms to

124 ms. For the second experiment, Exp2, results are reported by the red line. In this

case, the execution time goes from 86 ms to 193 ms w.r.t. an increase of the models size

from 244 to 676 elements. The yellow line shapes the results of the third experiment,

Exp3, with an execution time ranging from 202 ms to 654 ms. Here, we have an increase

w.r.t. the previous two experiments. This highlights the complexity of calculations due

to the range operation, as happened in the first set of experiments. However, the overall

execution time is still reasonable for the given models size that goes from 371 to 803

elements. Eventually, in the fourth experiment, Exp4, whose results are represented
7 https://bit.ly/330iMzA

https://bit.ly/330iMzA

Chapter 6. Evaluation Results 94

Figure 6.14: Execution times of the evaluation engine resulting from the experiments.

with a green line in Figure 6.14, 10 dimensions made by 80 KPIs are considered. This

means that in the last execution we assessed 800 KPIs in the same run (80 KPIs over 10

smart cities). The execution time ranges from 624 ms to 5015 ms, with the models size

going from 3260 to 3692.

In this second evaluation we can highlight two main findings: (i) the efficiency in terms of

the evaluation engine’s execution time, since also in this case, all the experiments clearly

show a linear increase of the execution time w.r.t. the increasing models size, without

any peaks. Moreover, the reduction of the computation time of 50% compared to the

experiments of the first set. This is due to relevant code refactoring performed in the

framework, namely the embedding of the EOL evaluation engine in a Java program that

manages the loading of input models, the multiple runs of the evaluation engine, and

the persistence of the evaluated KPIs models resulting from the assessments. Moreover,

the infrastructure makes use of the caching feature of Epsilon, which allows for load-

ing on-demand only the models that have been changed between one run and another.

(ii) promising scalability results are shown by Exp4, indicating that the system takes

approximately 5 seconds for assessing 800 KPIs over 10 smart cities.

Furthermore, we can observe that in Section 6.1.6, we modeled three real-world medium-

sized Italian cities, namely L’Aquila, Bolzano, Matera, whose average model size is equal

to 80, while the size of the KPIs model used for the comparison between them is 290

elements. This, from a qualitative perspective, considering that the smart city models

size used in both evaluations is slightly higher (i.e., 49-481 in Table 6.4), we claim that in

Chapter 6. Evaluation Results 95

our framework we can easily compare 10 real-world medium-sized cities w.r.t. 80 KPIs,

where 80 can be considered a valid upper bound, given that the average among the KPIs

defined by ITU, CITYkeys and DigitalAQ is 76.

6.3.3 Threats to validity

In both the reported performance evaluations, the assessment process strictly depends

on data about the smart cities under evaluation. If this data are not coming from

reliable providers but are estimated by domain experts, they can lead to incorrect KPIs

measurements. However, the overall process implemented in the evaluation engine is

not affected, since KPIs calculations are usually based on standard KPIs definitions.

Starting from this observation, the experimentation performed for this evaluation may

be internally biased from the parameters we used as input to calculate KPIs, which are

realistic but not real, i.e., not related to specific cities. More complex data might lead

to more time consuming calculations.

Despite we defined artificial models with the aim of instantiating all the entities in the

smart city and KPIs metamodels, the fact that the results of the experiments have been

obtained on a set of demonstration cases modeled by us could threaten the external

validity of our experiment.

6.4 Latency Analysis of Service-based Continuous KPIs As-

sessment

In this Section we report an experimental evaluation of the service-based continuous

KPIs assessment, presented in Section 5.3.1 as the hybrid deployment of the flexible

architecture for KPIs assessment in smart cities. In particular, we compare the hybrid

deployment with the standalone version (i.e., its baseline), where the KPIs parameters

continuous monitoring and runtime models update were not available. To this aim, we

defined the following research questions that guided the evaluation:

RQ1: What is the impact of continuous monitoring and runtime update of models on

the evaluation framework? How does the presented approach compare with its baseline

(see Section 5.2) w.r.t. the framework efficiency?

RQ2: What is the impact of KPIs input data retrieving, models update and evaluation

engine execution tasks on the latency? How does the presented approach compare with

its baseline (see Section 5.2) w.r.t. the impact to latency of these tasks?

Chapter 6. Evaluation Results 96

Experiment Setup. To answer to RQ1 and RQ2 we have conducted a double

experiment by comparing the baseline framework (see Section 5.2), requiring manual data

retrieving and models filling, with the fully automated framework, enabling continuous

monitoring and runtime models update presented in Section 5.3.1. We consider one

subject smart city and 6 dynamic KPIs. As dynamic KPIs we consider: Humidity,

i.e., the percentage of the detected humidity level, Air Pollution (see formula (6.2)),

PM2.5, NO2, measuring the PM2.5 and NO2 pollutants levels in the air, Urban Heat

Island (UHI), i.e., the difference in air temperature between the city and its surroundings

(provided by two different sources), and Green Area (GA) as a less dynamic KPI (see

formula (3.1)). Three Publishers are considered as data sources for the input parameters

of these KPIs. BreezoMeter8 is a website offering open API exposing environmental data

and insights to third party applications. It can be queried via a specific url taking the

latitude and longitude of a city as parameters, and it replies with JSON data providing

values for different pollutants and other interesting info. OpenWeather map9 provides

information about weather forecasts, air temperature, etc. for any coordinates via an

open API. Lastly, an IoT infrastructure based on Tinkerforge10 sensors that publishes

data from a Tinkerforge Air Quality Bricklet11. Tinkerforge is a system of building blocks,

based on pluggable modules and APIs, available for many programming languages. Using

this board we have assembled a smart environment sensor in our department measuring

multiple air quality parameters, e.g., humidity and temperature12.

In the following we describe the design of the two experiments, namely Baseline and

Automated, where the former makes use of the standalone version of MIKADO, and

the latter uses the hybrid version, namely the service-based solution, respectively.

• Baseline: We have involved four persons, one of the authors and three smart city

domain experts. The experiment lasted 6 hours during which the three domain

experts have been asked to occasionally monitor the 3 data sources, namely Bree-

zoMeter UI web interface, OpenWeather map and the display of the Tinkerforge Air

Quality device, providing the required parameters for the 6 considered KPIs. They

simulate, for instance, three municipality’s employees responsible for monitoring

KPIs data sources while also accomplishing other tasks during their working day.

They alerted the modeler (one of us) anytime they observed changes in the pa-

rameters. The modeler updated the SC Model accordingly, and run the evaluation

engine to get the new results in the updated dashboards. They have been asked to

measure and report the number of updates and the time required to perform them.
8 https://www.breezometer.com/ 9 https://openweathermap.org
10 https://www.tinkerforge.com/en/ 11 https://bit.ly/3xngllU 12 A picture of the assembled
board is available at https://bit.ly/3Y7HhVw

https://www.breezometer.com/
https://openweathermap.org
https://www.tinkerforge.com/en/
https://bit.ly/3xngllU
https://bit.ly/3Y7HhVw

Chapter 6. Evaluation Results 97

• Automated: For this experiment, the framework run on a Macbook Pro 2019, 2,3

GHz 8-Core Intel Core i9 processor, 32 GB 2667 MHz DDR4 RAM and 2TB SSD

of storage. This laptop runs the Mosquitto client, all the publishers, the subscriber

and the evaluation engine. The publishers are executed locally, except for the

Tinkerforge publisher (i.e., see Listing 5.5) which is executed on the assembled

board. We run the experiment for 6 hour with the following configuration for the

three publishers: (i) BreezoMeter publisher requests updates for all the pollutants

every minute; (ii) OpenWeather publisher requests updates on the temperature

every minute; (iii) Tinkerforge publisher requests updates for temperature and

humidity every 1, 2, 5, and 10 seconds. Anytime (and only when) the SC Model

is not up to date, the subscriber updates the parameters in the model with the

new received values and it runs the evaluation engine that triggers the dashboard’s

update. All these activities have been automatically monitored and measured in a

log.

Results for RQ1. To answer RQ1 we inspected the impact that continuous moni-

toring and runtime update of models on the KPIs assessment framework. To this aim,

we reported the normalized trend of the execution times (reported as normalized mil-

liseconds on the y-axis) corresponding to the data retrieving, SC Model update and

evaluation engine phases in the Automated and Baseline experiments (Exps), in Figures

6.15 and 6.16 respectively.

Figure 6.15: Data retrieving, SC Model update and evaluation engine execution
times. Automated: 963 interactions.

Specifically, both Exps lasted 6 hours, performing a total of 963 interactions in the au-

tomated case and 18 in the baseline one, due to the fact that the baseline Exp envisages

Chapter 6. Evaluation Results 98

Figure 6.16: Data retrieving, SC Model update and evaluation engine execution
times. Baseline: 18 interactions.

two manual tasks, namely the data retrieving and model updates, performed less fre-

quently (∼ hourly) than the automated one. Each interaction can generate more than

one SC Model update, since a single publisher can publish on more than one topic, as

for instance the BreezoMeter publisher that publishes on 5 topics (see Figure 5.9). In

Figure 6.15, we can see that the data retrieving is the less time consuming task, with a

few peaks possibly due to delays on the network and/or servers workload. The SC Model

update requires slightly more than data retrieving with also a few peaks that may depend

on the number of updates to be performed. Lastly, the evaluation engine, after the first

run taking more time due to the initial upload of different models, settles on a constant

time, also due to caching features of the framework. However, this time increases during

the last hour of the Exp. This deserves further analysis, although it might be due to a

machine overloading. In Figure 6.16, instead, we can observe that the evaluation engine,

which is an automated task in the Baseline Exp apart that it has to be launched manu-

ally, after the first run requiring the models upload, gradually settles on negligible time.

The data retrieving and the SC Model update phases follow a common trend showing

peaks in correspondence of the interactions of those publishers publishing on more than

one topic, thus requiring more than one model update. Lastly, both data retrieving

and model update take more time for the first run when the data sources interfaces are

opened and the Eclipse platform is launched. Moreover, in Figure 6.16 is also visible the

learning curve of the involved users leading to a gradual decrease of the time required

for the three phases. Eventually, the Automated Exp exploiting continuous monitor-

ing and runtime updates enables a larger number of interactions performed faster w.r.t.

the Baseline approach. This increases the framework efficiency, while actually providing

up-to-date data in real time.

Chapter 6. Evaluation Results 99

Results for RQ2. Figure 6.17 shows to which extent the data retrieving, SC Model

update and evaluation engine execution contribute to the framework latency, in both the

Automated and Baseline Exps. Specifically, Figure 6.17 reports the average execution

time for each of the three phases in milliseconds (ms), for both Exps. As expected,

each of the three phases requires quite more time in the Baseline Exp, where the data

retrieving and model update (performed manually) are the most time consuming ones.

