
International Journal on Software Tools for Technology Transfer (2023) 25:49–74
https://doi.org/10.1007/s10009-023-00697-z

GENERAL

Regular

A technology transfer journey to a model-driven access control system

Martina De Sanctis1 · Amleto Di Salle2 · Ludovico Iovino1 ·Maria Teresa Rossi1

Accepted: 13 January 2023 / Published online: 10 February 2023
© The Author(s) 2023

Abstract
In the model-driven security domain, access control systems provide an application for handling access of persons through
controlled gates. A gate, such as a door, can have a lock mechanism for securing the area from unauthorized access. Most
commercial solutions for access control management offer pre-packaged software systems where customization of the autho-
rization logic is either not allowed or subject to payment. Moreover, cross-platform development is a barrier for solution
providers due to the high cost of development and maintenance that it implies. To overcome these limitations and further
optimize the entire access control systems development process, we propose a model-driven approach that supports automatic
code generation to enable communication between an IoT infrastructure and platforms for Facility Access Management.
Specifically, the approach combines the benefits of Near-Field Communication (NFC) and Tinkerforge (i.e., an open-source
hardware platform) with model-driven techniques. This allows the approach to exploit both behavioral and structural models
for the modeling and the consequent code generation of part of the authorization mechanism, thus providing complete cov-
erage of the code generated for the whole system. We implemented and evaluated our approach in a real-world case study
within the premises of a fitness center with an IoT infrastructure consisting of several heterogeneous sensors by showing
its practical applicability. Experimental results demonstrate the effectiveness of our approach in supporting abstraction and
automation concerning traditional code-centric development through code generation features. Consequently, our approach
makes the whole development process less time-consuming and error-prone, thus reducing the system’s time to market.

Keywords Access control system (ACS) · MDE · Near-field communication (NFC) · IoT

1 Introduction

An Access Control System (ACS) provides a security appli-
cation to check entries via controlled gates to restricted access

Martina De Sanctis, Amleto Di Salle and Ludovico Iovino have con-
tributed equally to this work.

B Ludovico Iovino
ludovico.iovino@gssi.it

Martina De Sanctis
martina.desanctis@gssi.it

Amleto Di Salle
amleto.disalle@unier.it

Maria Teresa Rossi
mariateresa.rossi@gssi.it

1 Computer Science Scientific Area, Gran Sasso Science
Institute, L’Aquila 67100, Italy

2 Human Science Department, European University of Rome,
Rome 00163, Italy

areas [1]. The gate, such as a door, can have a lock mecha-
nism for securing the area from unauthorized access. Then,
the door is connected with one or more sensors triggering
the control mechanism through communication with the rest
of the infrastructure. In particular, access control is one of
the security concerns that are addressed by model-driven
security (MDS) approaches, which emerged for supporting
the development of security-critical systems [2,3]. In this
domain, the Internet of Things (IoT) plays a central role since
it refers to integrated networks of interacting devices.

In traditional chip card-based ACS, the standard plastic
card containing an embedded microchip has to be physically
inserted in a reader to be read; in case data stored on the
chip allows access, it enables the electric door lock. Usually,
the card reader hosts the logic for the access control, and for
each equipped door, the code implementing this logic has
to be distributed and released to the reader(s). In addition, a
human resource management system is used to associate a

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-023-00697-z&domain=pdf

50 M. De Sanctis et al.

person with each card, thus having a registry to manage the
loss of cards or required checks.

In order to migrate an old chip card-based ACS to modern
technologies supporting people authorization and authen-
tication, a promising solution might be provided by NFC
technology [4]. It enables the “touching paradigm” where
the interaction can be identified as “the deliberate bringing
together of two devices, for the purpose of obtaining ser-
vices” [5]. Specifically,NFC requires twocompatible devices
to be close to each other to enable contact-less identifica-
tion and interaction. Moreover, most commercial solutions
for access control management also offer pre-packaged soft-
ware systems for human resources management. The main
issue with these existing solutions is the impossibility of cus-
tomizing the authorization logic provided by the tool vendor.
The authorization logic may reside on the NFC reader or a
remote server, communicatingwith the devices depending on
the adopted architecture. However, if customization is pro-
vided, it comes as a fee-based service, often quite expensive.

To overcome this limitation, we may benefit from tech-
nology such as Tinkerforge. Tinkerforge [6] is an affordable
open-source system of building blocks using the concept of
a pluggable module, helping to simplify the implementation
of IoT-based systems. The implementation of the building
blocks is based on intuitive API bindings available for many
programming languages, such as Java, PHP, and Python. This
system, offering a high degree of abstraction, might ease the
technical implementationwith less code to be developed con-
cerning other components. Themain advantage of selecting a
target technology such as Tinkerforge is that it can be used to
build systems interacting with other platforms and customize
the access control algorithm for the required purpose since
the code has to be developed. Moreover, the building blocks
of the infrastructure can be selected and mounted based on
the requirements and easily extended.Although this selection
offers a good trade-off between development and provided
functionalities, the code controlling the devicesmust beman-
ually written. However, by combining the benefits of NFC
and Tinkerforge technologies with model-driven techniques,
code generationmay be applied to reduce the burden of man-
ually developing the code for the ACS.

Actually, model-driven engineering (MDE) [7] aims at
tackling the complexity of software systems via abstraction,
using models as first-class entities. Models are employed
both for descriptive and prescriptive purposes [8]. Model-
driven development (MDD) approaches open to code-
generation strategies to reduce time to market and improve
software quality [9]. Furthermore, themodel-driven architec-
ture (MDA) paradigm provides support for the definition of
model-based system structure with the so-called Platform-
Independent Models (PIM) and Platform-Specific Models
(PSM). PSM describes the functionalities defined in the
PIM for a specific implementation technology. Then, by

defining transformation mapping, we can traverse different
abstraction layers [10]. Indeed, model transformations can
be successfully employed to support platform-independent to
platform-specific translation and implement multi-platform
code generation from a single input model of the system
[11,12]. This is quite relevant given that, nowadays, cross-
platform development is a barrier for solution providers due
to the high cost of development and maintenance of target-
ing development to different platforms. Lastly, one can state
that (especially in the industry) proprietary solutions may be
employed to automate the development and deployment of
the needed code. To the best of our knowledge, ThingML
[13] is the first attempt to create a model-driven framework
with generative features for IoT systems. However, in many
cases, aThingMLcomponent has to communicatewith exter-
nal closed-source components, e.g., Tinkerforge technology,
whose implementation cannot be modified. Since the only
option is to extend and adapt ThingML through different
extension points (see [13]), evaluating the effort for this kind
of task is fundamental. Moreover, the trade-off for selecting
these existing approaches relies on technical details shifted
from models to code generators or moving them from PIM
to PSM. For this reason, it could be worth implementing a
new domain-specific language with dedicated support when
technology offers a wide range of hardware and software
components.

With these premises, we propose amodel-driven approach
for access control systems that supports automatic code
generation to enable communication between an IoT infras-
tructure or an existing Web platform for Facility Access
Management. The presented approach can generate soft-
ware components in the selected target language. This way,
it reduces the implementation effort by producing the code
needed for the interaction while making the whole devel-
opment process less error-prone and time-consuming. This
paper extends thework presented in [14], where the approach
was first introduced, in the following points:

– The positioning of the approach in the Model-Driven
Security domain [2], and its definition according to con-
ventional access control enforcement framework [15];

– The infrastructure metamodel, in order to support addi-
tional sensors in the code generation;

– The overall modeling approach to further automate the
code generation from behavioral models, besides struc-
tural ones. This allows the approach to share a common
set of behavioral and structural models satisfying the
specific needs of ACS that can be further reused and cus-
tomized, as in software product lines approaches [16],
thus managing the variability of IoT devices and plat-
forms;

123

A technology transfer journey to a model... 51

– A new architecture including a repository of authoriza-
tion policies that can be further extended by providing
query scripts predicating on models;

– The evaluation of the approach through a real-world
case study, by developing and deploying an ACS on the
premises of a fitness center.

The paper is organized as follows: Sect. 2 explores the
background and related works and discusses how and to
which extent our approach aims to broaden the literature.
Section 3 offers a real case study for introducing the domain
inwhich the proposed approachhas beenvalidated. InSect. 4,
the approach is presented with all the involved model-based
artifacts, whereas in Sect. 5 it is applied to the presented case
study. An evaluation has been conducted and is discussed in
Sect. 6, while Sect. 7 draws some conclusions and discusses
future developments.

2 Background and related work

This section revises (i) ACSs approaches to show their limita-
tions and (ii) those techniquesweuse in thiswork (e.g.,MDE,
domain-specific language, automatic code generation) since
they have already been used in contexts similar to ours, show-
ing their effectiveness.

Access Control Systems provide a security application
to check entries via controlled gates to restricted access
areas. Their application is foreseen in both out-door [17,18]
and indoor [1] environments through diverse technologies.
Moreno et al. [1] describe a distributed access control mech-
anism in a smart building scenario. An engine embedded
into smart objects makes authorization decisions based on
user location and access credentials, where user location
data are estimated viamagnetometer sensors in smartphones.
The authors highlight the potential of the approach since
no additional hardware or infrastructure is required. How-
ever, smartphones’ power consumption should be considered
since it can hinder the functioning of the approach. Shao
et al. [19] present a wireless and device-free door access
system, called RFDoorGuard, which leverages received sig-
nal strength indicator (RSSI) signals from Bluetooth Low
Energy beacons to recognize people entering a room. They
evaluate RFDoorGuard in two real scenarios, an office room
with the key lock and ameeting roomwith swipe card access.
This work aims to verify whether users can be identified
without using any devices or keys. However, the known accu-
racy limitations related to the chosen Bluetooth technology
can lead to the malfunctioning of the system. A home secu-
rity system based on human motion detection and remote
monitoring technology has been developed by Anwar et al.
[20]. Such a system provides features to confirm the visitor’s
identity and control door accessibility. Human detection has

been implemented through a passive infrared (PIR) motion
sensor and a camera module. Instead, the door accessibil-
ity is deployed with an electromagnetic door lock module.
The authors envisage the control of the system through the
use of smartphones that, as highlighted by Moreno et al.
[1], could lead to different limitations (e.g., battery level).
Another home security system design based on human face
recognition technology and remote monitoring technology is
reported by Sahani et al. [21]. In this security system, door
accessibility is implemented through the combination of a
ZigBee module and an electromagnetic door lock module. In
his work [22], Gossen proposed an approach for exploiting
human face recognition in access control systems, to support
people identification in a contact-less manner. Specifically, it
relies on two known holistic methods for facial recognition
(i.e., Eigenfaces andLocal Binary PatternHistograms), and it
enriches themwith precise alignment of face images. Despite
the use of low-cost technologies, mere human face recogni-
tion could affect the proper functioning of the approach in
terms of trustworthiness.

Model-Driven Engineering (MDE) has already been
adopted to deal with the challenges of the IoT domain (e.g.,
devices’ heterogeneity, reusability of software artifacts) [23].
Prehofer et al. [24] present two different approaches for the
development of an IoT application, namely IoT Mashups
and Model-based IoT. The first one uses existing services/-
tools to develop applications, while the second one exploits
MDE techniques. The authors compare the two approaches
and show that mashup tools efficiently describe system
architectures, message flow, and deployment. In contrast,
model-based approaches have a greater expressiveness in
modeling different points of view and behaviors and generat-
ing code from models for different platforms. Also, Amrani
et al. [25] propose a high-level rule-based language to model
high-level representations of devices to manage the interop-
erability and behavior of interconnected IoT devices.

