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Abstract

The influence maximization (IM) problem is a discrete optimization problem [Kempe et

al. [1]] of selecting the k most influential nodes in a network, and has ample applications

ranging from viral marketing to outbreak detection. The IM problem is as follows: given

a budget k and a graph G, our goal is to find a seed set S consisting of k nodes of G which

maximizes the expected number of nodes influenced by S, according to some model of

influence diffusion. The classic IM problem, which is also referred to as the non-adaptive

IM, selects the seed set S before starting the diffusion process. Therefore, the focus is

on the efficiency of the solution.

A few years later, Golovin and Krause [2] introduced the adaptive IM (AIM) to target

the efficacy of the problem. In the adaptive setting, selection of the k seed nodes occurs

one at a time, such that the j-th seed node is selected after observing the actual influence

from the previously selected j− 1 seeds. There are two main feedback models that have

been studied: full-adoption, where the entire diffusion carried out by a seed node in

the previous step is observed, and myopic, where only the neighbours of the previously

selected seed nodes are considered as a feedback.

While adaptive policies are strictly stronger than non-adaptive ones, the latter are much

easier to design and implement. Golovin and Krause [2] proposed a measure called the

adaptivity gap (AG), which is the ratio between the adaptive and non-adaptive optima.

If the AG is small, we say that the non-adaptive policy provides a good approximation

of the adaptive optimum.

In this thesis, we study AG with both feedback models. Under the full adoption feedback,

we investigate the upper bound of AG over several graph classes, from in-arborescences

to general graphs. We show the first sub-linear upper bound on AG that holds for any

graph. Next, we have the experimental part, where we take different network mod-

els, such as random, scale-free and real world networks, and draw several comparisons

between the adaptive greedy and the non-adaptive greedy algorithms under various net-

work settings and parameters.

Eventually, we move on to the myopic feedback model, which lacks the property of

submodularity. To recover from the drawbacks of being non-submodular, an artificial

diffusion process is taken into account. We introduce a new technique to bound the AG

without using the commonly used approaches, such as multi-linear extensions or random

walks. We also study the adaptive greedy algorithm under the new setting and compare

it to optimal adaptive policy. Our approach is of independent interest and can be used

for further studies related to different adaptive optimization problems.
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Chapter 1

Introduction

“To develop a complete mind: Study the science of art; Study the art of science. Learn

how to see. Realize that everything connects to everything else.”

— Leonardo Da Vinci

1.1 How connected are real world networks?

Stanley Milgram in his classic paper, The Small-World Problem [3], put forth the notion

of transitive dependency among people in a social network. He states that when a person,

named Bob, is connected by a series of links to another person, called Alice, there are,

on average, five intermediate people between Bob and Alice. Brown and Reingen [4]

studied real networks and found the importance of stronger and weaker links associated

with recommendation systems. Stronger links are seen as a measure of reliability for

a certain recommendation, whereas weaker links are associated with the traversal of

information from one cluster to another playing an important role in the networking

ecosystem.

Social networking sites have seen a significant boom in the past two decades. These sites

play a crucial role in spreading new ideas or innovations through its fundamental network

structure consisting of individuals and their relationship with other individuals. Major

networking sites with over a hundred million active users include Facebook, Twitter,

Instagram, etc. In other words, social networks are a collection of entities which form

relationships with other entities participating in the same network.

Due to the increase of information propagation in the networking sites, networks have

become increasingly complex. Researchers have been trying to decode the properties

and patterns exhibited by such massive networks. Social Network Analysis (SNA) has

1
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emerged as the study of social networks using collaboration graphs, in which the entities

are modelled by the nodes of a graph and the relationship between the entities are

modelled by a set of edges. Formally, a Social Graph G = (V,E) is a directed graph

(sometimes undirected), where V is the set of nodes representing the entities of the

network, and E is the set of edges representing the relationship existing between those

entities. SNA is the field of study at the intersection between Graph Theory, Networking

and Sociology.

1.2 Application of social networks: Viral Marketing

Marketing is the promotion of a product by a company to its customer base. It takes

into account the word-of-mouth effect, i.e., a customer who has used the products, can

recommend it to her friends. Viral Marketing (VM) supports the same theory, and uses

social networks as a platform for recommendations. The method follows the principle of

contiguous viruses: if the flu infects one person, any person who comes in contact with

the infected person also catches the flu with high probability.

In social networks, the company distributes some free or discounted products to specific

individuals who are capable of marketing it. These individuals may recommend it to

their neighbours after using it, who in turn might recommend it to their neighbours, and

so on, following an iterative diffusion process. The direct analogy to this is Influencer

Marketing. Influencers are those particular individuals in the network, who have a sig-

nificant number of followers in a specific niche, and can affect the decisions of the people

following her. Companies who want to launch new products in the market generally

offer their products to the influencers, particularly to those who are closer to the specific

customer base for selling the considered products.

Krackhardt et al. [5] states that a marketer can leverage her sales profit by knowing

the topology of the underlying social network. They also introduced the concept of

distributing free products to the influencers. Domingos and Richardson [6, 7] introduce

some models of viral marketing, and raise the following algorithmic question: in a

vast connected network, if a seller markets a product, how should they choose a set of

influential buyers (nodes) who can reach out to (influence) as many nodes as possible to

buy that product? Indeed, the number of such buyers are directly proportional to the

seller’s profit. Kempe et al. [1, 8, 9], in their seminal works, presented VM as a discrete

optimization problem, and called it the influence maximization (IM) problem, discussed

in details in the upcoming sections and chapters.
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1.3 From viral marketing towards maximizing influence in

networks

The IM problem as described by Kempe et al. [1] is an one-shot task: given a static

social network G, a diffusion model with given parameters, select the seed set S, and

with only one propagation pass through the entire network, S activates k nodes, with

the expectation of maximizing the number of active nodes in the network.

The utility function, f , which needs to be maximized is shown to be submodular (f

satisfies the “diminishing returns” property) and monotone (number of active nodes

either increase or remain the same). Since the problem is NP-hard by nature (shown

by reduction through Set Cover Problem), approximation algorithms needs to be used.

From the results of Nemhauser et al. [10, 11], Kempe et al. [1] showed that the results

obtained from a simple greedy algorithm will reach at least (1 − 1/e) of the optimal

solution.

Independent Cascade (IC) Model

Goldenberg et al. [12], Goldberg and Liu [13] used the concept of Cellular Automata

as a framework to model the diffusion of information in the network. The Indepen-

dent Cascade(IC) model, named by Kempe et al. [1] models the dynamics of the viral

marketing scenario and draws inspiration from the field of interacting particle systems.

Initially, the diffusion model starts with a set of active nodes S such that |S| ≤ k. Each
edge e = (u, v) ∈ E, has an influence probability puv attached to it, so that node u will

activate node v with a probability puv, independently from the other nodes.

With the above parameters as input to the system, the diffusion process unravels in

several time steps. At time step t, if node u is active, it is given a single opportunity

to activate its neighbour v with probability puv. If node v becomes active at time step

t, it will further attempt to activate its neighbours at time step t + 1 according to the

influence probability. The process iteratively continues and comes to a halt when there

are no more activations. Since the diffusion process spreads in a cascading manner, and

each activation is independent from the other, the model is named as the independent

cascade model.

Linear Threshold (LT). Differently from the IC model, where each activation is

independent from each other, the LT model follows a more complex contagion process.

Each node v is associated with a threshold value θv, and to activate v, the probability

associated with the active edges from v’s neighbours need to cross the threshold θv. This
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model is not in the scope of the thesis except for the experimental part in Chapter 3.

However, in Chapter 2, Section 2.2.2 we will discuss the technical part of the LT model.

Adaptive Influence Maximization

In the Adaptive Influence Maximization (AIM) [14], we consider the adaptive version

of the IC model. An adaptive policy π is a function associating the network state with

a new node that should be added to the seed set S, where the network state is what a

policy observes at each time. The function f that we want to maximize in expectation

is the number of nodes that are reached by the spread of information.

The AIM problem wants to find a policy with a seed-set maximizing the expected value

of f (according to the probability distribution of the realizations), where the cardinality

of the seed set must be at most k. The seed nodes are selected in multiple time steps,

based on the observations or feedback obtained from the previous steps. The quality of

seed nodes selected under the adaptive setting is better and also the influence generated

is further improved because of the feedback provided by the network.

Feedback models

There are two commonly used feedback models: full adoption and myopic. A full adop-

tion feedback model records the entire spread generated by a seed node. The adaptive

policy π observes this feedback and then decides on the selection of the next seed node.

As mentioned before, the underlying diffusion model considered in this thesis is the

independent cascade model, which is adaptive submodular and monotone for the full

adoption feedback [2]. Golovin and Krause [2] exploited the desired adaptive submodu-

larity property of the objective function f , and applied the results from Nemhauser et

al. [10, 11] to show that the solution provided by an adaptive greedy policy is at least

(1− 1/e) of the optimal adaptive policy.

The myopic feedback model observes the current state of a seed node’s immediate neigh-

bours only. This model is shown to be adaptive non-submodular by nature in [14]. In

order to evaluate the performance of this model, we need to recover the adaptive sub-

modularity via an artificial diffusion model, which gives a seed node multiple chances to

activate its neighbours [15, 16]. The feedback models will be discussed later at length

in Section 2.4.3.
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Figure 1.1: Connection between optimal and greedy policies.

Adaptivity Gap

Another important term coined by Golovin and Krause [2] is the Adaptivity Gap (AG).

The AG quantifies how well does an optimal non-adaptive policy, that is a policy in which

all the edges should be selected at beginning, without observing the realization, perform

when compared to an optimal adaptive policy. To measure the efficiency of a non-

adaptive greedy algorithm, we can multiply the adaptivity gap with the approximation

factor to compare the performance ratio of the algorithm with the optimal adaptive

policy.

1.4 Necessity to bound the Adaptivity Gap

Due to the feedback received after every round of seed selection, the efficiency in terms of

time reduces for an adaptive policy. However, a non-adaptive policy is a straightforward

simple process, and the overhead in time is negligible compared to the adaptive policies.

Also, a non-adaptive algorithm is much simpler to design since the seed selection takes

place in the beginning of the diffusion process, and we do not keep track of the nodes

that are activated at each time step.

The adaptivity gap gives us the ratio to check how efficient the seed set selected by the

optimal non-adaptive policy is compared to the adaptive optimal over different graph

classes. A tighter bound is preferred, but the main challenge is to find an upper bound

that is closer to 1, which will indicate that there exists an optimal non-adaptive policy

that is as efficient as the optimal adaptive policy for that graph class. The thesis tries to

find and then improve on these upper bounds on the different graph classes using newer

techniques and by studying the ones that are used in the past.

In Section 3.5 we will encounter the efficiency of the adaptive greedy algorithm based on

the memory consumption. With a faster best estimate, the non-adaptive greedy policy
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tends to consume a huge part of the memory as the size of the graph grows, hence

asking for better memory management. A non-adaptive greedy algorithm is generally

preferred over an adaptive one due to the above stated reasons, and hence a measure

is needed to calculate the efficiency of such algorithms. Another measure called the

greedy adaptivity gap (GAG) [17], which measures the generated spread between the

greedy adaptive algorithm and the greedy non-adaptive algorithm, helps us to navigate

through the performance efficiency of a non-adaptive greedy algorithm over a adaptive

greedy one. Figure 1.1 depicts the ratio between the optimals and the greedy algorithms

(refer to table 1.7 for the notations used in the figure). The diagonal red line is the most

important factor to bound, since it directly estimates by how much an optimal adaptive

strategy outperforms a non-adaptive greedy algorithm, and helps us to design better

algorithms by having an optimal measure in mind.

1.5 Contributions

1. Gianlorenzo D’Angelo, Debashmita Poddar, and Cosimo Vinci “Better bounds on

the adaptivity gap of influence maximization under full-adoption feedback”, Thirty-

Fifth AAAI Conference on Artificial Intelligence, AAAI, 2021.

The extended version of the above paper is accepted at the Artificial Intelligence

Journal (AIJ) [18].

Full-adoption feedback. Chapter 3 is mainly related to the results obtained

in the aforementioned paper (that is, [19]), in which we conduct an extensive study

on the full adaption feedback model under IC. First, we tackle the in-arborescences,

which were already studied by [15] in the adaptive setting. Chen and Peng [15]

derived an upper bound on adaptivity gaps using Poisson process and multi-linear

extensions. We bypass those techniques and give a simpler and quicker solution to

connect the non-adaptive and adaptive optimals. Eliminating the techniques used

by [15] and building the proof on the marginals related to the hybrid non-adaptive

policy reduces the upper bound on adaptivity gap for the in-arborescences from

3.16 to 2.31 (Section 3.2).

We further exploit our technique, to arrive at the first ever sub-linear upper bound

on general graphs. To the best of our knowledge, this is the first and only bound

known for general graphs with this setting. We show that under the Independent

Cascade model with a full adoption feedback, the adaptivity gap of general graphs

is ⌈n1/3⌉, where n is the number of nodes in the graph (Section 3.3).
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Next, we derive results on more specific graphs such as the α-bounded graphs that

includes several undirected graph topologies like a star, cycle, clique (with more

than 3 nodes), etc. The α-bounded graphs are undirected graphs where for nodes

more than degree 2, their degree summation is at most α. We show that the

adaptivity gap for such bounded graphs is
√
α + O(1) and for 0-bounded graphs

we get 3.16 as the upper bound (Section 3.4.1).

We also address a very interesting class of graphs called the (β, γ)-bounded-

activation graphs which denotes a cluster of graphs where the nodes that have

at most γ neighbours have β influence in expectation. For k ≥ 2, the adaptivity

gap for such influence graphs is
√
β + 1

1−γ (Section 3.4.2).

The chapter is concluded by a series of experiments (Section 3.5) on a bunch of

well known networks (generated), that simulate the network (Erdős-Rényi,Watts-

Strogatz and Barabási-Albert) and a real world Facebook network. This part

includes new results that have not yet been published, and shows how a state-of-

the-art non-adaptive greedy algorithm (TIM+) performs when compared to its

adaptive counterpart, which has the same underlying code as the non-adaptive

greedy. We observe that the greedy adaptivity gap, which is the ratio between the

adaptive greedy spread and the non-adaptive greedy, is closer to one for almost all

the different network settings. This directly implies that the greedy non-adaptive

algorithm (TIM+) used here, has an efficiency rate close to that of a greedy

adaptive algorithm.

2. Gianlorenzo D’Angelo, Debashmita Poddar, and Cosimo Vinci “Improved approx-

imation factor for adaptive influence maximization via simple greedy strategies”,

48th International Colloquium on Automata, Languages, and Programming, ICALP,

2021.

Myopic feedback. Chapter 4 represents the aforementioned work (that is,

[16]) which improves on [17]. The main difficulty faced with the myopic model is

the lack of adaptive submodularity. This drawback makes the model non-trivial

to analyze and hence we resort to an artificial model called the 2-level diffusion

model. We use a similar concept introduced by [17], where the seed node gets

multiple chances to activate its neighbours. However, instead of using random

walks on optimal decision trees and multilinear extension like in [17], we directly

analyze the non-adaptive greedy algorithm and relate it to an optimal adaptive

solution which in turn improves the upper bound on the adaptivity gap from 4 to

3.164.

This flexibility of not passing through the adaptivity gap, gives us a more direct

and improved approximation factor for both the non-adaptive greedy algorithm
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and the adaptive greedy. For achieving the approximation ratio for non-adaptive

greedy algorithm we resort to a randomized non-adaptive policy to relate the

expected spread of the non-adaptive greedy with the adaptive policy and arrive at

0.316, which is an improvement from 0.158 (Section 4.3).

The approximation factor for the adaptive greedy algorithm is found in a similar

fashion by introducing the strong 2-level diffusion model and a strong 2-level hybrid

policy. The difference with the above mentioned policy lies in the fact that the

strong hybrid policy is conditioned by the partial realisations, which is not the

case in the simple hybrid adaptive policy. The approximation factor is bounded

by 0.393 for the adaptive greedy (Section 4.4).

1.6 Organization of the Thesis

This thesis approaches on bounding the adaptivity gap using different techniques, and

elucidates on the feedback models with different graph classes. The underlying diffusion

model considered here is the independent cascade model and a part of the experiment

is conducted on linear threshold.

• Chapter 1 gives a general overview of the contents of this thesis and gives a high-

level introduction on the topics that will be tackled here. A table of notations is

provided to ease the access of all the symbols that will be used throughout the

thesis.

• Chapter 2 carries out an in-depth analysis of the IM problem with the different

diffusion models. The chapter continues to provide further details on the AIM

problem, an exhaustive analysis of the feedback models and their adaptivity gaps.

Furthermore, the chapter navigates through the related state-of-the-art research

that has been conducted in this field.

• Chapter 3 studies the full-adoption feedback under the IC model with different

graph classes (in-arborescences, general graphs, α-bounded-degree graphs, (β, γ)-

bounded-activation graphs). The chapter contains new techniques and the corre-

sponding results on the upper bound of the AG related to the above mentioned

graphs. The last part of the chapter deals with experiments which is important to

uncover the efficiency of the greedy algorithms with different networks and param-

eters, giving us a further insight of the complexity to bound both the adaptivity

gap and the greedy adaptivity gap.
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• Chapter 4 contains the results related to the infamous adaptive non-submodular

myopic feedback model with IC and explores a new way of reducing the upper

bound on AG. The chapter also explores the greedy algorithms to achieve better

approximations on the adaptive greedy and the non-adaptive greedy algorithms.

• Chapter 5 concludes the thesis by summarizing the main results obtained during

the PhD. There is a dedicated section related to some application of the graph

classes and feedback models studied in the thesis to motivate further research on

this topic. Lastly, we discuss the open problems that can be tackled in the future

by referring to the works conducted in this PhD thesis.
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1.7 Table of Notations

Table 1.1: Table of Notations

Symbol Meaning

[k]h {h, h+ 1, ...., k}; h ≤ k

G(V,E) A graph with V as the set of vertices and E as the set of edges.

(u, v) An edge between nodes u and v: if directed, u has an outgoing edge to v.

p(uv) Activation probability associated to the edge (u, v) ∈ E

n Total number of nodes in the graph ; |V | := n

m Total number of edges in the graph

k Total number of selected seed nodes

i or j Generic nodes

S Set of selected seed nodes; S ⊆ V , |S| ≤ k

At Activated nodes at step t.

L(V,L(E)) A random graph L made from G and called a live edge graph; L(E) ⊆ E

R(S,L) Set of nodes activated by S in L.

σ(S) Expected influence spread of S; EL[|R(S,L)|]

ϕL Realization associated with L, ϕL : V → 2V

ψ(v) Partial realization, set of nodes activated by v; ψ : V → 2S

dom(ψ) Domain of ψ

R(ψ) Set of nodes activated by dom(ψ)

f(ψ) Number of nodes activated by dom(ψ); f(ψ) = |R(ψ)|

ψ′ Sub-realization of ψ if dom(ψ′) ⊆ dom(ψ)

π Adaptive policy

π(ψ) Seed node returned by π after taking ψ as an input

σ(π) Expected influence spread of π

π∗ Optimal adaptive policy

OPTN (G, k) Optimal solution of the non-adaptive problem

OPTA(G, k) Optimal solution of the adaptive problem

AG(G, k) Adaptivity Gap

T (V, F ) A rooted tree

∆(i|ψ) Expected marginal gain of i when it is added to ψ

ρ Random variable; P[ρ = i] = xi/k

∂(R(ψ)) Set of boundary nodes of R(ψ); Lemma 3.3 of Chapter 3.

degv(G) Degree of node v in G
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Symbol Meaning

T Rooted binary decision tree

d Depth of the cascade in the partial feedback model

τ Threshold value related to the RIS algorithm

R Set of reverse reachable (RR) sets in RIS

r Number of rounds

α Approximation factor of a greedy algorithm (not the α in Chapter 3)

X Random variable

N(u) Set of out-neighbors of node u; Section 3.4.2 Chapter 3

β β > 0 is an integer; Section 3.4.2 Chapter 3

Ŝ Set of nodes such that |Ŝ| ≤ β; Section 3.4.2 Chapter 3

γ γ ∈ [0, 1) such that γ ≥
∑

v∈N(u) pu,v; Section 3.4.2 Chapter 3

b Number of nodes in each batch

Gu Residual graph

Randt Randomized non-adaptive policy

ξ Partial state; Chapter 4

L̂ A live edge graph distributed as L, but independent from it

L2(S) 2-level-live edge graph with a seed set S

σ2
L,L̂

(S) The influence spread of S in L2(S)

σ2(S) Expected influence spread of S under the 2-level diffusion model

Hybt Hybrid adaptive policy; Chapter 4

Φ̂π Random realization returned by π

∆2
S(v) Expected increment of v, when it has two chances to activate its neighbor

GRN (G, t) Expected influence of σ(St), first t nodes are selected by a greedy algorithm

GRA(G, t) Expected spread of an adaptive greedy policy after selecting the first t seeds



Chapter 2

Influence Maximization

In this chapter, first we give an exhaustive definition of the influence maximization

problem under the different diffusion models used for information propagation. Next, we

present the different algorithmic approaches used for the non-adaptive greedy algorithm.

Section 2.4 gives a brief overview of the adaptive IM which is the main scope of the

thesis. We introduce the adaptivity gaps and the different feedback models associated

with the adaptive problem. A dedicated related works section for the AIM with the

feedback models is presented. We also explore the work done on the unconventional

non-monotone and DR-submodular models w.r.t adaptive IM. Finally, we discuss the

commonly used techniques related closely to our work, and on which the thesis improves

upon in section 2.5.

2.1 Main Definitions

We study the following dynamics consisting in multiple time steps. Given a graph

G = (V,E) as an input instance, we have a set S ⊆ V of active nodes1, called the seed

set, which is responsible for the activation of nodes at the first time step, t. Furthermore,

we have an underlying diffusion model M , determining how the set of active nodes, at

each time step, influences some inactive nodes, that become active at the next time step,

t + 1. The influence function σG,M : 2V → R≥0 associates to each possible initial seed

set S, the expected value σG,M (S) of nodes which are active at the end of the process.

The influence maximization problem can be formally defined as follows: given a budget

of k users, a graph G, and a diffusion model M , the goal is to select a seed set S∗ of k

1In this thesis, we will use the terms active and influenced nodes interchangeably.

12



Chapter 2. Influence Maximization 13

users from V in order to maximize the influence function, i.e., a set S∗ such that

σG,M (S∗) = argmax
S⊆V :|S|≤k

σG,M (S). (2.1)

Initially, all the nodes present in the seed set S are active. As the nodes in the graph

starts getting influenced, an inactive node v will be activated by its active neighbours

eventually, according to the considered diffusion model M . A node u ∈ V is said to be

the neighbour of v if there is an edge (u, v) ∈ E. The diffusion process comes to a halt

when there are no more activations. One classic example of influence function is the

expected number of influenced nodes.