Moreover, the latency in the Baseline Exp could also depend from communication issues.

For instance, more than one of our users can communicate with the modeler at the same

time to report about changes in the parameters they were monitoring, implying to the

modeler to coordinate the received information and perform multiple updates in the

SC Model. The evaluation engine execution also contributes more to the latency in the

Baseline Exp, since it has to be manually launched anytime changes are applied in the

SC Model due to the evolution of the KPIs input parameters.

Figure 6.17: Latency contributed by the three phases.

Threats to validity. Concerning the refactoring enabling KPIs continuous moni-

toring, current limitations concern the generalizability and scalability of the approach.

Although it has been applied on a single smart city to evaluate 6 KPIs, it uses techniques

(e.g., PubSub pattern, open APIs) that can be generalized and extended to more com-

plex systems, as long as there are accessible data sources to get real input parameters

for dynamic KPIs to be measured on real smart cities. Indeed, PubSub is known to offer

better scalability w.r.t. traditional client-server, by means of parallel operation, message

caching [101]. Of course, the message-oriented middleware might add a network latency

delay. However, keeping the data retrieving and update of models as manual tasks is

impractical, considering the huge number of KPIs identified in standard guidelines by

international institutes [7].

Chapter 6. Evaluation Results 100

6.5 Discussion

In this Chapter, we show different types of evaluation of the MIKADO framework from

different perspectives. First, we prove the feasibility of the overall KPIs assessment

process envisaged by the proposed framework, by applying it on a real demonstration

case. In particular, we documented all the steps needed to perform KPIs assessment

over a smart city, from the selection of the KPIs to evaluate to the visualization of the

assessment’s results. Moreover, we show how smart cities comparisons are supported by

computing the same set of KPIs. Secondly, we reported the results of survey that we

submitted to a group of smart city and/or KPIs experts to investigate the understand-

ability of the MIKADO DSLs. From the results, we saw that our DSLs are perceived

more comprehensible w.r.t. spreadsheets-based solutions, specially when modeling com-

plex KPIs. Thirdly, we assessed the performance of the evaluation engine execution time

w.r.t. scenarios of increasing complexity, i.e., increasing size of the input models. The

main findings of the reported experiments are two-fold: (i) the efficiency of the evalu-

ation engine execution time, since in every experiment it showed a linear increase; (ii)

promising scalability results, since in the last experiment the system took approximately

5 seconds to assess 800 KPIs over 10 smart cities. Lastly, we performed an evaluation

of the service-based KPIs assessment deployment by comparing it with the standalone

version. It shows how the evolved framework enables a continuous KPIs evaluation, by

drastically decreasing (∼88%) the latency contributed by the data retrieving and models

update phases, compared to the baseline framework.

In the next Chapter we propose an abstraction of the MIKADO framework in order to

apply it in the assessment of different subjects than smart cities. In this way, we will

evolve the proposed framework into a multi-level QES, by further prove the generaliz-

ability of the KPIs assessment approach.

Chapter 7

Generalizability of the Proposed

Framework

Due to the challenges and limitations related to QES, highlighted in Section 3.2, and

considering the benefits of a model-based KPIs assessment framework, in this Chapter, we

propose the abstraction of the smart cities assessment approach presented in Chapter 4

for the automatic quality assessment of subjects coming from different domains, further

showing the domain-independence of MIKADO. In particular, Section 7.1 starts with

some motivations to the need of abstracting the assessment approach. Then, in Section

7.2 we give an overview of the multi-level QES that we propose, by presenting different

domains in which it may be applied. In Sections 7.3 and 7.4 we propose the two multi-

level hierarchies of models for the definition of subjects and quality metrics, respectively.

Furthermore, in Section 7.5 we present a re-factoring of the evaluation engine artifact

in order to support multi-level navigation of models. Section 7.6 shows how the code-

generation process devoted to graphical dashboards generation is also supported in the

multi-level framework. The chapter closes with some discussions in Section 7.7.

7.1 Motivations

The model-based KPIs assessment approach presented in this dissertation is based on

the uniform modeling of both subjects under evaluation and the quality metrics selected

to evaluate them. We have shown that it supports the customization of metrics w.r.t.

different subjects and requirements and their evolution over time, by exploiting MDE

techniques. Basically, it enables a round-trip process for the performance analysis of

the assessed subjects and the results interpretation, supporting decision-making process.

However, applying traditional two-level metamodeling techniques for this scenario entails

101

Chapter 7. Generalizability of the Proposed Framework 102

that every time a QES is required, a new modeling framework, with consequent engine

for interpreting the newly defined models, must be re-developed from scratch by using

existing tools, e.g., spreadsheets, or developed as independent systems, e.g., Web or stan-

dalone applications. For this reason, we decided to exploit Multi-Level Modeling (MLM)

to realize QESs for multiple domains sharing commonalities in this respect, namely the

overall objective of assessing a given subject passed as input, where the assessment is

executed on top of a quality definition. Specifically, we aim to transform the KPIs as-

sessment approach based on two-level modeling into a multi-level based one by defining

a multi-level framework that allows to customize QESs for different domains. In partic-

ular, we state that a MLM approach guarantees the same expressiveness and modeling

potentialities of traditional two-level modeling techniques, while further pushing forward

reuse and customization. In this way we support the reduction of time-to-market for the

modeled systems and error-proneness.

7.2 Bringing MIKADO to Multilevel

In this Section, we present the abstracted MIKADO approach for the development of

QESs to support quality assessment in multiple domains. We report in Figure 7.1 an

overview of the abstracted approach indicating the main phases together with their

input and output elements. The approach relies on a uniform and customizable way of

Subject
Modeling

QMs
Definition

QMs
Assessment

QMs
Visualization

Evaluated
QMs model

QMs model

Guidelines / DocumentationSubject Model

QMs input
parameters

Generated
Dashboards

Figure 7.1: Overview of the quality assessment approach.

modeling of the subject under evaluation and the QMs that have to be calculated over it.

We sketched the process behind the approach as a cycle because of the nature of decision-

making processes. In particular, the overall quality evaluation approach consists in four

main phases. The quality assessment of a subject starts from the Subject Modeling phase,

Chapter 7. Generalizability of the Proposed Framework 103

during which the subject under evaluation is modeled, by means of MDE techniques. In

the Subject Model, Subjects are designed in terms of data sources (e.g., open data, IoT

services) and data types. This way, the Subject Model provides the input parameters

needed to calculate the QMs of interest, as we will see in the following. In the QMs

Definition phase, by following Guidelines/Documentation, the user models or selects the

relevant QMs for the subject under evaluation. In the QMs Model given as output, the

calculation formulae of the selected QMs are defined by using DSL. The designed Subject

Model and QMs Model, are the inputs for an evaluation engine that executes the QMs

Assessment over the candidate subject. The assessment phase returns an Evaluated QMs

Model reporting the QMs concrete values resulted from the assessment. The Evaluated

QMs Model, in turn, is the input of the QMs Visualization phase during which Dashboards

representing the QMs status are generated, through code generation.

7.2.1 Leveraging Multi-Level Modeling for Multi-Domain Quality As-
sessment

To allow the application of our approach in multiple domains we decided to exploit MLM

to realise the artifacts involved in the development phase of a QES. In Figure 7.2, we

sketched the quality assessment just described, by adding the typical annotations coming

from MLM hierarchies, to explain how we enabled multi-domain quality assessment.

Legend

Assessment Subject Model

Smart City Academic
Institute

Region /
Country

(Meta) Modeling language

Smart City
L'Aquila

GSSI
(University)

Abruzzo
Region

Quality Definition Model

KPIs

KPI selection

evaluated

Quality Evaluation System
(QES)

Dashboards

sync

code
generator

conform to in/out
model transformation

Social
Metrics

Risk
Indicators

Metrics
selection

Indicators
selection

@0

@1

@2

Figure 7.2: Overview of the Multi-level Quality Assessment System.

In particular, we sketched the core component of the approach devoted to the QMs

Assessment as a QES that takes in input an Assessment Subject Model and a Quality

Definition Model both conforming to a (Meta) Modeling language. Following the MLM

Chapter 7. Generalizability of the Proposed Framework 104

annotations at the left-side of the figure, at level @0 we propose three running examples

for subjects and metrics conforming to a specific domain modeled at level @1 that, in

turn, have to conform to the Assessment Subject Model and the Quality Definition Model

defined at level @2.

Moreover, to prove the feasibility of the approach in a MLM perspective, we formalised

an assessment process as Areq:

Areq(Subject,Qm) → EQm (7.1)

where Areq is the assessment request, given a Subject and a quality definition expressed

as a quality model Qm. The output of this request is an evaluated quality model EQm,

where the requested quality characteristics are expressed quantitatively. We used this

formalisation to prove the feasibility of applying our approach in the three different

domains reported in Figure 7.2 that we will use as running examples in the remainder

of the chapter.

7.2.2 Running Examples

Besides the Smart City KPIs evaluation case, we choose two other running examples for

which we identified commonalities in the request and in the expected result type, i.e., a

quantitative analysis of the subject, that can be assessed by implementing a QES.

Smart City KPIs evaluation. Starting from the smart city domain already de-

scribed in Section 2.1, in the following we report an example of KPI called PM2.5 emis-

sions [13] that we will use to map the KPIs assessment process with a typical QES.

This indicator measures the ratio of the emissions of the pollutant to the number of

inhabitants in a city. It is calculated as follows:

EmissionsPM2.5 =
PM2.5

CityPopulation
(7.2)

This particular KPI takes in input two parameters (e.g., PM2.5, CityPopulation). Input

parameters are collected in the representation model of the subject to be evaluated,

i.e., the smart city. The calculation formulas for the KPIs selected for the evaluation

are described in the quality model passed as input to the evaluation request. From this

perspective, we can define a relationship between the smart city KPIs assessment and

the assessment process formalised using Definition (7.1) as:

instanceOf(SC, Subject) ∧ instanceOf(KPIm, Qm) (7.3)

Chapter 7. Generalizability of the Proposed Framework 105

where SC is a definition of a smart city, and instanceOf is the relationship of instan-

tiation of a subject of the assessment process. The same relation persists between the

requested KPIs, namely KPIm, and the quality model, Qm.

Research Institute Social Impact. The second chosen running example concerns

the context of Higher Education Institutions (HEIs), i.e., universities and research cen-

ters, where it is important to measure direct and indirect impact on companies and

societies generated by the research and third-mission activities [74–76]. These measure-

ments are done to prove that HEIs may generate positive impacts through a variety of

activities, e.g., public engagement and technology transfer. This social impact can be

evaluated w.r.t. different dimensions (e.g., innovation, economic, technological, social).