(Semi)-Automatic code generation for architectural mod-
els has gained much attention in recent years, even in the IoT
domain. Template-based code generation (TBCG) emerged
as an approach to develop code generators [26]. Different
templates can be used as inputs for automatic code gen-
eration, defined with diverse modeling languages, e.g., a
domain-specific language (DSL) or a general-purpose lan-
guage, like UML. As regards specific UML-based code
generation, Pham et al. [27] exploit MDE to generate exe-
cutable code from statemachines. In particular, the presented
approach provides a pattern and tool for code generation
from UML State Machine, extending IF-ELSE-SWITCH
constructions of programming languages with concurrency
support. They show that with their approach, the UML
semantic conformance is respected. On the contrary, Sunitha
et al. [28] highlight the fact that in the implementation of
automatic code generation from state diagrams, a significant

123

52 M. De Sanctis et al.

obstacle relies on the absence of a one-to-one correspon-
dence between the elements in the statechart diagram and
the programming constructs. Thus, the existing programming
elements cannot implement two main components related
to the state diagram, namely state hierarchy, and concur-
rency. The authors present a design pattern for implementing
the state diagram, which includes hierarchical, concurrent,
and history states. If we look to domain-specific approaches
instead, Marah et al. [29] present a Domain-specific Model-
ing Language for TinyOS, calledDSML4TinyOS, whose aim
is that of allowing developers to generate architectural code
for low power wireless devices. DSML4TinyOS language
aims to provide a platform-independent modeling frame-
work to abstract from different IoT operating systems by
exploiting model-to-model transformation and code gener-
ation. Nguyen et al. [30] presented FRASAD, a framework
providing a fastway to develop IoTapplications usingmodel-
to-model transformation and code generation, running on
top of a software architecture based on the sensor node
domain concept. They aim to improve reusability, flexibil-
ity, and maintainability in the IoT applications development
by proposing a multi-layered software architecture leverag-
ing a high abstraction level. We share the same objectives
with [29,30], in the proper ACS context, with its specific
needs (e.g., authorization).

Low-Code Platforms have been introduced in the IoT
domain to deal with the high heterogeneity of devices and
architectures [31]. Ihirwe et al. [32] extract the function-
alities and limitations of existing approaches supporting
low-code development platforms in the IoT domain. The
authors noticed the lack of support for testing and analy-
sis in the IoT systems development process and standards to
support the model-based development of IoT systems, which
compromises interoperability among different platforms. It
also emerges the limited use of multi-view modeling. In par-
ticular, the authors state that the existing approaches use one
specific view to model everything. The study results also
show limited support for cloud-basedmodel-driven engineer-
ing since most existing tools still require local deployments.
Also, Sanchis et al. [33] highlight the lack of transversal
platforms developed on open standards to create ecosystems
to automatize the IoT systems development. Moreover, they
extracted some key challenges of low-key platform develop-
ment. They are related to real-time data processing issues and
the integration of secure code analysis into the development
workflows. However, the authors highlight the importance
of low-code development platforms that may represent the
response to new digital companies’ requirements for faster
automation software development.

Domain-Specific Languages (DSLs) have been adopted
mainly to software development in different contexts [34].
For instance, in the context ofWeb applications development,
a DSL for the implementation of dynamic web applica-

tions was presented by Groenewegen et al. [35] and further
extended in [36]. To enable user-level software development
and rapid prototyping of sophisticated web applications,
Boßelmann et al. [37] introduced a framework called DIME,
which supports the ExtremeModel-Driven Design (EMDD),
by providing a family of graphical domain-specific lan-
guages (GDSLs) each of which covers a specific aspect of
modern web applications, including data model, business
logic, user interface, access control. In the context of access
control, we have examples of approaches using DSL spec-
ifications. In particular, Ben Fadhel et al. [38] proposed a
DSL whose semantics can be expressed in terms of a for-
malization of rule-based access control policies as Object
Constraint Language (OCL) constraints on the correspond-
ing conceptual model. This approach aims to define more
expressive and clear policies and implement a method that
allows the easy reinforcement of these policies. Moreover,
Salman et al. [39] introduced a DSL called SenNet for devel-
oping Wireless Sensor Network (WSN) applications. It has
been implemented to reduce the complexity of low-level pro-
gramming details associated with the domain of WSN. A
further application of DSL in the IoT context to reduce its
inherent complexity has been presented bySalihbegovic et al.
[40]. Their work presents an editor, calledDSL-4-IoT, imple-
mented to deal with the high complexity and heterogeneity of
WSNs and devices. The editor outputs IoT application con-
figuration files which are then executed by a runtime engine
(i.e., OpenHAB). However, we aim to go beyond by combin-
ing the benefits of NFC and Tinkerforge technologies with
model-driven techniques, thus bringing their advantages alto-
gether.

In summary, the literature highlights that the develop-
ment of ACSs has gained attention in the last years, due to
their relevance and effectiveness, especially in certain con-
texts where security requirements make them quite essential.
As reported above, different approaches have been pro-
posed by exploiting diverse technologies and methodologies
applied to the IoT domain. In this work, instead, we aim
to exploit the before-mentioned benefits of MDE, DSL, and
code generation-based approaches by also combining them
with the use of the Tinkerforge platform. This combination
allows our approach to significantly push and increase mod-
ularization, abstraction, and code generation features (as
detailed in Sect. 4 and demonstrated in Sect. 5). The appli-
cation of the presented approach in a real-world case study
further shows the reduction of implementation efforts and
time tomarket (details in Sect. 6), whichmight favor the real-
ization ofmore reliable solutions.Moreover, the open-source
nature of the Tinkerforge platform further allows us to over-
come the rigidity of commercial solutions for access control
management in terms of customization features. Eventually,
the provided infrastructure is open and extensible to different
technologies and device types besides RFID/NFC.

123

A technology transfer journey to a model... 53

Fig. 1 Layout of the building

3 Case study

In this section, we expose the case study we designed from a
project experience with a company1. Specifically, the com-
pany we deal with is a fitness/physiotherapy center that is
organized in diverse rooms, as represented in the layout in
Fig. 1, distributed in a building of 1600 square meters. Each
of the seven rooms is equipped with different facilities to
host-specific activities (e.g., training, rehab, pilates, dance).
Activities are scheduled in different time slots fromMonday
to Saturday, with various frequencies, and assigned to the
available rooms. The clients of the center can enroll in dif-
ferent courses by choosing different subscription plans and
offers.

The company wants to exploit the subscriptions that
clients hold to automatically check if they have access or
not to each specific room in the building. This way, it can
be easily verified if only authorized clients, those regularly
registered in certain activities, have adequate access. Every
room can show different requirements from the IoT-based
infrastructure perspective. For instance, the main entrance is
subject to different needs and environmental requirements
with respect to other rooms like Room 2, where activities are
performed. Some of the rooms, i.e., the biggest ones, can be
equipped with two doors or gates.

The authorization and identification of a user (client) are
then delegated to the access control infrastructure that, in this
case, is implemented with the selected NFC technology. This
technology is essentially made by an NFC Reader mounted
near the door of a room that will identify the NFC tag used
by the client (usually integrated into a bracelet) and, in turn,

1 The case study was carried out by us on a non-profit basis with the
only aim of assessing our approach.

trigger the authorization mechanism by also communicat-
ing with the ACS, which can be deployed in the cloud (i.e.,
external deployment) or the intranet (i.e., internal deploy-
ment). For instance, this can happen through the interaction
with Web Services or APIs devoted to this task and exposed
by the ACS. In our case study, wemake use of anAPI already
in use by the fitness center, exposed by aWeb systemmanag-
ing the clients and subscriptions. The devices controlling the
door locks invoke the RESTAPI, and in the case in which the
user is unauthorized, it will return an empty set. The JSON
response of the authorization REST API will be read by the
device that will grant/deny access to the room.

Tinkerforge is an open-source platform of building blocks
belonging to three categories, namely Bricks that can control
different modules called Bricklets. Then, the communication
interface of these building blocks can be extended by using
Master Extensions. More precisely, each brick has one task,
which in our case study consists of checking the communi-
cation and authorization. Bricks are stackable in the sense
that they can be mounted on top of each other by creating
a hierarchy. For simplicity, in this paper, we consider non-
stackable bricks. Bricklets can be connected to a brick with a
cable, and depending on the bricklet type, different sensors,
displays, I/O interfaces can be added. Master extensions are,
instead, used to change the interface from USB to Ethernet
or Wi-Fi.

To support a basic configuration of the ACS, we can con-
sider an architecture composed of a single brick per door
(of a room) and multiple connected bricklets (as depicted in
Fig. 2). Depending on the needs, bricklets can be an NFC
reader, a speaker (beeper), a led display, or a relay to con-
trol the door lock. Relays are switches that can electronically
open and close circuits. In our case study, they control four
circuits (that is why this component is also called a quad
relay). Moreover, each client has to receive an NFC tag
(i.e., a card, sticker or bracelet) to be used for entering the
fitness center premises, if authorized. To this aim, NFC tags
must be enabled according to the profile of their owners.
Enabling a tagmeans adding it to theACS software that man-
ages the users and their subscriptions. The main advantage
when autonomously designing the hardware configuration of
each door gate is that we can address different requirements
and needs so that every door can be equipped with different
devices. For instance, since the entrance is the bottleneck of
the building,where every person should pass in order to reach
interior rooms, the speaker could not be mounted to reduce
the noise in that area.Another option could be that the interior
rooms are not equipped with a display for showing the infor-
mation aboutmemberships or the next subscription deadlines
since the main gate is located at the entrance, and this infor-
mation can be displayed only once. This mechanism also
permits to reduce the hardware cost by equipping the build-
ing with what is needed, and not a pre-packaged solution.

123

54 M. De Sanctis et al.

Fig. 2 Picture of the assembled device

This technology basically allows for two possible architec-
tural deployment schemas: (i) deploy the developed code
communicating with the bricklets directly on board using
a proprietary deployer tool, i.e., the entire device equipped
with an additional specific brick called red brick; (ii) deploy
the whole code on a client or server machine that will estab-
lish a connection through an IP address with each brick, and
then communicate with the corresponding bricklets transpar-
ently. Both these options are valid; in this work, we decided
to test the centralized architecture with a server. Traditional
code-centric techniques, in this case, would be costly since
the same developed code cannot be deployed on every device
due to the before mentioned variability.

Figure 2 shows the prototype complete of all the bricklets
used for testing our approach. In particular, we can spot the
main Brick with the connected PoE (Power Over Ethernet)
cable, the Led that can be used to blink in different colors
(e.g., green or red), the Oled Display, the Speaker, the NFC
Reader, the Relay used to open or close the electric circuit
of the door lock. In particular, the NFC Reader is mounted
in such a way to be out of the case of the board. Eventually,
a Thermal Camera has been mounted to make the example
even more complex and to offer a temperature scanning fea-
ture due to the Covid-19 restrictions of this period. This is
the full configuration of the device, i.e., the one used in the
entrance room.

Typically, conventional access control enforcement frame-
works [15] include a Policy Enforcement Point (PEP), a
Policy Decision Point (PDP), a Policy Administration Point
(PAP), and optionally a Policy Information Point (PIP).
Briefly, the user requests access through the PEP, which will

forward the request to thePDPandevaluate the access request
against the authorization policy. Usually, at this stage, the
PDP refers to a policies repository, e.g., a database query,
and when the evaluation is complete, it returns the decision
to the PEP.ThePEPdecides to grant or deny access to the user
for the specified resource, i.e., in this case, a room, and the
authorization request can be enriched with additional infor-
mation by the PIP, e.g., user rights. The last component is the
PAP, which is responsible for administrating the authoriza-
tion policies.

In this case study, the basic steps to be performed when
entering a room are the following: the NFC reader, embody-
ing the PEP, receives the NFC tag identifier (from the client),
and it checks the authorizationwith theACS, asking the PDP.
If the authorization is granted, the board emits a beep by
using the speaker. Then, it shows an authorization message
on display, and the led can blink green. In the end, it enables
one of the channels of the relay to control the door lock. An
additional check can be conducted by measuring the body
temperature using the thermal camera. If the authorization
is denied, instead, the NFC reader emits a different sound
and displays the error message, and the led blinks in red. All
these operations can be implemented using the Tinkerforge
API to interact with the board and all the equipped sensors
from the server. We outline that the code, both when used
in a centralized architecture or deployed on the brick, acts
basically in the same way.

In the following, we show the Java code that must be man-
ually written, in the absence of automatic code generation,
to implement the explained control logic among the vari-
ous sensors and bricklets, for our case study, as explained
in the previous paragraph. Listing 1 reports the Java code
developed for the logic of a single brick (the one previously
presented and depicted in Fig. 2). This initialized brick has
a UID (identifier) as all its bricklets and will be powered by
PoE extension, with IP address localhost in the communica-
tion LAN.