The main objective of the IM problem is to find a seed set of at most k nodes that

maximizes the value of σG,M at the end of the diffusion process. However, maximizing

σG,M is often a computationally hard problem. To overcome this issue, one can resort

to an α-approximation algorithm, that computes in polynomial time an approximate

optimal seed set S with an approximation factor of α ≤ 1, i.e., a seed set S such

that σG,M (S) ≥ α · σG,M (S∗). Most of the approximation algorithms considered for

the IM problem require that function σG,M verify two desirable properties: monotone

and submodular. A monotone function ensures that adding nodes to the seed set will

not reduce the value of σG,M , whereas submodular means that the marginal gain of

adding a node to the seed set does not increase as the size of the seed set increases. In

particular, σG,M is monotone if, for any S ⊆ V and for any x ∈ V \S, we get σG,M (S) ≤
σG,M (S ∪ {x}). Furthermore, σG,M is submodular if, for any S, P ⊆ V such that S ⊆ P
and for any x ∈ V \ P , we get σG,M (P ∪ {x})− σG,M (P ) ≤ σG,M (S ∪ {x})− σG,M (S).

In subsection 2.3, we will formally describe a greedy approximation algorithm for the

non-adaptive IM that exploits these properties to guarantee a good approximation ratio.

2.2 Diffusion Models

The design of diffusion models is an integral aspect of the IM problem. There are two

kinds of diffusion processes: progressive and non-progressive. In the progressive model,

once a node is activated, deactivation is impossible. In contrast, the non-progressive

model allows an activated node to be deactivated later in the diffusion process. Even-

Dar et al. [20] studied the IM problem by exploiting the Voter Model [21], which is an

example of a non-progressive case. In this thesis, we restrict our study only to progressive

models.

Models can also be time-unbounded and time-bounded. In time-unbounded models, ter-

mination occurs when the node activation comes to a halt. Whereas, the time-bounded
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models have a separate time parameter for the completion of an ongoing diffusion pro-

cess. Most of the previous work and the works in this thesis are mainly focus on time-

unbounded models. Some examples of time-unbounded models are the independent

cascade, linear threshold and triggering. For AIM and this thesis, only the IC model is

considered, however, there is a section dedicated to the experiments on LT. The following

subsections explain the IC, LT and triggering model in details.

(a) At t = 0 (b) At t = 1 (c) At t = 2

Figure 2.1: Diffusion process under the independent cascade at several time steps.

(a) At t = 0 (b) At t = 1 (c) At t = 2

Figure 2.2: Diffusion process under the linear threshold at several time steps.

2.2.1 Independent Cascade Model

In the IC model, we have an influence graph G = (V = [n], E, (puv)(u,v)∈E), where

edges are directed and puv ∈ [0, 1] is an activation probability associated to each edge

(u, v) ∈ E. Given a set of seeds S ⊆ V which are initially active, the diffusion process

in the IC model is defined in t ≥ 0 discrete steps as follows: (i) let At be the set of

active nodes which are activated at each step t ≥ 0; (ii) A0 := S; (iii) given a step t ≥ 0,

for any edge (u, v) such that u ∈ At, node u can activate node v with probability puv

independently from any other node, and in case of success, v is included in At+1; (iv) the

diffusion process ends at a step r ≥ 0 such that Ar = ∅, i.e., no more nodes in the graph

can be activated. The size of
⋃
t≤r At, i.e. the number of nodes activated/reached by

the diffusion process, is the influence spread. Figure 2.1 shows the influence unravelling

at different time steps for the IC model.

We point out that the activation of an edge (u, v) is a random event determined by the

outcome of a coin toss that gives head with probability puv. Before the start of the

diffusion process, the biased coin is flipped for every edge in the graph G. By looking at

the influence probabilities; one can conclude whether a node v will be active after the

termination of the cascade process or not.
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The above diffusion process can be equivalently defined as follows. The live-edge graph

L = (V,L(E)) is a random graph of G, such that each edge (u, v) ∈ E is included

in L(E) with probability puv, independently from the other edges, i.e., P[L = L] =∏
(u,v)∈L puv

∏
(u,v)∈E\L(1− puv).

With a little abuse of notation, we may denote L(E) with L. Given L ⊆ E, let

RL(S) := {v ∈ V : there exists a path from u to v in L for some u ∈ S}, i.e., the set

of nodes reached by S in the graph L. Informally, if S is the set of seeds, and L is a

realisation of the live-edge graph, RL(S) equivalently denotes the set of nodes which

are reached/activated by the above diffusion process. Let σL(S) := |RL(S)| denote the

influence spread generated by the set of seeds S if the realised live-edge graph is L,

and let σ(S) := EL[σL(S)] be the expected influence spread generated by S. For a clear

visualization of the realisations of a live-edge graph, refer to figure 2.3.

Kempe et al. [1] shows that finding the set of influential nodes maximizing the influence

function in the IC model is NP-hard, and they use a reduction to theMaximum Coverage

problem. A particular model of IC is that of Weighted Cascade. In such a model, each

influence probability is defined as puv = 1/din(v), where din(v) is the in-degree of v. In

this process, a node is equally influenced by each of its neighbours.

Other models assume that the influence probabilities are not known. Saito et al. [22]

predict the influence probabilities by using the Expectation Maximization algorithm to

compute the diffusion probabilities of all the edges in G, repeatedly, to maximize the

objective function. Goyal et al. [23] developed a learning algorithm which takes as input

a social graph and the Action Log, that reports the actions performed by all the nodes.

(a) Graph G (b) Realisation ϕ1 (c) Realisation ϕ2

Figure 2.3: A graph G and two of its possible realisations.

2.2.2 Linear Threshold (LT) Model

Granovetter [24] introduced the Linear Threshold model, where he proposed a diffusion

model in which each node v becomes active if the weighted sum of its active neighbours

reaches a certain threshold. More formally, the model takes as input a graph G, the

seed set S, and an edge weight Wu,v for any edge (u, v) ∈ E. Before the diffusion starts,
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a threshold value θv is picked uniformly at random in the interval [0, 1] by each node

v ∈ V , independently from the other nodes.

At each time step t a node v will get activated if the summation of edge weights of its

active neighbours reach the threshold value θv, i.e.,∑
(u,v)∈E:u is active

Wu,v ≥ θu (2.2)

The process proceeds in several time steps and terminates when no more activations are

possible. Figure 2.2, shows the steps of information diffusion in this model. The number

inside the node indicates its threshold. A red counter on the side indicates the current

active edge weight of a node. If the number in the red counter equals or exceeds the

threshold of a specific node, then the node gets activated. Kempe et al. [9] showed that

finding the set S maximizing the influence function in the LT model is also NP-hard,

and they use a reduction to the Vertex Cover problem.

A Generalized Threshold Model can be designed by removing the linearity from LT.

The model follows the same structure as LT. However, v now relies upon an arbitrary

monotone threshold function fv which maps the subsets of v’s neighbours into the interval

[0, 1], with fv(∅) = 0. Let N represent the set of neighbours of v that are active at time

step t − 1. Node v becomes active at time step t if and only if fv(N) ≥ θv. The LT

model is a special case of the generalized threshold model. The threshold function of

the LT model takes the following form:

fv(N) = min

(
1,
∑
u∈N

Wu,v

)
. (2.3)

The General Threshold model is submodular if each function fv is submodular. If this

model is not submodular, its analysis may be intractable.

2.2.3 Triggering Model

The IC and the LT are specialized cases of the triggering model also introduced by

Kempe et al. [9]. In this model, instead of having a threshold value, a node v has a

quiescent subset Tv, called the triggering set, which affects the state of v. Initially, the

process starts with a seed set S, and each node v chooses a triggering set Tv indepen-

dently from each other, according to some distribution over the subsets of its neighbours.

An inactive node v can be activated at time step t, if it has an active neighbour u in Tv

at time step t− 1.
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Another way to think of this process is by considering the live-edge technique. Edges of

a graph G = (V,E) can be either live or blocked. If a node u is present in the triggering

set Tv of v, the edge (u, v) ∈ E will be declared as live and claimed to be blocked

otherwise. So, v is reachable from the seed set S by traversing a path made entirely

out of live edges. The influence function σ is shown to be submodular in the triggering

model.

2.3 Non-Adaptive Influence Maximization

The non-adaptive influence maximization is a computational problem, where given an

influence graph G and an integer k ≥ 1, we are asked to find a set of seeds S ⊆ V with

|S| ≤ k such that σ(S) is maximized. Without loss of generality, we assume that k ∈ [n],

and since the objective function is monotone, |S| = k for any solution of S.

Kempe et al. [1, 9] showed that function σ is monotone and submodular, therefore the

following greedy algorithm achieves a 1 − 1
e approximation factor. Algorithm 1 is as

follows: (i) start with an empty set of seeds S := ∅; (ii) at each iteration t ∈ [k], add to

S the node v that maximizes the expected influence spread σ(S ∪ {v}). Note that the

greedy algorithm requires at each iteration to compute the value of function σ, for some

set of seeds.

Algorithm 1: Non-Adaptive algorithm

Require: an influence graph G;
1: S ← ∅;
2: while |S| < k do
3: v∗ ← argmaxv∈V \S(σ(S ∪ {v})− σ(S));
4: S ← S ∪ {v∗};
5: end while
6: return S;

By using the fact that σ is a monotone submodular function with σ(∅) = 0, the results of

Nemhauser andWolsey [10] on submodular function approximation imply that algorithm

1 will always produce a solution guaranteeing at least 1− [(k − 1)/k]k ≥ 1− 1/e times

the optimal value, where e ≃ 2.71 is the Nepero number.

At each step of algorithm 1, we are required to compute the value σ(S ∪ {v}) for any

node v ∈ V \ {v} to find the local optimal influence function, but this has been shown

to be computationally intractable as it is #P -hard [25]. However, standard Chernoff

bounds allow us estimate the value of σ through a polynomial number of Monte-Carlo

simulations by introducing an arbitrarily small additive error ϵ > 0, which depends on
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the number of simulations [9]. In the reminder of the thesis, we will omit the additional

term ϵ to avoid unnecessary complicated formulas (except for the experimental part,

where we set ϵ = 0.05). We will refer to this algorithm as the non-adaptive greedy

algorithm in this thesis.

The two most widely studied non-adaptive IM algorithms are classified under the follow-

ing categories: i) Monte-Carlo simulations-based approach [1] and, ii) Heuristic-based

approach [26].

Monte-Carlo simulation-based approach. Kempe et al.’s non-adaptive greedy

algorithm is an effective and simple algorithm that produces near optimal solution with

a theoretical guarantee due to submodularity. They use Monte Carlo simulations to

overcome the drawback of #P -hard complexity. A Monte Carlo simulation is used to

predict a model, by assigning a set of generated values based on a probability distribution

to the uncertain variables. The simulations are computed independently on all the

randomly generated values to obtain the results, which are then averaged to arrive at

an estimate. Multiple instances of the graph G are created and the number of reachable

nodes R(S) are computed for each of the generated instances. The value of R(S) is

averaged and the expected number of reachable nodes by S is σ(S).

Nevertheless, the overhead cost that is incurred with a simple greedy algorithm is huge,

because for each candidate seed node, the greedy algorithm simulates the influence

cascade for estimating the influence increment. The number of Monte Carlo simulations

required by the greedy algorithm isO(mR), O(m) is the time required for each simulation

and R is the number of simulations required (R ≈ 10000 [1] for a good estimate). The

resulting time complexity for the greedy algorithm is O(kmnR), where k is the total

number of iterations, and O(n) is the number of simulations for each iteration.

Leskovec et al. [27] introduced the CELF algorithm which uses “lazy-forward” opti-

mization to improve on the time complexity for over 700 times by avoiding unnecessary

simulations. They studied the structural property of social networks to find that real

networks are mostly power-law graphs, which means majority of the nodes have a small

influence. The algorithm maintains a priority queue to store the marginal influence

of a node v and the iteration number where it was computed. A node with a small

influence in its previous iterations will not have a bigger marginal gain due to submodu-

larity. Hence the simulation omit these nodes from its calculation without affecting the

effectiveness of the algorithm.

The CELF algorithm was further improved by Goyal et al. [28] with CELF++ which

ran 35% − 55% faster than CELF. Other simulation based approaches include that of
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Cheng et al. [29] to reduce the number of computations of CELF. Another simulation

based paper was by Ohsaka et al. [30], where they prune the number of BFSs required for

reachability tests by reducing the number of vertices visited during each BFS. However,

Monte Carlo simulations are computationally expensive and has scalibility issues when

the graph starts to grow.

Heuristic-based approach. In order to tackle with the expensive computations

and large-scale networks, Chen et al. [31] used the degree discount technique which

reduces the running time but has a much lower efficiency compared to the Monte Carlo

approach. Borgs et al. [26] introduced the reverse sampling technique (RIS) and utilizes

the concept of reverse reachable (RR) sets and Random RR sets. An instance g of graph

G is generated by using the value of p(uv) to add edges in g between nodes u and v of g.

The RR set for a node u in g is the set of nodes that have a directed path to u in g. Due

to the randomness of generating g using the probability on edges, we have a distribution

G of g. To generate a random RR set on g, the instance g is randomly sampled from G.

The idea behind Borgs et al.’s algorithm RIS, is to generate a large set of random RR

sets, denoted as R. Using the greedy maximum coverage algorithm from [32] the goal

is to find a seed set S∗ of size k which covers the maximum number of RR-sets, this

implies that S∗ will have the maximum expected spread over all the size k seed sets of

G. Borgs et al.’s technique reduces the estimation of a large number of node sets hence

reducing the overhead time complexity induced by simulation based approaches. To

calculate the number of RR sets that needs to be generated, RIS proposed a predefined

threshold value τ . Defining a proper τ value results in a seed set S being generated at

almost linear time complexity with an approximation ratio of (1− 1
e − ϵ). The RIS still

has some overhead cost due to the dependency of τ on the number of nodes and edges

examined.

Tang et al. [33] provided an improved version of the RIS algorithm called TIM+. They

mainly cut down the threshold cost by replacing it with a predefined constant θ. TIM

removes the dependency from the edges, and uses Chernoff bounds to estimate the value

for θ. The estimated time complexity of the TIM+ algorithm is O((k+l)(m+n)logn/ϵ2),

where l is a constant and is set to 1. For the experimental part of the thesis (section

3.5), we use TIM+ as the base non-adaptive greedy algorithm. Tang et al. [34] further

improved on the efficiency of TIM+ with the IMM algorithm by bounding the size of

R using a martingle approach.

More improvements on the IMM algorithm was brought by Nguyen et al. [35], Huang

et al. [36], Tang et al. [37] where they curb the excessive generation of RR sets when

the value of k is large. They work with the Stop-and-Stare algorithm [35], where they
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set a stopping time limit T . The sampling process is stopped when T is reached and

the algorithm checks if the seed set S fulfils the (1− 1/e− ϵ)-approximation. Once the

current S reaches the approximation, the algorithm terminates.

The heuristic-based approach has better scalibility and time complexity, but lacks in the

department of performance guarantees that the simulation-based approach can provide.

2.4 Adaptive Influence Maximization

2.4.1 Adaptive Maximization

Golovin and Krause [14] studied the Adaptive Maximization (AM) setting, and later

applied it to the context of Influence Maximization by introducing its adaptive version.

The general problem of AM is defined as follows: consider a graph G = (V,E) and

a set of states O = {alive, dead}. Each edge e ∈ E is in one of the possible states,

so that the state of the edges can be represented using a function ϕ : E 7→ O, called

the realisation. Hence, we can state that ϕ(e) is the state of e under realisation ϕ. A

random variable Φ taking values from all the possible realisations, according to a given

probability distribution, is called a random realisation. For a given realisation ϕ, let

p(ϕ) denote the probability that Φ = ϕ.

We probe each e ∈ E sequentially and observe its state Φ(e). The observations made

after each pick can be represented as a partial realisation function ψ, over some subset

of E. The domain of ψ, i.e., the set of edges observed in ψ is represented by dom(ψ). A

partial realisation function is said to be consistent with a realisation ϕ if they are equal

in dom(ψ) and is written as ϕ ∼ ψ. When ψ and ψ′ are both consistent with some ϕ,

and dom(ψ) ⊆ dom(ψ′), ψ is called the subrealisation of ψ′.

The node selection for the next round is strategized by an adaptive policy π, which is a

function from a set of partial realisations to E. When ψ is not present in the domain

of π, the termination of the policy occurs upon observations of ψ. The domain of π,

denoted by dom(π), should be closed under subrealisations. The function we want to

maximize is in the form of f : 2E×OE → R≥0, and takes as input the realisation ϕ, and

the set of edges E(π, ϕ) selected by the considered adaptive policy π under realisation

ϕ. Unfortunately, we do not know what is the final realisation ϕ. The AIM overcomes

this problem, and its goal is to find a policy π∗ that maximizes the expected value

EΦ(f(E(π,Φ),Φ)) subject to E(π,Φ) ≤ k, where k is the maximum number of edges

that a policy can select.
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2.4.2 Adaptive Influence Maximization

Now, we adapt the previous framework of adaptive maximization to the IM problem and

get the AIM Problem. Differently from the non-adaptive setting, in which all the seeds

are selected at the beginning, an adaptive policy activates the seeds sequentially in k

steps, one seed at each step, and the decision on the next seed to select is based on the

feedback resulting from the observed spread of previously selected nodes. The feedback

models considered in this work are the full-adoption feedback: where the adaptive policy

observes the entire spread of the selected seed node; and myopic: when a node is selected,

the adaptive policy observes just the state of its neighbours. Chapters 3 and 4 provide

the technical definitions related to the adaptive influence maximization under specific

feedback models.

Adaptivity Gap. The adaptivity gap on an input instance is defined as the ratio

between the optimal adaptive policy and the optimal non-adaptive policy. Since an

adaptive policy is strictly better than a non-adaptive one, if the value of AG is closer to

1, the non-adaptive policy is considered to be as efficient as the adaptive policy, and we

can use the non-adaptive policy as a good approximation to the adaptive one, due to

its simplicity. Chapter 3 Section 3.1 provides a more formal definition of the adaptivity

gap.

2.4.3 Feedback Models of AIM

Depending on the type of network state that a policy can observe at each time, we have

two general models of AIM: edge-feedback model, in which the network state is a set

of active edges, and node-feedback model, in which the network state is a set of active

nodes.

In this section, we discuss some particular models of AIM, that can be either node-

feedback, or edge-feedback. In particular, here we discuss the full-adoption feedback,

myopic feedback, and the general feedback model under the edge feedback.

2.4.3.1 Full-Adoption Feedback Model

The full-adoption feedback selects a node and returns the entire cascade as feedback for

the next round. Each node is selected one by one, and the selection needs to be done

at the beginning of each round. Once the budget k is reached, the process terminates

and returns the seed set. To solve the AIM problem in the full-adoption feedback
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model, Golovin and Krause [14] designed an adaptive version of the non-adaptive greedy

algorithm. Golovin and Krause [14] showed that the full adoption feedback can guarantee

a good approximation ratio by applying the concepts of monotone and submodular

functions to the adaptive framework.

The algorithm greedily selects nodes one by one from the graph G until the budget

k has been reached. For each node u ∈ V , the conditional expected marginal gain is

determined. The node with the largest estimate for the gain is added to S, and the

random realisation of the selected node u is observed. The set of partial realisations is

updated by adding the edges that has been activated by u. Golovin and Krause [14]

proved that for the adaptive IM problem, the greedy policy πG determined by a greedy

adaptive algorithm achieves at least
(
1− 1

e

)
of the optimal policy, when f is adaptive

monotone and submodular.

Nevertheless, the greedy adaptive algorithm can not reach the above approximation

guarantee in polynomial time, because to select a seed node adaptively in each round,

we need to identify the node u with the highest expected spread on the residual graph

Gu, which is obtained by removing all the activated nodes from the previous rounds

via the feedback. However, computing the exact spread is #P -hard [25]. Vaswani and

Lakshmanan [38] overcame this drawback by allowing errors on the expected spread

estimation. By introducing a parameter η to bound the error and using the greedy

approach of Dar and Shapira [20], an approximation guarantee of 1 − 1/eη is reached.

Vaswani and Lakshmanan also extended their approach to batch mode, where instead

of selecting one seed node and observing the influence, we can select a batch of seed

nodes, and observe its spread to do the node selection for the next batch.

Together with the problem of finding an optimal adaptive policy, determining the adap-

tivity gap for the full adoption feedback is also a challenge. Chen and Peng [15] derive

the upper and lower bounds on the AG when the graphs are in-arborescences and out-

arborescences. An arborescence is a directed rooted tree. An in-arborescence (resp.

out-arborescense) is an arborescence when the edges are directed from the leaves to the

root (resp. from the root to the leaves).

Since the information propagates from the leaves to the root in an in-arborescence, the

boundary of active nodes shrinks. The leaves are the set of discovered nodes, and the

boundary forms the subset of the set of nodes reachable from the leaves. Using these

properties, the AG has been shown to be between e
(e−1) and 2e

(e−1) . In the case of an

out-arborescence graph, the main observation has been that the predecessors of each

node in the graph forms a directed line. In order to activate a certain node u, all its

predecessors must be activated one at a time. For out-arborescences the AG has been

shown to be between e
(e−1) and 2.
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2.4.3.2 Myopic Feedback Model

The main drawback of the full adoption feedback model is the delay in the process:

select nodes one by one, observe its complete diffusion, return it as a feedback for the

selection of the next seed node, and continue this over k steps. To overcome this potential

set back, we could select a seed node u and check which of its neighbours are getting

influenced by it, and return the set of neighbours influenced by u as a feedback for

the next round. Since only the active neighbours of the selected seeds are returned as

feedback, the model is called myopic. The myopic model has been mentioned by Golovin

and Krause [14], and in a revised arXiv version of the same paper, the authors claimed

that the objective function f in the myopic feedback model is not adaptive submodular.

The adaptive submodularity condition is violated since the seed node selection process

is not made after a diffusion terminates. Instead, the diffusion of a certain round ceases

after the current node activates its neighbours.

Peng and Chen [39] confirmed the conjecture of Golovin and Krause [14], which states

that the adaptive greedy algorithm with myopic feedback is a constant approximation

of the adaptive optimal solution. They obtain an upper and lower bound for the AG

under the IC model with myopic feedback, [ e
e−1 , 4]. They also proved that the adaptive

and the non-adaptive greedy algorithms have an approximation ratio of 1
4(1−

1
e ) under

the myopic model. The authors conclude by stating that the myopic feedback is not

beneficial since the approximation ratios for both the adaptive and non-adaptive greedy

algorithms are the same. Also, the solution is e2+1
(e+1)2

≈ 60% of the optimal value, which

is less than the results obtained by Kempe et al. [9]. In simple words, the performance

is not commendable since the feedback received is not enough to determine the selection

of the best possible node in the next round. However, for both practical and theoretical

reasons, studying the myopic model is useful.