Since economic investments are very important for research institutes, the economy im-

pact dimension has a certain relevance in this domain. In particular, it is important to

show the positive impact of economic investments. For instance, certain institutes mea-

sure social metrics calculating the Sales Volume (SV) after collaborations. Equation (7.4)

reports the formula related to the calculation of the SV related to a department i of an

HEI. Where SalesAC represent the sales after the collaboration and SalesBC the sales

before the collaboration.

SVi = SalesACi − SalesBCi (7.4)

It is worth noting here that for this type of institutes such social metrics are monitored per

department in order to support decision-making initiatives to improve the performance

of the whole institute. Also for this running example we can define a relationship with

the Definition (7.1):

instanceOf(I, Subject) ∧ instanceOf(SMm, Qm) (7.5)

where I is a representation of an institute to be evaluated (e.g., research center, school),

and SMm is a definition of a set of social metrics interesting for the candidate institute.

Covid-19 Risk. The third running example is related with the Covid-19 risk moni-

toring. Specifically, during the Covid-19 pandemic period, the Italian Ministry of Health

drew up 21 indicators [102] to monitor the transmission and impact of the virus in Italy.

In particular, every Italian region was measuring these indicators collecting the statis-

tics data coming mostly from the local health system. Depending on the results of the

measurements, a level of risk (e.g., red, orange, yellow, green, white) was assigned to

every region. The aim of this type of regions monitoring was performed to lighten the

burden of the pandemic over hospitals. For instance, one of the indicators calculates the

Percentage of Positive Tests (PP) as reported in Equation (7.6), over the total number

Chapter 7. Generalizability of the Proposed Framework 106

of analysed tests, namely TotalTests

PP =
PositiveTests

TotalTests
× 100 (7.6)

In this context the monitoring is performed by region that represent the subject of the

quality assessment, through the calculation of the 21 indicators that, in turn, compose

an instance of the quality model. Thus, also for this running example we can define the

relationship between the region and the subject using Definition 7.1:

instanceOf(Region, Subject) ∧ instanceOf(RIm, Qm) (7.7)

where Region contains the definition of the input parameters needed to calculate the

risk indicators defined in RIm.

7.3 Subjects Definition

Looking at the formalisations for the assessment processes for the running examples just

described in equations 7.3, 7.5 and 7.7, we are able to map the detected subjects to the

ones defined in Figure 7.2 on the left hand side at level @0. Starting from these three

application domains we designed all the artifacts involved in the definition of a subject,

i.e., the models describing the specific domains @1 and the model of the Assessment

Subject Model. In Figure 7.3, we reported the multilevel hierarchy described through the

MultEcore notation [103], a modeling tool facilitating MLM on top of EMF, containing

the details of the models indicated in Figure 7.2. Please note that they are not complete

for sake of readability and understandability. This models hierarchy comes from the

abstraction of the smart city metamodel reported in Figure 4.2.

At level @2 we have a model for the definition of Subject corresponding to the Assessment

Subject Model in Figure 7.2. This model allows the definition of a SubjectUnderEvalua-

tionModel by adding a Subject. Moreover, it allows the description of: (i) which are the

Sources (e.g., Stakeholders) of the information collected about the subject; (ii) the type

of the Data (i.e., StringValue, IntegerValue, RealValue, BooleanValue); and (iii) how the

information is organized (i.e., DataPackage).

At the level @1 we found the instantiations of the SubjectUnderEvaluationModel for the

domains related to the running examples. In every instance the Subject is instantiated as

a different object, i.e., SmartCity, Institute, or Region, for each of which we have different

models of three different domains. These three models at level @1 are reported as ex-

cerpts, so we only discuss here the relevant concepts and objects. The concepts belonging

Chapter 7. Generalizability of the Proposed Framework 107

Subject @2

SmartCity @1 Institute @1 Region @1

L'Aquila @0 GranSassoScienceInstitute @0 Abruzzo @0

Figure 7.3: Multi-level hierarchy for Subjects definition.

to the smart city domain have been already discussed in Section 4.2.1. Concerning the

research institute social impact domain, we assume that the the various Departments

of the institute are in charge of collecting data through dedicated Offices. Meanwhile,

for the regional risk monitoring domain, we assume to have two types of stakeholders,

namely the PublicAdministration and Hospitals.

At Level @0 of the models hierarchy we reported the real world objects / systems corre-

sponding to the three running examples in Figure 7.2, namely, the italian city of L’Aquila,

the Gran Sasso Science Institute (GSSI), and the Abruzzo region. Please note that the

models are partially reported also in this level, in particular in every model definition we

reported the concepts needed to design the three specific running examples. It is in this

level that we collected the input parameters with their values of the metrics that we want

Chapter 7. Generalizability of the Proposed Framework 108

to calculate for every running example. The first model on the left-hand side represents

the specific Smart City of L’Aquila of our running example. In this model we defined

two data packages containing two collections of information, namely, CityStatistics, Air-

Monitoring. In the first one we allocated the definition of the information indicating

the CityPopulation and in the second the one about the PM2.5 emissions. Every data is

connected with the definition of its provider, respectively, CityCouncil and BreezoMeter).

In the center of the level @0 the instance of a research institute (model at level @1) is

reported, i.e., GSSI, that is the subject for the social impact running example. Here, we

assume that the information are organized w.r.t. the different departments. For sake

of space, here we reported only the instance of the ComputerScience department. For

this specific department we assume to have two types of data, i.e., SalesBC, SalesAC.

These entities contain the values for the sales volume before and after collaborations,

respectively, for the ComputerScience department. Here, this type of data is provided by

the Administration office. On the right, we have the model describing the Abruzzo region,

that is the subject of the assessment for the last running example. Abruzzo is an instance

of Region that contains information about Healthcare. The data in this case are provided

by the AgenziaSanitaria and concern the detected number of positive COVID tests (i.e.,

PositiveTests) and the total number of tests performed (i.e., TotalTests).

7.4 Quality Metrics Definition

The artifacts reported on the right hand side side in Figure 7.2 are the ones used to

define the other input of an evaluation request, i.e., the quality model. In Figure 7.4, the

models hierarchy used to design the quality metrics definition artifacts is depicted. This

models hierarchy comes from the abstraction of the KPIs metamodel reported in Figure

4.3. In particular, at level @2 we designed the abstract language to define quality models,

level @1 allows the definition of different types of models for evaluating different aspects

of quality w.r.t. the subject/domain that has to be evaluated, e.g., KPIs, social metrics

and risk indicators. At level @0 are located the models instances of @1, specifically a

selection of KPIs as well as metrics for social impacts and risk indicators. This level

allows the definition of models containing all the possible metrics that can be evaluated

in an application domain. This may support the definition of an additional level for the

selection of a specific set of metrics with a sort of model slicing technique, to offer a

query-selection on the entire quality model. This would permit to have a set of complete

models, but also the possibility of selecting a subset of indicators we need for the selected

subject.

Chapter 7. Generalizability of the Proposed Framework 109

QualityEvaluationModel @2

KeyPerformanceIndicators @1 SocialMetrics @1 RiskIndicators @1

PM2.5Emissions @0 SalesVolume @0 PositivesPercentage @0

Figure 7.4: Multi-level hierarchy for Quality Metrics definition.

In detail, at level @2 the model allows the organization of the Metrics and the input

Parameters needed in the calculations thanks to the Dimension type. Every metric is

associated to an output Value, that in turn has a ValueType. This type is specialized

in SingleValue and AggregatedValue. The former is used in association with the pa-

rameters of calculations and can be of different types (i.e., StaticRealValue, RealValue,

IntegerValue). The latter defines the typical operations that can be used in the metrics

calculations (e.g., MAX, AVG) and can have different types (i.e., AggregatedRealValue,

AggregatedIntegerValue).

At level @1, we find the instances of the described model, one for each domain of the three

running examples. In particular, for the smart city domain we designed a KeyPerforman-

ceIndicators model where we instantiated the Kpi type and added other instantiations of

single and aggregated values (i.e., BoolValue, StringValue, AggregatedBoolValue, Aggre-

gatedStringValue, AggregatedRangedValue), that we described in Section 4.2.2. Also in

the other two models at level @1 (i.e., SocialMetrics, RiskIndicators) we specified which

types of metrics are used in the evaluation in the different domains.

Chapter 7. Generalizability of the Proposed Framework 110

At level @0, the instances of the models at level @1 report the definition of a metric

for running example. In particular, the PM2.5Emissions model describes how the KPI is

calculated and which parameters it needs (see Equation (7.2)). This particular KPI is

associated to the dimension Pollution, and to the parameters PM2.5 and CityPopulation.

To define the calculation of this KPI, we defined an aggregated real value DIV associated

to the value of the parameters PM2.5e and CP. This structure is repeated also in the

definition of the considered metrics in the other two models (i.e., SalesVolume, Positives-

Percentage). It is worth noting that for the description of the formulas used to calculate

the metrics is exploited aggregated values type that is used for specifying operations and

parameters. For instance, for the described PM2.5 emissions KPI, the formula requires

a division (DIV) between the detected value for the emissions of PM2.5 and the number

of city inhabitants, as reported in Equation (7.2).

Thanks to the multi level modeling perspective both hierarchy models (i.e., subject and

quality metrics definitions) can be easily extended by means of a single modeling step,

e.g., adding other instantiations of the Data or Source elements, in the subject definition

at level @1, in case of the advent of a new type of data or data source, respectively;

adding other instantiations of the SingleValue element in the quality metrics definition at

level @1 to include another data type.

7.5 QES engine

The models at level @0 of both hierarchies in Figures 7.3 and 7.4 are the input artifacts

of the implemented QES depicted in the center of Figure 7.2. The engine explores

also the hierarchical organization vertically by traversing the models. As done for the

MIKADO evaluation engine (see Section 5.2.2), we implemented the QES as a model

interpreter that reads the input models, i.e., the model representing the subject of the

evaluation and the quality definition model, and produce in output an evaluated quality

model. Moreover, the calculation engine incorporated in the QES parses the requests

and actualizes the results that are based on the metrics defined in the quality model with

quantitative evaluations.

In Listing 7.1 we reported few lines of the QES implemented in Java plus EOL [104].

1 var root=qm0 ! EClass . a l l . s e l ec tOne (c | c . name="Root") ;
2 var qm1packagename = root . eAnnotat ions . se l ec tOne (ea | ea . source .
3 matches ("om=[A-Za - z] * ")) . source . s p l i t ("=") . second ;
4 var mm=qm1 ! EPackage . a l l . s e l ec tOne (p | p . name=qm1packagename) ;
5 var met r i c c l a s s= mm. e C l a s s i f i e r s . s e l ec tOne (c | c . eAnnotat ions . source .
6 f l a t t e n () . i n c l ud e s (" type=Metric ")) ;
7 var qm0metric=me t r i c c l a s s . name ;
8 . . .