Since this brick has different types of connected bricklets,
e.g., NFC Reader, Relay, etc., we have multiple variables
points in this code. First, lines 3–10 include selective import
statements for the API bindings needed to the main brick to
interactwith themountedbricklets. Then, lines12–19declare
the variables needed for initializing these modules. Every
bricklet has a UID that has to be specified in order to be able
to interact with it. Then, in the main method of the brick in
line 31, the connection is established. Lines 25–30 initialize
all bricklets part of the chosen architecture using Java classes
included in the developed project. From line 34, the NFC
reader declares its states. In particular, when the reader is in
the IDLE state, it requests a tag until the tag is found (line 42).
From this line, the core code begins. Lines 43–54 retrieve
the tag id, and a series of actions are undertaken to interact
with the bricklets. Namely, the display is cleared, and the

123

A technology transfer journey to a model... 55

Listing 1 Single Brick Java code

1 package tinkerforge.code.dev; ... import
2 com.tinkerforge.BrickletIndustrialQuadRelayV2; import
3 com.tinkerforge.BrickletLCD128x64; import
4 com.tinkerforge.BrickletNFC; import
5 com.tinkerforge.BrickletPiezoSpeakerV2; import
6 com.tinkerforge.IPConnection; import
7 com.tinkerforge.TinkerforgeException; import
8 com.tinkerforge.BrickletRGBLEDV2; import
9 com.tinkerforge.BrickletThermalImaging; public class MainBrick {
10 private static final String HOST = "localhost";
11 private static final int PORT = 4223;
12 private static final String NFCUID = "JL1";
13 private static final String Display_UID = "R27";
14 private static final String Beep_UID = "KAv";
15 private static final String led_UID = "Kvx";
16 private static final String RelayUID = "J5F";
17 private static final String ThermalCamUID = "R1L";
18 public static Properties appProps;
19 // Note: To make the example code clearer we do not handle exceptions.
20 public static void main(String[] args) throws Exception {
21 // Create IP connection
22 IPConnection ipcon = new IPConnection();
23 BrickletNFC nfc = new BrickletNFC(NFCUID, ipcon);
24 BrickletPiezoSpeakerV2 ps = new BrickletPiezoSpeakerV2(Beep_UID,ipcon);
25 BrickletLCD128x64 lcd = new BrickletLCD128x64(Display_UID, ipcon);
26 BrickletRGBLEDV2 led = new BrickletRGBLEDV2(led_UID, ipcon);
27 BrickletIndustrialQuadRelayV2 iqr = new BrickletIndustrialQuadRelayV2(RelayUID, ipcon);
28 BrickletThermalImaging ti = new BrickletThermalImaging(ThermalCamUID, ipcon);
29 ipcon.connect(HOST, PORT); // Connect to brick
30 // Add reader state changed listener
31 nfc.addReaderStateChangedListener(new BrickletNFC.ReaderStateChangedListener() {
32 public void readerStateChanged(int state, boolean idle) {
33 if (state == BrickletNFC.READER_STATE_IDLE) {
34 try {
35 nfc.readerRequestTagID();
36 } catch (Exception e) { return; }
37 } else if (state == BrickletNFC.READER_STATE_REQUEST_TAG_ID_READY) {
38 try {
39 StringBuilder tag = new StringBuilder();
40 BrickletNFC.ReaderGetTagID ret = nfc.readerGetTagID();
41 tag = getTag(ret.tagID); //get tag id
42 lcd.clearDisplay(); // write retrieved tag on display
43 writeNextLines(lcd,tag.toString(),0);
44 ps.setBeep(300, 0, 188); //emits a sound
45 //setting thermal camera
46 ti.setImageTransferConfig(BrickletThermalImaging.

IMAGE_TRANSFER_MANUAL_TEMPERATURE_IMAGE);
47 //set the camera area of interest
48 ti.setSpotmeterConfig(new int[] {15,7,54,47});
49 //get temperature of the body in front of the camera
50 double temp=(ti.getStatistics().spotmeterStatistics[1]-27315)/100;
51 //write detected temp on display
52 writeNextLines(lcd, "Detected temp: "+temp,3);
53 //call isAuthorized method and check temp

123

56 M. De Sanctis et al.

Listing 1 conitnued

56 if (isAuthorized(tag.toString()) && temp<=37.50) { //authorized: do some actions
57 writeNextLines(lcd,"user authorized",1);
58 led.setRGBValue(0, 255, 0);
59 ps.setBeep(300, 0, 188);
60 iqr.setValue(new boolean[]{true, false, false, false});
61 Thread.sleep(100);
62 iqr.setValue(new boolean[]{false, false, false, false});
63 } else { //not authorized: do other actions
64 writeNextLines(lcd,"User not authorized",1);
65 led.setRGBValue(255, 0, 0);
66 ps.setAlarm(929, 2064, 2, 1, 1, 1000);
67 }
68 Thread.sleep(4000); //pause the callback till next recognition
69 lcd.clearDisplay();
70 led.setRGBValue(0, 0, 0);
71 nfc.readerRequestTagID();
72 } catch (Exception e) {return;}
73 } else if (state == BrickletNFC.READER_STATE_REQUEST_TAG_ID_ERROR) {
74 try {
75 nfc.readerRequestTagID();
76 } catch (Exception e) {return;}
77 }
78 }
79 }
80 }
81 }

new tag retrieved is printed on display. A sound is emitted
from the speaker, and the body temperature is obtained from
the thermal camera. This first set of actions is part of another
variability point that is more evident from line 56 to line
67. In fact, in these lines, the authorization mechanism is
executed. At line 56, the method isAuthorized is invoked,
and the temperature is also checked in the positive case. This
method simply calls the REST API with the detected tag as
a parameter, and it returns true or false for the granted or
denied authorization, respectively.

Lines 57–59 report the sequence of actions where all the
bricklets are called by the brick, e.g., it writes a string on
display to make clear that the user is authorized, the led
becomes green, it emits a specific beep, and interacts with
the QuadRelay component, to open and close the selected
channel. This method takes as input the channel’s position
to open and blink for the selected time-lapse. Then, it opens
the relay and further closes it (lines 60–62).

Lines 64–66 execute the brick’s actions in case the user
is not authorized. It writes on display, blinks with the led in
red, and emits an alarm sound. This code must be deployed
on the device (another brick is needed, but we leave out of
the discussion this aspect) or on a server starting the threads
using the devices’ IP address.

Eventually, there is also the need for code to start a thread
for each brick in the infrastructure. In our case study, we
considered 11 bricks (as much as the room doors), but we
just reported the code for the one mounted at the entrance in

the previous listing. We outline again that each brick can be
configured with different bricklets, depending on the archi-
tect’s decisions and specific needs. More specifically, one
brick can be equipped with a display and another one with
a speaker, depending on the area’s noise level. It will make
the initialization code different from one brick to another. To
better explain the approach through the real case study, we
refer again to the planimetry of the building shown in Fig. 1.

Entrance This room is equipped with the brick and all the
bricklets, as reported in Fig. 2, comprising the thermal cam-
era. It prevents the client from entering the building, thus
avoiding entry to the rest of the rooms if access is not granted.
All the bricklets can be needed, and, due to Covid-19 restric-
tions, those subjects whose body temperature is higher than
37.5◦C should not be allowed to enter the facility. We outline
that this check could be performed at the entrance and not
repeated at every gate, allowing us to save the equipment bud-
get. For this reason, a thermal imaging bricklet is mounted
only at the entrance in order to support this feature.

Rooms 1–5 These rooms are equipped with bricks and all
the bricklets as reported in Fig. 2, with the exception of the
thermal camera and possibly of the display that would be
redundant in these rooms.

Room X This room is equipped with a brick and all the
described bricklets except for the thermal camera, led, and

123

A technology transfer journey to a model... 57

Table 1 Variability for single brick code

Code Lines Code Dependence

3–10 Selective import statements Structural

12–19 Selective variables declaration Structural

25–30 Selective object instantiation Structural

57–66 Bricklets interactions Behavioral

display. This choice is guided by the room’s environmental
requirements since it hosts a swimming pool. Thus the device
is covered by a plastic case to avoid water contact.

This case study configuration highlights that the various
devices are configured with different sensors and bricklets.
The code to interact with the devices can be different depend-
ing on the location of the subject device. In this simple
scenario, the variability is quite evident, but we could have
more complex scenarios. Specifically, we have all the devices
with different codes since every mounted bricklet and each
brick has different identifiers and configurations. There are
also three different modular configurations for the three sce-
narios (i.e., room types) of the building. Variability is often
managed with modeling techniques, such as modeling fea-
ture models and software product lines. The variability in
modeling is defined as the most advanced approach to define
the commonalities and variabilities of reusable artifacts such
as software components [16,41].
Table 1 summarizes the brick’s variability aspect whose code
is reported in listing 1. The first column details the lines of
code affected by this variability; the second reports the type
of code involved, and the third the type of dependency. The
type of dependency identified in the presented case study
can be structural or behavioral—the former highlights that
the lines of code can vary with respect to the brick’s chosen
architecture. At the same time, the latter refers to the control
logic among the various bricklets. The first row specifies the
import statements related to the mounted bricklets. The sec-
ond and third rows of the table are about objects declaration
and instantiation, strictly related to the mounted bricklets.
Thus they also refer to a structural dependency. Those lines
of code induce the possibility of using the bricklets or not.
A misconfigured application can lead to errors when using
bricklets that are not present in the current architecture. The
last row is about how the developer wants to drive the inter-
action between the mounted bricklets, and for this reason, it
refers to a behavioral aspect of the application.

Due to this variability, manual coding can be error-prone,
time-consuming, and requires attention to customize the
configuration of the case study and the real-world appli-
cation. Programmers are used to applying copy-and-paste
commands since the software managing the devices will be
similar. However, some parts are custom, inducing errors in

the case of code clones [42] and variable declarations. A
typical example of an error introduced in this scenario is a
wrong bricklet UID (as a result of copy and paste operations)
attempting to connect to a device that is mounted on another
brick. Moreover, software maintenance in this type of appli-
cation is quite difficult since the extension of the architecture
or later modifications can lead to quality degradation. The
more the lines of code increase, the more the number of pos-
sible introduced errors can rise.

4 Amodel-driven ACS

This section provides a general overview of the proposed
approach, which empowers the developers to realize access
control systems without considering the implementation
details. Figure 3 reports an abstract representation of the
architecture of our approach, mapped on the conventional
access control enforcement framework’s structure. Figure 4
shapes the process execution labeled with i .

An ACS is composed of multiple hardware devices and
running software systems (bottom-side of Fig. 3) composed
of real infrastructure, together with the code managing all
the devices that can be deployed on a server or deployed on
each device (see Sect. 3 for an example). The system, run-
ning on the device, reacts at the user request activated by a
tag touching the NFC receiver. This device implements the
PEP of the framework, and it interacts with an ACS authen-
tication script executor. The ACS script executor embodies
the PDP of the framework since it is in charge of evalu-
ating access requests against authorization policies before
issuing access decisions. Indeed the executor invokes an
authentication script, selected by considering the authenti-
cation policy stored in a Auth script repository that will be
part of the PAP of the framework. The repository stores mul-
tiple authorization policies in the form of queries that the
administrator can select, e.g., allowing access to users with
memberships of a selected activity that runs on selected days,
excluding public holidays, etc. The device implementing the
PEP also communicates with the door lock to grant (or deny)
access in response to the PDP decision. Basically, the device
(PEP) sends the activated request by the user to the ACS
Auth script executor (PDP) that is in charge of executing
the selected query returning the authorization response to
the device that will open the door or reject the request. The
PDP may alternatively communicate with a Web platform
requesting authorization for the user.

Possibly, a Web platform can be used to manage the
clients/users of the ACS so that the system can be integrated
with third-party applications. This has been placed between
the PDP and PAP since the web platform can be used to
request authorization (PDP) by REST call API but can also
be used to manage the users and permissions, making it part

123

58 M. De Sanctis et al.

PDPPEP

PAP

Code generator

Interoperability
Weaving models

ACS metamodel Interoperability
Weaving metamodel

Infrastructure
metamodel

Yakindu SC metamodel

ACS model
Infrastructure

model

PHP Java ...

Web Platform
Api

controls

communicates

Real infrastructure

reflects

generates

conformance conformance
conformance

Statecharts models of the
system

ACS Auth script
Executor

query

calls

Auth script repository

M
et

am
od

el
in

g
la

ye
r

M
od

el
in

g
la

ye
r

A
C

S
 s

ys
te

m
s

Database

conformance

Fig. 3 General overview of the approach

Fig. 4 Overview of the process

of the PAP. The modeling layer (center of Fig. 3) made of
software systems and hardware can be designedwith the right
level of abstraction and reflects what will be in the real-world
system in the bottom layer.