2.4.3.3 Partial and General Feedback Model

Yuan and Tang [40] have expressed the trade-off between performance and delay in

the full adoption and the myopic feedback model. They developed the partial feedback

model, which however is not adaptive submodular, due to the same reasons as the

myopic model. The partial feedback model can capture a more realistic scenario of the

marketing world. The model considers a general α-greedy policy, depending on a control

parameter α ∈ [0, 1] given as input. At each round r, a policy selects a new seed node v,

and the cascade proceeds via time slots in which the depth of the cascade increases by

one; we can equivalently denote each time slot with the depth d of the cascade generated

by v. At each round r and time slot d, the policy observes the state of all the edges
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involved in the cascade, and the round ends when the following condition is verified:

α ≤
∑

v∈V pv(Sr, ψr,d)

|V \Or,d|
, (2.4)

where ψr,d represent the observations, Or,d represents the set of nodes whose activation

probabilities are zero at round r and at time slot d ≥ 0, and
∑

v∈V pv(S0, ψr,d) is the

expected number of activated nodes, under the activation probability of pv(Sr, ψr), with

Sr being the seed set. After this, a new round starts, and the previous process continues

iteratively until the seed set contains k nodes. Informally, each round terminates when

the expected probability that a node becomes active is higher than α. Observe that, the

partial model becomes a full adoption feedback when α = 1, and non-adaptive IM when

α = 0.

Tong and Wang [41] introduced the general feedback model. Such a model is defined as

the partial model, except for the fact that each round terminates after exactly d time

slots, where d ≥ 0 is an integer given as input. Observe that for d = 1 we get the myopic

feedback, and for d = ∞ we get the full adoption feedback model. Since the model is

not adaptive submodular, one cannot immediately guarantee that the greedy strategy

is a good approximation algorithm. To overcome this problem, the authors introduced

a new metric called the regret ratio. The regret ratio R of a diffusion process is the

maximum ratio between (i) the best marginal profit obtained for a given seed set and a

given round, when a new seed node is added to S at the beginning of round r, and (ii)

the best marginal profit achieved when the new seed node is added to S at the end of

round r, i.e., after d time slots. The regret ratio has been used to show that the greedy

algorithm guarantees an approximation factor of 1− e−1/R.

2.4.4 Multi-Round Influence Maximization

Sun et al. [42] works on a marketing scenario, where the advertiser considers multiple

rounds to market a product. In particular, instead of considering one round for the

diffusion process, the advertiser conducts the diffusion process over T rounds. The

advertiser has a budget k for each round, i.e., a seed set St of at most k nodes can be

selected at each round. An independent diffusion process is carried out in each round

t, where a subset of nodes are activated, starting from the initial seed set St. The total

influence spread over the T rounds is calculated as the union of the sets of nodes activated

over all the T rounds. The goal is to find the seed sets that maximize the expected total

influence spread. The authors work on both the adaptive and non-adaptive version and

design three greedy algorithms.
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In the non-adaptive version, the advertiser needs to find all the T seed sets before the

start of the diffusion process. The authors consider two different algorithms: cross-round

and within-round. The within-round has an approximation ratio of 1− e−(1− 1
e
) ≈ 0.46.

However, the cross-round has a better approximation factor of 1/2− ε, but has a higher

running time.

For the adaptive version, in each round, the advertiser needs to select the seed set for

that round and observe its influence spread. Once the budget k is reached for a specific

round r, the next round r + 1 receives the influence spread of the previous r rounds as

feedback. In the next round, based on the observations of the propagation made by the

previous rounds, the seed set for that round is selected. The authors designed a greedy

approximation algorithm called AdaGreedy, and show that the algorithm guarantees a

1− e−(1− 1
e
) − ε approximation ratio.

2.4.5 Other variations of AIM

Non-monotone models. Gotovos et al. [43] proposed the adaptive random greedy

policy which generalizes the random greedy algorithm by Buchbinder et al. [44]. The

policy can be used for both monotone and non-monotone functions, however for non-

monotone functions the policy achieves a 1/e approximation ratio. The algorithm in-

troduces dummy nodes to the ground set which ensures that the algorithm never picks

a node with a negative marginal gain. Instead of selecting the node with the highest

marginal gain, the algorithm randomly selects a node from a set, which contains k-nodes

with the highest marginal gain.

The time required for the algorithm is majorly dependent on the number of times the

objective function is evaluated and it is O(nk) for [43] which is their main drawback.

Tang [45] proposes a linear-time policy for the same problem, where the time is not

dependent on the value of k and requires O( n
ϵ2

1
logϵ) evaluations achieving the same ap-

proximation factor of 1/e. Their algorithm also speeds up on the monotone variant of

the problem. The idea behind their policy is to sample a random set of size min[qn, n],

where q is a parameter dependent on the value of k and used to bound the time. Out of

that random set, the seed with the i-th largest marginal gain w.r.t the current partial

realisation is selected, where i’s value is sampled at random from (0, s], and s is another

parameter relying on n and k. If the selected node’s marginal gain is non-negative, it is

added to the seed set.

A recent work of Amanatidis et al. [46] on non-monotone adaptive submodular function

subject to knapsack constraints, which are more stringent by nature, achieves a constant

factor approximation and runs O(nlog(n)) evaluations.
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DR-submodularity. Guo and Wu [47] studied AIM when the model is adaptive DR-

submodular or diminishing return submodular. DR-submodularity is a generalization

of the submodularity property and are generally defined over integer lattices (seeding

vectors) instead of seed sets. Inspired by the works of Chen et al. [48] on influence

maximization over lattices, Guo and Wu extended their work to the adaptive setting.

They consider a new scenario where after activating a seed node, we wait to see if the

selected node is willing to be the seed node. If the selected node refuses to be the seed,

we either raise the cost of the selected seed to be the seed, or we select a new node to

become the seed. Only when a node accepts to be the seed, we move on to observing

its spread. They named this the Adaptive-IMMA problem which stands for AIM with

multiple activations. They show that the AIM problem with dr-submodularity returns

an approximation ratio of (1− 1/e).

2.5 Stochastic Multi-Value Probing (SMP)

Previous works on finding the adaptivity gap under independent cascade includes the

usage of the stochastic multi-value probing model which was introduced in the adaptive

setting by Bradac et al. [49]. The SMP problem is a generalized version of the stochastic

probing model, whose adaptive version was studied by Gupta et al. [50].

The stochastic probing model is defined as follows, we are given an universal set V = [n]

and set of edges E with all the combination of possible edges. Each of these edges e ∈ E
has a probability pe associated with it and denotes the activation probability of e. We

have a set A ⊆ V chosen at random from a family of subsets of V , S. We probe each of

the elements, v ∈ A to reveal whether v is active in A or not due to the probability on

the edges. However, we are only allowed to probe certain subsets S ∈ S, which fulfills

the budget requirements (constraints). The goal here is to find a probing strategy that

maximizes the expected number of active nodes in the set A, which is EA[f(A ∪ S)].

The utility function is monotone submodular and the probing strategy can be trans-

formed to an adaptive setting, where after probing each element v ∈ A, we observe

its outcome, and then continue with the next probe. The adaptive probing strategy is

designed using a binary rooted decision tree, T . The nodes in the tree represents the

elements in the ground set V , and each of these nodes (except the leaves) have two out-

going edges, yes, when the edge e is active with probability pe, and no, when the edge e

is inactive with probability 1 − pe. Note that when the edge is active, it automatically

activates the inactive node, its direct child. The probing process terminates, when we
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reach the leaf nodes, where no more activations are possible. The stem of a tree repre-

sents the path of unsuccessful probes. Whenever a stem is observed, it is stitched back

to the root which causes a loss and the final adaptivity gap becomes 3 [50].

The above mentioned problem can be generalised by using more than the Bernoulli

random variables, and allowing multiple values on the edges. Bradac et al. [49] considered

adding multiple values to the edges of the rooted decision tree T , which no longer restricts

itself to binary values. Due to the loss caused by sticking back of the stem to perform

the induction over its subtrees, Bradac et al. [49] observes at each step a single node,

instead of an entire stem and thus retrieving the loss and upper bounding the AG to 2.

The idea is the following, we have a non-adaptive strategy that randomly chooses a path

in the decision tree with the same probability as an optimal adaptive strategy would

have. This randomised non-adaptive strategy can be described as follows: starting

from the root, one of its children is probed randomly with the same probability that

the optimal adaptive policy would have probed this child. The result is stored under a

partial realisation Tv1, and the iteration continues till a leaf is reached. The non-adaptive

policy selects this path from the root to the leaf.

By combining the non-adaptive policy with optimal adaptive policy, Bradac et al. [49]

defines the super adaptive strategy, which gives a node two chances of probing. For any

i ≥ 1, when the non-adaptive policy decides to include the i-th node in the path towards

the leaf node, we notice that the expected increment in the utility of the non-adaptive

policy will be at least half of the expected increment achieved by the super adaptive

strategy. Asadpour and Nazerzadeh [51] showed that the adaptivity gap of SMP under

cardinality constraints is upper bounded by 1.58. Where as, Bradac et al. [49] proved

that the upper bound of adaptivity gaps under the downward-closed families of set

constraints (cardinality, knapsack and matroid), which means if a set can be probed,

even their subsets can be probed, are 2 and tight for both the theorems [49, 51].

Using the above techniques to find the adaptivity gap for SMP problems, Chen and

Peng [15] studied different graph classes with AIM under full adoption and IC. They

use multilinear extension and Poisson process from [51] to model the AIM problem as a

SMP problem. Since the results of [51] are based on cardinality constraints, modelling

it for the IM problem becomes easier. For myopic feedback under IC, Peng and Chen

[39] relies on the decision tree technique from [49] to build the artificial diffusion model,

which gives each seed multiple chances to influence its neighbour and bound the AG for

the myopic model.
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The techniques involved in this thesis are inspired from the literature above, however,

we resort to a simpler and direct analysis to get better bounds on the adaptivity gap

under IC with both the feedback models.



Chapter 3

Better bounds on the Adaptivity

Gap of Influence Maximization

under Full-Adoption feedback

In this chapter, we consider the independent cascade model with full-adoption feedback,

and show the first sub-linear upper bound on the adaptivity gap, (ratio between the

optimal adaptive policy and the optimal non-adaptive policy [3.1]) that holds for general

graphs. In detail, we show that the adaptivity gap is at most ⌈n1/3⌉ (Theorem 3.5), where

n is the number of nodes in the graph. Moreover, we tighten the upper bound on the

adaptivity gap for in-arborescences by showing that it is at most 2e2

e2−1
< 2e

e−1 (Theorem

3.1).

Using similar techniques, we study the adaptivity gap of two classes of influence graphs:

α-bounded-degree graphs, which is the class of influence graphs where the sum of node de-

grees higher than two is at most α, and (β, γ)-bounded-activation graphs, where the nodes

are partitioned into influential nodes, which are at most β nodes, and non-influential,

where each of these nodes can infect at most γ neighbours in expectation, where the

value of γ is less than 1. α-bounded-degree graphs can be encountered in several graph

topologies (see, for instance, Example 3.1), and (β, γ)-bounded-activation graphs are

well-motivated by social networks in which most nodes have a limited power of in-

fluence. We show that the adaptivity gap of α-bounded-degree and (β, γ)-bounded-

activation graphs is upper-bounded by
√
α + O(1) and

√
β + 1

1−γ (Theorems 3.7 and

3.11) respectively, and these values are smaller than that of O(n1/3) for several influ-

ence graph classes. Furthermore, in 0-bounded-degree graphs, i.e. undirected graphs in

which each connected component is a path or a cycle, the adaptivity gap is at most 3e3

e3−1

(Theorem 3.9).

29
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To prove our bounds, we introduce new techniques to connect adaptive policies with

non-adaptive ones that might be of their own interest (further details are given in the

paragraph “General outline of the proof technique” in Section 3.2). In particular, we

resort to a simple randomized hybrid non-adaptive policy, that differs from the main

approaches previously used in adaptive influence maximization and other adaptive op-

timization problems: (i) the Poisson process [52] combined with the multi-linear exten-

sion of submodular set-functions [53], which represent the main probabilistic technique

adopted by Asadpour and Nazerzadeh [51] and Chen and Peng [15], and (ii) the random

walk on the decision tree [54, 55], that is a tool applied by Bradac et al. [49], Gupta

et al. [50] and Peng and Chen [39].

In the experimental section 3.5, we take into account a cutting age non-adaptive greedy

algorithm, called TIM+, and design its adaptive version to compare their performance

ratio, called the greedy adaptivity gap. To compute the efficiency of the seed set selected

by TIM+, we design another adaptive algorithm, which take as input the predetermined

seed set selected by TIM+, and running the adaptive algorithm on top of it. We observe

that the ratio is closer to one, thus implying the efficiency of TIM+ when compared to

its adaptive counterpart.

Related Works.

Adaptivity gaps for the problem of maximizing stochastic monotone submodular func-

tions have been studied by Asadpour and Nazerzadeh [51]. There exists a series of

work engaged with adaptivity gaps for a two-step adaptive influence maximization prob-

lem [56–59]. Gupta et al. [50, 55] and Bradac et al. [49] worked on the adaptivity gaps

for stochastic probing.

A recent line of studies [15, 17, 39] focuses on finding the adaptivity gap on different

graph classes using the classical feedback models. Peng and Chen [39] confirmed a

conjecture of Golovin and Krause [2], which states that the adaptivity gap of the inde-

pendent cascade model with myopic feedback is constant. In particular, they showed

that the adaptivity gap belongs to [ e
e−1 , 4]. Chen et al. [17] introduced the greedy adap-

tivity gap, which compares the performance of the adaptive and the non-adaptive greedy

algorithms. They show that the infimum of the greedy adaptivity gap is 1− 1
e for every

combination of diffusion and feedback models.

The most relevant related work to our results in this chapter is that of Chen and Peng

[15], as they derive upper and lower bounds on the adaptivity gap under the inde-

pendent cascade model with full-adoption feedback, when the considered graphs are

in-arborescences, out-arborescences, or one-directional bipartite graphs. In particular,
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they show that the adaptivity gaps of in-arborescences and out-arborescences are in the

intervals
[

e
e−1 ,

2e
e−1

]
and

[
e
e−1 , 2

]
respectively, and they provide a tight bound of e

e−1 on

the adaptivity gap of one-directional bipartite graphs. Under the more general triggering

model, a constant upper bound of 2 on the adaptivity gap of one-directional bipartite

graphs was provided by Fujii and Sakaue [60].

Contributions.

Our main notable result in this chapter is the first sub-linear upper bound that holds for

any graph. Specifically, we show that the adaptivity gap is upper-bounded by ⌈n1/3⌉,
where n is the number of nodes in the graph. Moreover, we improve over the known

upper bound for in-arborescences from 2e/(e− 1) ≈ 3.16 to 2e2/(e2 − 1) ≈ 2.31.

Then, we study α-bounded-degree graphs, that is the class of undirected graphs in which

the sum of node degrees higher than two is at most α, and show that the adaptivity

gap is upper-bounded by
√
α + O(1); we also show that in 0-bounded-degree graphs,

i.e. undirected graphs in which each connected component is a path or a cycle, the

adaptivity gap is at most 3e3/(e3 − 1) ≈ 3.16.

We also consider (β, γ)-bounded-activation graphs [18], where all nodes but β influence

in expectation has at most γ ∈ [0, 1) neighbors each; for this class of influence graphs we

show that the adaptivity gap is at most
√
β + 1

1−γ . To prove our bounds, we introduce

new techniques to relate adaptive policies with non-adaptive ones that might be of their

own interest.

Finally, we have some experiments to determine the performance efficiency of a specific

widely used non-adaptive greedy algorithm, TIM+. We build a greedy adaptive equiv-

alent of TIM+ and discuss about the quality of seed set generated by both the versions

of TIM+, the memory, and time overhead. We conclude that TIM+ as a greedy non-

adaptive algorithm performs quite well when compared to its adaptive counterpart and

the main focus should be on the requirements of the computational costs to run these

algorithms.

Organization of the Chapter.

The preliminaries for this chapter is defined in Section 3.1. Sections 3.2–3.4 are devoted

to the main technical contribution of the chapter, i.e., upper bounds on the adaptivity

gap of in-arborescences, general graphs and other influence graphs (α-bounded-degree

and (β, γ)-bounded-activation graphs). Section 3.5 has some experiments comparing

the results of TIM+, adaptive greedy under TIM+, and adaptive greedy with the seeds
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generated by TIM+ for different network types and parameters under the IC and LT

models.

3.1 Preliminaries

For two integers h and k, h ≤ k, let [k]h := {h, h+ 1, . . . , k} and [k] := [k]1.

Non-adaptive Influence Maximization The non-adaptive influence maximization

problem under the IC model is a computational problem that is defined as follows: given

an influence graph G and an integer k ≥ 1, we are asked to find a set of seed nodes

S ⊆ V with |S| = k such that σ(S) is maximized. Without loss of generality, we assume

that k ∈ [n] and, since the objective function is monotone, |S| = k for any solution S.

A detailed overview is presented in Sections 2.1–2.3 of Chapter 2.

Adaptive Influence Maximization Differently from the non-adaptive setting, in

which all the seed nodes are activated at the beginning and then the influence spread is

observed, an adaptive policy activates the seeds sequentially in k steps, one seed node

at each step, and the decision on the next seed node to select is based on the feedback

resulting from the observed spread of the previously selected nodes. The feedback model

considered in this work is full-adoption: when a node is selected, the adaptive policy

observes its entire influence spread.

An adaptive policy under the full-adoption feedback model is formally defined as follows.

Given a live-edge graph L, the realization ϕL : V → 2V associated to L assigns to each

node v ∈ V the value ϕL(v) := R({v}, L), i.e., the set of nodes activated by v under a

live-edge graph L. Given a set S ⊆ V , a partial realization ψ : S → 2V is the restriction

to S for some realization, i.e., there exists a live-edge graph L such that ψ(v) = ϕL(v)

for any v ∈ S. Given a partial realization ψ : S → 2V , let dom(ψ) := S, i.e., dom(ψ)

is the domain of partial realization ψ, let R(ψ) :=
⋃
v∈S ψ(v), i.e., R(ψ) is the set of

nodes reached/activated by the diffusion process when the set of seed nodes is S, and

let f(ψ) := |R(ψ)|. A partial realization ψ′ is a sub-realization of ψ (or, equivalently,

ψ′ ⊆ ψ), if dom(ψ′) ⊆ dom(ψ) and ψ′(v) = ψ(v) for any v ∈ dom(ψ′). We observe that

a partial realization ψ can be equivalently represented as {(v,R({v}, L)) : v ∈ dom(ψ)}
for some live-edge graph L.

An adaptive policy π takes as input a partial realization ψ and, either returns a node

π(ψ) ∈ V and activates it as seed, or interrupts the activation of new seed nodes,

e.g., by returning a string π(ψ) := STOP ; furthermore, we assume (w.l.o.g.) that an
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adaptive policy π chooses each seed based only on the observation of R(ψ) (i.e., the

set of nodes activated by the previous seeds) and |dom(ψ)| (i.e., the number of seeds

previously selected), that is, π(ψ) = π(R(ψ), |dom(ψ)|). An adaptive policy π can be

run as in Algorithm 2. The expected influence spread of an adaptive policy π is defined

as σ(π) := EL[f(ψπ,L)], i.e., it is the expected value (taken on all the possible live-

edge graphs) of the number of nodes reached by the diffusion process at the end of

Algorithm 2. We say that |π| = k if policy π always return a partial realization ψπ,L

with |dom(ψπ,L)| = k. The adaptive influence maximization problem under the IC model

is the computational problem that, given an influence graph G and an integer k ≥ 1,

asks to find an adaptive policy π that maximizes the expected influence spread σ(π)

subject to a constraint |π| = k.

Algorithm 2: Adaptive algorithm

Require: an influence graph G and an adaptive policy π;
Ensure: a partial realization;
1: let L be the live-edge graph;
2: let ψ := ∅ (i.e., ψ is the empty partial realization);
3: while π(ψ) ̸= STOP do
4: v := π(ψ);
5: ψ := ψ ∪ {(v,R({v}, L))};
6: end while
7: return ψπ,L := ψ;

Adaptivity Gap.

Given an influence graph G and an integer k ≥ 1, let OPTN (G, k) (resp. OPTA(G, k))

denote the optimal value of the non-adaptive (resp. adaptive) influence maximization

problem with input G and k. Given a class of influence graphs G and an integer k ≥ 1,

the k-adaptivity gap of G is defined as

AG(G, k) := sup
G∈G

OPTA(G, k)

OPTN (G, k)
,

and measures by how much does an adaptive policy outperform a non-adaptive solution

for the influence maximization problem applied to influence graphs in G, when the

maximum number of seed nodes is k. The adaptivity gap of G is defined as AG(G) :=
supk≥1AG(G, k). We observe that for k = 1 or n ≤ k the k-adaptivity gap is trivially

equal to 1, thus we omit such cases in the following.
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3.2 Adaptivity Gap for In-arborescences

An in-arborescence is a graph G = (V,E) that can be constructed from a rooted tree

T = (V, F ), by adding an edge (v, u) in E, if u is a father of v in tree T . By exploiting

the shrinking boundary property, refer to figure 3.1b and lemma 3.3, an upper bound of
2e
e−1 ≈ 3.16 on the adaptivity gap of in-arborescences has been provided in [15]. In this

section we provide an improved upper bound for such graphs.

(a) An in-arborescence
(b) Shrinking boundary of an

in-arborescence

Figure 3.1: In-arborescence

Theorem 3.1. If G is the class of all the in-arborescences, then

AG(G, k) ≤ 2

1− (1− 2/k)k
≤ 2e2

e2 − 1
≈ 2.31, ∀k ≥ 2.

Let G = (V = [n], E, (puv)(u,v)∈E) be an in-arborescence, where n > k is the number

of nodes. To show the claim of Theorem 3.1, we need some preliminary notations and

lemmas. Given a partial realization ψ, and a node v ∈ V , let

∆(v|ψ) := EL[f(ψ ∪ {(v,R({v}, L))})− f(ψ)|ψ ⊆ ϕL],

i.e., ∆(v|ψ) is the expected increment of the influence spread due to node v when the

observed partial realization is ψ. We have the following claim (from [2]), holding even

for general graphs, whose proof is trivial.

Claim 1 (Adaptive Submodularity [2]). Let G be an arbitrary influence graph. For any

partial realizations ψ,ψ′ of G such that ψ ⊆ ψ′, and any node v /∈ R(ψ′), we have that

∆(v|ψ′) ≤ ∆(v|ψ).

An adaptive policy π is called randomized if, for any partial realization ψ, node π(ψ)

is not selected deterministically (in general), but randomly (according to a probability

distribution pψ depending on ψ). Given a vector y = (y1, . . . , yn) such that yv ∈ [0, 1]

for any v ∈ V , we say that P(π) = y if the probability that each node v belongs to
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dom(ψπ,L) is yv, where ψπ,L is the partial realisation with policy π. Let OPTA(G,y) be

the optimal expected influence spread σ(π) over all the randomized adaptive policies π

such that P(π) = y.1

Let π∗ be an optimal adaptive policy for the adaptive influence maximization problem

(with |π∗| = k), and let x = (x1, . . . , xn) be the vector such that P(π∗) = x. As |π∗| = k,

we have that
∑

v∈V xv = k.