Chapter 7. Generalizability of the Proposed Framework 111

9 for (metr ic in getMetr i c s (qm0metric)) {
10 (" Ca l cu l a t ing . . . "+qm0metric+" -->"+metr ic . name) . p r i n t l n () ;
11 var value=metr ic . getValue (sub j e c t) ;
12 }
13 . . .
14 operation getMetr i c s (qm0metric : S t r ing) {
15 var metr i c s=qm0 ! EClass . a l l . s e l e c t (c | c . eAnnotat ions .
16 source . f l a t t e n () . i n c l ud e s (" type="+qm0metric)) ;
17 return metr i c s ;
18 }
19 . . .

Listing 7.1: Snippet of the EOL-based implementation of the QES Engine.

We implemented a Java launcher that invokes the script and defines the input parameters

of the QES, i.e., the three models of the three levels @0−@2 of both side of Figure 7.2,

for a total of 6 models. MultEcore allows the navigation of the models through textual

annotation. For, instance, the object Root is a format that MultEcore uses as first

instance containing all the objects in the model. Indeed, the quality model is loaded

by its Root at line 1. As regard this script, we use some variables referring to the

level in the model’s name (e.g., qm0, qm1) to navigate the input models belonging

to different levels. For instance, the expression qm0!EClass.all refers to all the objects

instantiated at level @0 and so on. The loaded quality model contains the definition of the

KPIs or the SocialMetrics or the RiskIndicators, e.g., PM2.5Emissions, or SalesVolume

or PositivesPercentage (see Figure 7.4—models of level @0). At line 2 the package

name used by the model at level @0 is loaded. Meanwhile, at line 3 the operation of

selection retrieves the model at level @1 as a conformance retrieval between the two

levels. Since MultEcore uses String-based annotations for dynamic typing, in this case,

the conformance relationship is persisted without a strongly typed relation like in two-

level modeling. Indeed, at lines 4and 5, we retrieve all the clabjects instantiating the

Metrics at level @1. This operation returns the clabjects for KPIs, RiskIndicators and

SocialMetrics, and whatever is defined at @1 as instance of metric. Then, at lines 7–10

the calculation for the metrics on the subject are applied. After the launch of the script

on the models, we receive as output a message in the console as the one reported on top of

Figure 7.5. The console log proves the dynamic binding of the defined KPIs as instances

of Metrics. The same happens when passing the other models at level @0 in Figure 7.4.

The operation getValue actualizes the value by calculating the defined operation in the

given quality model. This actualization of the result can be inspected directly in the

model by looking at specific values of the metric (see Value class in Figure 7.4).

Chapter 7. Generalizability of the Proposed Framework 112

7.6 Assessment Results Graphical Representation

As already anticipated in Section 7.2 the results of the assessment are reported in graph-

ical dashboards that are based on specific model to code transformation, generating

HTML pages with their embedded Javascript files, as described for the MIKADO data

visualization component in Section 5.2.3. The synchronization happens with the instan-

tiated quality metrics models belonging to the @0 level of the hierarchy (Figure 7.4). In

this way, every time an assessment is performed, the dashboards related to the corre-

sponding subject are automatically updated.

To allow decision-making reasoning, every Metric is equipped with an attribute called

targetvalue that provides the optimum/desired value for the corresponding metric. In-

deed, these values are used also in the graphical representation in order to show how the

subject is performing w.r.t. a specific metric’s target value. In the following, we show

some excerpts of the generated dashboards with the graphical charts representing the

results of the assessments for the three running examples. In particular, the first running

example has been applied on the city of L’Aquila, as drafted in the model in Figure 7.3 at

level @0. The result, reported in the generated gauge (part of the generated dashboard)

in Figure 7.5, shows the KPI PM2.5 emissions and the result of the measurement for

the given smart city, i.e., 32%. In Figure 7.6, we reported the result of the generated

Figure 7.5: Excerpt of the Dashboard evaluating Smart City KPIs.

dashboard for the social impact scenario belonging to the second running example, in

which we assessed the GSSI (Gran Sasso Science Institute), Computer Science depart-

ment, showing that we had an increase of 50% of the sales volume after collaboration.

Eventually, in Figure 7.7, the generated gauge shows the evaluation of the COVID risk

applied on the Abruzzo region as third running example. The percentage of positives

resulted 30% in that specific time of the assessment. These gauges are part of more

Chapter 7. Generalizability of the Proposed Framework 113

Figure 7.6: Excerpt of the Dashboard evaluating Social Impact.

complex dashboards that are automatically generated in sync with the assessed subject

model.

Figure 7.7: Excerpt of the Dashboard evaluating COVID Risk.

It is worth noting that, although the three presented running examples are quite triv-

ial and represent fictional scenarios, in the context of a realistic evaluation with real

data they may contribute in giving a global view about the performance of the evalu-

ated subjects in different applications (e.g., smart cities ranking, pandemic spreading).

For instance, in the context of the first running example, the calculation of the PM2.5

emissions KPI on top of multiple smart cities would allow them to be ranked in terms

of pollution. Moreover, measuring the sales volumes after a collaboration of multiple

departments of a research institute could be helpful for future investments in external

collaborations. This would be of support for the departments, as well as for the institute

itself, to understand their generated impact on the society and knowing where and how

to invest would improve their contribution to the community. Eventually, the calculation

of the percentage of positive tests over multiple regions allowed the monitoring of the

pandemic spread all over the country.

Chapter 7. Generalizability of the Proposed Framework 114

7.7 Discussion

This Chapter showed how exploiting MLM allowed us to apply our assessment frame-

work in different domains from smart cities. Although, the subject of the assessment

and the required measurements were different, they could have been all defined with a

multi-level approach. To this aim, we proposed other two domains upon which apply the

abstracted framework, i.e., research institute social impact and covid-19 risk. To model

the new domains scenarios, we proposed two multi-level models hierarchy, devoted to

the definition of subjects under evaluations and quality metrics. Then, even a refac-

toring in the evaluation engine has been developed in order to enable the navigation of

multi-level hierarchies of models. Eventually, we reported the graphical representation

of the assessment results of the three scenarios taken as running examples from different

domains.

Notwithstanding the proven generalizability of the proposed approach, in the next Chap-

ter we draw some conclusions and we report further extensions of the framework on which

we are already working.

Chapter 8

Conclusions and Future Work

This dissertation has been developed in the context of smart cities assessment. Conse-

quently, we inspected the actual state of the art on the different aspects relating this

context, as discussed in Chapter 3. In particular, we start by analysing the existing

KPIs assessment frameworks, from the perspectives of the process that they implement

and the requirements they should address. Moreover, we give an overview on quality

evaluation systems, by highlighting their limitations and potentialities. Lastly, we per-

formed an analysis about existing approaches dealing with smart cities modeling. From

the analysis of the state of the art we extracted the main research challenges that led the

work presented in this thesis. Specifically, the identified challenges deal with the need of

a uniform way of modeling smart cities and their complexity, to support the need of a

systematic methodology allowing smart cities to define, measure and visualize the KPIs

of interest in order to efficiently assisting the decision-making processes. Such methodol-

ogy should also support (i) KPIs evolution over time w.r.t. the evolution of smart cities

needs and contexts, and (ii) KPIs customization based on the specific smart city under

evaluation, in terms of selection of appropriate KPIs to be calculated. Lastly, we high-

lighted the need to make the systematic assessment methodology generalizable such that

to be applied in the quality assessment of subjects coming from different domains than

the smart cities. To face the extracted research challenges, we proposed a model-based

solution for smart cities KPIs assessment, namely MIKADO. It provides modeling arti-

facts for the definition of smart cities and KPIs in a uniform way, an evaluation engine for

the automatic KPIs calculation and an engine to render their visualization (see Chapter

4). Moreover, we showed how the architecture behind the developed framework is flex-

ible enough to allow different deployment patterns, i.e., standalone, hybrid and online

specifications, and technologies (see Chapter 5). Indeed, by following a hybrid deploy-

ment pattern we extended MIKADO in a service-oriented fashion to enable KPIs data

sources continuous monitoring and runtime up-to-date models (see Section 5.3.1). The

115

Chapter 8. Conclusions and Future Work 116

overall approach has been validated (see Chapter 6) from different perspectives. First,

the feasibility of the approach by applying it on a demonstration case (see Section 6.1).

Moreover, we assessed the understandability of the smart cities and KPIs DSLs through

an experts’ survey (see Section 6.2). Furthermore, we evaluated the performance of the

KPIs calculations execution time w.r.t. scenarios of increasing complexity (see Section

6.3). Lastly, also the service-based continuous KPIs assessment extension has been val-

idated and compared with the standalone version (see Section 5.3.1). The results of

the various evaluations prove not only the feasibility of the approach and its ability of

supporting smart cities comparisons but also a high understandability of both the smart

city and KPIs definition DSL. Furthermore, concerning the performance of the evalu-

ation engine’s execution time, the obtained results highlighted (i) the efficiency of the

evaluation engine execution time, since in every experiment it showed a linear increase;

(ii) promising scalability results, since the system took approximately 5 seconds to assess

800 KPIs over 10 smart cities. Also for the service-based KPIs assessment deployment

of the framework we saw how it enables a continuous KPIs evaluation, by drastically

decreasing (∼88%) the latency contributed by the data retrieving and models update

phases, compared to the baseline framework. Eventually, looking at the commonalities

between the KPIs assessment process implemented by the MIKADO framework, and a

typical quality evaluation process, namely an input subject to be assessed and a set of

quality metrics to calculate over it, we decided to abstract the developed KPIs assess-

ment framework. Specifically, we abstracted MIKADO by exploiting MLM into a QES

applicable in different domains from smart cities (see Chapter 7), by further proving the

domain-independence of our approach. Thus, we showed the feasibility of the MLM ap-

proach by applying it in the assessment of research institutes social impact and Covid-19

risk.

In summary, we report below how the developed model-based approach devoted to KPIs

assessment over smart cities is able to answer to the research questions coming from the

detected challenges of the state of the art and stated in Chapter 1.

RQ1: How smart cities are modeled in the literature?