The Infrastructure of every device mounted in the build-
ing can be represented with a model (modeled in activity 1
in Fig. 4), indicating how every device is assembled, with
which bricklets in this case. This is particularly close to what
in literature is called hardware description languages VHDL
[43], used to describe the structure and behavior of electronic
circuits. The ACS is then represented as a model (composed
in activity 2 in Fig. 4), with concepts and relations needed
to design the system and the building to be equipped. Within
the ACS, the defined concepts permit tomodel elements such
as rooms, clients, and activities. The system’s behavior can
be represented in terms of events and flow of information
embodied in their statecharts models (in activity 3 , which is
subsequent to activity 1). The behavior allows guiding the

interaction between the bricklets, the software system, and
the user exposing the tag. A modeling project can be gener-
ated from the infrastructure model with a minimal statechart
specification for every brick declared in the infrastructure, in
1 . In this phase, themodeler will elaborate on the statecharts
representing the brick behavior and consider the infrastruc-
ture specified in the model. In activity 4 we use weaving
models [44] to compose InteroperabilityWeavingmodels that
represent the following relations:

– The relation specifying where every device is mounted;
– The behavior associated with a specific brick.

This modeling layer reflects what the real-world system is
and can be used as a prescriptive or descriptive model [45].
Activity 5 is in charge of defining authentication scripts
that will be available through a repository and implementing
authorization policies. This activity corresponds to what we
would call defining queries but is executed on the models
defined in the previous activities. Activity 6 generates the
code by using the models defined in the previous activities
that can be deployed on the devices in activity 7 . In the rest
of this section, we show howwe have implemented the meta-
modeling layer (top-side of Fig. 3), allowing us to specify the
models cited above. Our approach is fully model-based, and
for this reason, we provide a query-based component for the
authorization mechanism that has been replaced by REST
API calls in the real system that we deployed in the fitness
center. To this end, we show all the metamodels that engineer
the concepts and relationships of the entities cited before.

123

A technology transfer journey to a model... 59

Fig. 5 Access Control System Metamodel

Eventually, we showhow thesemodels can generate the com-
plete code for the ACS controlling the devices. This activity
is triggered in 6 and finalized in 7 . The activity in 2 might
be continuously performed until the ACS modeling provides
a stable and desired ACS strategy. The reasons to use PAP
as a third-party web-based solution are multiple: first, the
fitness center, used as a benchmark already, had an existing
client management platform; second, the entire model-based
solution would force the administrators to use modeling edi-
tors and Eclipse Modeling Framework (EMF)2 technology
to manage also the clients, that would result limiting in terms
of user interface for modeling editors and time-consuming
for the needed training activities.

4.1 Modeling ACSs

We use a metamodeling approach to generally represent case
studies like the one described in Sect. 3. To better compre-
hend the application domain,we engineered the requirements
for ACSs in the metamodel in Fig. 5 (the ACS main package
is reported). An AccessControlSystem is organized to man-
age a list of Activities that can be conducted in the facility
and specifically in the available Rooms in specific TimeSlots.
Each room has a TimeTable of activities, performed in spe-
cificWEEKDAYs and time. The timeslot can define exclusion
criteria by declaring toexclude dates, so the regular schedule
can be easily modified for a single date, e.g., excluding pub-
lic holidays. The system can register Clients associated with
a Person with all the fields for the identification (hidden for
simplicity).

Each client can be linked to Memberships with a specific
start and end date related to an Activity. The ACS can man-
age who is authorized to access a room on a specific date and
time. This can be derived by retrieving all the client’s activ-
ities and matching them with the timetable of the activities.
This metamodeling approach is flexible enough to represent
a working facility where employees can be associated with
the activities, i.e., job positions. Every position can have a
deadline, i.e., the end of the contract. An office can grant

2 https://www.eclipse.org/modeling/emf/

Fig. 6 Tinkerforge Metamodel

access if the job position is associated with the room, i.e., an
office or a meeting room, and the contract deadline is still
active. The modeling activity 1 in Fig. 4 means to create a
model that conforms to the metamodel shown in this section.

4.2 Modeling the Infrastructure

To better explain the design of the chosen infrastructure and
to enable the code generation, we engineered the Tinker-
forge architectural modules in a metamodel, partially shown
in Fig. 6. We omitted other modules we did not use in our
case study to make the picture readable. An Infrastructure
is composed of Bricks, to which an application can connect
through its ip_address. UID identifies a building block. A
Brick can be connected to Bricklets, which can be classified
into various types, for instance, In/Out devices, Sensors and
Extensions. The NFC Reader is of type Sensor, and it has
to declare which TagTypes it reads for the targeted applica-
tion. Also, the ThermoScanner (i.e., the ThermalCamera) is
a type of sensor, and among the attributes that can be spec-
ified there are the detected temperature and the spotmeter
area of interest. The Speaker (beeper) can be set with spe-
cific beep duration, volume, and frequency. The QuadRelay,
instead, requires the time-lapse for opening the channel set
to true. NFC tags contains a unique identifier and all the sec-
tors to read and write. The structure of a tag is divided into
sectors composed of blocks. However, since the application
is simply reading the tag’s UID, we do not read and write
the sectors (for this reason is omitted from the metamodel).
Modeling the infrastructure following the rules and concepts
in this metamodel means fulfilling the modeling activity 1
in Fig. 4.

4.3 Modeling the behavior of the system

This section briefly explains the formalism used to express
the ACS application’s behavior. Harel [46] defined the
statecharts formalism,which canbeused to simplify the spec-
ification of reactive systems [47]. It is a graphical notation

123

https://www.eclipse.org/modeling/emf/

60 M. De Sanctis et al.

Fig. 7 Yakindu statecharts Metamodel

that can be considered an enhancement of the finite-state
machine (FSM) and their representation as state transition
diagrams [48]. An FSM is composed of a set of states and
a set of transitions. It delivers state transitions and produces
outputs through input and by employing the current state.We
used Yakindu Statechart Tools3, which is a statecharts mod-
eling tool offered with an Eclipse pre-packed bundle. Unlike
FSM, a statechart also allows modeling additional elements,
such as composite states, events, variables, and actions. Thus,
we decided to use Yakindu because it allows defining these
elements to be used in the statechart and for the technical
space completely integrated with EMF.

The Yakindu editor permits to define a statechart model
that conforms to a metamodel, reported in Fig. 7. The
main element is Statechart metaclass, which contains one
or more top-level Regions (regions composite association
coming from CompositeElement super-metaclass) used to
model statecharts. A region includes Vertexs that can be Reg-
ularState or Pseudostate. A regular state element is specified
through the sub-metaclasses FinalState or State. A state can
be simple or composite by specifying the simple or compos-
ite attributes, respectively. The Pseudostate metaclass allows
defining conditional path (Choicemetaclass), forks and joins
(Synchronizationmetaclass), entry (Entrymetaclass) and exit
(Exit metaclass) pseudostate. Concerning the state transi-
tions (Transition metaclass), each vertex can have several
outgoing transitions (outgoingTransitions composite asso-
ciation), each of them connected to a target state (target
association). Each transition is composed of a trigger (Trig-
ger metaclass), a guard (specification attribute coming from
SpecificationElement super-metaclass), and an effect (Effect
metaclass). A trigger is an event that raises the transition if
the guard condition is satisfied. When the transition is taken,
its effect actions are executed.

3 https://www.itemis.com/en/yakindu/state-machine/

When the infrastructure modeling activity 1 is com-
pleted, a minimal statechart model will be generated to start
the behavior modeling activity 3 , with a minimal configura-
tion that we will see in the following sections. The arrow in
Fig. 4 going from 1 → 3 using a first-code generator gener-
ates the interfaces and operations available for the configured
infrastructure in 1 . In this way, when modeling a state, the
user can associate with the action to be triggered only the
available operations from the infrastructure. This assures that
the modeler cannot bind an action to a non-equipped brick-
let. For example, she cannot map the state’s action to the led
blinking if the LED bricklet is not equipped on the modeled
brick. At this stage, the user can complete the statechart to
represent the expected behavior of the brick.

4.4 Modeling the interoperability

At this point, we have a metamodeling layer supporting the
definition of different types of models: the infrastructural
model (conform to the metamodel in Fig. 6), the access con-
trol system model (conform to the metamodel in Fig. 5),
and the statecharts (conform to the Yakindu metamodel in
Fig. 7). At this stage, the missing information, as regards the
approach shown in Fig. 3, is about how the infrastructure is
related to the concepts we have in the ACS. For instance, how
the room’s door is controlled by a specific brick and, in partic-
ular, an NFC reader. Moreover, we can also relate NFC tags
to the clients to keep track of the authorized accesses, exactly
as a web application managing human resources does. To do
that, we conceived a weaving metamodel, namely Interop-
erability Weaving metamodel, which is shown in Fig. 8. A
weaving model is a model specification used to capture rela-
tionships between model elements [49]. In this metamodel,
we have three types of links: InfrastructureLink, defining
how the building blocks of our infrastructure can be related
to concepts of the ACS, e.g., room and brick; Association-
Link defining that a specific tag has been assigned to a client.
Basically, the process starts from the definition of the models
of the infrastructure (see Fig. 6) and the ACS (see Fig. 5) and
enables the automatism summarized in Fig. 3. Moreover, as
soon as we can model the system’s behavior using the state-
charts, we still need to define how the statechart models the
behavior of a specific brick. We can specify in a weaving
model how our infrastructure should act in terms of behav-
ior. Using this metamodel, it is possible to specify a set of
BehaviorLink (the third type of interoperability link) estab-
lishing relations between a statechart model (defined with
the formalism explained in Sect. 4.3) and a specific brick of
our infrastructure (explained in Sect. 4.2).

The Interoperability Weaving metamodel can be enriched
with other types of links, and it is still under development.
With respect to Fig. 4, this weaving approach supports the

123

https://www.itemis.com/en/yakindu/state-machine/

A technology transfer journey to a model... 61

Fig. 8 Interoperability Weaving Metamodel

activity 4 and enables the code generation 6 that will be
discussed in the rest of this section.

4.5 Modeling the ACS authorizationmechanism

Our approach comes with an authorization mechanism that,
by default, is designed to use model-based artifacts. This is
what we identify in Fig. 3 with ACS Auth script. This com-
ponent is formed by a Java method called isAuthorized() that
we reported in Listing 2. Statechart states can be associated
with this method to receive the authorization of a specific
tag/user for a specific room (identified by the NFC UID).
What we propose in the following is a script that queries the
ACS model in order to get authorization. However, it can be
replaced by a REST API call communicating with a Web
platform, as we have seen in Sect. 3. The target platform
includes this script, and we customized it by manually writ-
ing the code executing the authorization mechanism. This
code stub returns true or false and can be customized by
simply reporting the code responsible for calling the REST
API and managing the authorization externally.

This Java code executes an Epsilon Object Language
(EOL) [50] query on the ACS model in a standalone mode.
EOL is part of a family of languages implemented in Java for
automatingmodelmanipulation tasks. EOL is a scripting lan-
guage that combines the imperative style with the functional
model querying capabilities ofOCL. The code reported loads
as parameter the NFC of the room in which the user is try-
ing to access with a specific tag also passed as a parameter.
The EOL script is loaded at line 17, while the ACS model is
loaded at line 13. Line 25 returns the result of the query that
is true in case of authorization granted or false if denied.
Executing the EOL query on the ACS model will retrieve
information about if the tag has been effectively assigned
to someone and if the client is authorized by traversing the
ACS model. The executed queries are executed by the PDP
and are stored in a dedicated repository that the administrator
can further extendwith additional authorizationmechanisms.
Listing 3 reports an example of policy and corresponds to the
authorization query that the API can trigger on an external
third-party access-control client management platform. This
authorization policy shows additional constraints, excluding,
for instance, public holidays specified by the administrator.
This query introduces a specific check at line 11 by exploit-

ing the model specification of the TimeSlot, in which the
modeler can specify dates to be excluded from the schedule
by using the attribute toexclude (see metamodel in Fig. 5).
For instance, if Christmas falls on Friday, then the modeler
can indicate the exclusion criteria of the time slot as a date.
Line 11 additionally checks if the access date is defined as
exclusion criteria and, in this case, returns an empty list of
activities, i.e., user not authorized. We remind that further
authorization policies can be provided by the policy admin-
istrator by simply adding a new EOL query to the repository
and selecting the preferred one. Other examples can be found
on our online material4.

4.6 Code generator

An automatic code generation is a generic approach in which
the same generator can produce different artifacts accord-
ing to the inputs it receives. Template-based code generation
(TBCG) emerged as an approach to develop code generators
[26]. In particular, it requires less effort from the program-
mers, reduces the possibility of incurring errors, and favors
code reuse [51]. TBCG is a widespread technique in MDE,
and they both emphasize abstraction and automation.