For any t ∈ [k]0, let St be the optimal set of t seed nodes in the non-adaptive influence

maximization problem, i.e., such that OPTN (G, t) = EL(|R(St, L)|). Let ψt,L be the

random variable denoting the sub-realisation of ϕL such that dom(ψt,L) = St. Let ρ

be the random variable equal to node v ∈ V with probability xv/k. Observe that the

above random variable is well-defined, as
∑

v∈V (xv/k) = k/k = 1. For any t ∈ [k], let

ψρ,t,L be the random variable denoting the sub-realisation of ϕL such that dom(ψρ,t,L) =

St−1 ∪ {ρ}.

General outline of the proof technique We observe that ψρ,t,L is the partial real-

ization coming from the following hybrid non-adaptive policy: initially, we activate the

first t− 1 seed nodes as in the optimal non-adaptive solution guaranteeing an expected

influence spread of OPTN (G, t − 1); then, we randomly choose a node v according to

random variable ρ and we select v as t-th seed node (if not already selected as seed). We

use this hybrid non-adaptive policy as a main tool to obtain an improved upper bound

on the adaptivity gap for in-arborescences. In Lemma 3.2, holding even for general

graphs, we relate the hybrid non-adaptive policy and the optimal non-adaptive solution,

with the optimal adaptive policy. Lemma 3.2, together with Lemma 3.3 (that is similar

to Lemma 3.8 in [15]), is used in the main proof of the theorem to relate OPTN (G, t)

with OPTA(G, k) for any t ∈ [k], and this leads to our upper bound.

The proof structure of Lemma 3.2 exhibits some similarities with Lemma 6 of [51] and

Lemma 3.3 of [15], but in their approach, they relate non-adaptive policies based on

the Poisson process and multi-linear extensions, with the optimal adaptive policy. One

disadvantage of the Poisson process adopted in [15] is that the number X of seed nodes

selected by the corresponding non-adaptive policy is equal to k under expectation (i.e.,

E(X) = k), and determining the expected influence spread w.r.t. random variable

X has implied a further loss in the final upper bound (see Lemma 3.9 and inequality

(21) of Theorem 3.1 in [15]). Instead, by using the hybrid-non-adaptive policy, we

guarantee that the number of selected seed nodes at each step t ∈ [k] is exactly equal to

t, independently from the considered random execution. This property allow us to avoid

1We observe that, if y is arbitrary, a deterministic policy π verifying P(π) = y might not exists, and
the introduction of randomization solves this issue.
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the expectations w.r.t. the number of selected seed nodes, and this leads to a further

improvement of the resulting upper bound on the adaptivity gap.

Lemma 3.2. Let G be an arbitrary influence graph. For any t ∈ [k], and any fixed

partial realization ψ of G such that P[ψt−1,L = ψ] > 0, we have

OPTA(G, k) ≤ σ(R(ψ)) + k · EL,ρ [f(ψρ,t,L)− f(ψt−1,L)|ψt−1,L = ψ] .

Proof. We have

k · EL,ρ [f(ψρ,t,L)− f(ψt−1,L)|ψt−1,L = ψ]

=k ·
∑
v∈V

P[ρ = v] ·∆(v|ψ)

=k ·
∑

v∈V \R(ψ)

xv
k
·∆(v|ψ) (3.1)

=
∑

v∈V \R(ψ)

xv ·∆(v|ψ), (3.2)

where (3.1) holds since ∆(v|ψ) = 0 for any v ∈ R(ψ).

Let x′ = (x′1, . . . x
′
n) be the vector such that x′v = 1 if v ∈ R(ψ), and x′v = xv otherwise.

As x′v ≥ xv for any v ∈ V we have

OPTA(G, k) ≤ OPTA(G,x) ≤ OPTA(G,x′). (3.3)

Let π′ be the optimal randomized adaptive policy such that P(π′) = x′. Policy π′ selects

each node in R(ψ) with probability 1, thus we can assume that such seed nodes are

selected at the beginning and that the adaptive policy starts by observing the resulting

partial realization. Furthermore, we can assume that, for any partial realization ψ′,

π′ does not select any node v ∈ R(ψ′), otherwise there is no increase of the influence

spread. Given j ∈ [n], let ∆′(j) denote the expected increment of the influence spread

when π′ selects the j-th seed node (in order of selection, and without considering in the

count the initial seeds of R(ψ)); analogously, let ∆′(j|v) denote the expected increment

of the influence spread when π′ selects the j-th seed node, conditioned by the fact that
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the j-th seed is node v.2 We get

OPTA(G,x
′)

=σ(R(ψ)) +
∑
j

∆′(j)

=σ(R(ψ)) +
∑
j

∑
v∈V \R(ψ)

P[the j-th seed node is v] ·∆′(j|v)

=σ(R(ψ)) +
∑

v∈V \R(ψ)

∑
j

P[the j-th seed node is v] ·∆′(j|v)

=σ(R(ψ)) +
∑

v∈V \R(ψ)

∑
j

P[the j-th seed node is v]·

·Eπ′ [∆(v|ψ′)|v = π′(ψ′) for some ψ′ ⊇ ψ observed at step j]

≤σ(R(ψ)) +
∑

v∈V \R(ψ)

∑
j

P[the j-th seed node is v] ·∆(v|ψ) (3.4)

=σ(R(ψ)) +
∑

v∈V \R(ψ)

P[v is selected as seed] ·∆(v|ψ)

=σ(R(ψ)) +
∑

v∈V \R(ψ)

x′v ·∆(v|ψ)

=σ(R(ψ)) +
∑

v∈V \R(ψ)

xv ·∆(v|ψ), (3.5)

where (3.4) holds since ∆(v|ψ′) ≤ ∆(v|ψ) for any partial realization ψ′ ⊇ ψ by adaptive

submodularity (Claim 1). By putting together (3.2), (3.3), and (3.5), we get

σ(R(ψ)) + k · EL,ρ [f(ψρ,t,L)− f(ψt−1,L)|ψt−1,L = ψ]

=σ(R(ψ)) +
∑

v∈V \R(ψ)

xv ·∆(v|ψ)

≥OPTA(G,x′)

≥OPTA(G, k),

thus showing the claim.

Lemma 3.3. If the input influence graph G is an in-arborescence, then

σ(R(ψt−1,L)) ≤ f(ψt−1,L) +OPTN (G, t− 1)

for any live-edge graph L and t ∈ [k].

Proof. Given a subset U ⊆ V , let ∂U := {u ∈ U : ∃(u, v) ∈ E, v /∈ U}. We have that

σ(R(ψ)) ≤ |R(ψ)| + σ(∂R(ψ)) = f(ψ) + σ(∂R(ψ)) for any partial realization ψ. Thus,

2If an execution of π′ requires less than j steps, we assume that the increase of the influence spread
at step j (that contributes to the expected values ∆′(j) and ∆′(j|v)) is null.
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to show the claim, it suffices to show that σ(∂R(ψt−1,L)) ≤ OPTN (G, t − 1). For in-

arborescences, we have that |∂R(ψt−1,L)| ≤ |dom(ψt−1,L)| = t−1, thus σ(∂R(ψt−1,L)) ≤
OPTN (G, t− 1).

Armed with the above lemmas, we can now prove Theorem 3.1.

Proof of Theorem 3.1. For any t ∈ [k], we have

k · (OPTN (G, t)−OPTN (G, t− 1))

=k · (σ(St)− σ(St−1))

=k · (EL[f(ψt,L)]− EL[f(ψt−1,L)])

≥k · (EL,ρ[f(ψρ,t,L)]− EL[f(ψt−1,L)]) (3.6)

=k · (EL,ρ[f(ψρ,t,L)]− EL,ρ[f(ψt−1,L)])

=k · EL,ρ[f(ψρ,t,L)− f(ψt−1,L)]

=Eψt−1,L
[k · EL,ρ[f(ψρ,t,L)− f(ψt−1,L)|ψt−1,L]]

≥Eψt−1,L
[OPTA(G, k)− σ(R(ψt−1,L))] (3.7)

≥Eψt−1,L
[OPTA(G, k)− f(ψt−1,L)−OPTN (G, t− 1)] (3.8)

=Eψt−1,L
[OPTA(G, k)]− Eψt−1,L

[f(ψt−1,L)]− Eψt−1,L
[OPTN (G, t− 1)]

=OPTA(G, k)− σ(St−1)−OPTN (G, t− 1)

=OPTA(G, k)− 2 ·OPTN (G, t− 1), (3.9)

where (3.6) holds since dom(ψt,L) is the optimal set of t seed nodes for the non-adaptive

influence maximization problem, (3.7) comes from Lemma 3.2, and (3.8) comes from

Lemma 3.3. Thus, by (3.9), we get k · (OPTN (G, t)−OPTN (G, t− 1)) ≥ OPTA(G, k)−
2·OPTN (G, t−1), that after some manipulations leads to the following recursive relation:

OPTN (G, t) ≥
1

k
·OPTA(G, k) +

(
1− 2

k

)
·OPTN (G, t− 1), ∀t ∈ [k]. (3.10)

By applying (3.10) iteratively, we get

OPTN (G, k) ≥
1

k
·
k−1∑
t=0

(
1− 2

k

)t
·OPTA(G, k) =

1− (1− 2/k)k

2
·OPTA(G, k),

that leads to
OPTA(G, k)

OPTN (G, k)
≤ 2

1− (1− 2/k)k
≤ 2

1− e−2
=

2e2

e2 − 1
,

and this shows the claim.
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3.3 Adaptivity Gap for General Influence Graphs

In this section, we exhibit upper bounds on the k-adaptivity gap of general graphs. In

the following theorem, we first give an upper bound that is linear in the number of seed

nodes.

Theorem 3.4. Given an arbitrary class of influence graphs G and k ≥ 2, we get

AG(G, k) ≤ k.

Proof. Let G = (V = [n], E, (puv)(u,v)∈E) be an arbitrary influence graph. Let π∗ be

an optimal adaptive policy subject to |π∗| = k, and let ψt,π∗,L be the partial realization

observed when the t-th seed node has been selected by Algorithm 2 with policy π∗. Fix

t ∈ [k], a partial realization ψ such that P[ψt,π∗,L = ψ] > 0, and let v = π∗(ψ) be the

node selected by policy π∗ under partial realization ψ. We have that

EL[f(ψt,π∗,L)− f(ψt−1,π∗,L)|ψt−1,π∗,L = ψ]

=∆(v|ψ)

≤∆(v|∅) (3.11)

=σ({v)})

≤OPTN (G, 1), (3.12)

where (3.11) holds by adaptive submodularity (Claim 1). Thus, we get

OPTA(G, k) =EL[f(ψk,π∗,L)]

=
k∑
t=1

EL[f(ψt,π∗,L)− f(ψt−1,π∗,L)]

=
k∑
t=1

Eψt−1,π∗,L [EL[f(ψt,π∗,L)− f(ψt−1,π∗,L)|ψt−1,π∗,L]]

≤k · Eψt−1,π∗,L [OPTN (G, 1)] (3.13)

=k ·OPTN (G, 1)

≤k ·OPTN (G, k), (3.14)

where (3.13) comes from (3.12), and the claim follows.

In the next theorem we give an upper bound on the adaptivity gap that is sublinear in

the number of nodes of the considered graph.
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When considering general graphs having a bounded number of nodes, we get an upper

bound on the adaptivity gap that is sublinear in the maximum number of nodes of the

considered graphs.

Theorem 3.5. If G is the class of influence graphs having at most n nodes, we get

AG(G) ≤ ⌈n1/3⌉.

Let G = (V,E, (puv)(u,v)∈E) be the input influence graph. To show Theorem 3.5, we

recall the preliminary notations considered for the proof of Theorem 3.1, and we give a

further preliminary lemma.

Lemma 3.6. Given a set U ⊆ V of cardinality h ≥ k, we have σ(U) ≤ h
k ·OPTN (G, k).

Proof. For any t ∈ [h]0, let Ut := ∅ if t = 0, and Ut := Ut−1 ∪ {vt}, where vt ∈
argmaxv∈U\Ut−1

(σ(Ut−1 ∪ {v})− σ(Ut−1)). We have that ∆t := σ(Ut)− σ(Ut−1) is non-

increasing in t ∈ [h]. Indeed, given t ∈ [k − 1], we have that

∆t+1 =σ(Ut+1)− σ(Ut)

=σ(Ut ∪ {vt+1})− σ(Ut)

≤σ(Ut−1 ∪ {vt+1})− σ(Ut−1) (3.15)

≤ max
v∈U\Ut−1

(σ(Ut−1 ∪ {v})− σ(Ut−1))

=σ(Ut−1 ∪ {vt})− σ(Ut−1)

=∆t, (3.16)

where (3.15) holds since σ is a submodular set-function (see [9]). Thus, we necessarily

have

σ(U)

h
=

∑h
t=1∆t

h

≤
∑k

t=1∆t (h/k)

h
(3.17)

=

∑k
t=1∆t

k

=
σ(Uk)

k

≤OPTN (G, k)
k

, (3.18)

where (3.17) comes from (3.16). By (3.18), the claim follows.

We use Theorem 3.4 and Lemma 3.6 to show Theorem 3.5.
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Proof of Theorem 3.5. We assume w.l.o.g. that k > ⌈n1/3⌉ and that OPTN (G, k) <

(⌈n1/3⌉)2. Indeed, if k ≤ ⌈n1/3⌉, by Theorem 3.4 the claim holds, and if OPTN (G, k) ≥
(⌈n1/3⌉)2, then OPTA(G,k)

OPTN (G,k) ≤
|V |

OPTN (G,k) ≤
n

(⌈n1/3⌉)2 ≤ ⌈n
1/3⌉, and the claim holds as well.

For any t ∈ [k], we have

k · (OPTN (G, t)−OPTN (G, t− 1))

≥k · (EL,ρ[f(ψρ,t,L)]− EL,ρ[f(ψt−1,L)])

=Eψt−1,L
[k · EL,ρ[f(ψρ,t,L)− f(ψt−1,L)|ψt−1,L]]

≥Eψt−1,L
[OPTA(G, k)− σ(R(ψt−1,L))] (3.19)

=Eψt−1,L
[OPTA(G, k)]− Eψt−1,L

[σ(R(ψt−1,L))]

≥Eψt−1,L
[OPTA(G, k)]− Eψk,L

[σ(R(ψk,L))]

≥Eψt−1,L
[OPTA(G, k)]− Eψk,L

[
|R(ψk,L)|

k
·OPTN (G, k)

]
(3.20)

=OPTA(G, k)−
Eψk,L

[|R(ψk,L)|]
k

·OPTN (G, k)

≥OPTA(G, k)−
Eψk,L

[|R(ψk,L)|]
⌈n1/3⌉+ 1

· ((⌈n1/3⌉)2 − 1) (3.21)

=OPTA(G, k)− (⌈n1/3⌉ − 1) · Eψk,L
[|R(ψk,L)|]

=OPTA(G, k)− (⌈n1/3⌉ − 1) ·OPTN (G, k), (3.22)

where (3.19) comes from Lemma 3.2, (3.20) comes from Lemma 3.6, and (3.21) comes

from the hypothesis k > ⌈n1/3⌉ and OPTN (G, k) < (⌈n1/3⌉)2. By (3.22), we get

OPTN (G, t)− OPTN (G, t− 1) ≥ (OPTA(G, k)− (⌈n1/3⌉ − 1) · OPTN (G, k))/k for any

t ∈ [k], and by summing such inequality over all t ∈ [k], we get

OPTN (G, k)

=

k∑
t=1

(OPTN (G, t)−OPTN (G, t− 1))

≥
k∑
t=1

OPTA(G, k)− (⌈n1/3⌉ − 1) ·OPTN (G, k)
k

=OPTA(G, k)− (⌈n1/3⌉ − 1) ·OPTN (G, k). (3.23)

Finally, (3.23) implies that OPTA(G, k) ≤ ⌈n1/3⌉ · OPTN (G, k), and this shows the

claim.
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3.4 Adaptivity Gap for Other Influence Graphs

In this section, we extend the results obtained in Theorem 3.1, and we get upper bounds

on the adaptivity gap of other classes of influence graphs.

3.4.1 α-bounded-degree graphs

We first consider the class of α-bounded-degree graphs: a class of undirected influence

graphs parametrized by an integer α ≥ 0 that includes several known graph topologies.

In the following, when we refer to undirected influence graphs, we assume that, for any

undirected edge {u, v}, there are two directed edges (u, v) and (v, u) having respectively

two (possibly) distinct probabilities puv and pvu.

Given an undirected graph G = (V,E) and a node v ∈ V , let degv(G) denote the degree

of node v in graph G. Given an integer α ≥ 0, an influence graph G = (V,E, (puv)(u,v)∈E)

is an α-bounded-degree graph if it is undirected and
∑

v∈V :degv(G)>2 degv(G) ≤ α, i.e.,

the sum all the node degrees higher than 2 is at most α; we observe that the definition

of α-bounded degree graphs does not depends on the influence probabilities, but on the

graph topology only.

Example 3.1. Given an undirected graph G, a simple subpath P (resp. cycle C) of G

is standard if all the nodes of P but the first and the last one (resp. all the nodes of C)

have degree 2. The standard contraction of G is the multigraph G′ obtained by replacing

each maximal simple subpath P = (v1, . . . , vt) of G such that degv2(G) = degv3(G) =

degvt−1(G) = 2, with an edge and by deleting each simple cycle C = (v1, v2, . . . , vt−1, vt =

v1) such that degv2(G) = degv3(G) = degvt−1(G) = 2. There are several interesting

classes of α-bounded-degree graphs characterized by the topological structure of their

standard contraction:

• The set of 0-bounded-degree graphs is made of all the graphs G such that each

connected component of G is either an undirected path or an undirected cycle;

equivalently, the set of 0-bounded-degree graphs is made of all the graphs G whose

standard contraction is the (possibly empty) union of several disconnected edges.

• If the standard contraction of a graph G is homeomorphic to a star with h edges,

then G is a h-bounded-degree graph.

• If the standard contraction of a graph G is homeomorphic to a parallel-link multi-

graph with h edges, then G is a 2h-bounded-degree graph.
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• If the standard contraction of a graph G is homeomorphic to a cycle with h chords,

then G is a 6h-bounded-degree graph.

• If the standard contraction of a graph G is homeomorphic to a clique with h nodes,

then G is a h(h− 1)-bounded-degree graph.

In the following, we provide an upper bound on the adaptivity gap of α-bounded-degree

graphs for any α ≥ 0.

Theorem 3.7. Given α ≥ 0, let G be the class of α-bounded-degree graphs. Then

AG(G, k) ≤ min

{
k,
α

k
+ 2 +

1

1− (1− 1/k)k

}
≤
√
4(e− 1)2α+ (3e− 2)2 + 3e− 2

2(e− 1)

for any k ≥ 2, i.e., AG(G) ≤
√
α+O(1).

Let G = (V = [n], E, (puv)(u,v)∈E) be an α-bounded-degree graph, and we recall the

preliminary notations from Theorem 3.1. The proof of Theorem 3.7 is a non-trivial

generalization of Theorem 3.1. In particular, the proof resorts to Theorem 3.4 to get

the upper bound of k, and, by following the approach of Theorem 3.1, the following

technical lemma is used in place of Lemma 3.3 to get the final upper bound.

Lemma 3.8. When the input influence graph G is an α-bounded-degree graph with

α ≥ 0, we have that σ(R(ψt−1,L)) ≤ f(ψt−1,L) +
(
α
k + 2

)
· OPTN (G, k) for any t ∈ [k]

and live-edge graph L.

Proof. Given a subset U ⊆ V , let ∂U := {u ∈ U : ∃(u, v) ∈ E, v /∈ U}. We have that

σ(R(ψ)) ≤ |R(ψ)| + σ(∂R(ψ)) = f(ψ) + σ(∂R(ψ)) for any partial realization ψ. Thus,

to show the claim, it suffices to show that

σ(∂R(ψt−1,L)) ≤
(α
k
+ 2
)
·OPTN (G, k).

Let U ⊆ V such that U has at most k connected components. Let A be the set of

connected components containing at least one node of degree higher than 2, and let B

be the set of the remaining components, i.e., containing nodes with degree in [2]0 only.

By definition of A and B, we necessarily have that |∂A| ≤
∑

v∈V :degv(G)>2 degv(G) ≤ α

and |∂B| ≤ 2k. Thus |∂U | ≤ |∂A|+ |∂B| ≤ α+ 2k, and the next claim follows.

Claim 2. Given a subset U ⊆ V made of at most k connected components, then |∂U | ≤
α+ 2k.
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Now, we have that

σ(∂R(ψt−1,L)) ≤σ(∂R(ψk,L))

≤
|∂R(ψk,L)|

k
·OPTN (G, k) (3.24)

≤α+ 2k

k
·OPTN (G, k), (3.25)

where (3.24) comes from Lemma 3.6, and (3.25) holds since R(ψk,L) contains at most k

connected components and because of Claim 2. Thus, by (3.25), the claim of the lemma

follows.

We can now prove Theorem 3.7.

Proof of Theorem 3.7. For any t ∈ [k], we have

k · (OPTN (G, t)−OPTN (G, t− 1))

≥k · (EL,ρ[f(ψρ,t,L)]− EL,ρ[f(ψt−1,L)])

=Eψt−1,L
[k · EL,ρ[f(ψρ,t,L)− f(ψt−1,L)|ψt−1,L]]

≥Eψt−1,L
[OPTA(G, k)− σ(R(ψt−1,L))] (3.26)

≥Eψt−1,L

[
OPTA(G, k)− f(ψt−1,L)−

(α
k
+ 2
)
OPTN (G, k)

]
(3.27)

=Eψt−1,L
[OPTA(G, k)]− Eψt−1,L

[f(ψt−1,L)]−
(α
k
+ 2
)
· Eψt−1,L

[OPTN (G, k)]

=OPTA(G, k)− σ(St−1)−
(α
k
+ 2
)
·OPTN (G, k)

=OPTA(G, k)−
(α
k
+ 2
)
·OPTN (G, k)−OPTN (G, t− 1), (3.28)

where (3.26) comes from Lemma 3.2 and (3.27) comes from Lemma 3.8. Thus, by (3.28),

we get the following recursive relation:

OPTN (G, t) ≥
1

k

(
OPTA(G, k)−

(α
k
+ 2
)
OPTN (G, k)

)
+

(
1− 1

k

)
OPTN (G, t− 1),

(3.29)

for any t ∈ [k]. By applying iteratively (3.29), we get

OPTN (G, k) ≥
1

k
·
(
OPTA(G, k)−

(α
k
+ 2
)
·OPTN (G, k)

)
·
k−1∑
t=0

(
1− 1

k

)j
=
(
OPTA(G, k)−

(α
k
+ 2
)
·OPTN (G, k)

)
·

(
1−

(
1− 1

k

)k)
,
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that, after some manipulations, leads to

OPTA(G, k)

OPTN (G, k)
≤ α

k
+ 2 +

1

1− (1− 1/k)k
≤ α

k
+ 2 +

1

1− e−1
. (3.30)

By Theorem 3.4, we have that OPTA(G,k)
OPTN (G,k) ≤ k, thus, by (3.30), we get

OPTA(G, k)

OPTN (G, k)
≤min

{
k,
α

k
+ 2 +

1

1− (1− 1/k)k

}
≤min

{
k,
α

k
+ 2 +

1

1− e−1

}
≤
√

4(e− 1)2α+ (3e− 2)2 + 3e− 2

2(e− 1)
, (3.31)

where (3.31) is equal to the real value of k ≥ 0 such that k = α
k + 2 + 1

1−e−1 . By (3.31)

the claim follows.