To answer this RQ, we performed an analysis of the state of the art about smart

cities modeling from which it resulted that most of the modeling approaches only

cover specific aspects of the smart city domain without providing enough abstrac-

tion to model all the smart city dimensions. Consequently, a prominent model kind

did not emerge. Moreover, we found relevant application fields not covered (e.g.,

stakeholders inclusion and communication). Lastly, we found out that the matu-

rity level of the analysed contributions appeared to be low and a scientific reference

community is not emerging. Thus, being aware of the fact that no standards to

Chapter 8. Conclusions and Future Work 117

describe smart cities exist, we defined a new uniform way of modeling smart cities

thanks to a DSL provided both in a textual and graphical semantics. Specifically,

the smart cities DSL we defined, from one side focuses mainly on those aspects

relevant for the KPIs assessment, while from the other side it is easily extensible to

add other aspects required for managing the heterogeneity of smart cities. In this

way, we allow multiple types of users to model a smart city by using an intuitive

language which is also extensible, re-usable and machine readable.

RQ2: How can MDE help in the uniform modeling and automatic assessment of smart

cities?

To answer this RQ besides the analysis of approaches to model smart cities and

the consequent definition of a DSL, we further analysed KPIs guidelines and doc-

umentations. From this analysis we extracted the main structures and concepts

used to describe KPIs. Thanks to the power of abstraction of MDE, we defined an

abstract and textual DSL for KPIs definitions which appeared to be understand-

able by experts with different backgrounds. Moreover, on top of these modeling

artifacts we developed a model interpreter that automatically performs the defined

KPIs calculations. In this way, MDE allowed us to develop a model-based KPIs

assessment framework in which the subject to be evaluated and the metrics to

assess are modeled separately, guaranteeing the right level of SoC. Furthermore, a

code generation process implemented the translation of the evaluated KPIs mod-

els into dynamic graphical dashboards. Specifically, M2T transformations enable

the accessibility of modeling artifacts to a wide range of users. In our case, we

exploited model transformations to dynamically generate intuitive graphical dash-

board to support the KPIs assessment reporting. Still in the MDE technical space,

the models@runtime paradigm can be exploited to enable continuous monitoring

of data sources providing input parameters needed for KPIs calculations. In this

way, models would be constantly updated with up-to-date parameters values and,

consequently, with up-to-date assessed KPIs values. Eventually, also with a view

to future extensions of the MIKADO framework to bring it online, we have seen

that there exist MDE tools (e.g., Eugenia Live1, Xtext2, Epsilon Live3) allowing

to integrate modeling editors on the web browsers.

RQ2.1: How can we efficiently monitor KPIs over time?

To answer this RQ, we inspected the literature to understand how KPIs evolve

over time. On top of this inspection, we defined both the smart city and KPIs

DSLs. The definition of a systematic and uniform way of modeling through

abstract DSLs allowed us to support KPIs evolution, such as the advent of
1 https://github.com/louismrose/eugenia-live 2 https://www.eclipse.org/Xtext/
3 https://github.com/epsilonlabs/playground/

https://github.com/louismrose/eugenia-live
https://www.eclipse.org/Xtext/
https://github.com/epsilonlabs/playground/

Chapter 8. Conclusions and Future Work 118

new parameters or the change of the calculation logic, with few modeling steps

in the smart city and/or KPIs models.

RQ2.2: How can we adequately monitor KPIs for different smart cities?

To answer this RQ, thanks to the abstract DSL, we can define a unique KPIs

model, valid for different smart cities. This does not mean that the KPIs

model is static. On the contrary, it is unique but not univocal because its

structure may change over time and the number of KPIs may change as well

across the different smart cities, to manage both the KPIs evolution and cus-

tomization needs. Moreover, we showed how to apply the KPIs assessment

framework also to other cities than the one proposed as demonstration case,

proving, not only, the flexibility of the approach, but also, its ability of en-

abling smart cities comparisons.

RQ3: To what extent does a model-based smart cities KPIs assessment approach can be

generalized to other subjects of evaluation belonging to different domains?

To answer this RQ, we inspected which are the commonalities between the de-

veloped model-based KPIs assessment process and a typical quality evaluation

process, namely they share the overall objective of assessing a given subject passed

as input, where the assessment is executed on top of a quality definition. Thus,

we abstracted MIKADO by transforming it in a domain-independent QES through

MLM and we further showed that it is generalizable to other subject of evaluation

belonging to different domains. To this aim, we applied the multi-level frame-

work to three running examples, i.e., the smart city KPIs evaluation, the research

institute social impact, and Covid-19 risk assessment.

8.1 Future Work

Although the presented approach already showed promising evaluation results, we discuss

in the following interesting lines for future work dealing with open issues we want to face

in the future. First, since smart cities benchmarking is often used to produce rankings,

we plan to further extend MIKADO with specific features enabling Smart Cities Ranking.

The generated graphical dashboards can be used to enable comparisons between different

smart cities. Thus, we want to integrate graphical functionalities to further allow smart

cities rankings showing their level of smartness by defining the same set of KPIs against

which to assess a set of smart cities. Moreover, since the modeling tools composing

the proposed approach can also be used by the smart governance to generate predictive

and descriptive models of the city, we want to exploit the framework also for simulation

activities like, for instance, to evaluate the impact of planned changes on the KPIs

Chapter 8. Conclusions and Future Work 119

for the city. Thus, we plan to add features enabling not only Simulations but also to

observe KPIs Interrelations. Eventually, besides the comparison with other cities, also

the comparison with values related to different periods of time on the same city would

be interesting. In this way, an overview of the trends of the different KPIs calculated

over the city would be available for consultations. This could be further supported, for

instance, by integrating some existing tools to support versioning of Historical Smart

Cities and KPIs Models, e.g., TemporalEMF [105], in order to monitor the evolving

indicators.

Besides this planned future work, we are already working on some extensions of the

MIKADO framework to face its limitations, such as its dependency on the Eclipse IDE

and the lack of traceability of ethical concerns in KPIs assessment processes. In the fol-

lowing sub-sections, we give more details about the extensions on which we are working.

8.1.1 Leveraging Models@Runtime in a Digital Twin perspective

In this section we report an extension of the proposed framework on which we are cur-

rently working, representing the online deployment of the flexible architecture presented

in Section 5.1, i.e., where every component is deployed online. We decided to move

forward an online deployment of MIKADO to overcome the typical limitations of a stan-

dalone implementation, such as the need for constant updates, implying the involvement

of the user in the download and check of new versions of the entire bundle every time a

new update is released. Furthermore, the Eclipse platform can be counter-intuitive for

non-expert users using it for the first time due to possible issues with the host OS and

the setup and settings. Moreover, we decided to deploy an online version of MIKADO in

a digital twin perspective. A digital twin (DT) is a virtual model designed to reflect

a physical entity, that may be used to represent a subject system for multiple pur-

poses [106]. The concept of digital twins has been also applied to smart cities, coining

the term “Urban Digital Twin" [107]. Indeed, smart cities continuously produce data

that can be used as real-time feeding of the digital twin representation which can be the

subject of our KPIs evaluation framework. Thus, we want to exploit distributed runtime

models to implement and deploy a service-based quality evaluation system for smart

cities represented as urban digital twins. To this aim, our plan is to further extend the

smart cities assessment tool presented in this dissertation, by exploiting and combining

models@runtime and urban digital twins. Specifically, we want to develop an evolution

of the KPIs assessment framework based on (micro)services, i.e., MIKADO@runtime.

We use the microservices term when referring to the distributed deployment of the new

tool, where each provided service implements one single functionality. Furthermore, in

last few years multiple cloud-based solutions have been proposed to avoid client-side

Chapter 8. Conclusions and Future Work 120

installations, e.g., Eclipse Theia4, Epsilon Playground5. These technologies also avoid

possible compatibility problems and support sustainability, with an efficient use of dis-

tributed resources [108]. It is worth noting that the existing digital twins platforms are

mostly business-oriented solutions, proprietary, and general purpose not offering sup-

port for modeling specific domains, e.g., smart cities. Basically, we are working on the

realization of an Urban DT Low-Code Development Platform (LCPD) exploiting the

paradigm of models@runtime and (micro)services for a quality evaluation system for

smart cities represented as urban digital twins. The refactored architecture will allow for

efficient urban digital twins through continuous evolution of the twins without the need

for redeployment.

8.1.2 Supporting Ethics Risk Traceability in Quality Assessment

In this section we report another extension on which we are currently working dealing

with the traceability of ethical concerns in KPIs assessment processes. The motivations

behind this extension rely on the fact that ethical risks in KPIs evaluation are often

hidden in the KPIs definition and experts will get the results without considering them.

Moreover, detect ethical risks in an evaluated KPI is not trivial since ethical issues may

be not directly linked to the KPI itself. To the contrary, they may be generated from

the parameters used to calculate the KPI and/or from the sources of these parameters.

Unintentionally, a non-expert operator can run into malicious sources or simply lack the

necessary knowledge to identify ethical issues about used data. Specifically, the KPIs are

calculated by assembling and aggregating input parameters retrieved from data sources

that may suffer from both trustworthiness and ethical issues as the concerns of security,

human privacy, and discrimination. For instance, the KPI Air Pollution (see Section 6.1)

may give rise to human security concerns, since the collection of air quality data (i.e.,

pollutants measured concentrations) from malicious data sources may wrongly influence

people about the choice of going to certain areas of the city [109], putting their health

at risk. Procedures and standards, as well as policies and decisions that could represent

a perceived violation of an ethical value should be highlighted when KPIs results are

proposed to stakeholders. Often KPIs experts are not considering ethical aspects, when

defining the KPIs, also because the role and expertise of a KPIs expert may not coincide

with Ethical background.

With these premises, we highlight the importance of involving Ethics Experts in the

KPIs assessment process of smart cities. This is essential because of both the ethical

issues that may arise, and the credibility issues that the governance of a smart city may

consequently occur, in the context of a transparent government. To this aim, we want
4 https://theia-ide.org/ 5 https://www.eclipse.org/epsilon/live/

https://theia-ide.org/
https://www.eclipse.org/epsilon/live/

Chapter 8. Conclusions and Future Work 121

Figure 8.1: KPIs assessment process and involved roles.

to extend MIKADO to alert the involved stakeholders when the evaluated KPIs may

suffer from ethical problems, through specific highlights in the automatically generated

dashboards. To better support this process and overcome these limitations, we want to

develop a traceability mechanism that can help to understand better KPIs which can

be affected by ethical aspects. This could help the KPIs expert to re-design the KPI

definition and data sources and to better position the result of a KPI when highlighted

with ethical risk. In particular, we want to extend the KPIs assessment process by

including an analysis of selected KPIs, used parameters, and data sources, performed

by an ethics expert and concerning ethical and trustworthiness issues. The conceptual

representation of our solution, including all the involved roles, is sketched in Figure 8.1.