Our approach automatically generates (the code genera-
tor is triggered in 6 in Fig. 4) the code interacting with the
Tinkerforge APIs as (manually) defined in Sect. 3 [14]. It has
been extended with respect to its first version in [14] in order
to generate the logic of each brick, representing itwith a state-
chart.We used theAcceleo framework5 to generate Java code
for the case study, but it can be easily extended to support
other target languages, e.g., PHP (as done, for instance, in
[52]). Acceleo is a template-based technology to create cus-
tom code generators. It allows developers to generate code
from high-level models without worrying about how to parse
and traverse input models. Indeed, our code generator takes
the Interoperability Weaving Models as input. It navigates
to the left and right models to get the right model elements
and generates the code interacting with the Tinkerforge API,
exactly as shown in Sect. 3. What is more, the proposed
approach generates code for the Spring ecosystem6 that is
composed of: (i) Spring Boot and ApacheMaven7 allows for
the creation of the stand-alone Java application; (ii) Spring
Statemachine 8 makes it to define and use state machine con-
cepts with Spring applications; (iii) Tinkerforge Java library
provides support with devices.

For the sake of clarity, the ACS model could be used
to generate part of the Web application managing the data,

4 https://bit.ly/3j8pU3E
5 https://www.eclipse.org/acceleo/
6 https://spring.io/
7 https://maven.apache.org/
8 https://spring.io/projects/spring-statemachine

123

https://bit.ly/3j8pU3E
https://www.eclipse.org/acceleo/
https://spring.io/
https://maven.apache.org/
https://spring.io/projects/spring-statemachine

62 M. De Sanctis et al.

Listing 2 Generated Authorization method stub

1 private boolean isAuthorized(String tag, String NFC) {
2 // this tub can be customized with a REST API call
3
4 Path root = Paths.get(EolStandalone.class.getResource("").toURI());
5 modelsRoot = root.getParent().resolve("models");
6
7 StringProperties modelProperties = new StringProperties();
8 modelProperties.setProperty(EmfModel.PROPERTY_NAME, "acs");
9 modelProperties.setProperty(EmfModel.PROPERTY_FILE_BASED_METAMODEL_URI,
10 modelsRoot.resolve("ACS.ecore").toAbsolutePath().toUri().toString()
11);
12 modelProperties.setProperty(EmfModel.PROPERTY_MODEL_URI,
13 modelsRoot.resolve("acs.model").toAbsolutePath().toUri().toString()
14);
15
16 EolRunConfiguration runConfig = EolRunConfiguration.Builder()
17 .withScript(root.resolve("authorization.eol"))
18 .withModel(new EmfModel(), modelProperties)
19 .withParameter("NFC", nfc)
20 .withParameter("tag", tag)
21 .build();
22
23 runConfig.run();
24 //result contains authorized true or false
25 return runConfig.getResult();
26
27 }

Listing 3 Snippet of an authorization script excluding public holidays

1 ...
2 var DATE = new Native("java.util.Date").println();
3 var formatter = new Native("java.text.SimpleDateFormat");
4 var pattern = "yyyy-MM-dd";
5 formatter.applyPattern(pattern);
6 var completedate = formatter.format(DATE);
7 var daytocheck = DATE.getDay();
8 var client = AssociationLink.all.select(c|c.tag.select(t|t.id=tag).size()>0);
9 var authorized = false;
10 var subscriptions = AssociationLink.all.first.select(c|c.tag.id=tag).client.subscriptions.

collect(a|a.activity).flatten();
11 var activities = InfrastructureLink.all.select(r|r.brick.UID.includes(NFC)).room.timetable.

slots.flatten().select(ts|ts.weekday.value=daytocheck and not ts.toexclude.collect(redate
|formatter.format(redate)).includes(completedate)).collect(a|a.activity);

12 var authorized = activities.includes(subscriptions.first);
13 ...
14 return authorized;
15 ...

as well as the SQL script of the application [53]. It is out
of the scope of this paper, and this part is also managed
with a model-based representation. In this section, we show
the code generator generating code supporting the struc-
tural variability of the models, i.e., code related to the brick,
and the mounted bricklets for the modeled infrastructure, in
Sect. 4.6.1. This code supports the operations that can be
invoked by the behavioral aspects of the system. Instead,
Sect. 4.6.2 will show how we can generate the flow of
our access control application from statecharts models. This

code regards the interaction between the mounted bricklets
and uses the generated code starting from the infrastructure
model.

4.6.1 Code generation for structural variability

This section shows the code generator composed of multiple
templates addressing the structural variability. The first tem-
plate used by the code generator is reported in listing 4. This
template uses the three metamodels reported in the previous

123

A technology transfer journey to a model... 63

sections, loaded at line 2. Indeed, it takes as input the Inter-
operability Weaving model, which also includes external
resources, i.e., the ACSmodel and the Infrastructuremodel.
This template called generateElement starts the generation
from the declared InfrastructureLinks and, for each brick
linked to a room, it generates a java class called Brickconfig-
urationXYZ.java, where XYZ identifies the UID of the brick
(retrieved from themodel). For every room in theACSmodel,
the generator will create a package (line 10), including the
java classes for all the bricks mounted for that room. In this
way, the user can easily distinguish between the generated
infrastructures. Lines 16–18 implement what we call selec-
tive import statements (see Table 1). The selective import
statements are important, especially for micro-controllers,
because they will have no impact on the program’s runtime
speed, affecting the compile-time speed. Also, they improve
the readability of the code and, consequently, the maintain-
ability9. The selective import section is supported by the
invoked template genSelectiveImport() (lines 38–46) that
processes the bricklet passed as a parameter, and in case
the brick is equipped with a specific bricklet, it generates
the import statement. Then the template continues by pro-
cessing the variables declared in lines 30–33 in which the
generator writes the UIDs variables for all the connected
bricklets. Also, in this case, this iteration is obtained by nav-
igating the infrastructure model. The latest template invoked
in this generator is calledgenSelectiveBeans, inwhich all the
code needed to initialize the bricklets equipping the brickwill
be generated. An example is reported in lines 50–69 where
the beans10 for the NFCReader and for the QuadRelay are
generated. This first template outlines that the structural vari-
ability is supported since the generated code refers only to
the equipped bricklets on the various bricks. The developer
will obtain, for each room, the structural initialization code
needed.

When this first-code generation phase is concluded, our
approach automatically generates the code from the state-
charts linked to the available bricks.

4.6.2 Code generation for behavioral variability

This section shows the template of the code generator sup-
porting the behavioral variability of the approach. As already
said in Sect. 4.3, the modeler shapes the statechart for each
brick by starting from the partially generated one. In partic-
ular, each state uses the available operations generated from
the infrastructure. Listing 5 is in charge of generating the
available modeled states of the statechart as well as the stat-
echart configuration, taking into account the available action

9 http://www.javaperformancetuning.com/news/qotm031.shtml
10 Spring framework defines a bean as an object instantiated and assem-
bled by a Spring Inversion of Control container.

mappings. This module begins with the template genera-
teElement that generates the code from the Interoperability
Weaving model. Then, the template selects the Behavior-
Links (lines 4–10), and from the related Statechart to each
declared brick (lines 5–9), it generates an enumeration con-
taining all the states declared in the statechart (line 6), the
related state actions (line 7), and state machine configuration
(line 8). The detailed code corresponding to lines 6–8 can be
found on our online material11.

4.7 Framing our approach as amodel-driven
security approach

Model-Driven Security (MDS) has emerged as a special-
ized Model-Driven Engineering approach for supporting the
development of security-critical systems [2,3]. In order to
classify our approach in the MDS domain, we evaluate it
against the taxonomy defined by Levi et al. [2] reporting
about the essential concepts of theMDS domain. Table 2 lists
a set of concepts relevant toMDS,with their brief description
about how these concepts are realized in our approach.

In summary, our approach represents a domain-specific
approach in the access security context, managing both the
authorization and authentication security concerns by imple-
menting an ACS. Our approach uses a defined DSL that
advocates a clear separation of concerns through policies for
managing the authorization logic and weaving modeling for
the ACS and the system’s infrastructure (see Fig. 3). The
bridge between the used models and the final code is sup-
ported by model-to-text transformation features through the
Acceleo engine. Moreover, due to the traceability between
the generated code and corresponding models offered by
Acceleo, and given that we use weaving models, we can say
that our approach provides both backward and forward trace-
ability. More precisely, this is true as long as we can identify
that errors depend on the generator or issues derived bymodel
compositions. As regards verification, although our approach
does not make use of formal verification approaches, the
statistics obtained from collected data provided by the real-
world case study (see Sect. 5) show that users have raised no
issues. In other words, although statistics about the usage of
the generated code are not exhaustive, they would prove that
the generated code acted as expected. Lastly, our approach
shows a basic UI relying on pre-configured technologies, as
summarized in Table 2. However, the tool can be further
automated and extended. As future work, we aim to provide
a fully integrated platform, including features for validation
and simulation, not yet supported. The validation through a
real-world case study proves the usefulness and correctness
of the approach. Even if we use a fullymodel-based approach

11 https://bit.ly/3j8pU3E

123

http://www.javaperformancetuning.com/news/qotm031.shtml
https://bit.ly/3j8pU3E

64 M. De Sanctis et al.

Listing 4 Snippet of Acceleo main template

1 [comment encoding = UTF-8 /]
2 [module generate(’http://tinkeforge.org’,’http://tinkeforge.org/interoperability’,’http://cs.ssi.it/access-

control’)]
3

4 [template public generateElement(link : InfrastructureLink)]
5 [comment @main/]
6 [for (aBrick : Brick | link.brick)]
7

8 [file (link.room.name.concat(’/’).concat(’BrickConfiguration’.concat(aBrick.UID).concat(’.java’)), false, ’UTF
-8’)]

9

10 package org.eclipse.acceleo.module.tinkerforge.gen.[link.room.name/];
11

12 import org.springframework.beans.factory.annotation.Autowired;
13 import org.springframework.context.annotation.Bean;
14 import org.springframework.context.annotation.Configuration;
15

16 [for (aBricklet : Bricklet | aBrick.connectedDevices)]
17 [genSelectiveImport(aBricklet)/]
18 [/for]
19

20 import com.tinkerforge.IPConnection;
21

22 @Configuration
23 public class BrickConfiguration[aBrick.UID/] {
24

25 @Bean
26 public IPConnection ipConnection() {
27 // Create IP connection
28 return new IPConnection();
29 }
30 [for (aBricklet : Bricklet | aBrick.connectedDevices)]
31 [genSelectiveVariables(aBricklet)/]
32 [genSelectiveBeans(aBricklet)/]
33 [/for]
34 }
35 [/file]
36 [/for]
37 [/template]
38 [template public genSelectiveImport(aBricklet: Bricklet)]
39 [if (aBricklet.oclIsTypeOf(NFCReader))]
40 import com.tinkerforge.BrickletNFC;
41 [/if]
42 [if (aBricklet.oclIsTypeOf(QuadRelay))]
43 import com.tinkerforge.BrickletIndustrialQuadRelayV2;
44 [/if]
45 ...
46 [/template]
47 [template public genSelectiveVariables(aBricklet: Bricklet)]
48 private static final String [aBricklet.eClass().name/]_UID = "[aBricklet.UID/]";
49 [/template]
50 [template public genSelectiveBeans(aBricklet: Bricklet)]
51 [if (aBricklet.oclIsTypeOf(NFCReader))]
52 @Autowired
53 private BrickletNFC.ReaderStateChangedListener nfcListener;
54 @Bean
55 public BrickletNFC brickletNFC() {
56 BrickletNFC brickletNFC = new BrickletNFC(NFCUID, ipConnection());
57 //Added the listener
58 brickletNFC.addReaderStateChangedListener(nfcListener);
59 return brickletNFC;
60 }
61 [/if]
62 [if (aBricklet.oclIsTypeOf(QuadRelay))]
63 @Bean
64 public BrickletIndustrialQuadRelayV2 brickletIndustrialQuadRelayV2() {
65 return new BrickletIndustrialQuadRelayV2(RelayUID, ipConnection());
66 }
67 [/if]
68 ...
69 [/template]

123

A technology transfer journey to a model... 65

Listing 5 Snippet of template generating statechart configuration

1 [comment encoding = UTF-8 /]
2 [module generateSC(’http://tinkeforge.org’,’http://tinkeforge.org/behaviorweaving’,’http://www.yakindu.org/sct/

sgraph/2.0.0’,’http://www.eclipse.org/gmf/runtime/1.0.3/notation’)]
3 [template public generateElement(spec: InteroperabilityModule)]
4 [for (link : BehaviorLink | spec.links->select(l|l.oclIsTypeOf(BehaviorLink)))]
5 [for (sc : Statechart | link.sc)]
6 [generateStates(sc)/]
7 [genAction(sc)/]
8 [generateSMConfig(sc,link.brick)/]
9 [/for]
10 [/for]
11 [/template]

as a proof-of-concept, the realized ACS has been deployed
as a hybrid solution, as described in the following section.