For the particular case of 0-bounded-degree graphs, the following theorem provides a

better upper bound on the adaptivity gap.

Theorem 3.9. Let G be the class of 0-bounded-degree graphs. Then

AG(G, k) ≤ min

{
k,

3

1− (max{0, 1− 3/k})k

}
≤ 3e3

e3 − 1
≈ 3.16,

for any k ≥ 2.

The proof of Theorem 3.9 is similar to that of Theorem 3.1. LetG = (V = [n], E, (puv)(u,v)∈E)

be a 0-bounded-degree graph. We recall the notation from Theorem 3.1 and we give the

following preliminary lemma, whose proof is analogue to that of Lemma 4.9.

Lemma 3.10. When the input influence graph G is a 0-bounded-degree graph, we have

σ(R(ψt−1,L)) ≤ f(ψt−1,L) + 2 ·OPTN (G, t− 1), (3.32)

for any t ∈ [k] and live-edge graph L.

Proof. As in Lemma 3.3, we show that σ(∂R(ψt−1,L)) ≤ 2 ·OPTN (G, t−1). First of all,

we assume that t ≥ 2, otherwise σ(R(ψt−1,L)) and the claim holds. By Lemma 3.6, we

have that σ(∂R(ψt−1,L)) ≤
|∂R(ψt−1,L)|

t−1 · OPTN (G, t − 1). As G is a 0-bounded-degree

graph, we have that |∂R(ψt−1,L)| ≤ 2(t − 1). By considering the above inequalities,

we get σ(∂R(ψt−1,L)) ≤
|∂R(ψt−1,L)|

t−1 · OPTN (G, t − 1) ≤ 2(t−1)
t−1 · OPTN (G, t − 1) =

2 ·OPTN (G, t− 1), and the claim follows.
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We are now ready to show Theorem 3.9.

Proof of Theorem 3.9. By Theorem 3.4, we have that k is an upper bound on the k-

adaptivity gap, thus it is sufficient showing that 3
1−(max{0,1−3/k})k is a further upper

bound. If k ≤ 3 the claim trivially holds, since k is an upper bound on the k-adaptivity

gap. Then, we assume that k > 3, and it is sufficient showing that 3
1−(1−3/k)k

is an

upper bound. For any t ∈ [k], we have

k · (OPTN (G, t)−OPTN (G, t− 1))

=k · (σ(St)− σ(St−1))

=k · (EL[f(ψt,L)]− EL[f(ψt−1,L)])

≥k · (EL,ρ[f(ψρ,t,L)]− EL[f(ψt−1,L)])

=k · (EL,ρ[f(ψρ,t,L)]− EL,ρ[f(ψt−1,L)])

=k · EL,ρ[f(ψρ,t,L)− f(ψt−1,L)]

=Eψt−1,L
[k · EL,ρ[f(ψρ,t,L)− f(ψt−1,L)|ψt−1,L]]

≥Eψt−1,L
[OPTA(G, k)− σ(R(ψt−1,L))] (3.33)

≥Eψt−1,L
[OPTA(G, k)− f(ψt−1,L)− 2 ·OPTN (G, t− 1)] (3.34)

=Eψt−1,L
[OPTA(G, k)]− Eψt−1,L

[f(ψt−1,L)]− 2 · Eψt−1,L
[OPTN (G, t− 1)]

=OPTA(G, k)− σ(St−1)− 2 ·OPTN (G, t− 1)

=OPTA(G, k)− 3 ·OPTN (G, t− 1), (3.35)

where (3.33) comes from Lemma 3.2 and (3.34) comes from Lemma 3.10. Thus, by

(3.35), we get k · (OPTN (G, t)−OPTN (G, t− 1)) ≥ OPTA(G, k)− 3 ·OPTN (G, t− 1),

that after some manipulations leads to the following recursive relation:

OPTN (G, t) ≥
1

k
·OPTA(G, k) +

(
1− 3

k

)
·OPTN (G, t− 1), ∀t ∈ [k]. (3.36)

By applying iteratively (3.36), we get

OPTN (G, k) ≥
1

k
·
k−1∑
t=0

(
1− 3

k

)t
·OPTA(G, k) =

1− (1− 3/k)k

3
·OPTA(G, k),

that leads to
OPTA(G, k)

OPTN (G, k)
≤ 3

1− (1− 3/k)k
≤ 3

1− e−3
, (3.37)

and this shows the claim.
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3.4.2 (β, γ)-bounded-activation graphs

Let N(u) := {v ∈ V : (u, v) ∈ E} denote the set of out-neighbors of node u. Given an

integer β ≥ 0 and a real value γ ∈ [0, 1), an influence graph G = (V,E, (puv)(u,v)∈E)

is a (β, γ)-bounded-activation graph if there exists Ŝ ⊆ V with |Ŝ| ≤ β such that∑
v∈N(u) pu,v ≤ γ for any u ∈ V \ Ŝ. Informally, the class of (β, γ)-bounded-activation

graphs coincides with all the influence graphs such that all nodes but β influence in

expectation has at most γ neighbors each.

In the following theorem, whose proof is partially based on Theorem 3.4 and Lemma 3.6,

we provide an upper bound on the adaptivity gap of (β, γ)-bounded-activation graphs,

for any integer β ≥ 0 and γ ∈ [0, 1).

Theorem 3.11. Given an integer β ≥ 0 and γ ∈ [0, 1), let G be the class of (β, γ)-

bounded-activation graphs. Then

AG(G, k) ≤ min

{
k,

max{β, k} ·min{1, β}+ k
1−γ

k

}
(3.38)

≤ max


√(

1
1−γ

)2
+ 4β + 1

1−γ

2
,min{1, β}+ 1

1− γ


≤
√
β +

1

1− γ
.

for any k ≥ 2.

Let G = (V = [n], E, (puv)(u,v)∈E) be a (β, γ)-bounded-activation graph. To show the

claim of Theorem 3.11, we recall the notations from Theorem 3.1 and we give some

preliminary lemmas.

Let Ŝ be the set of nodes such that |Ŝ| ≤ β and
∑

v∈N(u) pu,v ≤ γ for any u ∈ V \ Ŝ. Let
G\Ŝ be the graph obtained from G by removing the nodes in Ŝ and their adjacent edges,

and let OPTN (G\Ŝ, 1) denote the optimal non-adaptive influence spread OPTN (G\Ŝ, 1)
achieved by a unique seed in graph G \ Ŝ. In the following lemma, we provide an upper

bound for the optimal adaptive influence spread OPTA(G, k) in G.

Lemma 3.12. We have that OPTA(G, k) ≤ σ(Ŝ) + k ·OPTN (G \ Ŝ, 1).

Proof. Let π̂ be an optimal adaptive policy that first selects the nodes in Ŝ and then

adaptively selects k nodes. By construction, we have that

OPTA(G, k) ≤ σ(π̂). (3.39)
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Let ψ0,π̂,L denote the partial realization observed by π̂ after the selection of Ŝ, and let

ψt,π̂,L be the partial realization observed after the selection of the t-th seed node in

V \ Ŝ. By exploiting the adaptive submodularity (Claim 1) similarly as in the proof of

Theorem 3.4, one can easily show that

EL[f(ψt,π̂,L)− f(ψt−1,π̂,L)|ψt−1,π̂,L = ψ] ≤ OPTN (G \ Ŝ, 1) (3.40)

for any fixed partial realization ψ (with P[ψt,π̂,L) = ψ] > 0) and any t ∈ [k]. Thus, we

get

σ(π̂) =EL[f(ψk,π̂,L)]

=EL[f(ψ0,π̂,L)] +

k∑
t=1

EL[f(ψt,π̂,L)− f(ψt−1,π̂,L)]

=EL[f(ψ0,π̂,L)] +
k∑
t=1

Eψt−1,π̂,L
[EL[f(ψt,π̂,L)− f(ψt−1,π̂,L)|ψt−1,π̂,L]]

≤EL[f(ψ0,π̂,L)] + k · Eψt−1,π̂,L
[OPTN (G \ Ŝ, 1)] (3.41)

=EL[f(ψ0,π̂,L)] + k ·OPTN (G \ Ŝ, 1)

=σ(Ŝ) + k ·OPTN (G \ Ŝ, 1), (3.42)

where (3.41) comes from (3.40). By putting (3.39) and (3.42) together, the claim follows.

In the following lemma, we provide an upper bound for OPTN (G \ Ŝ, 1) in terms of

parameter γ.

Lemma 3.13. We have that OPTN (G \ Ŝ, 1) ≤ 1
1−γ .

Proof. Let v0 be the node that maximizes the expected influence spread in G \ Ŝ when

selected as unique seed. For any live-edge graph L and j ∈ [n − 1]0, let A(j, L) denote

the set of nodes activated at the j-th round of diffusion when v0 is the initial seed node

of G \ Ŝ, i.e., A(0, L) = {v0} and A(j, L) is the set of neighbors of A(j − 1, L) activated
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by A(j − 1, L). We can easily observe that

EL[|A(j, L)|]

=
∑
v∈G\Ŝ

P[v ∈ A(j, L)|]

≤
∑
v∈G\Ŝ

∑
P = (v0, v1, . . . , vj := v):

P is a path of G \ Ŝ from v0 to v having j edges

pv0,v1 · pv1,v2 · · · pvj−2,vj−1 · pvj−1,vj

=
∑

P=(v0,v1,...,vj):

P is a path of G \ Ŝ from v0 having j edges

pv0,v1 · pv1,v2 · · · pvj−2,vj−1 · pvj−1,vj

=
∑

v1∈N(v0)∩Ŝ

pv0,v1
∑

v2∈N(v1)∩Ŝ

pv1,v2
∑

v3∈N(v2)∩Ŝ

· · · pvj−2,vj−1

∑
vj∈N(vj−1)∩Ŝ

pvj−1,vj

for any j ∈ [n− 1]. Thus

OPTN (G \ Ŝ, 1)

=EL

n−1∑
j=0

|A(j, L)|


=EL[|A(0, L)|] +

n−1∑
j=1

EL [|A(j, L)|]

≤1 +
n−1∑
j=1

∑
v1∈N(v0)∩Ŝ

pv0,v1
∑

v2∈N(v1)∩Ŝ

· · ·

≤γ2︷ ︸︸ ︷
∑

vj−1∈N(vj−2)∩Ŝ

pvj−2,vj−1

≤γ︷ ︸︸ ︷∑
vj∈N(vj−1)∩Ŝ

pvj−1,vj︸ ︷︷ ︸
≤γj−1︸ ︷︷ ︸

≤γj

≤1 +
n−1∑
j=1

γj ≤
∞∑
j=0

γj =
1

1− γ
,

and this shows the claim.

We are ready to show Theorem 3.11.

Proof. We first show the upper bound in (3.38). By Theorem 3.4, we have that k is an up-

per bound on the k-adaptivity gap. Thus, it is sufficient to show that
max{β,k}·min{1,β}+ k

1−γ

k
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is an upper bound on the k-adaptivity gap. We have that

OPTA(G, k)

OPTN (G, k)
≤ σ(Ŝ) +OPTN (G \ Ŝ, 1) · k

OPTN (G, k)
(3.43)

≤
σ(Ŝ) + k

1−γ
OPTN (G, k)

(3.44)

≤
OPTN (G, β) +

k
1−γ

OPTN (G, k)
, (3.45)

where (3.43) and (3.44) follows from Lemmas 3.12 and 3.13, respectively.

If β = 0, by using OPTN (G, β) = 0 and OPTN (G, k) ≥ k in (3.45), we get that (3.45)

is at most
k

1−γ

k =
max{β,k}·min{1,β}+ k

1−γ

k , and this shows (3.38).

If 1 ≤ β ≤ k, by continuing from (3.45), we get

OPTA(G, k)

OPTN (G, k)
≤
OPTN (G, β) +

k
1−γ

OPTN (G, k)

≤
OPTN (G, k) +

k
1−γ

OPTN (G, k)

≤
k + k

1−γ
k

, (3.46)

where (3.46) holds since OPTN (G, k) ≥ k. As (3.46) is equal to
max{β,k}·min{1,β}+ k

1−γ

k ,

inequality (3.38) holds if 1 ≤ β ≤ k.

Finally, if β > k, by continuing from (3.45), we get

OPTA(G, k)

OPTN (G, k)
≤
OPTN (G, β) +

k
1−γ

OPTN (G, k)

≤
β
k ·OPTN (G, k) +

k
1−γ

OPTN (G, k)
(3.47)

≤
β
k · k +

k
1−γ

k
, (3.48)

where (3.47) follows from Lemma 3.6 and (3.48) holds since OPTN (G, k) ≥ k. As (3.48)

is equal to
max{β,k}·min{1,β}+ k

1−γ

k , inequality (3.38) holds if β > k.

We conclude that min

{
k,

max{β,k}·min{1,β}+ k
1−γ

k

}
is an upper bound on the k-adaptivity

gap. Furthermore, as k and
max{β,k}·min{1,β}+ k

1−γ

k are respectively increasing and non-

increasing in k (for any fixed integer β ≥ 0), the real value k such that the two quantities
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are equal is a further upper bound on the adaptivity gap, and such value is

k = max


√(

1
1−γ

)2
+ 4β + 1

1−γ

2
,min{1, β}+ 1

1− γ


≤ max


√(

1
1−γ

)2
+
√
4β + 1

1−γ

2
,min{1, β}+ 1

1− γ


= max

{√
β +

1

1− γ
,min{1, β}+ 1

1− γ

}
=
√
β +

1

1− γ
.

Thus, max


√(

1
1−γ

)2
+4β+ 1

1−γ

2 ,min{1, β}+ 1
1−γ

 and
√
β+ 1

1−γ are further upper bounds

on the adaptivity gap.

3.5 Experiments

This section is dedicated to the evaluation of adaptive and non-adaptive greedy algo-

rithms under different network settings. We conduct experiments on the IC and LT to

observe the performance generated by the algorithms under these diffusion models. For

the sake of simplicity, we have used only undirected graphs. For non-adaptive greedy,

we considered the TIM+ algorithm [33]. Both the codes for TIM+3 and the adaptive

greedy algorithm are open source. The adaptive greedy algorithm can be accessed at

https://github.com/debashmitap/Adaptive-TIM.

3.5.1 Testbed

The adaptive greedy algorithm and the adaptive greedy with TIM+ seeds are executed

on a Mac with an Intel core i5 with 2.3GHz CPU and 8GB RAM. The non-adaptive

greedy algorithm is executed on a 64 GB Linux machine with an Intel(R) Xeon(R)

3.4GHz CPU.

3https://sourceforge.net/projects/timplus/

https://github.com/debashmitap/Adaptive-TIM
https://sourceforge.net/projects/timplus/
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The languages used are C++ compiled with g++ 4.2.1 and shell for the algorithms.

Python 2.7.16 along with NetworkX package is used to generate the networks (ER,WS,BA

graphs). The Facebook graph is a real world network from the SNAP database.

Erdős-Rényi. An Erdős-Rényi (ER) graph [61] is a random graph, whose nodes and

edges are generated at random. Let us denote an ER graph as Gn,p, which represents

an undirected graph on n nodes, where each edge (u, v) appears independently and

identically distributed with probability p. In expectation, we will normally have n∗n∗p
edges and these edges are placed at random between the nodes.

ER graphs suffer from low connectivity, when p is small, and is considered to be a dense

graph when the value of p tends to one. Since we are interested in a connected graph for

our experiments, we consider a specific value of p, denoted as p∗ = ln n
n . When, p > p∗,

the graph G(n, p) is very likely to be connected, otherwise not. We use this particular

formula for p to generate a random graph with the erdos renyi graph() library.

Watts-Strogatz. The Watts-Strogatz (WS) graph [62] is used to model small world

networks. Social networks exhibit properties of high clustering coefficient and low path

length. Random graphs like the ER, have low path length and low clustering. However,

regular graphs, where every node has the same number of neighbours have high clustering

and high path length. WS combines a regular and a random graph to extract the high

clustering and low path length property to create a generative model of a social network.

Let G(n, k, p) denote a regular graph with n nodes, where each node is connected to k

neighbours. A subset of edges are chosen with a probability p and rewired by replacing

them with random edges. The value of p detects the randomness of the graph. When

the value of p tends to 1, the graph behaves like a random graph, whereas with p = 0,

the graph is a regular graph. To generate a WS graph for our problem, we resort to the

connected watts strogatz graph() library to ensure the connectedness of the graph.

Barabási-Albert. Barabási-Albert (BA) graphs [63] are scale-free networks that

follow preferential attachments, i.e., the degree distribution obeys the power law. Many

real world networks are scale free networks (eg., WWW). These networks include hubs,

which are networks with high degree, and these hubs grow over time due to preferential

attachments.

Let us denote a BA graph as G(n,m) where n represents the number of nodes and m

represents the number of edges that are preferentially attached from a new node to the
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existing nodes in the network. For the experiments we set the value of m as 2, and use

the barabasi albert graph() library to generate the BA graphs for different values of n.

Facebook network. We analyze a real world Facebook4 dataset from the SNAP

database. The network consists of 4039 nodes and 88234 edges.

Greedy Adaptivity Gap. The greedy adaptivity gap is the ratio between the

greedy adaptive algorithm (section 2.4.3.1) and the non-adaptive greedy. Golovin and

Krause [2] showed that the adaptive greedy policy achieves a (1 − 1/e) approximation

(αadaptive of figure 1.1) to the optimal adaptive policy. Therefore, the greedy adaptivity

gap will be at least a fraction (1− 1/e) of the adaptivity gap.

3.5.2 Independent Cascade

Parameters. For the IC model, we do the evaluation on the ER, WS and BA graphs

by generating synthetic networks with n = {1000, 2000, ....., 32000, 64000}. The edge

weights for the aforementioned graphs are assigned at random ranging from [0.1, 1.0]. In

the Facebook network, we use a BFS algorithm to sample subgraphs from the network

with n = {1000, 2048, 4039}. For the ER and Facebook, we also analyzed the network

behaviour by changing the edge activation probabilities to contain in between [0.1, 0.2],

and study the effects of low activation. The approximation error parameter ϵ is set to

0.05 for all the experiments.

Results. The figures in 3.2 represent the 4 different networks with the edge prob-

ability chosen at random between [0.1, 1.0]. In general, the three generated graphs are

comparable to each other with Barabasi-Albert having the best spread. From figure 3.2

and table 3.1, we observe that the seeds selected by the TIM+ algorithm are nearly

as good as the ones selected by the adaptive greedy TIM. For comparing the quality of

selected seeds that the adaptive greedy TIM and TIM+ produce, we introduce a new

algorithm, called the adaptive greedy with TIM seeds, which take the seeds generated

by TIM+, but runs them on the same realisations generated by the adaptive greedy

TIM.

Table 3.1 represents the ratio of the synthetic networks with the three variants of the

TIM algorithm, with the greedy adaptivity gap being the ratio between the adaptive

greedy TIM and TIM+. Table 3.2 shows the three sampled networks of the Facebook

graph and their adaptive ratios of the spread, with k = 50 generated via the TIM

4https://snap.stanford.edu/data/ego-Facebook.html

https://snap.stanford.edu/data/ego-Facebook.html
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(a) ER graph; k = 198 (b) WS graph; k = 10

(c) BA graph; k = 100 (d) Facebook network; k = 50

Figure 3.2: Results under the Independent Cascade model with p = [0.1, 1.0].

Graph Greedy Adaptivity Gap Adaptive vs. greedy adaptive (TIM seeds) Greedy adaptive (TIM seeds) vs. TIM+

Erdős-Rényi 1.2915 1.00004 1.2914

Watts-Strogatz 1.3024 1.0031 1.2983

Barabasi-Albert 1.3155 1.0068 1.3067

Table 3.1: Adaptive ratios with n = 64000 and k = 10 under the IC model for
generated graphs.

No.of nodes Greedy Adaptivity Gap Adaptive vs. greedy adaptive (TIM seeds) Greedy adaptive (TIM seeds) vs. TIM+

1000 1.18872 1.00497 1.18285

2048 1.17294 1.00458 1.16759

4039 1.17135 1.00541 1.16504

Table 3.2: Adaptive ratios for the Facebook network with k = 50.

algorithms. The ratios are normally higher than 1 because adaptive algorithms perform

strictly better than the non-adaptive ones. The second column is the ratio between the

adaptive greedy TIM and the adaptive greedy with the predetermined TIM+ seeds.

The ratios in this column tends to 1 which proves that the seeds selected by TIM+ are

capable of generating a spread close to its adaptive greedy equivalent. The third column

is the column that is similar to the first one, where we compare the greedy adaptive

with TIM+ seeds and the TIM+ algorithm. Notice that the values of this column is

similar to the greedy adaptivity gap further proving that in this setting, TIM+ seeds

are almost as good as the seeds selected by the adaptive greedy policy.
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(a) ER graph; k = 49 (b) Facebook network; k = 50

Figure 3.3: Results under the Independent Cascade model with p = [0.1, 0.2].

We move on to Figure 3.3 where we restrain the probability on edges between 0.1 and

0.2 to observe the spread obtained by the three algorithms. From the graph, we see that

the seeds selected by TIM+ has a coverage as good as the ones selected by the greedy

adaptive policy for both, a synthetic ER graph and a real world Facebook network.

We consider these two particular networks to show the difference in activation between

a generated graph (ER has a low clustering coefficient which helps to understand the

result for low activation probabilities), and the Facebook network represents a real world

network.

In the end, since the results generated by the adaptive greedy TIM and TIM+ almost

converges, if we want a time efficient seed selection process, we will select TIM+ but

at a cost of huge memory overhead. On the other hand, if there is a constraint on the

memory, and we need to use a personal computer to run huge networks, an adaptive

greedy algorithm is what we want to use, but the time required to run such networks

should be calculated in weeks, even when the realisations are run in parallel.

3.5.3 Linear Threshold

Since the BA graph and the Facebook network have high clustering coefficients, we

considered just the same ER and WS graphs we generated for observing the behaviour

of LT w.r.t IC. Again, the values of n range from 1000 to 64000. However, the generation

of realisations for LT to run the adaptive greedy TIM differs from the IC.