Here, we can see how we plan to extend MIKADO with a sub-process (in grey in Figure

8.1) enabling the highlighting of potential ethical issues corresponding to the evaluated

KPIs. This additional analysis involves an Ethics Expert and it triggers, in turn, an

iteration of the KPIs assessment by exploiting new data sources for the parameters

retrieval, with the final objective of removing possibly any ethical issues associated with

the considered KPIs.

Bibliography

[1] Maria Teresa Rossi, Martina De Sanctis, Ludovico Iovino, and Manuel Wimmer.

A systematic mapping study on smart cities modeling approaches. Software &

Systems Modeling, 2022. Submitted.

[2] Martina De Sanctis, Ludovico Iovino, Maria Teresa Rossi, and Manuel Wim-

mer. MIKADO – A Smart City KPIs Assessment Modeling Framework. Soft-

ware & Systems Modeling, 2021. URL https://link.springer.com/article/10.1007/

s10270-021-00907-9.

[3] Martina De Sanctis, Ludovico Iovino, Maria Teresa Rossi, and Manuel Wimmer. A

flexible architecture for the key performance indicators assessment in smart cities.

In Proceedings of the 14th European Conference on Software Architecture (ECSA),

2020.

[4] Francesco Basciani, Maria Teresa Rossi, and Martina De Sanctis. Supporting

smart cities modeling with graphical and textual editors. In Proceedings of the

1st International Workshop on Modeling Smart Cities (MoSC), 2020.

[5] Martina De Sanctis, Ludovico Iovino, Maria Teresa Rossi, and Manuel Wimmer.

Weaving open services with runtime models for continuous smart cities kpis as-

sessment. In The 19th International Conference on Service-Oriented Computing,

ICSOC, 2021.

[6] Maria Teresa Rossi, Martina Dal Molin, Ludovico Iovino, Martina De Sanctis, and

Manuel Wimmer. Leveraging multi-level modeling for multi-domain quality assess-

ment. In MULTI 2021, The 8th International Workshop on Multi-Level Modelling

@MODELS 2021, 2021.

[7] International Telecommunication Union (ITU). Collection Methodol-

ogy for Key Performance Indicators for Smart Sustainable Cities, 2017.

https://www.unece.org/fileadmin/DAM/hlm/documents/Publications/

U4SSC-CollectionMethodologyforKPIfoSSC-2017.pdf.

122

https://link.springer.com/article/10.1007/s10270-021-00907-9
https://link.springer.com/article/10.1007/s10270-021-00907-9
https://www.unece.org/fileadmin/DAM/hlm/documents/Publications/U4SSC-CollectionMethodologyforKPIfoSSC-2017.pdf
https://www.unece.org/fileadmin/DAM/hlm/documents/Publications/U4SSC-CollectionMethodologyforKPIfoSSC-2017.pdf

Bibliography 123

[8] Juan de Lara and Esther Guerra. Refactoring multi-level models. ACM Transac-

tions on Software Engineering and Methodology (TOSEM), 27:1 – 56, 2018.

[9] Umberto Rosati and Sergio Conti. What is a smart city project? an urban model

or a corporate business plan? Procedia - Social and Behavioral Sciences, 223:

968 – 973, 2016. doi: https://doi.org/10.1016/j.sbspro.2016.05.332. URL http:

//www.sciencedirect.com/science/article/pii/S1877042816304128.

[10] European Commission. Europe 2020 A European strategy for smart, sustainable

and inclusive growth, March 2010.

[11] Catarina Selada, Carla Silva and Ana Luísa Almeida INTELI – Inteligência em In-

ovação, Centro de Inovação. Urban Indicators and the Smart City Agenda, 2016.

Available at: https://pocacito.eu/sites/default/files/POCACITO_PolicyBrief_

No-5_Urban_Indicators_1612.pdf.

[12] Science Communication Unit, UWE, Bristol. Science for Environment Policy. In-

dicators for sustainable cities, April 2018. In-depth Report 12. Produced for the

European Commission DG Environment. Available at: https://bit.ly/3aMjgMK.

[13] Peter Bosch, Sophie Jongeneel, Vera Rovers, Hans-Martin Neumann, Miimu

Airaksinen, and Aapo Huovila. Citykeys indicators for smart city projects and

smart cities, 2017. Available at: https://nws.eurocities.eu/MediaShell/media/

CITYkeystheindicators.pdf.

[14] Saverio Romeo, Mario Di Gregorio, Ubaldo Alfonso, Anna Tozzi, Francesco Tar-

quini, and Federica Tomassoni. Digital cities challenge - assessment report for the

city of l’aquila, 2019. Available at: https://bit.ly/32YBgiC.

[15] Motoei Azuma. Software products evaluation system: quality models, metrics and

processes—International Standards and Japanese practice. Information and Soft-

ware Technology, 38(3):145–154, 1996. doi: https://doi.org/10.1016/0950-5849(95)

01069-6.

[16] Minako Hara, Tomomi Nagao, Shinsuke Hannoe, and Jiro Nakamura. New key

performance indicators for a smart sustainable city. Sustainability, 8(3):206, 2016.

[17] Markus Luckey, Martin Erwig, and Gregor Engels. Systematic evolution of model-

based spreadsheet applications. Journal of Visual Languages & Computing, 23:

267–286, 10 2012.

[18] Enrico Ferro, Brunella Caroleo, Maurizio Leo, Michele Osella, and Elisa Pautasso.

The Role of ICT in Smart City Governance. In Proceedings of the International

Conference for e-Democracy and Open Government (CeDEM), 2013.

http://www.sciencedirect.com/science/article/pii/S1877042816304128
http://www.sciencedirect.com/science/article/pii/S1877042816304128
https://pocacito.eu/sites/default/files/POCACITO_PolicyBrief_No-5_Urban_Indicators_1612.pdf
https://pocacito.eu/sites/default/files/POCACITO_PolicyBrief_No-5_Urban_Indicators_1612.pdf
https://bit.ly/3aMjgMK
https://nws.eurocities.eu/MediaShell/media/CITYkeystheindicators.pdf
https://nws.eurocities.eu/MediaShell/media/CITYkeystheindicators.pdf
https://bit.ly/32YBgiC

Bibliography 124

[19] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software En-

gineering in Practice, Second Edition. Morgan & Claypool Publishers, 2017.

[20] Francisca Rosique, Fernando Losilla, and Juan Angel Pastor. A domain specific

language for smart cities. In Proceedings of the 4th International Electronic Con-

ference on Sensors and Applications, 2018.

[21] Mohammad Abu-Matar. Towards a software defined reference architecture for

smart city ecosystems. In Proceedings of the IEEE International Smart Cities

Conference (ISC2), pages 1–6, 2016.

[22] Martin Fowler. Domain-specific languages. Pearson Education, 2010.

[23] Fernando Macías. Multilevel modelling and domain-specific languages, 2020. URL

https://arxiv.org/abs/1910.03313.

[24] ITU-T Focus Group on Smart Sustainable Cities. Smart sustainable cities: An

analysis of definitions, 2014. Available at: https://bit.ly/324U929.

[25] Taewoo Nam and Theresa A. Pardo. Conceptualizing smart city with dimensions

of technology, people, and institutions. In Proceedings of the 12th Annual Interna-

tional Digital Government Research Conference: Digital Government Innovation

in Challenging Times, pages 282–291, 2011.

[26] Boyd Cohen. Methodology for 2014 smart cities bench-

marking, 2014. URL https://www.fastcompany.com/3038818/

the-smartest-cities-in-the-world-2015-methodology.

[27] Ulrike Gretzel, Marianna Sigala, Zheng Xiang, and Chulmo Koo. Smart tourism:

foundations and developments. Electronic Markets, 25, 08 2015. doi: 10.1007/

s12525-015-0196-8.

[28] Antoni Ballesté, Pablo Pérez-Martínez, and Agusti Solanas. The pursuit of citizens’

privacy: A privacy-aware smart city is possible. IEEE Communications Magazine,

51, 06 2013. doi: 10.1109/MCOM.2013.6525606.

[29] Julien Carbonnell. Smart-city: Stakeholders roles and

needs., 2019. URL https://juliencarbonnell.medium.com/

smart-city-stakeholders-roles-and-needs-8e3679764d2a.

[30] Hans Jochen Scholl and Margit Christa Scholl. Smart governance: A roadmap for

research and practice. In iConference 2014 Proceedings, pages 163—-176, 2014.

[31] Gabriela Vialea Pereira, Petera Parycek, Enzoc Falco, and Reinoutc Kleinhans.

Smart governance in the context of smart cities: A literature review. Information

Polity, 23(2):143–162, 2018.

https://arxiv.org/abs/1910.03313
https://bit.ly/324U929
https://www.fastcompany.com/3038818/the-smartest-cities-in-the-world-2015-methodology
https://www.fastcompany.com/3038818/the-smartest-cities-in-the-world-2015-methodology
https://juliencarbonnell.medium.com/smart-city-stakeholders-roles-and-needs-8e3679764d2a
https://juliencarbonnell.medium.com/smart-city-stakeholders-roles-and-needs-8e3679764d2a

Bibliography 125

[32] Dewi Mutiara, Siti Yuniarti, and Bambang Pratama. Smart governance for smart

city. IOP Conf. Series: Earth and Environmental Science, 126:012–073, 2018.

[33] Nuno Vasco Lopes. Smart governance: A key factor for smart cities implemen-

tation. In 2017 IEEE International Conference on Smart Grid and Smart Cities

(ICSGSC), pages 277–282, July 2017.

[34] Minako Hara, Tomomi Nagao, Shinsuke Hannoe, and Shinsuke Nakamura. New

Key Performance Indicators for a Smart Sustainable City. Sustainability, 206(8),

2016.

[35] José P. Miguel, David Mauricio, and Glen Rodríguez. A review of software quality

models for the evaluation of software products. International Journal of Software

Engineering & Applications, 5(6):31–53, nov 2014. doi: 10.5121/ijsea.2014.5603.

URL https://doi.org/10.5121%2Fijsea.2014.5603.

[36] Oleksandr Gordieiev, Vyacheslav Kharchenko, Nataliia Fominykh, and Vladimir

Sklyar. Evolution of Software Quality Models in Context of the Standard ISO

25010. In Proceedings of the Ninth International Conference on Dependability and

Complex Systems (DepCoS-RELCOMEX), pages 223–232. Springer, 2014.

[37] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software En-

gineering in Practice. Synthesis Lectures on Software Engineering. Morgan & Clay-

pool Publishers, 2012.

[38] Douglas C. Schmidt. Model-driven engineering. COMPUTER-IEEE COMPUTER

SOCIETY, 2006.

[39] Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how to develop

domain-specific languages. ACM computing surveys (CSUR), 37(4):316–344, 2005.