Eventually, in theirwork,Nguyen et al. [3] complain about
“the lack of all-round approaches for the whole development
cycle of secure systems which in the end lead to auto-
matic generation of both code and security infrastructure.”
We believe that our approach basically realizes a all-round
approach for thewhole development cycle of secure systems.

5 Our approach at work

This section describes our approach at work on the use case
described in Sect. 3. As already said in Sect. 4, we have to
specify the infrastructure model, the ACS model, the rela-

tionship between infrastructure and ACS models (i.e., the
weaving model), and the statecharts related to each brick,
respectively. Then, the code generators produce the Tinker-
forge code to be deployed to the real system.

Figure 9 reports a screenshot of the weaving editor, where
an interoperability weaving model (modeled in 4) has been
created to link the infrastructure model (modeled in 1) with
the ACS model (modeled in 2). The dotted lines represent
the links between the concepts. For instance, the brick with
UIDXYZ has been linked toRoom Entrance. Every room
has been set up with the corresponding activities and time
slots. Moreover, we have some associated tags, e.g., the tag
with id 445 with client 124, aka Mario Rossi. Not all the
properties of the model elements are visible in this screen-
shot, where we tried to highlight the links defined in the

Table 2 A taxonomy for model-driven security approaches [2]

Taxonomy Entry Description in our approach

Application domains Is the approach domain specific or generalistic? Our approach is domain-specific in the access
security context.

Security concerns Which concerns does the approach focus on? Authorization (i.e., ACS) and authentication (i.e.,
NFC tags).

Are they expressible in a metamodel? Yes, e.g., the Access Control System Metamodel (see Fig. 5).

Modeling approach Which Modeling paradigm(s)? Which Modeling language(s)? Our approach makes use of a defined
domain-specific language.

Separation of concerns Is it used? If it is, how is it implemented? SoC is realized through policies for the authorization logic
and weaving modeling for the ACS and the infrastructure (see Fig. 3).

Model transformations Are Model-to-Model/Model-to-Text transformation used? Model-to-Text transformations are used for
statecharts and devices code.

Which model transformation engine is used? Acceleo is used as transformation engine.

Verification Which verification techniques are used? No formal verification approach is explicitly used.

Traceability Are backward and/or forward traceability implemented? Backward and forward traceability offered by
Acceleo is exploited.

Tool support What is the automation level of the approach? Basic UI relying of pre-configured technologies.

Which features does it provide? Default modeling editors: EMF; Fully automated code generation:
Acceleo;

Automatic deployment supported by the target platform: TinkerForge.

Validation Is the approach validated on large, meaningful cases? Has it been industrially validated?

Our approach has been applied on a real-world case study, i.e., a fitness center (see Sect. 5).

123

66 M. De Sanctis et al.

Fig. 9 Interoperability weaving example model

weavingmodel.What is important to notice here is the Infras-
tructure Links in the interoperability model embodying the
information about which brick is mounted in a specific room.
For instance, the first brick with UID XYZ is mounted at the
Room Entrance, as can be seen from the relation that
the weaving tool automatically highlights. Furthermore, the
bricklets mounted on top of the brick are listed in the selec-
tion. The same applies to the brickwithUIDDFRmounted on
Room X. It is evident that the mounted bricklets effectively
shape different configurations from one room to another.

Figure 10 shows the statechart used to model the entrance
brickbehavior in 3 and thatweused to generate the code run-
ning and interacting with the device12. On top, we reported
a snippet of the interface with the operations generated for
each bricklet from the infrastructure model. In particular, for
each bricklet of the infrastructure, an interface with the avail-
able operations is generated. For instance, if the LCD display
is mounted, for the DisplayTag state, an interface and two
available operations (clearDisplay and writeText) are gener-
ated. This first automation is important since it generates only
the available operations for the equipped bricklets. Since our
approach is based on NFC bricklet, the Idle and Reading-
Tag states are automatically generated. Together with their
transitions, they model the request and reading of a tag13.

The statechart models the same actions flow and events
described in Sect. 3 in Listing 1. Moreover, we modeled the
other three statecharts to cover the three possible configura-
tions we described in Sect. 3 for the diverse room types.

12 We left out of this model the modeling of the checks analyzing if the
triggered action corresponds to an entry or an exit which is quite similar
but interacts with the authentication script to write the exit date on the
model.
13 https://www.tinkerforge.com/en/doc/Hardware/Bricklets/NFC.
html

In order to express the behavior of each brick, we used
the metamodel in Fig. 8 to model the correspondences as
reported in Fig. 11. In this excerpt of the weaving model, we
can see that the highlighted behavioral link establishes which
statechart has been selected for a specific brick. For instance,
in this case, the statechart reported in Fig. 10 has been linked
to the entrance brick, identified with the UID XYZ.

After themodeling activities are finishedwith 4 , the code
generation phase takes place as indicated in 6 . The code for
structure variability is generated from the infrastructure and
ACS models with the related weaving model. The behav-
ior code comes from the statechart models for each brick,
together with the weaving model.

Listing 6 is an excerpt of the code generated for the brick
configuration related to the entrance brick. In particular,
lines 1–6 define a bean for the NFC bricklet, while lines 7–10
specify a bean for the piezo-speaker bricklet.

Listing 7 shows an excerpt fromBrick statechart generated
code again for the entrance brick. The template generates all
statechart states (lines 2–7), and the statechart transitions
between states (lines 9–16). Lines 18-27 specify the action
related to the DisplayTag state.

By executing the generated code for the complete infras-
tructure and deploying the generated code on the devices or
a centralized server, we managed to test the communication
mechanism with the infrastructure we modeled.

The log in Fig. 12 (top left) reports the printed detected
tag id by the device running the generated code, e.g., 445
(authorized) and 34F (unauthorized), corresponding to spe-
cific clients interacting with the ACS. The bottom part of
Fig. 12, indeed, reports the result of the authorization script
(reported in Sect. 4.5) executed crossing the detected tag by
the NFC reader with UID DFR, with the clients and activ-
ities of the room infrastructured with that brick. In Fig. 12
top-right, we reported the configuration of the EOL query on
the model, which corresponds to setting the two parameters
passed to the authorization script called in Listing 2, i.e., the
tag id and NFC UID.

We can conclude that the two used tags resulted once in
the authorized and once in the unauthorized access.

Real Case Study Stats Considering that the code generated
for the ACS is actually in use and running in a fitness center,
we report some stats obtained from the collected data. Table 3
reports the summary of the entries authorized or not for all
the rooms in the building in a time window of 2 months. All
the bricks run with generated code and, specifically, for each
device of each room depicted in Fig. 1, two rows are reported
in Table 3, showing the number of authorized () and denied
() entries, respectively.We recall here that some rooms have
two entries, each with its device (e.g., entrance.1 with the
device JKV, entrance.2 with the device JL2), while others
have only one entry equipped with one device (e.g., room

123

https://www.tinkerforge.com/en/doc/Hardware/Bricklets/NFC.html
https://www.tinkerforge.com/en/doc/Hardware/Bricklets/NFC.html

A technology transfer journey to a model... 67

Fig. 10 Entrance Brick statechart

123

68 M. De Sanctis et al.

Fig. 11 Weaving model used link modeled statecharts with the infras-
tructure

1 with the device JL9). Moreover, the authorization script
of the PDP has been replaced with the REST API call since
havingmore than 2000 clients accessing themodelmanaging
the tag association would result in rapid degradation of the
performance w.r.t. a REST API call.

If we focus on the entrance, we can easily see that the two
devices in this room managed a total of 10872 entries over
two months, of which 469 have been denied, while 10403
have been authorized. This further shows how the ACS sup-
ports the fitness center’s management by efficiently detecting
expired subscriptions attempts to participate in activities that
are not part of the granted subscription or simply entries
attempts by unauthorized people. Even if our work focuses
not on generated code correctness, it depends on the models
and the correctness of the code generator templates. There-
fore, we outline that the generation has effectively distributed
the generated code on a real case study already running.

6 Evaluation

This section reports the evaluation of our approach in
terms of automation with respect to traditional code-centric
techniques and time to market (TTM). These represent
particularly relevant aspects in the case of a code genera-
tion approach. Thus, we propose to evaluate the following
research questions:

RQ1 How well can the presented modeling approach
reduce the effort of a developer in terms of lines of code?
RQ2 How well can the presented modeling approach
reduce the effort of a developer in terms of time to mar-
ket?

In this evaluation, we compare the traditional code-centric
development of the case study shown in Sect. 3 with the
presented modeling approach.

6.1 Experiment setup

In order to answer the defined research questions, given the
described case study, we compare the lines of code that
a developer should write to implement it with respect to

composing the model defining the case study (identified
as modeling activities 1 → 2 → 3 → 4 eventually trig-
gering 5). We have selected two persons with different
backgrounds and profiles: one is a modeling expert (called
modeler in the remaining of the section) with a postdoctoral
fellowship position, not aware of the presented modeling
approach, but with a strong background in MDE and the
Eclipse Modeling Platform. The other is a student of the
master in mobile and web technologies14 (called developer
in the remaining of the section) with expertise in Java EE
application development and web development in general.

A training phase anticipated the conducted experiment in
which we only showed the Tinkerforge general architecture
and the architecture of our generated approach by referring
to the entrance brick (the most complete) (2 hours in total).
Moreover, a general description of the client flow has been
shown with an example of the brick usage. Then we referred
to the Tinkerforge documentation website. The modeler has
been trainedwith the same process, and additionally, we have
shown examples of the modeling artifacts we have devel-
oped for testing (as Fig. 11 for instance). The developer had
the Tinkerforge documentation available where examples are
shown, so we think the two training phases correspond. After
the development/code generation phase, we tested the source
code in the simulation environment with the entrance brick
connected to our LAN. We marked the code as correct if the
minimal flow described before was respected.

The used metric, i.e., Lines of code (LoC) [54], is a widely
used metric to measure the size of a software program by
counting the number of lines in the text of the program’s
source code [55]. This metric is typically used to predict
the amount of effort required to develop or maintain soft-
ware. For this reason, we used it to estimate the developer’s
effort. On the other side, in our approach, the modeler has
to compose the interoperability module models to produce
the source code. For this reason, we rely on the Model Size
metric [56] that is simply counting the number of instances
that have to be created to compose the model, e.g., num-
ber of Infrastructure Link or Association Link, Bricks or
Rooms. Moreover, the attributes and structural features set
in the model contribute to the model size as in the following
formula:

Size(Model)=nr_instances+(0.5 ∗ nr_set_ f eatures)

(1)

The differences in terms of LoC between the manually writ-
ten application and the generated one were minimal, and we
did not compare the code since it is out of our experiment.
This formula has been embedded in an EOL script that we do
not report since it is quite trivial. It calculates the size of the

14 https://mwt.disim.univaq.it

123

https://mwt.disim.univaq.it

A technology transfer journey to a model... 69

Listing 6 Excerpt from Brick configuration generated code

1 @Bean
2 public BrickletNFC brickletNFC() {
3 BrickletNFC brickletNFC = new BrickletNFC(NFCUID, ipConnection());
4 brickletNFC.addReaderStateChangedListener(nfcListener);
5 return brickletNFC;
6 }
7 @Bean
8 public BrickletPiezoSpeakerV2 brickletPiezoSpeakerV2(){
9 return new BrickletPiezoSpeakerV2(Beep_UID, ipConnection());
10 }

Listing 7 Excerpt from Brick statechart generated code

1 @Override
2 public void configure(StateMachineStateConfigurer<States, Events> states) throws Exception {
3 states.withStates()
4
5 .stateDo(States.DISPLAYTAG, displaytagAction())
6
7 }
8 @Override
9 public void configure(StateMachineTransitionConfigurer<States, Events> transitions) throws

Exception {
10 transitions
11
12 .withExternal().source(States.READINGTAG).target(States.DISPLAYTAG)
13 .and()
14 .withExternal().source(States.DISPLAYTAG).target(States.FIRSTBEEP)
15
16 }
17 @Bean
18 public Action<States, Events> displaytagAction() {
19 return (ctx) -> {
20 try {
21 brickletLCD128x64.clearDisplay();
22 brickletLCD128x64.writeLine(0, 0, ((String)ctx.getExtendedState().getVariables().get("

tag")));
23 } catch (TinkerforgeException e) {
24 e.printStackTrace();
25 }
26 };
27 }

model passed as a parameter by counting its instances, and,
for each instance, it counts the number of the filled attributes
and references. This comparison is used to answer to RQ1.
Differently, for RQ2 we make use of another comparison.
When using a model-based approach, the effort can be mea-
sured by how much time a modeler needs to compose the
model. This composition activity comprehends the editing
of the model by alternating the addition of new instances and
filling in the required information in the property view. In this
case, the modeler composed the weaving model containing
all the configured bricks and generated the entire code. Thus,
we could estimate the LoC for the other bricks.