Parameters. The BA graph and most other real world networks are power-law

networks, and we observed that the LT model doesn’t perform well with these graphs

under the adaptive setting. So we consider just ER and WS graphs for the LT. The

parameters are the same as in independent cascade with the error parameter ϵ = 0.05.

The probability on edges is in between [0.1, 1.0] and k = 198 for ER and k = 10 for WS,
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since the WS graph has a high clustering coefficient, which helps in activating almost the

entire network with a lesser k value than that of ER. Separate realisations for adaptive

TIM are generated according to the underlying LT diffusion model.

Results. From figure 3.4b we immediately notice in the WS graph plot that the

TIM+ seeds do not perform as well as it was doing in the IC model. Table 3.3 compares

the greedy adaptivity gap under both the diffusion models with the same parameters.

We observe from the table that the greedy adaptivity gap on average increases by ≈ 65%

for the WS network under LT with 10 seeds.

The ER graph plot shows a slight convergence between the red and blue lines representing

the spread of adaptive greedy and the adaptive greedy with TIM+ seeds, but the seeds

selected by TIM+ still perform quite well when compared to that of WS. To understand

why we notice such a deviation can be attributed to the fact that the adaptive greedy

TIM is no longer submodular in the LT model, but the theory is not yet proven. The

question remains, that experimentally, we see that both models with a high and low

clustering coefficient performs better in the LT model as compared to its IC counter

part, so is there a way to pass the submodularity requirement in order to reach better

theoretical bounds on the adaptivity gap of the linear threshold model with the full-

adoption feedback?

No.of nodes Greedy Adaptivity Gap (IC) Greedy Adaptivity Gap (LT)

1000 1.41086 2.45217

2000 1.34130 3.37854

4000 1.30168 3.38854

8000 1.30027 3.51286

16000 1.30840 4.28206

32000 1.28733 4.45013

64000 1.30238 4.32444

Table 3.3: Greedy adaptivity gap for the WS network under IC and LT with k = 10.



Chapter 3. Better Bounds on Adaptivity Gap 57

(a) ER graph; k = 198 (b) WS graph; k = 10

Figure 3.4: Results under the Linear Threshold model with p = [0.1, 1.0].

3.6 Summary

This chapter studies the adaptivity gap of the independent cascade model with full-

adoption feedback. We introduce a new technique to bridge the non-adaptive optimal

and the adaptive optimal solution. Our technique directly builds the connection through

defining the marginals related to the size t− 1 non-optimal solution.

First, we improve on the upper bound of the adaptivity gap for in-arborescences from

2e/(e−1) to 2e2/(e2−1). Second, we give an upper bound of ⌈n1/3⌉ for general graphs,
which is the first sub-linear result on general graphs. Third, we show that for a class

of α-bounded graphs, the adaptivity gap is upper bounded by
√
α + O(1). Fourth, we

prove that for a class of (β, γ)-bounded-activation graphs, we have an adaptivity gap of
√
β + 1

1−γ . All the above results are based on our new technique.

We conduct some experiments on different type of synthetic and real world networks to

understand the effect of adaptive greedy with the non-adaptive greedy algorithms. We

give an overview of the greedy adaptivity gap to realize that even though the greedy

adaptive algorithm is strictly better than the greedy non-adaptive policy, the adaptive

greedy policy is not much better than the latter in both the IC and LT diffusion model.

The adaptive greedy is memory efficient, whereas the non-adaptive greedy has a better

efficiency in time.



Chapter 4

Improved Approximation Factor

for Adaptive Influence

Maximization via Simple greedy

Strategies

In this chapter, we focus on the myopic model and analyze the approximation factor of

the non-adaptive greedy algorithm without passing through the adaptivity gap [3.1]. We

show that the algorithm achieves at least a fraction of 1
2

(
1− 1

e

)
≈ 0.316 of the adaptive

optimum (Theorem 4.5). By definition, this implies that the adaptivity gap is at most
2e
e−1 ≈ 3.164 (Remark 4.12). For both approximation ratio and adaptivity gap we obtain

a substantial improvement with respect to the upper bounds obtained in [39], which are
1
4

(
1− 1

e

)
≈ 0.158 and 4, respectively.

Non-adaptive policies are strictly weaker than adaptive ones, since the latter can imple-

ment the former by simply ignoring any kind of feedback. On the other hand, adaptive

policies are difficult to implement as they require to probe suitable seeds and to observe

the corresponding feedback, which can be expensive and error-prone. Moreover, they

may consist of exponentially-large decision trees that are hard to compute and store. In

contrast, non-adaptive policies are easy to design and implement and are independent

from the feedback. In particular, the non-adaptive greedy algorithm has been exten-

sively studied and successfully applied in the field of influence maximization. For the

non-adaptive setting, several efficient implementation of the greedy algorithm have been

devised that allows us to use it in large real-world networks [27, 28, 33–35, 64]. Our

results show that the simple non-adaptive greedy algorithm performs well, even in the

adaptive setting where we compare it with the adaptive optimum.

58
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To show our bounds, we introduce a new approach that relate the non-adaptive greedy

policy to an optimal adaptive solution. The new approach is not based on multilinear

extensions and Poisson processes (like, e.g. [15, 51, 53, 65]) neither on random walks

on the optimal decision trees (like, e.g. [39, 49, 50, 66]), which are the main tools used

so far to relate adaptive and non-adaptive policies, and to bound the adaptivity gaps.

Previous techniques derive adaptive approximation factors by combining non-adaptive

approximation ratios with a bound on the adaptivity gap which is obtained by showing

the existence of a “good” non-adaptive policy. However such a policy is hard to compute

as it is usually constructed by using an optimal adaptive policy. Our approach, instead,

directly analyzes a non-adaptive policy and therefore provides the exact policy that

gives the desired adaptivity gap and adaptive approximation factor. We believe that

our approach is of independent interest and may be used to bound approximation factors

and adaptivity gaps of different adaptive optimization problems.

Our new approach consists in defining a simple randomized non-adaptive policy whose

performance is not higher than that guaranteed by the greedy algorithm, and to relate

such randomized non-adaptive policy with the optimal adaptive policy. In order to re-

cover good properties of the objective function (like, e.g. submodularity) that usually

guarantee good approximations when adopting greedy strategies, we introduce an arti-

ficial diffusion process in which each seed has two chances to influence its neighbours. A

similar process was introduced by Peng and Chen [39], who consider a diffusion model in

which the seeds appear in multiple copies of the influence graphs, so that, roughly speak-

ing, each node has several chances to influence the neighbours, and the main machinery

they consider to relate the optimal adaptive strategies with optimal non-adaptive ones

are from Bradac et al. [49]. Our direct and more refined analysis of the non-adaptive

greedy algorithm improves, at the same time, both the approximation ratio and the

adaptivity gap.

To illustrate our approach, in Section 4.1 we first apply our machinery to the simpler

setting of adaptive monotone submodular maximization under cardinality constraint.

As observed by Asadpour and Nazerzadeh [51], a constant factor approximation of the

non-adaptive greedy policy applied to such setting can be obtained by combining the

approximation ratio over the non-adaptive optimum and the adaptivity gap (which is

equal to
(
1− 1

e

)
[51]); this leads to an approximation guarantee of

(
1− 1

e

)2 ≈ 0.399.

We give a more refined analysis of the non-adaptive greedy policy and show that its

approximation ratio is at least 1
2

(
1− 1

e2

)
≈ 0.432. Asadpour and Nazerzadeh [51] also

showed that a so-called continuous greedy policy [53, 65] achieves an approximation

ratio of 1 − 1
e − ϵ (in polynomial time w.r.t. 1

ϵ ). Since the continuous greedy policy
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is a non-adaptive policy, this bound is strictly better than ours. However, the non-

adaptive greedy policy is simpler and deterministic, while the continuous greedy policy

is randomized and more complex.

Finally, in Section 4.4, we analyze the adaptive version of the greedy algorithm applied

to the adaptive influence maximization problem. Again by resorting to an artificial

diffusion process, we show that such adaptive algorithms guarantees an approximation

ratio of 1 − 1√
e
≈ 0.393. Thus, we further improve the upper bound shown for the

non-adaptive greedy algorithm, and we also give a more refined analysis of the adaptive

greedy algorithm than that of Peng and Chen [39], who showed a 1
4

(
1− 1

e

)
≈ 0.158

approximation factor.

Related Work.

Golovin and Krause [2] conjectured that the influence maximization problem under

the myopic feedback model admits a constant approximation algorithm and a constant

adaptivity gap, despite the missing adaptive submodularity under such a feedback model.

Since then, several studies have been conducted on the myopic feedback model. Some

recent works include that of Salha et al. [67], in which they consider a modified version

of the independent cascade model which gives multiple chances to the seeds to activate

their neighbours, and consider a different utility function which needs to be maximized.

They demonstrate that the myopic feedback model is adaptive submodular under such

modified diffusion model, and provide an adaptive greedy policy that achieves a 1− 1/e

approximation ratio for the problem of finding the best adaptive policy. The work of

Peng and Chen [39] is the first to provide a constant upper bound on the adaptivity gap

under the myopic feedback model. They introduce a policy in which each seed appears

in multiple copies of the original graph; furthermore, this hybrid policy connects the

adaptive and the non-adaptive policies via a machinery used by [49, 50, 66] in the

context of stochastic probing. Peng and Chen [39] prove that the adaptivity gap lies in

between [e/(e− 1), 4], and by extension has a (1− 1/e)/4 approximation factor.

Singer et al. [56–59], in their line of research on adaptivity gaps, studied a two-stage

process called adaptive seeding, that exhibits some similarities with the influence max-

imization problem under the myopic feedback model. Beyond influence maximization

problems, adaptive optimization and adaptivity gaps has been generally studied for

many other stochastic settings [2, 49, 49–51, 66, 68–76].

A general adaptive optimization framework deals with the fact that an item will reveal

its actual state only when it has been irrevocably included in the final solution, and

the main goal is to optimize an objective function under such uncertainty. Stochastic



Chapter 4. Improved Approximation via Greedy Strategies 61

variants of packing integer programs, 0/1 knapsack, and covering problems, have been

studied under the perspective of adaptive optimization in [71–73], respectively.

Asadpour et al. [51, 69] study the adaptivity gap of the stochastic submodular max-

imization problem under a matroid constraint, in which the goal is to select a subset

of items satisfying a matroid constraint, that maximizes the value of a monotone sub-

modular value function defined on the random states of the selected items. In [51],

the authors consider an adaptive greedy policy (often denoted as the myopic policy) to

approximate the optimal value of the best adaptive policy. They show that it achieves

a 1/2 approximation ratio under general matroid constraint, and a 1 − 1
e approxima-

tion ratio under cardinality constraint. Interesting variants or extensions of the above

optimization problem have been considered in [49, 50, 66].

Chan and Farias [70] study the efficiency of adaptive greedy policies applied to a general

class of stochastic optimization problems, called stochastic depletion, in which the adap-

tive policy, at each step, chooses an action that generates a reward and depletes some

of the items. They show that, under certain structural properties, a simple adaptive

greedy policy guarantees a constant factor approximation of the best adaptive policy.

Hellerstein et al. [75] use an optimal decision tree to build a connection between the

adaptive and the non-adaptive policies, and show that the adaptivity gap of stochastic

submodular maximization under cardinality constraint is 1− 1
eτ , where τ is the minimum

value of the probability that an item is in some state.

Contribution.

The main contributions of this chapter lies in the new technique that we use to bound

the approximation factor of the non-adaptive greedy algorithm, resulting in an improved

bound of 1
2

(
1− 1

e

)
≈ 0.316. The result is extended to also improve on the adaptivity gap

to 3.164 from 4 for the myopic feedback under the independent cascade model. Finally,

we also analyze the adaptive greedy algorithm, and show that it guarantees an improved

approximation factor of 1− 1√
e
≈ 0.393.

Organization of the Chapter.

In section Section 4.1 we introduce our new approach by applying it to a simpler setting.

We apply our technique to the stochastic submodular maximization problem and intro-

duce the necessary notation and definitions. Section 4.2 defines the AIM problem under

the IC model with myopic feedback. In Section 4.3 we give the main results of this chap-

ter, that is the improved approximation factor for the non-adaptive greedy algorithm
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and the upper bound on adaptivity gap for the adaptive influence maximization prob-

lem under myopic feedback. Finally, in Section 4.4 we show an improved approximation

ratio for the adaptive greedy algorithm.

4.1 Stochastic Submodular Maximization

In this section, we illustrate our machinery by applying part of it to the problem of

maximizing a stochastic submodular set function under cardinality constraints [51].

For two integers h and k, h ≤ k, let [k]h := {h, h+ 1, . . . , k} and [k] := [k]1. A function

f : Rn≥0 → R≥0 is a monotone submodular value function if, for any vectors x, y ∈ R≥0,

we get f(x∨y)+f(x∧y) ≤ f(x)+f(y), where x∧y denotes the componentwise minimum

and x ∨ y denotes the componentwise maximum.

Let [n] be a finite set of n items, and let θ = (θ1, . . . ,θn) be a vector of n real, non-

negative, and independent state random variables, where each θi returns the state θi ∈
R≥0 associated to each item i following a certain probability distribution. Let f : Rn≥0 →
R≥0 be the objective function, that is a monotone submodular value function. For any

S ⊆ [n], let θ(S) := (θ1(S), . . . ,θn(S)) be the partial state random variable, that is a

random vector defined as θi(S) = θi if i ∈ S, θi(S) = 0 otherwise. With a little abuse

of notation, we assume that vector θ(S) gives also information on the set S which θ(S)

is based on.

For a given integer k ≥ 0, we aim at selecting a subset S ⊆ [n] subject to cardinality

constraint |S| = k, that maximizes the expected value Eθ[f(θ(S))]. To guarantee a

(possibly) better solution we can resort to an adaptive policy, that, at each step, observes

the partial state ξ ∼ θ(U), where U denotes the set of items previously selected, and

selects another further item π(ξ) ∈ [n] \ U ; after k iterations, the policy returns a set

Uθ,k(π) ⊆ [n] with |Uθ,k(π)| = k, which is a random set depending on the state of θ.

The stochastic monotone submodular maximization problem (SMSM) takes as input a

set of items [n], a random vector θ, a monotone submodular value function f , and an

integer k ∈ [n], and asks to find an adaptive policy π that maximizes the expected value

Eθ[f(θ(Uθ,k(π)))].

In general, computing an optimal adaptive strategy is a computationally hard problem.

Furthermore, in many contexts it is difficult to implement adaptive strategies, and non-

adaptive strategies (in which the solution is chosen without observing the states of

the random variables) is a more feasible choice. Asadpour and Nazerzadeh [51] show

that a non-adaptive randomized continuous greedy algorithm guarantees a
(
1− 1

e − ϵ
)

approximation for the SMSM problem (in polynomial time w.r.t. 1/ϵ); however, the
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proposed approach resorts to a quite sophisticated randomized algorithm. They also

consider a simpler and deterministic non-adaptive greedy algorithm as approximation

algorithm, that starts from an empty set S := ∅ and, at each iteration t ∈ [k], adds

in S the item i ∈ [n] \ S maximizing Eθ[f(θ(S ∪ {i}))]. They show that the greedy

algorithm guarantees an approximation factor of 1
2

(
1− 1

e

)
≈ 0.316 if the chosen subsets

are subject to a matroid constraint, that can be reduced to
(
1− 1

e

)2 ≈ 0.399 when

considering a cardinality constraint |S| ≤ k only (i.e., uniform matroid constraint).

In the following theorem, we give a better analysis of the greedy algorithm under cardi-

nality constraints, and we show that the approximation factor increases to 1
2

(
1− 1

e2

)
≈

0.432.

Theorem 4.1. The non-adaptive greedy algorithm is a 1
2

(
1− 1

e2

)
approximation algo-

rithm for the SMSM problem.

For the proof of Theorem 4.1 we relate the non-adaptive greedy solution with the optimal

adaptive solution. We assume w.l.o.g that k ≥ 2, otherwise the approximation ratio is

equal to 1. For any t ∈ [k]0, let St be the set of t items computed by the greedy

algorithm at iteration t (where S0 := ∅). Let π be an optimal adaptive policy, and let

x = (x1, . . . , xn) ∈ [0, 1]n be the vector such that xi is the probability that node i ∈ [n]

is selected by policy π. Let OPTA(k) denote the value of policy π (i.e., the optimal

value of the problem). Given i ∈ [n], let ei := (ei1, . . . , e
i
n) be a random vector where eij

has the same distribution of θi if i = j, and eij = 0 otherwise; given a partial state ξ,

let ∆(i|ξ) := Eei [f(ξ ∨ ei)− f(ξ)], i.e., the expected increment of the objective function

when adding an item i under partial state ξ.

For any t ∈ [k−1]0, as intermediate step of our analysis, we consider a randomized non-

adaptive policy Randt that, starting from the greedy solution St, computes a random set

Sρ,t := St ∪ {ρ}, where ρ ∈ [n] is a random item such that P[ρ = i] = xi/k for any

i ∈ [n] and selected independently from any other event. Observe that the above random

variable is well-defined, as
∑

v∈V (xv/k) = k/k = 1; furthermore, we observe that the

expected value of f under Randt is Eθ,ρ[f(θ(Sρ,t)]. Furthermore, for any t ∈ [k−1]0, we

consider a hybrid adaptive policy Hybt, that first runs the adaptive policy π, and then

merges the items of St with the items of Uθ̂,k(π) selected by π, where θ̂ is a random state

that follows the same distribution of θ but is independent from θ; finally, the expected

value of f under Hybt is defined as Eθ,θ̂[f(θ(St) ∨ θ̂(Uθ̂,k(π) ∪ St))].

A similar hybrid adaptive policy has been also considered by Asadpour and Nazerzadeh

[51], but in place of the randomized non-adaptive policy considered in our work, they

resort to a non-adaptive strategy defined by a Poisson process based on the multilinear

extension of the expected value function Eθ[f(∗)]. Before showing the theorem, we give
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some preliminary lemmas, which relate the randomized non-adaptive policy with the

hybrid adaptive policy.

Lemma 4.2. We have that Eθ,ρ[f(θ(S∪{ρ}))]−Eθ[f(θ(S))] =
∑

i∈[n]\S xi·Eθ[∆(i|θ(S))]
for any S ⊆ [n].

Proof. As P[ρ = i] = xi
k for any i ∈ [n], we have that

Eθ,ρ[f(θ(S ∪ {ρ}))]− Eθ[f(θ(S))]

= k · Eρ[Eθ[f(θ(S ∪ ρ))− f(θ(S))]]

= k ·
∑

i∈[n]\S

P[ρ = i] · Eθ[∆(i|θ(S))]

= k ·
∑

i∈[n]\S

xi
k
· Eθ[∆(i|θ(S))]

=
∑

i∈[n]\S

xi · Eθ[∆(i|θ(S))].

Lemma 4.3. For any S ⊆ [n], we have Eθ,θ̂[f(θ(S) ∨ θ̂(Uθ̂,k(π) ∪ S))]
≤ Eθ,θ̂[f(θ(S) ∨ θ̂(S)] +

∑
i∈[n]\S xi · Eθ[∆(i|θ(S))].

Proof. It is sufficient to show that Eθ̂[f(ξ∨θ̂(Uθ̂,k(π)∪S))] ≤ Eθ̂[f(ξ∨θ̂(S)]+
∑

i∈[n]\S xi·
∆(i|ξ) for any partial state ξ ∼ θ(S), so that, by doing the expectation on ξ ∼ θ(S),

the claim follows.

We observe that Eθ̂[f(ξ∨θ̂(Uθ̂,k(π)∪S))] can be rewritten as the expected value Eθ̂[f(ξ∨
θ̂(S))] coming from the selection of S, plus the sum of expected increments of f caused

by all the nodes i ∈ [n] \ S selected by policy π, when observing partial states from θ̂.

We have that the second sum can be written as

∑
i∈[n]\S

∑
ξ̂

χ(i|ξ̂) ·∆(i|ξ ∨ ξ̂),

where χ(i|ξ̂) ∈ {0, 1} is the indicator random variable that is equal to 1 if policy π

visits state ξ̂ at some step of the execution and then selects node i (i.e., i = π(ξ̂)), and

χ(i|ξ̂) = 0 otherwise. Thus,

Eθ̂[f(ξ ∨ θ̂(Uθ̂,k(π) ∪ S))]

= Eθ̂[f(ξ ∨ θ̂(S))] +
∑

i∈[n]\S

∑
ξ̂

χ(i|ξ̂) ·∆(i|ξ ∨ ξ̂). (4.1)
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For any partial state ξ̂ we have that

∆(i|ξ ∨ ξ̂)]

= Eei [f(ξ ∨ ξ̂ ∨ ei)− f(ξ ∨ ξ̂)]

= Eei [f((ξ ∨ ξ̂) ∨ (ξ ∨ ei))− f(ξ ∨ ξ̂)]

≤ Eei [f(ξ ∨ ei)− f((ξ ∨ ξ̂) ∧ (ξ ∨ ei))] (4.2)

≤ Eei [f(ξ ∨ ei)− f(ξ)]

= ∆(i|ξ), (4.3)

where (4.2) holds since f is a monotone submodular value function: indeed, we have

that f(x∨ y) + f(x∧ y) ≤ f(x) + f(y) with x := (ξ ∨ ξ̂) and y := (ξ ∨ ei), thus showing
(4.2). Furthermore, by exploiting the fact that xi is the probability that an item i is

selected in some step of policy π, we get

∑
ξ̂

χ(i|ξ̂) = xi. (4.4)

Finally, by combining (4.1), (4.3), and (4.4), we get

Eθ̂[f(ξ ∨ θ̂(Uθ̂,k(π) ∪ S))]

= Eθ̂[f(ξ ∨ θ̂(S))] +
∑

i∈[n]\S

∑
ξ̂

χ(i|ξ̂) ·∆(i|ξ ∨ ξ̂)

≤ Eθ̂[f(ξ ∨ θ̂(S))] +
∑

i∈[n]\S

∑
ξ̂

χ(i|ξ̂) ·∆(i|ξ)

= Eθ̂[f(ξ ∨ θ̂(S))] +
∑

i∈[n]\S

∑
ξ̂

χ(i|ξ̂)

 ·∆(i|ξ)

= Eθ̂[f(ξ ∨ θ̂(S))] +
∑

i∈[n]\S

xi ·∆(i|ξ),

thus showing the claim.

Lemma 4.4. We have that OPTA(k) ≤ Eθ,θ̂[f(θ(S)∨ θ̂(Uθ̂,k(π)∪S))] for any S ⊆ [n].

Proof. The claim easily follows from the fact that θ̂(Uθ̂,k(π)) is componentwise non-

higher than θ(S)∨θ̂(Uθ̂,k(π)∪S), thus, as f is monotone we getOPTA(k) = Eθ̂[f(θ̂(Uθ̂,k(π)))] ≤
Eθ,θ̂[f(θ(S) ∨ θ̂(Uθ̂,k(π) ∪ S))].