[40] Dennis Wagelaar. Composition techniques for rule-based model transformation

languages. In International Conference on Theory and Practice of Model Trans-

formations, pages 152–167. Springer, 2008.

[41] Jesús Sánchez Cuadrado and Jesús García Molina. Approaches for model trans-

formation reuse: Factorization and composition. In International Conference on

Theory and Practice of Model Transformations, pages 168–182. Springer, 2008.

[42] S. Sendall and W. Kozaczynski. Model transformation: the heart and soul of

model-driven software development. IEEE Software, 20(5):42–45, 2003. doi: 10.

1109/MS.2003.1231150.

https://doi.org/10.5121%2Fijsea.2014.5603

Bibliography 126

[43] Deniz Cetinkaya and Alexander Verbraeck. Metamodeling and model transforma-

tions in modeling and simulation. In Proceedings of the 2011 Winter Simulation

Conference (WSC), pages 3043–3053, 2011. doi: 10.1109/WSC.2011.6148005.

[44] Margarida Afonso, Regis Vogel, and Jose Teixeira. From code centric to model

centric software engineering: practical case study of mdd infusion in a systems inte-

gration company. In Fourth Workshop on Model-Based Development of Computer-

Based Systems and Third International Workshop on Model-Based Methodologies

for Pervasive and Embedded Software (MBD-MOMPES’06), pages 10 pp.–134,

2006.

[45] Juan De Lara, Esther Guerra, and Jesús Sánchez Cuadrado. When and how to

use multilevel modelling. ACM Trans. Softw. Eng. Methodol., 24(2), 2014. ISSN

1049-331X. doi: 10.1145/2685615.

[46] Colin Atkinson and Thomas Kühne. Reducing accidental complexity in do-

main models. Software & Systems Modeling, 7(3):345–359, Jul 2008. ISSN

1619-1374. doi: 10.1007/s10270-007-0061-0. URL https://doi.org/10.1007/

s10270-007-0061-0.

[47] J De Lara, E Guerra, and Jesús Sánchez Cuadrado. When and how to use multilevel

modelling. ACM Transactions on Software Engineering and Methodology, 24:1–46,

2014.

[48] Colin Atkinson and Thomas Kühne. The essence of multilevel metamodeling. In

Martin Gogolla and Cris Kobryn, editors, Proceedings of the International Confer-

ence on the Unified Modeling Language (UML), pages 19–33. Springer, 2001.

[49] Nelly Bencomo, Robert B France, Betty HC Cheng, and Uwe Aßmann. Models@

run. time: foundations, applications, and roadmaps, volume 8378. Springer, 2014.

[50] Hui Song, Gang Huang, Franck Chauvel, and Yanshun Sun. Applying MDE

Tools at Runtime: Experiments upon Runtime Models. In Nelly Becomo, Gor-

don Blair, and Franck Fleurey, editors, Proceedings of the 5th International

Workshop on Models at Run Time, Oslo, Norway, October 2010. URL https:

//hal.inria.fr/inria-00560785. to be published.

[51] Nicolas Ferry and Arnor Solberg. Models@Runtime for Continuous Design and

Deployment, pages 81–94. 12 2017. ISBN 978-3-319-46030-7. doi: 10.1007/

978-3-319-46031-4_9.

[52] Microsoft Research. Key Performance Indicators (KPIs) in Power Pivot, 2019.

https://bit.ly/37EFR9r.

https://doi.org/10.1007/s10270-007-0061-0
https://doi.org/10.1007/s10270-007-0061-0
https://hal.inria.fr/inria-00560785
https://hal.inria.fr/inria-00560785
https://bit.ly/37EFR9r

Bibliography 127

[53] ITU-T Focus Group on Smart Sustainable Cities. Key performance indicators

related to the sustainability impacts of information and communication technology

in smart sustainable cities, March 2015.

[54] Angeliki Kylili, Paris A. Fokaides, and Petra Amparo Lopez Jimenez. Key perfor-

mance indicators (kpis) approach in buildings renovation for the sustainability of

the built environment: A review. Renewable and Sustainable Energy Reviews, 56:

906–915, 2016. ISSN 1364-0321. doi: https://doi.org/10.1016/j.rser.2015.11.096.

URL https://www.sciencedirect.com/science/article/pii/S1364032115013635.

[55] Patrick Hester, Barry Ezell, Andrew Collins, John Horst, and Kaleen Lawsure. A

method for key performance indicator assessment in manufacturing organizations.

International Journal of Operations Research, 14:157–167, 11 2017.

[56] Dhanya Jothimani and S.P. Sarmah. Supply chain performance measurement of

third party logistics. Benchmarking An International Journal, 21:944–963, 09 2014.

doi: 10.1108/BIJ-09-2012-0064.

[57] Rui Abreu, Jácome Cunha, João Fernandes, Pedro Martins, Alexandre Perez, and

Joao Saraiva. Smelling Faults in Spreadsheets. In Proceedings of the 30th In-

ternational Conference on Software Maintenance and Evolution (ICSME), pages

111–120, 2014.

[58] Dietmar Jannach, Thomas Schmitz, and Konstantin Schekotihin. Toward inter-

active spreadsheet debugging. In Proceedings of the First Workshop on Software

Engineering Methods in Spreadsheets, pages 3–6, 2014.

[59] Jácome Cunha, João Fernandes, Jorge Mendes, and Joao Saraiva. Embedding,

evolution, and validation of model-driven spreadsheets. IEEE Transactions on

Software Engineering, 41:241–263, 03 2015.

[60] Sarah Barns. Smart cities and urban data platforms: Designing interfaces for smart

governance. City, Culture and Society, 12:5–12, 2018.

[61] Carlo A Curino, Hyun J Moon, and Carlo Zaniolo. Graceful database schema

evolution: the prism workbench. Proceedings of the VLDB Endowment, 1(1):761–

772, 2008.

[62] Vaia Moustaka, Antonis Maitis, Athena Vakali, and Leonidas Anthopoulos.

CityDNA Dynamics: A Model for Smart City Maturity and Performance Bench-

marking. In Proc. of the 6th Int. Workshop: Web Intelligence and Smart Cities,

2020. doi: 10.1145/3366424.3386584.

https://www.sciencedirect.com/science/article/pii/S1364032115013635

Bibliography 128

[63] ISO 37120:2014. Sustainable development of communities — Indicators for city

services and quality of life, 2018. https://www.iso.org/standard/62436.html.

[64] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso Pierantonio.

Supporting the understanding and comparison of low-code development platforms.

In 46th Euromicro Conference on Software Engineering and Advanced Applications

(SEAA), pages 171–178, 2020. doi: 10.1109/SEAA51224.2020.00036.

[65] Davide Di Ruscio, Dimitrios S. Kolovos, Juan de Lara, Alfonso Pierantonio, Mas-

simo Tisi, and Manuel Wimmer. Low-code development and model-driven engi-

neering: Two sides of the same coin? Softw. Syst. Model., 21(2):437–446, 2022.

[66] Javier García-Munoz, Marisol García-Valls, and Julio Escribano-Barreno. Im-

proved metrics handling in SonarQube for software quality monitoring. In Proceed-

ings of the 13th International Conference on Distributed Computing and Artificial

Intelligence (DCAI), pages 463–470. Springer, 2016.

[67] Francesco Basciani, Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino, and Alfonso

Pierantonio. A tool-supported approach for assessing the quality of modeling arti-

facts. Journal of Computer Languages, 51:173–192, 2019.

[68] Marcel F van Amstel and MGJ van den Brand. Quality assessment of ATL model

transformations using metrics. In Proceedings of the 2nd International Workshop

on Model Transformation with ATL (MtATL), 2010.

[69] Tamás Ambrus and Melinda Tóth. Tool to Measure and Refactor Complex UML

Models. In Proceedings of the Fifth Workshop on Software Quality Analysis, Mon-

itoring, Improvement, and Applications (SQAMIA), 2016.

[70] Mario Cardarelli, Ludovico Iovino, Paolo Di Francesco, Amleto Di Salle, Ivano

Malavolta, and Patricia Lago. An extensible data-driven approach for evaluating

the quality of microservice architectures. In Proceedings of the 34th ACM/SIGAPP

Symposium on Applied Computing, pages 1225–1234, 2019.

[71] Rini Van Solingen, Vic Basili, Gianluigi Caldiera, and H Dieter Rombach. Goal

Question Metric (GQM) approach. Encyclopedia of software engineering, 2002.

[72] D. Samadhiya, Su-Hua Wang, and Dengjie Chen. Quality models: Role and value

in software engineering. In Proceedings of the 2nd International Conference on

Software Technology and Engineering (ICSTE), pages 320–324, 2010.

[73] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner. Software quality

models: Purposes, usage scenarios and requirements. In Proceedings of the ICSE

Workshop on Software Quality, pages 9–14, 2009.

https://www.iso.org/standard/62436.html

Bibliography 129

[74] Monia Anzivino, Flavio A Ceravolo, and Michele Rostan. The two dimensions of

italian academics’ public engagement. Higher Education, 82(1):107–125, 2021.

[75] Lorenzo Compagnucci and Francesca Spigarelli. The third mission of the univer-

sity: A systematic literature review on potentials and constraints. Technological

Forecasting and Social Change, 161:120284, 2020.

[76] Birgitte Gregersen, Lisbeth Tved Linde, and Jorgen Gulddahl Rasmussen. Linking

between danish universities and society. Science and public policy, 36(2):151–156,

2009.

[77] Juan Piñeiro-Chousa, Aleksandar Šević, and Isaac González-López. Impact of

social metrics in decentralized finance. Journal of Business Research, 158:113673,

2023. ISSN 0148-2963. doi: https://doi.org/10.1016/j.jbusres.2023.113673. URL

https://www.sciencedirect.com/science/article/pii/S0148296323000310.

[78] Marjan Mernik, Jan Heering, and Anthony Sloane. When and how to develop

domain-specific languages. ACM Comput. Surv., 37:316–344, 2005.

[79] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. System-

atic mapping studies in software engineering. In 12th International Conference

on Evaluation and Assessment in Software Engineering, EASE 2008, University

of Bari, Italy, 26-27 June 2008, Workshops in Computing. BCS, 2008. URL

http://ewic.bcs.org/content/ConWebDoc/19543.

[80] Dennis Wagelaar, Ludovico Iovino, Davide Di Ruscio, and Alfonso Pierantonio.

Translational semantics of a co-evolution specific language with the emf transfor-

mation virtual machine. In Proceedings of the International Conference on Theory

and Practice of Model Transformations (ICMT), pages 192–207. Springer, 2012.