6.2 Results analysis

The results of the evaluation for RQ1 and RQ2 are reported
in Tables 4 and 5, respectively. From Table 4 it is evident
that for each brick added to the infrastructure, the code to
be developed increases in terms of LoC, whereas the model
to be composed increases of a few elements. Consider that
the average model slice [57] size for adding the complete
management for a single roomcorresponds to 50,whereas the
average LoC for a single room ranges between 200 and 219
in our experiments. In fact, the lines of code developed for
the case study in Sect. 3 are 1459. The model to be composed
has a size of 248 elements, including three versions of the
statecharts for three different configurations.

123

70 M. De Sanctis et al.

Fig. 12 Console log showing the runtime interaction of one of the
access control devices in the fitness center premises

Table 3 Report on the building entries in a time window of 2 months

Room id NFC Authorized Entries

entrance.1 JKV 312

entrance.1 JKV 8200

entrance.2 JL2 157

entrance.2 JL2 2203

2.1 JKW 139

2.1 JKW 5098

2.2 JL6 96

2.2 JL6 4491

X.1 JKZ 18

X.1 JKZ 237

X.2 KwP 7

X.2 KwP 128

3.1 JL7 274

3.1 JL7 1875

3.2 Kx2 27

3.2 Kx2 461

1 JL9 86

1 JL9 649

4 JKY 243

4 JKY 1005

5 Kx1 97

5 Kx1 957

Table 5 shows that the time spent to develop the Java code
corresponds to around 12 hours. In particular, rooms 1–5
showdifferent configurations, butwith a slight variability, we
start from a time of 2 hours for room 1, and then we decrease
the time required for each room by 20 minutes. It means that
the time required for rooms 1–5 ranges from 2 hours for room
1 to 40minutes for room 5. On the opposite, building amodel

Table 4 Evaluation results for RQ1

Configuration LoC Nr. Bricks Tot. LoC Model Size

Entrance 219 1 219 248

Room 1–5 208 5 1040

Room X 200 1 200

Total 1459

Table 5 Evaluation results for RQ2

Configuration TTM Nr. Bricks Tot. TTM TTM
Coding Coding Modeling

Entrance 4 h 1 4 h 42 m

Room 1–5 2 h 40 m 5 6 h 40 m

Room X 1 h 1 1 h

Total 11 h 40 m

for the case study took 42 minutes from scratch, including
the statecharts that are, in part, “conceptually” similar. We
omit the code generation task since it takes only seconds.

The evaluation result shows a drastic reduction in terms
of manual activities and time spent to get the code running.
We also verified from this experience that the more the gates
of the building increase, the more the variability grows. This
also supports the usefulness of this approach, especially for
buildings with a large number of rooms to be equipped.

6.3 Threats to validity

According toWohlin et al. [58], the validity of a studydenotes
the trustworthiness of the results and towhat extent the results
might be biased by some factors, e.g., the researchers’ sub-
jective point of view. In the following, we discuss the four
classical aspects of validity, namely construct, internal, exter-
nal, and conclusion validity, plus reliability.

Construct validity It refers to the appropriateness of mea-
surements applied to evaluate the approach. To minimize the
threat to construct validity, we defined all the details regard-
ing the performed evaluation a priori. Before proceeding to
the realization of the case study, the authors agreed on the
research questions to be evaluated, the evaluation methodol-
ogy to be followed, and themetrics to be exploited. It allowed
us to discuss every evaluation aspect and avoid different inter-
pretations at evaluation time.

Internal validity It refers to the presence of potential biases
that might affect the evaluation results by making them
questionable [58]. The presented approach is based on the
Tinkerforge platform. Currently, the actual implementation
of the specified metamodel does not comprehend all the pos-

123

A technology transfer journey to a model... 71

sible bricklets that Tinkerforge provides. The codegeneration
process has been tested only for the deviceswe currently have
by making the Tinkerforge platform underused. However,
the approach we proposed is general, and it can be further
extended to support the complete set of bricklets.

A second internal threat validity is that the results have
been obtained on a case study made by a limited number of
bricks. Indeed, we defined a real setting by modeling/instan-
tiating all the bricks required from the given fitness center.
We are aware that this limited number could threaten the
internal validity of our experiment. To strengthen our study
findings, we should consider further case studies requiring a
more significant number of bricks in broader experimenta-
tion.

A third internal threat validity refers to the complexity of
modeling, which is not captured by the model’s size met-
ric and cannot be easily compared with the manual code
effort. However, the modeling strongly supports abstraction,
reuse, and code generation, at the expense of the develop-
ers’ modeling effort. We believe that adding modeling effort
is a good compromise for writing the entire system code,
thus overcoming the limitations of code-centric develop-
ment, e.g., proneness to error. Moreover, as argued in the
external validity paragraph, the modeling features also help
tackle cross-platform development.

Eventually, we are aware that the experiment should
involvemultiple persons to avoid a learning effect if the same
system is developed using both approaches. Since we did
not have a team of modelers and developers involved in the
experiment, and this task was very time-consuming (on one
side), we mitigated this threat by distinguishing the tasks of
each user; one user has been employed in the code develop-
ment and the other one in the modeling approach. The last
point we need to consider is that the experiment was con-
ducted remotely and in asynchronous mode, meaning that
we had a conversation with the involved users and were only
asked to provide the TTM and LoC when the assigned task
was complete. The provided TTM could be a rounding of
the adequate time spent developing the code, e.g., 58 min-
utes could be rounded to 1 hour. The difference between the
TTM with coding and modeling is so reduced. Thus, we can
state that the approach does not suffer much from this threat.
This can only be the case in which the case study is based on
a single brick with a minimal number of equipped bricklets.

Reliability We compared our modeling approach with
respect to traditional code-centric approaches using two dif-
ferent metrics, i.e., LoC and the models’ size. Regarding
the reliability of the measures used in our evaluation, we
are aware that this comparison is limited by the difference
between the metrics used, not being directly comparable.
However, as stated by Wohlin et al. [58], objective measures
are more reliable than subjective ones. In this regard, lines

of code and the models’ size are considered more reliable
metrics since they do not involve human judgment.

External validity It concerns to what extent it is possible
to generalize the findings [58]. For generalization, we dis-
cuss the following points. The approach has been used to
develop an access control system. Consequently, the pre-
sented statecharts are currently limited to the representation
of the behaviorswithin the realized system.Different systems
might imply the need for more complex statecharts, which
could threaten our approach’s external validity.

Another threat to the external validity is that we currently
generate only themost common operations used by the brick-
lets and not all the possible operations that bricklets can
perform from the presented statecharts. For instance, for the
speaker bricklet we support the beep operation through para-
metric frequencies. However, the speaker also supports the
management of given alarms that we do not handle. Anyhow,
the set of generated operations, despite not being complete,
covers all the required functionalities for realizing the nec-
essary behavior of an access control system.

Our approach has been explicitly realized to be used with
NFC technology. For this reason, we assume that bricks are
always equipped with an NFC reader and clients with their
tags. This assumption is reflected in the code generation tem-
plates and, in turn, in some of the generated code lines. For
instance, the used statecharts, such as that reported in Fig. 10,
always include the readingTag state. Although it may seem
that this assumption limits the level of abstraction of the
approach, we believe that it facilitates both the modeling and
the code generation of theACS in caseswhere the application
is intended to be used with a specific reference technology,
such as NFC, in our case.

The presented approach is generalizable and applicable
for developing different versions of ACSs that make use
of the Tinkerforge sensors technology. Indeed, the approach
supports modification to the system’s architecture or to the
infrastructure and its building blocks. This is also due to
the template-based code generation offered by the approach.
In fact, although writing templates is not an easy task with
respect to directly writing the system code, it provides rele-
vant support for reuse.

Threats to external validity can arise only in two cases,
i.e., when a change of programming language or a plat-
form change is required. As explained, Tinkerforge supports
many programming languages, e.g., Java, PHP, and Python.
Moving from Java to a different language would require a
new code generator for the new supported language with-
out changing the used models. Passing from Tinkerforge to
a different target platform would imply changes in both the
templates for the code generation and the used models, at
least those closely related to Tinkerforge.

123

72 M. De Sanctis et al.

Conclusion validity It regards issues affecting the ability to
draw the correct conclusion of an experiment. To mitigate
this threat and avoid individual bias and interpretation of the
results from the side of the authors, we involved a modeler
and a developer in the evaluation of the case study. This
helped us to draw our conclusions more objectively.

7 Conclusions and future work

This paper presented a model-driven approach, supporting
automatic code generation to enable communication between
an IoT infrastructure andACSs. Thiswork has been triggered
by the need to migrate an old chip card-based access control
system to a newway of authorizing people with NFC tags. In
particular, the approach enables the generation of software
components in the selected target language (e.g., Java) by also
offering a model-based authorization mechanism that can be
easily replaced by a third-party system REST API call. The
objectives of the presented approach are twofold: (i) relieving
developers from the inherent complexities of heterogeneous
IoT devices, protocols, and networks, also in view of a multi-
platform evolution of the approach; (ii) making the whole
development process less error-prone and time-consuming,
while exploiting code generation.

As future work, we plan to address the limitations dis-
cussed in Sect. 6.3 and to make the generative approach
multi-platform by targeting additional languages besides
Java through broader exploitation of the Tinkerforge plat-
form. Another intriguing clue is to provide the authorization
mechanism in a model-based representation of the policy
[59], which is currently managed by a repository of autho-
rization scripts. In the case of changing the access policy,
only the security-level changes by redeploying only the new
policy and its decision point. In the future, it could be con-
sidered to customize the approach further, for instance, by
enriching the weaving modeling phase with domain-specific
graphical dedicated editors to be used instead of the one
based on the panels. Low-code platforms seem to be a natu-
ral choice for multi-platform integrated graphical modeling.
Moreover, it would be interesting to experiment with mul-
tiple architectural deployment alternatives, e.g., centralized,
decentralized, and microservice-based, to check the versatil-
ity of the generative approach andhowmuch effort is required
to adapt it.