Armed with the above lemmas, we can prove Theorem 4.1.
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Proof of Theorem 4.1. For any t ∈ [k]0, let GRN (t) := Eθ[f(θ(St))] denote the expected

value of f obtained at the t-th iteration of the non-adaptive greedy algorithm. We have

that

GRN (t+ 1)−GRN (t) = max
v∈V

[Eθ[f(θ({v} ∪ St))]]− Eθ[f(θ(St))] (4.5)

≥
Exp. value of Randt︷ ︸︸ ︷

Eθ,ρ[f(θ(St ∪ {ρ}))]−Eθ[f(θ(St))]

≥ 1

k
·
∑

i∈[n]\St

xi · Eθ[∆(i|θ(St))] (4.6)

≥ 1

k
·


Exp. value of Hybt︷ ︸︸ ︷

Eθ,θ̂[f(θ(St) ∨ θ̂(Uθ̂,k(π) ∪ St))]−Eθ,θ̂[f(θ(St) ∨ θ̂(St))]

 (4.7)

≥ 1

k
·
(
OPTA(k)− Eθ,θ̂[f(θ(St) ∨ θ̂(St))]

)
(4.8)

≥ 1

k
·OPTA(k)−

1

k
·
(
Eθ,θ̂[f(θ(St)) + f(θ̂(St))]

)
(4.9)

≥ 1

k
·OPTA(k)−

1

k
·
(
Eθ[f(θ(St))] + Eθ̂[f(θ̂(St))]

)
=

1

k
·OPTA(k)−

2

k
· Eθ[f(θ(St)]

=
1

k
·OPTA(k)−

2

k
·GRN (t), (4.10)

where (4.5) comes from the fact that the greedy strategy, at iteration t + 1, adds to

St the item i guaranteeing the best expected value of f , (4.6) comes from Lemma 4.2,

(4.7) comes from Lemma 4.3, (4.8) comes from Lemma 4.4, and (4.9) holds since f is a

monotone submodular value function (as f(θ(St)∨ θ̂(St)) ≤ f(θ(St)∨ θ̂(St))+f(θ(St)∧
θ̂(St)) ≤ f(θ(St))+f(θ̂(St))). Thus, by (4.10) and some manipulations, we get GRN (t+

1) ≥ 1
k ·OPTA(k)+

(
1− 2

k

)
·GRN (t) for any t ∈ [k−1]0. By applying iteratively the above

inequality, we get GRN (k) ≥ 1
k ·
∑k−1

t=0

(
1− 2

k

)t ·OPTA(k) = 1
2

(
1−

(
1− 2

k

)k)·OPTA(k),
that leads to GRN (k)

OPTA(k) ≥
1
2

(
1−

(
1− 2

k

)k) ≥ 1
2

(
1− 1

e2

)
, and this shows the claim.

4.2 Adaptive Influence Maximization under the Myopic

Feedback Model: Preliminaries

Non-adaptive Influence Maximization. Defined in Chapter 3. Refer to Chapter

2, Sections 2.1–2.3 for a more detailed overview.

Adaptive Influence Maximization. Differently from the non-adaptive setting, in

which all the seeds are selected at the beginning, an adaptive policy activates the seeds
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sequentially in k steps, one seed at each step, and the decision on the next seed to

select is based on the feedback resulting from the observed spread of previously selected

nodes. The feedback model considered in this work is myopic: when a node is selected,

the adaptive policy observes the state of its neighbours.

An adaptive policy under the myopic feedback model is formally defined as follows.

Given L ⊆ E, the realisation ϕL : V → 2V associated to L assigns to each node v ∈ V
the value {z ∈ V : (v, z) ∈ L} ∪ {v}, i.e., the set containing v and the neighbours

activated by seed v when L = L. Let Φ denote the random realisation, i.e., the random

variable such that P[Φ = ϕL] = P[L = L] for any L ⊆ E. Given a set S ⊆ V , a partial

realisation ψ : S → 2V is the restriction to S of the domain of some realisation, i.e.,

there exists L ⊆ E such that ψ(v) = ϕL(v) for any v ∈ S. Given a partial realisation

ψ : S → 2V , let dom(ψ) := S, i.e., dom(ψ) is the domain of partial realisation ψ, and

let Im(ψ) :=
⋃
v∈dom(ψ) ψ(v). A partial realisation ψ′ is a sub-realisation of a partial

realisation ψ (or, equivalently, ψ′ ⊆ ψ), if dom(ψ′) ⊆ dom(ψ) and ψ′(v) = ψ(v) for any

v ∈ dom(ψ′). We observe that any partial realisation ψ can be equivalently represented

as {(v, ϕL(v)) : v ∈ dom(ψ)} for some L ⊆ E.

An adaptive policy π takes as input a partial realisation ψ and, either returns a node

π(ψ) ∈ V and activates it as seed, or interrupts the activation of new seeds, e.g., by

returning a string π(ψ) := STOP . In particular, an adaptive policy π can be run as

follows: (i) start from an empty realisation ψ := ∅; (ii) if π(ψ) ̸= STOP set ψ ←
ψ ∪ {(v, ϕL(v))} and repeat (ii) until π(ψ) = STOP ; (iii) at the end, return ψπ := ψ.

Let Ψπ be the random partial realisation returned by the execution of policy π. The

expected influence spread of an adaptive policy π is defined as σ(π) := EL[σL(dom(Ψπ))],

i.e., it is the expected value of the number of nodes reached by the diffusion process at

the end of the execution of policy π. We say that |π| = k if policy π always return a

partial realisation ψπ with |dom(ψπ)| = k. The adaptive influence maximization problem

(under IC and myopic feedback) is the computational problem that, given an influence

graph G and k ∈ [n], asks to find an adaptive policy π subject to |π| = k that maximizes

the expected influence spread σ(π).

The adaptive influence maximization defined above is analogous to the definition in

chapter 3 section 3.1, however, we need new notations to cope with the new proof

arguments for the myopic feedback. We redefine the AIM scenario again in this chapter

for the sake of clarity and completeness.

Adaptivity Gap. Defined formally in Section 3.1 Chapter 3.
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4.3 Efficiency of Non-Adaptive Greedy algorithm

In this section, we show that a simple non-adaptive algorithm guarantees an approxi-

mation ratio of 1
2

(
1− 1

e

)
≈ 0.316 for the adaptive influence maximization problem, thus

improving the approximation ratio of 1
4

(
1− 1

e

)
≈ 0.158 given in [39]. The algorithm

provided by [39] is the usual non-adaptive greedy algorithm given in [9] and reported in

the previous section.

We observe that such algorithm is non-adaptive, i.e., despite it is used for adaptive

optimization, does not resort to the use of any adaptive policy and all the seeds are

selected without observing any partial realisation.

Theorem 4.5. Given an influence graph G with n nodes and k ∈ [n]2, the non-adaptive

greedy algorithm is a 1
2

(
1−

(
1− 1

k

)k) ≥ 1
2

(
1− 1

e

)
approximation algorithm for the

adaptive influence maximization problem (under IC and myopic feedback) applied to

(G, k).

In the proof of Theorem 4.5 (see Subsection 4.3.4) we relate the expected influence spread

coming from the non-adaptive greedy algorithm with that of the optimal adaptive policy.

We first need some notation and preliminary results. Let G = (V = [n], E, (puv)(u,v)∈E)

be an influence graph, and let k ∈ [n]2. For any t ∈ [k]0, let St denote the set of the first

t seeds selected by the greedy algorithm, so that σ(Sk) is the expected influence spread

of the solution returned by the algorithm. Let π be an optimal adaptive policy, and let

x = (x1, . . . , xn) be the vector such that xi is the probability that node i is selected by

π. As in Section 4.1, we resort again to a randomized non-adaptive policy to relate the

expected influence spread of the greedy algorithm with that of the adaptive policy.

Randomized Non-adaptive Policy. For any t ∈ [k − 1]0, as intermediate step of

our analysis, we consider again the randomized non-adaptive policy Randt defined in

Section 4.1: starting from the greedy solution St, we compute a random set Sρ,t :=

St ∪ {ρ}, where ρ ∈ [n] is a random item such that P[ρ = i] = xi/k for any i ∈ [n] and

selected independently from any other event. We observe that the expected value of f

under Randt is Eρ[σ(Sρ,t)].

As a support of our analysis, we also define a new diffusion model and a hybrid adaptive

policy. In particular, the new diffusion model will be used to recover certain properties

connected with the submodularity that, as in Section 4.1, will allow us to relate the

expected influence spread of the randomized non-adaptive policy with that of the hybrid

adaptive policy. Furthermore, following again the approach of Section 4.1, the hybrid

adaptive policy is obtained by combining the greedy (non-adaptive) solution and the
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optimal adaptive one, and it will be used in our analysis to get an upper bound on the

optimal adaptive spread.

2-level Diffusion Model. In the 2-level diffusion model each selected seed u ∈ V

has two chances to influence its neighbours, and all the non-seeds have one chance

only, i.e., the activation probability for all the edges (u, v) is 1 − (1 − pu,v)
2 if u is

a seed, and pu,v otherwise. More formally, let L̂ be a live-edge graph distributed as

L and independent from L. Given a set of seeds S, the 2-level live-edge graph can

be defined as L2(S) := L ∪ {L̂ ∩ {(u, v) ∈ E : u ∈ S}}. Given a set of nodes S, let

σ2
L,L̂

(S) := σL2(S)(S) denote the influence spread induced by S in live-edge graph L2(S),

and let σ2(S) := EL,L̂[σ
2
L,L̂

(S)] denote the expected influence spread induced by S under

the 2-level diffusion model. Let Φ and Φ̂ denote the random realisations associated to

live-edge graphs L and L̂, respectively.

2-Level Hybrid Adaptive Policy. For any t ∈ [k−1]0, let Hyb2t be a hybrid adaptive

policy defined as follows: (i) Hyb2t selects all the nodes in St as seeds; (ii) then, Hyb
2
t adds

to St all the nodes that the optimal adaptive policy π would have select when starting

from the empty realisation, and observing, at each step, partial realisations coming from

the live-edge graph L̂ only; in other words, for any seed v ∈ V selected by the policy, the

new set of nodes that the policy observes (to choose the next seed) is Φ̂(v); (iii) finally,

denoting with Ψ̂π the random realisation returned by π, the expected influence spread

of Hyb2t is defined as EL,L̂[σ
2
L,L̂

(dom(Ψ̂π) ∪ St)], i.e., it is the expected influence spread

determined dom(Ψ̂π) ∪ St, according to the 2-level live-edge graph L2(dom(Ψ̂π) ∪ St).

In what follows we give some technical results which are based on the above definitions

and will be used in Subsection 4.3.4 to show the main theorem. In particular, we show

that the 2-level diffusion model satisfies certain properties connected with submodular

set functions (see Subsection 4.3.1); then, we use such properties to relate the expected

influence spread in the ordinary diffusion model to that of the 2-level diffusion model

(see Subsection 4.3.2); finally, by using a similar approach as in Section 4.1, we use the

above relations to relate the efficiency of the randomized non-adaptive policy with that

of the optimal adaptive policy, via the 2-level hybrid adaptive policy (see Subsection

4.3.3).

4.3.1 Adaptive Submodularity in the 2-Level Diffusion Model

The adaptive submodularity [2] is a property that extends the well-known concept of

submodularity to the adaptive framework, and allows us to design efficient adaptive



Chapter 4. Improved Approximation via Greedy Strategies 70

approximation algorithms. In particular, the adaptive submodularity states that, given

two subrealisations ψ ⊆ ψ′ and a node v ∈ V , adding node v under partial realisation

ψ′ causes an expected increment of the influence spread that is not higher than that

caused under partial realisation ψ. Unfortunately, as shown in the arXiv version of [2],

the myopic feedback model, in general, does not satisfy the adaptive submodularity.

Anyway, by resorting to the 2-level diffusion model, we can recover a similar property

as the adaptive submodularity. Given S ⊆ V , a partial realisation ψ̂, and v ∈ V , let

∆2
S(v|ψ̂) :=

EL,L̂

[
σL2({v}∪dom(ψ̂)\S)({v} ∪ S ∪ dom(ψ̂))− σL2(dom(ψ̂)\S)(S ∪ dom(ψ̂))|ψ̂ ⊆ Φ̂

]
denote the expected increment of the influence spread w.r.t. the 2-level diffusion model

when adding seed v to the set of nodes S ∪ dom(ψ̂), but assuming that the nodes in

S have a unique chance to influence their neighbors, and that partial realisation ψ̂ has

been observed. We say that the 2-level diffusion model is adaptive submodular if, for

any S ⊆ V , any partial realisations ψ̂, ψ̂′ with ψ̂ ⊆ ψ̂′, and any v ∈ V , we have that

∆2
S(v|ψ̂) ≥ ∆2

S(v|ψ̂′).

Lemma 4.6. The 2-level diffusion model is adaptive submodular.

Proof. To show the lemma, we connect the adaptive submodularity of the 2-level dif-

fusion model, with the (non-adaptive) submodularity of the ordinary diffusion model

shown by Kempe et al. [9]. They observed that, for any live-edge graph L, the expected

influence spread function σL is a submodular set function: for any U, Y, Z ⊆ V such

that U ⊆ Y we have that

σL(U ∪ Z)− σL(U) ≥ σL(Y ∪ Z)− σL(Y ). (4.11)

Fix S ⊆ V , two partial realisations ψ̂, ψ̂′ with ψ̂ ⊆ ψ̂′, and v ∈ V . Given a partial

realisation ψ, let ψ\S denote the subrealisation of ψ with dom(ψ\S) = dom(ψ) \ S.
We get

∆2
S(v|ψ̂)

= EL,L̂

[
σL2({v}∪dom(ψ̂)\S)({v} ∪ S ∪ dom(ψ̂))− σL2(dom(ψ̂)\S)(S ∪ dom(ψ̂))|ψ̂ ⊆ Φ̂

]
= EΦ̂(v)

[
EL[σL(Φ̂(v) ∪ S ∪ Im(ψ̂\S))− σL(S ∪ Im(ψ̂\S))]

]
≥ EΦ̂(v)

[
EL[σL(Φ̂(v) ∪ S ∪ Im(ψ̂′

\S))− σL(S ∪ Im(ψ̂′
\S))]

]
(4.12)

= ∆2
S(v|ψ̂′),
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where (4.12) holds by non-adaptive submodularity: for U := S ∪ Im(ψ̂\S), Y := S ∪
Im(ψ̂′

\S), and Z := Φ̂(v), we have that U ⊆ Y , thus we can apply (4.11) to derive

(4.12).

4.3.2 From the Ordinary to the 2-level Diffusion Model

In this subsection, we see how to relate the 2-level diffusion model to the ordinary one.

Lemma 4.7. We have that σ2(S) ≤ 2 · σ(S) for any S ⊆ V .

Proof. By using the fact that the random graphs L and L̂ are independent and identi-

cally distributed, we have that

σ2(S) = EL2(S)[σL2(S)(S)]

≤ EL,L̂[σL(S) + σ{L\{(u,v)∈E:u∈S}}∪{L̂∩{(u,v)∈E:u∈S}}(S)]

≤ EL[σL(S)] + EL̂[σL̂(S)] = 2 · σ(S).

Now, given a set S ⊆ V and v ∈ V , let ∆S(v) := σ(S ∪{v})−σ(S), that is the expected
increment under the ordinary diffusion model when adding a new node to a set S, and

let ∆2
S(v) := EL,L̂[σL2({v})(S∪{v})−σL(S)], that is the above expected increment, with

the further assumption that v has two chances to influence its neighbors.

Lemma 4.8. We have that ∆2
S(v) ≤ 2 ·∆S(v) for any S ⊆ V and v ∈ V .

Proof. Let S ⊆ V and v ∈ V . Given a live-edge graph L and a set S ⊆ [n], let L\S be

another live edge graph obtained from L after removing all the nodes that would have

been activated if S was the set of seeds, and after removing all the edges adjacent to

such activated nodes (we observe that, if v /∈ L\S , then σL({v}) = 0). We have that

∆2
S(v)

= EL2({v})\S [σL2({v})\S ({v})]

≤ 2 · EL\S [σL\S ({v})] (4.13)

= 2 ·∆S(v),

where (4.13) can be shown by using analogous arguments as in the proof of Lemma

4.7.
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4.3.3 From the Adaptive to the Randomized Non-adaptive Policy

The following three lemmas (Lemma 4.9, Lemma 4.10, and 4.11) relate the randomized

non-adaptive policy with the 2-level hybrid adaptive policy, and then with the optimal

adaptive policy of the ordinary diffusion model. In particular, the proofs of Lemma 4.9,

Lemma 4.10, and 4.11, resort to a similar approach of the proofs of Lemma 4.2, Lemma

4.3, and Lemma 4.4 of Section 4.1.

Lemma 4.9. For any S ⊆ V , we have that k · (Eρ[σ({ρ} ∪ S)]− σ(S)) ≥
∑

v∈V \S xv ·
∆S(v).

Proof. We have

k · (Eρ[σ({ρ} ∪ S)]− σ(S))

= k · (Eρ[EL[σ({ρ} ∪ S)− σ(S)]])

= k · Eρ[∆S(ρ)]

= k ·
∑
v∈V \S

xv
k
·∆S(v)

=
∑
v∈V \S

xv ·∆S(v).

The following lemma relates the adaptive setting with the non-adaptive one, and its

proof resorts to the adaptive submodularity defined in Subsection 4.3.1.

Lemma 4.10. We have EL,L̂[σ
2
L,L̂

(dom(Ψ̂π)∪S)] ≤ σ2(S)+
∑

v∈V \S xv ·∆2
S(v) for any

S ⊆ V .

Proof. We observe that EL,L̂[σ
2
L,L̂

(dom(Ψ̂π) ∪ S)] can be rewritten as the expected

influence spread σ2(S) coming from the selection of S under the 2-level diffusion model,

plus the sum of the expected increments of the influence spread under the 2-level diffusion

model caused by all the nodes v ∈ V \ S selected by policy π, when observing partial

realisations distributed according to Φ̂. We observe that the second sum is at most equal

to ∑
v∈V \S

∑
ψ̂′

χ(v|ψ̂′) ·∆2
S(v|ψ̂′),

where χ(v|ψ̂′) ∈ {0, 1} is the indicator random variable that is equal to 1 if and only if

policy π visits partial realisation ψ̂′ at some step of the execution and then selects node
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i (i.e., i = π(ψ̂′)). Thus, we have that

EL,L̂[σ
2
L,L̂

(dom(Ψ̂π) ∪ S)] ≤ σ2(S) +
∑
v∈V \S

∑
ψ̂′

χ(v|ψ̂′) ·∆2
S(v|ψ̂′). (4.14)

As the probability that each node v ∈ V is selected by policy π is xv, we have that

∑
ψ̂′

χ(v|ψ̂′) = xv. (4.15)

We have that,

∑
v∈V \S

∑
ψ̂′

χ(v|ψ̂′) ·∆2
S(v|ψ̂′)

≤
∑
v∈V \S

∑
ψ̂′

χ(v|ψ̂′) ·∆2
S(v|∅) (4.16)

≤
∑
v∈V \S

∑
ψ̂′

χ(v|ψ̂′)

 ·∆2
S(v|∅)

=
∑
v∈V \S

xv ·∆2
S(v), (4.17)

where (4.16) follows from Lemma 4.6 (i.e., from the adaptive submodularity, and ψ̂ := ∅
is the empty partial realisation), and (4.17) holds by (4.15). By applying (4.17) to (4.14),

we get

EL,L̂[σ
2
L,L̂

(dom(Ψ̂π) ∪ S)]

≤ σ2(S) +
∑
v∈V \S

∑
ψ̂′

χ(v|ψ̂′) ·∆2
S(v|ψ̂′)

≤ σ2(S) +
∑
v∈V \S

xv ·∆2
S(v),

and this concludes the proof.

The following lemma shows that the optimal adaptive influence spread is upper bounded

by that expected influence spread of the 2-level hybrid adaptive policy.

Lemma 4.11. We have OPTA(G, k) ≤ EL,L̂[σ
2
L,L̂

(dom(Ψ̂π) ∪ S)] for any S ⊆ V .

Proof. We have that OPTA(G, k) = EL,L̂[σ
2
L,L̂

(dom(Ψ̂π))] ≤ EL,L̂[σ
2
L,L̂

(dom(Ψ̂π) ∪ S)].
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4.3.4 Proof of Theorem 4.5

Armed with the above results, we can now prove Theorem 4.5. For any t ∈ [k]0, let

GRN (G, t) := σ(St) denote the expected influence spread σ(St) obtained when the first

t seeds have been selected by the greedy algorithm. We have that

GRN (G, t+ 1)−GRN (G, t)

= max
v∈V

[σ({v} ∪ St)]− σ(St)

≥
Exp. value of Randt︷ ︸︸ ︷
Eρ[σ({ρ} ∪ St)]−σ(St) (4.18)

≥ 1

k

∑
v∈V \St

xv ·∆St(v) (4.19)

≥ 1

2k

∑
v∈V \St

xv ·∆2
St
(v) (4.20)

≥ 1

2k
(

Exp. value of Hyb2t︷ ︸︸ ︷
EL,L̂[σ

2
L,L̂

(dom(Ψ̂π) ∪ St)]−σ2(St)) (4.21)

≥ 1

2k
(OPTA(G, k)− σ2(St)) (4.22)

≥ 1

2k
(OPTA(G, k)− 2 · σ(St)) (4.23)

=
1

2k
OPTA(G, k)−

1

k
GRN (G, t), (4.24)

where (4.18) holds since the greedy strategy adds to St the node v maximizing σ(St∪{v}),
(4.19) comes from Lemma 4.9, (4.20) comes from Lemma 4.8, (4.21) comes from Lemma

4.10, (4.22) comes from Lemma 4.11, and (4.23) comes from Lemma 4.7. Thus, by (4.24)

and some manipulations we get the following recursive relation: GRN (G, t + 1) ≥ 1
2k ·

OPTA(G, k)+
(
1− 1

k

)
·GRN (G, t) for any t ∈ [k−1]0. By applying iteratively the above

inequality, we get GRN (G, k) ≥ 1
2k ·

∑k−1
t=0

(
1− 1

k

)t · OPTA(G, k) = 1
2

(
1−

(
1− 1

k

)k) ·
OPTA(G, k), that leads to GRN (G,k)

OPTA(G,k) ≥
1
2

(
1−

(
1− 1

k

)k) ≥ 1
2

(
1− 1

e

)
, and this shows

the claim.

Remark 4.12. By Theorem 4.5, we can easily show that, for any influence graph G with

n nodes, the k-adaptivity gap of G is at most 2
(
1−

(
1− 1

k

)k)−1
≤ 2e

e−1 ≈ 3.164.

4.4 The Efficiency of the Adaptive Greedy Algorithm

We show that the adaptive version of the greedy algorithm guarantees an even better

approximation ratio of 1− 1√
e
≈ 0.393 for the adaptive influence maximization problem.