[81] Tihamer Levendovszky, Daniel Balasubramanian, Anantha Narayanan, and Gabor

Karsai. A novel approach to semi-automated evolution of DSML model trans-

formation. In Proceedings of the International Conference on Software Language

Engineering (SLE), pages 23–41. Springer, 2009.

[82] Michael Szvetits and Uwe Zdun. Systematic literature review of the objectives,

techniques, kinds, and architectures of models at runtime. Software & Systems

Modeling, 15(1):31–69, 2016.

[83] Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio. What is needed

for managing co-evolution in mde? In Int. Workshop on Model Comparison in

Practice, page 30–38. ACM, 2011.

https://www.sciencedirect.com/science/article/pii/S0148296323000310
http://ewic.bcs.org/content/ConWebDoc/19543

Bibliography 130

[84] E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. L. Traon. Metamodel-based

test generation for model transformations: an algorithm and a tool. In Int. Symp.

on Software Reliability Engineering, pages 85–94, 2006.

[85] Dimitrios S Kolovos, Richard F Paige, Tim Kelly, and Fiona AC Polack. Require-

ments for domain-specific languages. In Workshop on Domain-Specific Program

Development, 2006.

[86] Pedram Veisi and Eleni Stroulia. AHL: Model-Driven Engineering of Android

Applications with BLE Peripherals. In Int. Conf. on E-Technologies, pages 56–74.

Springer, 2017.

[87] Lorenzo Bettini. Implementing domain-specific languages with Xtext and Xtend.

Packt Publishing, 2016.

[88] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. The Epsilon Object

Language (EOL). In European Conf. on Model Driven Architecture-Foundations

and Applications, pages 128–142. Springer, 2006.

[89] Alfonso de la Vega Dimitris Kolovos and Justin Cooper. Efficient generation of

graphical model views via lazy model-to-text transformation. In Proceedings of

the 23rd ACM/IEEE International Conference on Model-Driven Engineering, Lan-

guages and Systems (MODELS), 2020.

[90] Louis M Rose, Richard F Paige, Dimitrios S Kolovos, and Fiona AC Polack. The

Epsilon Generation Language. In Proceedings of the European Conference on

Model Driven Architecture-Foundations and Applications (ECMFA), pages 1–16.

Springer, 2008.

[91] V. Viyović, M. Maksimović, and B. Perisić. Sirius: A rapid development of dsm

graphical editor. In Int. Conf. on Intelligent Engineering Systems (INES), pages

233–238, 2014.

[92] Roger A Light. Mosquitto: server and client implementation of the MQTT proto-

col. Journal of Open Source Software, 2(13):265, 2017.

[93] Louis M Rose, Dimitrios S Kolovos, and Richard F Paige. Eugenia live: a flexible

graphical modelling tool. In Extreme Modeling Workshop, pages 15–20, 2012.

[94] Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio. Col-

laborative repositories in model-driven engineering. IEEE Software, 32:28–34, 2015.

[95] Francesco Basciani, Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino, and Al-

fonso Pierantonio. Model repositories: Will they become reality? In Cloud-

MDE@MoDELS, 2015.

Bibliography 131

[96] Jean-Marc Jézéquel, Olivier Barais, and Franck Fleurey. Model driven language

engineering with kermeta. In Generative and Transformational Techniques in Soft.

Eng. IV: Int. Summer School, pages 201–221. Springer, 2009.

[97] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and Christian

Wende. Model-based language engineering with emftext. In Generative and Trans-

formational Techniques in Soft. Eng. IV: Int. Summer School, pages 322–345.

Springer, 2013.

[98] Christof Strauch, Ultra-Large Scale Sites, and Walter Kriha. NoSQL databases.

Lecture Notes, Stuttgart Media University, 20:24, 2011.

[99] Baikuntha Narayan Biswal, Pragyan Nanda, and Durga Prassad Mohapatra. A

novel approach for scenario-based test case generation. In 2008 International Con-

ference on Information Technology, pages 244–247. IEEE, 2008.

[100] Dimitrios S. Kolovos, Louis M. Rose, Nicholas Drivalos Matragkas, Richard F.

Paige, Esther Guerra, Jesús Sánchez Cuadrado, Juan de Lara, István Ráth, Dániel

Varró, Massimo Tisi, and Jordi Cabot. A research roadmap towards achieving

scalability in model driven engineering. In Davide Di Ruscio, Dimitris S. Kolovos,

and Nicholas Matragkas, editors, Proceedings of the Workshop on Scalability in

Model Driven Engineering. ACM, 2013.

[101] Ian Sommerville. Software engineering, 8th Edition. Addison-Wesley, 2007. ISBN

9780321313799.

[102] Ministero della Salute. Tabella 21 indicatori, 2020. https://www.salute.gov.it/

imgs/C_17_notizie_5152_1_file.pdf.

[103] Fernando Macías, Adrian Rutle, and Volker Stolz. MultEcore: Combining the

Best of Fixed-Level and Multilevel Metamodelling. In Proceedings of the 3rd In-

ternational Workshop on Multi-Level Modelling (MULTI), volume 1722 of CEUR

Workshop Proceedings, pages 66–75, 2016.

[104] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. The Epsilon Trans-

formation Language. In Proceedings of the International Conference on Theory and

Practice of Model Transformations (ICMT), pages 46–60. Springer, 2008.

[105] Abel Gómez, Jordi Cabot, and Manuel Wimmer. TemporalEMF: A temporal meta-

modeling framework. In Proceedings of the International Conference on Conceptual

Modeling (ER), pages 365–381. Springer, 2018.

[106] Dirk Hartmann and Herman Van der Auweraer. Digital twins. In Manuel Cruz,

Carlos Parés, and Peregrina Quintela, editors, Progress in Industrial Mathematics:

https://www.salute.gov.it/imgs/C_17_notizie_5152_1_file.pdf
https://www.salute.gov.it/imgs/C_17_notizie_5152_1_file.pdf

Bibliography 132

Success Stories, pages 3–17, Cham, 2021. Springer International Publishing. ISBN

978-3-030-61844-5.

[107] Fabian Dembski, Uwe Wössner, Mike Letzgus, Michael Ruddat, and Claudia Yamu.

Urban digital twins for smart cities and citizens: The case study of herrenberg,

germany. Sustainability, 12(6):2307, 2020.

[108] Felipe Albertao, Jing Xiao, Chunhua Tian, Yu Lu, Kun Qiu Zhang, and Cheng Liu.

Measuring the sustainability performance of software projects. In 2010 IEEE 7th

International Conference on E-Business Engineering, pages 369–373. IEEE, 2010.

[109] Francesca Righetti, Carlo Vallati, and Giuseppe Anastasi. Iot applications in smart

cities: A perspective into social and ethical issues. In 2018 IEEE International

Conference on Smart Computing (SMARTCOMP), pages 387–392, 2018. doi: 10.

1109/SMARTCOMP.2018.00034.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Thesis Context
	1.2 Problem and Challenges
	1.3 Research Questions and Solution Overview
	1.4 Research Activities and Publications
	1.4.1 Research Publications
	1.4.2 Other Publications

	1.5 Tools & Demo
	1.6 Thesis Outline

	2 Background
	2.1 The Smart City Domain
	2.1.1 Smart Governance

	2.2 Quality Evaluation Systems
	2.3 Model-Driven Engineering
	2.3.1 Multi-level Modeling
	2.3.2 Models@Runtime

	2.4 Discussion

	3 State of the Art and Motivation
	3.1 Smart Cities Evaluation through KPIs
	3.1.1 KPIs Assessment Frameworks
	Manual approaches.
	Spreadsheets-based approaches.
	Web-based platforms.

	3.1.1.1 Requirements Perspective
	3.1.1.2 Process Perspective

	3.2 Quality Evaluation Systems
	3.3 Modeling Smart Cities
	3.3.1 Smart Cities Modeling Approaches Review: Main Findings
	Problem Domain.
	Solution Domain.
	Scientific Community Domain.

	3.4 Research Challenges
	3.5 Discussion

	4 MIKADO– a Smart City KPIs Assessment Modeling Framework
	4.1 Motivating Scenario: Smart Decision-Making
	4.2 The MIKADO Approach
	4.2.1 Smart Cities Metamodel
	4.2.2 Key Performance Indicators Metamodel
	4.2.3 KPIs Assessment
	4.2.4 KPIs Reporting

	4.3 Supporting KPIs evolution
	4.4 Discussion

	5 Architecture and Implementation
	5.1 MIKADO Flexible Architecture
	5.2 Standalone Deployment Implementation
	5.2.1 Modeling Component
	5.2.2 Analysis Component
	5.2.3 Data Visualization Component

	5.3 Hybrid Deployment Implementation
	5.3.1 Weaving Open Services with Runtime Models for Continuous Smart Cities KPIs Assessment
	5.3.2 Runtime Models Update by Continuous Monitoring

	5.4 Online Deployment Specification
	5.5 Discussion

	6 Evaluation Results
	6.1 Demonstration Case
	6.1.1 Selection of Real-World KPIs
	6.1.2 Modeling of KPIs Definitions
	6.1.3 Modeling of Smart Cities
	6.1.4 KPIs Assessment through the Evaluation Engine
	6.1.5 KPIs Visualization through Dashboards Generation
	6.1.6 Supporting Smart Cities Comparison
	6.1.7 Supporting Smart Cities and KPIs Evolution

	6.2 Understandability of MIKADO's DSLs
	6.2.1 Survey Setup and Execution
	6.2.2 Survey Results
	Threats to validity.

	6.3 Performance of the MIKADO Framework
	6.3.1 Scalability of the Evaluation Engine
	Experiment Setup.
	Experiment Results.

	6.3.2 Empowering of the Evaluation Engine
	Experiment Setup.
	Experiment Results.

	6.3.3 Threats to validity

	6.4 Latency Analysis of Service-based Continuous KPIs Assessment
	Experiment Setup.
	Results for RQ1.
	Results for RQ2.
	Threats to validity.

	6.5 Discussion

	7 Generalizability of the Proposed Framework
	7.1 Motivations
	7.2 Bringing MIKADO to Multilevel
	7.2.1 Leveraging Multi-Level Modeling for Multi-Domain Quality Assessment
	7.2.2 Running Examples
	Smart City KPIs evaluation.
	Research Institute Social Impact.
	Covid-19 Risk.

	7.3 Subjects Definition
	7.4 Quality Metrics Definition
	7.5 QES engine
	7.6 Assessment Results Graphical Representation
	7.7 Discussion

	8 Conclusions and Future Work
	8.1 Future Work
	8.1.1 Leveraging Models@Runtime in a Digital Twin perspective
	8.1.2 Supporting Ethics Risk Traceability in Quality Assessment