Funding Open access funding provided byGran Sasso Science Institute
- GSSI within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Moreno, M.V., Hernández, J.L., Skarmeta, A.F.: A new location-
aware authorization mechanism for indoor environments. In:
International Conference on Advanced Information Networking
and Applications Workshops, pp. 791–796 (2014). IEEE

2. Lúcio, L., Zhang, Q., Nguyen, P., Amrani, M., Klein, J.,
Vangheluwe, H., Le Traon, Y. (2014). Advances in Model-Driven
Security93, 103–152https://doi.org/10.1016/B978-0-12-800162-
2.00003-8

3. Nguyen, P.H., Kramer, M., Klein, J., Le Traon, Y.: An extensive
systematic review on the model-driven development of secure sys-
tems. Inf. Softw. Technol. 68, 62–81 (2015)

4. Coskun, V., Ozdenizci, B., Ok, K.: A survey on near field commu-
nication (nfc) technology.Wirel. Pers. Commun. 71(3), 2259–2294
(2013)

5. Bravo, J., Hervas, R., Chavira, G., Nava, S.W., Villarreal, V.: From
implicit to touching interaction: Rfid and nfc approaches. In: Con-
ference on Human System Interactions, pp. 743–748 (2008)

6. Tinkerforge: Website. https://www.tinkerforge.com (2011)
7. Schmidt, D.C.: Guest NOOPeditor’s introduction: model-driven

engineering. Computer 39(2), 25–31 (2006)
8. Di Ruscio, D., Franzago, M., Malavolta, I., Muccini, H.: Envision-

ing the future of collaborative model-driven software engineering.
In: International Conference on Software Engineering Companion
(ICSE-C), pp. 219–221 (2017)

9. Morin, B., Harrand, N., Fleurey, F.: Model-based software engi-
neering to tame the iot jungle. IEEE Softw. 34(1), 30–36 (2017)

10. Gherbi, T., Meslati, D., Borne, I.: Mde between promises and
challenges. In: 2009 11th International Conference on Computer
Modelling and Simulation, pp. 152–155 (2009). IEEE

11. Gaouar, L., Benamar, A., Bendimerad, F.T.: Model driven
approaches to cross platformmobile development. In: Proceedings
of the International Conference on Intelligent Information Process-
ing, Security and Advanced Communication. IPAC, pp. 1–5. ACM
(2015)

12. Rehman, S., Ullah, R.M.K., Tanvir, S., Azam, F.: Development
of user interface for multi-platform applications using the model
driven software engineering techniques. In: IEMCON, pp. 1152–
1158 (2018)

13. Harrand, N., Fleurey, F., Morin, B., Husa, K.E.: Thingml: a lan-
guage and code generation framework for heterogeneous targets.
In: Proceedings of the ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems, pp. 125–
135 (2016)

14. Iovino, L., De Sanctis,M., Rossi,M.T.:Automated code generation
for nfc-based access control. In:MDE4IoTWorkshop atMoDELS,
pp. 31–38 (2019)

15. Sicari, S., Rizzardi, A., Miorandi, D., Cappiello, C., Coen-Porisini,
A.: Security policy enforcement for networked smart objects. Com-
put. Netw. 108, 133–147 (2016)

16. Pohl, K., Böckle, G., Linden, F.: Software product line engineering:
foundations, principles, and techniques. IEEE Software (2005).
https://doi.org/10.1007/3-540-28901-1

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/B978-0-12-800162-2.00003-8
https://doi.org/10.1016/B978-0-12-800162-2.00003-8
https://www.tinkerforge.com
https://doi.org/10.1007/3-540-28901-1

A technology transfer journey to a model... 73

17. Blythe, P.: Rfid for road tolling, road-use pricing and vehicle access
control. In: IEEEColloquiumonRFIDTechnology, pp. 1–8 (1999).
IET

18. Breed, D.S., Sokurenko, V.: Tolling system and method using
telecommunications. Google Patents. US Patent 9,691,188 (2017)

19. Shao, W., Salim, F.D., Nguyen, T., Youssef, M.: Who opened the
room? device-free person identification using bluetooth signals in
door access. In: 2017 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communica-
tions (GreenCom) and IEEECyber, Physical andSocialComputing
(CPSCom) and IEEE Smart Data (SmartData), pp. 68–75 (2017)

20. Anwar, S., Kishore, D.: Iot based smart home security system with
alert and door access control using smart phone. Int. J. Eng. Res.
Technol. 5, 504–509 (2016)

21. Sahani, M., Nanda, C., Sahu, A.K., Pattnaik, B.: Web-based online
embedded door access control and home security system based
on face recognition. In: 2015 International Conference on Cir-
cuits, Power and Computing Technologies [ICCPCT-2015], pp.
1–6 (2015)

22. Gossen, F.: Head pose normalization for recognition of human
identities using color and depth data. In: Lamprecht, A.-L. (ed.)
LeveragingApplications of FormalMethods, Verification, andVal-
idation, pp. 97–112. Springer, Cham (2016)

23. Wolny, S., Mazak, A., Wally, B.: An initial mapping study on
mde4iot. MDE4IoT - 2nd International Workshop on Model-
Driven Engineering for the Internet-of-Things, 524–529 (2018)

24. Prehofer, C., Chiarabini, L.: From internet of things mashups to
model-based development. In: Computer Software and Applica-
tions Conference, COMPSAC Workshops, pp. 499–504 (2015)

25. Amrani, M., Gilson, F., Debieche, A., Englebert, V.: Towards user-
centric dsls to manage iot systems. In: International Conference on
Model-Driven Engineering and Software Development, MODEL-
SWARD, pp. 569–576 (2017)

26. Syriani, E., Luhunu, L., Sahraoui, H.: Systematic mapping study of
template-based code generation. Comput. Lang. Syst. Struct. 52,
43–62 (2018)

27. Pham, V.C., Radermacher, A., Gérard, S., Li, S.: Complete code
generation from uml state machine. In: MODELSWARD (2017)

28. Ev, S.E., Samuel, P.: Automatic code generation from uml state
chart diagrams. IEEE Access PP, 1–1 (2019). https://doi.org/10.
1109/ACCESS.2018.2890791

29. Marah, H.M., Eslampanah, R., Challenger, M.: Dsml4tinyos: code
generation for wireless devices. In: Proceedings ofMODELS 2018
Workshops, pp. 509–514 (2018)

30. Nguyen, X.T., Tran, H.T., Baraki, H., Geihs, K.: Frasad: A frame-
work for model-driven iot application development. In: IEEE
World Forum on Internet of Things (WF-IoT), pp. 387–392 (2015)

31. Pantelimon, S.-G., Rogojanu, T., Braileanu, A., Stanciu, V.-D.,
Dobre, C.: Towards a seamless integration of iot devices with iot
platforms using a low-code approach. In: 2019 IEEE 5th World
Forum on Internet of Things (WF-IoT), pp. 566–571 (2019).
https://doi.org/10.1109/WF-IoT.2019.8767313

32. Ihirwe, F., Di Ruscio, D., Mazzini, S., Pierini, P., Pierantonio, A.:
Low-code engineering for internet of things: A state of research. In:
Proceedings of the 23rd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems: Companion
Proceedings. MODELS ’20. Association for Computing Machin-
ery, NewYork, NY,USA (2020). https://doi.org/10.1145/3417990.
3420208

33. Raquel, S., Óscar, G.-P., Francisco, F., Raul, P.: Low-code as
enabler of digital transformation in manufacturing industry. Appl.
Sci. 10, 12 (2019). https://doi.org/10.3390/app10010012

34. Langlois, B., Jitia, C.-E., Jouenne, E.: Dsl classification. (2007)
35. Groenewegen, D., Hemel, Z., Kats, L., Visser, E.: Webdsl : a

domain-specific language for dynamic web applications, pp. 779–
780 (2008)

36. Groenewegen, D.M., Visser, E.: Integration of data validation and
user interface concerns in a dsl for web applications. Softw. Syst.
Model. 12(1), 35–52 (2013)

37. Boßelmann, S., Frohme,M., Kopetzki, D., Lybecait, M., Naujokat,
S., Neubauer, J., Wirkner, D., Zweihoff, P., Steffen, B.: Dime: A
programming-less modeling environment for web applications. In:
Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal
Methods, Verification and Validation: Discussion, Dissemination,
Applications, pp. 809–832. Springer, Cham (2016)

38. ben Fadhel, A., Bianculli, D., Briand, L.C.: Gemrbac-dsl: a high-
level specification language for role-based access control policies.
Proceedings of the 21st ACM on Symposium on Access Control
Models and Technologies (2016)

39. Salman, A.J., Al-Yasiri, A.: Developing domain-specific lan-
guage for wireless sensor network application development. In:
International Conference for Internet Technology and Secured
Transactions (ICITST), pp. 301–308 (2016)

40. Salihbegovic, A., Eterovic, T., Kaljic, E., Ribic, S.: Design of a
domain specific language and ide for internet of things applications.
In: International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), pp. 996–
1001 (2015)

41. Schmid, K., Rabiser, R., Grünbacher, P.: A comparison of decision
modeling approaches in product lines. In: Proceedings of the 5th
Workshop on VariabilityModeling of Software-Intensive Systems,
pp. 119–126 (2011)

42. Duala-Ekoko, E., Robillard,M.P.: Tracking code clones in evolving
software. In: 29th International Conference on Software Engineer-
ing (ICSE’07), pp. 158–167 (2007). IEEE

43. Thomas, D., Moorby, P.: The Verilog® hardware description lan-
guage. Springer (2008)

44. DidonetDel Fabro,M.,Valduriez, P.: Towards the efficient develop-
ment of model transformations using model weaving andmatching
transformations. SoSyM 8(3), 305–324 (2009). https://doi.org/10.
1007/s10270-008-0094-z

45. Rutle, A.: Diagram predicate framework: a formal approach to
MDE. PhD Dissertation, University of Bergen (2010)

46. Harel, D.: Statecharts: a visual formalism for complex systems.
Sci. Comput. Program. 8(3), 231–274 (1987). https://doi.org/10.
1016/0167-6423(87)90035-9

47. Harel, D., Politi, M.: Modeling Reactive Systems with Statecharts:
The Statemate Approach, 1st edn. McGraw-Hill Inc, USA (1998)

48. VonderBeeck,M.:Acomparisonof statecharts variants. In: Formal
Techniques in Real-time and Fault-tolerant Systems, pp. 128–148
(1994). Springer

49. Del Fabro, M.D., Bézivin, J., Valduriez, P.: Weaving models
with the Eclipse AMW plugin. In: Eclipse Modeling Symposium,
Eclipse Summit Europe (2006)

50. Kolovos, D., Rose, L., Paige, R., Garcıa-Domınguez, A.: The
epsilon book. Structure 178, 1–10 (2010)

51. Benouda, H., Azizi, M., Esbai, R., Moussaoui, M.: MDA approach
to automate code generation for mobile applications, pp. 241–250
(2016). https://doi.org/10.1007/978-981-10-1409-3_27

52. Arrhioui, K., Mbarki, S., Betari, O., Roubi, S., Erramdani, M.:
A model driven approach for modeling and generating php
codeigniter based applications. Trans. Mach. Learn. Artif. Intell.
(2017). https://doi.org/10.14738/tmlai.54.3189

53. Cicchetti, A., Di Ruscio, D., Iovino, L., Pierantonio, A.: Managing
the evolution of data-intensive web applications by model-driven
techniques. Softw. Syst. Model. 12(1), 53–83 (2013)

54. Khoshgoftaar, T.M., Munson, J.C.: The lines of code metric as a
predictor of program faults: A critical analysis. In: Proceedings
Fourteenth Annual International Computer Software and Applica-
tions Conference, pp. 408–409 (1990). IEEE Computer Society

123

https://doi.org/10.1109/ACCESS.2018.2890791
https://doi.org/10.1109/ACCESS.2018.2890791
https://doi.org/10.1109/WF-IoT.2019.8767313
https://doi.org/10.1145/3417990.3420208
https://doi.org/10.1145/3417990.3420208
https://doi.org/10.3390/app10010012
https://doi.org/10.1007/s10270-008-0094-z
https://doi.org/10.1007/s10270-008-0094-z
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1007/978-981-10-1409-3_27
https://doi.org/10.14738/tmlai.54.3189

74 M. De Sanctis et al.

55. Bhatt, K., Tarey, V., Patel, P., Mits, K.B., Ujjain, D.: Analysis of
source lines of code (sloc)metric. Int. J. Emerg. Technol. Adv. Eng.
2(5), 150–154 (2012)

56. Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Mining
metrics for understanding metamodel characteristics. In: Proceed-
ings of the 6th International Workshop on Modeling in Software
Engineering, pp. 55–60 (2014)

57. Salay, R., Kokaly, S., Chechik, M., Maibaum, T.: Heterogeneous
megamodel slicing for model evolution. In: ME@ MoDELS, pp.
50–59 (2016)

58. Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B.,
Wessln, A.: Experimentation in Software Engineering. Springer
(2012)

59. Muñante, D., Gallon, L., Aniorté, P.: An approach based on model-
driven engineering to define security policies using orbac. In:
International Conference on Availability, Reliability and Security,
pp. 324–332 (2013). https://doi.org/10.1109/ARES.2013.44

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/ARES.2013.44

	A technology transfer journey to a model-driven access control system
	Abstract
	1 Introduction
	2 Background and related work
	3 Case study
	4 A model-driven ACS
	4.1 Modeling ACSs
	4.2 Modeling the Infrastructure
	4.3 Modeling the behavior of the system
	4.4 Modeling the interoperability
	4.5 Modeling the ACS authorization mechanism
	4.6 Code generator
	4.6.1 Code generation for structural variability
	4.6.2 Code generation for behavioral variability

	4.7 Framing our approach as a model-driven security approach

	5 Our approach at work
	6 Evaluation
	6.1 Experiment setup
	6.2 Results analysis
	6.3 Threats to validity

	7 Conclusions and future work
	References