The adaptive greedy algorithm is an adaptive policy πGRk that selects k seeds in k steps,
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and at each step t selects the t-th seed that maximizes the expected influence spread

conditioned by the observed realisation.

Theorem 4.13. Given an influence graph G with n nodes and k ∈ [n]2, the adaptive

greedy algorithm is a 1 −
(
1− 1

2k

)k ≥ 1 − 1√
e
approximation algorithm for the adaptive

influence maximization problem (under IC and myopic feedback) applied to (G, k).

In the proof of Theorem 4.13 we relate the expected influence spread coming from the

adaptive greedy algorithm with that of the optimal adaptive policy, passing trough a

new hybrid adaptive policy. In the same spirit of Theorem 4.5, we also consider a new

diffusion model and a new notion of adaptive submodularity (slightly different from that

of Subsection 4.3.1). To show the main theorem (see Subsection 4.4.1) we need some

notation and preliminary results. Let G = (V = [n], E, (puv)(u,v)∈E) be an influence

graph, and let k ∈ [n]2. Let π be an optimal adaptive policy, and let x = (x1, . . . , xn)

be the vector such that xi is the probability that node i is selected by π.

Strong 2-level Diffusion Model. We define L, L̂, L2(S), Φ, Φ̂ as in the 2-level

diffusion model considered in Section 3.2. Given a partial realisation ψ and a set S ⊆ V ,

let σ2
L,L̂,ψ

(S) := σL2(S\dom(ψ))(S) denote the influence spread induced by S in live-

edge graph L2(S \ dom(ψ)), and let σ2ψ(S) := EL,L̂[σ
2
L,L̂,ψ

(S)|ψ ⊆ Φ] denote the above

influence spread in expectation, conditioned by partial realisation ψ.

Strong 2-level Hybrid Adaptive Policy. Given a partial realisation ψ, let Hyb2ψ

be a hybrid adaptive policy defined as follows: (i) Hyb2ψ selects all the nodes in dom(ψ)

as seeds; (ii) then, Hyb2ψ adds to dom(ψ) all the nodes that policy π would have select

when starting from the empty realisation, and observing, at each step, partial realisa-

tions coming from the live-edge graph L̂ only; (iii) finally, denoting with Ψ̂π the random

realisation returned by policy π, the expected influence spread of Hyb2ψ is defined as

EL,L̂[σ
2
L,L̂,ψ

(dom(ψ)∪dom(Ψ̂π))| ψ ⊆ Φ], i.e., it is the expected influence spread deter-

mined dom(ψ) ∪ dom(Ψ̂π) in the strong 2-level diffusion model, conditioned by partial

realisation ψ. Differently from the 2-level hybrid policy defined in Section 3.2, the

expected influence spread of the hybrid policy defined here is conditioned by partial

realisation ψ and the unique seeds that have two chances to influence their neighbors

are those in dom(Ψ̂π) \ dom(ψ).



Chapter 4. Improved Approximation via Greedy Strategies 76

Strong Adaptive Submodularity of the Strong 2-level Diffusion Model. Given

two partial realisations ψ, ψ̂ and v ∈ V , let

∆2
ψ(v|ψ̂) =

EL,L̂

[
σ2
L,L̂,ψ

({v} ∪ dom(ψ) ∪ dom(ψ̂))− σ2
L,L̂,ψ

(dom(ψ) ∪ dom(ψ̂))|ψ ⊆ Φ, ψ̂ ⊆ Φ̂
]
,

i.e., ∆2
ψ(v|ψ̂) is the expected increment of the influence spread in the strong 2-level

diffusion model when adding seed v to the set of nodes dom(ψ̂) ∪ dom(ψ), conditioned

by the observation of partial realisations ψ̂ and ψ. We say that the strong 2-level diffusion

model is strongly adaptive submodular if, for any partial realisations ψ̂, ψ̂′ with ψ̂ ⊆ ψ̂′,

any partial realisation ψ, and any v ∈ V , we have that ∆2
ψ(v|ψ̂) ≥ ∆2

ψ(v|ψ̂′).

Lemma 4.14. The strong 2-level diffusion model is strongly adaptive submodular.

Proof. This lemma can be shown analogously to Lemma 4.6. Fix two partial realisations

ψ̂, ψ̂′ with ψ̂ ⊆ ψ̂′, a partial realisation ψ, and v ∈ V . Given a partial realisation ψ, let

ψ\ψ denote the subrealisation of ψ with dom(ψ\ψ) = dom(ψ) \ dom(ψ).We get

∆2
ψ(v|ψ̂)

= EΦ̂(v)

[
EL[σL(Φ̂(v) ∪ Im(ψ̂\ψ) ∪ dom(ψ))− σL(Im(ψ̂\ψ) ∪ dom(ψ))|ψ ⊆ Φ]

]
≥ EΦ̂(v)

[
EL[σL(Φ̂(v) ∪ Im(ψ̂′

\ψ) ∪ dom(ψ))− σL(Im(ψ̂′
\ψ) ∪ dom(ψ))|ψ ⊆ Φ]

]
(4.25)

= ∆2
ψ(v|ψ̂′),

where (4.25) holds since σL is a submodular set function.

From the Ordinary to the Strong 2-level Diffusion Model. Given a partial

realisation ψ, and v ∈ V , let ∆ψ(v) := EL[σL({v}∪dom(ψ))−σL(dom(ψ))|ψ ⊆ Φ], that

is the expected increment under the ordinary diffusion model when adding a new node to

the nodes in dom(ψ) conditioned by partial realisation ψ, and let ∆2
ψ(v) := ∆2

ψ(v|∅) =
EL,L̂[σL,L̂,ψ({v} ∪ dom(ψ)) − σL,L̂,ψ(dom(ψ))|ψ ⊆ Φ], that is the above conditional

expectation, but w.r.t. the strong 2-level diffusion model. The following lemma can be

shown analogously to Lemma 4.8.

Lemma 4.15. We have that ∆2
ψ(v) ≤ 2 ·∆ψ(v) for any partial realisation ψ and v ∈ V .

From the Optimal to the Greedy Adaptive Policy. The following lemma will be

used to relate the strong 2-level hybrid adaptive policy with the adaptive greedy policy;

its proof is similar to that of Lemma 4.10, but uses the concept of strong adaptive

submodularity.
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Lemma 4.16. For any partial realisation ψ, we have,

EL,L̂[σ
2
L,L̂,ψ

(dom(ψ) ∪ dom(Ψ̂π))| ψ ⊆ Φ] ≤ EL[σL(dom(ψ))|ψ ⊆ Φ]

+
∑

v∈V \dom(ψ)

xv ·∆2
ψ(v). (4.26)

Proof. We observe that EL,L̂[σ
2
L,L̂,ψ

(dom(ψ) ∪ dom(Ψ̂π))| ψ ⊆ Φ] can be rewritten as

the expected influence spread EL[σL(dom(ψ))|ψ ⊆ Φ] conditioned by ψ, plus the sum

of expected increments of the influence spread under the strong 2-level diffusion model

caused by all the nodes v ∈ V \ dom(ψ) selected by policy π, conditioned by ψ. We

observe that the second sum can be written as

∑
v∈V \dom(ψ)

∑
ψ̂′

χ(v|ψ̂′) ·∆2
ψ(v|ψ̂′),

where χ(v|ψ̂′) ∈ {0, 1} is the indicator random variable defined as in the proof of Lemma

4.10 (i.e., equal to 1 if and only if policy π visits partial realisation ψ̂′ at some step of

the execution and then selects node i). Thus, we have that

EL,L̂[σ
2
L,L̂,ψ

(dom(ψ) ∪ dom(Ψ̂π))| ψ ⊆ Φ]

= EL[σL(dom(ψ))|ψ ⊆ Φ] +
∑

v∈V \dom(ψ)

∑
ψ̂′

χ(v|ψ̂′) ·∆2
ψ(v|ψ̂′). (4.27)

As the probability that each node v ∈ V is selected by policy π is xv, we have that

∑
ψ̂′

χ(v|ψ̂′) = xv. (4.28)

Thus, we have that

∑
v∈V \dom(ψ)

∑
ψ̂′

χ(v|ψ̂′) ·∆2
ψ(v|ψ̂′)

≤
∑

v∈V \dom(ψ)

∑
ψ̂′

χ(v|ψ̂′) ·∆2
ψ(v|∅) (4.29)

=
∑

v∈V \dom(ψ)

∑
ψ̂′

χ(v|ψ̂′)

 ·∆2
ψ(v|∅)

=
∑

v∈V \dom(ψ)

xv ·∆2
ψ(v), (4.30)
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where (4.29) follows from Lemma 4.14 (i.e., from the strong adaptive submodularity),

and (4.30) holds by (4.28). By applying (4.30) to (4.27), we get

EL,L̂[σ
2
L,L̂,ψ

(dom(ψ) ∪ dom(Ψ̂π))| ψ ⊆ Φ]

= EL[σL(dom(ψ))|ψ ⊆ Φ] +
∑

v∈V \dom(ψ)

∑
ψ̂′

χ(v|ψ̂′) ·∆2
ψ(v|ψ̂′)

≤ EL[σL(dom(ψ))|ψ ⊆ Φ] +
∑

v∈V \dom(ψ)

xv ·∆2
ψ(v),

thus the claim follows.

The following lemma shows that the optimal adaptive influence spread is upper bounded

by that expected influence spread of the strong 2-level hybrid adaptive policy, and its

proof is completely analogues to that of Lemma 4.11.

Lemma 4.17. We have OPTA(G, k) ≤ EL,L̂[σ
2
L,L̂,ψ

(dom(ψ) ∪ dom(Ψ̂π))| ψ ⊆ Φ] for

any partial realisation ψ.

4.4.1 Proof of Theorem 4.13

Armed with the above lemmas, and by using a similar approach as in the proof of

Theorem 4.5, we can prove Theorem 4.13. Given t ∈ [k]0, let St denote the (random) set

of the first t seeds selected by the adaptive greedy policy πGRk , and let Ψt be the (random)

partial realisation such that dom(Ψt) = St (i.e., the partial realisation observed by policy

πGRk at the end of step t); let GRA(G, t) := EL[σL(St)] denote the expected influence

spread of the adaptive greedy policy after selecting the first t seeds. For any t ∈ [k−1]0,

we have that

GRA(G, t+ 1)−GRA(G, t)

= EL[σ(St+1)− σ(St)]

= EΨt

[
max

v∈V \dom(Ψt)
EL[σL({v} ∪ dom(Ψt))− σL(dom(Ψt))|Ψt]

]
(4.31)

≥ EΨt

 ∑
v∈V \dom(Ψt)

xv
k
· EL[σL({v} ∪ dom(Ψt))− σL(dom(Ψt))|Ψt]


=

1

k
· EΨt

 ∑
v∈V \dom(Ψt)

xv · EL[σL({v} ∪ dom(Ψt))− σL(dom(Ψt))|Ψt]
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=
1

k
· EΨt

 ∑
v∈V \dom(Ψt)

xv ·∆Ψt(v)


≥ 1

2k
· EΨt

 ∑
v∈V \dom(Ψt)

xv ·∆2
Ψt
(v)

 (4.32)

≥ 1

2k
· EΨt

[
EL,L̂[σ

2
L,L̂,Ψt

(dom(Ψt) ∪ dom(Ψ̂π))|Ψt]− EL[σL(dom(Ψt))|Ψt]
]

(4.33)

≥ 1

2k
· EΨt [OPTA(G, k)− EL[σL(dom(Ψt))|Ψt]] (4.34)

≥ 1

2k
·OPTA(G, k)−

1

2k
· EΨt [EL[σL(dom(Ψt))|Ψt]]

=
1

2k
·OPTA(G, k)−

1

2k
· EL(σL(St))

=
1

2k
·OPTA(G, k)−

1

2k
·GRA(G, t), (4.35)

where (4.31) holds since the adaptive greedy strategy at each step adds the node maxi-

mizing the expected influence spread (conditioned by the partial realisation coming from

the previous selected seeds), (4.32) comes from Lemma 4.15, (4.33) comes from Lemma

4.16, (4.34) comes from Lemma 4.17. Thus, by (4.35) and some manipulations we get

the following recursive relation:

GRA(G, t+ 1) ≥ 1

2k
·OPTA(G, k) +

(
1− 1

2k

)
·GRA(G, t), ∀t ∈ [k − 1]0. (4.36)

By applying iteratively (4.36), we get

GRA(G, k) ≥
1

2k
·
k−1∑
t=0

(
1− 1

2k

)t
·OPTA(G, k) = 1−

(
1− 1

2k

)k
·OPTA(G, k),

that leads to
GRA(G, k)

OPTA(G, k)
≥ 1−

(
1− 1

2k

)k
≥ 1− 1√

e
,

and this shows the claim.

4.5 Summary

In this chapter, under the context of adaptive optimization, we have introduced a new

approach to relate the solution provided by a simple non-adaptive greedy policy with

the adaptive optimum. Our setting is based on the techniques used by Asadpour and

Nazerzadeh [51]. Even though their results are strictly better than ours due to the usage
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of continuous non-adaptive randomized policy achieved by Poisson process and multi-

linear extension, our non-adaptive policy is simpler to design due to its deterministic

nature and bypasses such complex calculations.

This new technique allowed us to establish better bounds for the adaptive influence

maximization problem under the myopic feedback, specifically we improve both the

approximation ratio of the non-adaptive greedy policy and the adaptivity gap from 4 to

3.164. We also show the approximation factor for the adaptive greedy under the same

setting using our technique.



Chapter 5

Conclusion and Open Problems

In this thesis, we study the two feedback models of the Adaptive influence maximiza-

tion problem focusing mainly on independent cascade. The adaptivity gap gives us a

performance quantification of an optimal non-adaptive strategy when compared to an

optimal adaptive one. The focus of the thesis is to bound the AG for different graph

classes, feedbacks, diffusion models and to tighten that bound. Chapter 2 exhaustively

explains the background and problem definitions, along with the necessary literature

review related to this thesis.

In this chapter, we conclude the thesis by giving a brief overview on the contents and the

results. Section 5.1 discusses the applications related to the scope of the thesis to further

motivate the study of adaptivity gaps and its implications. We move on to discussing

the open problems and future directions in Section 5.2. For a more concise idea about

the gaps that are still open and needs to be found or tightened, refer to Table 5.1.

Chapter 3 of this thesis studies the full adoption feedback under the independent cascade

model. Bypassing the requirements of multilinear extension and Poisson process, which

are the commonly used techniques to link the non-adaptive spread with the adaptive one

[15], we instead opt for introducing a hybrid policy and then use it to link the optimal

non-adaptive and the adaptive policies. The hybrid adaptive policy ensures that at each

step t of the diffusion process, the number of selected seed node is t. Whereas, the

non-adaptive policy in [15] selects X number of seed nodes and evaluates the expected

spread on the random variable X. However, instead of the total number of selected

seeds being equal to k, it is k under expectation thus increasing the upper bound of AG

for in-arborescences. We use this hybrid technique to improve the upper bound of in-

arborescences, and bring it down to 2.31 from 3.16. We move on to give the first results

on general graph and bound it to ⌈n1/3⌉, where n is the number of nodes. We also study

other graph classes such as the α-bounded-degree, upper bounded to
√
α + O(1), and

81
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(β, γ)-bounded-activation graphs, whose AG is bounded to
√
β + 1

1−γ . In section 5.2.1,

we state the open problems related to the results of this chapter. The experimental

part of is in Section 3.5, where we use synthetic networks and a real world network.

The purpose of the experiments is to study the state-of-the-art non-adaptive greedy

algorithm called TIM+ and compare it using its adaptive greedy equivalent using a

measure called the greedy adaptivity gap. We use different parameters and graph types

under the IC and LT models with full-adoption to understand the behaviour of the

greedy algorithms. The experimental part, shows that the greedy adaptivity gap is close

to 1, thus ensuring the efficiency of TIM+.

Chapter 4 focuses on the myopic model under IC, and its future directions are listed in

Section 5.2.2. Since the myopic feedback model is not adaptive submodular, bounding

the AG becomes non-trivial. To recover from the adaptive non-submodularity, we resort

to an artificial 2-level diffusion model, which gives a seed node two chances to activate

its neighbours. We introduce a new technique to arrive at an improved upper bound

for the AG, and omit the use of random walks on optimal decision trees and multilinear

extension to relate the non-adaptive and adaptive policies. Instead, by using a simple

randomized non-adaptive policy, we relate it with the optimal adaptive policy, and

derive the approximation ratio of the non-adaptive greedy algorithm which improved

from 0.158 [39] to 0.316. We also notice an improvement in the adaptivity gap from 4 to

3.164 by extension. By using the same techniques, we also calculate the approximation

factor for the adaptive greedy algorithm which is ≈ 0.393.

Table 5.1: Current bounds on AG and GAG for different models and feedback

Model Adaptivity Gap Greedy Adaptivity Gap

Independent Cascade
Full-Adoption

Lower:e/(e− 1) [15]

Upper:

General:⌈n1/3⌉ [19]
In-arborescence:2e2/(e2 − 1) [19]

Out-arborescence:2 [15]
α-bounded degree:

√
α+O(1) [19]

1-D Bipartite: e/(e− 1) (tight) [15]

Lower:1− (1/e)[17]
Upper:Open

Independent Cascade
Myopic

Lower:e/(e− 1) [39]
Upper:2e/(e− 1) [16]

Lower:1− (1/e) [17]
Upper:2e2/(e− 1)2 [16]

Linear Threshold
Full-Adoption

Lower:Open
Upper:Open

Lower:1− (1/e) [17]
Upper:Open

Linear Threshold
Myopic

Lower:Open
Upper:Open

Lower:1− (1/e) [17]
Upper:Open

Triggering
Full-Adoption

Lower:∞ [17]
Upper:∞ [17]

Lower:1− (1/e) [17]
Upper:∞ [17]

Triggering
Myopic

Lower:e/(e− 1) [39]
Upper:Open

Lower:1− (1/e) [17]
Upper:Open
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5.1 Applications of the Thesis

In-arborescences. Networks exhibiting hierarchical structures are one of the exam-

ples of in-arborescences. Many companies have inter networking as a way of information

passing, and these are normally hierarchical networks with the number of terminals de-

pending on the size of network. The entire inter network can be seen as an arborescence,

with the root being the top level server, and the leaves being the individual employee

terminals. The information propagation is usually bidirectional. One specific case, when

an in-arborescence is an essential graph topology to consider is, when a middle tier or

even an end terminal connection fails. Introducing uncertainty among the nodes based

on their probability of failure makes the model stochastic. The example can be analogous

to the problem of sensor placement and detecting failures in them.

Our objective is to maximize the number of activated systems in between, to ensure that

there is maximum information propagation to the root, also the detection of failure is

reported and handled as early as possible.

Adaptive Stochastic Submodular Maximization. Chapter 4 focuses mainly on

the usage of the new technique in case of adaptive influence maximization, however, there

are other applications which require analysis of non-adaptive policies with adaptive ones

that can be considered under this new setting. As shown in Section 4.1, we believe that

our new approach could be efficiently used to analyze non-adaptive greedy algorithms

in other adaptive optimization problems.

One application is the stochastic probing problem studied by [49, 50, 66, 77], which

in turn has further sub problems like maximum cardinality matching, path planning

for robots, set cover problems [73, 74]. The stochastic probing problem is defined as

follows: given an universal set of elements V , to know the state of an element v ∈ V ,

where each v is associated with an independent probability pv determining the activation

probability, we need to probe v in order to reveal if it is active or not. This problem

is naturally adaptive because in order to probe the next best element, we look at the

feedback generated by the previously probed elements that are now a part of the seed

set S.

5.2 Discussions and Open problems

Adaptive seeding is a notoriously challenging problem. Due to the randomness on the

edge activation, the problem becomes non-trivial, and bounding the adaptivity gap



Chapter 5. Conclusion 84

becomes incredibly tricky. One challenge in the Independent Cascade model with full-

adoption feedback is that the feedback generated from two nodes are not independent.

This correlated feedback arises due to the propagation overlap from two nodes, which

causes a substantial loss in the upper bound of the model. This problem is tackled in

Chapter 3, where we try to lower the upper bound by directly building the connections

through defining the marginals on the t− 1 non-optimal solution.

Moving to Chapter 4, we deal with the non-submodular myopic feedback model under IC.

The fact that the model is non-submodular makes it incredibly challenging to bound. We

resort to artificial diffusion models which recovers the adaptive submodularity, however

we suffer a substantial loss in the upper bound of the adaptivity gap.

5.2.1 Full-Adoption Feedback

The first problem that is left open by our results is the gap between the constant lower

bound provided by Chen and Peng [15] and our upper bound on the adaptivity gap for

general graphs. Besides trying to lower the upper bound, a possible direction could be

that of increasing the lower bound by finding instances with a non constant adaptivity

gap. Since the lower bound given in [15] holds even when the graph is a directed path,

one direction could be to exploit different graph topologies.

Although in this work we have improved the upper bound on the adaptivity gap of

in-arborescence, there is still a gap between the upper and lower bounds, thus another

open problem is to close it. It would be also interesting to find better bounds on the

adaptivity gap of other graph classes, like e.g. out-arborescences. A further interesting

research direction is to study the adaptivity gap of some graph classes modelling real-

world networks, both theoretically and experimentally.

Finally, most of the work on adaptive IM has been done for the independent cascade

model, and other diffusion models (e.g., the linear threshold and the triggering models)

have been less investigated. We observe that in many diffusion models different from the

independent cascade (e.g., the linear threshold and the triggering models) the objective

function is not adaptive submodular under both myopic and full-adoption feedback and

the standard analysis of the greedy approach does not guarantee an efficient approx-

imation. For the general triggering model, [60] overcome this problem by exploiting

submodularity ratio, but constant bounds on both the adaptivity gap and the approx-

imation ratio are guaranteed for bipartite graphs only, and the study of other graph

topologies is still open.
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5.2.2 Myopic Feedback

Our results open several research directions in the context of influence maximization and

in more general adaptive optimization settings. The approximation factor of the non-

adaptive (resp. adaptive) greedy algorithm is between our lower bound of 1
2

(
1− 1

e

)
≈

0.316 (resp. 1 − 1√
e
≈ 0.393) and the upper bound of e2+1

(e+1)2
≈ 0.606 [39], and the

adaptivity gap is between the lower bound of e
e−1 ≈ 1.582 [39] and our upper bound

of 2e
e−1 ≈ 3.164. The first problem left open by our result is to close these gaps. Fur-

thermore, the techniques introduced in this thesis to relate non-adaptive policies with

adaptive ones might be useful to find better bounds in several variants of the adaptive

influence maximization problem, like a combination of the following settings: different

feedback models (e.g., the full-adoption feedback), different diffusion models (e.g., the

general triggering model [1]), and different graph classes.
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[53] Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a
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tic knapsack problem: The benefit of adaptivity. Math. Oper. Res., 2008.
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